
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

July 1988

A Distributed System for Robot Manipulator Control A Distributed System for Robot Manipulator Control

Richard P. Paul
University of Pennsylvania

Hong Zhang
University of Pennsylvania

Minoru Hashimoto
University of Pennsylvania

Alberto Izaguirre
University of Pennsylvania

Jeffrey Trinkle
University of Pennsylvania

See next page for additional authors

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation
Richard P. Paul, Hong Zhang, Minoru Hashimoto, Alberto Izaguirre, Jeffrey Trinkle, Nathan Ulrich,
Yangsheng Xu, and Yehong Zhang, "A Distributed System for Robot Manipulator Control", . July 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-49.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/673
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/673
mailto:repository@pobox.upenn.edu

A Distributed System for Robot Manipulator Control A Distributed System for Robot Manipulator Control

Abstract Abstract
This is the final report representing three years of work under the current grant. This work was directed to
the development of a distributed computer architecture to function as a force and motion server to a
robot system. In the course of this work we developed a compliant contact sensor to provide for
transitions between position and force control; we have developed an end-effector capable of securing a
stable grasp on an object and a theory of grasping; we have built a controller which minimizes control
delays, and are currently achieving delays of the order of five milliseconds, with sample rates of 200 hertz;
we have developed parallel kinematics algorithms for the controller; we have developed a consistent
approach to the definition of motion both in joint coordinates and in Cartesian coordinates; we have
developed a symbolic simplification software package to generate the dynamics equations of a
manipulator such that the calculations may be split between background and foreground.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-88-49.

Author(s) Author(s)
Richard P. Paul, Hong Zhang, Minoru Hashimoto, Alberto Izaguirre, Jeffrey Trinkle, Nathan Ulrich,
Yangsheng Xu, and Yehong Zhang

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/673

https://repository.upenn.edu/cis_reports/673

A DISTRIBUTED SYSTEM FOR
ROBOT MANIPULATOR CONTROL

NSF GRA.NT ECS84-11879
FINAL REPORT

MS-CIS-88-49
GRASP LAB 149

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

July 1988

A Distributed System for
Robot Manipulator Control

NSF Grant ECS84-11879
Final Report

Richard P. Paul
Hong Zhang Minoru Hashimoto

Jeffrey Trinkle Nathan Ulrich
YehongZhang

Alberto Izaguirre
Yangsheng Xu

The University of Pennsylvania
Moore School

Philadelphia PA 19104

ABSTRACT

This is the final report representing three years of work under
the current grant. This work was directed to the development of a
distributed computer architecture to function as a force and motion
server to a robot system. In the course of this work we developed a
compliant contact sensor to provide for transitions between position
and force control; we have developed an end-effector capable of se
curing a stable grasp on an object and a theory of grasping; we have
built a controller which minimizes control delays, and are currently
achieving delays of the order of five milliseconds, with sample rates of
200 hertz; we have developed parallel kinematics algorithms for the
controller; we have developed a consistent approach to the definition
of motion both in joint coordinates and in Cartesian coordinates; we
have developed a symbolic simplification software package to generate
the dynamics equations of a manipulator such that the calculations
may be split between background and foreground.

Contents

1 PAST RESEARCH

2 CURRENT RESEARCH
2.1 Four Joint Wrist Design
2.2 Compliant Wrist Design
2.3 Grasping - Theory.
2.4 Grasping - Practice . .
2.5 Dynamics
2.6 Robot Force and Motion Server
2.7 Parallel Kinematics .
References

3 DOCUMENTATION

1

2
3
3
4
4
5
5
5
6

6

A APPENDICES 10
A.l Terminal Link Force and Position Control of a Robot Manip-

ulator .. 11
A.2 Planning for Dextrous Manipulation with Sliding Contacts 31
A.3 A l\tledium-Complexity Compliant End Effector 83
A.4 A New Computational Structure for Real-Time Dynamics .. 103
A.5 RFMS Software Reference Manual. 174
A.6 A Parallel Solution to Robot Inverse Kinematics 216

1 PAST RESEARCH

Research during the prior years of this grant related to the problems of multi
sensor control of robots, sensor fusion, and grasp planning. A distributed
computing architecture was proposed in which sensors and actuation con
trollers run on separate processors coupled together by a network and super
vised by a coordinator. The coordinator used Bayesian techniques to cluster
sensor observations and to provide a robust estimate of environment state.

Problems of grasp planning were considered together with the design of
a new three fingered hand of medium complexity. A contact sensor was
developed which was to provide contact detection information, compliance
during contact, and relative end-effector displacement.

Actuation was handled by a special purpose, concurrent processor \vhich
provided for both force and motion control. The aim of this processor was
to remove the computational limitations on manipulator performance. This
current system involves delays of the order of 5 milliseconds between changes
in Cartesian coordinates and a response at the mani,pulator actuator level.
A number of software and hardware tools were developed in the course of
this work. Algorithms were carefully studied in order to reduce the real time
complexity of manipulator controL

Documentation relating to this work was as follows:

• the integration, coordination, and control of multi-sensor systems [1]
[2] [3) [4] [5] [6];

• the planning of grasps [7] [8];

• the initial development of the distributed force and motion server [9]
[10];

• research on general manipulation and dynamics [11] [12] [13] [14] [15].

1

2 CURRENT RESEARCH

During this final year of the Grant we have, in· the absence of the availability
of the high performance Hughes Systolic/Cellular Array Processor concen
trated on developing the robotics applications for which it will be used. These
applications require substantially more computing capability that can be ob
tained by any reasonable practical machine available. We have, however,
been concerned with the array processor host and manipulator interface, it
self a significant computational problem. This proposed host system has
been used to demonstrate many of our ideas.

Problems of robot manipulation in unstructured environments may be
viewed in terms of the manipulator's wrist: the interface between the end
effector and the manipulator. The end-effector contacts the environment,
grasps objects, and with a grasped objects contacts the environment. The
manipulator is used to position and to orient the wrist and to exert forces
and moments on the wrist so as to apply a required force or moment on the
environment.

In terms of the wrist we must be concerned with:

• the orienting and positioning of the end-effector along with its abil
ity to make arbitrary translations and rotations from any given initial
position and orientation.

• making contact and breaking contact with the environment, in which
case, impulsive forces and discontinuities in force will occur; the ma
nipulator must be shielded from these potentially destructive forces.

• the grasping of objects, the establishment of stable grasps at the ap
propriate position and orientation on the object so that necessary ma
nipulative surfaces of features of the object are exposed in the correct
orientation to perform any required actions.

• the ability of the end-effector, or the end-effector holding an object, to
exert forces or moments on the environment while maintaining stability
in unconstrained directions.

• the computational algorithms necessary to control the manipulator
joints to provide the necessary task motions and to provide the neces-

2

sary task forces" this involves a dynamic model of the maniptllator so
that \ve may separate internal forces from external forces.

2.1 Four Joint Wrist Design

The wrist is required to provide an orienting mechanism, free of kinematic
singularities to orient the end-effector relative to the terminal link of the ma
nipulator. In this work we consider the manipulator to be a three-dimensional
positioning mechanism with a well defined terminal link orientation, a func
tion of position. The wrist is then to provide a three-degree-of-freedom ori
enting mechanism free of singularities. It has been shown in prior work that
this requires a minimum of four revolute axes. It is also desirable that the
wrist does not introduce any appreciable translation as it provides for ro
tational change. If these joints are to be of limited rotational ability, and
continuous rotation to be ruled out, then we might require that the wrist be
able to rotate some arbitrary finite angle, say ±90° from any given initial
orientation. We have been working on developing the design by Fisher which
uses an additional joint to provide motion to control the rates of the three
primary orienting joints (16].

2.2 Compliant Wrist Design

We have also been working on a six-degree-of-freedom passive compliance
located at wrist and instrumented for displacement and orientation [17, 18]
see Appendix A.l. With this compliance we are able to provide a high band
width low pass filter between the environment and the manipulator. It is used
to absorb the impulsive forces on contact until they may be dissipated by
the manipulator in a controlled manner. The displacement sensor has been
programmed to increase the stiffness of the passive compliance by driving
the manipulator in directions opposite to the detected displacement in order
to provid"e for stable position control. The displacement sensor has also
been programmed to decrease the stiffness of the passive compliance so as
to provide for force control. In this. case the manipulator is programmed
to move so as to maintain a constant deflection of the passive compliance
thus providing a constant force or moment on the environment. vVe will look
eventually to the combination of the passive into the four revolute wrist to
make a non-singular passi:ve compliant wrist.

3

2.3 Grasping - Theory

The wrist will interface to the end-effector. vVe are concerned here with
an end-effector capable of securing a stable grasp on an object, not on the
dextrous manipulation of the object. We rely on the manipulator to do that.
We are thus primarily interested in enveloping grasps in which an object
is held in form closure not in the less stable force closure which relies on
friction between the finger tips and the object for the holding force. In our
case friction is a problem as we would like objects to slide along the fingers
into a form closure grasp against a palm surface. The palm of the end-effector
is instrumented for tactile array information to help determine the grasp on
the object. We thus consider the end-effector to be a soft surface at the end
of the wrist which may be used to exert forces and moments on objects and
the environment and to provide a tactile image of the contact. Fingers are
provided to hold an object against the palm so that the manipulator may
pull as well as push on objects.

Given an arbitrary object it is difficult, if not impossible, to determiningg
how if might be picked-up. If we restrict the class of objects to polyogonial
cylinders we are able to determine grasping strategies and to prove that a
given object will rest in a final position against the palm if the determined
strategy is followed [19, 20, 21]. See Appendix i\..2. A large class of objects
may be approximated by polyogonial cylinders and grasping strategies devel
oped. For other objects specific grasping surfaces must be specified in order
for a stable grasp to be planned.

2.4 Grasping - Practice

We have also developed a medium-complexity end-effector which will en
able us to provide these grasping and force exerting strategies [22]. See
Appendix A.3. The end-effector consists of a palm around which three fin
gers are positioned. On finger is fixed in place, the other two fingers move
together, symmetrically around the palm to provide for a number of grasps.
The fingers may be rigid or passively curl around the object. The end-effector
is strong and is suitable for holding wrenches or in using a hammer; it does
not provide for any dextrous motion.

4

2.5 Dynamics

'The control of the manipulator is itself a computational problem. A straight
forward implementation of manipulator kinematics and dynamics results in
matrix algorithmns, which while simple, involve enormous amounts of arith
metic computation. Historically this problem has been solved by generating
the symbolic equations that would be evaluated by the numeric algorithm.
Taking advantage of the simple form of many manipulator's kinematics and
dynamics, which result in many terms being either zero of one, the gener
ated, closed form symbolic equations, may be evaluated at a far reduced
computational cost. We have been in the forefront of this approach and
have developed not only kinematic equations but have also studied dynamics
[15, 23, 24]. The approach to dynamics is to separate those computations
which must be performed at the control rate and those which may be com
puted at a much reduced background computational rate dependent only
on manipulator configuration state. The control rate computation is only
six multiplies and additions per joint. Background computations compute
inertias, coupling inertias, and velocity and gravity dependent forces. See
Appendix A.4.

2.6 Robot Force and Motion Server

Even with these symbolic techniques it is necessary many of the low-level
computations in parallel. See Appendix A.5. To this end we have developed a
multi-processor computer controller based on Intel 8086 and 8087 processors.
The controller employs one processor per joint and involves no pipelining.
The joint processors look at the desired Cartesian set-point and determine,
in parallel, their own joint coordinate [25].

2.7 Parallel KineIIlatics

This parallel approach involved also developing a parallel approach to ma
nipulator kinematics [26, 27]. Here all joints obtain their individllal joint
coordinates based on the Cartesian set-point and on previous values of the
other joint coordinates. Good convergence and tracking is obtained using
this method. See Appendix A.6

5

3 DOCUMENTATION

[1] Richard P. Paul, Hugh F. Durrant-Whyte, and Max 1JIintz. A ro
bust, distributed sensor and actuation robot control system. In Oliver
Faugeras and Georges Giralt, editors, Robotics Research: The Third
International Symposium, pages 93-100, MIT Press, Cambridge, Mas
sachusetts, 1986.

[2] Hugh F. Durrant-Whyte and R. P. Paul. Integration of distributed
sensor information: an application to a robot system coordinator. In
Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, page 415, November 1985.

[3] Hugh F. Durrant-Whyte. Consistent integration and propogation of
disparate sensor observations. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1464-1469, April 1986.

[4] Hugh F. Durrant-Whyte. Consistent integration and propogation of dis
parate sensor observations. To appear, International Journal of Robotics
Research, Fall 1986.

[5] Hugh F. Durrant-Whyte. Concerning uncertain geometry in robotics.
In International Workshop on Geometric Reasoning, June 1986.

[6] Hugh F. Durrant-Whyte, Ruzena Bajcsy, and Richard Paul. Using a
blackboard architecture to integrate disparate sensor observations. In
DARPA Workshop on Blackboard Systems for Robot Perception and
Control, June 1986.

[7] Jeffrey C. Trinkle, Jacob M. Abel, and R. P. Paul. Enveloping, Fric
tionless, Planar Grasping. Technical Report MS-CIS-86-57, University
of Pennsylvania, CIS Dept., Moore School, Philadelphia, P..J\. 19104, July
1986.

[8] Jeffrey C. Trinkle, Jacob M. Abel, and R. P. Paul. Enveloping, friction
less, planar grasping. In Proceedings of the 1987 IEEE International
Conference on Robotics and Automation, 1987.

6

[9] R. P. Paul and Hong Zhang. Design and implementation of a robot
force/motion server. In Proceedings of the IEEE International Conf'er

ence on Robotics and Automation, pages 1878-1883, 1986.

[10] Hong Zhang and R. P. Paul. Hybrid control of robot manipulators.
In Proceedings of the IEEE International Conference on Robotics and
A utomation, pages 602-607, March 1985.

[11] R. P. Paul and Hong Zhang. Robot motion trajectory specification and
generation. In Hideo Hanafusa and Hirochika Inoue, editors, Robotics
Research: The Second International Symposium, pages 373-380, MIT
Press, Cambridge, Massachusetts, 1985.

[12] R. P. Paul and Hong Zhang. Computationally efficient kinematics for
manipulators with spherical wrists based on the homogeneous transfor
mation representation. The International Journal of Robotics Research,
5(2), 1986. Special Issue on Kinematics.

[13] Alberto Izaguirre and R. P. Paul. Computation of the inertia and gravi
tational coefficients of the dynamic equations of the robots. In Proceed
ings of the IEEE International Conference on Robotics and Automation,
pages 1024-1032, March 1985.

[14] Alberto Izaguirre and Richard P. Paul. Automatic generation of the
dynamics equations of the robot manipulators using a LISP program.
In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 220-226, April 1986.

[15] Alberto Izaguirre, Minoru Hashimoto, Richard P. Paul, and V"incent
Hayward. Identification of the parameters of the dynamic equations
of robot manipulators. In IEEE International Whorkshop on Robotics:
Trends, Technology and Applications, Madrid, 1987.

[16] Gregory Long and Richard P. Paul. Avoiding orientation degeneracies
with a spherical four-joint wrist. 1988. Work in progress.

[17] Yangsheng Xu and Richard. P. Paul. On position compensation and
force control stability of a robot with a compliant wrist. In Proceed
ings of the IEEE International Conference on Robotics and Automation,
pages 1173-1178, April 1988.

7

[18] Richard P. Paul~ Yangsheng Xu, and Xiaoping Yun. Terminal link force
and position control of a robot manipulator. September 1988. To ap
pear in the Proceedings of CISM Conference on Theory and Practics of
Robots Manipulator.

[19] Jeffery C. Trinkle. The Mechanics and Planning of Enveloping Grasps.
Technical Report MS-CIS-87-46, University of Pennsylvania, CIS Dept.,
Moore School, Philadelphia, PA 19104, June 1987.

[20] Jeffery C. Trinkle and Richard P. Paul. An investigation of friction
less, enveloping grasps. The International Journal of Robotics Research,
7(3):33-51, June 1988.

[21J Jeffery C. Trinkle and Richard P. Paul. Planning for dextrolls manip
ulation with sliding contacts. The International Journal of Robotics
Research, 1988. submitted for publication.

[22] Nathan Ulrich, Richard Paul, and Ruzena Bajcsy. A medium-complex
ity compliant end effector. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 434-436, April 1988.

[23] Alberto Izaguirre, Minoru Hashimoto, Richard P. Paul, and \lincent
Hayward. A new computational structure for real time dynamics.
In Identification of parameters in dynamics, S.l.C.E. Conference, Hi
roshima, JAPAN, July 1987.

[24J Alberto Izaguirre, Minoru Hashimoto, Richard P. Paul, and Vincent
Hayward. A new computational structure for real-time dynamics. The
International Journal of Robotics Research, 1988. accepted for publica
tion.

[25] Zhang Hong. RFMS Software Reference l\!Ianual. Technical Re-
port MS-CIS-88-01, University of Pennsylvania, CIS Dept., Moore
School, Philadelphia, Pi\. 19104, January 1988.

(26] Hong Zhang and Richard P. Paul. Non-kinematic errors in robot ma
nipulators. In Proceedings of the IEEE International Conference on
Robotics and Automation., pages 1138-1139, April 1988.

8

[27] Hong Zhang and Richard P. Paul. A parallel solution to robot inverse
kinematics. In Proceedings of the IEEE International Conference o'n
Robotics and Automation, pages 1140-1145, i\pril 1988.

9

A APPENDICES

10

A.I Terlllinal Link Force and Position Control of a
Robot Manipulator

11

TERMINAL LINK FORCE AND POSITION CONTROL OF A
ROBOT MANIPULATOR

Richard P. Paul

Yangsheng Xu

Xiaoping Yun

Department of Computer and Infonnation Science
University of Pennsylvania

Philadelphia, PA 19104

ABSTRACT

The rigidity of robot manipulators, while an asscst in the control of end-effector
position~ is a problem when force is to be controlled or when a controlled contact with a
rigid environment is to be achieved. The introduction of flexibility into the manipulator
structure may simplify force and contact control but considerably complicate the control
of position. We propose a semi-flexible terminal link for a rigid manipulator which,
while providing the necessary flexibility for force and contact control, provides a struc
ture which may still be controlled in position. We choose an intenncdiatc stiffness for the
tenninallink so that position feedback in the manipulator can either increase the effective
stiffness of the end-effector, when under position control, or can decrease the stiffness,
when under force control. This paper describes such a tenninallink -- a compliant wrist
device and analyzes its stability and perfonnance under both position and force control.

1. INTRODUCTION

In many applications of robots the manipulator's end-effectors work with objects which arc in con
tact with the environment. The manipulator continually moves between constrained and unconstrained
modes, constrained when the objcct is in contact with the environment and unconstrained when an object is
being moved in free space. When the manipulator is constrained, force is controlled 9 when the manipulator
is in frcc space and unconstrained, position is controlled. Between these two modes is a transition, the
manipulator moving in frcc space comes into contact with a rigid environment and the manipulator in con
strained by the environment breaks contact and becomes unconstrained [13]. Changes between modes can
involve discontinuities in stale variables such as velocity and force. In order to accommodate these discon
tinuities passive compliance may be inserted between the manipulator and its cnd-effector~ in the same
manner as springs and shock absorbers are used in automobiles.

In the constrained mode force is to be controlled. If only some degrees of freedom are constrained
then those degrees of freedom are appropriate for force control while the unconstrained degrees of freedom
are appropriate for position control. Force conlIol may be provided in either joint coordinates [14] or in
Cartesian coordinates [15] and the control may take place in either coordinate system.

The simplest, and most direct method of force control involves colocated force sensors at the
manipulator's joints. This method while only providing approximate control of cnd-effector force is simple
and fast [14]. Stiff wrist force sensors may be used to control force by feedback over the entire

This material is based on work supponcd by the National Science Foundation under Grant No. DMC-8512838. Anyopin
ions, findings, and conclusions or recommendations expressed in this publication arc those of the authors and do not neces
sarily reflcct the vicws of the National Science Foundation.

12

The system shows an actuator controlling the motion of a link and thereby controlling the motion of
the end effector through a compliant wrist sensor device which is attached between the end effector and
link. The feedback control loop is used to make the end effector position reach a command position against
the influence of an external force which could be gravity load, unbalancing harmonic force, or random
excitation.

We will assume the following: the link drive train is rigid compared with the flexibility of the com
pliant wrist sensor, the contribution from the viscous damping and static friction of the actuator is negligi
ble, the rotational inertia of the actuator and the link is J , the proportional feedback gain and rate gain of
PD controller are Kp and K y respectively, the load and end effector mass is m, the stiffness and damping of
the wrist sensor arc K and C respectively.

A system block diagram of the single joint manipulator is shown in Fig.2. The wrist sensor records
the difference of the motions between link and end effector. These signals arc the input to the compensat
ing controller H , together with the input command motion Xc (corresponding to the angular displacement
of the link) which drives the system controller and thereby Lhc actuator.

It is our aim to determine the form of the compensating controller 1/ so that the deflection of the end
effector due to external forces applied to the compliant wrist sensor can be compensated. In other words,
the response of the end effector becomes independent of the force and compliance of the system.

We define Gc the transfer function of the actuator, PD controller, and rigid link. I{ is the transfer
function of position compensator in the feedback loop. G 1 is the transfer function of end effector
motion/command position, and G2 is the transfer function of end effector motion/applied external force.
An equivalent block diagram is shown in Fig.3. From Fig.3, we set F = 0 and Xc =0 respectively, to
obtain:

X G1Gc

X; = 1-IJGc+HGcG1

X (I-H Gc) G2
F = 1-H Gc + G1 Gc II

where

G - C s +K
1- m s2+ C s +K

G - 1
2- m s2+C s +K

G - Kp
c-I s2+Kv s+Kp

Therefore, the characteristic equation of the closed loop system is

1-Ii Gc + G 1 Gc J-I =0

or,

(ms2+Cs+K)(Js2+Kvs+Kp)-fIKpms2::0

The steady slate characteristics of the closed loop system can be determined by setting s to zero.

Ii X _ Gc Cs)G 1(s)
s~X; - I-fl(s)GcCs)+1-1(s)GcCs)G 1(s)

KKp
= KKp-fJ(O)KpK +H(O)KKp = 1

Ii X _ [I-if (s)Gc (s)]G 2(s)
s~F - I-fl(s)Gc (s)+fI(s)Gc Cs)G 1(s)

_ Kp-H(O)Kp
- KKp-li(O)KpK +11 (O)KpK .

= 1- H(O)
K

14

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(15)

(17)

(16)

In order to compensate for all deflection, K 1 should be chosen as unity. The stability conditions are

K
Ky

2<X:
p

K 1 CK"
1 < +-u-=:

l\.pm

K 1 CKv K(Kv-1KV (18)
1< +~ KKv + pC

Compared (18) with (12), one may see the stability condition with PO compensator is beuer than that with
proportional compensator. The critical damping for a stable system is fairly small. Therefore, for the small
damping sensor case, the P compensator is not a good choice, while the PD compensator is better. Simula
tion was performed for various parameters. For the case in which the inertia of actuator and link is con
sidered, the simulation shows that more damping is necessary. From (16), the rate gain of the compensator
is restricted by the joint PD controller parameters. In the other words, the active damping cannot be set
arbitrarily high. Here again passive damping is cri tical.

2.3. Lead-lag Network Compensator

Compensating also can be achieved using a simple lead-lag network in the feedback loop. The lead
lag network can be represented in the form H (s) =Kp1(1+Kv1s)/(1+K/s). If the inertia is neglected in the

system, the transfer function is

X (l+KIS)(Kp+Kvs)-KpKpl(l+Kv)
F (1+K[s)(msZ+Cs+K)(Kp+Kvs)-ms2KpKpl(1+KYls)

X (Cs+K)(1+K/s)Kp
X; (1+KIS)(ms'4Cs+K)(Kp+Kvs)-ms2KpKpl(1+KYls)

The characteristic equation is

(mK/Kv)S4+(mK[Kp+mKv+KICKv-mKpKvlKp)S3+(CK/Kp+KvC+KvKIK)S2

+(K[KKp+CKp+KvK)s+KKp=O

(19)

(20)

(21)

The steady-state compensation requires that KP1 be chosen as unity. The damping ratio needed for a stable
system is weaker than that needed in the P compensator, but stronger than that in PO compensator.

2.4. Compensator as an Inverse of Gc

From tl1~ equations (1) and (2), an interesting fact is that if the compensator transfer function is the
inverse of the transfer [unction of the actuator, the PO controller, and Lhe link, II (s) = l/Gc (s), the ratio
X IF will be made zero at all the time, which means all deflections in the end-effector will be compensated
no malter how much and what kind of the external force is. At this condition, the ratio of X IXc will be
equal to Gc and tend to unity in the steady state. The system will become independent of the external force
and passive compliance of the robot system.

If the robots move slowly or the robot is light-weight and the inertia of the link and actuator is
neglected, there is no the acceleration lenn in the transfer function Gc and H is the exact proportional and
derivative control, which is easy to realize. In the case that the acceleration tenn has to be considered, the
inertia must be specified. Therefore, we also investigated the sensitivity of the system pcrfonnance to the
inertia estimated error. The result showed lhat the effect of inertia error is not significant For both cases,
the simulation has been perfonned.

16

as

as

asess = 00,

The steady-state error can be expressed as

I" () I" SPd(S) (27)
ess =t~e t =s~ 1 + G(s)

The step, ramp, and paraboloid are simple mathematical expressions for the input force, namely, Pd(t) is
defined as U (t), tU (l), f2U (t)/2, rcspectivelYt where the notation U (t) means the unit step force for t >0.
The system error at the steady-state is following:

1
ess=~,

p

(29)

The above results are obvious because the open-loop is a zero order system. Therefore, the closed-loop sys
tem has a force error at the steady-state under the step command force if the P controller is used.

Suppose the wrist device and force controller parameters arc m =2 kg, Kw = 4000 N 1m,
Cr = 200 N 1m Is, Kp = 30, the simulation of the step force response is performed for the different' wrist
dampers as shown in Fig.8. In !"ig.8, the dashed line at force level 1 is the desired contact force. At
Kp =30, there is 3.2% force error at the steady state.

As the PD controller is represented as f1 (s) = Kp (l+K"s), the open-loop transfer function becomes

G(s) K p Kw (l+Kv s) (28)
ms'+(Cr+Cw)s+Kw

The closed-loop system transfer function is in form of

Pc(s) _ Kp Kw (l+Kv s)
-p;;[j) - m,s2+(Cr+Cw+KpKwKy)s+KwCl+Kp)

From (28), since the open-loop is still a zero order system, the steady-state performance will be
identical with that in the P controller.

A simulation was performed for the step force input for various parameters and it is shown that the
system response is much improved because the rate gain in the PD controller has a contribution to the sys
tem damping. Therefore, a proper value of the rate gain is beneficial to the improvement of the system
behavior. For the P and PD force controllers, we have the following summaries.

1) From (25) and (29), the system is stable and independent of the wrist compliance and the controller.
The relative stability of the system depends upon the stiffness of the system. The higher the propor
tional gain, the more compliant the wrist can be made.

2) There is a force error at the steady-state. The error is inversely proportional to the P gain of con
troller at a step force input, and becomes infinite at a ramp and paraboloid force input

3) The rate gain in the PD controller provides the damping in the system. Therefore, in a slight damping
system, an increasing of the rate gain can achieve the same system response as that with a large
damping.

For the PI controller represented as II (s) = Kp(l+ K,). the open-loop transfer function iss
K,

Kp Kw (l+-)
G (s) - s (30)

- ms2+(Cr +Cw)s+Kw

From (30), we know that the open-loop becomes a fust order system in this casc, and the steady-state
pcrfonnancc can be obtained as follows.

as 1Pd(S) =s

18

(38)

PeeS) 2 2 KpKw(m~s2+C~s+K~) 2 ' (37)
-p-;;[Sf = [ms +(Cr+Cw)s+Kw][mes +(Ce+Cw)s+(Kw+K,)]-(Cws+Kw) +KpKw(mes~Ces+K,)

Generally, the controller can be expressed as 1/ (s) and the open-loop system transfer function is

G() - lI(s)Kw(m~s2.tC~s+K~)
s - [ms2+(Cr+Cw)s+Kw] [m e s2+(C, +Cw)s+(Kw+K~)]-(Cw S+Kw)2

From (38), the characteristic equation of the closed-loop system is

! 4S4+f'}S3+! 2S2+! ls+f 0 = 0

where

f4=mm~

f 3 = m.(Cr+Cw)+m(C.+Cw)

f 2 = m (Kw+Ke)+mKw(l+Kp)+C,.(C.+Cw)+Cw Cil

f 1 = K. (Cw+C,.)+Kw(C.+Cr)+CcKwKp

fo=Kw Kc (l+Kp)

Since all coefficients of the characteristical equation are positive, the stability condition is

f tf2f 3 > f 1[4+[r[0

(39)

(40)

We can investigate the system perfonnance for some particular cascs. For the elastic environment
and wrist, there is no passive damping C, and Cw • Also, we suppose the mass m = m, = 1, and the propor
tional gain is larger than unity, taking Kp =10 for instance, as the steady-state error can be made the smal
lest possible. In this case, the stability condition is

Cr2(12Kw +K,)(Ke +Kw > (K,+Kw)2Cr
2+1IC,.2KwK,

or

12KJ>KJ

which is always satisfied. Further, Eq.(39) in this case can be interpreted as

1 C ~+K) K
~S4+-i-s3+[K~ w +1]s2+Cr(1+-i-)s+Kw(1+Kp)=O (41)

From (41), if Ke is infinite, the characteristics of the system is identical with that in the rigid case. How
ever, if Ke is not infinite, the system performance is improved because the effective damping ratio is
increased.

In the case that the end-effector mass is small compared with the effective mass of the manipulator,
for example m=lO, me =l,lhe environment is clastic C«=O, and the actuator viscous damping is as same
as the wrist damping, i.e, Cw = Cr , the system stability condition is

(42)

It is clear that the damping Cr or Cw plays an important part in the system stability.

Summary

1) In most cases, the system including the environmental compliance can be maintained stable. The
effective damping of the closed-loop system in this case is increased and the high order dynamics arc
introduced.

2) The passive damping in the wrist is always beneficial, especially for the case that there is no damping
and the environment system has infinite stiffness.

3) In the case that the the system damping is small, the alternative way to stablizc the system is by util
izing a PD controller in Lhe force feedback loop, because the rate gain of the controller can provide

20

because of the active sensing and compensation control in the feedback loop. The compliance and compli
ance ratio in our device is programmable in each direction and depends upon the task operation and the
positioning compensation capability of the system.

s. SENSING MECHANISM KINEMATICS

The sensor has to be able to measure six DOF motions of the uppcr plate relative to the bOllom onc.
If onc considers the device mechanism as robot, this task is just the direct kinematics of the robol manipu
lator. Namely, the joint space motion is measured and the Cartesian space motion is identified. We al first,
intcntcd to use a parallel mechanism as in the paper [10], and a LVDT as a displacement sensor. However,
the direct kinematics is difficult for a parallel mechanism, while inverse kinematics is easy. On the con
trary, for a series mcchanism the direct kinematics is much easier than the inverse onc [16]. After judging
all the possible structure, we finally chases the series mechanism as the sensing sU"Ucture with six poten
tiometers are used as displacement sensors.

The mechanism kinematics skeleton is as Fig.IO with coordinate frame assigned to the links.

Tw = Trans (-/,,1 3,1 1,) Rot (z ,81) Trans (-[2,0,0) Rot (x ,82) Trans (0,-/ 3,0) Rot (x ,83) Trans (/ 4 ,-l5,0)

Rot (z ,84) Trans (0,0,16) Rot (y ,65) Trans (0,15,0) Rot (z ,86) Trans ([7,0,i8) (43)

Using the notation in [7], the A transfonnation matrix for the device are as follows.

C1 -s1 0 -/7

SIC 1 0 13
Al = Trans (-l"l 31 1)) Rot (z ,81) = 0 0 1 /1

o 0 0 1

1 0 0 -12

o C2 -S2 °
A2= Trans (-l2,O,O) ROl(X ,8'll = 0 52 C

2
0

o 0 0 1

1 0 0 0
o C3 -s3 -/3

A 3 == Trans (0,-/3,0) Rot (x ,83) == 0 S3 C 3 a
o 0 0 1

C4 -S4 a 14

S4 C4 0 -Is
A 4 = Trans (/4,-/5,0) Rot (z ,84) = ° 0 1 0

o 0 0 1

Cs a Ss 0
o 1 0 0

As=Trans(O,O,16)Rol(y,9s)= -Ss 0 Cs 16

o 0 0 1

1 0 0 0
o C6 '-56 Is

A6=Trans(O,ls,O)Rot(Z,e6)= 0 S6 C6 0

1 0 0 1

22

(44)

(45)

(46)

(47)

(48)

(49)

U 414 =C 4U 514+/4

V 424 =S4U 514-15

Since

(55)

U411 U412 U413 U414+/2
C DU421+5 23Ss C23U422+-S23U432 C 23U423-SDU433 C23U424-S 23U434+l3C2

V 2 = A23V4 = S23U421-enSs S2JU422+C23U432 SnU42J+CZ3V433 S7:3V 424+Cn U434-I JS 2

o 0 0 0

(56)

let

U221 = C23U421+SWS

U 231 = S23U421-CWS

U222 = C 23U422+-S23U432

U 232 = S23U422+C23V 432

U223 =C23U423-S23U433

V 233 = S23U423+C23U433

V 224 =C 23U424-S23U434+l 3C2

V 234 =S23U424+C 23U434-l 3S2

C 1U411-S 1U221 C IV412-S 1U222 C lU413-S 1U223 c I(U414-l2)-S 1U224-l7

SlU411+C1V221 SlU412+C IV222 S1 V 413+C IU m S1(V414-[2)+C 1U 224+13
Vl=A 1U 2= U 231 U 232 U7:J3 U234+ l 1 (57)

000 1
L

The determinant of the Jacobian matrix was calculated to investigate singularities. The results shows
that there is no singularity around the home position where the device works.

6. CONTROL STRATEGIES AND PRELIMINARY EXPERIMENT

The experiment of the compliant wrist was pcrfonned on the PUMA 560. Before the experiment, six
potentiometers were adjusted in a proper range and an AID board was designed. The control was executed
by the ReeL system. The preliminary experiment has shown that the compliant wrist works well in ·both
passive compliance and active sensing, and that stable compensation in position control is possible.

We tested the following two control strategies:

(1) Position compensation in the free space

We suppose the transformation between the base and robot wrist coordinate is T 6, that between two
plates of the compliant wrist is Tw , and that between the base and upper plate of the compliant device is B
which is assumed as the task coordinate transformation. The kinematics relation at the initial state is

(58)

24

REFERENCES

[1] S. D. Eppinger and W. P. Sccring, "On dynamic models of the robot force control", Proceedings of
the IEEE International Conference on Robotics and Automation, P.29-34, 1986

(2] S. D. Eppinger and W. P. Secring, "Understanding bandwidth limitations in robot force conLeol"
Proceedings of the iEEE InLernalionai Conference on Robotics and Automation, P.904-909, 1987

[3] R. K. Roberts, R. P. Paul, and B. M. Hillbcrry, tiThe effect of wrist force sensor stiffness on the con
trol of robot manipulators", Proceedings of the IEEE International Conference on Robotics and
Automation, P.269-274, 1985

[4] R. P. Paul, "Problems and research issues associated with the hybrid control of force and displace
ment", Proceedings of the IEEE International Conference on Robotics and Automation, P.1966
1971, 1987

[5] D. E. WhiUlcy, "Historical perspective and state of the art in robot force control", Proceedings of the
IEEE International Conference on Robotics and Automation, P.262..268, 1985

[6] D. E. Whitney and J. M. Rourkc, "Mechanical behavior and dcsign equations for elastomer shear pad
remote center compliance", ASME Journal of Dynamic System, Measurement, and Control, Vol.
108, P.223-232, 1986

[7] R. P. Paul, "Robot Manipulators: Mathematics, Programming and Control", Cambridge, MIT press,
1981

[8] K. Takuse, H. Inoue, K. 5ato, and S. Hagiuara, "The design of the articulated manipulator with
torque control ability", FoUTth International Symposium on Industrial Robots, Nov. 1974

[9] H. Asada and K. Ogawa, "On the dynamic analysis of a manipulator and its end effector interacting
with the environment", Proceedings of the IEEE International Conference on Robotics and Automa
tion, P.751-756, 1987

[10] H. Inoue, Y. Tsusaka, and T. Fukuizumi, "Parallel manipulator", Proceedings of Third International
Symposium ofRobotics Research, P.321-327, 1986

[11] D. S. Seltzer, "Compliant robot wrist sensing for precision assembly", Robotics: Theory and Applica
tion, P.161-168, 1986

[12] H. Kazcrooni, and J. Guo, "Direct-drive, active compliant end-effcctor" Proceedings of the IEEE
International Conference on Robotics and Automation, P.758-766, 1987

[13] R. C. Goertz, "Manipulators used for handling radioactive materials" lluman Factors in Technology,
edited by E. M. Bennett, McGraw Hill, 1963

[14] R. P. Paul, and H. Zhang, "Design and implementation of a robot force /motion server", Proceedings
afthe IEEE International Conference on Robotics and Automation, P.1878-1883, 1986

[15] O. Khatib, and J. Burdick, "Manipulators motion and force control", Proceedings of the IEEE Inter
national Conference on Robotics and Automation. 1986

[16] Kenneth J. Waldron and Kenneth H. Hunt, "Serial-prallel dualities in actively coordinated mechan
isms", Fourth International Symposium on Robotics Research, Santa Cruz, Sept 1987

[17] Chac H. An, and John M. Hollerbach, "Dynamic stability issues in the force control of manipulator",
Proceedings of the IEEE International Conference on Robotics and Automation, P.89Q-896, 1987

[18] Dc Schutter J., "Compliant robot motion control nlcLhods for rcgid manipulators based on a gcneric
scheme", Proceedings of the IEEE International Conference on Robotics and Automation, P.I060
1065, 1987

26

4000 1

0.804 0.602 .

• Time (in s~~ond) ponse under
Posluon resF

o 5 End-effector pcncator"lg. illl P com ..
4kg slep [orc~ ': . 1uded)

(The incrlJ.a IS nOllnc.

: ~ :.~ .
: omp<n.rat«i...... •

Doll~d-wu; 1 _ ~ = 0.2

2 - ~ = 0.6
J - ~ = 0.&
4 - ~ 1& 1.2

o

1.5 ---

2000 3000o 1000 0rf ss 1<
Sensor :ill ne lirrncss a.nd

d"lion for sensor s
T:tg 4 Slability con 1. ° tIl P COlllpensalor4" • • r-ol1o Wlsensor d~tn1plng u

0.4

r.

Fig.6 "i The rigid environment system

.Environnlcnt

dia ramtrol system block gFig.7 The closed-loop can '. .

28

30

A.2 Planning for Dextrous Manipulation with Slid
ing Contacts

31

Draft submitted to the International journal of Robitics Research, June 3, 1988.

PLANNING FOR DEXTROUS MANIPULATION

WITH SLIDING CONTACTS

J. c. Tr1·nkle-

Department of Systems and Industrial Engineering

University of 4~rizona

Tucson, AZ 85721

R. P. Paul

Department of Computer and Information Science

GRASP Laboratory

University of Pennsylvania

Philadelphia, P.~ 19104

~~BSTRACT

We study the problem of gaining a secure and enveloping grasp of a two dimen

sional obje<:t by exploiting sliding at the contacts between the object and the hand.

This is done in two steps: first, choosing an initial grasp with which the object can be

manipulated away from the support and second, continuously altering the grasp so that

the desired final configuration is achieved. The plans generated by our technique may

be executed with only position control.

The main contributions of this paper are: the derivation of liftab£lity reg';ons of a

planar object for use in manipulation planning; the use of the liftz·ng phase plane in

manipulation planning; and the derivation of the quasi-static object motz·on problem

which provides a basis for general, three-dimensional manipulation planning.

32

1. INTRODUCTION

One desirable application of robotic technology is automatic assembly using articu

lated mechanical hands and flexible flXturing systems. _~ssuming that the parts of the

product to be assembled are within reach of the robot and the sequence of assembly

operations is known, the following fundamental problems must be addressed: 1) part

acquisition, by which is meant the selection and achievement of a useful grasp; 2) fIX

ture set-up, which is closely related to grasp selection, but requires the synthesis of an

accessible partial flXture [Asada 1984] as an intermediate step; and 3) parts mating

which requires path planning [Brooks 1983] and compliant motion control [Mason 1979,

Mason 1985, and Whitney 1982].

This paper concentrates on part acquisition via liftability reg£ons. These regions

provide a sound means to select a suitable initial grasp of an object resting on a support

and a geometric method for planning subsequent manipulations. Contact forces are not

controlled, they are rendered insignificant by the geometry of the grasp. Therefore,

manipulation can proceed under position control. Force control is unnecessary!

Techniques for choosing a desired grasp for an articulated mechanical hand have

been developed based on a quasi-static analysis coupled with optimization methods

[Jameson 1985], independent regions of stable contact (Nguyen 1986, Paul 1972],

expected task forces and fme motion requirements [Kobayashi 1984, Li 1987], the forces

required to cause one or more contacts to slip [Cutkosky 1985, Holzmann 1985], minim

izing the contact forces arising due to external forces [Trinkle 1985} and the potential

energy in compliant fingers [Hanafusa 1982]. However, none of these techniques have

included a means to achieve the grasp, nor have they dealt with the fact that most

objects are initially at rest on a supporting surface (Wolter [1984] and Laugier (1983]

consider the support, but only for the case of a parallel-jawed gripper). Others have

considered dexterous manipulation of the object, but begin their analysis from the point

of an achieved grasp. For example, Okada [1982] controlled a hand to turn a nut onto a

bolt, Kobayashi's [1984] experimental hand drew simple figures with a pencil, Fearing

[1987] demonstrated "baton twirling" using the Stanford/JPL hand, and Kerr [1984]

developed the general differential equations for dexterous manipulation. All of these

studies were done assuming that only rolling contacts exist. Enforcing this assumption

requires that manipulation be carried out under force and position control and unduly

limits the manipulation ,vhich can be performed. Mason [1985] and later Brost [1985]

33

and Peshkin [1987} studied the motion of objects sliding on a horizontal plane. They

were able to devise manipulation strategies which were guaranteed to achieve a desired

result despite uncertainty in the contact forces and the object's velocity.

In the following analysis, we consider the quasi-static motion of a manipulated

object. Even though uncertainty exists in the precise descriptions of the contact forces,

the resultant force and the object's geometry are always known. These facts allow exact

computation of the object's instantaneous velocity given the instantaneous velocity of

the palm and fingers.

2. LIFTABILITY OF RIGID BODIES

One reason to grasp an object is to gain complete control over its position and

orientation. Thus we propose that an object is grasped by a robot if the object- contacts

only the robot's hand. If other bodies such as the support were allowed to contact the

object, then those bodies would usurp a portion of the control over the object's motion.

Therefore, the first goal in grasping is to manipulate the object in such a way as to

cause it to lose all contact with the support. For this to be possible, the object must be

liftable (The notion of liftability is a generalization of tippability which was discussed

elsewhere [Trinkle 1988J).

