= 2
cnn \’ \ University of Pennsylvania

"% | Libraries |

UNIVERSITY of PENNSYLVANIA Schola rlyCom mons
Technical Reports (CIS) Department of Computer & Information Science
July 1988

A Distributed System for Robot Manipulator Control

Richard P. Paul
University of Pennsylvania

Hong Zhang
University of Pennsylvania

Minoru Hashimoto
University of Pennsylvania

Alberto lzaguirre
University of Pennsylvania

Jeffrey Trinkle
University of Pennsylvania

See next page for additional authors

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation
Richard P. Paul, Hong Zhang, Minoru Hashimoto, Alberto Izaguirre, Jeffrey Trinkle, Nathan Ulrich,
Yangsheng Xu, and Yehong Zhang, "A Distributed System for Robot Manipulator Control", . July 1988.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-88-49.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/673
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/673
mailto:repository@pobox.upenn.edu

A Distributed System for Robot Manipulator Control

Abstract

This is the final report representing three years of work under the current grant. This work was directed to
the development of a distributed computer architecture to function as a force and motion server to a
robot system. In the course of this work we developed a compliant contact sensor to provide for
transitions between position and force control; we have developed an end-effector capable of securing a
stable grasp on an object and a theory of grasping; we have built a controller which minimizes control
delays, and are currently achieving delays of the order of five milliseconds, with sample rates of 200 hertz;
we have developed parallel kinematics algorithms for the controller; we have developed a consistent
approach to the definition of motion both in joint coordinates and in Cartesian coordinates; we have
developed a symbolic simplification software package to generate the dynamics equations of a
manipulator such that the calculations may be split between background and foreground.

Comments

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
ClIS-88-49.

Author(s)

Richard P. Paul, Hong Zhang, Minoru Hashimoto, Alberto Izaguirre, Jeffrey Trinkle, Nathan Ulrich,
Yangsheng Xu, and Yehong Zhang

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/673

https://repository.upenn.edu/cis_reports/673

A DISTRIBUTED SYSTEM FOR
ROBOT MANIPULATOR CONTROL
NSF GRANT ECS84-11879
FINAL REPORT

MS-CIS-88-49
GRASP LAB 149

Department of Computer and Information Science
School of Engineering and Applied Science
University of Pennsylvania
Philadelphia, PA 19104

July 1988

A Distributed System for
Robot Manipulator Control
NSF Grant ECS84-11879
Final Report

Richard P. Paul
Hong Zhang Minoru Hashimoto Alberto Izaguirre
Jeffrey Trinkle Nathan Ulrich Yangsheng Xu
Yehong Zhang

The University of Pennsylvania
Moore School
Philadelphia PA 19104

ABSTRACT

This is the final report representing three years of work under
the current grant. This work was directed to the development of a
distributed computer architecture to function as a force and motion
server to a robot system. In the course of this work we developed a
compliant contact sensor to provide for transitions between position
and force control; we have developed an end-effector capable of se-
curing a stable grasp on an object and a theory of grasping; we have
built a controller which minimizes control delays, and are currently
achieving delays of the order of five milliseconds, with sample rates of
200 hertz; we have developed parallel kinematics algorithms for the
controller; we have developed a consistent approach to the definition
of motion both in joint coordinates and in Cartesian coordinates; we
have developed a symbolic simplification software package to generate
the dynamics equations of a manipulator such that the calculations
may be split between background and foreground.

s e et it ol e o b B b

Contents
1 PAST RESEARCH 1
2 CURRENT RESEARCH 2
2.1 Four Joint Wrist Design 3
2.2 Compliant Wrist Design 3
2.3 Grasping — Theory 4
2.4 Grasping — Practice L. 4
2.5 Dynamicso e e e e e e e e 5
2.6 Robot Force and Motion Server 5
2.7 Parallel Kinematics 5
References e 6
3 DOCUMENTATION 6
A APPENDICES 10
A.1 Terminal Link Force and Position Control of a Robot Manip-
ulator e 11
A2 Planning for Dextrous Manipulation with Sliding Contacts . . 31
A.3 A Medium-Complexity Compliant End Effector 83
A4 A New Computational Structure for Real-Time Dynamics . . 103
A.5 RFMS Software Reference Manual 174

A.6 A Parallel Solution to Robot Inverse Kinematics

1 PAST RESEARCH

Research during the prior years of this grant related to the problems of multi-
sensor control of robots, sensor fusion, and grasp planning. A distributed
computing architecture was proposed in which sensors and actuation con-
trollers run on separate processors coupled together by a network and super-
vised by a coordinator. The coordinator used Bayesian techniques to cluster
sensor observations and to provide a robust estimate of environment state.

Problems of grasp planning were considered together with the design of
a new three fingered hand of medium complexity. A contact sensor was
developed which was to provide contact detection information, compliance
during contact, and relative end-effector displacement.

Actuation was handled by a special purpose, concurrent processor which
provided for both force and motion control. The aim of this processor was
to remove the computational limitations on manipulator performance. This
current system involves delays of the order of 5 milliseconds between changes
in Cartesian coordinates and a response at the manipulator actuator level.
A number of software and hardware tools were developed in the course of
this work. Algorithms were carefully studied in order to reduce the real time
complexity of manipulator control.

Documentation relating to this work was as follows:

e the integration, coordination, and control of multi-sensor systems [1]
[2] (3] [4] [5] [6];
e the planning of grasps [7] [8];

b

e the initial development of the distributed force and motion server [9]
[10];

e research on general manipulation and dynamics [11] [12] [13] [14] [15].

2 CURRENT RESEARCH

During this final year of the Grant we have, in the absence of the availability
of the high performance Hughes Systolic/Cellular Array Processor concen-
trated on developing the robotics applications for which it will be used. These
applications require substantially more computing capability that can be ob-
tained by any reasonable practical machine available. We have, however,
been concerned with the array processor host and manipulator interface, it-
self a significant computational problem. This proposed host system has
been used to demonstrate many of our ideas.

Problems of robot manipulation in unstructured environments may be
viewed in terms of the manipulator’s wrist: the interface between the end-
effector and the manipulator. The end-effector contacts the environment,
grasps objects, and with a grasped objects contacts the environment. The
manipulator is used to position and to orient the wrist and to exert forces

and moments on the wrist so as to apply a required force or moment on the
environment.

In terms of the wrist we must be concerned with;:

e the orienting and positioning of the end-effector along with its abil-

ity to make arbitrary translations and rotations from any given initial
position and orientation.

e making contact and breaking contact with the environment, in which
case, impulsive forces and discontinuities in force will occur; the ma-
nipulator must be shielded from these potentially destructive forces.

e the grasping of objects, the establishment of stable grasps at the ap-
propriate position and orientation on the object so that necessary ma-
nipulative surfaces of features of the object are exposed in the correct
orientation to perform any required actions.

e the ability of the end-effector, or the end-effector holding an object, to

exert forces or moments on the environment while maintaining stability
in unconstrained directions.

e the computational algorithms necessary to control the manipulator
joints to provide the necessary task motions and to provide the neces-

sary task forces, this involves a dynamic model of the manipulator so
that we may separate internal forces from external forces.

2.1 Four Joint Wrist Design

The wrist is required to provide an orienting mechanism, free of kinematic
singularities to orient the end-effector relative to the terminal link of the ma-
nipulator. In this work we consider the manipulator to be a three-dimensional
positioning mechanism with a well defined terminal link orientation, a func-
tion of position. The wrist is then to provide a three-degree-of-freedom ori-
enting mechanism free of singularities. It has been shown in prior work that
this requires a minimum of four revolute axes. It is also desirable that the
wrist does not introduce any appreciable translation as it provides for ro-
tational change. If these joints are to be of limited rotational ability, and
continuous rotation to be ruled out, then we might require that the wrist be
able to rotate some arbitrary finite angle, say £90° from any given initial
orientation. We have been working on developing the design by Fisher which
uses an additional joint to provide motion to control the rates of the three
primary orienting joints [16].

2.2 Compliant Wrist Design

We have also been working on a six-degree-of-freedom passive compliance
located at wrist and instrumented for displacement and orientation [17, 18]
see Appendix A.1. With this compliance we are able to provide a high band-
width low pass filter between the environment and the manipulator. It is used
to absorb the impulsive forces on contact until they may be dissipated by
the manipulator in a controlled manner. The displacement sensor has been
programmed to increase the stiffness of the passive compliance by driving
the manipulator in directions opposite to the detected displacement in order
to provide for stable position control. The displacement sensor has also
been programmed to decrease the stiffness of the passive compliance so as
to provide for force control. In this case the manipulator is programmed
to move so as to maintain a constant deflection of the passive compliance
thus providing a constant force or moment on the environment. We will look
eventually to the combination of the passive into the four revolute wrist to
make a non-singular passive compliant wrist.

2.3 Grasping — Theory

The wrist will interface to the end-effector. We are concerned here with
an end-effector capable of securing a stable grasp on an object, not on the
dextrous manipulation of the object. We rely on the manipulator to do that.
We are thus primarily interested in enveloping grasps in which an object
is held in form closure not in the less stable force closure which relies on
friction between the finger tips and the object for the holding force. In our
case friction is a problem as we would like objects to slide along the fingers
into a form closure grasp against a palm surface. The palm of the end-effector
is instrumented for tactile array information to help determine the grasp on
the object. We thus consider the end-effector to be a soft surface at the end
of the wrist which may be used to exert forces and moments on objects and
the environment and to provide a tactile image of the contact. Fingers are
provided to hold an object against the palm so that the manipulator may
pull as well as push on objects.

Given an arbitrary object it is difficult, if not impossible, to determiningg
how if might be picked-up. If we restrict the class of objects to polyogonial
cylinders we are able to determine grasping strategies and to prove that a
given object will rest in a final position against the palm if the determined
strategy is followed [19, 20, 21]. See Appendix A.2. A large class of objects
may be approximated by polyogonial cylinders and grasping strategies devel-
oped. For other objects specific grasping surfaces must be specified in order
for a stable grasp to be planned.

2.4 Grasping — Practice

We have also developed a medium-complexity end-effector which will en-
able us to provide these grasping and force exerting strategies [22]. See
Appendix A.3. The end-effector consists of a palm around which three fin-
gers are positioned. On finger is fixed in place, the other two fingers move
together, symmetrically around the palm to provide for a number of grasps.
The fingers may be rigid or passively curl around the object. The end-effector
is strong and is suitable for holding wrenches or in using a hammer; it does
not provide for any dextrous motion.

2.5 Dynamics

The control of the manipulator is itself a computational problem. A straight-
forward implementation of manipulator kinematics and dynamics results in
matrix algorithmns, which while simple, involve enormous amounts of arith-
metic computation. Historically this problem has been solved by generating
the symbolic equations that would be evaluated by the numeric algorithm.
Taking advantage of the simple form of many manipulator’s kinematics and
dynamics, which result in many terms being either zero of one, the gener-
ated, closed form symbolic equations, may be evaluated at a far reduced
computational cost. We have been in the forefront of this approach and
have developed not only kinematic equations but have also studied dynamics
[15, 23, 24]. The approach to dynamics is to separate those computations
which must be performed at the control rate and those which may be com-
puted at a much reduced background computational rate dependent only
on manipulator configuration state. The control rate computation is only
six multiplies and additions per joint. Background computations compute
inertias, coupling inertias, and velocity and gravity dependent forces. See
Appendix A 4.

2.6 Robot Force and Motion Server

Even with these symbolic techniques it is necessary many of the low-level
computations in parallel. See Appendix A.5. To this end we have developed a
multi-processor computer controller based on Intel 8086 and 8087 processors.
The controller employs one processor per joint and involves no pipelining.
The joint processors look at the desired Cartesian set-point and determine,
in parallel, their own joint coordinate [25].