Detmition: An object is liftable if and only if there exist finger contact posi

tions on its surface for which increasing the contact forces applied by the

finger~ causes at least one of the supporting contacts to break.

2.1. Liftability Regions for Frictionless Objects

Liftability regions define the qualitative motion of a squeezed object (i. e. rotate

left, rotate right, trans~ate, or jam) based on the geometry of the grasp. To determine

these regions, we need a contact model which accurately represents the kinematic con

straints and the appropriate limiting cases of the contact force distributions which iden

tify the qualitative motion. The exact force distribution of a contact region is

irrelevant. A model which satisfies these requirements is to consider all contacts as a set

of one or more point contacts. A contact of small area is considered to be a single

point. One with a large planar area is approximated by the set of points defining the

vertices of the convex hull of the contact. Curved contact areas can be approximated

by several polygons. During the following development, objects are assumed to be two

dimensional. However, any three-dimensional object which can be approximated as a

generalized cylinder can be analyzed by our method by considering a suitable cross sec

tion of the cylinder.

Consider the two-point initial grasp of the frictionless, rigid, planar object depicted

in Figure 1. The forces acting on the object are th~ finger contact forces (f1 and f 2), the

supporting contact forces (f3 and [4)' and the weight of the object (m g).

Under quasi-static conditions, the object must always satisfy the equilibrium rela

tionships which may be written as

c ~ 0

(1)

(2)

[Salisbury 1982] where W is the wrench matrix, c is the vector of wrench intensities,

ge:t is the external wrench (i'.e. force and moment) [Ohwovoriole 19801 acting on the

object and the vector inequality (2) applies element by element. If we choose the exter

nal wrench ge:t to be that caused by gravity, the solution to equation (1) is given by

~ 1 0 n 21

C2 0 1
= + c2 (3)

c3 c 30 n 23

C4 c 40 n24

where

c 30 =
mgtg > 0,

mg (t 3 + tg)
>0, (4)

-t 3
~ 40 = t 3

cos(1/12) t 2 (5)n21 = n23 =--
cos (1/J1)

,
t 3

,

t 2 sin(.,pI - 1fJ2)
(6)n24 = -+ ,

t 3 cos(tPl)

1/J i is the angle of the i th inward contact normal measured counter-clockwise with

respect to horizontal, and ti is the moment arm of the i th contact force taken with

35

respect to the summing point q14 which is the point of intersection of the lines of action

of f1 and f4- Note that the second term on the right hand side of equation (3) is known

as the internal grasping force [Salisbury 1982J, because increasing c 2 increases the con

tact forces without changing the total force applied to the object.

'To lift the object by squeezing, either c 3 or c 4 must be reduced to zero by increas

ing eland c 2. The first row of equation (3) implies that for c 1 to increase with ~ 2' the

following inequalities must hold

(7)

(8)

where without loss of generality, the first contact has arbitrarily been chosen to be on

the right hand side of the object. If inequalities (7) and (8) are not simultaneously

satisfied, then squeezing will result in an unstable grasp; the object will slide out of the

grasp to the left. For c 3 or ~ 4 to be driven to zero, at least one of n 23 and n, 24 must be

negative. Equating the third and fourth rows of equation (3) to zero gives the values of

c 2 required to break the third and fourth contacts, respectively

C 23 =

C 24 =

mgtg

-t 2
(9)

(10)

Since c 2 is increased gradually after achieving the initial grasp, the contact ~vhich will

break is the one corresponding to the smaller nonnegative value of c 2 (negative values of

c 2 violate inequality (2)). Thus equations (9) and (10) in conjunction with inequalities

(7) and (8) can be used to predict the motion caused by squeezing for every possible

grasping configuration.

The magnitudes c 23 and c 24 depend on the grasp parameters tPl' 1/1 2 and t 2- If we

flX the position of the first finger's contact, then '!/J 1 is constant and 1./;2 and t 2 vary.

Considering all possible contact points and angles (at vertices) for the second finger, the

perimeter P ma:f be partitioned into five mutually exclusive liftab'ility reg£ons S , J ,

B 3, B 4 and T which satisfy the following relationship

SUJUB3UB4UT=P.

These regions correspond to possible contact points for the second finger for which

36

(11)

squeezing causes the object to: jam the fingers, resulting in the object's being pressed

against the support; slide along the support; tip breaking the third contact; tip break

ing the fourth contact; and translate (or rotate) so as to cause both the third and fourth

contacts to break simultaneously. Figure 2 shows the liftability regions using a coded

curve off-set from the perimeter of the object. The codes corresponding to

S , J , B 3, B 4 and T are: dashed curve, no curve, solid bold curve, thin solid curve,

and double-bold solid curve. In Figure 2 the translation region is a set of distinct

points, so no double-bold curve segments are visible.

2.2. Liftability Regions of Frictionless Polygons

A polygon can be used to approximate any two-dimensional object with arbitrary

precision. Therefore we discuss the liftability regions of polygons in detail and ~hen

show how the results can be applied to curved objects.

The sliding region S is the portion of the perimeter for which the inward normal of

the second contact has either no horizontal component or has a horizontal component

with the same sense as that of f l - In Figure 3, S is comprised of edges 0, 1, 2 and 3,

vertices 1, 2 and 3, and a portion of vertex 4. 1 If the second finger contacts the polygon

in S , squeezing will cause sliding to the left.

The regions J , B 3, B 4 and T are partitions of the remaining perimeter denoted

by S' _ Consider the k til, edge of the polygon in Figure 3. Points p lying on the line i/(

containing the edge can be written in parametric form as

(1 - 8) v Jc + 8 V k +1 = P (12)

where v i represents the i th vertex of the polygon and the k th edge is defined by

s E [0,1]. The line lppd is the unique line which is perpendicular to lie and contains the

point quo The intersection of Ippd with the Ie tJ& edge defines the contact point where t 2'

the moment arm of the second contact force, is zero. The variables.3 and t 2 are

linearly related by

(13)

1 What is meant by a. portion of a. vertex will be made clea.r la.ter.

37

where a is the value of 8 at the intersection of lie and Ippd. Since t 2 va=ies linearly

along the edge, c 23 and <: 24 describe hyperbolas along l!c as shown in Figure 4. Note

that the vertical asymptote of e 24 is located at a positive value of t 2- This is the case

defined by the following inequality

(14)

When inequality (14) is satisfied, a jamming region J lies between the vertical asymp

totes of the two hyperbolas and the jamming w~·ndow JW is the closed line segment

(q13' q14]· The breaking regions B 3 and B 4 lie to the right and left of the jamming

region. Since the values of e 23 and c 24 are not equal at any point on the edge, the

translat%·on region T is empty, implying that translational lifting is impossible if the

second finger contacts that edge. Note that the physical significance of inequality (14)

is that the resultant of the finger contact forces is in the direction of the gravity force.

Therefore, to avoid jamming and to cause tipping, one must push down on the edge at a

suitable point.

If the sense of inequality (14) is reversed,

sin(1/11 - 1/;2) > 0 (15)

then the functions ~ 23 and ~ 24 overlap, eliminating the jamming region (see Figure 5).

The regions B 3 and B 4 meet at the cross-over point t 2c

(16)

For the edge in question, t 2c is the only point which is an element of T. The contact

normal from the point t 2c passes through the point qlg , called the translation w£ndow

TW. If inequality (15) is satisfied, then the resultant of tIle finger's contact forces

oppose gra",ity. Therefore, as the hand squeezes more and more tightly, the object must

'rise because its weight is overcome.

The second contact point need not occur on an edge of the polygon. It may occur

on the Ie th vertex, in which case the contact angle 1P2 is free to vary between the inward

normals of edges k and k -1 (see Figure 6), so that t 2 varies according to

(17)

where the vector p 14 is the position of the second contact point with respect to q14 and

38

et o is the angle of P14 measured counter-clockwise with respect to horizontal. Substitut

ing equation (17) into equations (9) and (10) allo\vs one to determine the liftability

regions of a vertex. Figure 7 shows the edge of the second finger against the vertex in

the jamming region. Tilting the finger clockwise or counter-clockwise eventually places

the contact in region B 4 or B 3 respectively. Thus for a vertex, the liftability regions

are defined as partitions of the range of possible contact angles.

2.3. Translational Lift-Off

The first goal during dexterous manipulation is to break all contact with the sup

port. Therefore, it makes most sense to use the translation region in planning the initial

grasp. With only two finger contacts, the translation region is a set of distinct points

and is impossible to contact (practically speaking).2 However, a three-point initial grasp

generates a translation region with finite length, making its use practical.

One way to achieve a third finger contact (see £5 in Figure 8) is by laying a finger

against an edge of the polygon. Equilibrium equation (1) becomes

We = ge::;t

~ 1

[al a2 a3 a4 as] C2

= -mg [:;]t 1 t 2 t 3 t 4 t s
C3

lc 4
Cs

(1)

(18)

.where <Ii is the i th unit contact normal and ag is the direction in which gravity acts.

The particular solution of equation (18) in which we are interested is the one for which

the third and fourth contacts break and the first, second and fifth contacts are main

tained. These conditions can be stated as

(19)

Removing the third and fourth columns from Wand noting that 1/J 1 = 1/15 and

a3 = a4 = - o,g , equation (18) can be solved for the type of initial grasp shown in

2 The points can be vertices of the polygon, but precise contact a.ngles arc required for
translation. Positioning errors make it impossible to achieve the exact contact a.ngles.

39

Figure 8. Substituting the result into inequality (19) yields

t s > a
tg sin(1Pl - 1/;2) t 5 COS (¢2) t g sin(~1 - 1/12)-------+ <t < <0.

COS(~l) COS(¢l) 2 COS(1Pl)

(20)

(21)

(22)

Inequalities (15) and (21) are necessary conditions for translation. We observe that ine

quality (21) can always be satistied by suitably numbering the contact points. Ho"Yvever,

inequality (15) can only be satisfied by contacting the polygon on certain edges or por

tions of vertices. Inequality (22) defines the tJ;anslation region T in which squeezing

with the second finger causes the object to translate along the first finger breaking both

support contacts. This region consists of all points external to the sliding region S

whose normals satisfy inequality (15) and pass through the translation window.. The

addition of the fifth contact has caused the translation window to grow, from the point

qlg to the open line segment (qlg , Cls g). Figure 9 illustrates the translation window

TW and the translation region (and B 3 and B 4) of one edge for a specific placement of

the first fmger. For a vertex, the translation region is determined by substituting equa

tion (17) into inequality (22) (see Figure 10).

2.4. Graphical Construction of Liftability Regions

A graphical method to determine the liftability regions of any planar curve with or

without vertices for two- and three-point initial grasps has been developed based on the

above analysis. It is best to illustrate the method with the following example.

2.4..1. Two-Point Initial Grasps

First, the perimeter of the object is partitioned into the complementary regions S

and S ' as shown in Figure 11. The region S is the set of points p for which all local

contact normals have a nonpositive component in. the z -direction. The region S ' is the

set of points whose normals have positive x -components.

s = {p: cos (t./J) ~ 0 }

S ' = {p: cos ("') > a }

40

(23)

(24)

where the apostrophe denotes the set compliment operation.

Second, the first finger's contact is chosen to satisfy inequality (7), i. e. the first

contact point is in the interior of S. Therefore, to satisfy equilibrium relationships (1)

and (2), the second finger's contact must be in S ~. Next we divide S ' into regions of

possible translation PT and possible jamming PJ based on inequalities (14) and (15)

PT = {p: sin(tPl-~2) > 0 and pES' }

PJ = {p: sin(~1-~2) ~ a and PES' } .

(25)

(26)

The partitions are shown in Figure 12.

Third, vIe" define the points q13' q14 and qlg. They are at the intersections of

third, fourth, and gravity forces, respectively, with the line of action of the first contact

force (see Figure 13).

Fourth, the region PT is broken into B 3 T , B 4 T and T. Points in PT whose

contact normals pass through the translation window qlg belong to T. Points whose

normals produce positive or negative moments with respect to the translation window

belong to B 4 T or B 3 T , respectively (see Figure 13 again).

B 3T = { p: PIg x a2 < 0 and p E PT }

B4 T = { p: PIg x a2 > a and p E PT }

T = { p: PIg x a2 = 0 and p E PT }

(27)

(28)

(29)

where recall P if is the position of the second contact point relative to qii and a2 is the

normal unit vector of the second contact.

Fifth, PJ is divided into B 3J , B 4J , and J. Points in PJ whose contact normals

intersect the jamming window (q13' q14J are elements of J. The points whose normals

do not intersect the jamming window and generate a positive or negative moment with

respect to qlg belong to region B 4 J or B 3J , respectively (see Figure 14).

B 3J = { p: P14 x liz < 0 and P E PJ } (30)

B4 J = { p: P13 x a2 > a and p E PJ } (31)

J = { p: P13 x a2 ~ 0 and p 14 X a2 ~ 0 and P E PJ } (32)

Finally, the liftability regions J and T are complete. However, the regions B 3

and B 4 must be formed by the unions of the individual B 3'3 and B 4'5 found in steps 4

41

and 5.

B 3 = B 3T U B 3J

B 4 = B 4 T U B 4 J ·

(33)

(34)

Figure 15 shows all of the liftability regions. Note that by construction, the liftability

regions are mutually exclusive and contain every point on the perimeter P, i. e.

JUB3UB4UT=S'

S'US=p

Q n R = 0;

where 0 represents "the empty set.

2.4.2. Three-Point Initial Grasp

Q E { T, B 3, B 4, J , S ' }

R E { T, B 3, B 4, J , S ' }

(35)

(36)

(37)

(38)

The liftability regions for a three-point grasp can be formed by combining the lifta

bility regions corresponding to the two possible two-point grasps. Let Si , J i , B 3 i , B 4 i

and Ti denote the liftability regions when considering only the i th contact; i E{1,5}.

Denote by S , J , B 3, B 4 and T the liftability regions for the three-point grasp. In the

Appendix we show that the following relationships hold:

J=J 1 UJ S UJT

B 3 = B 31 n B 35

B 4 = B 41 n B 45

T = (B3 1 n B4s n J T ') U (T 1 n B4s) U (T s n B41)

(39)

(40)

(41)

(42)

(43)

Equations (39)-(43) imply that the regions J and T grow at the expense of B 3 and

B 4. Thus we see that including an extra contact point allows a grasp to be achieved in

the translation region, but makes it more difficult- to tip the object.

The additional jamming region J T and the new translation region T can be found

graphically by using the new translation window (q19 , qSg) (see Figure 16). There are

two cases: q15 on the right of the translation window and q15 on the left. For qlS on

42

the right, the translation region consists of those points, elements of S " whose contact

normals pass through the translation window and (qsg , QlS). The region JT contains

all points in S ~ whose normals pass through the translation windo,v and [q14' Q1S]. For

q15 on the left, the translation region consists of the points in S " whose contact nor

mals pass through the translation window and (qlg , QlS). The region JT contains all

points in S ' whose normals pass through the translation window and [q15' QS3]. These

facts can be used to find the most important liftability region, T, without computing all

the liftability regions for both two-point grasps.

Figure 17 shows the positions of contacts 1 and 5 for several polygons. The perime

ter of each object is grown and coded to illustrate the liftability regions. Placing the

second finger tip against the object ·yVhere the offset perimeter is dashed indicates that

squeezing the fingers will cause jamming J. Placing the second finger against the object

beside the thin solid line, the bold solid line or the double-bold solid line indicate that

squeezing will cause the right support contact to break B 4, the left support contact to

break B 3, or both support contacts to break T, respectively. Squeezing with the

second finger touching the object in the uncoded portion of the perimeter causes the

object to slide to the left, S. The first row of the Figure shows the liftability regions for

two-point initial grasps and therefore no translation regions are visible. The second row

shows the regions for three-point initial grasps. Note that translation regions have

appeared, but that the jamming regions have grown.

2.5. Liftability Regions with Friction

When friction is present, the method for computing the liftability regions becomes

more complicated. However, a subset of the translation region can be determined much

like before. The translation window is the portion of the line of action of the gravita

tional force lying bet"Neen the friction cones of the forces f 1 and f s as illustrated in Fig

ure 18. The translation region consists of the points on the object's perimeter for which

the cone of f2 is completely within the translation. window. Under these conditions all

finger contacts will be maintained during squeezing. As in the frictionless case, we can

guarantee that the object will slide up finger 1 if the following sufficient conditions are

met. First,

(44)

43

where 1>15 = max {¢>l'ePS}' ¢J 1 and cPs are the angles of the counter-clock,vise most edges

of cones 1 and 5, and eP2 is the angle of the clockwise most edge of cone 2. Second,

finger 2 contacts the object in the translation region.

Figure 19 shows a force diagram for the grasp depicted in Figure 18. The lower

cone f2 corresponds to the possible forces acting at the second contact point. The upper

cone represents all possible linear combinations of the forces generated a.t the other two

contact points. The point E represents a particular combina.tion of contact forces

which result in the object's equilibrium. If E is on the interior of the quadrilateral

ABeD, then the object remains flXed relative to the hand. .;\5 the internal grasp force

is increased, the magnitude of f 2 increases. Eventually E reaches the boundary .4.B at

which point the object begins sliding up finger 1. Alternatively the internal grasp force

could be reduced until the object slides down. Because in general, sliding on finger 1

results in sliding on finger 2, it is expected that the trajectory of E will terminate at

points Band D. If termination occurs on AB or CD then the second finger's motion

would be required to comply with that of the object. For example, if E lies on the inte

rior of the line segment AB , then contacts 1 ~d 5 are sliding, because the contact

forces f 1 and f5 lie on the edge of their friction cone. However, contact force f2 lies

within its cone, which implies that the second contact point on the object and finger

must have identical velocities.

If inequality (44) is not satisfied, edges AB and Be become infinite making it

impossible to cause the object to slide up finger 1 by squeezing. An example of this

situation occurs \vhen the contacts are on parallel edges of an object. It should be

noted, however, that edges AD and DC are always finite for stable grasps, which

implies that an object will always slide out of the hand if the internal gra5p force is

reduced enough.

One remaining concern is that the boundaries AB and CD of the quadrilateral are

conservative estimates. The cone - (f1 U [5) allows for all possible combinations of the

first and fifth contact forces. Since effects of deformation will determine the nature of

load sharing between contacts 1 and 5, realistic boundaries AB and CD will be on the

interior of the quadrilateral, so that the predicted internal grasp force to cause sliding

will be greater than the actual value.

44

The motion of the object for all other grasp configurations and finger motions ':an

be predicted by solving the object motion problem. Trinkle [1988] found the motion of

a frictionless object as the solution of a linear program. It was determined that such an

object will move so as to minimize its rate of gain of potential energy while adhering to

the velocity constraints imposed by the fingers.

2.6. The Object Motion Problem with Coulomb Friction

The object motion problem can be extended to include Coulomb friction using

Peshkin's minimum power principle [Peshkin 1988]. Ro~ghly speaking the" ...minimum

power principle states that a system chooses at every instant the lowest energy of 'easi

est' motion in conformity with the constraints." This principle applies only to quasi

static systems subject to forces of constraint (i. e. normal forces), Coulomb friction

forces, and forces independent of velocity. For this principle the power is defined as

P 'lC = - E f 'lci • v i
i

(45)

where v i is the velocity of the s· th point of application of external forces and f zci is the

sum of the external forces, excluding constraint forces, applied to the i th point.

Included in Pzc are the friction and gravitational forces. The normal forces at the con

tacts are omitted. Thus P'l,C is only a fraction of the object's power.

The wrench Wi' applied to the object through the i th point contact with friction

can be written as the product of the i th contact's unit wrench matrix Wi and the

wrench intensity vector Ci

w· = W· e·S t,

where nc is the number of contact points,

I = 1, · · · , nc (46)

ri· a· a· Cin
1 t t

W· = C' = C!·o~ r· x rio r· x 8· r· x a· t
I , t t ~ I

cia

rj is the position of the i th contact point, ai is the contact's unit normal directed

inward with respect to the object, ni and OJ are orthogonal unit vectors defining the

contact tangent plane, and the elements of c .. are the magnitudes of the i th contact

45

(47)

force in the ni , 0i and ai directions. Including all of the contacts, the equilibrium

equation (1) can be written as

(48)

where

PI P2
W p ==

r 1 x PI r2 x ft 2

C 11'

C 2p

Cp =

en, p

p E {n ,0 ,a},

p E {n ,0 ,a} .

(49)

(50)

This partitioning of the wrench matrL~ allows us to write the sum of the friction

wrenches as W n en + W 0 Co and the sum of the contact normal \vrenches as W a Ca.

We now form the equation for the power as follows

(51)

where qOb represents the object's linear and angular velocities and the superscript T

denotes matrix transposition. Given the joint velocities of the hand and arm~ 8 , the

velocity of the object may be found by minimizing P1.f:. subject to the rigid body velocity

constraints and the Coulomb friction constraints. The velocity constraints disallow

interference between rigid bodies and may be written as

T · ·
W tJ qob ~ La 8 (52)

T • •where W tI qob and L tI 8 are the vectors of the normal velocity components of the con-

tact points on the object and the hand respectively and La is related to the grasp Jaco

bian. The friction constraint for the i th contact force as derived by Jameson [19S:5] is

given by inequalities (53) and (54)

I = 1, · · · J nc

46

(53)

where

s = 1, · · · , nc (54)

D .= 1 I-a"'.a",.T
I I) 1 ~ ,

1 + p,.
f· = [it· a· a.] c·, til t , (55)

where J-£ is the coefficient of friction, and I is the identity matrix. Inequalities (53) and

(54) may be rewritten in terms of wrench intensities as

T
~ 0; 1, .c· ~. c· s = · · , nct I ,

~i(l ~ 0; : = 1, .. · , nc

where

A T
n·t

<b. A T
D· [ni 8· eli]= o·1 \ I I

A T
a·,

(56)

(57)

(58)

Thus far we know that we must minimize P,:c subject to inequalities (52), (56) and

(57). One might think that the equilibrium equation (48) should also be used to con

strain the solution. However, by formulating and examining the dual optimization

problem, one finds that equilibrium equation (48) is implicitly satisfied and that inequal

ity (57) is redundant.

The primal problem is defined as

Minimize

Subject to:

p · T {
%t: = -qob gf!%t +

T
c· ~. c· ~O·,, , ,,,

[W n Wo] [::]}

i = 1, . · · , n c

(51)

(52)

(56)

To derive the dual problem, the objective function is augmented by attaching the con

straints with Lagrange multipliers. Applying the Kuhn-Tucker optimality conditions

[Beveridge 1970] gives

Maximize (59)

Subject to: gf!%t

T •W '" qob + 2 2:: TJ i ~ in Cin = 0
I

47

. (60)

(61)

T • + 2 ~ TJ i ~io 0 (62)W o qob ~io =

2~'TJi <P ia ~£a = 0 (63)
i

A ~ a (64)

f7 ~ 0 (65)

where 1'J and A are vectors of Lagrange multipliers associated with inequalities (56) and

(52) respectively and <l>ip is the partition of ~ corresponding to the component of the

i th contact force in the direction of the unit vector p E {n, 0 , a}. Since the vector of

Lagrange multipliers, A, associated with the velocity consiraints is equivalent to the vec

tor of normal wrench intensities, c(J , constraint (60) is the equilibrium equation and

constraint (64) is equivalent to inequality (57).

i\.t the optimal solution, both the primal constraints and the duai constraints are

satisfied, therefore the primal problem defined by the nonlinear program, (51), (52) and

(56), need not include the equilibrium equation. Another interesting point is that for all

feasible solutions, the primal and dual objective functions satisfy the following relation

ship

(66)

with equality holding only at the optimal solution. The term on the left hand side of

the inequality is the power applied to the object by the forces of constraint. The terms

on the right are the rate of gain of potential energy and the power dissipation through

Coulomb friction. Thus, at the optimal solution, expression (66) has the following phy

sical interpretation. The motion of the fingers in the direction of the contact normals

supplies power to the object. Some of that power is lost to friction. What remains goes

into lifting the object. Consequently every suboptimal solution must defy conservation

of energy.

The primal problem (51), (52) and (56) is complete for rolling contacts, but not for

sliding contacts. In the case of sliding, the contact force must be anti-parallel to the

relative velocity at the contact and lie on the boundary of the COD.e. This constraint

was concisely expressed by Jameson [1985] as

f· · (v t " x d.) = o·, a , ,

48

t = 1, ... , nc (67)

f j • v ti ~ 0 ; i = 1, · · · , nc (68)

where v ti is the relative contact velocity. Noting that

T • •v t · = W· q b - L· 0 ·I ~ 0 ~, ~ = 1, · · · J nc , (69)

where La" is the transmitted Jacobian of the i th contact [Trinkle 1987}, relations (67)

and (68) may be written in terms of the wrench intensities and the object and arm velo

cities as

T T o· 0 1,c· p. qob - c· Q. = I = , nc, I , t , ,
T T (J. ~ O· = 'I,c· R· qob - e· S· I J nc, , I ~ &

,

(70)

(71)

where

Pi W·'r B. W· Qi
T

L·= = W· B· ,S I ; ~ 1 ~

R· = W.TC· W· S· = W.TC· L·l I S 1 I 1 I 1

B· = [I o] , c· = [Ai 0] ,, ,

0 - ai:: aiy

A· == ai: 0 -aizI

- aiy aiz 0

(72)

(73)

(74)

(75)

I is the identity matrL~ and 0 is a matrix of zeros.

The complete object motion problem is now given by

Minimize P:c
• T { + [W n W o] [::] } (51)= -qob gf!%t

Subject to: T ·
~ La 8 (52)W (J qob

T
~ 0; n rolling (56)ci ~i c· I E,

T
= 0; E W slid~·ng (76)c· ~. c· II I 1

T · T
O· = 0; 'It sl£ding (70)ci Pi qob - c· Q. I E, 1 I

T • T (J. ~ 0; \If sliding (71)ci R j qob - c· s· I . EI I •
where n and 'Ii represent the set of contact points assumed to be sliding and rolling,

respectively. This nonlinear program is called the velocity formulation of the object

motion problem. Constraints (56), (70), (71) and (76) define the Coulomb friction

49

model without which friction forces could create rather than dissipate power resulting in

an unbounded objective function.

To determine CIob , the object motion problem must be solved for all possible per

mutations of sliding, rolling, and separating at each contact point while enforcing the

appropriate const.raints. If there are np permutations, then there will be n, ~ np "feasi

ble solutions. The motion corresponding to the feasible solution of least power is the

one which the object will execute. If no feasible solution exists, then the motion of the

hand is kinematically inadmissible. If the minimum power solution is 11nbounded, then

the finger motions cause the grasp configuration to become unstable..
Clearly the general object motion problem depends on not just the grasp configura-

tion, but the velocities of the contacts. Therefore it is not possible to define liftability

regions and use them in planning. Each grasp and desired vector of joint velocities must

be considered separately.

3. MANIPULATION PLANNING

The ultimate goal of our analysis is to provide a framework in ~Nhich intelligent

dexterous manipulation can be planned for articulated mechanical hands. Intelligent

dexterous manipulation can be considered to be the continuous evolution of a stable

grasp from an undesirable configuration to one appropriate to the performance of a

given task. The simplest task is a pick-and-place operation which can be easily per

formed with a parallel-jawed gripper if friction is significant. However, it is useless in

the frictionless case. To hold an object without friction requires that the hand envelop

the object much as one would grip a wet piece of ice. Therefore under slippery condi

tions an articulated hand is necessary.

Figure 20 shows the simplest two-dimensional articulated hand performing an

enveloping grasp (also called a form closure grasp [Laksh:ninarayana 1978]) of a friction

less object. For the remainder of this paper, objects are considered to be convex

polygons and the hand is assumed to be the one pictured in Figure 20.

An enveloping grasp must satisfy the equilibrium relationships

(1)

(2)

50

for any external wrench acting on the object (recall that the subscript a identifies the

normal components of the contact forces). Equivalently, the nonnegative column span

of W a must be equal to the space of possible external wrenches (for the two

dimensional problem, gezt E R 3 where R 3 represents Euclidean three-space). Another

way to think of en'telopment is that if the joints are locked, then the object cannot

move. That is, the object is completely restrained by the form or surface of the hand.

This constraint condition is expressed by substituting 0 for 8 in inequality (52),

(77)

and requiring that only the trivial solution exist, i.e. qob =o.
A second type of stable grasp is called a force closure grasp. It still satisfies rela

tionships (1) and (2), b.ut not for all possible external wrenches. For force closure, the

nonnegative column span of W a defines a convex cone C+ (Goldman 1956] which is a

subset of the space of possible external wrenches. If the negative of the external wrench

lies within C +, then the grasp exhibits force closure. Therefore stability depends on the

external wrench or force, hence the name force closure. Figure 21 shows a force closure

grasp. If gravity were acting up the page instead of down, the object would fall toward

the palm.

Assuming our goal is to perform safe pick-and-place operations, each object must be

manipulated away from its support surface and into an enveloping grasp. To achieve

this goal, planning is broken into two phases: the pre-l£ft-off phase and the l£fting pha3e.

3.1. Pre-Lift-off Phase

The objective of the pre-lift-off phase is to find a realizable initial grasp which

guarantees that the object can be manipulated away from the support. The simplest

way to achieve this objective is to choose a grasp in the traIlslation region. Squeezing

then causes the object to translate upward, breaking all contact with the support (see

Figure 22). All possible initial grasps of this type can be found using the following pro

cedure.

1. Designate one finger to lie along an edge of the polygon.

2. Compute the translation region T.

51

3. Solve for the joint angles to contact the object in T with the other finger.

4. Check for geometric interference.

5. If T is empty or step 3 has no solution or interference is detected, reject the

grasp; otherwise accept the grasp as feasible.

6. Return to step 1 until all combinations of finger and edge have been con

sidered.

When choosing an initial grasp, preference should be given to those for which t.he

second contact point is near the center of a large translation region, because those

grasps will be least sensitive to position errors. For example, consider the intended ini

tial grasp shown in Figure 22. Position errors could give rise to any or all of the follow

ing scenarios:

1. Error in vertical position of finger 1, 6 y: qlg moves up or down.

2. Error in the angle of fmger 2, 61/12: the normal of contact 2 is altered.

3. Error in the angle of finger 1, 81/;1: contact 1 or contact 5 is not achieved.

Errors of types 1 and 2 do not deleteriously affect the nature of lift-off of the object as·

long as the vertical error 5 y and the angular error 81/12 adhere to the following inequal

ity

(78)

where Peg is the distance from the center of gravity of the object to the second contact

point and 12g is the distance between the points qlg and q2g. Inequality (78) is valid

provided that a1/;2 is small.3 Violation of inequality (78) implies that the second contact

normal a2 passes below the translation window placing the contact in region B 4. Thus

the object will tip maintaining the third contact, defeating our goal. The third type of

error causes the translation window to shrink to a point, either qlg or qSg. Therefore

a2 passes either above or below the translation window, respectively. In the former

case, the angle of finger 1 is less than commanded. Since the translation window

becomes the point qlg , a2 passes above it, so the- grasp is in region B 3. Upon squeez

ing, the object will rotate clockwise, aligning its edge with finger 1. This alignment

3 A similar expression a.pplies if the contact is on an edge of the object rather than a
vertex.

52

opens the translation window and changes the nature of the grasp back to what ~Nas ori

ginally intended. Continued squeezing causes the object to translate up finger 1. In the

latter case the angle of finger 1 is too large causing the translation window to become

the point ~g and the second contact to be in region B 4. Again squeezing causes an

aligning rotation of the polygon followed by translation up the finger as planned. Figure

23 illustrates and initial grasp exhibiting the third type of error. As squeezing com

-menees, the polygon's right-most edge aligns with the edge of the finger. Continued

squeezing causes the object to translate up the finger.

3.2. Lifting Phase

The lifting phase begins when the object no longer contacts the support. For this

to occur, the object must be in a force closure grasp in the hand. No contact may

remain on the support.

The goal of the lifting phase is to manipulate the object into an enveloping grasp.

In doing so, the object may either be stable through force closure or unstable. Instabil

ity is undesirable, because it results in the object's falling. Even though an unstable

object will eventually come to rest in a stable configuration, the final configuration can

not be predicted by our quasi-static technique. Therefore, it is imperative that an

enveloping grasp be gained without ever losing force closure.

..~ssume that the initial grasp has been chosen in a translation region. As lifting

begins, the object contacts the hand at two points on one finger and at one point on the

other. Since force closure requires three contacts, all of these contacts must be main

tained until a fourth contact is achieved. If the object is enveloped, i.e., the grasp has

form closure, then the grasp is complete and the lifting phase ends. If not, one of the

contacts must break as manipulation continues. Thus it is apparent that during the lift

ing phase, the object must translate relative to one of the fingers (assuming flat fingers)

until the object contacts the palm. Once the palm has been contacted, translation is

possible only if one finger loses contact with the object. In an enveloping grasp, both

fingers and the palm must contact the object. Therefore, we prefer to manipulate the

object maintaining contact with both fingers. However, we analyze one planning stra

tegy which allows contact to be lost with one finger as the object slides on the other.

53

A force closure grasp is one for which the negative of the gravitational ·vVrench act

ing on the object is within the convex cone C+ defined by equations (1) and (2). Fig

ure 24 shows a convex cone and an external wrench. for a typical force closure grasp.

Examination of the equilibrium relationships (1) and (2) reveals how to manipulate a

force closure grasp. Denote by Y i , the ~. th column of W tJ

cos¢ i

Yi = sin,¢ :" (79)

t j

where recall tf; j is the angle of the i th contact normal and t j is the moment of that con

tact normal measured witll respect to the summing point q. Choosing q to be the

center of gravity of the object, the gravity moment is zero during manipulation. Thus

the convex cone can be projected onto the Lifting Phase. Plane (LPP) formed by the

cos"p i and t i axes. In this plane, the cone becomes the LPP triangle, the gravity force

maps to the origin, and two contacts on a flat link map to points on a vertical line

separated by the distance that separates the contacts on the link (see Figure 25). The

necessary and sufficient conditions for a grasp to have force closure are that the LPP tri

angle enclose the origin and the sine of the difference of the contact angles on the two

fingers be greater than zero

(15)

We desire to squeeze the object until it contacts the palm. However, while squeez

ing we must make sure that the LPP triangle always contains the origin and inequality

(15) and is never violated. If the initial grasp is in the translation region, then initially

both of the conditions are satisfied. As the fingers are squeezed together, the quantity,

"pI - tP2' may only decrease (if the singly-contacted finger contacts a vertex of the

object) or remain constant (if the singly-contacted finger contacts an edge of the object).

Because the palm eventually prevents squeezing from continuing, the quantity is

bounded from below by zero. .;.\t the start of manipulation, the angular difference

between the contact normals, t/J1 - 1/;2' is in the interval bounded by zero and pi. Dur

ing squeezing, the difference reduces, but remains in the interval. Because the sine func

tion is positive in that interval, the second condition is guaranteed to be satisfied

throughout the entire manipulation.

54

The condition that the LPP triangle contain the origin at all times must be checked

by considering the trajectories of the triangle's vertices. Their positions are affected by

three variables, the two joint angles, Oland 8 2' and the angle of the palm 8 p (see Fig

ure 22). Consider the hypothetical trajectory shown in Figure 26. Because the object

will translate up finger 1, finger 2, called the pusher, is rotated counter clockwise while

finger 1 is held stationary. As the pusher rotates, vertices Yl and Ys of the LPP triangle

remain IlXed while vert~~ Y2 follows a. path qualitatively like the one shown beginning at

point A. At. the point C , Yz jumps to D. The discontinuity is caused by the edge of

the second finger contacting the k th vertex v Ie of the object. ~.t the instant the discon

tinuity occurs, there are four contacts, but only three can be maintained as the fingers

continue to squeeze. Since D is within the valid region for the second vertex, the new

contact remains and the previous contact on that finger breaks. At the point E , the

trajectory jumps outside of the valid region to the point F. If the new contact. were to

remain (as it did at D), the interior of the LPP triangle would exclude the origin and

the object would become unstable. However, the trajectory jumped into the region

labeled B 5. This means that the fifth contact point (which is on finger 1) will break.

The new LPP triangle has vertices labeled Yl' Y2 and Y6 (see Figure 27). Since the new

vertices contain the origin, the grasp is still table, but now the object will slide up the

second finger rather than the first. Continuing squeezing, the first finger now acts as

the pusher, rotating clockwise and the second finger is held fIXed. This strategy of using

one finger as a pusher and holding the other finger flXed is called the pusher.

Figure 27 shows the trajectory of vertex Yl crossing the boundary of the new valid

region into the region B 2. When this happens, the second contact breaks, leaving only

the first contact on finger 1 and the sixth contact on finger 2. The grasp loses force clo

sure becoming unstable, so the object falls. However, if an enveloping grasp is achieved

before the object becomes unstable, then the pusher strategy can b~ used successfully.

An interesting property of the LPP trajectory is that if a vertex moves out of the

valid region in a continuous manner (as at G), the object becomes unstable, because a

contact point is lost without gaining a new one. However, if the vertex jumps outside of

the valid region (as at F), the object remains stable and the finger on which the object

translates switches. Any motion of the trajectory within the valid region represents

stable translation of the object without switching pushers.

55

If the pusher strategy fails (see Figure 28), one could try the roll strategy during

which the finger angles are fiXed as the palm is rotated. If the hand can be rotated far

enough without losing force closure, the object will slide down the finger until it touches

the palm. After,vard, the fingers may be closed around the object creating an envelop

ing grasp. Figure 29 shows the trajectories of the vertices of the LPP triangle

corresponding to a clockwise rotation of the hand shown in Figure 21. As the hand

rotates, the object does not move relative to it and therefore the moment arms,

t i ; i E {l, 2, 5}, of the contacts do not change. The result is that the corners of the

LPP tri~"1g1e can move only horizontally and since the normals of contacts 1 and 5 have

the same direction, Yl and Ys move at a common rate. At B the right finger becomes

horizontal. After slightly more rotation., the second contact breaks and the object slides

towards the palm. Closing the fingers around the object achieves the enveloping grasp.

We would like to know what conditions guarantee the success of the roll strategy.

A condition of necessity is that t 1 and t 5 have opposite signs. If they have the same

sign, the object could not be stable when sliding down the finger, because the gravity

force would not pass between the two supporting contacts. Given that necessity is met,

a sufficient condition is that t 2 equal zero. The validity of this condition can be argued

for as follows. Since the grasp satisfies inequality (15), Y2 is always on the left side of

the lifting phase plane. i\.S the hand rotates clockwise, Yl and Ys move toward the left.

Until the right finger becomes horizontal, Yl and Ys are on the right side of the LPP.

Therefore the LPP triangle always contains the origin. As the right finger passes

through horizontal, Yl and Ys eross the t i axis causing the second contact to break as

the object slides towards the palm on finger 1.

The pusher and roll strategies can be combined as illustrated in Figure 30. IT possi

ble, the pusher strategy should be used to cause vertex Y2 to move to the costPi axis

(see point B in Figure 26). After this, the roll strategy can be used to safely complete

the grasp provided that t 1 and t s have opposite signs.

If friction is present, the same strategies are valid, however inequality (4~)

(44)

must be satisfied rather than inequality (15) and each edge, Yi of the convex cone must

be replaced with Yi , the appropriate edge of the friction cone for each contact

t E {1,5} Y2 =

rCOS (t/Jz ± a)lIsin (t/J ']. ± a) (80)

where ti is the moment arm of the i th contact force and a: is the friction angle. The

sign of 0: in the expression for yz is dependent on the relative velocity of the second con

tact point. Since it would be useful to control the sign of a, it would be preferable that

the second finger to have more than one link.

4. CONCLUSION

Manipulation with articulated hands is usually carried out under force control to

prevent slipping at the contacts. Dissallowing slipping unnecessarily limits the dex

terous capability of a hand and cannot be done in the absence of friction. We have

addressed the problem of achieving an enveloping grasp in the plane based on sliding

contacts. Our solution was based on the frictionless case, but extended where appropri

ate to include Coulomb friction. Planning was broken into two phases: the pre-l£ft-off

phase and the lifting phase. The goal of the pre-lift-off phase was to manipulate the

object so as to cause it to lose contact with its support. This led us to define and

analyze the lz'ltab£lity of planar objects. Given the contact configuration of one finger,

the liftability regions of the object could be determined and used to plan the placement

of the other finger to complete the initial grasp. It was determined that initial grasps in

the translatz·on region of the object should be used, because they achieve the goal of the

pre-lift-off phase most easily and are insensitive to position errors. For the lifting phase,

planning was done geometrically in the lifting phase plane providing a simple method to

monitor grasp stability and to predict which contacts were gained and lost as the grasp

evolved. Manipulation trajectories generated by our planning technique can be executed

under position control. Force control is unnecessary even when friction is included.

Even though our analysis in Section 3 was two-dimensional, the planning methods

can be applied to three-dimensional objects which can be modeled as generalized

cylinders by planning manipulation using the appropriate cross sections of the cylinders.

In the event that such modeling is inappropriate, the obiect motion problem we have for

mulated can be used incrementally to plan manipulation trajectories in three dimen

SIOns.

57

5. ACKNOWLEDGEMENTS

The authors would like to extend their thanks to Dr. J.M. Abel and Dr. NI.C. Pesh

kin for their suggestions.

This research was performed at the University of Pennsylvania and the University

of Wollongong, and was supported in part by the following grants: IBM 6-28210, ARO

DA.t\.6-29--84-k-0061, AfOSR 82-NM-299, NSF ECS 8411879, NSF MCS-8219196-CER,

NSF MeS 82-07294, AVRO DAAB07-84-K-F077, and NIH l-ROl-HL-2g9S5-01.•L\.ny

opinions, findings, conclusions, or recommendations expressed in this publication are

those of the authors and do not necessarily reflect the views of-the granting agencies.

6. REFERENCES

Asada, H. and By, A., 1984 (Aug.), "Kinematic Analysis and Design for Automatic

Workpart Fixturing in Flexible Assembly," Frac. Second International Symposium

of Robotics Research, Kyoto, pp. 50-51.

Beveridge, G.S.G. and Schechter, R.S., 1970, Optimization: Theory an4 Pra~tice, New

York, McGraw-Hill.

Brooks, R ...~., 1983, "Planning Collision-Free Motions for Pick-and-Place Operations,

Internat£onal Journal 01 Robotics Research, 2(4):19-44.

Brost, R.C., 1985 (July), "Planning Robot Grasping Motions in the Presence of Uncer

tainty," CMU-RI-85-12 Department of Computer Science, Carnegie-Mellon Univer

sity, Pittsburgh.

Cutkosky, M.R., 1985, Robotic Grasping and Fine Manipulat%·on, Boston, Kluwer

Academic Publishers.

Fearing, R.S., 1987 (MarchiApril), "Some Experiments with Tactile Sensing During

Grasping," Prac. IEEE International Conference on Robot%·C3 and Automation,

Raleigh, NC, pp. 1637-1643.

Goldman, .~. and Tucker, A., 1956 "Polyhedral Convex Cones," in Linear Inequalities

and Related System3, ed. H. Kuhn and H. Tucker, pp. 19-40, Princeton University

Press, Princeton.

Hanafusa, H. and Asada, H., 1982, "Stable Prehension by a Robot Hand with Elastic

Fingers," in Robot lYfotion, ed. Brady et al., Cambridge, MIT Press, pp. 337-359.

Holzmann, W. and McCarthy, J.M., 1985 (March); "Computing the Friction Forces

Associated with a Three-Fingered Grip," Proc. IEEE Internat£onal Conference on

Robot£cs and A utomation, St. Louis, pp. 594-600.

Jameson, J.W., 1985 (June), " ..~nalytic Techniques for Automated Grasp," Ph.D. disser

tat%·on, Department of Mechanical Engineering, Stanford University, Stanford.

Kerr, J.R., 1984 (Dec.), nAn Analysis of Multi-Fingered Hands," Ph.D. di88ertat~·on,

Department of 1t!echanical Engineering, Stanford University, Stanford.

Kobayashi, H., 1984 (Aug.), "On the Articulated Hands," Proc. Second Internat£onal

Symposium Qn Robotics Research, Kyoto, pp. 128-135.

Lakshminarayana, K, 1978, "The Mechanics of Form Closure," ASlvlE Report no. 78

DET-92.

Laugier, C. and Pertin, J., 1983 (Jan.), n..~utomatic Grasping: A Case Study in ..;\.ccessi

bility Analysis," research report no. 942., Toulouse.

Li, Z. and Sastry, S., 1987 (Marchi April), "Task Oriented Optimal Grasping by wfulti

fingered Robot Hands," Prac. IEEE Internat£onal Conference on Robot£cs and

Automation, Raleigh, NC, pp. 389-394.

Mason, M.T., 1979 (..~pril), "Compliance and Force Control for Computer Controlled

Manipulators," lvlS thes'I:s, MIT AI Lab, Cambridge.

Mason, M.T. and Salisbury, J.K, 1985, Robot Hands and the lvfechanics of lYfanipulation,

Cambridge, MIT Press.

Nguyen, V-D., 1986 (May), "The Synthesis of Stable Force-Closure Grasps, n J.\18 thes£s,

MIT AI Lab, Cambridge.

Ohwovoriole, M.S., 1980 (April), "An Extension of Screw Theory and Its Application to

the ...o\.utomation of Industrial Assemblies," Ph.D d£ssertation, Department of

Mechanical Engineering, Stanford University, Stanford.

Okada, 'T., 1982 (May/June), "Computer Control of Multijointed Finger System for

Precise Object Handling," IEEE Transactions on SysteTn3, J.\1an, and Cybernet£cs,

SMC-12(3):289-298.

Peshkin, M.A. and Sanderson, A.C., 1988 (April), "Minimization of Energy in Quasis

tatic Manipulation," proe. IEEE International Conferenee on Robotics and A utoma

tion, Philadelphia.

59

Peshkin, M.A. and Sanderson, A.C., 1987 (April), "Planning Robotic wfanipulation

Strategies for Sliding Objects," proc. IEEE Internat~·onal Conference on Robotics

and A utomat£on, Raleigh.

Paul, R.P. 1972, "Modeling, Trajectory Calculation and Ser,,·oing of a Computer Con

trolled Arm," Stanford Artzlic£aJ Intell%·gence Laboratory, AI.lvI177, Stanford

University, Stanford.

Salisbury, J.K., 1982 (July), "Kinematic a.~d Force i\.nalysis of Articulated Hands,"

Ph.D. dissertation, Department of Mechanical Engineering, Stanford University,

Stanford.

Trinkle, J.C., 1985 (November), "Frictionless Grasping," lvfS-CIS-85-46, GR.i4.SP Lab

52, Department of Computer and Information Science, University of Pennsylvania,

Philadelphia.

Trinkle, J.C., 1987 (June), "The Mechanics and Planning of Enveloping Grasps," Ph.D.

dissertation in Systems EngJ·neering, MS-CIS-87-46, GRASP Lab 108, Department

of Computer and Information Science, University of Pennsylvania, Philadelphia.

Trinkle, J.C., 1988, "An Investigation of Frictionless, Enveloping Grasping in the

Plane," International Journal of Robotics Researc.h, in press.

Whitney, D.E., 1982 (March), "Quasi-Static Assembly of Compliantly Supported Rigid

Parts," Journal of Dynamic Systems, }yfeasurement, and Control, vol. 104, pp. 65

77.

Wolter, J.D., Volz, R ...~., and Woo, A.C., 1984 (Feb.), ".~utomatic Generation of Grip

ping Positions," technical report, University of Michigan, Ann Arbor.

60

1. Appendix

Here we show how the liftability regions of two two-point initial grasps can be com

bined to form the liftability regions of one three-point initial grasp.

1.1. The Sliding Region, S

The sliding region S for an object is independent of the number and positions of

finger contacts; it depends only on the geometry of the object (see inequality (23)).

Therefore we immediately write the following equation

(39)

7.2. The region S '

The other relevant liftability regions are

J , B 3, B 4, T, J l' B 31, B 41, T l' J 5' B 35, B 45, and T 5' where the non subscripted

regions are due to the three-point initial grasp and the subscript i ; i E {I, 5} implies a

two-point grasp using contacts 2 and i. The liftability regions of the two two-point ini

tial grasps must satisfy inequality (35)

J 1 U B 31 U B 41 U T 1 = S '

J 5 U B 35 U B 45 U T 5 = S '.

(..\1)

(A2)

We begin our derivation of equations (40)-(43) with the following true statement.

(..-\3)

Substituting equations (AI) and (A2) into (A3) and expanding gives

(J 1 n J 5) U (J 1 n B 35) U (J 1 n B 45) U (J 1 n T 5)

U (B 31 n J 5) U (B 31 n B 35) U (B 31 n B 45) U (B 31 n T 5)

U (B 41 n J 5) U (B 41 n B 35) U (B 41 n B 45) U (B 41 n T 5)

u(T1nJs) u(T 1 n B3s) u(T 1 n B4s) u(T1n Ts)=S'. (.-\.4)

As a consequence of equations (37) and (38), the 16 sets formed by intersection are

mutually exclusive.

61

Any set which is formed by intersection with J 1 or J 5 belongs to J - This state

ment is motivated physically by the fact that for a two-point initial grasp in the jam

ming region the object can only be further constrained by adding another contact point_

Noting that the top row of, and the left hand most column of the left hand side of equa

tion (A4) are equivalent to J 1 and J 5 respectively, we write:

(AS)

Equation (A5) accounts for 7 of the sets in equation (A4).

The nature of lift-off for the remaining 9 sets can be deduced by considering Figure

Al using the following facts:

1. A stable grasp must have 3 contact points during manipulation (more contacts

cause static indeterminacy and interference; fewer lead to grasp instability).

2. The positive or negative cones of a stable grasp must "see each other", [Nguyen

1986] where the positive force cone of f 4 and f 5 is labeled in Figure Al as

C 54.

3. The positive or negative force cone is the set of points defined respectively by a

positive or negative linear combination of the forces using their intersection

as the cone's apex.

4. A pair of cones see each other or are mutually visible if each cone contains the

other's apex.

Consider the set B 31 n B 3s- Referring to Figure AI, a point in S ' can only

belong to both B 31 and B 35 in two ways: the contact normal a2 passes upward

through both open half lines (qSg, 005+)4 and (Qlg, ~+) (as shown in Figure AI) or

downward through both half lines (Q14' ~-) and (QS4' oes-). Let one force cone be C 2g

as shown.5 To determine the nature of lift-off we must find a cone within sight of C 2g

which can see C 2g. Only cones C 14 and C 54 satisfy this requirement. Since neither

"By" upward through the half-line (Q,s" oes+) ... ," we imply the satisfaction of
sin(tPs - 1/J 2) > o. Similarly "downwa.rdIt implies satisfaction with the inequality re
versed. To defme upward and downwa.rd with respect to half lines along the line of the
fIrSt contact force, substitute ,pt for ,p,,_

5 To make two cones requires four forces. They are the three contact forces 8.Ild the
gravity force.

62

cone is constructed using the third contact force, that contact must break, i.e. the grasp

must be in B 3. Both cones include the fourth contact force, so that contact is main

tained. However, to maintain exactly 3 contacts during manipulation, either the first or

fifth contact must also break. The one which will break is determined by considering

the motions which will be made by the fingers. For example, if finger 1 remains flXed as

finger 2 squeezes, then the first contact will break while the fifth contact is maintained.

In this case tIle instantaneous center of rotation of the object is either the point q14 or

QS4. If we assume that the fifth contact breaks implies that the center of rotation is q14.

Rotation counter-clockwise about q14 causes interference at the third contact; clockwise

rotation causes interference at t~e fifth contact. Thus the assumption that the fifth

contact breaks is inconsistent with the instantaneous kinematics of the grasp.. There

fore, the first contact (and the third contact) must break while the fifth contact (and

the second and fourth contacts) is maintained. This conclusion is validated by .the fact

that instantaneous clockwise rotation about Qs4 does not cause interference.

The result of the above arguments is that we may write:

B 3 :J B 31 n B 35 ·

By a similar argument one can show that

B 4 :J B 41 n B 45

T :J B 31 n T s

T :) B 45 n T 1 ·

(A6)

(.~7)

(.~8)

(A9)

Also, because in S ' the contact normals a2 must have a horizontal component to the

right, we note that it is impossible for any contact point to be in both sets B 41 and

B 35

(AIO)

where (2) represents the null set. For a contact point to be elements of both sets would

require that the contact normal pass upward through (q1g , 001-) or downward through

(Q13' 0C1.+) and upward through (qSg , 00s+) or downward through (QS4' 00s-) which is

impossible. Similar arguments result in the following three equations

B 35 n T 1 = (2)

B41 n T s = (2)

63

(All)

(A12)

(A13)

The only set not accounted for is B 31 n B 45. All contact normals belonging to

this set must pass through the translation window (qlg , qSg). Consider the cone C 2g

shown in Figure .>\.2. If a2 passes through (qSg , qlS), then C 15 and C 2g see each other,

i. e. the grasp is in the translation region. If a2 passes through (q14' Qls16 , then the only

pairs of mutually visible cones are C 2g' C 14 and - C 2g , - C 53. The corresponding

instantaneous centers of rotation are the points q14 and QS3' respectively. The first pair

of cones implies that the third contact must break which requires counter-clockwise

rotation about q14. This rotation causes interference at the fifth contact. The second

pair of cones implies that the fourth contact must break which requires clockwise rota

tion about <153- This rotation causes interference at the first contact. Therefore \ve con

clude that motion is impossible_ Thus points in S ' whose normals pass through the

translation window T W and through (q14' qlS] belong to J T which is a subset 'of J ·

For the case of qlS on the left of the translation region, the procedure for defining T

and J T are identical except the segmeI1:ts (qSg , qlS) and (q14' qlS] must be replaced by

(q15' q19) and [q15' %3)' respectively. The set (B 31 n B 45) can now be written as the

union of two mutually exclusive sets

(...\.14)

where the second term on the right hand side represents the portion of the set

(B 31 n B 45) which is in the translation region. i\.lso note that for a grasp in the

translation region with finger 1 fIXed, Q15 is the instantaneous center of rotation and

must lie to the left or right of the line of action of f3 or f4, respectively. If q15 lies

between f3 and £4' rotation counter-clockwise or clockwise causes interference at the

third and fourth contacts, respectiv·ely; a contradiction that both contacts three and

four break simultaneously.

The nature of lift-off for all 16 sets of S ' have been determined and are now be

combined to yield the liftability regions for the three-point initial grasp

B 3 =B 31 n B 35

6

Note that contact normals which pass through TW and (ql' , Ql"] have ah-eady been &a

sign to the jamming region by relationship (AS).

64

(40)

B 4 = B 41 n B 45 (41)

J = J 1 U J 5 U JT (42)

T = (B31 n B4s n JT ") U (B3 1 n T s) U (B4s n T 1) • (43)

q.e.d.

65

f2

------------+----.------------:-----,

J BJ.. J84 .

84 ----.

s

s

Ft5L\~ 2>: O\;\G\v\+rhe~ Fo{ US~ L\~+d.btl~~

t<Q<j\6ns

.// '/. /// // /'/ /// //. / I,
I

If
3

1'""""- •

"1 . .A . r .i' .__ J \

\53
~>~"_"..,----...-1

T~

\~
\

1///1 /111//11//

I ~

I 7+

68

:;., r.
- -.' i\T1aer

J

' .. ' '. -: -.
~ _ ~ - ·-.. :·· .. ·•. :,. · · ·.·.·It· -..~:.:.~ : : .. ~~..... . . ~

.. ~ .-: ~ ..: . e.dae. .; .. ~ .: .::: :-..:-:.... .: ~; :~ ::.::;.:'. "
~

Q{jo.n-+\-h·~s Fo< \}f,(h~;'i L~t+o..~I1\~ RiC\;<m~
....." 'oJ

FI~V."- 7 : Ver-+fG"'I. L,-q-Clb, 1~~'J 1(g~I()l'\c;.

69

Figure. 8: Three-Point Initial Gr.lSP

83

T

B4

Figure 9: Region~ T, for an Edge

J.
T
83
\..".--~-~~-..

Figure .10: Region, T, of a Vertex

70

?J

s'

71

s

72

rB~
I

B3

I
I

9,531,
I

i
I

IJ

I

T I

JT~~

J)
..,..T

/ / //

83

~ISU("e.. ICo: L\f+a..lDl\'+Y~<J'~s. fo'f ~ \h~e- PO·lt\t In~+,c\l
Gmsp.

73

..........
I

r~······-~
----------......r ~ 'VI

I s;; =====~==::::::~.====

,l'I,.
FI3\).\'Q.. \7: Lrt+a.~\lt+J ~Jitn\.s -to<'" Twc>- ?o\v·J o..f\J. "Th~- ?()l~t

:t~rhM Gra..sps of S'~v~\ ~lj~()l'\s. }Jote.. +~o"t -t~

obj~t+ Gi\ +~ \.2.f-.t d~s 'Act d.9. vQ.,16p <A -rlO.'f\sla:L~
...

reju!'Y) •

------ .-

F\su r e 20": a fonn closure grasp of the object. If the fingers
are locked the object cannot move at all.

#,
61.

2

-:a typical force closure grasp.

76

,,- n ~ ,-__....n''-__-. n.--_..... -'----.

j/)1IIIIIlIlIllldl))?)?)II)/I))) I

/
Figure 2+~ Convex Cone and External Force

77

Cos <p,:

1 ms
~1

:1.

CO"'f\\J~X CO"'1\e C1" rv\af~d

L\tt \f\~ ?h~ ?\IJ\'i\L.

th.e

B1

--- -J -1

~1

B5
F........ 1.

---.l i
~~ 9~ 'B I A t - - _

D · ./
1 NIE ,/l t ./

I· ./'
.;

tC /
:/

/1
/

Figure 2.(0 : Trajeetoryof \j2 •

78

Figure 2.'7 : Tr:1jectory after Switciling Pushers

79

! t.~
[LPP!

~5AB'
!

co~ tfJ4 81
I.~

51
~;i

Figure 2.9: Hand Rolling Strategy

80

81

........... ~S' ...

J,.

T

F131.A,e AI: Po.rtih"on·' Y13 ~t thJ.. 1<Q3i~ 'B3
1
n 04

s
into

~e3\cm~ JT o-nd T.

A?

- --- 001

A.3 A Medium-Complexity Compliant End Effector

83

A Medium-Complexity Compliant
End Effector

Nathan Ulrich Richard P. Paul Ruzena Bajcsy

Department ofMechanical Engineering

Department ofComputer and Irt/ormation Science

University ofPennsylvania

Philadelphia, PA 19104

Abstract

Recent interest in end effector design has not yet resulted in a versatile
yet simple mechanism appropriate for a wide range of manipulation tasks.
The design of a novel end effector under development at the University of
Pennsylvania is explained in detail in this paper. The rationale supporting
this mechanism is explored. its geometry is described. experimental results
from the first prototype arc shown. and some ideas for future work are
presented.

Introduction

In recent years there has been a great deal of attention focused on the design

of end effectors. Progress in grasping research, active sensing, assembly, and

·Supported by NSF grants MEA-8119884. OCR-8410771. CERIDCR-8219196. INT
8514199. DMC-8517315. and DARPA/ONR grant NOOl4-85-K~807. Any opinions. findings,
conclusions, or recommendations expressed in this publication are those of the authors and do
not necessarily reftect the views of the supporting agencies.

R4

prototype construction has created a need for a versatile, robust, and economical

mechanical hand that can be used for experimentation. Although many designs

have been proposed and several prototypes built, a comprehensive effort which

combines the desire for performance with the reality of application has yet to

be undertaken. As a result, no single device is in common use.

Most previous end effector designs fall into two categories: complex "hands"

or simple grippers. Notable in the first class are the UtahIMIT Dextrous Hand

[1] and the Salisbury hand [2]. They incorporate a large number of degrees of

freedom (degrees of freedom) into a complex multi-fingered hand design which

imitates the human hand in speed, dexterity, and versatility. The resulting per

fonnance is impressive, but the increased complexity precludes simple planning

procedmes. The simple gripPerS do not have this problem-they are generally

one or two degrees of freedom and are powered by means of remote pneumatic

or self-contained electric actuators. They pay for this simplicity by being limited

in application, usually specialized for one type of task.

We feel that what is needed is a mediwn-complexity end effector: a device

that combines the simplicity characteristic of the simple grippers with some of

the versatility of the complex hands.

Design Philosophy

The design of any tool requires a precise definition of its intended use. It

is important to not only decide what tasks a robotic end effector needs to be

able to perform, but to also determine the limits of its performance. Previous

hand designs have used the human hand as a so-called "existence proof" of the

appropriateness of such a geometry. Since our hands are capable of many varied

85

tasks, any mechanical end effector which duplicated the human hand would also

be capable of these tasks. But this is not sufficient reason for an anthropomorphic

geometry. The design of an end effector should be pursued in the same way

as any other design; establish the criteria for its performance and synthesize a

mechanism which satisfies these goals. For our specific research environment,

the end effector is required to machine and assemble pans, handle many different

sizes and shapes of objects, and perform exploratory and sensing tasks-it does

not need to be able to perform tasks outside of this environment. While the

human hand seems to be ideal for performing the wide range of tasks required

of a person-from playing basketball to changing diapers to driving nails-it is

not necessarily the perfect tool for the specific areas in which robotic research is

now concentrated. Witness the number of tools to assist the human hand found

in a machine shop. It should be possible to design an end effector that is more

suited than the human hand for such an environment.

Design Criteria

The Medium-complexity Compliant End Effector (McCEE) is designed primar

ily for three research areas: active sensing, assembly (and disassembly), and

grasping.1 Although these subjects encompass a wide range of criteria, we feel

that they overlap sufficiently for the use of one basic end effector design.

Grasping research requires a versatile mechanism that allows application

of theoretical methods to experimental situations. ~e state of the an: at this

point demands a more flexible tool than the simple grippers commonly used,

1Research in the application of this design to prosthetics is continuing, but is beyond the
scope of this paper.

86

but it is extremely impottant that the complexity of the end effector be limited.

Since theoretical principles cannot suppon a complex (e.g. 9 or more degrees

of freedom) model of grasping in three dimensions, we feel that a medium

complexity device is most appropriate at this time. The simplicity of planning,

movement, and control associated with fewer degrees of freedom is an impottant

consideration-such a tool would be more accessible to the researcher. However,

it is impottant to note that 9 degrees of freedom is the minimum necessary to

allow arbitrary positioning of three fingertips in space. For this reason, our

design will concentrate on enveloping grasps; those that rely on the palmar

surfaces of the inside of the fingers and the palm to constrain an object, as

opposed to fingertip manipulation utilizing friction and fingertip contacts[3]. An

extension of the two degree of freedom grippers is necessary, but in interest of

utility, we would like to limit our end effector design to three or four degrees

of freedom.

Although recent advances in vision and other passive sensing techniques

have resulted in increased reliability and infonnation gathering ability, it has

been shown that the use of active sensing is necessary to adequately define the

shape and orientation of an object[4][5][6]. In addition, psychological research

has defined a number of "exploratory procedures" that can be used to collect

such characteristics of an object such as texture. hardness, thermal conductivity,

and shape(7]. Such sensing will allow us to classify an object or verify a

hypothesis; an exact description is essential to allow us to perform manipulation

in an assembly operation or to support grasping experimentation. Therefore, the

end effector will need to serve as a platform for a number of specialized sensors

necessary for this work. It is necessary that a sensor package be incorporated in

87

the design of the end effector, but that the end effector be sufficiently versatile to

accomodate changes in sensor type and application. The primary sensors-those

integral to the design-provide position. tactile. force, and moment infonnation

on contact surfaces. But the design must also consider easy mounting and

dismounting of other more exotic sensors (thermal and electrical conductivity,

proximity, specialized textural, etc.).

Assembly of parts and objects is an important area of robotics research

because of its relevance to industrial applications. However, assembly tasks

performed by robots today are limited to rigid, structured operations which usu

ally require complex jigs and parts-feeding devices. Any appreciable uncenainty

in such an operation cannot be accomodated. This is essentially automation and

not robotics. At a certain level of production capacity. such automation becomes

cost effective. However, below this critical level. human workers are necessary

to supplement any generic automatic devices in use. A true robotic assembly op

eration would combine grasping and sensing with computational sophistication.

and would be able to tolerate much larger errors in positioning and description.

Necessary to such an operation, however, are one or more versatile end effectors

that are suited for both a wide range of grasps and a variety of sensors. Such

a device should be able to handle both parts and tools. as well as possessing

the sensor sophistication to recognize and differentiate objects. But even with

these capabilities. an assembly operation still requires a model and procedure

to follow. Previous research has used human-based techniques to synthesize as

semblyalgorithms. However, the strengths and weaknesses of a robotic system

are inherently very different from those found in humans. By taking an object

apart, finding seams. joints. and fasteners. such a system could detennine the

88

best way for a robot to reassemble the object. The ability to perform effectively

in such a disassembly operation is an important criterion for our end effector

design.

A number of criteria for the design of an end effector that could perform the

operations suggested above are related to convenience and utility. The mech

anism would ideally be self-contained; discrete from the manipulator and able

to be mounted and dismounted quickly and easily to facilitate adjustment and

repair. A compac~ sleek design integrating all cabling, sensing, and actuation

is important, but since it will be a research t004 the mechanical design should

be accessible, allowing changes in structure and operation without radical re

construction or redesign. The use of the end effector to learn about objects

necessitates it use as a platform for many types of sensors. All of these sensors

do not initially need to be built-in, but the design must be able to accomo

date their use. The end effector should, ideally, satisfy the research imperatives

described previously while attaining these objectives as well.

Supporting Research

Many researchers have attempted to classify the grasps required by a robotic

end effector. Schlesinger defined six prehension types used by humans in his

work(8], and Cutkosky and Wright further defined the grasps used by a machinist

at work(9]. Although other, differen~ classifications have been used (see [10]

for a complete grasp taxonomy), we find these two sets of descriptive labels most

appropriate for our applications. The grasps required by assembly, disassembly,

prototype constIUction, and grasping research are contained within these types,

represented graphically in Figures 1 and 2.

89

cylindrical grasp

palmar prehension

spherical grasp

tip prehension

hook prehension lateral pinch

Figure 1: Schlesinger's prehension types

While the actual apprehension of an object with a robotic end effector can

be modeled using the above classifications, the use of the device as a tool for

active sensing requires expansion of these models. Although a great deal of

haptic (kinesthetic plus tactile) information can be gained by simply holding

an object, the exploratory procedures described by Klatzky et al require other

sensory methods. Figure 3, adapted from [7], shows the properties that we

need to obtain by active sensing and the necessary actions of the end effector

to determine these properties. In order to perform· these movements with an

end effector, we need several abilities. First, we need to be able to use the end

effector with one finger extended as a probe. This will allow us to perform the .

exploratory procedures to test for texture, hardness, temperature, and will allow

us to determine the shape of the object by means of the procedures suggested

by Allen [5] and Stansfield [6]; Le. determine surfaces, cavities, holes and

90

cylindrical ~ 0 power ~ D

spherical ~ (I) hook ~

5 fingertip~ ~ 4 fingertip ~ W
3 fingertip ~ e 2 fingertip c? e

lateral pinch~ ~

Figure 2: Cutkosky and Wright's manufacturing grips

91

Properties Hand Movements
CI:l
~ Texture Lateral Motion.-

4;) - Hardness Pressureu """
~ ~ Temperature Static Contact""" 0
=' """ Weight Unsupported Holding~~

_ CI:l

(Weight) (Unsupported Holding)~ ~

""" .-
:: - Global Shape Enclosure, Contour Following- """u g
E 0 Exact Shape Contour Following- """ Volume Enclosure~o..

Figure 3: Classification of properties and exploratory procedures

contours. In order to accomplish these tasks, this finger would need tactile

sensing capability, force and position sensing, and also specialized temperature

sensors.

The end effector must also be able to enclose an object within its grasp

and lift it free of support. This will allow us to determine the weight, shape,

and volume of the object. Such a function requires similar properties as those

required by other aspects of our goals, but also requires precise sensing of the

object within the grasp. A determination of an object's properties by means of

the exploratory procedures described above is essential to an accurate classifica

tion of the object; such a classification is necessary for success in the assembly,

disassembly, and prototype construction workplaces described previously. It

follows, then, that in order for an end effector to be useful in these task-oriented

environments, it must also be a efficient tool for active sensing.