2.7 Parallel Kinematics

This parallel approach involved also developing a parallel approach to ma-
nipulator kinematics [26, 27]. Here all joints obtain their individual joint
coordinates based on the Cartesian set-point and on previous values of the

other joint coordinates. Good convergence and tracking is obtained using
this method. See Appendix A.6

3
[1]

DOCUMENTATION

Richard P. Paul, Hugh F. Durrant-Whyte, and Max Mintz. A ro-
bust, distributed sensor and actuation robot control system. In Oliver
Faugeras and Georges Giralt, editors, Robotics Research: The Third
International Symposium, pages 93-100, MIT Press, Cambridge, Mas-
sachusetts, 1986.

Hugh F. Durrant-Whyte and R. P. Paul. Integration of distributed
sensor information: an application to a robot system coordinator. In
Proceedings of the IEEE International Conference on Systems, Man,
and Cybernetics, page 415, November 1985.

Hugh F. Durrant-Whyte. Consistent integration and propogation of
disparate sensor observations. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1464-1469, April 1986.

Hugh F. Durrant-Whyte. Consistent integration and propogation of dis-
parate sensor observations. To appear, International Journal of Robotics
Research, Fall 1986.

Hugh F. Durrant-Whyte. Concerning uncertain geometry in robotics.
In International Workshop on Geometric Reasoning, June 1986.

Hugh F. Durrant-Whyte, Ruzena Bajcsy, and Richard Paul. Using a
blackboard architecture to integrate disparate sensor observations. In
DARPA Workshop on Blackboard Systems for Robot Perception and
Control, June 1986.

Jeffrey C. Trinkle, Jacob M. Abel, and R. P. Paul. Enveloping, Fric-
tionless, Planar Grasping. Technical Report MS-CIS-86-57, University
of Pennsylvania, CIS Dept., Moore School, Philadelphia, PA 19104, July
1986.

Jeffrey C. Trinkle, Jacob M. Abel, and R. P. Paul. Enveloping, friction-
less, planar grasping. In Proceedings of the 1987 IEEE International
Conference on Robotics and Automation, 1987.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

R. P. Paul and Hong Zhang. Design and implementation of a robot
force/motion server. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation, pages 1878~1883, 1936.

Hong Zhang and R. P. Paul. Hybrid control of robot manipulators.
In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 602-607, March 1985.

R. P. Paul and Hong Zhang. Robot motion trajectory specification and
generation. In Hideo Hanafusa and Hirochika Inoue, editors, Robotics
Research: The Second International Symposium, pages 373-380, MIT
Press, Cambridge, Massachusetts, 1985.

R. P. Paul and Hong Zhang. Computationally efficient kinematics for
manipulators with spherical wrists based on the homogeneous transfor-
mation representation. The International Journal of Robotics Research,
5(2), 1986. Special Issue on Kinematics.

Alberto Izaguirre and R. P. Paul. Computation of the inertia and gravi-
tational coeflicients of the dynamic equations of the robots. In Proceed-
ings of the IEEE International Conference on Robotics and Automation,
pages 1024-1032, March 1985.

Alberto Izaguirre and Richard P. Paul. Automatic generation of the
dynamics equations of the robot manipulators using a LISP program.
In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 220-226, April 1986.

Alberto Izaguirre, Minoru Hashimoto, Richard P. Paul, and Vincent
Hayward. Identification of the parameters of the dynamic equations
of robot manipulators. In IEEE International Whorkshop on Robotics:
Trends, Technology and Applications, Madrid, 1987.

Gregory Long and Richard P. Paul. Avoiding orientation degeneracies
with a spherical four-joint wrist. 1988. Work in progress.

Yangsheng Xu and Richard. P. Paul. On position compensation and
force control stability of a robot with a compliant wrist. In Proceed-
ings of the IEEE International Conference on Robotics and Automation,
pages 1173-1178, April 1988.

[18] Richard P. Paul, Yangsheng Xu, and Xiaoping Yun. Terminal link force
and position control of a robot manipulator. September 1988. To ap-
pear in the Proceedings of CISM Conference on Theory and Practics of
Robots Manipulator.

[19] Jeffery C. Trinkle. The Mechanics and Planning of Enveloping Grasps.
Technical Report MS-CIS-87-46, University of Pennsylvania, CIS Dept.,
Moore School, Philadelphia, PA 19104, June 1987.

[20] Jeffery C. Trinkle and Richard P. Paul. An investigation of friction-
less, enveloping grasps. The International Journal of Robotics Research,
7(3):33-51, June 1988.

[21] Jeffery C. Trinkle and Richard P. Paul. Planning for dextrous manip-
ulation with sliding contacts. The International Journal of Robotics
Research, 1988. submitted for publication.

[22] Nathan Ulrich, Richard Paul, and Ruzena Bajcsy. A medium-complex-
ity compliant end effector. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 434—436, April 1988.

[23] Alberto Izaguirre, Minoru Hashimoto, Richard P. Paul, and Vincent
Hayward. A new computational structure for real time dynamics.

In Identification of parameters in dynamics, S.I.C.E. Conference, Hi-
roshima, JAPAN, July 1987.

[24] Alberto Izaguirre, Minoru Hashimoto, Richard P. Paul, and Vincent
Hayward. A new computational structure for real-time dynamics. The
International Journal of Robotics Research, 1988. accepted for publica-
tion.

[25] Zhang Hong. RFMS Software Reference Manual. Technical Re-
port MS-CIS-88-01, University of Pennsylvania, CIS Dept., Moore
School, Philadelphia, PA 19104, January 1988.

(26] Hong Zhang and Richard P. Paul. Non-kinematic errors in robot ma-
nipulators. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 1138-1139, April 1988.

[27] Hong Zhang and Richard P. Paul. A parallel solution to robot inverse
kinematics. In Proceedings of the [EEE International Conference on
Robotics and Automation, pages 1140-1145, April 1988.

A APPENDICES

10

A.1 Terminal Link Force and Position Control of a
Robot Manipulator

11

TERMINAL LINK FORCE AND POSITION CONTROL OF A
ROBOT MANIPULATOR

Richard P. Paul
Yangsheng Xu
Xiaoping Yun

Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104

ABSTRACT

The rigidity of robot manipulators, whilc an asscst in the control of end-cffcctor
position, is a problem when force is 10 be controlled or when a controlled contact with a
rigid environment is to be achieved. The introduction of flexibility into the manipulator
structure may simplify force and contact control but considcrably complicate the control
of position. We¢ propose a semi-flexible terminal link for a rigid manipulator which,
while providing the nccessary flexibility for force and contact control, provides a struc-
ture which may still be controlled in position. We choose an intcrmediate stiffness for the
terminal link so that position fecdback in the manipulator can cither increasc the cffective
stiffness of the end-cffector, when under position control, or can decrease the stiffness,
when under force control. This paper describes such a terminal link -- a compliant wrist
device and analyzes its stability and performance under both position and force control.

1. INTRODUCTION

In many applications of robots the manipulator’s end-cffcctors work with objects which are in con-
tact with the cnvironment. The manipulator continually moves between constrained and unconstrained
modcs, constraincd when the object is in contact with the environment and unconstraincd when an object is
being moved in free space. When the manipulator is constrained, force is controlled, when the manipulator
is in frec spacc and unconstrained, position is controlled. Betwcen these two modes is a transition, the
manipuiator moving in frec spacc comes into contact with a rigid ecnvironment and the manipulator in con-
strained by the cnvironment breaks contact and becomes unconstrained [13]. Changes between modes can
involve discontinuitics in state variables such as velocity and force. In order to accommodatc these discon-
tinuitics passive compliance may be inserted between the manipulator and its end-cffector, in the same
manner as springs and shock absorbers arc uscd in automobilcs.

In the constraincd modc force is to be controlled. If only somc degrees of frecdom are constrained
then those degrees of frecedom arc appropriate for force control while the unconstrained degrees of frecdom
arc appropriate for position control. Forcc control may be provided in cither joint coordinates [14] or in
Cartesian coordinates [15] and the control may take place in cither coordinate system.

The simplest, and most direct mcthod of force control involves colocated force sensors at the
manipulator’s joints. This mcthod whilc only providing approximatc control of end-cffcctor force is simple
and fast [14]. Suff wrist force scnsors may be used to control force by feedback over the entire

This material is based on work supported by the National Science Foundation under Grant No. DMC-8512838. Any opin-
ions, findings, and conclusions or recommendations expressed in this publication arc thosc of the authors and do not neces-
sarily reflect the views of the National Scicnce Foundation.

12

The system shows an actuator controlling the motion of a link and thereby controlling the motion of
the end effector through a compliant wrist scnsor device which is attached between the end effector and
link. The feedback control loop is used to make the end effector position reach a command position against
the influence of an external force which could be gravity load, unbalancing harmonic force, or random
¢xcitation.

We will assume the following: the link drive train is rigid compared with the flexibility of the com-
pliant wrist sensor, the contribution from the viscous damping and static friction of the actuator is negligi-
ble, the rotational inertia of the actuator and the link is J , the proportional fecdback gain and rate gain of
PD controller are K, and K, respectively, the load and cnd cffector mass is m, the stiffncss and damping of
the wrist sensor arc K and C respectively.

A system block diagram of the single joint manipulator is shown in Fig.2. The wrist sensor records
the difference of the motions between link and end effector. These signals arc the input to the compensat-
ing controller H, together with the input command motion X, (corrcsponding to the angular displacement
of the link) which drives the system controller and thereby the actuator.

It is our aim to determinc the form of the compensating controller H so that the dcflection of the end
effector due to extcrnal forces applicd to the compliant wrist sensor can be compensated. In other words,
the response of the end cffector becomes independent of the force and compliance of the system.

We define G, the transfer function of the actuator, PD controller, and rigid link. / is the transfer
function of position compensator in the feedback loop. Gy is the transfer function of cnd cffector
motion/command position, and G, is the transfer function of end cffcctor motion/applied external force.
An cquivalent block diagram is shown in Fig.3. From Fig.3, we set F = 0 and X, =0 respectively, to
obtain:

X _ G IGc
X:— I_Hcc"'ncccl (1)
F 1-HG +G1G H
whcre
= Cs+K
Ci=msTrcs 7K &
_ 1
Gz-msz+Cs+K “)
= K,
Ge = J 52+ K, 5 +K, ©)
Thercfore, the characteristic cquation of the closed loop system is
1-HG.+G1G. H=0 ©
or,
(ms2+Cs+K YUs*+K, s +Kp)-HK, ms=0 @)
The steady state characteristics of the closed loop system can be determined by sctting s to zcro.
X G: ()G I(S)
}1—%7?: T T-HGYG 5+ (5)G.)G (s)
- KX, =1 8
= KK,~HOK,KTHOKK, = ®)

imX = (1-H (s)Ge (s)]G ofs)
ST = THG)G.6)+HG)G.(5)G ()

K,-H O)K,
P p& P

_1-HO ©

14

. X_K—KlK _1—K1
imr=—"r g ="K (15)

In order to compensate for all deflection, K1 should be chosen as unity. The stability conditions arc

K,
Ko< o~ 16
2< g, (16)
CK,
K< 1+m (17)
CKV K(KV-KPKZ)
Ki< Mok, KK, K,C (18

Compared (18) with (12), onc may sce the stability condition with PD compensator is better than that with
proportional compensator. The critical damping for a stable system is fairly small. Therefore, for the small
damping sensor case, the P compensator is not a good choice, while the PD compensator is better. Simula-
tion was performed for various parameters. For the case in which the incrtia of actuator and link is con-
sidered, the simulation shows that morc damping is nccessary. From (16), the rate gain of thc compensator
is restricted by the joint PD controller parameters. In the other words, the active damping cannot be sct
arbitrarily high. Herc again passive damping is critical.