Mechanical Configuration

The shape of the end effector design was determined by the need to achieve wide

versatility with as few degrees of freedom as possible. We found that in order

92

pinch cylindrical •spherical

_ = finger bases

~~~:::::::::I:V = palm surface

hook ~

Figure 4: The five grasping modes of McCEE

to obtain the grasping and sensing configurations necessary for our research,

we needed an end effector with at least four degrees of freedom. The actual

mechanical geometry is separated into two parts: the shape of the palm and its

relationship to the fingers, and the finger design.

The palm/finger relationship consists of a one degree of freedom move

ment of the fingers around the palm. Skinner proposed a similar movement

of the fingers, but his design did not incorporate the palm into the grasping

arrangement[ll]. We wish the palm to be an important tool in the manipulation

of objects. Not only can the palm be used as a base against which to hold objects,

as a tool to perform pushing operations on objects, but also (with taetile sensors)

as a information-gathering instrument which will allow "footprints" of objects

to be obtained. By separating the centers of rotation of the fingers, we obtain a

number of grasping configurations. Figure 4 shows these different modes. One

finger (which, although not precise biologically, we call the thumb) has its base

fixed with respect to the palm, while the other two move synchronously around

two different axes. The resulting scheme allows a very wide range of grasping

93



fingers
extended

fingers partially
closed

Figure 5: Variations of the pinch grasping mode

fingers
closed

types and. in addition. yields a pinching grasp between the two fingers similar

to that used by amputees who use a split hook. Another advantage to this con

figuration is that the palmar surfaces of the fingers are always facing directly

inwards-simplifying the sensing of an object within a grasp-in contrast to the

human hand. where the lateral movement of the fingers does not allow this. The

five grasping modes are described below with their parallels in Schlesinger's

and Cutkosky and Wright's work defined as well:

The pinch grip occurs when the two movable fingers are brought together

on the opposite side of the palm from the thumb. The inside of these two

fingers are lined with rubber, which allows for friction grasping of small ob

jects. This is primarily a precision grasp. used for picking up small. delicate

objects. It is similar to the lateral pinch grasp described by both Schlesinger

and Cutkosky and Wright In addition. some operations which are usually per

fonned by Schlesinger's tip prehension and Cutkosky and Wright'S two-finger

precision grasp can be achieved in this configuration. The flexibility of this

grasp is enhanced by the ability to change its nature by changing the angle of

the fingers. In Figure 5. this technique is illustrated. This grasp is very similar



•
Figure 6: Variations in the cylindrical grasping mode

to the precision grasp used by amputees who have been fined with a split hook

prosthesis. In this case, a cylindrical groove between the halves of the hook

allow for stable grasping of a pencil or similar small cylindrical objects. Such

an implementation in the robotic end effector could prove useful.

The cylindrical grasp, when the two fingers are opposite the thumb, is anal

ogous to Schlesinger's cylindrical grasp and Cutkosky and Wright's cylindrical

power and precision grips. This mode allows for the apprehension of a wide

range of shapes and sizes, from small cylindrical objects to larger rectangular

box-shaped objects (see Figure 6). In addition, this mode allows a version of

the lateral pinch grasp, when an object is held between the three fingertips. The

attractiveness of this grasp lies in its strength. Since the palmar surfaces of

all three fingers are holding the object against the palm, objects are held very

securely.

The spherical grasp, with the three fingers roughly 120 degrees apart, is

similar to. Schlesinger's spherical grasp and Cutkosky and Wright's spherical

power and 3-finger, 4-finger, and 5-finger precision grasps. In a power grasp,

the palmar surfaces of the fingers are used to hold a spherical object against the

palm, while in a precision grip, the three fingertips form a three-sided fingertip

95



Figure 7: Variations of the spherical grasp

grasp which is similar to the chuck on a drill. In Figure 7, the application of

this grasp to various objects is shown.

When the two fingers are rotated until they are opposite each other, they can

be used in a tip grasping mode. This is exactly the tip prehension described by

Schlesinger and the 2-finger precision grip described by Cutkosky and Wright.

Although this grasp relies primarily on friction for stability, it can be useful

in apprehending objects that are ackwardly placed or for manipulating objects

securely held in some manner. The pinch grasp provides a more stable grasp of

most small objects.

The hook mode of grasping uses all three fingers located together on one

side of the palm. This allows for two types of grasping: a passive grip on a

handle or similar structure where the fingers act as a hoo~ or an active grasp

where all three fingers hold a large object against the palm. This is a grasp that

could be used to lift one side of a large flat object (in cooperation with another

hand) where the size of the object precludes an enveloping grasp. Figure 8

shows these uses.

Although these modes provide wide versatility in grasping, an equally flexi

ble finger design is necessary in order to fulfill our design objectives. A finger of

fixed shape pivoting around the edge of the palm would provide only limited ca

pability. Although it could hold many objects, such a finger could only perfectly

96



Figure 8: Variations of the hook grasp

•
Figure 9: Variations in finger shape with changes in object shape

grasp a small number of objects with optimum contact points corresponding to

its fixed shape. In Figure 9, we show how ideal finger shape varies with object

geometry. We would like to have a finger which could change its geometry in

response to the shape of the object. A multi-jointed finger such as those found

on the UtahIMIT DH [1] and in the Salisbury hand [2] can comply to the object

shape by integration of sensor feedback and position control. However, these

fingers have 3 or 4 degrees of freedom. We need a finger which can achieve

this same function without the control and actuation complexity associated. with

these added degrees of freedom.

The author originally proposed such a finger design in the Compliant Artic

ulated. Mechanical Manipulator (CNvnvf) [12], which incorporated a four-joint

finger with two degrees of freedom. We have modified the design to yield a

two-jointed one degree-of-freedom compliant finger design. The single degree

97



pulley 1

cable A cable C

2

LEFrSIDE

I I
~r I 1

I I 2
I I ,~

I I 3
41 I I

I I

4

cable B RIGfIT' SIDE

Figure 10: Schematic representation of actuation linkages

of freedom satisfies our need for simplicity, yet allows flexibility in object ap

prehension. Figure 10 shows a schematic of the linkages involved. This finger

will passively shape itself to an object without the use of control computation or

sensor feedback. The finger incorporates a spring in its linkage to provide com

pliance in one direction; this allows the second joint of the finger to continue to

rotate once the first joint contacts an object. However, no matter how much the

joints rotate independently, the finger will not comply in opening; that is, it will

always maintain pressure on the object dependent only on the torque produced

by the actuator. The compliance is implemented in the linkage contained on

the right side of the finger, while at the same time the drive linkage on the left

side of the finger actuates the finger and transfers gripping force. For a more

detailed description of this finger and its kinematics, see [13].

98



Experimentation

It is common for a design to look good in theory and on paper, but to prove

disappointing in implementation. To prevent the investment of time and money

into a electrically-actuated, computer-controlled design that might prove useless,

we decided to build a prototype of our design which would use movement of an

experimenter's fingers to actuate the fingers of the end effector. This device was

in essence a manual teleoperated end effector. This allowed us to test our ideas

very quickly, utilizing the experimenter's brain as a control system, and his body

as the actuator. It was in experimentation with this device that the actual design

presented here was developed. This prototype was simple and inexpensive to

build and allowed quick modification. In combination with prototypes of the

finger design, we were able to finalize the design with little effort.

In the process of our experimentation, we found the device very useful; that

all of the grasps necessary for enveloping grasps and tool handling were possible,

and that the actions necessary for assembly and disassembly could be achieved.

However, the device does have limitations. As anticipated, the design is more

suited to enveloping grasps and handling large tools. Associated with the low

number of degrees of freedom is a loss of dexterity in small parts manipulation.

Although such objects can be grasped securely, movement of the objects within

the grasp requires interaction with a table surface or another hand. We do not

find this a serious fault for our work, since the use of two hands for assembly

tasks is probably necessary anyway.

99



Conclusion

We have presented the basis of a medium-complexity compliant end effector

design. The end result of our identification of a gap in end effector develop

ment has led to a four degree of freedom flexible end effector design that is

especially suited for work in active sensing, assembly and disassembly, and

grasping. We have attempted to suppon the rationale for this design on fun

damental good engineering practice as well as on previous research. There are

obviously many details of the design which have not been described here, but an

electrically-actuated self-contained end effector for use on the end of a robotic

manipulator is under construction. Use of this device will allow expansion of

present research topics and allow for experimentation in new areas related to

robotic manipulation.

100



References

[1] Jacobsen, S.C., E.K. Iversen, D.F. Knutti, R.T. Johnson, and K.B. Big
gers, "Design of the Utah/MIT Dextrous Hand," Proceedings of the IEEE

Conference on Robotics and Automation, San Francisco, April 1986.

[2] Salisbury, J.K., "Kinematic and Force Analysis of Articulated Hands,"

Ph.D. Thesis, Stanford University, July 1982.

[3] Trinkle, Jeffrey c., "The Mechanics and Planning of Enveloping Grasps,"

Ph.D. dissertation, University of Pennsylvani~June 1987.

[4] Bajcsy, R., "What can we learn from one finger experiments?" in M.
Brady and R. Paul, editors, The First International Symposium on Robotics

Research, MIT Press, Cambridge, 1984.

[5] Allen, P.K., "Object Recognition Using Vision and Touch," PhD. disser

tatio~ University of Pennsylvani~September 1985.

[6] Stansfield, S.A., "Primitives, Features, and Exploratory Procedures: Build
ing a Robot Tactile Perception System," Proceedings of the IEEE Interna

tional Conference on Robotics and Automation, San Francisco, 1986.

[7] Klatzky, R.L., Ruzena Bajcsy, and Susan J. Ledennan, "Object Exploration

in One and Two Fingered Robots," Proceedings of the IEEE Conference

on Robotics and Automation, 1987.

[8] Schlesinger, G., Der Mechanische Aufbau der lcunstlichen Glieder, Pan II
of Ersatzglieder und Arbeitshilfen. Springer Verlag, Berlin, 1919.

[9] Cutkosky, Mark R. and Paul K. Wright, "Modeling Manufacturing Grips
and Correlations with the Design of Robotic Hands," Proceedings of the

IEEE Conference on Robotics and Automation, San Francisco, 1986.

[10] Iberall, The~ "The Nature of Human Prehension: Three Dextrous Hands
in One," Proceedings of the IEEE Conference on Robotics and Automation,

1987.

101



[11] Skinner, F., "Design of a multiple prehension manipulator system,"
ASMEpublicarion 74-DEI'-25, October 1974, and Mechanical Engineering,
September 1975, pp. 30-37.

[12] Ulrich, Nathan, "The Compliant Articulated Mechanical Manipulator,"
University of Pennsylvania, GraspLab Memo, April 1985.

[13] Ulrich, Nathan. "A Two-Jointed One Degree-of-Freedom Compliant Fin
ger," University of Pennsylvania, September 1987.

102



A.4 A New Computational Structure for Real-Time
Dynamics

103



A NEW COMPUTATIONAL STRUCfURE FOR REAL TI?vIE DYNAMICS

Alberto Izaguirre, Minoru Hashimoto, Richard Paul, Vincent Hayward

ABSTRACf

In this paper we present a new stnlcture for the computation of robot dynamics in real time. The
basic characteristic of this structure is the division of the computation into a high priority synchronous
task and a low priority background task. The background task computes the inertial and gravitational
coefficients as well as the forces due to the velocities of the joints. Each control sample period, the
high priority synchronous task computes the product of the inertial coefficients by the accelerations
of the joints as well as perfonning the addition of the torques due to the velocities and gravitational
forces. Kircanski (Kircanski86) has shown that the band-width of the variation of joint angles and
their velocities is an order of magnitude less than the variation of the joint accelerations. This result
agrees with the experiments that we have carried out on a PUMA260 robot.

Two main strategies have been adopted to reduce the computational burden of the dynamic
equations. The first involves the selection of efficient algorithms for the computation of the equations.
The second is the reduction in the number of dynamic parameters by identifying linear dependencies
among parameters, as well as by making a significance analysis on the contribution of the parameters
to the torques.

We chose an iterative procedure for the computation of the inertial and gravitational coefficients
(lzaguirre86, Renaud85, Featherston84), and a recursive iteration for the computation of the veloc
ity torques (Khali186). In our experiments using the PUMA260 we obtained a set of 52 linearly
independent parameters from an initial set of 78 parameters. The identification of the parameters
revealed only 23 parameters to be significant.

These reductions pennit the calculation of the inertias and gravitational coefficients, for the
PUMA260 without load, with 98 multiplications and 70 additions; and the calcultion of the velocity
torques with 140 multiplications and 110 additions. In the case of an arbitrary load at the end
effector, the calculation of the inertias and gravitational coefficients require 190 multiplications and
150 additions and the velocity torques 200 multiplications and 170 additions. Velocity torques, inertial
coefficients, and gravitational coefficients can be computed in the background in 20 milliseconds using
an Intel 8087 microprocessor. The synchronous task requires only 6 multiplications and 6 additions
per joint .

1 INTRODUCTION

The inverse dynamics equations of a robot expresses the necessary generalized forces or torques, to
be applied to the different joints of t~e manipulator as functions of the required position, velocity

104



and acceleration of the joints. The computed torque control scheme is based on calculating the
generalized forces from a model of the manipulator. These signals can be added as feed-forward
tenns in a conventional feed-back control loop, in order to linearize and decouple the system. The
equations may be expressed in the following fann

n

Fi = (Dii + Iai) * qi + L: Dij * qj + L: Di,jk * 4i * qk + Di + Fdi * qi + Fsi * sign(qi) (1)
j=l;i#i i,j,):

Where :

Di,i is the effective inertia at the joint i
Dij is the coupling inertia between joints ·i and j
Di,jk are the Coriolis and centrifugal coefficients at the joint ·i
Di is the gravitational force at the joint i
Ia,i is actuator inertia
Fdi is the viscous friction
F$i is the Coulomb friction
Fi is the generalized force at the joint i
qi is the velocity of the joint i
iii is the acceleration of the joint i

This control scheme requires to compute the dynamic equations in real time, that is, within the
sample period of the controller. For this purpose, a great deal of research has been done to the
reduction of the complexity of these equations. However, the problems of the automatic generation
of the equations, and of the identification of the constant parameters in the equations, functions of
the moments of the links, frictions, dampings and inertias on the motol'S, are related problems in a
practical fashion.

In this paper, we are address these three problems making appropiate references to previous
works; explain our contributions, and show the results obtained from our experiments with the
PUMA260 robot.

2 OVERVIEW OF THE INVERSE DYNAMICS COMPUTATION

In this section we review the work that have been done in the past years from the point of view of
complexity, implementation and identification of the parameters of the inverse dynamic equations of
robot rilanipulators.

105



2.1 COMPLEXITY IN THE CALCULATION OF INVERSE DYNAMICS

There are two main approaches to derive the required equations: the Lagrange fonnalism and the
Newton-Euler formalism. The lagrangian approach, developped by Uicker (Uicker68), has been
used by several researchers, including Khan (Khan?1), R. Paul (pauI72) and Bejcsy (Bejcsy74). The
pricipal disadvantage of this formulation is the complexity in the order O(n4 ), due to redundancies
in the calculation. A simplification using a forward recursion on the velocities and accelerations
of the joints and a backward recursion on the generalized forces ~as introduced by Hollerbach
(Hollerbach80,82). His approach simplified the computation substantially reducing the complexity
to a linear fWlction of the number of joints, Le. O(n). However, his method cannot compute the
dynamic coefficients that depend only on the joint angles. It thus encounters the same problem as
does the Newton-Euler computation. Megahed (Megahed84) calculated the dynamic equations based
on the Lagrange equations and the dynamic coefficients. The complexity acheived is in the order of
O(n3 ), requiring approximatively 1000 multiplications and 700 additions for a general manipulator
of 6 degrees of freedom.

Recently, Featherston (Featherston84), following a spatial notation, and Renaud (Renaud83,85),
following tensorial notation, have reduced the computation of the dynamic coefficients, using the
Lagrangian method and 'the notion of the "compound link". We used the theorem of "consetvation
of the momentum" (Izaguirre86), acheiving equivalent results in the calculation of the inertial and
gravitational coefficients. Basically, the computation consists of the calculation of the moments of
the "compound link i" (i.e. the li~ fonned by the links i through the last link) in function of the
moments of the "compound link i + I". This recursion leads to a big saving on the calculations, as
well as a systematic way of calculating the dynamic coefficients. The complexity using this approach
is O(n3 ) if the entire dynamic model is computed, and O(n 2 ) if only the menial and gravitational
coefficients are calculated.

The second approach, Le. the Newton-Euler method, consists of the calculation of the generalized
by using Newton's law to calculate forces, and Euler's law to calculate torques. One of the first
methods of calculation of the generalized forces was developed by Likins (Likins71). Luh, Walker and
Paul (Luh80) developed an algorithm using a forward recursion for the velocities and accelerations
of the joints, and a backward recursion for the calculation of the generalized forces. The complexity
of the algorithm is D(n) and it requires only 800 multiplications and 600 additions for a general six
degrees of freedom manipulator. Khalil, (KhaliI86), based on LOO's work, reduced the computation
by regrouping common tenns. The dynamic equations can be calculated by his algorithm in 540
multiplications and 480 additions in the case of a general six degrees of freedom manipulator.

106



2.2 STRUCTURES OF COMPUTATION OF THE INVERSE DYNAMIC EQUA
TIONS

Different approaches have been developed for the computation of dynamic equations in real time.
LOO, Walker and Paul (Luh80), based on the Newton-Euler method, computed the dynamic equa
tions for the Stanford manipulator in 4.5 milliseconds using floating point assembly language in a
PDP-ll/45 .. Raiben (Raibert77) used look-up tables to compute the dynamic equations. 460 multipli
cations and 260 additions were required to calculate the equations of a general 6 degrees of freedom
manipulator, reducing the complexity of the Newton-Euler method by a factor of 2. Luh and Lin
(Luh82) described a procedure for scheduling subtasks of a group of 6 microprocessors, one per joint,
in order to compute the Newton-Euler equations. Their estimation indicates that 320 multiplications
and 280 multiplications are required to compute the dynamics of a 6 degrees of freedom manipulator.

Recently, Orin (Orin85) has introduced a structure of control by dividing it into ten different
tasks. He arrives at the conclusion that the longest task is the one that computes the inverse dynamics.
Lathrop (Lathrop85) has studied a parallel computation of the inverse dynamics. He has proposed
a pipelined architecture reducing the Newton-Euler computation by two orders of magnitude. The
latency to compute the dynamics of a 6 degrees of freedom manipulator would be of the order of 15
multiplications and 43 additions. He improves the Newton-Euler parallel implementation~ reducing
the complexity to a logarithmic expression on the number of joints. Only 11 multiplications and 28
additions are required to compute the manipulator dynamics.. Also, a systolic pipeline implementation
is possible reducing the latency to only 4 floating-points operations.

The disadvantage of this method lies in the difficulty of implementation~because custom designed
VLSI devices are required, increasing the cost of the product. We will introduce later a solution
based on microprocessors, which has the advantages of a very easy implementation, maintaining at
the same time the required speed of computation and the accuracy in the calculation of the equations.

2.3 IDENTIFICATION OF THE ROBOT'S PARAMETERS

The constant parameters of the dynamic equations depend on the masses, centers of gravity and
inertias of the links, as well as on the inertias and frictions of the motor.. Ferreira (Ferreira84) realized
that the expression of the torques could be expressed as a linear function of these parameters. He
also realized that many parameters were linearly dependent~ and that it was necessary to eliminate
these dependences. However, he didn't give any algorithm for this purpose. In his experiments,
he identified the parameters using the torque measured in the first joint of the robot TH8, using a
Kalman filter.

Hollerbach (Hollerbach85) identified the parameters of a direct driven ann by using least squares
method to fit the measured torques in a given trajectory. He measured the joint position and torque
on the trajectory, estimating the velocity and acceleration. However he did not mention the problem

101



of the elimination of the linearly dependent parameters, that may introduce erroneous estimation of
the parameters. However, still the fitting seems good. Khosla and Kanade (Koshla86) presented an
algorithm to eliminate the linear dependencies in the dynamic model. However this paper was not
ready on time for publication. Olsen (Olsen86) identified the constant parameters in simulation, but
special cases were considered to identify different parameters. Finally, Khatib (Khatib86) identified
the parameters of a PUMA 560 dismounting the robot and measuring directly the parameters. He
was able to do a significance analysis to reduce some of the parameters.

In the next section we will present an identification method based on fitting of the measured
torques over different trajectories, removing the linear dependencies and at the same time perfonning
a significance analysis, that reduces the computation considerably.

3 OUR APPROACH

In this section, we present a new approach. based on microprocessors, to compute the inverse
dynamics in real time. The scheme is based on the division of the computation into a high priority
synchronous task and a background task (Izaguirre85,86). The background task updates the inertial
and gravitational coefficients as well as the generalized forces due to the velocities of the joints. The
synchronous task computes the final generalized forces by multiplying the inertial coefficients by
the acceleration of the joints. adding at the same time the gravitational and velocities forces. This
computational scheme agrees with the experiments that have been done by Kircanski (Kircanski86).
He calculated trajectories for the PUMA560 robot, analyzing the bandwith of the position, velocity
and acceleration of the joints respectively. He concluded that the position and velocitie's spectra
are similar, and that the spectra of the acceleration is about 5 times larger. In our experiment we
estimated the velocities and accelerations from the measurements of the joint angles. If we examine
at Figure 1 through 5 in Appendix A, we can realize that the variations of position and velocity in
the joints are much smaller than the variations in acceleration.

We require to calculate the inertial coefficients as well as the forces due to the velocities as
fast as possible. To do so, we chose an efficient recursive algorithm to compute the inertial and
gravitational coefficients (Izaguirre86) and an efficient recursive algorithm to compute the velocity
forces (KhaliI86). The identification of the parameters pennits a further reduction by first eliminating
the linear dependencies and by dropping the parameters that are not significant.

In the next sections we will explain in detail the computation of the dynamic coefficients, as well
as the identification, explaining the results obtained for the PUMA260 robot.

108



4 CALCULATION OF THE DYNAMIC COEFFICIENTS

In this section we first develop the equations of the inertial and gravity loading coefficients for a
differential mass dm located in link j. The equations are elaborated from the theorem of conser
vation of the momentum (Izaguirre85,86) leading to a very easy and understandable prcedure. The
calculation for the entire link will be obtained by integrating these fonnulas over the mass of the
link.

401 CALCULATION OF THE TERMS D ij

The coefficient Dij corresponds to the generalized force in the joint j due to the acceleration of the
joint i. We will consider only the tenns for which i < j and then show that Dij = Dji. We consider
the four possible combinations for the joints i and j (revolute revolute, prismatic revolute, revolute
prismatic, and prismatic prismatic). In all the cases we assume the acceleration ijj to be different
from zero, and that all the other accelerations and velocities are zero.

In the revolute-revolute case, the tenn Dij corresponds to the torque in the joint i due to the
acceleration qi only. This torque can be calculated by using the derivative of the angular momentum
around the axis i with respect to time. We recall that the angular momentum of a point of mass
dm with respect a coordinate system is calculated by the cross product r x vdm, where r is the
position and v is the velocity of the differential of mass dm in this coordinate system. The variation
of the angular momentum around zi is : dm ri x ( Zj x rj) - Zi iji~t. The torque is calculated by
differentiating the angular momentum with respect to time:

The tenn Dij is then

-dmr- x tz· xr·) ·z·- 1 \ J J 1

or :1~I~-",--- ~

This fonnula reveals the symmetry between Dii and Dji.

(2)

(3)

In the prismatic-revolute case, the coefficient Dij corresponds to the force in the direction of the
joint -i due to the acceleration qj. It can be calculated by differentiating the linear momentum
in the direction of the axisi with respect to time. The linear momentum in the direction zi is:
dm(zj x rj) · ziqi * ~t, and the force is given by the fonnula:

109



(4)

The coefficient Di; is then

(5)

In the revolute-prismatic case, the coefficient Dij corresponds to the torque in the axis i due to the
acceleration iii- This torque is calculated by calculating the derivative of the angular momentum with
respect to time, leading to the following equation:

The terms Dij can be expressed as

= dm (ri x Zj) · zi

Dij = dm (Zi XTi)·Zj

or ....~l~ -..

In the prismatic-prismatic case it is very simple to see that the generalized force is

1:'. - dm q... z· · Z-
.41 - 1 J 1

and Dij is equal to

4.2 CALCULATION OF D i

(6)

(7)

(8)

(9)

In order to compute the gravity coefficients Dit we consider both the revolute and prismatic cases.
In the first case, the torque exened by the gravity on the revolute joint is equal to

r i = dm (ri x g) · Zj, (10)

110



where :

g is the acceleration due to the gravity.

To compensate for the gravity load a torque must be exerted in the opposite direction. Thus the
coefficient D i is equ~ to

Di = -dm (ri x g) ·zi

I Di=-dm(zixri)·g Ior as ~ ----.l.

(11)

(12)

Once again~ in the prismatic case, the force is equal tom g · zi. To compensate for this force we
must exen an opposing force. The coefficient Di is then equal to

Di = -dm g·zi.

4.3 INTEGRATION OF THE EQUATIONS

In this section we will integrate the equations derived earlier over one link. This link corresponds
to the "compound link" j, Le. the link fanned by the links j trough the last link n. In fact, the
calculation of the coefficients Dij and Dj depend only on the acceleration of the joint j; the rest
of the links don't move relatively to each other. An easy recursive calculation of the moments of
the "compound link" j as a function of the "compound link" j + 1 leads to a big reduction in the
calculation of the inertial and gravitational coefficients. This recursion will be explained later in
detail.

The most difficult tenn to integrate is the parameter Dij for the revolute-revolute case. The
expression of this tenn for a point mass situated in the "compound link" j, (j > i), is :

(13)

where:

- Pi is the vector between the origins of frames i and j,

- Ij is the vector between the origin of frame j and the elementary mass dm.

The expansion of this expression leads to· the following fonnula:

Dij = dm[(zi x Pi) · (Zj x Ij)

+(Zi X Ij) · (Zj x Ij)].

III

(14)



The integration of the first term is obtained by the sustitution of the point mass by the center of
gravity of the "compound link". The last term can be integrated using tensor notation. The tenn
(zi x ~) is expressed in tensor notation as -~ zi or as ziTj' leading to the following expression:

dm(z- x )-) · (z- x )-) - -dm z· T- T- z·1 J ::J J - IJ J::J

ljy )
-ljx

o

(15)

This term integrated over the link corresponds to the inertial matrix of the "compound link" j in
the frame j _ The final expression is :

where:

Dij =(Zj x Pi) · (Zj x M.i *Dj) + ZjI.iZj

= (Zi x Pi) · (Zj x Lj) + ZiIjZj,

(16)

- Mj is the mass of the compound link j,

- Di is the center of gravity of the "compound link" j on the origin of the frame j,

- Lj is Dj multiplied by J.\1jt Le. the first moment of the "compound link" j in the frame j.

- Ij is the inertia matrix of the "compound link" j in the origin of the frame j.

All the other tenns Dij for the other cases and the parameters Di are simple, with the integration
resulting the substitution of the coordinates of the center of gravity of the link for those of the point
mass.

4.4 CALCULATION OF THE COEFFICIENTS USING HOMOGENOUS TRANS
FORMATIONS

In this section we explain how to compute the inertial and gravitational coefficients once the topology
of the robot is defined by homogenous transformations. These homogenous transfonnations describe
the relationships between the i th and jth coordinate frames. We will name these transfonnations the

112



Ti,j matrix, with the convention that the first frame or base is the frame number 0, and that the last
link corresponds to the frame number n.

The part of the homogenous transfonnation corresponding to the rotation is the matrix Rij, and the
part corresponding to the translation is the vector Pij.

The matrix Rii can be decomposed in three vectors nij Oij and aij :

nijz Oijz aijz Pijx

Tij = nijy Oijy aijy Pijy (17)
nijz Oijz aijz Pijz

0 0 0 1

4.4.1 EXPRESSIONS FOR THE Dij COEFFICIENTS

In this section we will derive the expressions of the dynamic coefficients using homogenous trans
formations.

For the revolute-revolute case, the equation 16 corresponds to the fonnula:

Di,j := (0 jO 11) Ri,j Ij (0 10 11)T +
+ (-p.' Ip·· 10) R· . ( L· jL· IO')T, '&,.],y '&,.],X l '1,) - 1,Y J,X 1 ,

where:

- -i E [0, n - 1] and j E [0, n - 1], n being the number of degrees of freedom.

- (Lj,x, {Lj,y, lLj,z) are the components of the first moments of the "compound link" j
expressed in the j frame.

- Ij is the inertia matrix of the "compound link" j expressed on the j frame.

Equation 18 leads to the following:

(
11'3,j)

n·· 0·' a·· I·( t,),Z I t,),Z I t,),z) /3,)
3,3,.]

+(A B) * (-Li,y ILj,x)T

with

113

(18)

(19)



A = (-Pi,j,y * ni,j,x +PiJ,z * ni,j,y)

B - (-p.' *0·' +p.' * 0" )- t,J,y '&,J,X '&,J,x '&,;,Y

In the revolute-prismatic case, the fonnula 5 leads to :

Dij = (ni,j,z IOi,j,z)( -Lj,y ILj,x)T

Similarly, in the prismatic-revolute case, equation 7 leads to :

(20)

Dij (
a o

• )_ . .0 • . '&,J,X
- MJ (-p"J'Y Ip',J,z) a o °

'&,J,Y

-(ni,j,z IOi,j,z)( -Lj,y ILj,z)T.

(21)

And finally for the prismatic-prismatic case, Equation 9 may be expressed as

Dij = Mj * ai,j,z-

4.4.2 EXPRESSION OF THE Di COEEFICIENTS

(22)

We differentiate between the revolute and prismatic cases as before. In the first case Equation 11
can be expressed as

Di =- (9x 19y 19z) RO,i (-Li,y lLi,z IO)T,

where :

- (9:c 19y 19z) are the components of the acceleration of gravity in the base frame.

(23)

If the gravity is parallel to the z axis of the base frame, Equation 23 takes the following simplified
fonn:

Di = -9 (no,i,z IOO,i,z) (-Li,y ILi,x)T

In the second case, Equation 12 leads to the following expression:

Di = -Mj (gx 9y gz) (aO,i,x laO,i,y lao,i,z)T.

114

(24)

(25)



Once again if the gravity is in the direction of the z axis of the base frame Equation 24 may be
expressed as:

Di = -Mj 9 * laO,i,ze

4.5 RECURSION OF THE TERMS

(26)

In the previous sections we derived the expression of the inertial and gravitational tenns for the
"compound link" j. In this section we will work out the recursion for the calculation of the moments
of the "compoWld link" j in function of those of the "compound link" j + 1.

4.5.1 RECURSION FOR THE MASSES

Obviously Mj = Mj+l + mj+l' where mj is the mass of the link j and .L\;[j is the mass of the
"compound link" j.

4.5.2 RECURSION FOR THE FIRST MOMENTS

The first moment of the "compound link" j corresponds to the product of the mass l\1j by the
center of gravity of the "compound link" j. It can be expressed recursively by using the following
expression:

where:

Li(j) =RJ ,j+l (£j(j + 1) + Lj(j + 1) +Pj,j+l(j + 1) * lYfj) (27)

- Lj(j) is first moment of the "compound link" j expressed in the frame j.

- [, j (j + 1) is the first moment of the link j expressed in the frame j + 1. The fact that we expressed
it in the frame j + 1 is due to the selection of the Denavit-Hartemberg parameters. The moments of a
link are constant with respect to the next frame rather than with respect to the jth frame. This is why
modified Denavit-Hartemberg parameters have been sometimes used (KhaliI86) (Craig86), in which
case the moments of a link are constant with respect to the relative frame. However, computationally
both approaches lead to similar results, the differences are in the notation.

- pj,j+l (j + 1) corresponds to the vector between the origins of frames j and j + 1. It is also constant
with respect to j + 1 if we choose the Denavit-Hartemberg parameters, and is constant with respect
to j if we choose the modified Denavit-Hartemberg parameters.

115



4.5.3 RECURSION FOR THE INERTIA

The inertia of the "compound link" j can be expressed as a function of the "compound link" j + 1
by transfonning the inertia of the "compound link" j + 1 from the origin of the frame j + 1 to its
center of gravity and from the center of gravity to the origin of the frame j. Also we have to add
the inenia of the link j in a similar procedure. This can be expressed as it follows :

Ij(j + 1) = Ij+l(j + 1) + 1.\1i+1 * (Dj+l(j + 1) Dj+1(j + 1)

-Mi+l(j + 1) * ((Dj+l(j + 1) +Pj,i+l(j + 1») * (D j+1(j + 1) +Pj,i+1(j + 1))) (28)

+ Ij(j + 1) + mj * (dj(j + l)dj(j + 1))

- mj * CCdj(j + 1) + Pj,j+l(j + l))(dj(j + 1) +Pi,i+l(j + 1»))

where :

- Ij(j) is the inertia matrix of the "compound link" j (expressed in the jth frame),

- Ij(j + 1) is the constant inertia of the link j in the frame j + 1,

- Pi,i+l is the tensor correponding to the vector Pj-I,j,

- Dj+l(j + 1) is the tensor corresponding to the center of gravity of the compound link j + 1
in the frame j + 1,

- dj (j + 1) is the tensor corresponding to the center of gravity of the link j in the frame j +1.

This leads to the following equation:

Ij(j) = Rj,i+l(Ij(j + 1) + Ij+l(j + 1) + J.\1j * Pi,j+l(j + l)Pi,j+l(j + 1)) (29)

Rj,i+lT - Piti+l(j) Lj(j) - Lj(j) Pi,i+l(j)

where the tenn Pj,i+1(j + 1) is a constant if defined in the frame j + 1.

These tenns can be easily calculated using homogenous transformation as explained before for
the cases of the inertial and gravitational coefficients.

5 CALCULATION OF THE VELOCITY TERMS

There are two main methods to calculate the velocity terms. The first requires the calculation of the
velocity coefficients, Carialis and Centrifugal tenns, and multiplication of these coefficients by the

116



velocities of the joint. The Coriolis and Centrifugal tenns, can be efficiently calculated by using the
Christoffel symbols over the inertial tenns (Renaud85). The second method comprises the calculation
of the velocity torques by using the Newton-Euler method. A simplification of this method using
intennediate variables has been proposed by Kiialil (Khali186). Using this algorithm, in order to
calculate the velocity torque, we have to initialize the velocities and accelerations to zero since we
don't consider gravitational effects.

The advantage of using this last method is that the inertial and gravitational coeeficients, and the
velocity toques can be computed independently, unlike the Christoffel symbols which depend on the
inertial coefficient. Also, the complexity of the method is linear, rather than O(n3 ) for the method
using the Christoffel symbols.

The forward recursion for the velocities and accelerations considering only the influence due to
the velocities of the joints is the following:

wi(i) = RTi-lti * (Wi-l(i - 1) + (1- O"i)(O 10 Iqi)T (30)

Wi( i) = RT
i-l,i * (Wi-l (i - 1) + (1 - c7i) *Wi-l (i - 1) x (0 /0 14i)T)) (31)

iJi(i) = RTi_l,i * Vi-lei - 1) + 2 * O'i * wi(i) x RTi_1,i(O 10 Itii)T + Ui * Pi-l,i(i) (32)

where: 1Di(i) is the angular velovity of the frame· i expressed in the frame i, wi(i) and vi(i) are
the angular and linear accelerations of the frame i expressed on the frame i, and Ui is the matrix

--.... ..-...-
Ui = Wi( i) + wit i)Wi( i).

The backward recursion can be expressed by using the fonnula :

...,..,
;li(i + 1)

M(i + 1)

!i( i)

'ni\ i)

=mivit!"(i + 1) + Ui+l * £i(i)

=I~(i + l)Wi+l(i + 1) + Wi+l(i + 1) x Ii(i + l)Wi+l(i + 1)

= Ri,i4-1 (!i+l(i + 1) +lJi + 1)

= ~,i+l~(i + 1) + ni+l(i + 1)

+£i(i + I)-X 'Vi+l(i + 1)) + Pi.i+l(i) x fi(i)

(33)

(34)

(35)

(36)

(37)

where p(i -I- 1) is the force due to the motion of link i,!'l( i + 1) is the torque due to the mtion
of the link 'i, fie i) is the total force in the link -i expressed with respect to the frame i, and ni(i) is
the total torque in the link i expressed with respect to the frame i.

Khalil chose some intennediate variables that further simplified the computation, and the reader
is referred to (Khali186) for more details.

117



6 IDENTIFICATION OF THE DYNAMIC COEFFICIENTS

The torques can be expressed as linear functions of the masses of the, the first moments (the masses
of the links multiplied by the center of gravity of the links), and the second moments (the inertia
matrix of the links). The easiest way of showing this linear relationship is by considering the Newton
Euler's method. The forces and torques due to the velocities and accelerations of these links, are
calculated by linear functions of the moments of the links, Le. multiplications of these moments by .
functions that depend on the velocities and accelerations of the links, as show above. In the backward
recursion, these forces and torques transfonn from one link to the previous one in a linear form, and
the influence of the new link is taken into account by the addition of the forces and torques due to
previous link to the force and torque due to the actual link. Fmally because the resulting force or
torque in the joint is a projection of the forces and torques in the joint, we show that the dynamic
equations can be expressed as a linear function of the link moments.

This result can be shown by using the results obtained in the calculation of the inertial and
gravitational coefficients. First, it is easy to verify that the compound link moments are a linear
function of the moments of the constituent links. Secon~ the coefficient Dij and Di are linear
functions of the moments of the compound link. Third, as the Dijk tenns are calculated by the
Christoffel symbols that are additions of partial derivatives of the Dij tenns with respect to the
joint angle, we prove that the terms Dijk are linear function of the link moments. Finally as the
computation of the forces or torques is made by multiplications of these coefficients by the velocities
and accelerations of the links, we prove that the forces/torques are linear functions of the link
moments.

The problem is however not trivial as many of these tenns are mutually linearly. It is important
to calculate these dependencies in order to seek a reduction in the number of parameters to identify
as well as to arrive to a unique estimation. In the following paragraphs we explain the method used
to get rid off the dependencies as well as the experiments that we perfonned in the PUMA 260.

6.1 ALGORITHM TO IDENTIFY THE LINEAR DEPENDENCIES

Unless there are some analytical ways of calculating the linear dependencies between the moments
of the links, i~ is not easy to identify them. Therefore, we have programmed a numerical procedure
to find these dependencies. The algorithm is based in the calculation of the rank of a matrix.

The dynamic equations can be written as :

(38)

where

118



r i is the generalized force of the joint i,

parI, ... paTm are the moments of the links, the Coulomb and viscous frictions and the inertias of
the motors,

D(q, q, ij) is a function of the position, velocities and accelerations of the joints, and multiplies the
parameters to identify.

For the PUMA 260, there are 10 moments for each link, 6 static frictions, 6 dampings and 6
motors inertias, making a total of 78 parameters. The function D is computed numerically using
the Newton-Euler method, each time taking into account the torque due to each unit parameter, i.e.
the torque due to a parameter with value equal to 1. For the motor inertias, Coulomb frictions and
viscous frictions, the D parameters correspond to the acceleration, sign of the velocity and velocity
of the joint respectively.

Many measurements lead to :

(39)

If we consider n different values of th~ position, velocity and acceleration of the joints, this system
has a dimension equal to (6 n, m) for the matrix D. If we consider 100 points, a 6 joint manipulator
has a D matrix of dimension (600, 78). The system is overdetennined, and the linear dependencies
will correspond to the dependencies between the columns of the matrix D. Suppose now that the
columns D 1 .•. Di are linearly independent. We add the column Di+l and compute the new rank. If
the rank is equal to i + 1 then the new submatrix D1 ••• Di+l is linearly independent. If not, Di+l
is linearly dependent of the previous columns, and we can obtain

01 * D1 + ... + Oi * Di + (}i+l * Di+l = 0

with Cti+1 different from zero by construction. We have next:

Di+l = (-Ol/Oi+1) * D 1 - ... - ( Cti/Cti+1) * Di

The new equation will be :

(40)

(41)

(42)

We remove the dependencies by draping the corresponding parameters, and modifying the old
parameters in this last equation. The algorithm to calculate the dependencies considers a D matrix
with 100 random points, and succesively computes the rank of the submatrices D1 ••• Di dropping
one parameter each time that we get a new dependency. We implemented the algorithm by computing
the rank using the singular value decomposition method. Each time we obtain the smallest singular
value of the order of 10 x e-10 we consider the matrix singular, due to the numerical errors.

119



Using the IMSL library in UNIX and "e" language, we found the dependencies for the PUMA
260 in 15 minutes of VAX CPU time. From a starting set of 78 independent parameters we got 52
linearly independent parameters. We chose the 6 motor inenias as the six first parameters because
they are constant numbers. Two parameters were dependent with the actuator inenias of li~s 1 and