2.3. Lead-lag Network Compensator

Compensating also can be achieved using a simplc lead-lag network in the feedback loop. The lead-
lag network can be rcpresented in the form H (s) = K, (14K, 5)/(1+K; 5). If the incrtia is neglected in the

system, the transfer function is

X_ (A+K; 5 YKy +Ky 5K, K, (14K, (1)
F (14K, 5)(ms+Cs +K) (K, +K, 5)-ms’K, K, (1+K, 5)
X (Cs+K)(1+K;5)K,

Xe (K15) ms S Cs +R) Ky +Ky s s K, Ky (14K, 5) 20)

The characteristic equation is
(mK;K,)s4+(mK1K, +va+K1 CK,—pr Klep‘)53+(CK1KP+Kv C+KVK1K)52
+K; KK, +CK,+K,K)s +KK,=0 21

The steady-state compensation requires that X, be chosen as unity. The damping ratio needed for a stable
system is weaker than that needed in the P compensator, but stronger than that in PD compensator.

2.4. Compensator as an Inverse of G

From the equations (1) and (2), an intcresting fact is that if the compensator transfer function is the
inverse of the transfer (unction of the actuator, thc PD controller, and the link, // (s) = 1/G.(s), the ratio
X /F will be madc zcro at all the time, which mcans all deflections in the end-cffector will be compensated
no matter how much and what kind of thc cxtcrnal force is. At this condition, the ratio of X/X. will be
equal to G, and tend 1o unity in the stcady state. The system will become independent of the external force
and passive compliance of the robot system.

If the robots move slowly or the robot is light-weight and the incrtia of the link and actuator is
ncglected, there is no the acceleration term in the transfer function G, and H is the exact proportional and
derivative control, which is casy to realize. In the case that the acceleration term has to be considered, the
incrtia must be specificd. Therefore, we also investigated the sensitivity of the system performance to the
incrtia cstimated crror. The result showed that the cffect of inertia crror is not significant. For both cascs,
the simulation has been performed.

16

The steady-state error can be expressed as

o N Z16)
e = fime) = I Ty @n

The step, ramp, and paraboloid are simpic mathematical cxpressions for the input force, namely, py(t) is
defined as U (1), tU (1), 12U (t)12, respectively, where the notation U (¢) mcans the unit step force for ¢ >0.
The system crror at the steady-state is following:

__1 _1
eu—mp_, as Pd(S)—S

€ =0, as Py(s)=

2l

€55 = 0, as Py@s)= .
The above results are obvious because the open-loop is a zero order system. Therefore, the closed-loop sys-
tem has a forcc crror at the stecady-state under the step command force if the P controller is used.

Suppose the wrist device and force controller paramcters are m =2kg, K, =4000N/m,
Cr=200N/m/s, K, =30, the simulation of the step force responsc is performed for the differcnt wrist
dampers as shown in Fig.8. In Fig.8, the dashed line at force lcvel 1 is the desired contact force. At
K, =30, there is 3.2% force error at the stcady state.

As the PD controller is represented as H (s) = K, (1+K,, 5), the open-loop transfer function becomes

K, K., (14K, s)
V= 4
Gs) ms*(C,+C..)s+K,, @8)
The closed-loop system transfer function is in form of
P.(s) _ K, K. (14K, 5) (29)
Py(s) ms*+(C,+Co+K, KW K,)s+Kw (14K)

From (28), since the open-loop is still a zcro order system, the stcady-state performance will be
tdentical with that in the P controller.

A simulation was performed for the step force input for various parameters and it is shown that the
system rcsponse is much improved because the rate gain in the PD controller has a contribution to the sys-
tem damping. Thercfore, a proper valuc of the ratc gain is beneficial to the improvement of the system
behavior. For the P and PD force controllers, we have the following summarics.

1) From (25) and (29), the systcm is stable and indcpendent of the wrist compliance and the controller.
The relative stability of the system depends upon the stiffness of the system. The higher the propor-
tional gain, the morc compliant the wrist can be made.

2) Therc is a force crror at the stcady-state. The crror is inversely proportional to the P gain of con-
troller at a step force input, and becomes infinite at a ramp and paraboloid force input.

3) The rate gain in the PD controller provides the damping in the system. Thercfore, in a slight damping

systcm, an incrcasing of the ratc gain can achicve the same systcm rcsponsc as that with a large
damping.

For the PI controller represented as H(s) = K, (1+-1—§'—-), the open-loop transfer function is

K, Kw(1+£s’-)
PPE (oY oW PV 30)

G({s)=

From (30), we know that thc open-loop becomes a first order system in this case, and the stcady-state
performance can be obtained as follows.

ess =0, as Pd(s)=—;-

18

P.(s) _ K, K (m.s*+C.s+K,) 37
Pa(s) ~ [msZ+(CrtCu)s +Kou 1me s 2+(C. +C)5 + (K +K o)J~(Cow s +Kow Y+ K, Ko (m, s+C, 5 +K.,)

Generally, the controller can be expressed as # (s) and the open-loop system transfer function is
H()K(m.s2+C,5+K.)

G) = TG T C s 7R Imes THC. 7C)5 Ko TR T Ca s TR (38)
From (38), the characteristic equation of the closed-loop system is
fast+f 353 +f 524f 15+f0=0 (39

where
fa=mm,
fa=me(Cr+Co 1 tm (C.+C.)
f2=mKW+K.)+mK, (14K,)+C, (C.+Cu)+CW C,
F1=2K (Co+C KW (Ce+C)+C. KW K,
fo=K.K.(1+K})

Since all coefficients of the characteristical equation arc positive, the stability condition is
fifof 3> fefatfifo (40)

We can investigate the system performance for some particular cascs. For the clastic environment
and wrist, there is no passive damping C, and C,,. Also, we suppose the mass m = m, = 1, and the propor-
tional gain is larger than unity, taking K, =10 for instance, as the stcady-statc crror can bc made the smal-
lest possible. In this case, the stability condition is

CA12K,,+K YK, +K,, > (K, +K, Y} C+11C2K, K,

or
12K2> K2
which is always satisficd. Further, Eq.(39) in this case can be intcrpreted as
7}_s4+7€’—s3+[@K@+1]s2+c,(1+%_)S+K., (1+K,)=0 @1)

From (41), if K, is infinitc, the charactcristics of the system is identical with that in the rigid casc. How-
ever, if K, is not infinite, the system performance is improved because the cffective damping ratio is
increased.

In the casc that the end-cffector mass is small comparced with the cffective mass of the manipulator,
for cxample m=10, m.=1, the environment is clastic C,=0, and the actuator viscous damping is as same
as the wrist damping, i.c, C. = C,, the system stability condition is

11X,2-20K 2~1000K,, K. +C2(2K 7+k,,) > 0 42)
It is clear that the damping C, or C,, plays an important part in the system stability.
Summary

1) In most cases, the systcm including the cnvironmental compliance can be maintained stable. The
cffective damping of the closcd-loop system in this casc is incrcased and the high order dynamics arc
introduced.

2) The passive damping in the wrist is always beneficial, especially for the case that there is no damping
and the ecnvironment systcm has infinite stiffness.

3) In the casc that the the sysiem damping is small, the alternative way to stablize the system is by util-
izing a PD controller in the force feedback loop, because the rate gain of the controller can provide

20

because of the active scnsing and compensation control in the feedback loop. The compliance and compli-
ance ratio in our device is programmablc in each direction and dcpends upon the task operation and the
positioning compensation capability of the system.

5. SENSING MECHANISM KINEMATICS

The scnsor has to be able to measure six DOF motions of the upper plate relative to the bottom one.
If onc considers the device mechanism as robot, this task is just the dircct kinematics of the robot manipu-
lator. Namely, the joint space motion is mcasured and the Cartesian spacc motion is identificd. We at first,
intented to use a parallel mechanism as in the paper [10], and a LVDT as a displaccment sensor. However,
the direct kinematics is difficuit for a parallel mechanism, while inverse kincmatics is casy. On the con-
trary, for a scries mechanism the direct kinematics is much casicr than the inversc one [16]. After judging
all the possible structure, we finally choscs the scrics mechanism as the sensing structure with six poten-
tiometers are used as displacement sensors.

The mechanism kinematics skeleton is as Fig.10 with coordinate frame assigned to the links.

T =Trans(—-{3,13,{1,) Rot(z ,0,) Trans (—12,0,0) Rot (x ,82) Trans (0,~13,0) Rot (x ,03) Trans (14,~5,0)
Rot(z,04) Trans (0,0,l¢) Rot(y ,0s) Trans (0,/5,0) Rot(z,8¢) Trans (17,0,/3) 43)

Using the notation in {7], the A transformation matrix for thc device are as follows.

Ci1 -850~y

S1 C1 0 13
Ay=Trans(-l2,l3l1)) Rot(z 8)=| g o 1 Iy 44)

0 0 01

1
0 0

Ao=Trans(—{,,0,0) Rot(x,92) = 0S5, C, O 45)
0 0 1

1
0

Ay=Trans(0.-130)Rot(x 8= 5, ¢, 0 (46)
0 0 1

As=Trans(la~1sO)Rotz.8)=| 0 o 1 0 @7
0
Co Ly 48)

0
As=Trans(0,0.l¢) Rot(y Bs) = | _g (1)
0

1
0

Ag=Trans(0,/s5,0) Rot(z ,9¢) = 0 Cs 0 (49)
1 1

Usa=CaUsiaHa
Uaza = SaUsia~1s

Since

1 0 0 Y .1
0 Cz3 =Su =I3C2
AM3=10 55y Cpy a5y 53
0 0 O 1
Uan Uaz : Uas Unatlz

4 | CaUar+SnSs Clant—S2Uas2 CnUas-SnU4ss C23U a2~ 23U 3a+5C2
U2=AnUs=| 50U ~CnSs SuUsntCuUsm SnUarCnUss SnUaiCnU s isS,

0 0 0 0
» (56)
let '
Uz =CpUan+523Ss
Uz =S823U421—C2Ss
U= CuUsn+S2nUsn
U2z = 823U 422+C 23U 432
U =CpnUsps-SUsn
Uz =823V a3+C 23U a3
U22a = C23U 4a=S23U 434+13C2
U2 = 823U 424+C 23U 434~1352
CiUai—S1U21 ClUa12-51Un2 C1Ua13—S1U 23 C1(Ua1a—12)~S1U 2417
SWan+C1Unt S1Ua2+C 10U $1Ua13+C1Uns S1(Ua1a—12)+C1U 243
Ui=A4Uz= Ux Uan Uns Unatly 7
0 0 0 1

The determinant of the Jacobian matrix was calculated to investigate singularitics. The results shows
that therce is no singularity around the home position where the device works.

6. CONTROL STRATEGIES AND PRELIMINARY EXPERIMENT

The experiment of the compliant wrist was performed on the PUMA 560. Bcfore the cxperiment, six
potentiometers were adjusted in a proper range and an A/D board was designed. The control was cxccuted
by the RCCL system. The preliminary experiment has shown that the compliant wrist works well in -both
passive compliance and active sensing, and that stablc compensation in position control is possible.