2. The static frictions and damping are independent of the other parameters. This means that from
a total of 60 moments we get 34 linearly independent moments.

The identification carried out on these new independent parameters, we ran the PUMA260 robot
over 10 different trajectories.

7 EXPERIMENTS

The experiments were done by running a PUMA 260 over 6 predetermined trajectories and 4 randomly
generated trajectories. These trajectories were polynomials that fitted points inside the range of each
link of the robot. We preserved the continuity of the trajectory, imposing condition zero velocities at
the beginning and at the end of the trajectory. The experiment was perfonned at McGill University
by Vmcent Hayward, using RCCL under UNIX environment. The CUlVes were time scale updated
to obtain maximum torque responses and to enhance the noise to signal ratio. The sampling period
was 28 msec.

The collected data from the measured torque and measured position has been used to calculate
the velocities and accelerations of the joints and we substituted these values into the D model
of the PUMA 260. The velocitites and accelerations were calculated using the fonnulas 'Vi =
(pOSi+l-POSi-l)/56msec, and ai = (Vi+l-Vi-l)/56msec, to filter the accelerations and velocities
values (see appendix A). We also dropped the first 15 and last 15 samples to eliminate the effects of
the transients.

We used a weighted least squares procedure since the output torque due to the first three links
is between 10 to 50 times bigger than the output torque due to the last three links. This weighting
is possible because the influence of the last three links over the three first is not significant. We
calculated the average, standard deviation, maximum and minimum values of the parameters. Table
1 shows the results for the fitting of all 53 parameters.

120



~ parameter I representation I average I standard deviation Imaximum I minimum II
1 1 * 1 ial I 0.098889 ! 0.050155 0.155265 I 0.07256 !

2 * I ia2 l 0.1436638 I 0.086779 I 0.243456 I -0.0067 i

3 * ia3 0.048211 0.054446 0.136380 -0.031769
4* ia4 0.003262 0.012358 0.032090 -0.010854 ,
5* iaS 0.012713 0.018743 0.041647 -0.030187 I
6 * ia6 0.002808 . 0.002849 0.009251 -0.002870 I
7 * m6 2.721895 1.119838 4.311959 0.402778 I
8 x6 -0.0012975 0.002621 j 0.002830 -0.005907 I

9 y6 -0.000464 0.002 0.002262 ~O.002939 I
10 * z6 0.012975 0.009833 0.023582 -0.004141 I
11 a6 0.00340 0.006396 0.010470 -0.00916 I
12 b6 -0.001549 0.005895 0.008865 -0.0107 I
13 c6 0.000513 0.001691 0.003652 -0.00208 i
14 d6 -0.000107 0.0.001391 0.002072 -0.0030 !
15 e6 0.000655 0.001307 0.003036 -0.00168 I

16 f6 -0.000123 0.000831 0.001565 -0.0013
17 x5 0.005288 0.012584 0.035485 -0.00479
18 y5 0.0067 0.014106 0.039692 -0.01085

19 as -0.000094 0.008077 0.012286 -0.0172
20 c5 ..0.003878 0.016054 0.019385 -0.0296
21 <is 0.000206 0.004036 0.007888 -0.00736 I
22 e5 0.000139 0.002689 0.005776 -0.00354 I
23 [5 0.002137 I 0.005822 0.016140 -0.00345
24 x4 0.004657 0.018356 0.046432 -0.01414

~ 25 •
~ 26 *
~ 27 *
~ 28

~ 29

~ 30

I y4

I a4

I c4

I d4

I e4

I f4

I -0.344338

j 0.086604

I 0.078255

I 0.006251

I -0.000380

I 0.000146

I 0.229325

1 0.092222

I 0.081800

i 0.011871

I 0.004918

I 0.001974

I 0.117723

I 0.196475

I 0.176402

I 0.032354

I 0.008801

I 0.003355

-0.6942 11

-0.11892 II
-0.11721 II
-0.01660 ij

-0.0053 IJ

-0.00283 ~

Table 1: Statistics for the obtained parameters

121



~ parameter I representation I average I standard deviation Imaximum I minimum ~

~ 31 I x3 I 0.015860 I 0.077495 I 0.242066 I -0.05096 II
~ 32 Iy3 I 0.068128 I 0.182303 I 0.254483 I -o.33270~

~ 33 I a3 I -0.055563 I 0.09324 I0.037403 I -o.3020~

~ 34 I d3 I 0.004356 I0.020517 I 0.031289 I -0.04308 ~

~ 35 I e3 I 0.004208 I 0.027816 I 0.050051 I -0.03657~

~ 36 I f3 I 0.005254 I0.021493 0.031724 -o.03638~

~ 37 I x2 I 0.014250 I0.235012 0.512454 -o.32158~

~ 38 I y2 I -0.007559 I0.040522 0.075899 -0.0645 ~

II 39 I d2 I -0.017301 I0.049358 0.066779 -0.0837 ~

~ 40 I e2 I -0.015461 I0.026013 I 0.025235 -0.0641 ~

~ 41 I fsl I 0.690330 I0.074645 I0.776301 0.565639~

II 42 I fs2 I 1.379400 I0.229495 1.640865 0,929609 ~

~ 43 I fs3 I 0.600034 I0.127999 0.831090 0.382789~

~ 44 I fs4 I 0.221244 I0.038097 0.288517 0.162633~

~ 45 fs5 I0.039534 I0.037993 0.099793 I -0.03222 ~

~ 46 fs6 I 0.097322 I 0.027456 I0.135677 I 0.062352 ~

~ 47 dsl I0.640149 I0.142105 I0.957472 I 0.496185 ~

~ 48 ds2 I 1.054428 I0.292792 I 1.639596 I 0.646664 II
~ 49 I ds3 I 0.419111 I 0.177024 I0.653683 I 0.065445 II
~ 50 I ds4 I 0.087686 I 0.002107 I 0.045901 I 0.146658 II
~ 51 I ds5 I 0.099686 I0.070966 I 0.281025 I -o.00686~

~ 52 I ds6 I 0.033299 I0.012595 I0.053150 I 0.019065 II
Table 1: Statistics for the obtained parameters

In this table, the first 6 parameters correspond to the actuator inertias. The last 12 parameters
correspond to Coulomb frictions (Le. f~i) and viscous frictions (Le. dsi). The rest of the parameters
corresponds to moments of the links of the robot. The first column in Table 1 corresponds to the
parameter number in the identification. The parameters considered as significant are marked by a ,,*u

. The second column contains the representation of each parameter, the third through 6th columns
contain the average value, standard deviation, maximum and minimUm value respectively of the
parameter over a set of 10 different trajectories.

The significant parameters were calculated by looking for the maximum contribution to the torque,
. for each parameter. The parameters whose contribution for all trajectories were less than 1 percent

of the maximum measured torque were considered as non-significant. Only 23 parameters were
found significant. A new identification was made using only these 23 parameters getting a better
distribution, that is a smaller standard deviation. This result can be attributed to the condition of the

122



D matrix. In the first case the condition number, the quotient between the smallest singular value
and the biggest singular value, is 0.033/828.8. If we fit only 23 parameters, we get a condition
number of 0.35/146.0, which is 60 times better. The fitting of the parameters is shown in Table2.

~ parameter I representation I average I standard deviation Imaximum I minimum ~

1* ial 0.091631 0.015729 0.115515 0.069620

2 • ia2 0.136312 0.037337 0.205561 0.084086

3 * ia3 0.030843 0.022379 0.046165 -0.032295

4* ia4 0.001781 0.005213 0.013764 -0.005222

5 * ia5 0.006759 0.012284 0.028195 -0.015815

6 * ia6 0.001262 0.002065 0.003792 -0.004269

7 * m6 2.768114 0.139741 2.971715 2.395409

8 * z6 0.014041 0.006980 0.022369 0.002290

I 0.079781 I 0.022904 I 0.118200 0.036028 ,]

I 0.077761 I 0.021450 I 0.118039 0.033405 ~

I 0.787033 I 0.048752 I 0.861973 0.703532 ~

I 1.389280 I 0.221132 I 1.711836 1.080681 ~

I 0.650706 I 0.045556 I 0.751500 0.593681 ~

I 0.256854 I 0.031520 I 0.301434 0.199465 ij
I 0.036607 I 0.041190 I 0.097840 -0.03550 II

I 0.106594 I 0.020605 I 0.140304 0.077563 ~

I 0.575662 I 0.057868 I 0.685223 0.465081 I]
I 0.944670 I 0.199482 11.362454 0.558198 ~

I 0.417502 I 0.103817 I 0.589464 0.292471 ~

f 0.066791 I 0.033318 I 0.113687 0.019180 ~

I 0.101721 I 0.030324 I 0.155355 0.044809 ~

I 0.030363 I 0.011697 I 0.056091 0.016647 ~

~ 9 *
~ 10 •
~ 11 *

~ 12 *
~ 13 *
~ 14·

~ 15 •
~ 16 *

~ 19 *
~ 20 •

. ~ 21 *
~ 22 *
~ 23 *

I y4

I a4

c4

fsl

fs2

fs3

I fs4

I fs5

I f56

I dsl

I ds2

! ds3

I ds4

I ds5

I ds6

I -0.382190 I0.025796 I -0.315692 I -0.423311 ~

Table 2: Statistics for the significant parameters

7.1 IDENTIFICATION ERRORS

We displayed the measured and fitting torques, using the 23 parameters (i.e. the average) that resulted
from the fitting of the curves. The results for the first three joints are almost perfect, as very slight
differencies are found (see Appendix B). For the last three joints there are larger discrepancies, due
to the facts that the measured torques are small and that the last three links are mechanically coupled.
This coupling is not yet taken into account in the model.

123



If we compare the results of the frictions measured for the same robot by J. Lloyd (Lloyd84)
(see Table 3), we can see that they almost agree completely.

~ parameter number I representation I value found in J. Lloyd I value found by our method ~

~ 1 * I [sl I 0.760 I 0.7870 ~

[I 2 * I [s2 I 1.620 I 1.3892 ~

~ 3 * I [s3 I 0.850 I 0.6507 ~

~ 4 * I fs4 I 0.175 I 0.2568 II
[I 5 * I fs5 I 0.178 I 0.0366 II
~ 6 * I fs6 I0.140 I 0.1065 ~

~ 7 * Idsl I 0.71 I 0.5756 II
[I 8 * Ids2 I 0.55 I 0.9446 ~

~ 9 * I ds3 I 0.50 I 0.4175 ~

~ 10 * I ds4 I 0.05 I 0.066 II
~ 11 * I dsS I 0.030 I 0.101 II
~ 12 * Ids6 I 0.065 I 0.030 ~

Table 3: Comparison of the results obtained for the frictions

We also compared the dynamic coefficients that J. Lloyd measured to calculate the gravitational
coefficients. He found three parameters cI5 = -O.192N - m, cI3 = -1.762N - m and cI2 =
5.509N - m. Developping OUf fonnulas (see Appendix A) we found that the coefficients have the
following values: cI5 = -O.13743N - m, c13 = -1.7686441V - m and cl2 = 5.51792 N-m.

Using these parameters we automatically generated the program that calculates the inenias and
gravitational coefficients as well as the program that calculates the velocity torques (see Appendix A).
These programs pennit the calculation of the inenias and gravitational coefficients, for the PUMA260
without load, using 98 multiplications and 70 additions; and the calcultion of the velocity torques
using 140 multiplications and 110 additions. In the case of an arbitrary load at the end effector, the
calculation of the inertias and gravitational coefficients require 190 multiplications and 150 additions
and the velocity torques 200 multiplications and 170 additions.

7.2 ERRORS IN TRAJECTORY FOLLOWING

To test the validity of our dynamic model we have computed the necessary torques to follow a
predetennined trajectory. We have thus computed the trajectory by controlling the robot PUMA 260
in open-loop, using the computed torque, and obtaining the error with the real trajectory. We have
experimented with several trajectories all of them giving very good results, at low and high speed,
as well as we can totally compensate for the gravitational torque, freeing the robot.

12/+



In the experiments for the joints 1, 2 and 3 independently as well as fOf the 3 joints together, we
realized that the errors are smaller at high speed than at low speed due to the effect that it is very
difficult to modelize the static error when the robot is at rest. In the case that the motion is fast,
(about 180 degrees/second), the error in a trajectory of 90 degrees is smaller than 10 percent (Figure
13).

We also realized that the gravitational force builds up errors as the robot is moving, being the
errors of big magnitude in the case of slow motion. To correct this problem, we have compensated
for the gravitational torque in function of the joint's position of the robot We can see in the figure
15 of the appendix, that the errores are reduced considerably.

Fmally in figure 14 and 16 we can realize that the model works well when three different joints
move together, proving that the coupling inertias as well as the centrifugal and Cariolis tenns are
compensated.

8 CONCLUSION

The method developed in this paper allows for the real time computation of the dynamic equation of
robot manipulators. This has been achieved by dividing the computation into background and syn
chronous task. Additionally, in the background computation we could divide the inertial gravitional
part from the velocity torques, computing them in parallel. The reduction of parameters from 78 to
52 independent parameters, and the reduction from 52 to 23 significant parameters make this even
more efficient Effectively the computational of the inertial and gravitational tenns takes 100 multi
plications and 70 additions, and the computation of the velocity torques takes a similar computation
effort. In the case that the manipulator has an arbitrary load at the end effectof, the computation
fOf the inertial and gravitational tenns is 200 multiplications and 150 additions approximatively, the
same number of operations is needed for the velocity torques.

We have also experimented measuring the errors by controlling the robot in open, fitting the
robot controller with the calculated torques to follow predetennined trajectories. The results are very
good for slow and fast motion, proving the validity of the model.

Several points could be taken into account in order to improve the results. First, we considered the
friction constant, which is not true in a real manipulator. This might explain most of the discrepancies
of our identification results. However, the range of variation is small, making the approximation
reasonable, obtaining at the same time a very good fitting.

As a conclusion we feel that the identification procedure explained in this paper is very robust
and applicable to real time control, with very small errors between the measured and calculated
torque. Also, the computational structure should be adaptable to new robot manipulator design, as
the research is focussed in obtaining manipulators having very small coupled inertias.

125



References

(Bejcsy74) A. K. Bejczy
Robot Ann Dynamic and Control
NASA Tech. Memo. J.P.L. 15 Fev (1974) 33-699.

(Craig86) Craig, J.
Introduction to robotics mechanics and control.
Addison-Wesley 1986, California.

(Featherstone84)R. Featherstone
Robot Dynamics algorithms
Ph D. Thesis, University of Edinburg 1984

(Ferreira84)E. Ferreira
Contribution a l'identification de parametres et a la commande dynamique adaptative de robots
manipuiateuIS
poet. Engenieur Thesis, Toulouse France, 1984

(Hollerbach80) J. Hollerbach
A recursive Lagrangian formulation and a comparative study of dynamics fonnulations.
IEEE Trans. on System Man and Cyber. vol SMC-10, n 11, pp 730-736

(Hollerbach82)J. Hollerbach
Dynamics
Robot Motion, Planning and Control, MIT Press 1982, chapter2

(Hollerbach85)Chae H. An, Christopher G. Akteson, J. Hollerbach
Estimation of inenial parameters of rigid body links of manipulators.
Proc. of the 24th Conf. on Dec. and Control, Fort Lauredale, Dec 1985, pp 990-1002.

(Izaguirre 85) A. Izaguirre, R. P. Paul
Computation of the inertia and gravitational coefficients of the dynamic equations for a robot ma
nipulator with a load
IEEE Conference on Robotics and automation March 1985

(Izaguirre 86) A. Izaguirre, R. P. Paul
Automatic generation of the dynamic equations of the robot manipulators using a LISP program
IEEE Conference on Robotics and automation March 1985

(Khan71)M.E. Khan, B. Roth
The near minimum time control of open loop articulated kinematic chains.

126



Trans. of ASNIE. Journal of Dyn. Systems Eng. and Control, pp 164-172

(Khalil 86) W. Kb.alil, J.K. Fleifinger, M. Gautier
Reducing the Computational burden of the dynamic model robots
IEEE Conference on Robotics and automation March 1986

(Khatib86) B. Annstrong, O. Khatib, J. Burdick
The explicit dynamic model and inertial parameters of the PUMA560 Arm
Proc. Coni. IEEE Robotics and Automation, San-Francisco, pp 510-518

(Kircanski 86)N. Kircanski, M. Kircanski, M. Vukobratovic, O. Timcenko
An approach to development of real time robot models
IFToNllvl Symp. ROMANCY, KRA.KOW 1986.

(Khosla86)P. Khosla
An algorithm to detennine the identifiable parameters in dynamic robot models
Proc. Conf. IEEE Robotics' and Automation, San-Francisco, (not-in-time)

(Lathrop85)R. Lathrop
Parallelism in manipulator dynamics
Proc. Conf. IEEE Robotics and Automation, Saint-Louis Missouri, pp 772-778

(Likins71)P. Likins
Passive and Semi-active attitude stabilizations-flexible spacecraft
ARGARD-LS pp 45-71, October 1971

(Lloyd 86) J. E. Lloyd
Implementation of a robot programming environment
Master Thesis, Mc Gill ,University 1986, Dept. of Elect. Eng.

(Luh80) J. Luh, M. Walker, R. Paul
On-line computational scheme for mechanical manipulators IEEE TRans. Automatic Control 25, 3
1980, pp 468-474

(Luh82) J .. Luh. C. Lin
Schedulling of parallel computation for a computer-controlled mechanical manipulator
IEEE Trans. on System, Man and Cybernetics. vol SMC-12, n-2 1982,pp 214-234

(Megahed84)S.M. Megahed
Contribution a la modelisation geornetrique et dynamique des robots manipuiateurs a structure de
chaine cinematique simple ou complexe
These d' etat, Universite Paul Sabatier, Toulouse (1984).

127



(Orin85) D. Orin, H. Chao, K. Olson, W. Schrader
Pipeline/parallel algorithms for the Jacobian and inverse dynamics computations
Prac. Coni. IEEE Robotics and Automation, Saint-Louis Missouri, pp7a.S-789

(Oslen86) H. Oslen, G. Bekey
Identification of Robot Dynamics
Proc. Conf. IEEE Robotics and Automation, San-Francisco, pp 1004-1010

(paul 82)R. Paul
Modelling, trajectory calculation and seIVoing of a computer controlled ann
AIM 77, Nov 1972, Stanford University

(paul 81)R. Paul
Robot manipulators : Mathematics, programming, and control
M.I.T. Press, Cambridge, Massachussetts, and London, England, (1981).

(Raiben77)M. Raiben
Analytical equatons vs. look-up table for manipulation: a unifying concept
Proc. IEEE Coni. on Decision and Control, New Orleans, LA. Dec 1977

(Renaud83)M. Renaud
An efficient iterative analytical procedure for obtaining a robot manipulator dynamic model
First International Symposium of robotic re-
search, Brextton Woods, U.S.A., August (1983).

(Renaud 85) M. Renaud
An efficient iterative Analytical procedure for obtaining a robot manipulator model
Robotics Research 1984, pp. 749-764

(Uicker68)I. Uicker
Dynamic behaviour of spatial linkages
Trans. of ASME n 68, Mech 5, ppl-15.

128



A Automatic generator of dynaDlic equations using the LISP machine

To use the automatic generator in the LISP machine, one has to load the packages "LAG" and "VEL"
respectively. The actual packages are implemented on a Symbolic Lisp machine using version 6.0.
The command to load the packages are "(make-system 'inertia)" and "(make-system 'velocity)"
respectively. .

The package "LAG" pennits the creation of a "C" program that calculates the inertia and grav
itational coefficients of the dynamic equations. To do this, we have to type the LISP command
"(LAG:principa <input-file> <output-file>)", where <input-file> corresponds to the input file con
taining the specifications of the robot (number of links, Denavith-Hartemberg parameters, masses,
first-moments, inertias of the links,...) and <output-file> corresponds to the output file containing a
"Cn program.

The package "VEL" pennits the creation of a "c" program that computes the torques due to the
joint velocities. It includes the contribution due to the frictions. To do this, one has to type the
LISP command: "(VEL:principa <input-file> <output-file>)", where <input-file> corresponds to
the file containing the specifications of the robot, as explained before, and <output-file> contains
the "Cn program to calculate the velocity torques.

The source code for the package "LAG" and "VEL" are in the directories
"upenn:usr:(alberto.lagrange]" and "upenn:usr:[alberto.velocity]" respectively.

A.I Examples of input files for the PUMA260 robot

In the following lines we show the input file for the generation of the "e" program that calculates
the inertial and gravitational coefficients of the dynamic equations, for the PUMA 260 without any
load at the end effector. The input file is the following :

number links 6
mass 0 0 0 0 0 rn6

sigma a 0 0 0 a a
alpha 90 0 -90 90 -90 a
dpar a 0 d3 d4 0 0
apar a a2 0 0 a 0
adyna 0 0 0 ad4 0 0
bdyna 0 0 0 a 0 a
cdyna 0 0 a cd4 0 0
ddyna a 0 a 0 0 0
edyna 0 0 0 0 0 0
fdyna a 0 0 a a a

12.9



xgrav 0 a 0 0 0 0
ygrav 0 0 0 y4 a 0
zgrav 0 a 0 0 0 z6
ia ia1 ai2 ia3 ia4 ia5 ia6
option moment
option_update moment
variable m6 2.768114
variable z6 0.01401
variable y4 -0.382190
variable ad4 0.079781
variable cd4 0.077761
variable ial Oe091631
variable ia2 0.136312
variable ia3 0.030843
variable ia4 0.001781
variable iaS 0.006759
variable ia6 0.001262
variablea a2 0.20320
variablea d3 0.12624
variablea d4 0.20320
stop

The file is almost self-explanatory. The first line contains the number of links of the manipulator.
The second line contains the masses of the links. The third line contains the types of the joints, i.e.
revolute or prismatic. In the case of the PUMA 260 all joints are revolute, so the values of the sigma
parameters are zero. If the joints are prismatic the value of sigma is 1.

The next three lines correspond to the a, d and a, Denavit-Hartemberg parameters following the
notation of R. Paul (paul81). The next six lines correspond to the values of the inertia parameters
of the links expressed on the corresponding link frame. The parameters adyna, bdyna and cdyna
correspond to the diagonal tenns of the inertia matrices in the x, y and z directions respectively.
The parameters ddyna, edyna and fdyna correspond to the inertias in the x * y, y * z and x * z
directions. The inertia matrix can thus be expressed in the following expression:

(

adyna
ddyna
fdyna

ddyna
bdyna
edyna

fdyna)
edyna
cdyna

The next three lines correspond to the center of gravities of the links or the first moments, i.e.
the center of gravities multiplied by the masses of the link, depending on the value of option. In our
case option is set to the value "moment" indicating that the values correspond to the first moment.

1.10



The next line correspond to "proper inertia" of the motors expressed on the link frame.
In the next two lines, if option is set to the value "update" the values of the inertia tenns correspond
to the inenia of the link in the origin of the link frame, and the values of the parameters xgrav,
ygrav and zgrav correspond to the first moment of the link in the origin of the link frame. On the
other hand, if the value of option is different from "update" the inertia parameters correspond to the
inertia of the link expressed in a frame parallel to the link frame, placed on the center of gravity of
the link. The parameters xgrav, ygrav and zgrav, in this last case, correspond to the coordinates of
the center of gravity of the link expressed on the link frame. The variable "option_update" is similar
to "option" but it corresponds to the parameters that are variable in the last frame.

Fmally, the rest of the {lIe contain lines with the numerical values of the physical parameters.
The last line contains always the word "stop" indicating the end of file.

The next file contains the infonnation necessary to generate the inertial and gravitational coeffi
cients of the dynamic equations for the case of the PUMA260 with an arbitrary load at the effector.
The input file is the following:

number links 6
mass a a a 0 a m6
sigma a 0 a a a a
alpha 90 a -90 90 -90 a
dpar a a d3 d4 a a
apar a a2 a a a a
adyna a 0 a ad4 a ad6
bdyna a a a a a bd6
cdyna 0 a 0 cd4 0 cd6
ddyna 0 a 0 a a dd6
edyna 0 a 0 0 0 ed6
fdyna a a a 0 0 fd6
xgrav a 0 a a 0 x6
ygrav a a a y4 0 y6
zgrav 0 a 0 a a z6

ia ial ai2 ia3 ia4 iaS ia6
option moment
option_update moment
vari~lediff m6 2.768114
variablediff z6 0.01401
variablediff x6 0.0
variablediff y6 0.0
variablediff ad6 0.0
variablediff bd6 0.0
variablediff cd6 0.0
variablediff dd6 0.0

131



variablediff ed6 0.0
variablediff fd6 0.0
variable y4 -0.382190
variable ad4 0.079781
variable cd4 0.077761
variable ia1 0.091631
variable ia2 0.136312
variable ia3 0.030843
variable ia4 0.001781
variable iaS 0&006759
variable ia6 0.0012~2

variablea a2 0.20320
variablea d3 0.12624
variablea d4 0.20320
stop

The difference between this file and the previous one is in the parameters corresponding to the last
link, Le. the 6th link. As this link may val)' its parameters, Le. masses, inertias and first moments
may change due to the addition of the extra load, the numerical values of the extra link contain the
word "variablediff" instead of the word "variable". The resulting program contains a procedure that
petmits to update the values of these parameters when new values of the extra load are identified.

The file for the generation of the velocity torques for the PUMA 260 without load contains the
following information:

number links 6
mass a a 0 a a m6
sigma 0 0 0 0 0 0
alpha 90 0 -90 90 -90 0
dpar 0 0 d3 d4 0 0
apar 0 a2 0 0 0 0
adyna a 0 0 ad4 0 0
bdyna 0 0 a 0 0 0
cdyna 0 0 0 cd4 0 0
ddyna 0 a 0 0 0 0
edyna 0 0 0 0 0 0
fdyna 0 0 0 0 a 0
xgrav 0 0 0 a 0 0
ygrav 0 0 0 y4 0 0
zgrav 0 0 0 0 0 z6
ia ial ai2 ia3 ia4 ia5 ia6
friction rsl rs2 rs3 rs4 rs5 rs6

132



damping rd1 rd2 rd3 rd4 rd5 rd6
option moment
option uPdate moment- - .-

variable m6 2.768114
variable z6 0.01401
variable y4 -0.382190
variable ad4 0.079781
variable cd4 0.077761
variab-le ia1 0.091631
variable ia2 0.136312
variable ia3 0.030843
variable ia4 0.001781
variable ia5 0.006759
variable ia6 0.001262
variable rsl 0.787033
variable rs2 1.389280
variable rs3 0.650706
variable rs4 0.256854
variable rs5 0.036607
variable rs6 0.106594
variable rdl 0.575662
variable rd2 0.944670
variable rd3 0.417502
variable rd4 0.066791
variable rdS 0.101721
variable rd6 0.030363
variablea a2 0.20320
variablea d3 0.12624
variablea d4 0.20320
stop

The only difference with the first file is in the lines that start with the words "friction" and "damping"
respectively. The first line contains -the infonnation corresponding to the static friction of the motors
expressed on the link frame. The second corresponds to the damping, i.e. viscosous friction, of the
motor expressed on the link: frame. The corresponding lines with numerical values are added to the
file. It is to note, that this file may also be used to generate the "en program to calculate the inertia
and gravitational coefficients.

To generate the "C" program that calculates the velocity torques for the PUMA 260 with an
arbitrary load, we used the following file:

number links 6

133



mass 0 0 0 0 0 m6
sigma 0 0 0 0 0 0
alpha 90 0 -90 90 -90 0
dpar 0 0 d3 d4 0 a
apar 0 a2 a 0 a 0
adyna 0 0 0 ad4 0 ad6
bdyna 0 0 0 a 0 bd6
cdyna 0 a 0 cd4 0 cd6
ddyna 0 0 0 a a dd6
edyna 0 0 0 0 0 ed6
fdyna 0 0 0 a a fdE
xgrav a 0 0 0 0 x6
ygrav a 0 a y4 0 y6
zgrav 0 a 0 0 0 z6
ia ia1 ai2 ia3 ia4 iaS ia6
friction rsl rs2 rs3 rs4 rs5 rs6
damping rdl rd2 rd3 rd4 rdS rd6
option moment
option_update moment
variablediff m6 2.768114
variablediff z6 0.01401
variablediff x6 0.0
variablediff y6 0.0
variablediff ad6 0.0
variablediff bd6 0.0
variablediff cd6 0.0
variablediff dd6 0.0
variablediff ed6 0.0
variablediff fd6 0.0
variable y4 -0.382190
variable ad4 0.079781
variable cd4 0.077761
variable ial 0.091631
variable ia2 0.136312
variable ia3 0.030843
variable ia4 0.001781
variable ia5 0.006759
variable ia6 0.001262
variable rs1 0.787033
variable rs2 1.389280
variable rs3 0.650706
variable rs4 0.256854
variable rsS 0.036607

134



variable rs6 0.106594
variable rd1 0.575662
variable rd2 0.944670
variable rd3 0.417502
variable rd4 0.066791
variable rd5 0.101721
variable rd6 0.030363
variablea a2 0.20320
variablea d3 0.12624
variablea d4 0.20320
stop

The only differences with the above file are the changing parameters corresponding to the last link
frame. These files are on the directory "upenn:usr:(alberto.gene]".

A.2 Ouput files

To generate the "e" program to calculate the inertias and gravitational coefficients for the case of
the PUMA 260 without load, we used the LISP machine command
"(LAG:principa U[albeno.gene]input260.lisp" [alberto.lagrange]output260.lisp'')t9. The listing of the
file "upenn:usr(alberto.lagrange]output260.lisp" is the fullowing :

#define M6 2.768114
#define Z6 0.01401
tdefine Y4 -0.38219
#define AD4 0.079781
tdefine CD4 0.077761
#define IAl 0.091631
tdefine IA2 0.136312
#define IA3 0.030843
*define IA4 0.001781
#define IA5 0.006759
tdefine IA6 0.001262
#define MC6 M6
#define MCS MC6
4Fdefine MC4 MC5
#define MC3 MC4
#define MC2 MC3
tdefine MC1 MC2
tdefine A2 0.2032
#define 03 0.12624

135



#define D4 0.2032
#define KP21 A2
#define KP32 (- 03)
#define KP42 D4
#define FP42 KP42 * MC4
#define FP32 KP32 * MC3
#define FP21 KP21 * MC2
#define NP411 MC4 * (KP42*KP42)
*define NP433 MC4 * (KP42*KP42)
#define NP311 MC3 * (KP32*KP32)
#define NP333 MC3 * (KP32*KP32)
#define NP222 MC2 * (KP21*KP21)
#define NP233 MC2 * (KP21*KP21)

iinclude <math.h>
dyn_robot(Q,DIJ,DI}
float Q[7] ,DIJ[7] (7] ,DI [7];
{

float GRAV=9. 81;
float Sl,S2,S3,S4,SS,S6;
float Cl,C2,C3,C4,CS,C6;
float C23,S23:
float C4C4,S4S4,S4C4,C3C3,S3S3,S3C3,C2C2,S2C2:
float S2S2,CIC1,SlCl,SlSl;
float T1214,T1224,T1411,T1414,T1424,T1421:
float BS21,BS23,BS22,BA31,BS33,BS31,BS32,BA42;
float BS43,BS42,BS41,BA52,BS52,BS51,BS63;
float JS222,JS223,JS233,JA322,JA333,JS311,JS312,JS322;
float JS313,JS323,JS333,JA411,JA433,JS411,JS412,JS413;
float JS422,JS423,JA511,JA533:
float PS031,PS041,PS042,PS131,PS141,PS142,PS241;
81 = sin(Q[l]);
Cl cos(Q[l]);
32 sin(Q[2]);
C2 cos(Q(2]);
S 3 sin (Q [ 3] ) ;
C3 cos (Q [ 3] ) ;
54 sin(Q[4]};

C4 cos(Q(4]);

S5 sin(Q[S]);
C5 = cos(Q(S]);

136



56 = sin(Q[6]);
C6 = cos(Q[6]):
C23 = cos(Q[2]+Q[3]);
523 = sin(Q[2]+Q[3]);
C4C4 = C4 * C4;
5454 = 54 * 54;
54C4 = 54 * C4;
C3C3 = C3 * C3;
5353 = 53 * 53;
53C3 = 53 * C3;
C2C2 = C2 * C2:
52C2 = 52 * C2;
5252 = 52 * 52;
C1C1 = C1 * Cl;
51C1 = 51 * C1;
5151 = 51 * 51;

T1214 = (C2 * A2);
T1224 = (52 * A2);
T1411 = «C23 * C4»;
T1414 = (- (523 * D4) + T1214);
T1424 == «C23 * D4) + T1224);
T1421 = «523 * C4»;

B563 (Z 6) ;
B551 = (- (55 * B563»;
B552 = ( (C5 * B5 63) ) ;
BA52 = «Y4 + B552) + FP42);
B541 ( (C4 * B551»);
B542 ( (54 * B5 51) ) ;
B543 = (BA52) ;
BA42 (B542 + FP32):
B532 «53 * BS41) + (C3 * B5 43) ) ;
B531 = ({C3 * B541) - (53 * B543»);
B533 = (- BA42);
BA31 = (B531 + FP'21):
B522 = «52 * BA31) + (C2 * B532»;
B523 (BS33) :
B521 «C2 * BA31) - (82 * BS 32) ) ;

JA533 = (CD4 - NP433);
JA511 (AD4 - NP411);
J5423 (0 - (D4 * B542»;

137



J5422 = «5454 * JA511) + (C4C4 * JA533) + (2.0 * (D4 * B543»);
J5413 = (0 - (D4 * B541));
J5412 «S4C4 * (JA511 - JA533));

JS411 = «C4C4 * JA511) + (5454 * JA533) + (2.0 * (D4 * BS43»);
JA433 (- NP333);
JA411 = (J5411 - NP311);
JS333 = (J5422);
J5323 = (- (53 * JS412) - (D3 * B532»;
JS313 = (- (C3 * J5412) - (D3 * B531);
J5322 = «5353 * JA411) + (C3C3 * JA433) + (2.0 * (D3 * BS33)));
J5312 = «S3C3 * (JA411 - JA433»));
J5311 = «C3C3 * JA411) + (S353 * JA433) + (2.0 * (D3 * B533));
JA333 = (JS333 - NP233);
JA322 (JS322 - NP222);
JS233 = (JA333 + (2.0 * {(T1224 * BS22) + (T1214 * B521»»);
J5223 = «52 * J5313) + (C2 * J5323) - (T1224 * B523»;
J5222 = «5252 * J5311) + ({2 * 52C2) * J5312) + (C2C2 * JA322) + (2.0
* (T1214 * B521»));

PS031
PS041
PS042
PS131
PS141
PS142
PS241

= «C23 * 03»:
= «T1411 * D3) + (S4 * T1414»;
= (- (523 * 03»;

(- (C23 * T1224) + (523 * T1214»;
= (- (T1411 * T1424) + (T1421 * T1414»;

«523 * T1424) + (C23 * T1414)};
= (- (C4 * D4»;

DIJ[l] [1]

DIJ[l] [2]

DIJ[l] [3]

DIJ[l] (4]

DIJ[l] [5]

DIJ[l] [6]

DIJ[2] [2]

DIJ[2] [3]

DIJ[2] [4]

DIJ[2] [5]

DIJ(2] (6]

DIJ[3] [3]
DIJ(3] [4)
DIJ[3] [5]
DIJ[3] [6]
OIJ[4] [4]

( (J5 222) + IA1);
(JS223) ;
( (S 2 * JS 313 ) + (C 2 * JS 323) ) ;

= ((523 * J5413) - (BS42 * PS031) + (BS41 * T1214»);
(- (B552 * PS041) + (BS51 * PS042));
(O) ;

( (JS 2 33 ) + IA2};
(JS422 + (BS31 * A2»;
(- JS423 - (BS42 * PS131»;
(- (B552 * PS141) + (B551 * PS142»);
( 0) ;

«JS422) + rA3);
= (- JS423);
= (- (B552 * PS241»;
= (0);

IA4;

138



DlJ(4] [5] = (0);
DlJ[4] [6] = (0);
DlJ[5] [5] = IA5:
DlJ[5] [6] = (0);

DIJ[6] [6] = IA6;
DI [1] = (0):

Dl[2] = (GRAV * (BS21»);
Dl[3] = (GRAV * (- (BS32 * 52) + (BS31 * C2»);
Dl[4] = (GRAV * (- (BS42 * 523»);
Dl[S] (GRAV * (- (BSS2 * T1421) + (BSSl * C23»);
DI[6] = 0:
}

The routine "dyn-robot(Q,DIJ,DI)" calculates the inertia coefficients in the two dimensional array
DI J and the gravitational coefficients in the one dimensional array DI. The values in DI J are
expressed in lV - m/rad2, and those in DI are N - m. The one dimensional array Q contains the
angles in rads9 of the six joints.

To generate the "e" program that calculates the inertias and gravitational coefficients for the case
of the PUMA 260 with arbitrary load, we used the USP machine command
"(LAG:principa "[albeno.gene]input260all.lisp" [alberto.lagrange]output260all.lisp")". The listing of
the file "upenn:usr(alberto.lagrange]output260all.lisp" is the following:

#define Y4 -0.38219
tdefine AD4 0.079781
#define CD4 0.077761
#define IA1 0.091631
tdefine IA2 0.136312
#define IA3 0.030843
#define IA4 0.001781
tdefine lAS 0.006759
#define IA6 0.001262
tdefine A2 0.2032
#define D3 0.12624
#define D4 0.2032
#define KP21 A2
#define KP32 (- D3)
tdefine KP42 04

struct var_const{
float M6;
float Z6:

139



M6;
Z6;
X6;
Y6 ;

AD6;

BD6;

CD6;
DD6;
ED6:
FD6;

M6;
SIX->MC6;

SIX->MC5;
SIX->MC4 ;

float X6;
float Y6;
float AD6 ;

float BD6,·
float CD6;
float DD6;
float ED6 ;
float FD6 :

float MC6:
float MC5;
float MC4;
float MC3:
float MC2:
float MCl;
float FP42;
float FP32;
float FP21;
float NP411;
float NP433;
float NP311:
float NP333:
float NP222;
float NP233;
lSIX={2.768114,O.01401,O.O,O.O,O.O,O.O,O.O,O.O,O.O,O.O, };

update(M6,Z6,X6,Y6,AD6,BD6,CD6,DD6,ED6,FD6,SIX)
float M6,Z6,X6,Y6,AD6,BD6,CD6,DD6,ED6,FD6:
struct var canst *SIX;
{

SIX->M6
SIX->Z6
SIX->X6 =
SIX->Y6
SIX->AD6
SIX->BD6
SIX->CD6
SIX->DD6
SIX->ED6 =
SIX->FD6
SIX->MC6
SIX->MC5 :=

SIX->MC4 =
SIX->MC3

1/+0



SIX->MC2 = SIX->MC3;
SIX->MCl = SIX->MC2;
SIX->FP42 = SIX->MC4 * KP42
SIX->FP32 = SIX->MC3 * KP32
SIX->FP21 = SIX->MC2 * KP21 :
SIX->NP411 SIX->MC4 * (KP42*KP42) i

SIX->NP433 = SIX->MC4 * (KP42*KP42)
SIX->NP311 = SIX->MC3 * (KP32*KP32)
SIX->NP333 = SIX->MC3 * (KP32*KP32)
SIX->NP222 = SIX->MC2 * (KP21*KP21)
SIX->NP233 = SIX->MC2 * (KP21*KP21)
}

tinclude <math.h>
dyn_robot(Q,DIJ,DI,SIX)
float Q[7] ,DIJ[7] [7] ,DI [7];
struct var canst *SIXi
{

float GRAV=9.81;
float Sl,52,S3,S4,S5,S6:
float Cl,C2,C3,C4,CS,C6i
float C23,S23i
float C6C6,S6C6,S6S6,C5C5,SSC5,S5S5,C4C4,S4C4;
float S4S4,C3C3,S3C3,S3S3,C2C2,S2C2,S2S2,CICli
float SlCl,SlSl;
float T3511,T3513,T3521,T3523,T1214,T1224,T1421,T1423;
float T1411,T1414,T1424,T1521,T1522,T1523,T1511,T1514;
float T1512,T1524i
float BS21,BS23,BS22,BA31,BS33,BS31,BS32,BA42;
float BS43,BS41,BS42,BA52,BS52,BS51,BS53,BS61;
float BS63,BS62;
float JS222,JS223,JS233,JA322,JA333,JS311,JS312,JS322;
float JS313,JS323,JS333,JA411,JA433,JS411,JS413,JS433;
float JS412,JS423,JS422,JA511,JA533,JS511,JS513,JS533;
float JS512,JS523,JS522,JS611,JS613,JS633,JS612,JS623;
float JS622;
float PS031,PS041,PS042,PS051,PS052,PS131,PS141,PS142;
float PS151,PS152,PS241,PS251,PS252;
S1 = sin(Q[l]);
Cl = cos(Q[l]);
S2 = sin(Q(2]);
C2 = cos(Q[2]);

141



53 = sin(Q[3]);
C3 = cos(Q[3]);
S4 = sin (Q [ 4 J ) ;
C4 cos(Q[4]);
55 sin(Q[5]);
C5 = cos(Q[S]);
56 = sin(Q[6]);
C6 = cos(Q[6]);
C23 = cos(Q[2]+Q[3]};
523 = sin(Q[2]+Q[3]};
C6C6 = C6 * C6;
S6C6 = S6 * C6;
5656 = 56 * 56;
C5C5 C5 * C5;
55C5 = 55 * C5;
55S5 = 55 * 55;
C4C4 = C4 * C4;
S4C4 54 * C4;
5454 = 54 * 54;
C3C3 = C3 * C3;
53C3 = 53 * C3;
5353 53 * 53;
C2C2 = C2 * C2;
S2C2 = 52 * C2;
5252 = 52 * 52;
C1Cl = C1 * C1;
51C1 = 51 * C1;
5151 = 51 * Sl;

T3511 = ( (C4 * C5) ) ;
T3513 = (- (C4 * S5)};
T3521 = ( (54 * C5) ) ;
T3523 = (- (54 * 55»;
T1214 = (C2 * A2) ;

T1224 (52 * A2) ;
T1421 «(523 * C4»;
T1423 «823 * 84»;
T1411 ( (C23 * C4»;
T1414 {- (323 * 04) + T1214};
T1424 «C23 * D4) + T1224);
T1521 = «523 * T3511) + (C23 * 55»;
T1522 = (- (S23 * 54»;
T1523 ( (523 * T3513 ) + (C23 * C5»;



T1511 = «C23 * T3511) - (523 * 55»;
T1514 = (- (523 * D4) + T1214) :
T1512 = (- (C23 * S4});
T1524 = «C23 * 04) + T1224):

BS62 = «56 * SIX->X6) + (C6 * SIX->Y6)};
B563 = (5IX->Z6);
B561 = «C6 * SIX->X6) - (56 * SIX->Y6»);
B553 = (- B562);
BS51 = «C5 * BS61) - (55 * B563)}:
B552 = «55 * B561) + (C5 * B563»;
BA52 = «(Y4 + BS52) + SIX->FP42);
BS42 = «54 * BS51) - (C4 * B553»);
B541 = (C4 * B551) + (54 * B553»;
B543 = (BA52);
BA42 = (BS42 + SIX->FP32):
B532 = «53 * B541) + (C3 * BS43»):
B531 = «C3 * BS41) - (53 * B543»;
B533 = (- BA42);
BA31 = (BS31 + 5IX->FP21):
B522 = «52 * BA31) + (C2 * B532»;
BS23 = (BS33);
B521 = «C2 * BA31) - (52 * B532»;

= (5656 * SIX->AD6)
* S6C6) * SIX->DD6) + (C6C6 * 5IX->BD6»;

«56 * 5IX->FD6) + (C6 * SIX->ED6»;
= «(56C6 * (SIX->AD6 - SIX->BD6») + «- 5656 + C6C6) * SIX->DD6));
= (5IX->CD6);

«C6 * SIX->FD6) - (56 * SIX->ED6));
= «C6C6 * SIX->AD6) - «2 * S6C6) * SIX->DD6) + (5656 * SIX->BD6)):
= (5555 * J5611) + «2 * S5C5) * J5613} + (C5C5 * J5633»;
= (- (55 * J5612) - (C5 * J5623»;
= {(S5C5 * (J5611 - J5633») + «- 8555 + CSCS) * J5613»);
= (J5 622) ;

(- (C5 * J5612) + (55 * J5623));
= «C5C5 * J5611) - «2 * S5C5) * J5613) + (S555 * J5633»);

(CD4 + J5533 - SIX->NP433):
(AD4 + J5511 - SIX->NP411);
«5454 * JA511) - (2 * S4C4) * JS513)
* JA533) + (2.0 * (D4 * B543)});
«54 * JS512) - (C4 * J5523) - (D4 * B542»;
«54C4 * (JA511 - JA533}) + «5454 - C4C4) * J5513»;

J5622
+ «2
J5623
JS612
J5633
J5613
J5611
JS522
J5523
JSS12
J5533
J5513
J5511
JA533
JA511
JS422
+ (C4C4
J5423
JS412 =

143



JS433 (JSS22) ;
JS413 ({C4 * JSS12) + (84 * JS523) - (D4 * BS41));
J5411 = ((C4C4 * JA511) + ((2 * S4C4) * lJS513)

+ (S4S4 * JAS33) + (2.0 * (D4 * BS43»);
JA433 = (JS433 - SIX->NP333);
JA411 = (JS411 - SIX->NP311);
JS333 = (JS422);
JS323 = (- (S3 * JS412) - (C3 * J5423) - (D3 * BS32»);
JS313 = (- (C3 * JS412) + (S3 * JS423) - (D3 * BS31);
J5322 = «S3S3 * JA411) + ((2 * S3C3) * J5413) + (C3C3 * JA433) +

(2.0 * (D3 * BS33)});
JS312 (S3C3 * (JA411 - JA433) + ((- S3S3 + C3C3) * JS413});
JS311 = «C3C3 * JA411) - «2 * S3C3) * JS413) + (S3S3 * JA433)
+ (2~O * (D3 * BS33))):
JA333 = (JS333 - SIX->NP233);
JA322 = (JS322 - SIX->NP222);
JS233 = (JA333 + {2.0 * «T1224 * BS22) + (T1214 * BS21»));
JS223 = «S2 * J5313) + (C2 * JS323) - (T1224 * BS23»;
JS222 = «S2S2 * JS311) + (2 * S2C2) * JS312) + (C2C2 * JA322)
+ (2.0 * (T1214 * BS21»);

PS031 = «C23 * D3) ) :
PS041 = «T1411 * 03) + (84 * T1414»;
PS042 (- (S23 * D3»:
PS051 = «T1S11 * D3) + (T3521 * T1514»;
PS052 = ( (T1512 * D3) + (C4 * T1514» ;
PS131 (- (C23 * T1224) + (S23 * T1214»);
PS141 = (- (T1411 * T1424) + (T1421 * T1414»);
PS142 = ( (523 * T1424) + (C23 * T1414»);
PS1S1 (- (T1S11 * T1524) + (T1521 * T1514));
PS152 (- (T1512 * T1524) + (T1522 * T1S14»;
PS241 (- (C4 * D4) ) :

PS251 (- (T3S11 * D4});

PS252 ( (84 * 04»);

( (JS 2 2 2) + TAl);

(JS223) ;
(S2 ~ JS313) + (C2 * JS323));
((523 * JS413) + (C23 * JS522) - (B542 * PS031) + (BS41 *

DIJ[l] [1]

DIJ[l] [2]

DIJ[l] (3]

DIJ[l] [4]

T1214»;
DIJ[l] [5] = (T1421
+ (T1423 * JS622) 
DIJ[l] [6] = «T1521

* JS513) + (C23 * JS523)
(BS52 * PS041) + (BSS1 * PS042));
* JS613) + (T1522 * J5623)

14~



+ (T1523 * SIX->CD6) - (BS62 * PS051) + (BS61 * PS052»;
DI J [ 2] [2] = « JS 233 ) + IA2);
DI J [2] [3] = (JS 4 22 + (BS 31 * A2)};
DIJ[2] [4] == (- JS423 - (BS42 * PS131»:
DlJ[2] [5] == (- (S4 * JS513) + (C4 * JS622) - (BS52 * PS141) + (BS51 *
PS142»i
DlJ[2] [6] == (- (T3521 * JS613) - (C4 * JS623)
- (T3523 * SlX->CD6) - (BS62 * PS151) + (BS61 * PS152»;
DlJ[3] [3] == «JS422) + IA3);
DI J [ 3] [4] = (- JS 423) ;
DlJ[3] [5] == (- (S4 * JS513) + (C4 * JS622) - (BS52 * PS241»;
DlJ[3] [6] = (- (T3521 * JS613) - (C4 * JS623)
- (T3523 * SIX->CD6) - (BS62 * PS251) + (BS61 * PS252)};
DI J [ 4] [4] == « JS 5 2 2 ) + IA4) ;
DI J [ 4] [5] == (JS 5 2 3) ;
DlJ[4] [6] == «S5 * JS613) + (C5 * SIX->CD6);
DlJ[5] [5] == «JS622) + IA5);
DI J [ 5] [6] == (- JS 623) ;
DlJ[6] [6] == «SIX->CD6) + lA6);
DI [1] == (0):

DI[2] == (GRAV * (BS21»;
Dl[3] == (GRAV * (- (BS32 * S2) + (BS31 * C2»);
Dl[4] = (GRAV * (- (BS42 * S23));
DI[5] == (GRAV * (- (BS52 * T1421) + (BS51 * C23)}};
DI[6] == (GRAV * (- (BS62 * T1521) + (BS61 * T1522)});
}

The difference in this program is the procedure "update" that pennits to update the values corre
sponding to the last link. These canges are stored on a structure "var-eonst", that is passed as a
parameter to the procedure "dyn..robot".

To generate the "en program that calculates the velocity torques for the case of the PUMA 260
without load, we used the LISP machine command
"(LAG:principa "[alberto.gene]input26Ov.lisp" [alberto.lagrange]output260v.lisp")". The listing of
the file "upenn:usr[alberto.lagrange]output260v.lisp" is the following:

#define °M6
#define Z6
#define Y4
#define AD4
#define CD4
#define IA1

2.768114
0.01401
-0.38219

0.079781
0.077761
0.091631

145



#define IA2 0.136312
#define IA3 0.030843
#define IA4 0.001781
#define lAS 0.006759
#define lA6 0.001262
#define RS1 0.787033
#define RS2 1.38928
#define RS3 0.650706
#define RS4 0.256854
#define RS5 0.036607
#define RS6 0.106594
idefine RD1 0.575662
idefine RD2 0.94467
idefine RD3 0.417502
#define RD4 0.066791
#define RDS 0.101721
tdefine RD6 0.030363
tdefine A2 0.2032
#define D3 0.12624
#define D4 0.2032
tdefine KP21 A2
tdefine KP32 (- 03)
#define KP42 D4

#include <math.h>
vel_robot (Q,QD,TORQUE)
float Q[7],QD[7],TORQUE[7]:
{

float 51,52,53,54,55,86:
float Cl,C2,C3,C4,C5,C6:
float WV22,WV21,WV31,WV32,WV33,WV41,WV42,WV43:
float WV51,WV52,WV53,WV61,WV63,WV62;
float WP211,WP221,WP222,WP321,WP322,WP333,WP331,WP431;
float WP432,WP443,WP441,WP541,WP542,WP551,WP651,WP652:
float WP662,WP661:
float VP21,VP22,VP23,VP31,VP32,VP33,VP41,VP42:
float VP43,VP51,VP53,VP62,VP61;
float DV233,DV222,DV212,DV213,DV312,DV311,DV333,DV323:
float DV412,DV411,DV433,DV423,DV413,DV613,DV623,DV611:
float DV622;
float UV211,UV231,UV312,UV322,UV332,UV412,UV422,UV432;

146



float UV613,UV623,UV633:
float FP61,FP62,FP63,FP43,FP41,FP42:
float NP41,NP43,NP42;
float FL62,FL61,FLS1,FLS2,FL43,FL41,FL42,FL32;
float NL61,NL62,NL51,NL52,NL41,NL43,NL42,NL31:
float NL32,NL.22;
51 = sin(Q[l]);
Cl = cos(Q[l]);
52 = sin{Q[2]);
C2 = cos(Q[2]};
53 = sin(Q[3]);
C3 = cos(Q[3]);
54 = sin(Q[4]);
C4 = cos(Q(4]};
55 = sin(Q[5]);
CS = cos(Q[S]):
56 = sin{Q[6]);
C6 = cos(Q[6]);
WV22 = (C2 * 00[1]);
WV21 = (52 * QO[l]);
WV31 = «C3 * WV21) + (53 * WV22»;
WV32 = (- (QD[2] + 00[3]»;
WV33 = «- (53 * WV21») + (C3 * WV22»;
WV41 = «C4 * WV31) + (54 * WV32»);
WV42 = (WV33 + QD[4]);
WV43 = «54 * WV31) - (C4 * WV32»:
WV51 = «CS * WV41) + (55 * WV42»;
WV52 = {- (WV43 + QO(5]»);
WV53 = ({- (55 * WV41» + (C5 * WV42»:
WV61 = «C6 * WV51) + (56 * WV52»;
WV63 = (WVS3 + QD[6]);
WV62 = «- (56 * WVS1)} + (C6 * WV52»;

WP211 =

WP221 =
WP222
WP321 =
WP322 =
WP333
WP331 =

WP431 =
WP432
WP443 =

(QD [1 ] * QD [2] ) ;

(C2 * WP211);
(~ (52 * WP211});
(WP221 + (WV22 * QD[3]»):
(WP222 - (WV21 * QD(3]);
({- (S3 * WP321») + (C3 * WP322});
«C3 * WP321) + (53 * WP322);
(WP331 + (WV32 * QD[4]»;
{- (WV31 * QD [4 ] ) ) ;
«54 * WP431) - (C4 * WP432»;

147



WP441
WP541
WP542

WP551

WP651
WP652
WP662
WP661

((C4 * WP431) + (84 * WP432»;
(WP441 + (WV42 * QD[S]);

= (~W333 - (WV41 * QD[S])};
«CS * WP541) + (55 * WP542});

= (WP551 + (WV52 * QD[6]);
«- WP443) - (WVSl * QO[6]»;

«- (56 * WP651) + (C6* WP652»:
«C6 * WP651) + (56 * WP652));

DV233
DV222 =
DV212 =
DV213
DV312
DV311 =
DV333 =
DV323
DV412
DV411
DV433
DV423
DV413 =
DV613
DV623 =
DV611 =
DV622 =

(- (QD [ 2 ] * QD ( 2] ) ) ;
(- (WV22 * ~iV22));

(WV21 * WV22);
(WV21 * QD[2]);
(WV31 * WV32);
(- (WV31 * WV31));
(- (WV33 * WV33»;
(WV32 * ~33);

(WV41 * WV42);
(- (WV41 * WV41»;
(- (WV43 * WV43»;

(WV42 * WV43);
(WV41 * WV43);

(WV61 * WV63);

(WV62 * WV63);

(- (WV61 * WV61»):
(- (WV62 * WV62)}:

UV211 (DV233 + DV222);
UV231 (DV213 - WP222);
UV312 (DV312 - WP333);
UV322 (DV311 + DV333) ;
UV332 (DV323 + WP331);
lJV412 (DV412 - WP443);
UV422 (DV411 + DV433);
UV432 (DV423 + WP441) ;
UV613 (DV613 + WP662);
UV623 = (DV623 - WP661);

UV633 (DV611 + DV622);

VP21 (UV211 * A2);
VP22 = (DV212 * A2);
VP23 = (UV231 * A2);
VP31 «(C3 * 'VP21) + (53 * VP22» - (UV312 * D3»);

148



VP32
VP33
VP41
VP42
VP43
VP51
Vl?53
VP62
VP61

FP61
FP62
FP63
FP43
FP41
FP42

NP41
NP43
NP42

FL62
FL61
FL51
FL52
FL43
FL41
FL42
FL32

= «- VP23) - (UV322 * 03»;
:= « (- (53 * VP21» + (C3 * VP22) - (UV332 * D3»;
:= «(C4 * VP31) + (54 * VP32) + (UV412 * D4»);
:= (VP33 + (UV422 * 04»;
:= «(54 * VP31) - (C4 * VP32» + (UV432 * D4»;
:= «C5 * VP41) + (55 * VP42»;
= «- (55 * VP41» + (C5 * VP42»;
= «- (56 * VP51» - (C6 * VP43»);
:= «C6 * VP51) - (56 * VP43»;

= «M6 * VP61) + (UV613 * Z6»;
= «M6 * VP62) + (UV623 * Z6»;
= «M6 * VP53) + (UV633 * Z6)};
:= (UV432 * Y4);
:= (UV412 * Y4);
:= (UV422 * Y4);

:= «WP441 * AD4) + (DV423 * CD4»;
:= «WP443 * CD4) - (OV412 * AD4»;
= (DV413 * (AD4 - CD4»;

= «S6 * FP61) + (C6 * FP62»;
:= «C6 * FP61) - (56 * FP62»;
= «C5 * FL61) - (55 * FP63»;

«55 * FL61) + (C5 * FP63»;
= (FL52 + FP42);
:= «C4 * (FL51 + FP41» + (54 * «- FL62) + FP43»);
:= «54 * (FL51 + FP41» - (C4 * «- FL62) + FP43»);
:= «53 * FL41) + (C3 * FL43»;

NL61:= «- (C6* (Z6*VP62») - (56* (Z6*VP61»);
NL62:= «- (56 * (Z6 * VP62») + (C6 * (Z6 * VP61»);
NL51 (C5 * NL61);
NL52 = (55 * NL61);
NL41 = «C4 * (NL51 + (NP41 + «D4 * «- FL62) + FP43» + (Y4 * VP43)))))
+ (54 * «- NL62.) + (NP43 + «- (D4 * (FL51 + FP41») - (Y4 * VP41»))));
NL43 = (NL52 + NP42);
NL42 = «54 * (NL51 + (NP41 + «D4 * «- FL62) + FP43» + (Y4 * VP43»»))
- (C4 * «- NL62) + (NP43 + «- (D4 * (FL51 + FP41») - (Y4 * VP41»»));
NL31 = «C3 * (NL41 - (D3 * FL43») - (53 * (NL43 + (D3 * FL41»»;
NL32 = «53 * (NL41 - (D3 * FL43») + (C3 * (NL43 + (D3 * FL41»»;
NL22 = «52 * NL31) + (C2 * (NL32 + (A2 * FL42»»;

149



TORQUE [1] =
TORQUE [2] =
TORQUE (3] =

TORQUE [4] =
TORQUE (5] =

TORQUE (6] =
}

NL22 + RSl * sgn(QD[l]) + RDl * QD[l];
«(- NL42) + (A2 * FL32» + RS2 * sgn{QD(2]) + RD2 * QD[2];
(- NL42) + RS3 * sgn(QD(3]) + RD3 * QD[3];
(NL52 + NP42) + RS4 * sgn(QD(4]) + RD4 * QD[4];
(- NL62) + RS5 * sgn{QD[5]) + RD5 * QD[5];
o + RS6 * sgn(QD[6]) + RD6 * QD[6];

The procedure "vel...robot" computes the velocity torque in the array TO RQ UE in J.V - m,
and the input arrays Q and QD contain the angles and velocities of the joints in rad and rad/ sec
respectively.

To generate the 'Ie" program to calculate the velocity torques for the case of the PUMA 260
with arbitrary load, we used the LISP machine command
"(LAG:principa "[alberto.gene]input260allv.lisp" [alberto.lagrange]output260alIv.lisp")". The listing
of the file nupenn:usr(alberto.lagrange]output260allv.lisp" is the following:

#define Y4 -0.38219
#define AD4 0.079781
#define CD4 0.077761
#define IA1 0.091631
tdefine IA2 0.136312
tdefine IA3 0.030843
*define IA4 0.001781
#define lAS 0.006759
*define IA6 0.001262
#define RS1 0.787033
*define RS2 1.38928
#define RS3 0.650706
#define RS4 0.256854
#define RS5 0.036607
#define RS6 0.106594
#define RDl 0.575662
#define RD2 0.94467
#define RD3 0.417502
#define RD4 0.066791
*define RDS 0.101721
tdefine RD6 0.030363
#define A2 0.2032
tdefine D3 0.12624
#define D4 0.2032
#define KP21 A2

150



#define KP32 (- D3)
f:define KP42 04
struct var_const{
float M6;
float Z6;
float X6;
float Y6:
float AD6:
float BDG:
float CD6:
float DD6;
float ED6:
float FD6:
}SIX={2.768114,O.01401,O.O,O.O,O.O,O.O,O.O,O.O,O.O,O.O,};

update(M6,Z6,X6,Y6,AD6,BD6,CD6,DD6,ED6,FD6,SIX)
float MG,Z6,X6,Y6,AD6,BD6,CD6,DDG,ED6,FD6:
struct var_const *SIX:
{

SIX->M6 = MG;
SIX->Z6 == Z6:
SIX->XG = X6:
SIX->Y6 = Y6;
SIX->AD6 == AD6;

SIX->BD6 == BD6:
SIX->CD6 == CD6;
SIX->DD6 == DD6:
SIX->ED6 == ED6;
SIX->FD6 == FD6:
}

#include <math.h>
vel_robot (Q,QD,TORQUE,SIX)
float Q[7],QD[7],TORQUE(7];
struct var canst *SIX:

float 51,52,53,54,55,56:
float Cl,C2,C3,C4,CS,C6:
float WV22,WV21,WV32,WV31,WV33,WV42,WV41,WV43:
float WV52,WV51,WV53,WV62,WV63,WV61:
float WP211,WP221,WP222,WP321,WP322,WP331,WP333,WP431;

151



float WP432,WP441,WP443,WP541,WP542,WPS51,WPS53,WP651:
float WP652,WP661,WP662;
float VP21,V1?22,VP23,\~31,~~32,\~33,VP41,~~42;

float VP43,VP53,VP51,VP62,VP61;
float DV233,DV222,DV212,DV213,DV312,DV311,DV333,DV323;
float DV412,DV411,DV433,DV423,DV413,DV623,DV612,DV613;
float DV633,DV622,DV611:
float OV211,UV231,UV312,OV322,OV332,UV412,UV422,UV432;
float UV621,OV631,UV632,UV612,UV613,UV623,L~611,UV622;

float UV633;
float FP61,FP62,FP63,FP43,FP41,FP42;
float NP61,NP62,NP63,NP41,NP43,NP42;
float FL62,FL61,FL51,FL52,FL43,FL41,FL42,FL32;
float NL61,NL63,NL62,NL51,NL52,NL41,NL43,NL42;
float NL31,NL32,NL22;
81 = sin(Q(l]);
C1 cos(Q[l]);
52 = sin(Q[2]);
C2 = cos(Q[2]);
S3 sin(Q[3]);

C3 = cos(Q[3]);
S4 = sin(Q[4]);.

C4 cos(Q[4]);
S5 sin(Q[5]);
C5 cos(Q[5]);
8 6 sin (Q [ 6] ) ;

C6 cos(Q[6]);
WV22 = (C2 * QD(l]);

WV21 = (82 * QD(l]);

WV32 (- (QD(2] + QD[3]»;

WV31 = «C3 * WV21) + (S3 * WV22»;
WV33 «- (S3 * WV21)) + (C3 * WV22));
WV42 (WV33 + QD [4]) ;

WV41 «C4 * WV31) + (84 * WV32)};
WV43 «54 * WV31) - (C4 * WV32»;
WV52 (- (WV4 3 + QD [ 5] ) ) ;
WV51 «CS * WV41) + (85 * WV42));
WV53 «- (85 * WV41)) + (C5 * WV42»);
WV62 «(- (56 * WV51)) + (C6 * WV52));

WV63 (WV53 + QD(6]);

WV61 = (C6 * WV51) + (S6 * WV52»;

WP211 = (QD[l] * QD[2]);

152



WP221
WP222
WP321
WP322
WP331
WP333
WP431
WP432
WP441
WP443
WP541
WP542
WP551
WP553
WP651
WP652
WP661
WP662

DV233
DV222
DV212
DV213
DV312
DV311
DV333
DV323
DV412
DV411
DV433
DV423
DV413
DV623
DV612
DV613
DV633
DV622
DV611

UV211
UV231
UV312
UV322

= (C2 * WP211);
= (- (52 * WP211»;
= (WP221 + (WV22 * QD[3]»;
= (WP222 - (WV21 * QD[3]»;
= «C3 * WP321) + (53 * WP322»;
= «- (53 * WP321» + (C3 * WP322»;
= (WP331 + (WV32 * OD[4]»;
= (- (WV31 * QD[4]»;
= «C4 * WP431) + (54 * WP432»;
= «54 * WP431) - (C4 * WP432»;
= (WP441 + (WV42 * QD[5]»);
= (WP333 - (WV41 * QD[5]»;
= «CS * WP541) + (55 * WP542»;
= «- (55 * WP541» + (C5 * WP542»;
= (WP551 + (WV52 * OD[6]»;
= «- WP443) - (WV51 * QD[6]»;
= «C6 * WP651) + (56 * WP652»;
= «- (56 *'WP651» + (C6 * WP652»;

= ( - (QD [2 ] * QD [2] ) ) ;
= (- (WV22 * WV22»;
= (WV21 * WV22);
= (WV21 * QD[2]);
= (WV31 * WV32);
= (- (WV31 * WV31»;
= (- (WV33 * WV33»;
= (WV32 * WV33);
= (WV41 * WV42):
= (- (WV41 * WV41»:
= (- (WV43 * WV43»:
= (WV42 * WV43):
= (WV41 * WV43):
= (WV62 * WV63):

(WV61 * WV62);
= (WV61 * WV63);

(~ (WV63 * WV63»;
(- (WV62 * WV62»;

= {- (WV61 * WV61»:

= (DV233 + DV222):
(DV213 - WP222);

= (DV312 - WP333);
(DV311 + DV333);

153



UV332
UV412 =

UV422 =

UV432
UV621
UV631 =

UV632
UV612 =

UV613 =

UV623
UV611 =

UV622 =

UV633

VP21 =
VP22 =

VP23
VP31 =

VP32
VP33
VP41
VP42 =
VP43
VP53
VP51
VP62
VP6l

(DV323 + WP331);
(DV412 - WP443);
(DV411 + DV433) .:
(DV423 + WP441);
(DV612 + WP553);
(DV613 - WP662);
(DV623 + WP661);
(DV612 - WP553);
(DV613 + WP662);
(DV623 - WP661);
(DV633 + DV622);
(DV611 + DV633) ;
(DV611 + DV622):

(UV211 * A2);
(DV212 * A2);
(UV231 * A2);
«(C3 * VP21) + (53 * VP22)} - \UV312 * D3});
«- VP23) - (UV322 * D3)};
« (- (53 * VP21)} + (C3 * VP22)} - (UV332 * D3»;
«(C4 * VP31) + (54 * VP32» + (UV412 * D4»;
(VP33 + (UV422 * D4»;
« (54 * VP31) - (C4 * VP32)} + (1JV432 * D4»;
«- (55 * VP41» + (C5 * VP42});
«CS * VP41) + (85 * VP42»;
{(- (86 * VP51}) - (C6 * VP43»;
«C6 * VPSl) - (S6 * VP43);

FP61 «(SIX->M6 * VP61) + (((UV611 * SIX->X6)
+ (OV612 * SIX->Y6)} + (UV613 * SIX->Z6»));
FP62 = «SIX->M6 * VP62) + «(UV621 * SIX->X6)
+ (UV622 * SIX->Y6» + (UV623 * SIX->Z6»);
FP63 = «SIX->M6 * VPS3) + «(UV631 * SIX->X6)

+ (UV632 * SIX->Y6» + (UV633 * SIX->Z6)));
FP43 (UV432 * Y4):
FP41 (UV412 * Y4);
FP42 (UV422 * Y4);

NP61 ««(WP661 * SIX->AD6) + (DV623 * (SIX->CD6 - SIX->BD6)))
+ (UV621 * SIX->FD6» - (UV631 * SIX->DD6}) + «DV633 - DV622) * SIX->ED6»):
NP62 = ««(WP662 * SIX->BD6) + (DV613 * (SIX->AD6 - SIX->CD6}})
+ (UV632 * SIX->DD6» - (UV612 * SIX->ED6)} + «DV611 - DV633) * SIX->FD6)};
NP63 = ««(WP553 * SIX->CD6) + (DV612 * (SIX->BD6 - SIX->AD6}»

IS 4



+ (UV613 * 5IX->ED6» - (UV623 * 5IX->FD6») + «DV622 - DV611) * SIX->DD6»);
NP41 == «WP441 * AD4) + (DV423 * CD4»:
NP43 == «WP443 * CD4) - (DV412 * AD4});
NP42 == (DV413 * (AD4 - CD4»:

FL62 == «56 * FP61) + (C6 * FP62»:
FL61 == ( (C6 * FP6l) - (56 * FP62)};
FL51 == ( (C5 * FL61) - (55 * FP 63) ) ;
FL52 == «55 * FL61) + (C5 * FP63»:
FL43 == (FLS2 + FP42) ;
FL41 == «C4 * (FLSl + FP41) } + (54 * ( (- FL62) + FP 43) ) ) ;
FL42 == «54 * (FL51 + FP41» - (C4 * ( (- FL62) + FP 43) } ) :
FL32 == ( (53 * FL41) + (C3 * FL43»;

NL61 == «C6 * (NP61 + {(5IX->Y6 * VP53) - (5IX->Z6 * VP62»))
- (56 * (NP62 + «5IX->Z6 * VP61) - (5IX->X6 * VP53»»);
NL63 == (NP63 + «SIX->X6 * VP62) - (SIX->Y6 * VP61»));
NL62 == «56 * (NP61 + «5IX->Y6 * VP53) - (5IX->Z6 * VP62»»
+ (C6 * (NP62 + «5IX->Z6 * VP61) - (5IX->X6 * VP53»»):
NL51 = «C5 * NL61) - (55 * NL63»;
NL52 == «55 * NL61) + (C5 * NL63»;
NL41 == «C4 * (NL51 + (NP41 + «D4 * «- FL62) + FP43»
+ (Y4 * VP43»») + (54 * «- NL62)
+ (NP43 + «- (D4 * (FLSI + FP41») - (Y4 * VP41»»»;
NL43 = (NL52 + NP42);
NL42 = «54 * (NL51 + (NP41 + «D4 * «(- FL62) + FP43»
+ (Y4 * VP43»») - (C4 * «- NL62)
+ (NP 43 + « - (D4 * (FL51 + FP 41) » - (Y4 * VP 41) ) ) ) ) ) ;
NL31 == «C3 * (NL41 - (D3 * FL43») - (53 * (NL43 + (D3 * FL41»):
NL32 «53 * (NL41 - (D3 * FL43}» + (C3 * (NL43 + (03 * FL41));
NL22 «52 * NL31) + (C2 * (NL32 + (A2 * FL42»»);

TORQUE [1] NL22 + RSI * sgn(QD[l]) + RDI * QD[l];
TORQUE [2] == «- NL42) + (A2 * FL32») + RS2 * sgn(QD[2]} + RD2 * QD[2];
TORQUE (3] = (- NL42) + RS3 * sgn(QD[3]) + RD3 * QD(3];'
TORQUE (4] (NLS2 + NP42) + R54 * sgn(QD(4]) + RD4 * QD[4];
TORQUE (5] (- NL62) + RSS * sgn(QD(5]) + RDS * QD[5];
TORQUE [6] (NP63 + «SIX->X6 * VP62) - (SIX->Y6 * VP61»)

+ RS6 * sgn(QD[6]) + RD6 * QD[6];
}

The difference with the previous program is in the procedure "update" that pennits one to update
the values of the parameters corresponding to the last link as explained before.

155



B Identification results

In this appendix we show the results by fitting torques with the dynamic model. 'The directory that
contains the programs to fit the dynamic model are in "grasp:/usr/alberto/DYNAMIC".

In figure 1 we show the joint position corresponding to the first trajectory. In figure 2 we show
the velocity of the first trajectory, calculated by the fonnula 'Vi = (Pi+l - Pi)/(llt), where Vi is the
estimated velocity at the sample i, Pi is the joint position at the saple 'i, and ~t is the increment in
time between two sample periods. In our case the sample period is 28 msec. In figure 3 we show
the velocity calculated by using the fonnula Vi = (Pi+l - Pi-l )/(2.0 * ~t). This fonnula produce
a more accurate and smoother estimation of the velocity and has been used for the identification
procedure.

In figure 4 we show the acceleration calculated for the same trajectory by using the formula
ai = (Vi+l -Vi) / (~t), where ai is the acceleration at the sample i, Vi is the velocity shown in Figure 5.
In figure 6 we show the acceleration calculated by using the fonnula ai = (Vi+l - Vi-l)/(2.0 * ~t),

where Vi is the velocity shown in Figure 7. The last calculation produces a more accurate and
smoother estimation of the acceleration, and was used in the identification of the constants of the
dynamic coefficients.

Figure 8 contains the measured and estimated torques for the first trajectoryt using all the 52
linearly independent parameters. The fitting is very accurate for all six joints. Figure 9 contains the
measured and estimated torques for the first trajectory, using 23 significant parameters. The fitting
is very accurate for the first three joints, having small differences in the last three joints.

Finally, figures 10 to 15 contains plots of measured and estimated torques for six different
trajectories, using the average of the 23 significant parameters. The fitting for the three first joints is
very accurate. The fitting for the last three joints is less accurate, although the errors are less than
20 percent of the torque. This may be due to the fact that the torque in the three joints is small, but
also to the fact that the three last joints are coupled. Effectively, rotation of joint 4 affects rotation
on joints 5 and 6, as well as rotation of joint 5 affects the rotation of joint 6, and these effects are
not taken into account in the dynamic model.

156



JOInt1l0me JOInt;U tune

200

200 1aO

V V

• •I I 100
u

160
u

• •
50

100

0
0 50 100 0 50 100

Time Tlme

JOIft1;J, .... JOInl.' one

0 200

-50 100
V Vr-100 •I 0u u

• •-150
-100

-200

-200

0 50 100 a 50 100
TIme Time

JOft10't1IIIe JOftu"nme

200

50

100
V V
• 0 •I I
u u 0• •-50

-.. J-100

0 50 100 0 50 100
Time Time

Figure 1: Joint position for the first trajectory

157



V.ll/t1me V.l~/tlll'l.

760
400

500

200
V V 250
a a
I 0 I
u u a• •

-200 -250

-400 -aoo
0 50 100 0 so 100

11me TIme

vel;'1t1IIIe V.14/nm.

1000

500
600

V V
a 0 • 0I I
u u

• •
-600 -.s00

-1000

a 50 100 a 50 100
TIme Time

velO/nme ven:s,ome

760 eoo f l
500

t
I J400

tV 250 V

• •I I
u 0 U I

•

\v
e 200

-250

V J-500 0

0 50 100 a 50 100
Time Time

Figure 2: Velocity of the joints calculated by the first method and first trajectory

158



r.aN.1'1I tim. r.aav.t;utwn.

750
400

600

200
V V 260
• •I 0 I
u u 0e e

-200 -250

-400 -600

a 50 100 0 50 100
TIme Time

reatY~/nne r••lYet4/om.

'000

500
500

V V
• 0 • 0I I
u u
• e

-600 -100

-1000

0 50 100 0 50 100
TIIM Time

r.awel&1 t.... r.aavelal t1m.

750

500

400

V\V 250 V
• •I I
u 0 u
• • 200

-260

-600 0

a 60 100 0 60 100
Time Time

Figure 3: Velocity of the joints calculated by the second method and first trajectory

159



5000

v

• 0I
u

•
-5000

-10000

a 50 100
Time

acc~.,atlO~1tsme

a

.cc~.ratIOn4lJtlm.

60 100
TIme

acc~.,atlon4Jtlm.

6000

v
•I 0
u

•
-6000

a 50
Time

'00

10000

v
•I 0
u

•

-10000 a 50 '00
Time

acee.eratlonel tim. acc.....atlont:SJtlm.

10000 [

v~ooo

•I
u

• 0

-6000

.J
\ I

lj

o 60 '00
TIm.

o 60 100
'tIme

Figure 4: Acceleration of the joints calculated by the first method and first trajectory

160



r..._aCC:lI~ r..._&CC~/ume

7500

6000 6000

V V 2500
• 0 •I I
u u

• • 0

..5000
-2800

-5000
0 50 100 0 50 100

Time Time

r..._&oo;s/ame r.aI_ &0041 tMIIe

10000
5000

2500 6000

V V

• 0 •I I 0
u u

• •"2500
-5000

..5000

0 50 100 0 50 100
Time Time

-10000

r..._ aeeolnme r..._ acea/tIme

I 1
5000

6000 2500

V V
• • 0
I I
u 0 u
• --2500

\-5000 -!OOO

0 50 100 0 50 100
Tim. Time

Figure 5: Acceleration of the joints calculated by the second method and first trajectory

161



pan_ r.aullorqu.1J time part_ r...unorque;.unme

10 !
12 [

5
V V la 0 a
I I 0

V
u u

~• •
-2 -5

-10

0 50 100 a 50 100
Time Time

pan_ r••unorque;:J1 OllIe part_ r••Ultorqu.41 time

4 0.75

2
o.a

V V 0.25• 0 •I I
u u 0

l• •..2
-O.2e

..4
-0.5

0 50 100 0 50 100
TIme TIme

part_ r••unorque(t/ tvne part_ r••uItOrquealom.,
i [ ~0.4

r
0.4

~
4

r ~
L j 0.3 L -j0.2

!V V

~
• •I I 0.2 ~u a u
• •

~ i0.1
-0.2

~ -.J i
0 j

0 50 100 0 50 100
Time Time

Figure 6: Fitting of the torques for 6 joints, 52 parameters

162



,."_r••unor~lIame pan_r"UI1OfQUe~'ume

2 '0

6
V

• 0
I 0
u
•

-2
-5

-10

0 50 100 0 50 100
Time

pan_ rNunorque;,I ume pan_rNunorque4 I ante

4 0.75

2 0-'

V 0.25
• 0I
u 0• -2

-0.25

-4
-0.5

0 50 100 0 50 100
Time

pan_rUUllorquee I t1Ine ...n_r••unor~,nm.

0.4 0.4 f
l0.2

Q.3 L
~

V

~
V

1• •I , Q.2

1u 0 u
• •

0.1

L1-0.2

tl ] 0 1
0 50 100 0 50 '00

Time Time

Figure 7: Fitting of the torques for 6 joints, 23 parameters

163



pan_r.,uttOlquel/tlnM part_ re,u1torque~1 tlme

( ]
2

1
'0 ~

~
5 1V

1
V

a 0 •I I 0 r ..,
u u

~• • I-6 -1-2 -1
~

-10 j
1

0 50 100 0 50 100
Time TIme

part _r.'Ul1orqu.;;s/ time parl_r.,ultorqu.'ll am.

i

4 0.75 F'
~

(

0.5 ~
2

LJV V 0.25
a 0 •I I

1
u u 0• •

-2
-0.26

..4 j
-0.5

0 50 100 a 50 100
Time Time

part_ r.,aultOrqu• .o1 om. part_ reaultOrquetSl time

0.4 ~ J 0.4 r

1r
~~ I

I J
i J V\~r 1

0.3 ~0.2 l-
~ ~ '

V ~ V I ~
•

]
• ~ i ~~ ~I I 0.2

u r u

~ 1• e
I

0.1 -1

~
-0.2

~
\

i

J

j
0 r~ '-- ~

l
1

a 50 100 0 50 100
Time Time

Figure 8: Fitting of the torques for 6 joints, 23 "averaged" parameters

16 4



pan_ r••unorquev tun. pan_'••unorqu.:llt,....

4

10

2
V V

• •I I 0
u 0 u
• •

-2 -10

-4
0 50 100 150 200 0 50 100 150 200

Time TIme

part_ r••ultorquea/ tune pan_ r••unorque41ome

0.6 1
2

0.25

V V
• • 0
I 0 I
u u
e --0.25

·2 -0.5

0 50 100 150 200 0 50 100 150 200
Time Time

part_r••Ul1orqu.O/tllfte pan_ r••ultorquea/ nine

0.4 r

~0.2

t0.2
0.1

V V ~• •1 0 I 0u u
e •

-0.2 -0.1

-0.4 -0.2

0 60 100 160 200 0 50 100 160 200
Time Time

Figure 9: Fitting of the torques for 6 joints, 23 parameters

16.')



v
•I
u
e

a 50 100
Time

150 200

v
a
I
u
e

':t~~. t\ 'j
f IV \ 1

.: r~ \f ~
t i

a 50 100 150 200
TIme

part_reaultOrqU.4! tlme

1

J
~

j
1
1

~
20050 '00 150

TIme
a

-0.25

-0.5 t-

V 0.25

•I
u 0
e

20050 '00 150
Time

a

o

2

4

j
-4 [~i~--....-.--,---"--/--....I....o.,,j

-2

v
•,
U

•

part_ reaultorqueol nme pan_ reaultorquee/ time

0.4 F
r
~ I

0.2 r /'

~ °f~
-0.2 ~

v
•
•u
e

f

0.2 ~

a

-0.2

o 50 100 160
TIm.

200 o 50 100 150
Time

200

Figure 10: Fitting of the torques for 6 joints, 23 parameters

166



pan_ r••unorqu.ll um. part_ r"U1torqu.~1 tim.

2 0

I
V V

• 0 • -5 i

J
I I
u u

• •
-2 -10

-4
-15

0 50 100 150 200 a 25 50 75 100
Time Time

part_ r••unorque;Sl tune part_ r••unorqu.41 tim.

4

0.5
2

V 0
V

• • 0
I I
u u

• -2 •

t!

-a.! l...4

j
a 50 100 150 200 a 50 100 150 200

TIm. Time

pilrt _ r••Ul1orqueol time part_ r••ultorqueel time

0.4 I I

'J0.2 ~0.2 '1JV V ~
• •I I a
u 0 u

j• •

-0.2 J-0.2
j

0 26 50 76 100 0 50 100 150 200
T1me Time

Figure 11: Fitting of the torques for 6 joints, 23 parameters

167



: f 1
o [ j
-2t~~~j

V
a
I
u
•

o so 100 150
Trme

200

V
a
I
u
•

a SO 100 150
Time

l
i
1

LJ
j
~

~oo

j
1

1
j

200'00 150
Time

50o

o

-0.6

-0.25

V 0.26

a
I
u

•

100 150
TIme

50o

4

2

o

-2

-4 ~'--"--~~~I~
200

v
•I
u

•

part _ reaunorquec/ tIme

0.4 r ~

~O'2l Vi i

~ o~J ~i
\ 1N

-0.2 ~
r
t

o 50 100
Time

150

1
i
1
1

1
l-
i

200

~
0.2 L.

r

~
IJ.1 ~

V ~

• tI 0 f-

~ ~
r

-0.1 r
-0.2 ~

f

a

part_resultOrqueel time

100 160 200
Time

Figure 12: Fitting of the torques for 6 joints, 23 parameters

168



pan_ r••UnorqU.l1 11IIM par1_r."UllorqU.~1um.

2

10

V V

• 0 •I I 0

V
u u

I• •-,

-2 -10

0 50 100 1.50 200 0 50 '00 ,.50 200
Time TIme

part_ r••unorqu~Iarne part_,...unorqu.41 tim.

4 0..

2 0.2

V V

• •I 0 I 0
u u
e •

-2 -0.2

-4 -0.4

0 50 '00 1.50 200 0 50 100 150 200
TIme Time

part_r..unorqu.",nm- pan_ r••unorquea I t .....

] 0.2 f 1
0.2 f 1

0.1 L
V

0
V ~ 1• • ~

I I 0
1

u u
e e

-0.2 -0.1

-0.4
-0.2

0 50 '00 160 200 0 50 '00 160 200
Time Tim.

Figure 13: Fitting of the torques for 6 joints, 23 parameters

169



error lran/ume

3010 20
Time

0.4

oso20 40
Time

Q

v
•I
u
•

enor 1rapltlme error 'tra,'/tlme

o

V -0.5
a
I
u· -,

o 20 40
Time

v
•I
u
•

3

2

o

a '0 20
Time

30

-1.6

o

v -0.5

•I
u· -,

16

j//.
'// 1

j;/ 1

~
J

6 10
Tim.

.rrOf traJ~/tlm.

~ 'o }0-

f
166 10

Tim.

error 1:raJ~/tlm.

o

Figure 14: Input and real trajectory for joints 1,2,3 slow and fast motion

170



error traJ~/llm.

0.75
V V

• •I I 0.6u u
• •0.5

0.26

0 0

0 10 20 30 a 10 20 30
TIme Time

error trap/time ""01' traJl/ame

0

V -0.5 V
• •I I
u u
• -1 • 0.6

-1.5
0

a 10 20 30 a 5 10 15
TIme Time

.rror tr.J~/tlm. error tra~ltlm.

~ ]
,

i 11

~
0

t
1

/j
0.75

V -0.5 ~ ~V
•

l
•I 0.6 I

u ] u

• • -1

0.26

f

~ -1.6
o t

0 5 10 16 0 6 10 16
Time Time

Figure 15: Input and real trajectory for joints 1,2,3 together slow and fast motion

171



error wttnout ~ravny trap/11m. .rror WltnoUt gravity tr&J~Jtlme

i

i'
,

t
I

1
3 l 1

1
~I

i 0.4 r~

V 2

r
V I

• l a
t

1
I

J
I

~u u

• e 0.2 ~
1 r

1

1
~ i
t 1

0 o r I

I

l ~

J
0 20 40 80 0 10 20 30

Time Time

error Wltnout gravity trapftlme

3020
Time

10

2

~ ,

3 r

or'-.....-_~---.. ----...__.......~
o

v
•I
u
•

j

1
4020

TIme
o

-1.5

o
~

v -0.6

•I
u

• -1

error Without gravity traJ~/tlm. error WithOut gravity lrat;j/tlme

[ i i J ,
1~

a ~

~1
1.5 41

;;/ 1
! j

V , ~ / ~ V -o.S r- // 1/ 1 ~• f I / 1
•I

f

I

i
1u u

j•

~ i
e -1

O~
i

f
~

t
I

~
r

0 t ~
-1.5 f0-r l 1

0 6 10 16 0 6 10 16
Time Time

Figure 16: Input and real trajectory for joints 1,2,3 slow and fast motion, with compennsation of
gravity

172



v
a
I
u
e

error wnnCMn gravity traJ:.utlme

0.75
V

•
~ 0.6
e

0.25

o

o 10 20
TIIM

30 o 10 20
Time

30

o

v -0.5

•I
u
e -1

-1.5

error wttnaUt graVity traJl/tlme

v
a
I
u
e

0.6

o

o 10 20
TIIM

30 a 6 10
Time

15

error wttnout gravity traJ4Utlme error wnnout gravity traJaltlme

0.75
V
•
~ O.a
e

o f i

V -0.5

•I
u

• -1

166 10
Time

o

-1.5

166 10
Time

0.25

o r...........-...,-.......----........-.........-..J
o

Figure 17: Input and real trajectory for joints 1.2,,3 together slow and fast motion

173



A.5 RFMS Software Reference Manual

174



CONTENTS

Page

1. Introduction 1
2. User Interface 2

2.1. Programs of the User Interface 3

2.2. An Example · ·.·······5
3. Ethernet Interface 6

4. Intel Controller 8
4.1. Superv-isor 9

4.1.1. Background Process 10
4.1.2. Real-time Process 11

4.2. Joint Process 14
4.3. Math Process 15

5. Postscript ·.···..·.············· .16

APPENDICES

Appendix A: RoboNet 17
A.l. User's Guide 17

A.I.I. The Network Software on the VAX Side 18

A.l.2. The Network Software on the Intel Side 19
A.2. RoboNet: An Overv-iew 20
A.3. The Physical and Data Link Layers in RoboNet 21

A.4. The Logical Link Control Layer in RoboNet 22
A.4.1. The LLC Packet Types 22

A.4.2. The Algorithm for the LLC on the VAX Side 22

A.4.3. The Algorithm for the LLC on the Intel Side 25

A.5. Miscellaneous 26
Appendix B: Use of C-8086 Cross Compiler 27

B.l. Introduction 27
B.2. Cable Hook-up 27

B.3. Down Loading the Loader via SDM 28
B.4. Cross Compiler 29
B.5. Down Loading Your Application 31
B.6. SDM - System Debug Monitor - 31

B.6.1. X Command...............................................•.............................................32
B.6.2. D Command 32

B.6.3. G Command 33

175



B.6.4. Bugs 33

B.7. Miscellaneous 33
B.8. An Example 33

B.9. "I/O Library- 37
B.IO. Math Library 37

B.ll. 8087 Floating Point Stack Programming 37

REFERENCES

176



RFMS SOFTWARE REFERENCE MAl~UAL

Hong Zhang

Department of Computer and Information Science
The University ofPennsylvania

1. Introduction

This manual explains the software of the Robot Force and Motion Server
(RFMS)[l], a high performance robot control system designed and implemented in the
GRASP laboratory. In this system, the robot manipulator is considered a force/motion
server to the robot and a user application is treated as a request for the selVice of the
manipulator. The user application is created on one of the UnixIVAX machines in 'c'
programming language as a set of function calls. The application is carried out in a
multi-processor controller, which consists of Intel single board computers and provides
computing power necessary for computationally intensive tasks. The VAX machine
and the Intel controller communicate through Ethemet~ a local area network, which
also allows interaction between the user and sensors. Design principles of the system
can be found in [2].

The software of the system involves a variety of computers: the user interface is
written to be executed on a Unix/VAX machine; the control software is written to be
executed on Intel 8086-based single board computers; and the network software is
written to be executed on a Unix/VAX machine on one end and Intel processor on the
other. The rest of the documentation will be organized according to where the execu
tion of the program is. Section Two will discuss user interface, and for those who
intend to only use the system for specific applications, it is adequate to read this sec
tion. Section Three will discuss the implementation the Ethernet software. This sec
tion is useful only if one would like to make changes to the communication protocols
between the user and the Intel controller. Section Four will discuss the software writ
ten for the robot controller which consists of Intel single board computers to control
the robot manipulator, a PUMA 260 in our case. It is important for one to understand
this section if what is provided in the system is insufficient to carry out his applica
tions.

This material is based on work supported by the National Science Founda
tion under Grant No. ECS-8411879. Any opinions, findings, conclusions, or
recommendations expressed in this publication are those of the authors and
do Dot necessarily reflect the views of the National Science Foundation.

177



We would like to mention that the system is ye~ to be finalized, for we have been

using it for research and thus need to constantly make changes. Several versions of the

system exist among the people who have used and modified the system for their own

needs. We will try to be consistent throughout this documentarion, though confusion

may occur from time to time. The programs are organized by the processor on which

they are executed, with one directory per processor and common include files in two

separate directories. The following table roughly explains the contents of the direc

tories under /usr/users/hz on robo.cis.upenn.edu and /usr/users/hz/robo on

grasp .cis.upenn.edu.

Directory I Content I
NAX user interface and Ethernet driver on the

VAX side

/include I include files for N ~-'\X directory I

1186 Ethernet driver on the Intel side

/h include files for the Intel controller

/super programs written for the supervisor of the

Intel controller

lJi programs on the ith joint

Imath programs for the math processor

/sys i library functions for 8086 (I/O, interrupt
control, vector operations, etc.)

/c86 cross compiler for 8086, loader, and optim-
Ilzers
t

/c186 cross comipler for 80186

Table 1. RFMS Directories

All source files will be underlined and all functions will be italicized.

2. User Interface

From a user's point of view, the available functions can be classified into three

categories: world-model definition, motion record definition, and motion requests.

Another category, task synchronization, enables the user to wait until the completion

of a sub-task before the next one stans. Although it is not available at this time, it can

be easily added. Sensor input is another area yet to be integrated into the system, and

all the mechanisms exist. The structure of the program is similar to that of an ReeL

178



program in spirit, whose underlining principles can be found in [3]. A user requests
the service of the robot controller by making function calls from a 'c' function named

pumatask().

2.1. Programs of the User Interface

A total of eight programs constitute the user interface of the system. Since the

emphasis of the system is not to construct a .comprehensive robot programming sys

tem, effort made to create the user process is kept at minimum. We have used this part

of the system only for testing the robot controller.

A user defines a task by making calls to the system functions. A task defines the
world model in terms of the transformations (relationships between coordinate frames
of interest) and position equations (definitions of points in the work space to which the
manipulator is to move). The fashion in which a move to a position is conducted such
as segment time, compliance specification, etc., is defined by a motion record. Upon

any call to create one of these, the created data structure is first stored in the

corresponding symbol table and then a copy of it is sent to the RFMS through the Eth
ernet. To initiate an action, a move is called with two parameters: a pointer to the desti

nation position and a pointer to a motion record. Fundamental to the user interface are
the three symbol tables storing transformations, position equations, and motion records
that have been created. The move requests are not stored in a symbol table because
they are not referred to by other variables. This may change, however, once task syn

chronization is needed for the system has to keep track of the move requests have been
issued. Once the application is created and compiled, one can run the application like

any other 'c' programs by a.out.

The main.c allocates memory for static symbol tables for the user process, initial

izes the communication link between the user process and the RFNlS, and then calls

pumatask() defined in, say, mvapp.c, by the user, which contains a stream of function
calls to the system. After defining an application, the user may call the function
debug(), which logs data coming from the Intel controller in real-time and store them

in six different files, corresponding to six joints of the robot manipulator. The nature
of the data is entirely up to the user, but there must be an agreement in what the Intel
controller sends and what the user interprets. This function call is optional and has
been used as a debugging tool so far. One can expect to log one set of data every four
to five sampling periods.

There are currently a number of ways to create a transfonnation: a transfonnation
with pure translation and no rotation by gentr_trsl(), a rotation transfonnation defined
in terms of either Euler angles or roll-pitch-yaw angles by gentr_eul() or gentr_rpy().

All functions related to transfonnation creation are defined in trans.c.

179



A position equation is created by a call to makepst() in pst.c. One must provide a

name to the position as a string of characters in the first argument and three constants

for the three configurations lefty, up, andflipped, associated with the PtJMA 260. Since

a position equation may contain a number of transformations on either side, makepst()

must be able to handle variable number of arguments[4]. The last argument of

makepst() when defined is declared to as a pointer to a transfonnation, the same data

type as the rest of the arguments that follow it when the actual call is made. Two key

words, EQ and TL in the actual call help interpret where left-hand side ends and which

transfonnation is the tool transformation [5].

A motion record specifies how a motion is to be executed. and it contains such

attributes as segment time, acceleration time, mode of the motion, and compliance

specification. These attributes then become the four input arguments to a call to mak

emot(), which is contained in the program mot.c. Both segment time and acceleration

time are in seconds, and mode of the motion can be either Cartesian or joint. Compli

ance uses a bit pattern as in Figure 1 to indicate the physical constraints to the motion

MSBI ~ LSB

Figure 1. Bit Pattern Representing Compliance

where Ri represents rotational compliance along a certain Cartesian direction and Ti

translational compliance along a certain Cartesian direction. In this example, four

motion records are defined. The first simply defines a joint motion with a segment time

of 2 seconds an acceleration time of 0.2 seconds. The third motion records defines a

Cartesian motion with a 20 second segment time, a 0.5 second acceleration time, and
compliance along z direction.

The program move.c contains the function move(). The function uses the two

input arguments, a pointer to position and a pointer to the motion record, to issue a
move request.

At the end of each function call, a message is issued to the RFMS. Functions in
the file mess.c handle packet preparation. Currently, the 'user application is not receiv

ing any messages, even though the software could handle it. The format of the mes
sages is defined in msgs.h. The message type identifies the content and interpretation of
the message. A message is written into the buffer, msg, before function mess() is
called, which prepares the Ethernet packet and invokes Ethernet function Send() in
comm.c to send it.

All floating point numbers are modified before being sent, since the VAX

machine and Intel computers represent a floating point number differently, as illus
trated in Figure 2.

180



exponent (8 bits) I high significant (7 bits)

low significant (16 bits)

low word sign I
~_....-.-_--------~------------~

Intel Floating Point Representation

low word

sign I
low significant (16 bits)

exponent (8 bits) I high significant (7 bits)

DEC Floating Point Representation

Figure 2. Floating Point Representation

We choose to convert floating point numbers on the VAX machine since it is faster
than any Intel computer and time on the Intel computers is more valuable. The func
tion convert() in mess.c performs the conversion.

2.2. An Example

The following example further illustrates how an application program is created.
11: include "..Iincludeldatdefh"
# include "../includelextdej.h"
# include "..Iinclude/condefh"

pumatask()

(

TRSF *t2;
PST *homeyst;
MOT *mjnt, *mwait, *mcart, *mcwait, *mcartcz, *mcartcx;

t2 =gentr_trsl("t2", 203.2, -12623,203.2); /* home */

homeyst = makepst("home", RIGHT, DOWN, FliP, t6, EQ, t2, TL, t6);
mjnt =makemot(2.0, 0.2, INT, 0);
mcart =makemot(4.0, 0.3, CAR, 0);
mcartcz =makemot(20.0, 0.5, CAR, Ox4);

mcartcx =makemot(15.0, 0.5, CAR, Oxl);

moverhomeyst, mcartcz);

move(homeyst, mjnt);



}

The three include files in the beginning are necessary for the user to define local
variables of the data types created for robot programming (h/datdef.h), to make func

tion calls to the system (hlexrdej:h), and to make use of the constants defined in the

system (hlcondef.h). TRSF, PST, andMOT represent data type transfonnation, position

equation, and motion request, respectively. In the instruction section of pumatask(), a

transfonnation is first created by providing function gentr_trsl() with three transla

tional components of the p vector in the order of x, y, and z.

The Function call, makepst(), creates a position equation with transformations

either known to the system or defined by the user. In our case, it has t6, which is

known to the system, on one side and t2, which is defined by the user, on the other.

Configurations of this position are specified as right, down and flip. Four motion

records are defined in this program, with one joint motion, and three Cartesian motion,

of which two require compliance.

Two motions are requested in this task. TIle ann will move to the same position
as the initial position (i.e., remain stationary), while complying along z direction.

Once this is finished, the ann viill move back to home position.

Once the application is created, it can be compiled and linked with the rest of the

system. The application is executed in the same fashion as any other Unix executable

file, when the Intel controller is initialized and ready to accept tasks.

3. Etllernet Interface

The user and the Intel controller communicate through Ethernet, a local area net

work. The implementation details of this interface can be found in [6] and in &~ppen

dix A. Here we only outline some of its features users need to know in order to use it.

The interface on the users' side is perfonned on a Unix/VAX machine. Unix sup
pons Ethernet and, for robot control, our software is built as the data link layer by

making use of the Data Link Interface (DLI). The interface on Intel's side is built from

scratch and has two layers, the data link and logic link. The protocol used between the
two machines is one-bie-sliding window and positive acknowledgement with
retransmission, which means the machine sending a message keeps trying until it

receives acknowledgement or the number of trials exceeds a limit. A token exists
which detennines 'Nho can send a message at any given moment. It is usually held by

the VAX machine and the Intel machine has it only when the VAX machine requests a

message from the Intel controller. Typically the VAX machine sends a message to the

Intel machine whenever it wants and the arrival of a message creates an interrupt to the

Ethernet board 186/51[14] of the Intel controller, which then reads the message in its

interrupt handling procedure. The Intel controller, on the other hand, cannot send a

182



message to the VAX unless it is explicitly asked to do so. This is caused by the fact
that the software on the VAX side is not written as an interrupt handler, but rather as a

listener and therefore can not deal with any unexpected" incoming messages.

Two primitives on the VAX for sending and receiving a message have the syntax:

Send (buffer, size)

and
Recv(buffer, size).

The counterpart on Intel side employs two primitives:
Recv_Frame(buffer)

and
Send_Ack() or Ans_Send_Req().

Which one to use to send a packet depends upon if the message just received is a real

message or a request for a message to be sent to the VAX. Once messages are
received by the 186/51, they are queued in an array, waiting to be processed by the

supervisor of the Intel controller.

The communication software for VAX is contained in aile file comm.c, and for

the Intel controller there are three 'e' files in the directory /186, did.c. llc.c, and
main.c. The program dld.c contains the data link layer, and the program Ilc.c contains
the logic link layer. The program main.c first initializes the data link layer by
Init_586(), sets up a linear array of messages in which the incoming messages are

stored, and inform the supervisor of the array address by storing it at a fixed memory
location accessible to both supervisor. Two other assembly programs in this directory,

reint.a86 and handler.a86, deal with the interrupt control of the 186/51.

There is only limited memory space on the 186/51 and, therefore, the size of the

message queue can be of only a finite length. Currently, a total of 100 messages can be

stored, of which each has a fixed size of RBUF_SIZE bytes. Since the supervisor keeps
looking in the queue for available new entries, overflow never occurs if we assume the
speed of processing messages by the supervisor is faster than the that of the incoming
messages. The system fails if this assumption is not valid. A dirty bit in the last byte of
a message buffer indicates if the buffer contains an unprocessed message.

There are currently two 186/51 computers of different models: one is an ES and
the other an S. In additional to their difference in jumper locations and notations, the
only software difference one needs to know is the Ethernet address defined for the Eth
ernet chip 82586. The S model has an address of

Ox08, OxOO, Ox2b, Ox02, Ox89,Oxfc,

and the ES model has an address of

Ox08,Oxoo,Ox2b,Ox02,Ox96,Ox74.

183



4. Intel Controller

This part of the software runs on Intel single board computers, and it is developed
on a VAX machine where the user process is and cross-compiled and down-loaded to
the targets via a serial line. (The information on the cross-compiler can be found in
Appendix B) The controller is a multi-computer system with shared memory and a
common bus, through which data communication and control signals are transmitted.
Each computer in the system contains dual-ported memory, of which part is defined as
global so that other computers in the system can access it as well. Information
exchange takes place in the form of mail boxes and system synchronization is achieved
by interrupts. There are currently nine computers running in parallel, six joint proces
sors, a supervisor, a math processor, and an Ethernet computer. There is a real-time
synchronized interrupt driven process on each of the joint processors, the supervisor
and the math processor. In addition, there is a background process on the supervisor
and the math processor. 186/51 runs asynchronously with the rest of the system.

Supervisor, joints and the rest of the system need to communicate with each other
and exchange information. Also the kind of data each one requires of any other is
known a priori. To facilitate such communication, mail-boxes are created on each
computer with their addresses stored at pre-defined memory locations. These addresses
are currently stored in the topmost part of the memory from segment OxffOO so as not to
interfere with the code, data, or stack segments. During the initialization process,
supervisor waits until ready flags are cleared in all processors before it picks up
addresses of the mail-boxes where it will either drop or pick up mails. Most of the glo
bal memory access is done by the supervisor. Currently the only access by the joints is
during the compliance when every joint needs to collect other joints' errors. Two sys
tem functions, rblock() and wblock() facilitate global memory access. The sources and
destinations of the mail boxes are summerized in the following table.

184



data type source buffer destina- description
(origin) don

buffer

S_MAIL MAIL MAIL one copy to each joint to instruct what
(supervisor) actions to take

M_MAIL MMAIL NIMAIL infonnation math processor needs to
(supervisor) compute Jacobian matrices and

dynamics

I_MAIL JMAIL JMAILi one from each joint to the supervisor
Goints) i=l ...n to return the status of the joint

PARCEL PARi PARCi results computed by math and collect-
(math) i=l ...n ed by supervisor for one of the joints

PARCEL PARCi PARC one on each joint distributed by the
i=l ...n supervisor
(supervisor)

Table 2. Mailbox Description

Both. trajectory generation and inverse kinematics are performed on this parallel
processor and a lot of efforts have been devoted to computation distribution. Trajec
tory generation at Cartesian level, i.e., calculation of the end effector position and
orientation, is performed on the supervisor. Joints, on the other hand, plan their indivi
dual trajectories given the end effector coordinates. The dependency exists among the
inverse kinematics of the joints, for the ith joint requires solutions of all prior i-I
joints. This dependency, however, can be eliminated when each joint uses other joints'
solutions in the previous period. This scheme is approximate, but it allows the system
to compute the kinematics in parallel thus speeding up the system substantially. The
details of the trajectory trajectory can be found in [7] and the details of the parallel
inverse kinematics can be found in [8].

4.1. Supervisor

Two concurrent processes, one being interrupt driven and the other in the back
ground, are executed on the supervisor. The background process reads the messages
stored in the 186/51 and sets up data structures, which the second interrupt driven pro
cess uses to coordinate the operation of the controller and the generation of motion tra

jectories. Supervisor runs on an iSBC 86/30 computer[22].

185



The program, main.c, initializes the system and interacts with the user to go

through the manual mode, the calibration mode, and then onto the set-point mode. Its

serial port is connected to a terminal where the user operates for the purpose of down

loading the code and monitoring the controller operation during system development.

Eventually, the interactive session should take place between the VAX machine where

the user really is and the control system through the. Ethernet.

4.1.1. Background Process

The background process program is stored in bkgd.c. To process messages stored

on the 186/51 (refer to Section 3), the supervisor maintains a pointer to the next avail

able message in the message queue. Depending upon the type of the message, different
action is taken. The fonnat of the messages are defined in the include file h/msgs.h.

Data structure definitions in this file must agree with those in include/datdef.h , if the

supervisor is to interpret the messages correctly. When there is no message in the
queue, the background process simply waits.

Upon the arrival of a message, the type of a message is detennined, and a
corresponding data structure may be created and added to the world model. Currently,

there are six possible types, INIT, STOP, TIR, TPOS, TMD, TREQ. The first two

simply are signals for the beginning and end of a task definition. The rest are for a
transfonnation, a position, a mode, and, motion request message, respectively. The

definitions of these data structures can be found in hidatadef.h.

These data structures refer to or are linked with each other. For example, a posi
tion contains pointers to transfonnarions defined previously. If the messages came

from the same machine as the one that receives it, the addresses could be used as
pointers. Unfortunately this is not the case. i\ linked structure must be sent piece by

piece and the receiving machine must be able to resolve all the cross references. In

order to be able to locate the dependencies, we associate each message of a given type
with an identification number. To facilitate a fast search, four symbol talbes, ttbl[],

mtbl[], ptblD, rtblO, are set up to store the pointers to the data structures and the id
numbers are indeces in the symbol tables.

When a position equation message arrives, a ring structure is created[5]. The pro
gram, pstn.c, contains functions necessary to create the structure. A ring consists of a
number of items representing transformations in the equation, of which each contains a

pair of atoms containing the fOIVIard and inverse transformation. Function Atom()

allocates memory for one atom, LVewTerm() links a pair of atoms, Listn()'slink n

terms, and MakePos() takes two lists of tenns as left and right hand sides of the equa
tion and forms the ring.

186



Processing of other messages requires much less work and is dealt without any

primitive functions.

4.1.2. Real-time Process

The real-time process is executed upon a periodic interrupt signal generated by
the programmable timer on the supervisor. The entire process runs like a finite state
machine and action taken in each period depends on two state variables. The variable,
rtstate, in program rtisr.c, changes among eight possible states, IDLE, FREE, MANU,
CALm, HOLD, SETP, STOP, and EMGCY. These constants are defined in file
comm.h. The state the system may fall in is illustrated by the following graph.

Figure 1: State Diagram of the RFMS

The interpretation of each state is summerized in the following table.

187



state action

IDLE get current position and keep the power off

FREE I get current position and send current compensating for gravity 1

CALIB keep incrementing joint position until zero index is observed

SETP call jsetp() and derive encoder position and compute observed

sin and cos

HOLD turn the power on

MAl'W increment desired encoder position by 4 counts either clock-

wise or counterclockwise

Table 3. Real-Time State

In IDLE state, the system is in the initialization process. The free state is one in
which the all joints are freed and compensate only for the gravity. This state is useful

when we check the gravity loading constants we compute from the dynamics equa

tions. In MANU state, the joints can be controlled manually in order to position the
manipulator. The state CALIB indicates that the joints are going through a calibration
procedure by looking for the zero indeces while making incremental moves. The state

SETP is entered once the calibration is finished. Finally states STOP and EMGCY
represent when the joints should stop and when the joints have detected abnonnal con
ditions and need to come to a stop, respectively.

If the system is in SETP state, another variable state, in file setp.c, detennines the

stage in which the trajectory generation is. The number of states correspond to the

number of cases in the motion control summary in [7], plus two additional states for
the stationary case when there is no next motion command and for the case when the

manipulator is coming to a stop. The state diagram in state is given in Figure 2.

lRR



Start

Figure 2. State Diagram of the Trajectory Generator

where the states are defined in Table 4.

state definition

SO wait for a new move request

51 straight line motion segment
52 one sampling period before the transition

S3 beginning period of the transition
S40 initialization of the transition
S4 during the transition
55 end of a motion with no next move

Table 4. Definition of state

Whichever state the system is in, supervisor exchanges infonnation with and for
the rest of the system. Four data structures, also defined in hlcomm.h, function as
buffers holding information to be exchanged. The structure, S_MAIL, contains what to
be shipped to the joints from the supervisor, I_MAIL, contains what to be shipped
from the joints to the supervisor, and M_MAIL, contains infonnation updated by the
math processor for the joints. Another structure, PARCEL, contains infonnation
related to manipulator kinematics, such as dynamics and Jacobian matrices, that is pro
vided to the joints at a low rate. In fact, each joint receives its new PARCEL every n

periods, where n is the number of joints.

A few points concerning mails need to be clarified. First, there are three sets of