We tested the {ollowing two control strategics:

(1) Position compensation in the free space

We suppose the transformation between the basc and robot wrist coordinate is T, that between two
plates of the compliant wrist is T,,, and that between the base and upper plate of the compliant device is B
which is assumed as the task coordinate transformation. The kincmatics rclation at the initial state is

Tel, =B (58)

24

(4]

(5]

(6]

(71

(81

(9]

{10]
(11]
(12]
(13]
(14]
(15]
[16]
(17

(18]

REFERENCES

S. D. Eppinger and W. P. Scering, "On dynamic models of the robot force control”, Proceedings of
the [EEE International Conference on Robotics and Automation, P.29-34, 1986

S. D. Eppinger and W. P. Secring, "Undcrstanding bandwidth limitations in robot force control”
Proceedings of the [EEE [niernational Conference on Robotics and Automation, P.904-909, 1987

R. K. Roberts, R. P. Paul, and B. M. Hillberry, "The cffect of wrist force sensor stiffness on the con-
trol of robot manipulators”, Proceedings of the IELE International Conference on Robotics and
Automation, P.269-274, 1985

R. P. Paul, "Problems and research issues associated with the hybrid control of force and displace-
ment", Proceedings of the IEEE International Conference on Robotics and Automation, P.1966-
1971, 1987

D. E. Whitney, "Historical perspective and state of the art in robot force control”, Proceedings of the
IEEE International Conference on Robotics and Automation, P.262-268, 1985

D. E. Whitney and J. M. Rourke, "Mechanical behavior and design cquations for elastomer shear pad
remole center compliance”, ASME Journal of Dynamic System, Measurement, and Control, Vol.
108, P.223-232, 1986

R. P. Paul, "Robot Manipulators: Mathematics, Programming and Control”, Cambridge, MIT press,
1981

K. Takuse, H. Inoue, K. Sato, and S. Hagiuara, "The dcsign of the articulated manipulator with
torque control ability”, Fourth International Symposium on Industrial Robots, Nov. 1974

H. Asada and K. Ogawa, "On the dynamic analysis of a manipulator and its cnd cffector interacting
with the environment", Proceedings of the IEEE International Conference on Robotics and Automa-
tion, P.751-756, 1987

H. Inoue, Y. Tsusaka, and T. Fukuizumi, "Parallel manipulator”, Proceedings of Third International
Symposium of Robotics Research, P.321-327, 1986

D. S. Seltzer, "Compliant robot wrist scnsing for precision assembly”, Robotics: Theory and Applica-
tion, P.161-168, 1986

H. Kazerooni, and J. Guo, "Dircct-drive, active compliant end-effector” Proceedings of the IEEE
International Conference on Robotics and Automation, P.758-766, 1987

R. C. Goertz, "Manipulators uscd for handling radioactive matcrials” /{uman Factors in Technology,
edited by E. M. Bennett, McGraw Hill, 1963

R. P. Paul, and H. Zhang, "Design and implementation of a robot forcc /motion scrver”, Proceedings
of the IEEE International Conference on Robotics and Automation, P.1878-1883, 1986

0. Khatib, and J. Burdick, "Manipulators motion and forcc control”, Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, 1986

Kenncth J. Waldron and Kenncth H. Hunt, "Serial-prallel dualitics in actively coordinated mechan-
isms", Fourth [nternational Symposium on Robotics Research, Santa Cruz, Sept. 1987

Chac H. An, and John M. Hollerbach, "Dynamic stability issucs in the force control of manipulator”,
Proceedings of the IEEE International Conference on Robotics and Automation, P.890-896, 1987

Dec Schutter J., "Compliant robot motion control mcthods for regid manipulators based on a generic
scheme", Proceedings of the IEEE International Conference on Robotics and Automation, P.1060-
1065, 1987

26

- 1
T 77
/LSS
P / / // Sublc/ // K,/K,=0,01
0.4 — 4 L] [Z] massmmms st e e s

- Doitted—uncompensated () = 0.6

g X px — ¢ :- 0.2

- cm 2—§ =06

0.2 (c)0.5— 3—C =03

4 — (=12

0 7 "
K.iK,=1 Unstablc . 0+ o ——
| | I] 1 l I l
0 2000 3000 4000 5000
0 100 . 0 0.2 0.4 0.6 0.8
Scusor stillncss K Ti . J
Fig.4 Stability condition [or scasor stillness and . imc (in sceon)
PO Fig.5 End-cllcclor position responsc under
scnsor didmping ratio with P compensator -
4kg step force with P compensator
(The incrlia is not included)
X,

r . w
" — — v/ Eavironment -
P 4
- | ' sz
Fig.6 | Thc rigid cavironment systcm
Pt X (s) Pe
H(s) VION Ke

Fig.7 The closcd-loop control systcm block diagram

28

30

A.2 Planning for Dextrous Manipulation with Slid-
ing Contacts

31

Draft submitted to the International Journal of Robitics Research, June 3, 1988.

PLANNING FOR DEXTROUS MANIPULATION
WITH SLIDING CONTACTS

J. C. Trinkle
Department of Systems and Industrial Engineering
University of Arizona

Tucson, AZ 85721

R. P. Paul
Department of Computer and Information Science
GRASP Laboratory

University of Pennsylvania
Philadelphia, PA 19104

ABSTRACT

We study the problem of gaining a secure and enveloping grasp of a two dimen-
sional object by exploiting sliding at the contacts between the object and the hand.
This is done in two steps: first, choosing an initial grasp with which the object can be
manipulated away from the support and second, continuously altering the grasp so that
the desired final configuration is achieved. The plans generated by our technique may

be executed with only position control.

The main contributions of this paper are: the derivation of liftability regions of a
planar object for use in manipulation planning; the use of the lifting phase plane in
manipulation planning; and the derivation of the quasi-static odject motion probiem

which provides a basis for general, three-dimensional manipulation planning.

32

1. INTRODUCTION

One desirable application of robotic technology is automatic assembly using articu-
lated mechanical hands and flexible fixturing systems. Assuming that the parts of the
product to be assembled are within reach of the robot and the sequence of assembly
operations is known, the following fundamental problems must be addressed: 1) part
acquisition, by which is meant the selection and achievement of a useful grasp; 2) fix-
ture set-up, which is closely related to grasp selection, but requires the synthesis of an
accessible partial fixture [Asada 1984] as an intermediate step; and 3) parts mating
which requires path planning [Brooks 1983] and compliant motion control [Mason 1979,
Mason 1985, and Whitney 1982|.

This paper concentrates on part acquisition via liftability regions. These regions
provide a sound means to select a suitable initial grasp of an object resting on a support
and a geometric method for planning subsequent manipulations. Contact forces are not
controlled, they are rendered insignificant by the geometry of the grasp. Therefore,

manipulation can proceed under position control. Force control is unnecessary!

Techniques for choosing a desired grasp for an articulated mechanical hand have
been developed based on a quasi-static analysis coupled with optimization methods
[Jameson 1985|, independent regions of stable contact [Nguyen 1986, Paul 1972,
expected task forces and fine motion requirements [Kobayashi 1984, Li 1987|, the forces
required to cause one or more contacts to slip [Cutkosky 1985, Holzmann 1985}, minim-
izing the contact forces arising due to external forces [Trinkle 1985| and the potential
energy in compliant fingers [Hanafusa 1982]. However, ncne of these techniques have
included a means to achieve the grasp, nor have they dealt with the fact that most
objects are initially at rest on a supporting surface (Wolter [1984] and Laugier {1983]
consider the support, but only for the case of a parallel-jawed gripper). Others have
considered dexterous manipulation of the object, but begin their analysis from the point
of an achieved grasp. For example, Okada [1982] controlled a hand to turn a nut onto a
bolt, Kobayashi’s [1984] experimental hand drew simple figures with a pencil, Fearing
[1987] demonstrated "baton twirling" using the Stanford/JPL hand, and Kerr [1984]
developed the general differential equations for dexterous manipulation. All of these
studies were done assuming that only rolling contacts exist. Enforcing this assumption
requires that manipulation be carried out under force and position control and unduly

limits the manipulation which can be performed. Mason [1985] and later Brost [1985]

33

and Peshkin [1987] studied the motion of objects sliding on a horizontal plane. They
were able to devise manipulation strategies which were guaranteed to achieve a desired

result despite uncertainty in the contact forces and the object’s velocity.

In the following analysis, we consider the quasi-static motion of a manipulated
object. Even though uncertainty exists in the precise descriptions of the contact forces,
the resultant force and the object’s geometry are always known. These facts allow exact

computation of the object’s instantaneous velocity given the instantaneous velocity of
the palm and fingers.

2. LIFTABILITY OF RIGID BODIES

One reason to grasp an object is to gain complete control over its position and
orientation. Thus we propose that an object is grasped by a robot if the object contacts
only the robot’s hand. If other bodies such as the support were allowed to contact the
object, then those bodies would usurp a portion of the control over the object’s motion.
Therefore, the first goal in grasping is to manipulate the object in such a way as to
cause it to lose all contact with the support. For this to be possible, the object must be

liftable (The notion of liftability is a generalization of tippability which was discussed
elsewhere [Trinkle 1988]).

Definition: An object is liftadle if and only if there exist finger contact posi-
tions on its surface for which increasing the contact forces applied by the

fingers causes at least one of the supporting contacts to break.

2.1. Liftability Regions for Frictionless Objects

Liftability regions define the qualitative motion of a squeezed object (i.e. rotate
left, rotate right, translate, or jam) based on the geometry of the grasp. To determine
these regions, we need a contact mode! which accurately represents the kinematic con-
straints and the appropriate limiting cases of the contact force distrioputions which iden-
tify the qualitative motion. The exact force distribution of a contact region is
irrelevant. A model which satisfies these requirements is to consider all contacts as a set

of one or more point contacts. A contact of small area is considered to be a single

point. One with a large planar area is approximated by the set of points defining the
vertices of the convex hull of the contact. Curved contact areas can be approximated
by several polygons. During the following development, objects are assumed to be two-
dimensional. However, any three-dimensional object which can be approximated as a

generalized cylinder can be analyzed by our method by considering a suitable cross sec-

tion of the cylinder.

Consider the two-point initial grasp of the frictionless, rigid, planar object depicted
in Figure 1. The forces acting on the object are the finger contact forces (f; and f,), the

supporting contact forces (f; and f;), and the weight of the object (m g).
Under quasi-static conditions, the object must always satisfy the equilibrium rela-
tionships which may be written as
We-= =8zt (1)
c20 (2)
[Salisbury 1982] where W is the wrench matrix, ¢ is the vector of wrench intensities,
Z.;: 1S the external wrench (i.e. force and moment) [Ohwovoriole 1980] acting on the

object and the vector inequality (2) applies element by element. If we choose the exter-

nal wrench g,,, to be that caused by gravity, the solution to equation (1) is given by

€1 (O] o
¢ 0 1 3
= + ¢
€3 €30 2 ngg (3)
Cy4 € 40, |7 24
where
mgt mg(ts +t,)
€30 —ti >0, Cq = ts —~ >0, (4)
cos(,) Ly
e eee—— = - 5
nogy cos ()) N3 s (5)
oty sin(yy —) |
24 ts cos{1,) ’ : (6)

¥; is the angle of the ¢ % inward contact normal measured counter-clockwise with

respect to horizontal, and ¢; is the moment arm of the ¢ A contact force taken with

35

respect to the summing point q;, which is the point of intersection of the lines of action
of f; and f,. Note that the second term on the right hand side of equation (3) is known
as the internal grasping force [Salisbury 1982, because increasing ¢, increases the con-

tact forces without changing the total force applied to the object.

To lift the object by squeezing, either ¢; or ¢, must be reduced to zero by increas-

ing ¢; and ¢,. The first row of equation (3) implies that for ¢, to increase with ¢,, the

following inequalities must hold
cosy, < 0 (7)
cosyp, > 0 (8)

where without loss of generality, the first contact has arbitrarily been chosen to be on
the right hand side of the object. If inequalities (7) and (8) are not simultaneously
satisfied, then squeezing will result in an unstable grasp; the object will slide out of the
grasp to the left. For ¢, or ¢, to be driven to zero, at least one of n,; and n,, must be
negative. Equating the third and fourth rows of equation (3) to zero gives the values of

¢ o required to break the third and fourth contacts, respectively

mgtg

(9)

C93=

-

_tz

e = —mg (ts + tg) Cos(wl) (10)
2 t2 COS('(,bl) + t3 Sin('l,bl - ¢2) '

Since ¢, is increased gradually after achieving the initial grasp, the contact which will
break is the one corresponding to the smaller nonnegative value of ¢, (negative values of
¢ 5 violate inequality {2)). Thus equations (9) and (10) in conjunction with inequalities
(7) and (8) can be used to predict the motion caused by squeezing for every possible

grasping configuration.