sines and cosines returned from each joint in J_MAIL. The first two sets are expressed
in tenns of a sine and the sign the the cosine. They correspond to the sines and cosines

189



of the current and the next destination and positions, respectively. Tne third set is sine
and cosine of the observed joint position. Secondly, The interpretation of the integer

for the sign of the cosine is illustrated by the following figure where a clear bit in the

corresponding position represents positive and set bit negative.

MsBI'- ~LSB

Figure 3. Bit Pattern Representing Signs of the Cosines

Thirdly, the fields in S_NlAIL Csigns and CsignsC are simply the onng of the

corresponding signes from all the joints.

The program setp.c depends on a number of functions. Functions Dequeue() and
Unqueue() either take next motion request out of or and put back a fetched motion

request to the motion request queue. GetEX() and GetWR() compute the next T6 in

joint motion and Cartesian motion, respectively. All these functions are stored in file

expr.c. Another function InitD(), defined in file drive.c, initializes the constant parts of

the drive transfonnation for the next segment of Cartesian motion.

4.2. Joint Process

We describe the joint processes by showing how one joint works, since other

joints are simply replicates of this example and differ mainly in the constants used in
the programs. There are two joint independent programs, jsetp.c and jrtc.c, In addi

tion, there is one joint dependent program in each joint directory, jnti-c, where i refers

to the joint number, in each joint directory. The executable file of each joint is made up

of the joint dependent and independent files. Joints share only the source code, not the
executable code.

The program, jnti.c, contains the entry point, main(), that initializes joint depen

dent global variables and calls rtc() in jrtc.c to begin joint's operation. Two other

functions in jnti.c, InvKine(), and, InvKineC(), compute inverse kinematics from two
different set of parameters provided in supervisor mail. Manu/nc() is used during

manual mode to compute the amount of position increment. IsReady() detennines if
the joint should start calibrating or wait. This is necessary to overcome the mechanical
coupling among joints during calibration. AngToEng() perfonns conversion between
the encoder count and the joint angle in radians. WrireEnc() writes the change in its

joint angle to the other joints that are coupled with this joint in order for them to make

compensation. ReadChgs() copies the changes in other joints written in its memory

into 'C' variables so as to be refered to later. Function PID calculates the control law.

190



Finally StanS() informs the supervisor of the completion of the joint's initialization.

The interrupt handler Rtisr() in jnc.c is dictated by the same rtstate variable as on
the supervisor to detennine what the joint should do. It is executed at the same rate as
the supervisor's interrupt service routine and computes the desired joint position in
encoder count. According to the current nstate, the fashion in which the desired posi
tion is computed varies. The result is passed on to the function Servo(), which actually
performs servoing of the joint with the position computed in the previous sampling
period. Currently it is either a PD or a PID control with gravity and friction compensa
tions. Should the compliance be required, the servo error is adjusted in Adjust() before
used to compute reacting torque.

JSetp() in jsetp.c computes the joint set-point. The variable state drives the pro
cess. There are several worth-noting points. First, all information needed by the joints
is assumed to be available in the data structure MAIL, the buffer sent by the supervi
sor. Secondly, since in general the kinematic solution for ith joint requires the solution
of inner i-I joints, values of those joints computed in the previous sampling period are
used in order for the joint not to wait for solutions to be computed, as has been men
tioned previously. Finally, the joints should not have to wait for the supervisor to
finish before they can start doing inverse kinematics. Instead, the T6 is pipelined so
that supervisor and joints start computing at the same time.

4.3. Math Process

The purpose of this process is to compute dynamic coefficients and Jacobian
relation matrices. Current computed joint angles are passed to this process as input
and it provides gravity loadings and the compliance matrix as output to one joint per
sampling period cyclically. The reason for only one joint per period is that the update
of the parameters takes place at a much slower rate than the sampling rate and there is
no point of sending XX The incoming infonnation is deposited in MMAIL, the mail
box for the math process from the supervisor and the output is returned in the buffer
PARi, whose content applies to the joint specified in ~IL.joint.

Again there is a real-time interrupt driven process that handles interaction with
the supervisor and there is a background process that computes in an endless loop. The
calculation of the dynamic coefficients is based on equations in [9], which uses
Lagrangian mechanics to express dynamic tenns explicitly and detennines the con
stants in the coefficient from experiments. Procedures in [10] are used for the calcula
tion of the compliance matrix. In order to prevent from- happening the situation where
the real-time interrupt service routine copies results partially updated by the inter
rupted process, a binary variable is used to indicate which of the two copies of a partic
ular quantity, such as Jacobian matrix, is valid.

191



Currently only the Jacobian matrices from the base of the robot to the end
effector are considered. Should a tool be added to the system, modification would be
necessary. Further, velocity dependent dynamic coefficients as well as the effects of a
load at the robot end effector on the dynamics are not considered.

5. Postscript

One of the lessons we have learned from the RFMS project is that it is extremely
difficult to program a multiprocessor system without a powerful development system.
It is then predictably difficult to try to explain the system to someone wishing to under
stand and modify the system. To fully master the system requires a lot of time. It is
however not as overwhelming to simply use the existing software to program the robot.
This single document provides but a portion of the knowledge one must learn before he
can feel comfortable working with the controller. It is strongly recommended that one
read other related documentations and the hardware reference manual being prepared
for this system for a better understanding.

192



Appendix A

RoboNet: A Local Area Network for Robot Systems

This documentation is about RoboNet, an Ethernet-based local area network that
the we have designed and implemented. This documentation serves two purposes: as a
user's guide to give robot system users a brief description on how to use the network
software to transfer data from one machine to another, and as a system programmer's
manual for those who maintain this network and those who are interested in customiz
ing part of this network or extending it for other applications.

The remainder of this documentation is organized in four sections. Section two
describes the network software function calls, their usage, and the results of those
calls; Section three describes the network and its layers; Section four describes the log
ical link layer of RoboNet; and Section 5 describes the data link layer of RoboNet.
Two appendixes describe how to compile the network software, where to find the files,
and how to maintain the network software. For those who are interested only in using
the software, we suggest that you read section two and three. For system programmers,
we suggest that you read the entire documentation.

A.I. User's Guide

Currently only Grasp (VAX lIn85), Robo (Microvax II) and Intel 186/51 have
RoboNet software. These machines are physically all attached to the Ethernet cable.
We use RoboNet to transfer messages from the VAX machines to the Intel 186/51 and
vise versa. Exchanges of messages among VAX machines are perfonned by software
already available on these machines running Unix. The RoboNet is illustrated in Figure
1.

The VAX users can send messages to the Intel machines by invoking the network
software. If the VAX user desires a particular piece of infonnation from the Intel, he
must send a message request to the Intel. The Ethernet communication on the Intel side
is not accessible at the user level. A user can assume that process exists on the 186/51
that handles the messages and message request.

This appendix is an edited and revised version of the reference manual~

"RoboNet: A Local Area Networkfor Robot Systems", prepared by Pearl Pu,
the Department of Computer and Information Science, the University of
Pennsylvania.

193



Ethernet

t t t
I

~
I

~
I

\

grasp Robo Intel

VAX 785 J.lVAX 186/51

Ii
86/30

Figure A.I. RoboNet

A.I.I. The Network Software Function CalIs for the VAX users

To be able to use these function calls, you have to have a Grasp, or Robo account.

You have to know how to program in C. And finally you have to know what you are

doing with these messages on the Intel side.

In order to use the software, you have to do the following:

1. Include vax.h in your program.

2. Compile your program with vax_Lie .0.

The network software, seen at the user level, consists of the following C function

calls: Init_Comm_Link(), Sync(), Send(), and Recv().

Init_Comm_Link():

This function initializes the communication link between the host where

the user is located and the Intel 186/51. The Intel Ethernet address is

specified in this routine automatically as the destination address in sending
and source address in receiving. Note that if the Intel address changes, one

needs to notify the system programmer to modify this address accordingly.

Sync():

This routine synchronizes certain variables between the user process on the
VAX and the communication process on the Intel 186/51.

Send(msgsptr, length):

msgsptr is a pointer to the buffer which contains the message you want to
send, and length is an integer that specifies the length of the message

string. Note that length can not be greater than MAX_FRAME or less than
MIN FRAME in vax.h.

194



Recv( (type, msgsptr, length}):
type specifies what type of infonnation you would like to receive from the
Intel side. There are ten types of such infonnation. msgsptr points to the
buffer area where you want to receive the message. Length returns the
actual length of message received. For certain reasons, all messages com
ing from Intel must be of one size. That size is specified by R_SIZE
(receive packet size) in vax.h.

An example program, which illustrates how to use the network software on the
VAX side, is shown in Figure 2.
main()
{

int i;

char msgs[100J, buffer[R_SIZE};

int length;

/* fill up the msgs to be sent out */

jor(i=O; i<100; i++)

msgs{il= ' a' + ( i% 10);

Init_Comm_Link();
Sync();

/* send the same message 10 times */

for (i=O; i<10; i++)

Send(msgs, sizeof(msgs));

Recv(type2,buffer, &length); /* receive type2 message */

buffer[length}= NUlL;
printf("The received message is %s", buffer);

}

Figure 2. An Example Program

A.1.2. The Network Software on the Intel Side

Currently user support on the Intel side is entirely tailored to the need of the robot
controller, which is a multiprocessor system based on Intel 86/30s with a supervisor
handling message bookkeeping. All the messages sent from a user process on any of
the VAXes or Microvaxes are queued up in a large buffer area on the 186/51. The

195



beginning address of the large buffer area is stored in the RAM of the 186/51 at
Ox1ffOO. The robot controller decides where each message finally goes. If the user
requests a piece of information to be sent back to the VAX side, the network software

on the Intel side will take care of this request.

To bring up the network process on the Intel 186/51, you have to ask the system
programmer to do so. This process, once brought up, should be running continuously.

A.2. RoboNet: An Overview

RoboNet is a research effort to investigate the feasibility of designing a tailored
local area network for robot systems, and stimulate further interest in this area. The
current trend for robot systems is to distribute user tasks and robot tasks on different
processors to increase computation speed. This introduces, however, communication
problems between the users and the robot controller. To solve the communication
problems, there are two solutions: one is to use existing software; the other is to design

new software.

The reason we designed and implemented our own communication network
stemmed from the observation that existing local area network protocols[11][12] are
for large data file transfers. The header in each packet is usually complicated and the
data large. If we use these protocols for transferring messages of small sizes, which is
the situation with communication in robot systems, the system will. be inefficient.

User Application

Logical Link

Data Link IEEE 802.2

Physical IEEE 802.3

Figure A.2. Layers in RoboNet

RoboNet is designed with four layers as shown in Figure 3. The lowest layer, the
physical layer, is an IEEE 802 standard. The data link layer is an IEEE compatible
layer. IEEE 802.2 consists of data link and logical link layers. We only chose to imple
ment the data link layer with the standard. It is hoped that RoboNet will be adaptable,
should there be more suitable protocols. For instance, MAP ( Manufacturing Automa

tion Protocol) is another IEEE 802 standard. It is claimed that MAP is more efficient
than Ethernet, and it does not degenerate when the load of the network becomes heavy.
Therefore, if MAP is found to be more suitable for our application and affordable, we

196



can replace Ethernet by MAP without changing anything above. Another advantage of
a standard implementation of the lower layers is to support heterogeneous machines.
The robot system we have here contains VAX 11n85s, Microvax lIs, Intel micropro
cessors. In the future, it may also have Lisp machines. Since most computer manufac
tures now make Ethernet chips available to most of their machines, in order to install

RoboNet on a machine we only have to install the upper three layers.

In the next two sections, we will describe the three lower layers. Section two is a

description of the user application layer. Currently RoboNet is installed on Grasp
(VAX 1In85), Robo (Microvax m, and Intel 186/51. As mentioned earlier, since this
part of documentation is for system programmers, we will concentrate on not only
design issues but also implementation details.

A.3. The Physical and Data Link Layers in RoboNet

As shown in Figure 3, the physical layer is the IEEE 802.3 (Ethernet) standard.
On the VAX machines (VAXes, Microvaxes), this layer comes with the machine. On
the Intel 186/51, there is a network coprocessor called the 82586, which is essentially
an Ethernet chip that handles low level packet sending, receiving, framing, etc. For a
detailed description of the 82586, refer to [13][14]. The 82586 is the coprocessor to
the main CPU 80186.

The data link layer on the VAX machines uses the data link interface (DLI) from
the Digital Equipment Cooperation. All packets sent out from the DLI are Ethernet
packets. The DLI only takes care of damaged packets by verifying the check sum.
Lost, duplicated, and out-of-order packets, however, are not taken care of.

On the Intel 186/51 microprocessor, the data link layer has to be implemented
since there is no existing software. Fortunately, there is a manual[13] which describes
how to program the 82586 coprocessor. We largely adopted an example from this
manual as the data link layer. According to the manual, this example implements an

IEEE 802.2 compatible data link layer.

Some differences between the example and our implementation are worth men
tioning.

1. Multicast is not supported in our implementation.

2. The address for ISCP is found to be different in our case from that specified in the
example. The correct ISCP address on our board is OxffO (absolute) instead of
OxfffO.

3. The interrupt from 82586 is the zeroth interrupt instead of the third.

4. Broadcast mode is disable, i.e., no broadcast messages from the Ethernet will be
received.

197



A.4. The Logical Link Control Layer in RoboNet

We designed this layer. The principal mechanism used to prevent the network
from losing, duplicating, and sending out-of-order packet is called one-bit-sliding TNin

dow and positive acknowledgement with retransmission protocol(15]. We describe the
characteristics of the logical link control (LLC) in RoboNet by describing the LLC
packets and the algorithms used on both the Intel and the VAX sides.

A.4.1. The LLC Packet Types

SYNC:
This type of LLC packets take care of synchronization problems between the two
sides. A network process runs on the Intel 186/51 continuously, whereas network
processes come and go on the VAX side. Synchronization of sequence numbers is
a problem if not taken care properly. We solve this problem by sending a SYNC
packet every time a network process comes up on the VAX side. Upon receiving
this packet, the Intel network process will initialize the sequence number.

ACK:An acknowledgement packet is sent out whenever the network process receives a
good packet (i.e., with good check sum) other than an acknowledgement packet,
that is, we do not acknowledge ACK packets.

REG:A regular packet will be passed to the host for processing if the sequence number
matches expected frame number (specified by FrameExpected in llc.c). This is to
ensure that no duplicated packet, from retransmission, is passed to the host.

SendReq:
A packet of this type can only be sent out from the VAX machines. This type of
packet will cause a message to be sent out from the Intel to the network process
on the VAt-X. For instance, a SendReq packet with T6 specified in the first byte
will cause the T6 matrix., which is stored and kept updated on the Intel 186/51, to
be sent to the VAX. This way, the robot system users can be updated with infor
mation from the Intel machines.

A.4.2. The Algorithm for the LLC on the VAX Side

procedure Send(type, msgsptr, length):

/* type: one of (ACK, REG, SYNC, SendReq)

msgsptr: points to data to be sent
length: the length ofmessage

Functionality: this routine prepares a LLC header for each

message pointed by msgsptr by adding the type, sequencefi,elds,
then sends out the message. If an acknowledgement does not

198



arrive within the timeout period, this routine will send out
again the same message. It keeps doing so until either an ack
arrives, or exceeds the allowed trial limit (maxtimeout).

*/

vari.frame,.

if (type== SendReq)
sendreq= TR UE,.

/.type = type,.
f.seq = NextFrameToSend;

[data = msgsptr;

Acked= FALSE;
timeourcnt=O;

/* specify packet type */
/* append sequence number */

/* keep trying if no ack, and # of tries has not exceeded the limit */

while( timeoutcnt < maxtimeout AND Acked== FALSE) do

begin
sendf(j); /* transmit aframe */

Timeout=FALSE;
StanTimer();
Recv_Ack; /* timer can timeout in this routine */

end;

zf (timeoutcnt >= maxtimeout)
write("Error: a/rame is lost. ");

Inc(NexrFrameToSend); /* invert sender seq number */

end; /* end ofSend */

procedure Recv_Ack():
/* Functionality: this routine waits for an acknowledgement to

arrive from the other side. If timer times out, it will stop
waiting and return to Send, which will resend the same message
If an ack comes, it will set the flag to indicate so.

*/

199



var r : frame; /* place to put receivedframe */

While (Acked== FALSE AND Timeout== FALSE) do

begin
wait(event); /*note: timer can timeout while waiting */

if (event== FrameArrival AND r.seq== NextFrameToSend)

Acked== TRUE;

/* if the packet sent out was a sendreq,
* then acknowledge packet contains info. */

if (sendreq == TRUE)
To_Host(r); /* pass message to host */

I ncrF rameExpecred),.
end;

end; /* end ofRecv_Ack */

procedure Isr_Timer():
/* Functionality: this routin~ will be called when the timer times out.
*/

Timeout=TRUE;
timeoutcnt= timeoutcnt+ 1 ,-

end; /* end of Isr_Timer */

/* type specifies what type of information to be sent back
msgsptr returns the address of received message
length returns the length of received message
Functionality: Receiving a message is similar to sending a message.
The requested message is sent backfrom the Intel in the Acknowledge
packet. This is called piggybacking.

*/

var req: frame,.

req.data{O] = type; /* specify what information to receive */

Send(SendReq, req, sizeof(req)); /* send a requestframe */

200



end; /* end ofRecv */

procedure Sync():
1* Functionality: This routine sends out a packet to synchronize

sequence numbers on both VAX and Intel side.

*/

vari.frame,.

Send(SYNC,j, sizeoj(j));

end; /* end ofSYNc. */

A.4.3. The Algorithm for the LLC on the Intel Side

procedure Recv_Frame(f):

/* f points the received frame

Functionality: This procedure is invoked when 82586 receives aframe

and issues an interrupt to CPU. It does different things according
to the type ofmessages it received.

*/

casef.type

ACK: 1* there will be no ACKframe on the Intel side */

REG: Send Ack (j.seq);

if (j.seq == FrameExpected)
put/(j.data); 1* put! in big buffer */

Inc(FrameExpected); /* inven seq */

SYlVC:Send_Ack(fseq);

FrameExpecred=O; /* reinitialize */

NextFrameToSend; /* reinitialize */

SendReq: Ans_Send_Req(); /* answer send request */

if (j.seq ==FrameExpected )
Inc(FrameExpected);

201



end; /* ofcase */

end; /* ofRecv_Frame */

procedure Send_Ack( seq ):
/* Functionality: this routine sends out an acknowledgement packet.

*/

var f: frame:

[type= ACK;
I.seq= seq;
send! if); /* transmit a/rame */

end; /* of Send_Ack */

procedure Ans_Send_Req (seq);
/* Functionality: this routine piggyback the requested information

in the acknowledgement packet.

*/

var/ : frame,.

I.type= 44.CK;
I.seq= seq;
I.data = get!(data);
send/if); 1* transmit a/rame */

A.5. Miscellaneous

The data link layer for the 186/51 is contained in file did.c. The packet size from
the Intel controller to the VAX. can be changed by modifying constant R_SIZE in
vax.h, in llc.h, and the field in so_addr.choose_addr.dli_eaddr.dliyrotype in vax lic.c.
If you get errors like "ERROR: enable toget CB, TBD, or FD", you should consider to
increase the size of the CB, or TBD, or FD queues by changing the CB_Cl.VT,
TBD_CNT, or FD_CNT in dId lIe .h.

202



Appendix B

Use of 8086 Cross Compiler Under Unix

B.1. Introduction

This document is interesting to those who intend to program an 8086/87-based
single board computer'under a VAXlUnix environment. The compiler introduced here
was initially obtained from MIT Laboratory for Computer Science; however, it was
written for an ffiM-PC/MS-DOS environment. Modification to this compiler is mostly
done to the I/O library and math library. In addition, Intel's iSDM (System Debug
Monitor) is incorporated to the system to allow both down-loading of users' programs
and debugging of them. Efforts have been made to optimize the intermediate assembly
programs generated by the compiler so that a 15 to 30 percent better perfonnance can
be achieved after running the optimizer.

This document serves as a users' manual of the cross compiler without elaborat
ing on the details. It assumes a user to have experience with C language and Unix.
Knowledge of 8086/87 assembly language is necessary for debugging a program.

Throughout the discussion, host computer refers to the one where you develop
your programs. The target computer is the 8086-based single board computer. Unix C
compiler is simply called compiler and the cross compiler is explicitly qualified.

Running a C program consists of several steps. First, you should properly connect
the hardware. The search path of your account should be set up correctly so that you
can access the library files. The compilation of your C program using cross compiler
follows similar syntax as to those of the C compiler. Before running an executable file,
it should be down loaded to the target computer. Finally, you can run your program
with the help of Intel's System Debug Monitor (referred to as SDM from now on).

B.2. Cable Hook-up

Your interface to both Unix and the target computer is all done from a single ter
minal. Normally, your tenninal acts just like a regular Unix tenninal and the target
computer is simply another tty to the same host computer. You should connect your
tenninal to the a tty line and the serial port of the target to another tty line, both using
standard RS232. After the lines are connected and power plugged in, turn on the
switch of the the target system and initialize its line to Unix by

% stty 9600 raw -echo> /dev/ttyxy

203



where xy is the target's tty number.

B.3. Down Loading the Loader via SDM

Setting up your path on Unix correctly is important because your program need to

find the libraries and you need to access several executable files. The directory of

these files is machine dependent, but on Upenn-GRASP, the following in your .cshrc

or .tcshrc is adequate:

set path=($path /usr/userslhz/c86/lib86)

If you are a shell user, use in .profile

PATH = SPATH:/usr/userslhz/c86/lib86

export PATH

Initiate the communication with the target by kermit function of Unix which

changes your Unix terminal to a vinual tenninal of the target. Kermit is invoked by the

following command:

% kermit clb /dev/ttyxy 9600

You are then communicating to the target through the SDM from this point on.

The SDM responds with the following message followed by either a dot (.) or aster

isks(*), the-latter indicating that SDM has not been booted and you are talking to it for

the first time.

iSDM 86 Monitor Vx.y
Copyright 1983 Intel Corporation

To boot, type capital U and you will see the monitor respond with a dot indicating

it has been booted. To exit kennit thereby exiting SDM upon completion of your job,

type A followed by a letter c and message "C-kennit Disconnected" will be printed.

Although you could use SDM to down load your application program, the slow

loading speed prohibits development of any large program. Alternatively, a fast loader

is available to directly read your program from serial port and store it into memory

without going through SDM. The idea is then to load the fast loader with SDM and to
load your program with the fast loader. To load the fast loader, type:

%ldld

You will then asked if the tty of the target is the right one such as

ttyh3? (yin)

You should answer accordingly. The loaded data and the corresponding addresses will

echo on the screen.. This fast loader is invoked later by the ell command to load the

204



application program.

B.4. Cross Compiler

As a C programmer, you may be used to writing programs under Unix and not
aware of what is C and what is Unix. Therefore, it is important that you read through
this document before attempting to write any C program. Basically, C is a high level
language that allows you to express your algorithms in terms of C functions, whereas
Unix is an operating system which provides C with an environment. Many things you
use in the form of function calls are intrinsic to Unix, such as multi-processes, file sys
tems, and I/O interface. When your program is intended for an 8086/87, many utilities
on Unix are no longer available on your target board. For example, you can not open
files or write to a file. Any library with which your program is linked must be created

for 8086/87.

Theoretically, the language definition of the C cross compiler is 100% compatible
with Unix C, i.e., all variable types, data structures, operations, type specifications, etc.

follow the conventions in [16]. However, there are major differences between this
compiler and Unix C compiler in the Unix interface and I/O libraries. In fact, the only
system calls you can make are limited to those of standard I/O (see in Appendix A),
although they may expand in the future. The reason for not implementing them is obvi
ously that your single board computer does not contain a sophisticated operating sys
tem which actually provides these system functions. Our thought on I/O library sup
port was that a total compatibility would require a major undertaking which may not
be necessary although not impossible.

The options accepted by the compiler are the following:

-p

-s

-c

-0 name

-1m

-Ir

-Ilib

run only the C preprocessor (cpp) and leave the result in progj,
where prog.c was the input file.

do not run the assembler, leaving the assembly language output
file in prog.a86, where prog.c was the input file.

compile, assemble, but do not create a .com file, leaving binary
file in prog.b, where pr.c was the input file.

changes the name of the generated default a.abs file to
"name.abs".

links the program with the mathematics library

links the program with the RFMS library

specifies a directory to be searched when processing #include
statements during preprocessor stage.

To cross compile your programs for the 8086/87 target system, use the shell script cc86 as

205



% cc86 [options] ...file ...

Unless -0 option is specified.. the default name of the output is a.abs, instead of

a.out, where abs stands for absolute file. It has a fonnat understandable by the fast

loader and, apparently, it can not be executed on the host computer. The input to cc86

can be more than one file; it can be a combination of assembly programs, object files,

and C programs. There are two standard libraries: I/O library, which is always linked

with your programs, and the math library. Read Appendix B for the math functions

provided by the math library.

As usual, there are three parts to this cross compiler: a compiler that produces

assembly programs from input C programs, a assembler that reads the output of the

compiler and the input assembly programs and assembles them to the object files, and

a linker that links everything together. Unfortunately, the intermediate assembly

language, A86, is not standard ASM-8086 assembly language but a hybrid between

ASM-8086 and VAX-II assemblers; nor is it equivalent to ASM-8086 particularly in

its instructions dealing with data allocation and the floating point stack. Therefore, if

you need to write assembly programs, the best you could do is using -5 option of the

cross compiler to generate sample assembly programs and figure your way out, with

the help of 8086/87 and VAX-II literatures [17][18][19][20]. Appendix C contains a
table of encodings of 8087 stack arithmetic instructions, which may be useful when

you need to program 8087 and would like to achieve efficiency.

Because of the nature of the program execution, the main program can no longer

have arguments argc and argv, which are usually handled by the operating system.

Also be warned that you are at your own risk if you do not initialize variables, local or

global. Your target computer does not do everything the Unix does such as initializing

memory. Failure to comply to this may result in meaningless outcomes. We have also

found that the cross compiler can not handle functions which return a float; you must

define these functions to return a double. Funher, when a function is declared double,

it must have a return statement to avoid underflow of the float stack on 8087. Finally,

an integer variable on 8086 is 16 bits long rather than 32 as on V~x and a double is
eight bytes.

206



B.S. Down Loading Your Application

The next step is to load your program to the memory of the target. The default lo
cation of the starting address of your program is at hex 1000 or 4 kilobytes from the
beginning. This information is useful later when you debug your program. To load
the program, simply type:

% dl <abs file>

The down loading speed is about one kilobytes per second, or 9600 baud. You

may examine the size of your program to figure out how long a down loading takes.

The location of the code segment and data segment can be at any 16-byte boun
dary by changing two constants in the down loading program. Currently, the memory
format of the target is set to the following diagram:

----------------------- OxOOOO

Reserved for SDM

--------------------- Ox0900
Fast Loader

----------------------- OxlOOO CS (code segment)

Code

----------------------- OxlOOOO DS, 55, ES

Data + Stack

----------------------- OxlffOO = top of the stack
SP (stack pointer) = OxffOO

------:----------------- End of 128 K Ram

The size of your programs is limited to almost an 8086 segment and can be as
. large as 60 kilobytes. Data and stack may take another 64K segment less 256. The

sizes are examined by the linker and warnings are issued when the actual sizes exceed
or approach the limits.

B.6. SDM • System Debug Monitor

')(\7



SDM is an assembly language level debugger that offers such features as
disassembling code, single step, changing register and memory contents, break point,

and displaying register and memory contents. You can monitor your program on the

target directly from your Unix terminal with the help of the on board SDM through
kermit which changes a Unix terminal to that of your target computer. As mentioned

above, this can be done by

% kermit clb Idev/ttyxy 9600

and you will also see SDM respond as before. In case it has crashed for any reason,
push the reset button of the target and type capital U to reboot the system.

We will try to explain.a few commands that are particularly useful in executing your
program. It is strongly recommanded that you read [21] if you really want to learn

how to use SDM. This section gives just a tiny subset of the rich debugging com

mands of SDM.

B.6.1 X Command

This command allows you to examine and modify registers.

.x

will display all the 8086 registers.
To modify a register, do

.x register =value

where value can be a hexadecimal number, another register, or an expression of the

sum or difference of numbers and registers.
.xn

displays the 8087 registers and stack registers and you can change the values of stack
registers by
.xst(i) =real number

where i is the stack register number from 0 through 7 and real number is represented in
exponential notation such as 1.23 e-4

B.6.2 D Command

This command displays memory contents in a given data type which can be
integer(i), long integer(li), long real(lr), short integer(si), shon real(sr), binary code

decimals(t), temporary real(tr, ten bytes), word(w), or disassembled instruction(x).

Address is represented as segment:offset. The default segment is code segment(cs)
and default offset is instruction pointer (ip). For example,

208



.14dx
displays 14 disassembled instructions from location cs:ip.

.d ds:5#16t
displays 16 decimal bytes in both hexadecimal and ASCII fonnat, beginning at ds:5.

.5dtr 10
displays five temporary real values, beginning at cs: 10 in both temporary real hexade

cimal and decimal fonnat.

B.6.3 G Command

This command instructs the monitor to begin executing your program at the
current cs:ip. It can be followed by a starting address and addresses where you want to

break the program. For example,

.g 7fa, lfU:e20

will stop either at cs:7fa or lfO:e20, whichever comes first.

.g 2dO:113, ip
tells the monitor to begin execution instructions at 2dO:113 and continue until it gets to

the current cs:ip.

When the program stops at a break point, the following message is printed.

*BREAK at xxxx:yyyy

B.6.4. Bugs

As usual, there are bugs associated with SDM package. The single step feature is

shaky at times when you use 8087. For example, to step through a program by G com

mand may generate a different result from that you obtain to go all the way by G com

mand; or when you single step, the board may not do what the next instruction says it

will do, etc. We have no solutions to this and encourage you to ask Intel for help.

B.7. Miscellaneous

In lib86 directory, there exist several utility programs to convert files from one
format to another.

abshex - converts an abs file to a hex file,

Idabs - convens an Id file (output of MIT compiler) to an abs file,

Idhex - converts an ld file to a hex file.

B.8. An Example

209



In this section, we will go through an example to demonstrate how the cross compiler
and the debugger work. Suppose you have created the following program on Unix:

# include <math.h>
# define RAD_TO_DEG 5729578

main()

(
double x, y;
int i;

x = 0.1;
for(i =0; i < 10; i++) (

y += ",-r;

printf("sin(%4.1fJ =%f\n\r", y*RAD_TO_DEG, sin(y));

}

}

First compile the program using the C compiler and test it on Unix as

% cc prog.c -1m
% a.out
sin( 5.7) = 0.099833
sin(11.5) =0.198669
sin(17.2) =0.295520
sin(22.9) = 0.389418
sin(28.6) =0.479426
sin(34.4) = 0.564642

sin(40.1) =0.644218

sin(45.8) =0.717356
sin(51.6) =0.783327
sin(57.3) =0.841471

Of course, on Unix we can only test the pornon of the program not dependent on the
target hardware.

After making sure the program is free of errors as far as you can go on Unix, you
can then cross compiler your program:

% cc86 prog.c -1m

210



An a.abs is created at this point for you to down load. You are then ready to try it out
on your target computer. As the first step, properly connect the Unix tty (e.g. ttyh3)
line to your target computer and turn on the power. A typical sequence of commands

may look like:

% stty 9600 raw -echo> Idev/ttyh3
% kermit clb /dev/ttyxy 9600

iSDM 86 Monitor Yx.y
Copyright 1983 Intel Corporation

*** (capital U is pressed here)

.C··c)
C-Kermit Disconnected
%ldld
ttyh3 ? (yin) y

S 0090:0000
OO00סס:0090 - b8,
0090:0001 00 - 90,
0090:0002 00 - 00,
0090:000300- 8e,

OOOO:007F FF - 00,
0090:0080 FF -

211



% d1 a.abs (wait approximate 5 seconds)

% kermit clb /dev/ttyxy 9600

iSDM 86 Monitor Vx.y

Copyright 1983 Intel Corporation

.x
AX =0006 CS =0100 IP = 0000 FL = F046 00 DO JO TO SO 21 AO PI CO

BX = lAE3 SS =1000 SP = 0000 BP = 0000

CX =0000 DS =009B 51 =0000

DX = OOD8 ES = 0000 DI = 0000

.x ip=O

.np,

0100:0000 FA
0100:0001 B83F13

0100:0004 BI04

.g
sin( 5.7) =0.099833

sin(11.5) = 0.198669

sin(17.2) =0.295520

sin(22.9) = 0.389418

sin(28.6) =0.479426

sin(34.4) =0.564642

sin(40.1) = 0.644218

sin(45.8) =0.717356

sin(51.6) = 0.783327

sin(57.3) = 0.841471

CLI -,

MOV AX, 133FH

MOVCL,4

;1 = +4927-,

*BREAK at OlOO:002B
.x

AX =0006 CS =0100 IP =0020 FL =F046 00 DO JO TO SO ZI AO PI CO
BX = lAE3 SS =1000 SP =FFOO BP =0000
ex =0000 DS = 1000 51 = 0081
OX = 0008 ES = 1000 DI =0000
.(AC)

C-Kermit Disconnected
%

212



You are now at the end of a debugging session.

B.9. I/O Library

Only standard input and output functions are provided by the library, i.e., input to
the program and output from the program can only go through your tenninal. Further
more, I/O functions are restricted to the following. Attempt to invoke any other will
result in an undefined function error.
char getchar();
char *gets();
putchar(ch) char ch;
putw(word) int word;
puts(s) char *s;
printf(s, arg) char *s;

It should be pointed out that the line feed character '\n', when used to obtain a

new line, must be accompanied by a carriage return '\r' in order to move the cursor
back to the beginning of the next line. This second character is put out by Unix
automatically so that your printing program need not use it explicitly.

B.I0. Math Library

The following math functions are provided in the math library.
double fabs(), IdexpO, modf();
double sqrt();
double sin(), cos(), tan(), asin(), acos(), atan(), atan2();
double sc(sc_p, angle)
struct sncs *sc_p; double angle;
where sncs is
struct sncs {

float sin;
float cos;

};

B.l1. 8087 Floating Point Stack Programming

The compiler does not make use of the floating point stack registers one through

seven for the sake of simplicity. On the other hand, at times you may desire to achieve
better efficiency by programming in A86 and taking advantage of the floating registers.
Unfortunately, the A86 does not provide instructions which handle the float stack
registers except for the top, it is necessary to program in 8087 machine code directly.
The following table provides some of the frequently used arithmetic instructions to

213 .



manipulate on the float stack. An example is also presented to illustrate the idea and

the technique.

Instructions 1=0 i=l i=2 i=3 i=4 1=5 i=6
....
1=1

!

I Oxc2d8
!

Oxc3d8 Oxc4d8 Oxc5d8 I Oxc6d8 Oxc7d8I fadd st, s(i) OxcOd8 Oxcld8 I
fadd st(i), st OxcOdc Oxcldc I Oxc2dc Oxc3dc Oxc4dc Oxc5dc Oxc6dc Oxc7dc

!

I Oxc2de Oxc3de Oxc4de Oxc5de Oxc6de I Oxc7de
I

faddp st(i), st I OxcOde Oxclde
!I I !

I I
!

1fsub 5t, st(i) OxeOd8 Oxeld8 Oxe2d8 Oxe3d8 Oxe4d8 Oxe5d8 Oxe6d8 ! Oxe7d8
i

~

I
I

fsubr 5t, st(i) Oxe8d8 Oxe9d8 Oxead8 Oxebd8 Oxecd8 Oxedd8 Oxeed8 I Oxefd8I I

l I

1 I 1
1

I I
fsub st(i), 5t Oxe8dc Oxe9dc Oxeadc Oxebdc Oxecdc Oxeddc Oxeedc Oxefdc I

I I
i 1 I

I I

: 1
:

I fsubp st(i), st
~ I I

I
I I

Oxe8de I Oxe9de Oxeade Oxebde Oxecde Oxedde Oxeede I Oxefde I
I I ,

I fsubrp st(i), st I I
I

OxeOde Oxelde Oxe2de Oxe3de Oxe4de Oxe5de Oxe6de ! Oxe7de

fmul 5t, st(i) Oxc8d8 Oxc9d8 Oxcad8 Oxcbd8 Oxccd8 Oxcdd8 Oxced8 Oxcfd8

fmul 5t(i), st Oxc8dc Oxc9dc Oxcadc Oxcbdc Oxccdc Oxcddc Oxcedc Oxcfdc

I fmulp st(i), st Oxc8de Oxc9de I Oxcade Oxcbde Oxccde Oxcdde I Oxcede ! Oxcfde
i I I

fdiv S4 st(i) I OxfOd8 Oxfld8 I Oxf2d8 Oxf3d8 Oxf4d8 Oxf5d8 Oxf6d8 Oxt7d8

fdivr 31., st(i) Oxf8d8 I Oxf9d8 I Oxfad8 I Oxtbd8 Oxfcd8 I Oxfdd8 I Oxfed8 ! Oxffd8I
l

I
! I

I I Ifdiv st(i), st
I

Oxf8dc Oxf9dc I Oxfadc I Oxtbdc Oxfcdc Oxfddc
I

Oxfedc Oxffdc I~

I
I !

! I I I I !fdivr st(i), st OxfOdc
I

Oxfldc i Oxf2.dc Oxf3dc Oxf4dc Oxf5dc I Oxf6dc ! Oxt7dc 1
I I

1 ! I
I I

I I j I I
I I Ifdivp st(i), st Oxf8de Oxf9de Oxfade Oxtbde Oxfcde I Oxfdde j Oxfede I OxffdeI , I

i I II

fdivrp st(i), st OxfOde Oxflde I Oxf2de Oxf3de Oxf4de Oxf5de I Oxf6de I Oxt7de, I
fld st(i) OxcOd9 Oxcld9 I Oxc2d9

,
Oxc3d9 I Oxc4d9 Oxc5d9 1 Oxc6d9 I Oxc7d9t I j

1I I

fxch st(i) Oxc8d9 Oxc9d9 1 Oxcad9 Oxcbd9 Oxccd9 I Oxcdd9 1 Oxced9 Oxcfd9 1

I

Oxd3dd I
!

fst st(i) OxdOdd Oxdldd Oxd2dd Oxd4dd Oxd5dd I Oxd6dd Oxd7dd

I fstp st(i) I Oxd8dd Oxd9dd I Oxdadd
I Oxdbdd I I I

I
Oxdcdd

1 Oxdddd I Oxdedd Oxdfdd
I I I I I I

I fsubr st(i), st I OxeOdc Oxeldc Oxe2dc Oxe3dc Oxe4dc I Oxe5dc I Oxe6dc I Oxe7dc !

Table A.I. Encodings of 8087 Float Stack Arithmetic Instructions

Suppose you would like to program a partial sinus function using 8087's partial
tangent call. It may look like:

214



·globl _psin
I double psin(x) x double; compute sinus of x in radians
_psin: mov bx, sp

fldd *2(bx)
fptan
fwait
.word Oxc8d8 Ifmul st, st(O)
fwait
.word Oxcld9 I fld st(l)

fwait
.word Oxc8d8 Ifmul st, st(O)

fwait
.word Oxclde I faddp s(l), st(O)

fsqrt
fwait
.word Oxf9de Ifdivp st(l), st(O)
ret

Note that every instruction must be preceded by a float wait 0 instruction to assure nor
mal function of the hardware. Also, if you are serious about programming 8087,
always remember to clean up the float stack before exiting a function, with the return
value of the function on the stack if there is any. Pushing too many things on to the

saturated float stack leads to unexpected result as the values at the bottom of the stack
will not drop out as one would think.



REFERENCES
[1] Paul, RP. and Zhang, H. 1985. "Design of a Robot Force,tM:otion Server".

Proceedings of IEEE International Conference on Robotics and Automation,

St.Louis, MO.

[2] Paul, R.P., Zhang, H., Hashimoto, M., Durrant-Whyte, H., Izaguirre, A., Trinkle,
J., Zhang, Y., Fuma, F., Ulrich, N., and Donham, M. 1986. "A Distributed System

for Robot Manipulator Control", Department of Computer and Information Sci

ence, the University of Pennsylvania. 1986.

[3] Hayward, V. and Paul, R. 1984. "Introduction to RCCL: A Robot Control C Li
brary", Proceedings of IEEE International Conference on Robotics and Automa

tion, Atlanta, GA.

[4] Pu, P. 1986. "RoboNet: A Local Area Network for Robot Systems", Department

of Computer and Infonnation Science, University of Pennsylvania.

[5] Paul, RP. 1981. "Robot Manipulators: Mathematics, Programming, and Con

trol", MIT Press.

[7] Paul, R.P. and Zhang, H. 1984. "Robot Motion Trajectory Specification and

Generation", ISRR Proceedings, Japan.

[8] Zhang, H. and Paul, R.P. 1988. "A Parallel Solution to Robot Inverse Kinemat
ics u

, Proceedings of IEEE International Conference on Robotics and Automation,
Philadelphia, PA.

[9] Izaguirre, A., Hashimoto, M., and Paul, R. 1987. "A New Computational Struc
ture for Real-time Dynamics". Proceedings of International Workshop on Robot

ics: Trends, Technology, and Applications, Madrid, Spain.

[10] Paul, R. P. and Zhang, H. 1986. "Computationally Efficient Kinematics for Mani

pulators with Spherical Wrists Based on the Homogeneous Transfonnation
Representation". International Journal ofRobotics Research 5(2):32 - 44.

[11] Postel, J., 1980. "User Datagram Protocol", RFC 768, Information Sciences Insti
tute.

[12] Postel, J., 1982. "TCP-IP Implementations", Network Infonnation Center, SRI
Int.

[13] Intel 1985. "Local Area Networking (LAN) Component User's Manual",
230814-002, Intel Corporation.

[14] Intel 1984. "iSBC 186/51 COMMputer Board Hardware Reference Manual,"
122136-002, Intel Corporation.



[15] Tanenbaum, A., 1981. "Computer Networks", Englewood Cliffs, N.J., Prentice

Hall,

[16] Kernighan, B.W and Ritchie, D.M. 1978. ttThe C Programming Language",

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632.

[17] Intel Corporation, "iSBC 337 Multimodule Numeric Data Processor Hardware

Reference Manual", Intel Corporation, 3065 Bowers Avenue, Santa Clara, Cali

fornia 95051.

[18] Rector, R. and Alexy, G, "The 8086 Book", Osborne/McGraw-Hill, 630 Bancroft
Way, Berkeley, California 94710.

[19] Levy, HM. and Eckhouse, RE., "Computer Programming and Architecture", Di

gital Equipment Corporation, Bedford, MA 01730.

[20] Intel Corporation, "ASM86 Language Reference Manual", Inte.l Corporation,

3065 Bowers Avenue, Santa Clara, California 95051.

[21] Intel Corporation, "iSDM 86 System Debug Monitor Reference Manual",

Hardware Reference Manual", Intel Corporation, 3065 Bowers Avenue, Santa

Clara, California 95051.

(22] Intel 1982. "iSBC 86/14 and iSBC 86/30 Single Board Computer Hardware
Reference Manual," 14404-002, Intel Corporation.



A.6 A Parallel Solution to Robot Inverse Kinematics

218



A Parallel Solution to Robot Inverse Kinematics

Hong Zhang
Richard P. Paul

Department of Computer and Information Sciences
University of Pennsylvania

Philadelphia, PA 19104

Abstract - In this paper, we introduce an algorithm by which the inverse kinematics
of a robot manipulator with closed-form solution can be computed in parallel to reduce
the computational complexity roughly by a factor of n, the number of joints of the manipu
lator. Further, we study the errors introduced by the algorithm statistically to demon
strate that the algorithm is stable, well behaved and, for all practical purposes, it produces
satisfactory results. Comparison with other methods employing approximation is made to
show the superiority of the algorithm. Finally, we briefly describe its implementation on a
multiprocessor system.

I. INTRODUCTION

A robot task is specified in the Cartesian space, while the robot manipulator is actuated in
the joint space. The inverse kinematics problem' is defined as the mapping from the Cartesian
space to the joint space,

(R,p) ~ 9 (1)

i.e., given the position, p and orientation, R, of the end effector of the robot manipulator, solve
for the joint coordinates which will result in the desired position and orientation.

Typically, a robot manipulator is designed as a six-joint mechanical linkage with the last
three joints intersecting each other, forming a wrist. In this case, it has been repeatedly shown
that a closed form solution exists to the inverse kinematics problem. The value of joint i can be
expressed in terms of the end effector position and orientation and values of prior i-l joints. If
we represent the manipulator position and orientation by a homogeneous transformation called
T6, we have the following general equation,

(2)

This material is based on work supponed by the National Science Foundation under Grant No.
ECS-8411879. Any opinions, findings, conclusions, or recommendations expressed in this publi
cation are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

219



or, in a more detailed fashion, as

(3)

for i=l through 6.

The inverse kinematics as solved above requires a number of multiplications and divisions,

additions and subtractions, and trigonometry functions. Depending upon the processor on

which the computations are performed and the way programming is done (e.g., in assembler or
in a high level language), its computational complexity lies typically between two to ten mil

liseconds. Using the PUMA 260 robot manipulator as an example, the inverse kinematics

requires 40 multiplications and divisions, 21 additions and subtractions, 1 square root, eight

inverse trigonometry calls, and four sets of sine/cosine calls [1]. If this is to be programmed in

'C' and computed on an 8086/8087 based system in floating point with the overhead of the

compiler considered, it will take about seven milliseconds [2].

Of course a manipulator control system must compute more than just the inverse kinemat

ics. It must, for example, derive the next T6 from the task specification before inverse kinemat

ics can be solved. In case of a Cartesian motion, this may involve a number of matrix opera
tions. Adding the time required to compute T6, it takes well over ten milliseconds to derive

each point along a motion trajectory.

Robot control is a real-time process, the output of which provides to the joint servos a

sequence of positions, called setpoints, that are evenly spaced in time and separated by one

sampling period, &, which must be small enough to ensure a smooth and stable motion. If a

robot task requires a straight line motion, inverse kinematics must be performed periodically.

However, it is usually impossible to compute the inverse kinematics at the same rate as the sam

pling rate due to its computational complexity. Instead, a new setpoint is generated only every

T¥d > 6.t , and one often resorts to one of two solutions to fill the missing setpoints between two

updates: either generating the setpoints off line or employing numerical methods such as poly

nomial interpolation. The off-line programming would be fine if the traj~ctory were not to be
modified while being followed, which is not the case in many tasks such as compliance or a

sensor-driven motion. Therefore, off-line programming is of value only in simple pick-and

place operations with fixed and known task geometry.

The numerical interpolation is widely applied to reduce the computational load, but it

ought to be used with an understanding of its consequences. First, since in general a linear
motion in Cartesian space requires a non-linear motion in joint space, the interpolated inter

mediate points will only generate an approximately straight line motion in the Cartesian space.

Suppose that between two computed positions of joint i 8i Ctk) at tic and 6i (tk+l) at tk+1, nine

more points, one every J1.t, are interpolated linearly, the result is illustrated in Fig. 1, where the

arc is the trajectory that the joint must follow to generate a straight line Cartesian motion and
the line segment is the result of the interpolation of two computed joint positions The difference

between the arc and straight line would lead to errors in the Cartesian space. In general, this

220



piece-wise linear motion of joint i contributes to errors in all Cartesian directions.

..
tk+l

1

•

Fig. 1. Error due to joint space interpolation

The second and more important reason why one would like to minimize T¥d is related to
robot tasks such as tracking, in which the trajectory is modified while being executed. If the
rate at which the points are generated falls short of that at which trajectory is modified, tracking
inaccuracy will result. This would be the case where the changes occur faster than the system
can compute, even though mechanically the manipulator may still be able to react. Fig. 2 illus
trates a bad case of tracking error when the interpolating process tells the joint to go one way

(solid straight line) while the modification tells it to go the other (dotted curve).

9i I
......... ... .... ...............

•

Fig. 2. Error due to path modification during execution

Such a characteristic associated with numerical interpolation limits the range of applica
tions a robot manipulator can perform, creating a situation where the controller limits the per
formance of the manipulator. In general, if the update takes place every Tfpd, the modification
to motion, whether by a tracking camera or by contact with the environment during compliance,
must take place at a rate slower than l/Tfpd in order for the modification to be meaningful.

The key question now becomes how we can minimize T¥d, ideally, to the level when the
manipulator can still respond. If we break the process of generating a new setpoint into two
steps, fIrst computing the next desired Cartesian position T6, then perfonning inverse

')')1



(4)

kinematics, we can reduce T~d by decreasing the time spent on solving the inverse kinematics,

denoted here as T~d. In the next few sections, we will describe a parallel solution to the inverse

kinematics problem to achieve the above goal, discuss the implications of the solution, and

show an actual implementation of the solution on a multi-processor system.

ll. PROPOSED PARALLEL INVERSE KINEMATICS (PIK)

The advance in micro-electronics technology has made a multi-processor system a solution

to many problems that were not feasible before. The use of multi-processors is also justified

economically by the fact a uni-processor system usually costs more than the multiprocessor sys

tem with the same throughput. Though the technology has been widely applied to robot control

problems, we have yet to see the inverse kinematics problem be solved with a multi-processor

system. As argued above, if the time spent on solving inverse kinematics is reduced, the entire

system can be driven and respond at a higher rate, thereby improving its performance.

The inverse kinematics is generally viewed as a serial process, since it is solved from the

frrst joint of the manipulator up to the last joint one after another due to the 9i 's dependency on

the prior i -1 joints. Mathematically for a six-joint robot manipulator this can be expressed as

8t =At(T6)

~=A2(T6, a1)

93 =A3(T6, 81, 92)

94 =i4(T6, 91, 92, 83)

8s = As(T6, 81, , 84)

66 =~(T6, 81, ,8s)

Notice that since the process of generating setpoints is repetitive, there is a time implicitly

associated in Eq(4). To be explicitly in time, we have in general,

(5)

Joint three, for example, cannot be computed until joints one and two are finished to make
81 (tk) and 92(tk) available.

This serial process, however, can be parallelized approximately by recognizing the

dynamic nature of the process and the continuity of joint trajectories. Rewrite Eq(5) to the gen
eral form:

Inverse kinematics for joint three, for example, becomes

83(tk) = A3(T6(tk), 81(tk-I)' 82(tk-l))

222

(6)

(7)



(9)

In effect, the i th joint uses the values of the prior i -1 joints in the previous sampling period.
Obviously Eq (7) will not generate the same values as the original due to the approximation,
one can however argue that since the difference in time between two neighboring points is
small, one expects only a reasonably small error in 83. ewe will better quantify reasonably in

the next section.) What comes out of the conversion process is a set of six parallel processes so
that when one processor is assigned to each joint, all six processors can start computing the
inverse kinematics of their respective joint angles at the same time. -Assuming when inverse
kinematics is solved serially, the computational complexity is

Tserial =,t Ti (8)

where Ti is the computation time of Eq(4), then the complexity of the parallel inverse kinemat

ics is roughly

Tpartl =max { Th ... , T6}
We say roughly since Ti may change when we change a serial process to a parallel process, as
certain intermediate results used in a serial process no longer exist in the parallel process.

To illustrate the method, we use a simple two-link manipulator in Fig. 3. It has two revo
lute joints and both links are of unit length.

Y

Y2
~2

x
-----------------~

Fig. 3. A simple manipulator

Suppose we are interested in positioning the manipulator arbitrarily on the x -y plane, the direct
kinematics has the form:

x =cos(91 + 92) + cos(91)

y =sin(91 + 9~ + sin(91)

And the inverse kinematics has the form:

223

(10)



(11 )

Using the parallel algorithm in Eq(6), we employ two processors. On the frrst processor, we

compute fIrst half ofEq.(ll), which can be rewritten with time variable expressed explicitly:

a(t )=tan-Iy(tk;) + cos-I ""X 2
(tk)+y2(tk) (12)

1 k ~ 2

and on the second processor, we compute,

e(t ) = tan-I y (t,,)-sin(8ICtk-l)) - 8l(t )
2 Ie x (tic )-eOS(81(tk-I)) J. Ie-I (13)

Notice in Eq(13) that 82 at tk is solved in terms of the current Cartesian position (x, y) and the

81 at time tk-l.

The difference between Eq(8) and Eq(9) in terms of computational complexity can be con

siderable. In the ideal case when all Ti are equal, the complexity would be reduced by a factor

of six, the number of joints of the robot More realistically, we use PUMA 260 as an example
to calculate the difference in computational complexity on a per-processor basis. The costs of

various operations listed in Table I are determined based on the actual times of execution of

those operations when executed on an Intel 8087 floating point processor, taking into account
the overhead for fetching and storing data.

I operation time ofexec

adds/subs 40Jls

multiply/divide 53Jls

inverse trig 350Jls

sinlcos pair 360~s

square root lOOJls

Table I. Time of Execution of Different Operations

Table II lists tile computational complexity of the serial inverse kinematics in terms of the
weighted cost. The weighted cost of an operation is one-tenth of the actual time of execution in

milliseconds. The complexity of the entire inverse kinematic equals the sum of the complexi

ties of the individual joints if the inverse kinematics is solved serially as in Eq (4).

224



+or- * or / trig-1 sin/cos sqrt weighted cost

a1 1 2 2 1 0 120.6

92 5 7 2 1 1 173.1

93 5 8 1 0 0 97.4

94 3 7 1 0 0 84.1

9s 2 5 1 0 0 69.5

96 7 15 1 0 0 142.5

L 21 40 8 2 1 687.2

Table II. Computational Complexity When Executed in Serial

Table III lists the complexity when the inverse kinematics is solved in parallel as in Eq(6).
In this case, the complexity of each joint solution may vary from the serial case, for as men
tioned the joints can no longer share intermediate results, but overall the complexity of the
inverse kinematics is reduced by a factor of about four, from a relative cost of 687.2 to 173.7, as

we expect.

+ or- • orl trig-1 sin/cos sqrt weighted cost

91 1 2 2 1 0 120.6

92 5 7 2 1 1 173.1

a3 4 6 1 0 0 82.8

94 5 11 1 0 0 113.3

9s 7 15 1 0 0 142.5

96 9 19 1 0 0 171.7

max(= 92) 5 7 2 1 1 173.1

Table ill. Computational Complexity When Executed in Parallel

The reduction in computational complexity, however, is not obtained without paying a
price. First, a multiprocessor or parallel machine is more difficult to program, and there is over
head involved in data communication and system synchronization. Second, errors are intro

duced as the result of approximating the current joint angles by the previous ones. The fact that
the update period T~d is usually small assures to certain extent that the approximation we use
will not yield a trajectory substantially different from the accurate one. However, it is



necessary to evaluate the error in both more qualitative and quantitative tenns.

ill. ERROR ANALYSIS

In general, the manipulator moves along a straight line from the initial to the final confi

guration defined by (Ri , Pi) and (Rf , Pf)' respectively. To simplify the analysis, we ignore
transition between path segments and assume that the position changes linearly with time by

evaluating the equation

(14)

where the motion parameter h linear with time varies from 0 to 1 to bring the manipulator from

initial to fmal position. The orientation change in a Cartesian motion can be accomplished in a
number of ways, as a linear rotation in space cannot be uniquely defined. In one cornnlonly

used approach, the orientation change, R, takes place about the unit vector n which remains

constant before and after the change. The vector can be defined by two Euler angles, <p and'lf, as

n =CcpS 'Vi + ScpS~ + C'Vk (15)

and the rotation change by an angle 8. Those three variables can be found by solving the equa

tion [5]

(16)

which, when multiplied by the initial orientation, produces the fmal orientation. Similar to
position change, we vary the amount of rotation successively by multiplying e with motion
parameter h to bring the manipulator from the initial to the final orientation.

A. Error Definition

Errors are defined as the difference between the nominal position and orientation of the
manipulator and the position and orientation as the result of the approximation in our parallel

inverse kinematic solution. As position error is decoupled from orientation error as far as
inverse kinematics, they are considered separately.

Similar to [3], the deviation of the position vector, ep is computed by

ep (t) =p(t) - Pp (t ) (17)

where p is the position vector for a given time and Pp the position vector corresponding to the
joint angles that are computed with the parallel scheme from p, and the norm of e

(18)

we define as the position error.

It is less clear what we should define as the orientation error; one may favor one way or
another depending upon the application. Here, we outline two conventions used in defining

226



(19)

orientation errors.

One popular approach [3] defmes the error as the absolute value of the difference between
the desired amount of rotation and the actual amount of rotation when inverse kinematics is

computed in parallel, i.e.,

or (t) = Iangle (R(n, h* 9)) - angle (Ra (t)) f

= Ih* a- angle (Ra (t)) I

where the function angle returns the actual amount of rotation about the unit vector n.

Another convention to deflLle orientation error is based on Cartesian coordinates or dif

ferential rotations about the principle axes [4]. Since the actual rotation Ra (t) is close to the
desired rotation R(t), the matrix multiply

dR=R-l(t)Ra (t) (20)

is a valid differential rotation with the general form

1 5z -oy
dR= -oz 1 ax

oy -Ox 1
(21)

where Ox, oy, and 0% represent errors of rotation about x , y, and z axes. We now can defme
the orientation error as the nonn of the vector (ax , oy ,~z )

Or(t)=...Jax2 +oy2+0z2 (22)

B. Statistical Models ofErrors

Now that the error criteria have been specified for any given moment along a trajectory, it

is yet another problem how to study the behavior of the error in order to reach conclusions valid
over the entire robot workspace. Unfortunately, it is extremely difficult to come up with an
analytical expression for Eq(18) or Eq(22) even for a simple manipulator. Therefore, we cannot
derive the error analytically frrst and then base our evaluation of the method on the analytical
form of the error.

To establish the fact the method produces results acceptable from a practical point of view,
we can statistically investigate the errors due to the approximation by showing their characteris
tics such as bounds and averages. If our domain of trajectories covers the entire robot
workspace and if the method is well behaved statistically even in the worse case, then we can be
confident that the method is applicable in practice.

While we conduct such a statistical study, we should also consider the effect of time
parameters on the error. Intuitively, for example, the shorter T5;,d and slower the motion is, the
smaller the errors, since the previous joint positions more closely approximate the current ones.



Given the fact that we deal with the manipulators with three positioning joints and an

intersecting wrist, we can build the statistic model for position error as follows:

Let Pi and Pd be the initial and destination position vectors of a motion segment. The Cartesian

trajectory planner G produces successive P(tk) as

(23)

and, if we apply Eq(6), the frrst three joints solve for their joint angles from the position vector

P(tk) by

91(tk) = Al(P(tk))

92(tk) =A2(P(tk), 81(tk-l))

83((t) =A3(P(tk), 81(tk-l), 82(tk-l))

The resultant vector, Pp (tk) is computed using direct kinematics

Pp Ctk) =A-l(81(tk), 92(tk), 83(tk))

The position error function is then

(24)

(25)

(26)

Now the position error function is a function of the initial and des~nation positions, and

manipulator kinematics. For a given manipulator, the kinematics is f!Xed. The statistic model

of the errors can then be established by randomizing the initial and [mal positions, Pi and Pd,
the error function in Eq(26) becomes basically a stochastic process dependent on random vari

ables, Pi and Pd, and on time t. It can be interpreted as follows: at any given time t, Op is a ran

dom variable itself; and for any two chosen Pi and Pd, Op (t) becomes an ordinary function of

time.

At this point, we bring two other important variables into the error function, the motion

segment time Tseg and sampling period T$,d. For a given robot control system, the sampling

period, once chosen, usually remains unchanged. Segment times, however, change from motion

to motion, but in a much more predictable fashion than the positions the manipulator may move

to. Therefore, we can take this into account by considering the error function for a few represen
tative and fixed values of Tseg • With the time parameters, Eq (23) is rewritten as

(27)

Orientation error function can be similarly computed. Given R i and Rf , we compute 0, 8

that defines the rotation change. Applying Eq (24) we arrive at the fIrst three joint solutions in
PIK. We then carry out Eq (28) to complete the solution.

228



94(t/c) =At(R(tk), 91(tk-I), , 93(tk-l))

eS(tk) = A2(R(tk), 91(tk-I), , 84(tk-l»

e6(tk) =A3(R(tk), 81(tk-l), , 9S(tk-l) (28)

Similar to Eq (26) the equivalent rotation of the above solution is computed by the direct

kinematics

(29)

By applying Eq (20) through (22) to compute orientation error Or (tk), we can compute orienta

tion error at each point along a motion trajectory. Furthermore, if we randomize the parameters
'II, $, and e that defme orientation change over the entire robot orienting space, we can evaluate
our algorithm by studying the characteristics of Eq (22).

So far we have introduced our parallel inverse kinematics solution and a method to con
struct statistical models of position and orientation error functions. Both the solution and the
technique for constructing error models are applicable to a number of robot manipulators with a
closed-form inverse kinematic solution. In the next section, we use a specific example to evalu
ate our algorithm.

IV. EVALUATION ON PUMA 260

We evaluate the algorithm on a PUMA 260 manipulator, which has six degrees of freedom
with six revolute joints and a reach of approximately 40 centimeters. The symbolic inverse
kinematics and Jacobian matrices we use here are based on those in [1]. We break: the section
into two parts - in the fIrSt part, we study the position errors; in the second, we study orientation
errors. In each case, we vary the time parameters, Tseg segment time and T5f,d the setpoint

update period, and we examine distributions of two variables, the mean error 3 and maximum
error omax, in both position and orientation. All simulation programs are written in 'C' using
single precision floating point arithmetics.

A. Position En-or Analysis

While generating random initial and final positions, one must make sure the Cartesian tra
jectory between the two positions lies inside the -robot workspace and does not include any
singularity points. While one could test the condition whether a singularity is reached after a
new setpoint is generated, one could also use the following criteria to predict the presence of
any position singularity along the trajectory without performing any inverse kinematics.

The position workspace of PUMA 260, which contains only an elbow position singularity,
can be viewed as the space between a sphere and a cylinder as illustrated in Fig. 4.

229



z

i

Fig. 4: Position workspace of PUMA 260

The sphere is the space swept by the arm when it is fully extended, and the cylinder is the
space the arm cannot reach due to the shoulder offset, D 2. We ignore the joints' limits since

they are irrelevant as far as our analysis is concerned. To detennine if the two randomly chosed

positions Pi and PI, where

(30)

form a Cartesian trajectory that does not contain the elbow singularity and that lies entirely in

the workspace, the trajectory P =Pd - Pi must satisfy two conditions:

(i) The end points of two vectors, Pi and Pd, must lie in the workspace. For this to be true,
the it is necessary that

and that

IPi I<R 2, IPd I<R 2

(31)

(32)

(ii) If (i) is true, in order for every point on between Pi and Pd to be inside the workspace it

must be true that when Pmin and A, are defined as

(33)

230



for some 0 ~ 1 ~ 1, Pmin must satisfy

x&+y&>Rr
and

(34)

(35)

(36)

In case the solution leads to A, > 1 or A< 0, the trajectory also lies entirely in the
workspace. Geometrically, we shrink the sphere and grow the cylinder symmetrically,
then make sure the line segment between the two end positions lies entirely inside the
volume between the shrunk sphere and grown cylinder. Such a test can determine the
feasibility of a Cartesian trajectory most efficiently without actually generating intermedi
ate points.

In generating the initial and fmal vectors, the x ,y and z coordinates are randomly gen
erated by a random number generator with uniform distribution between (0, R 2) for x, (-R 2,

R 2) for y , and (-R ~ R 2) for z. The reason why x is chosen to be alway positive is that it is suf

ficient to study a semisphere as all other cases simply correspond to semispheres that can be
obtained by rotating this one about the waist axis; such a rotation does not affect the nature of
the problem.

We choose to have segment times of 3 and 7 seconds, and T~d of 3 ms 7 TnS, which cover

the range of values for these parameters in typical robot control systems. Unless otherwise indi
cated, every distribution is obtained from 1000 randomly selected trajectories.

Error Op Case 1: Tseg = 7sees and T~d = 7ms

In the fIrSt set of plots, we display the distributions of the maximum and mean of the posi
tion error function in Eq(26) for the time parameters given above.

231



o
o 0.5

(a)

1 1.5

o

o 0.2 0.4 0.6

(b)

Fig. 5. Position Error Distributions (in mm). (a) of. (b) 8p •

Each distribution is interpreted as a density function with the either mean error or the max

imum error a~ the horizontal axis. Therefore, the probability for a randomly chosen trajectory
to have a mean or maximum error less than x is given by the integration from 0 to x of the

respective distribution. Bounds on errors can also be easily identified. In our first case, the
maximum errors are bounded by about 1.2 mm and the average error by roughly 0.5 mm, for
the specified set of time parameters. For the majority of the trajectories, the maximum error is

less than 0.8 mm and the mean error less than 0.4 mm.

232



Error Op Case 2: Effect ofthe Segment Time

Intuitively, a smaller segment time with unchanged displacement requires higher Cartesian

velocity, leading to larger joint errors. To verify the conjecture, we set the setpoint update time
at 3 ms but vary the segment time from 3 sees to 7 sees. The number of trajectories over which

distributions are computed remains unchanged.

Tseg =7secs

1.510.5

............. :-,
.... : ..:..: .

· ::: :.. :. . Tseg =3secs
..: ..1: ':-.',' .•...•......1. ~....: .

o

o

(a)

Tseg =7sees

o

..-.... .:.. :..:~-.._~ .. . ..
::: . . ::.
" · ·".. · Tseg =3secs

.-:~.: : .

o 0.2 0.4 0.6

. (b)

Fig. 6. Effect of Tseg at T~d =3ms. (a) of (in mm). (b) Sp (in mm).

The curve corresponding to the distribution of smaller segment time is a compressed ver
sion of the one corresponding to larger segment time, with the envelope preserved. By compar
ing the peaks of the two curves, we can see that the change in the magnitude of the errors is
approximately inversely proportional to that in the segmen.t time. Upper bound on position

error for Tseg = 7 sees is about 0.6 mm .

233



Error Op Case 3: Effect afUpdate Period

On the other hand, if we increase the rate at which the new setpoints are computed, we

expect to see decrease in errors. The next two plots display the effect of the update periods on

position errors. The error function is studied for Tfibd =3ms and Tfibd =tms ·

o

........ ... . ...
:.': =..:.\.:......:..... T~=7ms

....
. : .

o 1 2

(a)

3 4

o

...
-..... ..... . .. .

• • -. ••••••••• •••• • ••••• • ••••••• 4 ••

o 0.5 1 1.5

(b)

Fig. 7. Effect ofT~d on & Distribution at Tseg =3secs (a) OpIDaX (in mm). (b) 8p (in mm).

The update period has the similar effect on errors to the inverse of segment time. In all

distributions there is a clear upper bound. Also notice that the distribution for Tfpd = 3ms and

Tseg =3sees in Fig. 7 is almost the same as that for Tfpd = tms and Tseg = 7sees, implying that

the determining factor of the error characteristics is the ratio between Tseg and Tfpd' rather than

the size of each parameter.

234



Orientation Error Analysis

We now turn our attention to the analysis of orientation errors. To generate random orien
tation changes, we generate the frrst two Euler angles, $ and 'V, to create unit vector Eq(15), and
then we generate a rotation random between 0.1 and 0.9 of one 1t for 9, which rotates about the

unit vector. Additionally, the above random rotation is accompanied by a random translation
change as described in the previous section. While generating the random rotations, unlike the
case for position trajectory generation, there is no simple way such as Eq (25) through Eq (30)
to predict if the orientation trajectory will reach any orientation singularity regions[8]. Instead
we have" to test if a point is inside the singularity region after it is generated.

Using the parallel inverse kinematics, we tested the solution over a large number of trajec
tories again to arrive at our statistical evaluation. Conclusions similar to position error analysis
can be drawn from the results of our study on orientation errors. In our analysis we use Eq (22)

to calculate orientation error on each point along a trajectory as the square root of the sum of
squares of rotational errors about each principle axes. Since the conclusions are similar, here we
simply display some of the plots to show the characteristics of the distributions, again of mean
orientation errors and maximum orientation errors.

Error Or Case 1: Tseg = 7sees andT~ = 7ms

o

o 0.5 1

(a)

235

1.5 2 2.5



o

o 0.1 0.2 0.3

(b)

Fig. 8. Orientation Error Distribution (in degs). (a) ormax. (b) 8r .

As we can see, the maximum errors for the given set of time parameters are almost always
less than 1.5 degrees and mean errors less than 0.2 degrees. Compared. with the position error
distribution, the peak of the error distribution occurs more closely to zero. The upper bound
corresponding to the worst case over the entire workspace in each case occurs at a relatively
large value. This may be caused by the fact the orientation of T6 is determined by all six joints
so that the outer joints' computation bares the noises due to approximation that are generated by
all prior joints, leading to the drifting of errors to a large upper bound before they disappear.
For position errors, since solution of the the positioning joints is independent of that of the
orienting joints, they are less noisy than the orientation errors.

Error 8,. Case 2: Effect ofSegment Times

Next we study the orientation errors by varying the segment times of motion trajectories
between 3 and 7 seconds but maintaining the same update time at 3 mm.

236



Tseg =7secs

Tseg =3secs
...... -. .-"""'-""' ~......:.. ....:.:.:...:.:-- .o

o

o 0.5

Tseg =7secs

.... .
: ~.:..

:. . ... :.. :; .-.....
• -: e.

1

(a)

- _.: .

1.5

Tseg =3secs

o 0.05 0.1 0.15 0.2 0.25

(b)

Fig. 9. Effect ofTseg on Or atT~ = 3ms. (a) OF (in degs). (b) Br (in degs).

The decrease of the update time compresses the distribution, but preserves its envelope.
Further, the decrease in error is roughly linear to the decrease in update period.

C. Comparison to Resolved Motion Control

Now we have statistical models of the mean and maximum errors, but we have not
answered the question: how does the method compare with other similar approaches in terms of
these errors? As we mentioned the parallel algorithm gains efficiency through approximation.
Therefore, it is only fair to compare the method with other representative approximation
methods used to generate Cartesian trajectories.



One widely applied approach is Resolved Motion Rate Control (Rl\1RC) proposed by

Whitney. The approach is based on the idea that the joint velocity vector can be derived from
the Cartesian velocity vector by using the inverse Jacobian. However since the setpoint process
is discrete in time, the desired joint velocity vector at the entire update period is approximated
by that at the beginning of the period, ignoring second or higher order effects. Further, since
the update of Jacobian matrix takes a considerable amount of time, it is usually computed in

background at a slower rate, causing further deviation of the computed trajectory from the

desired one. The effect of both factors on tracking error is illustrated in Fig. 10, where TU~d is

usually a few times longer than T~d.

TJ,d

Fig. 10. Linear Approximation In Jacobian Control

Errors caused by the approximation can be readily computed. We denote J(t) as the Jaco

bian matrix and desired Cartesian rate can be computed from the initial and fmal configurations
as

(37)

where each x is a vector of six Cartesian coordinates, three translation and three rotations. The
desired joint velocity is then

the joint position is computed by

t

8(t) = 8(0) +JJ-1idt

(38)

(39)

To calculate the error, we [lIst perform the direct kinematics to find out the position of the
end-effector corresponding to the computed joint positions,

(40)

The error is computed by comparing Eq (40) and the desired T6. One can easily get the

desired T 6 from the initial and final configurations and the time variable. Using Eq (40) we can

calculate error in position op (t) and error in orientation Or (t) as we did when studying PIK. By

238



randomizing the initial and fmal manipulator configurations, we obtain the statistical models of
these error functions.

Another disadvantage of this formulation is that once the real trajectory deviates from the
planned one, the deviation will remain without correction since the velocity is not adjusted
according to where the end-effector is. To reduce the tracking error, one can continuously
recompute the desired Cartesian velocity based on where the end-effector really is, x(t), where
it is heading, Xd, and how much time there is left for the current trajectory Tseg -t, by the equa

tion

e() Xd -x(t)
X t =......--

Tseg-t
(41)

which is no longer constant over [0, Tseg ].

We evaluate the error function again using PUMA 260 as the representative manipulator.
The performance of RMRC is studied over 1000 randomly chosen trajectories and the results
are are compared with those of the parallel algorithm under various time conditions.

Comparison of8p Case 1: Tseg = 7sees, Tuf,d =14 ms andT~ =7ms

Here we assume the Jacobian matrix update takes place at one half of the the rate of the
inverse kinematics computation, a more optimistic ratio favoring Jacobian control than actuality
when they are performed on the same processor. On the PUMA robot for example[l], symbolic
evaluation of the inverse Jacobian matrix requires 118 multiplications, 50 additions, and 6 tri
gonometry function calls, with a weighted cost of 1035.4; on the other hand, the parallel inverse
kinematics has a weighted cost of 173.1 (Table Ill), excluding the overhead, corresponding to a
ratio of 1 to 7. Even in the serial solution, the relative cost is 687.2 (Table IT), corresponding to
a ratio of 1 to 1.5. In the following plots, the dotted curve represents the maximum position
error distribution of RMRC and the solid curve the maximum position error distribution of PIK.

239



o

RMRC... ..
:: : ••••••••••• ' •••••• ~. 0 •• ••• ••••••••••••••••••••••••••••••••••••••••

o 1 2

(a)

3 4 5

RMRC

o

..-...... ..- ...
•• • e.

..
.. .......

""""-''llo....-'"'''' ' •••••••• : •••• :••••••••••••••••••••••••••••••••••••••••

o 0.5 1 1.5

(b)

Fig. 11. Comparisons of op Distributions (in mm). (a) oru. (b) 8p .

The comparison of Omax shows remarkable similarity in the envelopes of the two distributions,
with the distribution of RMRC shifted toward right, implying larger maximum errors. Further,
the distribution for RFMS is much more sparse and worse behaved than PIK. Distribution for
&\t1RC does not have a clear cut-off error, the value above which no more errors would be
observed. However, in the case of PIK in each case we have studied, position error is well
bounded by a cut-off value. In our experiments, this characteristic is maintained regardless the
number of trajectories over which the distribution is computed.

The disparity becomes more apparent in the distributions of mean position errors with the

RMRC's distribution shifting further right and drifting to zero at much larger value than PIK.

240



Comparison ofop Case 2: T~g = 3secs, Tuf,d =6 ms I and T~d =3 ms

In the next set of plots, we cut both the segment time and sampling period by one half and
maintain a two-to-one ratio between the Jacobian matrix update period and the sampling period.
This corresponds to having the Jacobian update period of 6 milliseconds, a figure hard to ap
proach even by the best microprocessor on the market The comparative results are displayed in

Fig. 12 with the distribution for RMRC in dashed curve and that for PIK in solid curve.

Rl\1RC

. . .o

PIK

...::..

o 1 2 3 4

(a)

RMRC

o

.:...
.. ... ...
;.~ e e::

:... .; ...... _ .. . :- -: : ..........................................

o 0.5 1 1.5

(b)

Fig. 12. Comparisons of 8p Distributions for Smaller Tseg and Tfii,d (in mm). (a) 8p
rDax• (b) 5p •

Similar conclusions can be drawn from the above figures. Again the PIK is superior to
RMRC in tenns of tracking accuracy by a large margin. Also we can note that the distributions
do not change much from the Fig. 11, indicating the determining factor is the ratio between the
segment time and T5j,d. D. Comparison to VAL

241



Comparison of PIK can also be made with the control system of PuMA 260, VAL[8], pro
vided by the manufacturer (Unimation). VAL is typical of industrial robot controllers with a

long T&f,d but a small ~t. In particular, VAL computes a new position every 28 milliseconds

and a faster servo loop, running at about a kilohertz, performs a linear interpolation between

two neighboring points. In our study, we set the segment time at 7 seconds, the update period
for PIK at 2 milliseconds, which is about about the best achievable time in an 8086/8087-based

multiprocessor (Table II). The update period for VAL is set at 28 ms, with 13 interpolated

points for each computed point. The result of comparison is displayed in Fig. 13.

VAL

0.06

0.04

0.02

o

.. ..:::: .. -..... : .-- .
:::: :.
: ... .

o

-.:-
-::..
::-::.:: .... :....... _. .

. . : : : .

0.2

(a)

0.4

~......".. .

0.1

0.05

o

.... : .... .: ..
: VAL

........... .: :

o 0.05 0.1

(b)

0.15 0.2

Fig. 13.. Comparison between VAL and PIK (in mm).(a) or. (b) ap •

In tenns of the mean error distribution, VAL has a better perfonnance than PIK with a
upper bound of 0.07 mm. PIK's mean errors are bounded by 0.2 mm. In terms of the two max

imum error distributions, the more important comparison of the two, it is not clear which

242



method is preferred to the other, since VAL has a larger upper bound but PIK a larger mean of
maximum errors. When comparing the two methods by their response times to modification,

PIK is much more superior to VAL: PIK modifies trajectory every 2 ms, enabling the robot to
react to input signals at up until 500 hertz, whereas VAL can handle the input signals only at up

until 35 hertz.

The parallel solution outlined above is implemented using Intel single board computers as

part of a robot control system to control a PUMA 260 manipulator [9]. The system is illustrated

in Fig. 14. Each joint employs an 8086-based 86/30 and is equipped with an 8087 co-processor

so that computations can be performed in floating point. The system is based on the Multibus to

enable joints to communicate with each other.

Ethernet

iSBC
186151
Comm

iSBC
86130
Super

Multibus

iSBC
86130

11

iSBC
86130

12

iSBC
86130

13

iSBC
86130

J4

iSBC
86130

J5

iSBC
86'30

J6

Fig. 14. System Implementation

The trajectory generation algorithm used is based on [5] which is formulated to take

advantage of a multiprocessor system. The process is interrupt driven with an even update
period T&;'d, which we set at 6 ms due to various considerations other than inverse kinematics,

although it can be as small as 3.0 ms. The system. supervisor computes the desired Cartesian
positions T6 and joints compute inverse kinematics in parallel. Between motion segments,

joints perform transitions also in parallel, to remove any discontinuities in position and velocity
between the current and next segment of motion. At the ·servo level, the system runs a PlO con

trol loop with a sampling period of 1.5 ms. The servo derives the position commands by
linearly interpolating setpoints computed by the trajectory generation process.

243



Joints and supervisor communicate via the Multibus through shared memory. At the end of
each sampling period, each joint stores, to known locations or mail boxes, the computed results,
which then are collected, and distributed to other joints if necessary, by the supervisor. The

overhead is dominated by such data collection and distribution among supervisor and the joints.
The supervisor sends a buffer of about 100 bytes to the joints, the buffer containing one of vec

tors of the current T6, sines and cosines of other joints, etc., which each joint needs for inverse

kinematics. A joint sends a buffer of 36 bytes back to the supervisor, reporting what was com

puted in the last period. The amount of data transfer totals 816 bytes in each sampling period.

Since there can be only one bus master at any given moment, the data transfers occur in serial.

Consequently, the system spends about 0.8 ms on exchanging data.

The controller communicates with the external world through an Ethernet communication

processor 186/51. Task defInitions are frrst sent to the controller through this process. While

the task is being executed, task geometry can be modified through this communication. We are

able to handle input changing at up to 50 hertz.

VI. CONCLUSION

A parallel algorithm for the inverse kinematics of a robot manipulator with closed-fonn
solution has been described in this work. The method is highly efficient as demonstrated by the

four-fold reduction in the computational complexity when applied to solving the inverse
kinematics of PUMA 260. Such an improvement in computation efficiency allows the robot to
react to external modifications at a high rate, which is critical for execution of real-time sensor

driven tasks.

We have also introduced a method to study the behavior of the algorithm from the statisti

cal point of view. The method allows us to arrive at statistical models of error functions, on

which the evaluation of the algorithm can be based to study such important parameters as mean
errors and upper bounds, over the entire workspace of the robot. Further, the method can be
applied effectively as well to other problems in which it is difficult to derive symbolic expres

sions for the variables of interest.

The parallel inverse kinematics is applied to a specific robot manipulator, PUMA 260, and

the error analysis technique is used to evaluate the algorithm. The study shows that the method
introduces errors much in the acceptable range; the errors disappear in at most six sampling

periods at the end of the motion. When the update period is seven milliseconds and segment
time is seven seconds, for example, the position errors are upper-bounded by 1.5 millimeters
and the average errors by 0.6 millimeters (Fig. 5). Even though the method has about the same

performance as the interpolation method nonnally employed in industrial robots in terms of

upper bound on errors, the algorithm can be executed at a speed 5 to 10 times faster, thereby

minimizing errors due to modification to the trajectory.

244



The algorithm we have introduced can be implemented using special architecture on a
single-board multiprocessor. The device should be made programmable so that it can solve
kinematics of various robot manipulators. The single-board implementation cuts down the

communication overhead, the physical size, and, hopefully, the cost. With today's micro
processor technology, it is conceivable that such an inverse kinematics processor can run at
about 1 Kilohertz, a rate at which the errors are upper-bounded at about 0.2 mm, small enough
for virtually any application.

REFERENCES

[1] R. P. Paul and H. Zhang, "Computationally efficient kinematics for manipulators with

spherical wrists based on the homogeneous transformation representation," Int. J. Robotics

Res." voL 5, no. 2, pp. 30-42, Summer, 1986.

[2] H. Zhang, "Use of the C/8086 cross compiler," Internal Memo., Department of Computer
and Information Sciences, University of Pennsylvania, Philadelphia, PA., 1985.

[3] R. H. Taylor, t'Planning and execution of straight line manipulator trajectories," IBM Jour

nal ofResearch and Development, vol.23, no.4. July, 1979.

[4] R. P. Paul, Robot Manipulators: Mathematics, Programming and Control. Cambridge,
MA: MIT 1981.

[5] R. P. Paul and H. Zhang, "Robot motion trajectory specification and generation". Proc.
2nd International Symposium of Robotics Research, pp: 373-380, August 20-23, Kyoto,
JAPAN. 1984.

[6] Whitney, D. E. "The mathematics of coordinated control of prostheses and manipulators,"
J. Dynamic Systems, Measurement, Control, pp: 303-309, December, 1972.

[7] R. P. Paul and C.N. Stevenson, "Kinematics of robot wrists," Int. J. Robotics Res., vol. 2,
no. 1, pp.31-38, Spring, 1983.

[8] Unimation Inc., "Breaking away from VAL or how to use your PUMA without using VAL,"
Unimation Inc., 1982.

[9] H. Zhang and R. P. Paul, "A robot force and motion server:' Proc. 1986 ACM/IEEE Com
puter Society Fall Joint Computer Conference, Dallas, Texas, November 1986.

245


	A Distributed System for Robot Manipulator Control
	Recommended Citation

	A Distributed System for Robot Manipulator Control
	Abstract
	Comments
	Author(s)

	tmp.1193772583.pdf.rTt35