The magnitudes ¢ ,; and ¢,, depend on the grasp parameters ¢, ¥, and t,. If we
fix the position of the first finger’s contact, then 1, is constant and ¥, and ¢, vary.
Considering all possible contact points and angles (at vertices) for the second finger, the
perimeter P may be partitioned into five mutually exclusive liftability regions S, J,

B 3, B4 and T which satisfy the foliowing relationship

SUJUes B4y T="P. (11)
These regions correspond to possible contact points for the second finger for which

36

squeezing causes the object to: jam the fingers, resulting in the object’s being pressed
against the support; slide along the support; tip breaking the third contact; tip break-
ing the fourth contact; and translate (or rotate) so as to cause both the third and fourth
contacts to break simultaneously. Figure 2 shows the liftability regions using a coded
curve off-set from the perimeter of the object. The codes corresponding to

S,J,B3, B4 and T are: dashed curve, no curve, solid bold curve, thin solid curve,
and double-bold solid curve. In Figure 2 the translation region is a set of distinct

points, so no double-bold curve segments are visible.

2.2. Liftability Regions of Frictionless Polygons

A polygon can be used to approximate any two-dimensional object with arbitrary
precision. Therefore we discuss the liftability regions of polygons in detail and then

show how the results can be applied to curved objects.

The sliding region S is the portion of the perimeter for which the inward normal of
the second contact has either no horizontal component or has a horizontal component
with the same sense as that of f;. In Figure 3, S is comprised of edges 0, 1, 2 and 3,
vertices 1, 2 and 3, and a portion of vertex 4.! If the second finger contacts the polygon

in S, squeezing will cause sliding to the left.

The regions J, B3, B4 and T are partitions of the remaining perimeter denoted
by S*. Consider the % edge of the polygon in Figure 3. Points p lying on the line /,

containing the edge can be written in parametric form as
(L—38)Vvy +3 Ve, =D (12)

where v, represents the i* vertex of the polygon and the k* edge is defined by
s € [0,1]. The line /,,4 is the unique line which is perpendicular to /;, and contains the
point q;4. The intersection of {,,; with the k™ edge defines the contact point where ¢,
the moment arm of the second contact force, is zero. The variables s and ¢, are

linearly related by

ty=38 —a (13)

1 What is meant by a portion of a vertex will be made clear later.

37

where a is the value of s at the intersection of /, and /,,;. Since t; varies linearly
along the edge, ¢,3 and c¢,4 describe hyperbolas along /, as shown in Figure 4. Note
that the vertical asymptote of ¢,, is located at a positive value of t,. This is the case

defined by the following inequality

sin(¢; — ¥,) < 0. (14)

When inequality (14) is satisfied, a jamming region J lies between the vertical asymp-
totes of the two hyperbolas and the jamming window JW is the closed line segment
(@13, Q14]- The breaking regions B 3 and B 4 lie to the right and left of the jamming
region. Since the values of ¢, and ¢,, are not equal at any point on the edge, the
translation region T is empty, implying that transiational lifting is impossible if the
second finger contacts that edge. Note that the physical significance of inequality (14)
is that the resultant of the finger contact forces is in the direction of the gravity force.

Therefore, to avoid jamming and to cause tipping, one must push down on the .edge at a

suitable point.

If the sense of inequality (14) is reversed,

then the functions ¢,3 and ¢4 overlap, eliminating the jamming region (see Figure 3).

The regions B 3 and B 4 meet at the cross-over point ¢,,

ty sin(v; — ¥,)
tye = P . (16)

For the edge in question, t,, is the only point which is an element of T'. The contact
normal from the point ¢, passes through the point q;,, called the translation window
TW. If inequality (15) is satisfied, then the resultant of the finger’s contact forces
oppose gravity. Therefore, as the hand squeezes more and more tightly, the object must
rise because its weight is overcome.

The second contact point need not occur on an edge of the polygon. It may occur
on the k™ vertex, in which case the contact angle 14 is free to vary between the inward

normals of edges k£ and k —1 (see Figure 6), so that ¢, varies according to
tg = | P14l sin(oq —). (17)

where the vector p,4 is the position of the second contact point with respect to q;4 and

38

aq is the angle of p,, measured counter-clockwise with respect to horizontal. Substitut-
ing equation (17) into equations (9) and (10) allows one to determine the liftability
regions of a vertex. Figure 7 shows the edge of the second finger against the vertex in
the jamming region. Tilting the finger clockwise or counter-clockwise eventually places
the contact in region B 4 or B 3 respectively. Thus for a vertex, the liftability regions

are defined as partitions of the range of possible contact angles.

2.3. Translational Lift-Off

The first goal during dexterous manipulation is to break all contact with the sup-
port. Therefore, it makes most sense to use the translation region in planning the initial
grasp. With only two finger contacts, the translation region is a set of distinct points
and is impossible to contact (practically spea.king).2 However, a three-point initial grasp

generates a translation region with finite length, making its use practical.

Omne way to achieve a third finger contact (see f; in Figure 8) is by laying a finger

against an edge of the polygon. Equilibrium equaticn (1) becomes

Wc:gezt (1)
]
3, 4, 45 4, 45| |°2 a
1 2 3 4 H g
by tg by ty tg] 193] T 7T g (18)
€4
s

‘where d; is the ¢ A unit contact normal and d, is the direction in which gravity acts.
The particular solution of equation (18) in which we are interested is the one for which
the third and fourth contacts break and the first, second and fifth contacts are main-

tained. These conditions can be stated as
c3=0 ¢,=0 ;>0 ¢;,>0 ¢5>0. (19)

Removing the third and fourth columns from W and noting that ¢¥; = %5 and

A

d3=d,= — &, equation (18) can be solved for the type of initial grasp shown in

2 The points can be vertices of the polygon, but precise contact angles arc required for
translation. Positioning errors make it impossible to achieve the exact contact angles.

39

Figure 8. Substituting the result into inequality (19) yields

ts>0 (21)
t, sin(; — ¥,) 15 cos(4y) t, sin(yy — ¥y)

<ty <

cos{¥,) * cos(,) cos(¥;) <0. (22)

Inequalities (15) and (21) are necessary conditions for translation. We observe that ine-
quality (21) can always be satisfied by suitably numbering the contact points. However,
inequality (15) can only be satisfied by contacting the polygon on certain edges or por-
tions of vertices. Inequality (22) defines the translation region T in which squeezing
with the second finger causes the object to translate along the first finger breaking both
support contacts. This region consists of ail points external to the sliding region S
whose normals satisfy inequality (15) and pass through the translation window. The
addition of the fifth contact has caused the translation window to grow, from the point
qp, to the open line segment (q;,, @5,). Figure 9 illustrates the translation window
TW and the translation region (and B 3 and B 4) of one edge for a specific placement of
the first finger. For a vertex, the transiation region is determined by substituting equa~

tion (17) into inequality (22) (see Figure 10).

2.4. Graphical Construction of Liftability Regions

A graphical method to determine the liftability regions of any planar curve with or
without vertices for two- and three-point initial grasps has been developed based on the

above analysis. It is best to illustrate the method with the following example.

2.4.1. Two-Point Initial Grasps

First, the perimeter of the object is partitioned into the complementary regions S
and S’ as shown in Figure 11. The region S is the set of points p for which all local
contact normals have a nonpositive component in the z-direction. The region S ° is the

set of points whose normals have positive z-ccmponents.
S ={p: cos(yp) <0} (23)

S’ ={p: cos(¢p) >0} (24)

where the apostrophe denotes the set compliment operation.

Second, the first finger’s contact is chosen to satisfy inequality (7), f.e. the first
contact point is in the interior of S. Therefore, to satisfy equilibrium relationships (1)
and (2), the second finger’s contact must be in S °. Next we divide S * into regions of

possible translation PT and possible jamming PJ based on inequalities (14) and (15)
PT = {p: sin(¢—%,) >0andpe S°} (25)
PJ = { p: sin(¢;—,) <Oandpe S”}. A (26)

The partitions are shown in Figure 12.

Third, we define the points q;3, q;4 and q;,. They are at the intersections of
third, fourth, and gravity forces, respectively, with the line of action of the first contact

force (see Figure 13).
Fourth, the region PT is broken into B3y, B4y and T. Points in PT whose
contact normals pass through the translation window q,, belong to T'. Points whose

normals produce positive or negative moments with respect to the translation window

belong to B4, or B 37, respectively (see Figure 13 a;ga.in).

B3y ={p: pyy xd3<0andpe€ PT} (27)
B4ap = {p: py, xd,>0andp € PT } (28)
T ={p: pyy xi;=0andpe PT } (29)

where recall p,; is the position of the second contact point relative to q;; and d, is the

normal unit vector of the second contact.
Fifth, PJ is divided into B3;, B4;, and J. Points in PJ whose contact normals
intersect the jamming window (q;3, ;4] are elements of J. The points whose normals

do not intersect the jamming window and generate a positive or negative moment with

respect to q, belong to region B4, or B3, respectively (see Figure 14).

B3; ={p: pjyxd;<Candpe€ PJ} (30)
B4; = {p: pj3xd,>0andpe PJ } (31)
J={p: pj3xd; <0andp,yxd,20andp€ PJ } (32)

Finally, the liftability regions J and T are complete. However, the regions B 3
and B 4 must be formed by the unions of the individual B 3’s and B 4’s found in steps 4

41

and §.
B3=B3r |J B3y, (33)
B4= B4y | B4, . (34)

Figure 15 shows all of the liftability regions. Note that by construction, the liftability

regions are mutually exclusive and contain every point on the perimeter P, r.e.

JUB3yUB4yTr=58"° (35)
S°\UyS=~FP (36)

QR =0 Qe {T,B3 B4 J,S"} (37)
Re{T,B3B4,J,S5"} (38)

where @ represents the empty set.

2.4.2. Three-Point Initial Grasp

The liftability regions for a three-point grasp can be formed by combining the lifta-
bility regions corresponding to the two possible two-point grasps. Let S;, J;, B3;, B 4;
and T; denote the liftability regions when considering only the i contact; i € {1,5}.
Denote by S, J, B3, B4 and T the liftability regions for the three-point grasp. In the
Appendix we show that the following relationships hold:

S =85,=5, (39)
J=J,UJsUIr (40)
B3= B3, B3 (41)
Ba= B4, M B4 (42)
T=B3xNB4sNIr)UT1N B4y U (Ts M B4y) (43)

Equations (39)-(43) imply that the regions J and T grow at the expense of B 3 and
B 4. Thus we see that including an extra contact point allows a grasp to be achieved in

the translation region, but makes it more difficult to tip the object.

The additional jamming region Jp and the new translation region T can be found
graphically by using the new translation window (qlg , qsg) (see Figure 16). There are

two cases: q,5 on the right of the translation window and q,; on the left. For q;5 on

42

the right, the translation region consists of those points, elements of S °, whose contact
normals pass through the translation window and (qs,, q;5)- The region Jy contains
all points in S “ whose normals pass through the translation window and [q,4, q;5]. For
q;5 on the left, the translation region consists of the points in S “, whose contact nor-
mals pass through the translation window and (q;,, q;5). The region Jr contains all
points in § * whose normals pass through the translation window and [q;5, qg3]. These
facts can be used to find the most important liftability region, T, without computing all

the liftability regions for both two-point grasps.

Figure 17 shows the positions of contacts 1 and 35 for several polygons. The perime-
ter of each object is grown and coded to illustrate the liftability regions. Placing the
second finger tip against the object where the offset perimeter is dashed indicates that
squeezing the fingers will cause jamming J. Placing the second finger against the object
beside the thin solid line, the bold solid line or the double-bold solid line indicate that
squeezing will cause the right support contact to break B 4, the left support contact to
break B 3, or both support contacts to break T, respectively. Squeezing with the
second finger touching the object in the uncoded portion of the perimeter causes the
object to slide to the left, S. The first row of the Figure shows the liftability regions for
two-point initial grasps and therefore no translation regions are visible. The second row
shows the regions for three-point initial grasps. Note that translation regions have

appeared, but that the jamming regions have grown.

2.5. Liftability Regions with Friction

When friction is present, the method for computing the liftability regions becomes
more complicated. However, a subset of the translation region can be determined much
like before. The translation window is the portion of the line of action of the gravita-
tional force lying between the friction cones of the forces f; and f5 as illustrated in Fig-
ure 18. The translation region consists of the points on the object’s perimeter fcr which
the cone of f, is completely within the translation window. Under these conditions all
finger contacts will be maintained during squeezing. As in the frictionless case, we can

guarantee that the object will slide up finger 1 if the following sufficient conditions are

met. First,

Sin((,bls - ¢2) >0 (44)

43

where ¢,5 = max {¢,,#5}, #; and @5 are the angles of the counter-clockwise most edges
of cones 1 and 5, and ¢, is the angle of the clockwise most edge of cone 2. Second,

finger 2 contacts the object in the translation region.

Figure 19 shows a force diagram for the grasp depicted in Figure 18. The lower
cone f, corresponds to the possible forces acting at the second contact point. The upper
cone represents all possible linear combinations of the forces generated at the other two
contact points. The point E represents a particular combination of contact forces
which result in the object’s equilibrium. If £ is on the interior of the quadrilateral
ABCD , then the object remains fixed relative to the hand. As the internal grasp force
is increased, the magnitude of f, increases. Eventually E reaches the boundary 4B at
which point the object begins sliding up finger 1. Alternatively the internal grasp force
could be reduced until the object slides down. Because in general, sliding on finger 1
results in sliding on finger 2, it is expected that the trajectory of £ will terminate at
points B and D . If termination occurs on AB or CD then the second finger’s motion
would be required to comply with that of the object. For example, if £ lies on the inte-
rior of the line segment AB, then contacts 1 and 5 are sliding, because the contact
forces f; and f5 lie on the edge of their friction cone. However, contact force f, lies
within its cone, which implies that the second contact point on the object and finger

must have identical velocities.

If inequality (44) is not satisfied, edges AB and BC become infinite making it
impossible to cause the object to slide up finger 1 by squeezing. An example of this
situation occurs when the contacts are on parallel edges of an object. It should be
noted, however, that edges AD and DC are always finite for stable grasps, which
implies that an object will always slide out of the hand if the internal grasp force is

reduced enough.

One remaining concern is that the boundaries AB and CD of the quadrilateral are
conservative estimates. The cone —(f; U f;) allows for all possible combinations of the
first and fifth contact forces. Since effects of deformation will determine the nature of
load sharing between contacts 1 and 3, realistic boundaries AB and CD will be on the
interior of the quadrilateral, so that the predicted internal grasp force to cause sliding

will be greater than the actual value.

44

The motion of the object for all other grasp configurations and finger motions can
be predicted by solving the object motion problem. Trinkle [1988] found the motion of
a frictionless object as the solution of a linear program. It was determined that such an
object will move so as to minimize its rate of gain of potential energy while adhering to

the velocity constraints imposed by the fingers.

2.6. The Object Motion Problem with Coulomb Friction

The object motion problem can be extended to include Coulomb friction using
Peshkin’s minimum power principle [Peshkin 1988|. Roughly speaking the "...minimum
power principle states that a system chooses at every instant the lowest energy of ’easi-
est’ motion in conformity with the constraints." This principle applies only to quasi-
static systems subject to forces of constraint (¢.e. normal forces), Coulomb friction

forces, and forces independent of velocity. For this principle the power is defined as
P, =- 2 fei " Vi (45)
1

where v; is the velocity of the i

point of application of external forces and f,,; is the
sum of the external forces, excluding constraint forces, applied to the i ®* point.
Included in P, are the friction and gravitational forces. The normal forces at the con-

tacts are omitted. Thus P,, is only a fraction of the object’s power.

The wrench w;, applied to the object through the ¢ th boint contact with friction
can be written as the product of the i contact’s unit wrench matrix W; and the

wrench intensity vector ¢;

w; = W, ¢; i=1,...,n, (46)
where n_ is the number of contact points,
R n R ¢,
n
ny 0; a, \
— — Lo d
Wi = r, XnA, r, X4, r, xa4/|’ LI R B (47)
H) 3) t 1
¢

r; is the position of the i* contact point, d; is the contact’s unit normal directed
inward with respect to the object, 7#; and 4; are orthogonal unit vectors defining the

contact tangent plane, and the elements of ¢; are the magnitudes of the i contact

45

force in the 7A;, 6; and d; directions. Including all of the contacts, the equilibrium

equation (1) can be written as

[Wn Wo Wa] Co - ezt (48)
ca
where
5 B,
W, = :)
P r X Py Ty X Py r, X P, |’ p€inoal (49)
c1p
Cap
c, = ; p € {n,0,a}. (50)
[*nep |

This partitioning of the wrench matrix allows us to write the sum of the friction
wrenches as W ¢, + W, ¢, and the sum of the contact normal wrenches as W, c,.
We now form the equation for the power as follows

P = =" {8 + [W, W,] H} (51)

Co

where q,; represents the object’s linear and angular velocities and the superscript T
denotes matrix transposition. Given the joint velocities of the hand and arm, 9 , the
velocity of the object may be found by minimizing P,, subject to the rigid body velocity
constraints and the Coulomb friction constraints. The velocity constraints disallow

interference between rigid bodies and may be written as
WaT dob 2 La g (52)

where WGT Q. and L, 6 are the vectors of the normal velocity components of the con-
tact points on the object and the hand respectively and L, is related to the grasp Jaco-
bian. The friction constraint for the {* contact force as derived by Jameson [1983] is

given by inequalities (53) and (54)

£ D, £, 20; i=1,...,n, (53)

46

; 20 i=1,...,n, (54)

where
Di = - I - &,‘ (i,‘ s fi = [‘h, 5{ &1] C,', (55)
1+ u°

where u is the coefficient of friction, and I is the identity matrix. Inequalities (53) aand

(54) may be rewritten in terms of wrench intensities as

¢,T® ¢; 20; i=1,...,n (56)
¢ia 2 0; i=1,...,n, (57)
where
~ T
g
o, = |4;"| D; [n 5; a,] (58)
- T
a

Thus far we know that we must minimize P,, subject to inequalities (52), (56) and
(57). One might think that the equilibrium equation (48) should also be used to con-
strain the solution. However, by formulating and examining the dual optimization
problem, one finds that equilibrium equation (48) is implicitly satisfied and that inequal-

ity (57) is redundant.

The primal problem is defined as

- cn
Minimize Pre = 40" {8t + [Wa W, | H} G
Subject to: W, q, >L, ¢ (52)
¢;"®; ¢c; 20; i =1...,n, (56)

To derive the dual problem, the objective function is augmented by attaching the con-
straints with Lagrange multipliers. Applying the Kuhn-Tucker optimality conditions
[Beveridge 1970] gives

Maximize Z =67 L, A (59)
cﬂ

Subject to: g, + [W,, WO] e | TWiA=0 * (60)
]

Wnr dob + 2 E ¢ Qin Cin = 0 (61)

47

T . o
Wa Qos + 2 Z n; ‘pio Cio = 0 (6")
{

2 E g Q£a Cig = 0 (63)
1

A0 (64)

n>0 (65)

where 1 and A are vectors of Lagrange multipliers associated with inequalities {56) and
(52) respectively and ®;, is the partition of ® corresponding to the component of the
% contact force in the direction of the unit vector p € {A, &, d }. Since the vector of
Lagrange multipliers, A, associated with the velocity constraints is equivalent to the vec-
tor of normal wrench intensities, ¢, , constraint (60) is the equilibrium equation and

constraint (64) is equivalent to inequality (57).

At the optimal solution, both the primal constraints and the duai constraints are
satisfied, therefore the primal problem defined by the nonlinear program, (51), (52) and
(56), need not include the equilibrium equation. Another interesting point is that for all

feasible solutions, the primal and dual objective functions satisfy the following relation-

ship

. cn
with equality holding only at the optimal solution. The term on the left hand side of
the inequality is the power applied to the object by the forces of constraint. The terms
on the right are the rate of gain of potential energy and the power dissipation through
Coulomb friction. Thus, at the optimal solution, expression (66) has the following phy-
sicél interpretation. The motion of the fingers in the direction of the contact normals
supplies power to the object. Some of that power is lost to friction. What remains goes

into lifting the object. Consequently every suboptimal solution must defy conservation

of energy.

The primal problem (51), (52) and (58) is complete for rolling contacts, but not for
sliding contacts. In the case of sliding, the contact force must be anti-parallel to the
relative velocity at the contact and lie on the boundary of the cone. This constraint

was concisely expressed by Jameson [1985] as
f; ~(vy x8,)=0 i=1,...,n (67)

48

£

vy €05 i=1,...,n, (68)
where v,; is the relative contact velocity. Noting that
T . . .
vy =W, q,; —L; 9 ; i =1 ...,n,, (69)

where L; is the transmitted Jacobian of the i ® contact [Trinkle 1987], relations (67)

and (68) may be written in terms of the wrench intensities and the object and arm velo-

cities as
c;TPidab—c‘-TQiﬂ.i=O; i =1,...,n, (70)
¢"R; 4, — ¢S, 0,<0; i=1,...,n, (71)
where |
P, =W B, W,, Q, =W'B; L, (72)
i =WTC, W, , S; =W, ”C, L, , (73)
B; =[1I0], C; =[4A; 0], (74)
0 —ap a
A; = | a 0 =a;l, (75)
—a; O 0

I is the identity matrix and 0 is a matrix of zeros.

The complete object motion problem is now given by

Minimize P = = {Sext + [W,, Wa] [::}} (51)
Subject to: W, q, 2L, (52)
c;T ®; ¢; 20; 1 €0 rolling (56)

¢;"® ¢, =0; i€V sliding (76)

¢, P; q — ¢ Q; ﬂ.i =0; i €W sliding (70)
¢,TR; 4, —¢,7S; 8; €0 ieVv sliding (71)

where (1 and ¥ represent the set of contact points assumed to be sliding and rolling,
respectively. This nonlinear program is called the velocity formulation of the object

motion problem. Constraints (56), (70), (71) and (76) define the Coulomb friction

49

model without which friction forces could create rather than dissipate power resulting in

an unbounded objective function.

To determine q,; , the object motion problem must be solved for all possible per-
mutations of sliding, rolling, and separating at each contact point while enforcing the
appropriate constraints. If there are n, permutations, then there will be n, < ny feasi-
ble solutions. The motion corresponding to the feasible solution of least power is the
one which the object will execute. If no feasible solution exists, then the motion of the
hand is kinematically inadmissible. If the minimum power solution is unbounded, then

the finger motions cause the grasp configuration to become unstable.

Clearly the general object motion problem depends on not just the grasp configura-
tion, but the velocities of the contacts. Therefore it is not possible to define liftability
regions and use them in planning. Each grasp and desired vector of joint velocities must

be considered separately.

3. MANIPULATION PLANNING

The ultimate goal of our analysis is to provide a framework in which intelligent
dexterous manipulation can be planned for articulated mechanical hands. Intelligent
dexterous manipulation can be considered to be the continuous evolution of a stable
grasp from an undesirable configuration to one appropriate to the performance of a
given task. The simplest task is a pick-and-place operation which can be easily per-
formed with a parallel-jawed gripper if friction is significant. However, it is useless in
the frictionless case. To hold an object without friction requires t-hat the hand envelop
the object much as one would grip a wet piece of ice. Therefore under slippery condi-

tions an articulated hand is necessary.

Figure 20 shows the simplest two-dimensional articulated hand performing an
enveloping grasp (also called a form closure grasp [Lakshminarayana 1978]) of a friction-
less object. For the remainder of this paper, objects are considered to be convex

polygons and the hand is assumed to be the one pictured in Figure 20.
An enveloping grasp must satisfy the equilibrium relationships
Wa Cqg = —Zext (1)
¢, 20 (2)

50

for any external wrench acting on the object (recall that the subscript a identifies the
normal components of the contact forces). Equivalently, the nonnegative column span
of W, must be equal to the space of possible external wrenches (for the two-
dimensional problem, g,,, € R3 where R° represents Euclidean three-space). Another
way to think of envelopment is that if the joints are locked, then the object cannot

move. That is, the object is completely restrained by the form or surface of the hand.

This constraint condition is expressed by substituting 0 for ¢ in inequality (52),
“’aT {lob 2 0 (77)
and requiring that only the trivial solution exist, i.e. q,, = 0.

A second type of stable grasp is called a force closure grasp. It still satisfies rela-
tionships (1) and (2), but not for all possible external wrenches. For force closure, the
nonnegative column span of W, defines a convex cone C* [Goldman 1956] which is a
subset of the space of possible external wrenches. If the negative of the externa;l wrench
lies within C 7T, then the grasp exhibits force closure. Therefore stability depends on the
external wrench or force, hence the name force closure. Figure 21 shéws a force closure
grasp. If gravity were acting up the page instead of down, the object would fall toward

the palm.

Assuming our goal is to perform safe pick-and-place operations, each object must be
manipulated away from its support surface and into an enveloping grasp. To achieve

this goal, planning is broken into two phases: the pre-iift-off phase and the lifting phase.

3.1. Pre-Lift-off Phase

The objective of the pre-lift-off phase is to find a realizable initial grasp which
guarantees that the object can be manipulated away from the support. The simplest
way to achieve this objective is to choose a grasp in the translation region. Squeezing
then causes the object to translate upward, breaking all contact with the support (see
Figure 22). All possible initial grasps of this type can be found using the following pro-

cedure.
1. Designate one finger to lie along an edge of the polygon.

2. Compute the transiation region T.

51

3. Solve for the joint angles to contact the object in T with the other finger.

N

. Check for geometric interference.

5. If T is empty or step 3 has no solution or interference is detected, reject the
grasp; otherwise accept the grasp as feasible.
6. Return to step 1 until all combinations of finger and edge have been con-

sidered.

When choosing an initial grasp, preference should be given to those for which the
second contact point is near the center of a large translation region, because those
grasps will be least sensitive to position errors. For example, consider the intended ini-
tial grasp shown in Figure 22. Position errors could give rise to any or all of the follow-

ing scenarios:
1. Error in vertical position of finger 1, §y: q;, moves up or down.
2. Error in the angle of finger 2, §1,: the normal of contact 2 is altered.

3. Error in the angle of finger 1, §4: contact 1 or contact 5 is not achieved.
Errors of types 1 and 2 do not deleteriously affect the nature of lift-off of the object as
long as the vertical error § y and the angular error § 1, adhere to the following inequal-

ity
)
Sy — Py C—OS_<129 (78)

where p ., is the distance from the center of gravity of the object to the second contact
point and /,, is the distance between the points q;;, and q;,. Inequality (78) is valid
provided that 6y, is small.> Violation of inequality (78) implies that the second contact
normal @, passes below the translation window placing the contact in region B 4. Thus
the object will tip maintaining the third contact, defeating our goal. The third type of
error causes the translation window to shrink to a point, either q;, or q5,. Therefore
d , passes either above or below the translation window, respectively. In the former
case, the angle of finger 1 is less than commanded. Since the translation window
becomes the point q;,, 4, passes above it, so the grasp is in region B 3. Upon squeez-

ing, the object will rotate clockwise, aligning its edge with finger 1. This alignment

3 A similar expression applies if the contact is on an edge of the object rather than a
vertex.

52

opens the translation window and changes the nature of the grasp back to what was ori-
ginally intended. Continued squeezing causes the object to translate up finger 1. In the
latter case the angle of finger 1 is too large causing the translation window to become
the point Qs, and the second contact to be in region B 4. Again squeezing causes an
aligning rotation of the polygon followed by translation up the finger as planned. Figure
23 illustrates and initial grasp exhibiting the third type of error. As squeezing com-
mences, the polygon’s right-most edge aligns with the edge of the finger. Continued

squeezing causes the object to translate up the finger.

3.2. Lifting Phase

The lifting phase begins when the object no longer contacts the support. For this
to occur, the object must be in a force closure grasp in the hand. No contact may

remain on the support.

The goal of the lifting phase is to manipulate the object into an enveloping grasp.
In doing so, the object may either be stable through force closure or unstable. Instabil-
ity is undesirable, because it results in the object’s falling. Even though an unstable
object will eventually come %o rest in a stable configuration, the final configuration can-
not be predicted by our quasi-static technique. Therefore, it is imperative that an

enveloping grasp be gained without ever losing force closure.

Assume that the initial grasp has been chosen in a translation region. As lifting
begins, the object contacts the hand at two points on one finger and at one point on the
other. Since force closure requires three contacts, all of these contacts must be main-
tained until a fourth contact is achieved. If the object is enveloped, s.e., the grasp has
form closure, then the grasp is complete and the lifting phase ends. If not, one of the
contacts must break as manipulation continues. Thus it is apparent that during the lift-
ing phase, the object must translate relative to one of the fingers (assuming flat fingers)
until the object contacts the palm. Once the palm has been contacted, translation is
possible only if one finger loses contact with the object. In an enveloping grasp, both
fingers and the palm must contact the object. Therefore, we prefer to manipulate the
object maintaining contact with both fingers. However, we analyze one planning stra-

tegy which allows contact to be lost with one finger as the object slides on the other.

53

A force closure grasp is one for which the negative of the gravitational wrench act-
ing on the object is within the convex cone C* defined by equations (1) and (2). Fig-
ure 24 shows a convex cone and an external wrench for a typical force closure grasp.
Examination of the equilibrium relationships (1) and (2) reveals how to manipulate a

force closure grasp. Denote by y,, the i * column of W,

cosy;
b

where recall ¥; is the angle of the i * contact normal and t; is the moment of that con-
tact normal measured with respect to the summing point q. | Choosing q to be the
center of gravity of the object, the gravity moment is zero during manipulation. Thus
the convex cone can be projected onto the Lifting Phase Plane (LPP) formed by the
cos®; and t; axes. In this plane, the cone becomes the LPP triangle, the gravity force
maps to the origin, and two contacts on a flat link map to points on a vertical line
separated by the distance that separates the contacts on the link (see Figure 25). The
necessary and sufficient conditions for a grasp to have force closure are that the LPP tri-
angle enclose the origin and the stne of the difference of the contact angles on the two

fingers be greater than zero

We desire to squeeze the object until it contacts the palm. However, while squeez-
ing we must make sure that the LPP triangle always contains the origin and inequality
(15) and is never violated. If the initial grasp is in the translation region, then initially
both of the conditions are satisfied. As the fingers are squeezed together, the quantity,
¥, — t¥,, may only decrease (if the singly-contacted finger contacts a vertex of the
object) or remain constant (if the singly-contacted finger contacts an edge of the object).
Because the palm eventually prevents squeezing from continuing, the quantity is
bounded from below by zero. At the start of manipulation, the angular difference
between the contact normals, 1, — ,, is in the interval bounded by zero and pi. Dur-
ing squeezing, the difference reduces, but remains in the interval. Because the sine func-
tion is positive in that interval, the second condition is guaranteed to be satisfied

throughout the entire manipulation.

54

The condition that the LPP triangle contain the origin at all times must be checked
by considering the trajectories of the triangle’s vertices. Their positions are affected by
three variables, the two joint angles, # | and § ,, and the angle of the palm 4 p (see Fig-
ure 22). Consider the hypothetical trajectory shown in Figure 26. Because the object
will translate up finger 1, finger 2, called the pusher, is rotated counter clockwise while
finger 1 is held stationary. As the pusher rotates, vertices y, and yg of the LPP triangle
remain fixed while vertex y, follows a path qualitatively like the one shown beginning at
point A . At the point C, y, jumps to D. The discontinuity is caused by the edge of
the second finger contacting the £ vertex v, of the object. At the instant the discon-
tinuity occurs, there are four contacts, but only three can be maintained as the fingers
continue to squeeze. Since D is within the valid region for the second vertex, the new
contact remains and the previous contact on that finger breaks. At the point £, the
trajectory jumps outside of the valid region to the point F. If the new contact were to
remain (as it did at D), the interior of the LPP triangle would exclude the origin and
the object would become unstable. However, the trajectory jumped into the region
labeled B 5. This means that the fifth contact point (which is on finger 1) will break.
The new LPP triangle has vertices labeled y,, y, and y5 (see Figure 27). Since the new
vertices contain the origin, the grasp is still table, but now the object will slide up the
second finger rather than the first. Continuing squeezing, the first finger now acts as
the pusher, rotating clockwise and the second finger is held fixed. This strategy of using

one finger as a pusher and holding the other finger fixed is called the pusher.

Figure 27 shows the trajectory of vertex y; crossing the boundary of the new valid
region into the region B 2. When this happens, the second contact breaks, leaving only
the first contact on finger 1 and the sixth contact on finger 2. The grasp loses force clo-
sure becoming unstable, so the object falls. However, if an enveloping grasp is achieved

before the object becomes unstable, then the pusher strategy can be used successfully.

An interesting property of the LPP trajectory is that if a vertex moves out of the
valid region in a continuous manner (as at G), the object becomes unstable, because a
contact point is lost without gaining a new one. However, if the vertex jumps outside of
the valid region (as at F), the object remains stable and the finger on which the object
translates switches. Any motion of the trajectory within the valid region represents

stable translation of the object without switching pushers.

55

If the pusher strategy fails (see Figure 28), one could try the roll strategy during
which the finger angles are fixed as the palm is rotated. If the hand can be rotated far
enough without losing force closure, the object will slide down the finger until it touches
the palm. Afterward, the fingers may be closed around the object creating an envelop-
ing grasp. Figure 29 shows the trajectories of the vertices of the LPP triangle
corresponding to a clockwise rotation of the hand shown in Figure 21. As the hand
rotates, the object does not move relative to it and therefore the moment arms,

t;; 1 € {1, 2, 5}, of the contacts do not change. The result is that the corners of the
LPP triangle can move only horizontally and since the normals of contacts 1 and 5 have
the same direction, y; and y; move at a common rate. At B the right finger becomes
horizontal. After slightly more rotation, the second contact breaks and the object slides

towards the palm. Closing the fingers around the object achieves the enveloping grasp.

We would like to know what conditions guarantee the success of the roll strategy.
A condition of necessity is that ¢, and t; have opposite signs. If they have the same
sign, the object could not be stable when sliding down the finger, because the gravity
force would not pass between the two supporting contacts. Given that necessity is met,
a sufficient condition is that ¢, equal zero. The validity of this condition can be argued
for as follows. Since the grasp satisfies inequality (15), y, is always on the left side of
the lifting phase plane. As the hand rotates clockwise, y, and y; move toward the left.
Until the right finger becomes horizontal, y, and ys are on the right side of the LPP.
Therefore the LPP triangle always contains the origin. As the right finger passes
through horizontal, y, and y; cross the ¢; axis causing the second contact to break as

the object slides towards the palm on finger 1.

The pusher and roll strategies can be combined as illustrated in Figure 30. If possi-
ble, the pusher strategy should be used to cause vertex y, to move to the costy; axis
(see point B in Figure 26). After this, the roll strategy can be used to safely complete
the grasp provided that t, and t. have opposite signs.

If friction is present, the same strategies are valid, however inequality (44)
sin(¢15 — ¢4) > 0 (44)

must be satisfied rather than inequality (15) and each edge, y; of the convex cone must

be replaced with ¥;, the appropriate edge of the friction cone for each contact

cos (¢; + a) cos (¥, =)
V. = Isin (h; +a)|; i€ {15} V2 = |sin (¥; £ a) (80)

o - -

where Ei is the moment arm of the {® contact force and « is the friction angle. The
sign of a in the expression for ¥, is dependent on the relative velocity of the second con-
tact point. Since it would be useful to control the sign of a, it would be preferable that

the second finger to have more than one link.

4. CONCLUSION

Manipulation with articulated hands is usually carried out under force control to
prevent slipping at the contacts. Dissallowing slipping unnecessarily limits the dex-
terous capability of a hand and cannot be done in the absence of friction. We have
addressed the problem of achieving an enveloping grasp in the plane based on sliding
contacts. Our solution was based on the frictionless case, but extended where appropri-
ate to include Coulomb friction. Planning was broken into two phases: the pre-lift-off
phase and the lifting phase. The goal of the pre-lift-off phase was to manipulate the
object so as to cause it to lose contact with its support. This led us to define and
analyze the liftability of planar objects. Given the contact configuration of one finger,
the liftability regions of the object could be determined and used to plan the placement
of the other finger to complete the initial grasp. It was determined that initial grasps in
the transiation region of the object should be used, because they achieve the goal of the
pre-lift-off phase most easily and are insensitive to position errors. For the lifting phase,
planning was done geometrically in the lifting phase plane providing a simple method to
monitor grasp stability and to predict which contacts were gained and lost as the grasp
evolved. Manipulation trajectories generated by our planning technique can be executed

under position control. Force control is unnecessary even when friction is included.

Even though our analysis in Section 3 was two-dimensional, the planning methods
can be applied to three-dimensional objects which can be modeled as generalized
cylinders by planning manipulation using the appropriate cross sections of the cylinders.
In the event that such modeling is inappropriate, the obdject motion problem we have for-
mulated can be used incrementally to plan manipulation tra.jector-ies in three dimen-

sions.

57

5. ACKNOWLEDGEMENTS
The authors would like to extend their thanks to Dr. J.M. Abel and Dr. M.C. Pesh-

kin for their suggestions.

This research was performed at the University of Pennsylvania and the University
of Wollongong, and was supported in part by the following grants: IBM 6-28270, ARO
DAA6-29--84-k-0061, AfOSR 82-NM-299, NSF ECS 8411879, NSF MCS-8219196-CER,
NSF MCS 82-07294, AVRO DAABO07-84-K-F077, and NIH 1-RO1-HL-29985-01. Any
opinions, findings, conclusions, or recommendations expressed in this publication are

those of the authors and do not necessarily reflect the views of the granting agencies.

8. REFERENCES

Asada, H. and By, A., 1984 {Aug.), "Kinematic Analysis and Design for Automatic
Workpart Fixturing in Flexible Assembly," Proc. Second International Symposium

of Robotics Research, Kyoto, pp. 50-57.

Beveridge, G.S.G. and Schechter, R.S., 1970, Optimization: Theory and Practice, New
York, McGraw-Hill.

Brooks, R.A., 1983, "Planning Collision-Free Motions for Pick-and-Place Operations,

International Journal of Robotics Research, 2(4):19-44.

Brost, R.C., 1985 (July), "Planning Robot Grasping Motions in the Presence of Uncer-
tainty," CMU-RI-85-12 Department of Computer Science, Carnegie-Mellon Univer-
sity, Pittsburgh.

Cutkosky, M.R., 1985, Robotic Grasping and Fine Manipulation, Boston, Kluwer

Academic Publishers.

Fearing, R.S., 1987 (March/April), "Some Experiments with Tactile Sensing During
Grasping," Proc. IEEE International Conference on Robotics and Automation,

Raleigh, NC, pp. 1637-1643.

Goldman, A. and Tucker, A., 1956 "Polyhedral Convex Cones," in Linear Inequalities
and Reiated Systems, ed. H. Kuhn and H. Tucker, pp. 19-40, Princeton University
Press, Princeton.

Hanafusa, H. and Asada, H., 1982, "Stable Prehension by a Robot Hand with Elastic
Fingers," in Robot Motion, ed. Brady et al., Cambridge, MIT Press, pp. 337-359.

[~e]

Holzmann, W. and McCarthy, J.M., 1985 (March), "Computing the Friction Forces
Associated with a Three-Fingered Grip," Proc. [EEE Internaticnal Conference on
Robotiecs and Automation, St. Louis, pp. 594-600.

Jameson, J.W., 1985 (June), "Analytic Techniques for Automated Grasp," Ph.D. disser-
tation, Department of Mechanical Engineering, Stanford University, Stanford.

Kerr, J.R., 1984 (Dec.), "An Analysis of Multi-Fingered Hands," Ph.D. dissertation,
Department of Mechanical Engineering, Stanford University, Stanford.

Kobayashi, H., 1984 (Aug.), "On the Articulated Hands," Proc. Second International
Sympostum en Robotics Research, Kyoto, pp. 128-135.

Lakshminarayana, K, 1978, "The Mechanics of Form Closure," ASME Report no. 78-
DET-32.

Laugier, C. and Pertin, J., 1983 (Jan.), "Automatic Grasping: A Case Study in Accessi-

bility Analysis," research report no. 342., Toulouse.
Li, Z. and Sastry, S., 1987 (March/April), "Task Oriented Optimal Grasping by Multi-

fingered Robot Hands," Proc. IEEE International Conference on Robotics and
Automation, Raleigh, NC, pp. 389-394.

Mason, M.T., 1979 (April), "Compliance and Force Control for Computer Controlled
Manipulators," MS thesis, MIT AI Lab, Cambridge.

Mason, M.T. and Salisbury, J.K, 1985, Robot Hands and the Mechanics of Manipulation,
Cambridge, MIT Press.

Nguyen, V-D., 1986 (May), "The Synthesis of Stable Force-Closure Grasps," MS thesis,
MIT Al Lab, Cambridge.

Ohwovoriole, M.S., 1980 (April), "An Extension of Screw Theory and Its Application to
the Automation of Industrial Assemblies," Ph.D dissertation, Department of

Mechanical Engineering, Stanford University, Stanford.

Okada, T., 1982 (May/June), "Computer Control of Multijointed Finger System for
Precise Object Handling," IEEE Transactions on Systems, Man, and Cybernetics,
SMC-12(3):289-298.

Peshkin, M.A. and Sanderson, A.C., 1988 (April), "Minimization of Energy in Quasis-

tatic Manipulation," proc. IEEFE International Conference on Robotics and Automa-
tion, Philadelphia.

59

Peshkin, M.A. and Sanderson, A.C., 1987 (April), "Planning Robotic Manipulation
Strategies for Sliding Objects," proc. IEEE International Conference on Robotics

and Automation, Raleigh.

Paul, R.P. 1972, "Modeling, Trajectory Calculation and Servoing of a Computer Con-
trolled Arm," Stanford Artificial Intelligence Laboratory, AIM 177, Stanford
University, Stanford.

Salisbury, J.K., 1982 (July), "Kinematic and Force Analysis of Articulated Hands,"

Ph.D. dissertation, Department of Mechanical Engineering, Stanford University,
Stanford.

Trinkle, J.C., 1985 (November), "Frictionless Grasping," MS-CIS-85-46, GRASP Lab

52, Department of Computer and Information Science, University of Pennsylvania,
Philadelphia.

Trinkle, J.C., 1987 (June), "The Mechanics and Planning of Enveloping Grasps," Ph.D.
dissertation in Systems Engineering, MS-CIS-87-46, GRASP Lab 108, Department

of Computer and Information Science, University of Pennsylvania, Philadelphia.

Trinkle, J.C., 1988, "An Investigation of Frictionless, Enveloping Grasping in the

Plane," International Journal of Robotics Research, in press.

Whitney, D.E., 1982 (March), "Quasi-Static Assembly of Compliantly Supported Rigid

Parts," Journal of Dynamic Systems, Measurement, and Control, vol. 104, pp. 65-
77.

Wolter, J.D., Volz, R.A., and Woo, A.C., 1984 (Feb.), "Automatic Generation of Grip-

ping Positions," techanical report, University of Michigan, Ann Arbor.

60

7. Appendix

Here we show how the liftability regions of two two-point initial grasps can be com-

bined to form the liftability regions of one three-point initial grasp.

7.1. The Sliding Region, S

The sliding region S for an object is independent of the number and positions of
finger contacts; it depends only on the geometry of the object (see inequality (23)).

Therefore we immediately write the following equation

§=8,=5;. (39)

7.2. The region S’

The other relevant liftability regions are
J,B3,B4,T7,J,,B3,,B4,, T, Js, B35, B4s, and T3, where the non subscripted
regions are due to the three-point initial grasp and the subscript 7 ;¢ € {1, 5} implies a
two-point grasp using contacts 2 and ¢. The liftability regions of the two two-point ini-

tial grasps must satisfy inequality (35)
JyUB3 UB4UT, =S5~ (A1)
Js|UB3s|UB4s | Ts5=2S5". (A2)
We begin our derivation of equations (40)-(43) with the following true statement.
5°MS’ =5". (A3)
Substituting equations (A1) and (A2) into (A3) and expanding gives
(JiNJs) U (i B3) U (1N B4k) U (Ui Ts)
UB3NJs)UB3ZNB3) UJI(B3INB4)UIB3ZNTs)
UB4NJIs)UB4HNB3XK)U (B4 Bes) J(B4HLNTs)
U(TiNJs) UTiNB3) U(TiNB4s) U(TiNTs)=S5". (A4)

As a consequence of equations (37) and (38), the 16 sets formed by intersection are

mutually exclusive.

61

Any set which is formed by intersection with J, or J; belongs to J. This state-
ment is motivated physically by the fact that for a two-point initial grasp in the jam-
ming region the object can only be further constrained by adding another contact point.
Noting that the top row of, and the left hand most column of the left hand side of equa-

tion (A4) are equivalent to J; and J 5 respectively, we write:

JoJ,UJs- (A3)
Equation (A5) accounts for 7 of the sets in equation (A4).

The nature of lift-off for the remaining 9 sets can be deduced by considering Figure
Al using the following facts:)

1. A stable grasp must have 3 contact points during manipulation (more contacts

cause static indeterminacy and interference; fewer lead to grasp instability).

2. The positive or negative cones of a stable grasp must "see each other" [Nguyen

1986| where the positive force cone of f, and f is labeled in Figure Al as
C 54

3. The positive or negative force cone is the set of points defined respectively by a

positive or negative linear combination of the forces using their intersection

as the cone’s apex.

4. A pair of cones see each other or are mutually visible if each cone contains the

other’s apex.

Consider the set B 3, (M) B 35. Referring to Figure A1, a point in § * can only
belong to both B 3, and B 35 in two ways: the contact normal d, passes upward

through both open half lines (qs,, cos™)* and (q;,, oo") (as shown in Figure Al) or

downward through both half lines (q4, ooy) and (qsy, o5). Let one force cone be C,,

as shown.? To determine the nature of lift-off we must find a cone within sight of C, g

which can see C,,. Only cones C 4 and Cj, satisfy this requirement. Since neither
4

By ".. upward through the half-line (qs, oos") ...," we imply the satisfaction of
sin(¢s — ¥3) > 0. Similarly "downward" implies satisfaction with the inequality re-
versed. To define upward and downward with respect to half lines along the line of the
first contact force, substitute 1, for ¢ .

5 To make two cones requires four forces. They are the three contact forces and the
gravity force.

62

cone is constructed using the third contact force, that contact must break, i.e. the grasp
must be in B 3. Both cones include the fourth contact force, so that contact is main-
tained. However, to maintain exactly 3 contacts during manipulation, either the first or
fifth contact must also break. The one which will break is determined by considering
the motions which will be made by the fingers. For example, if finger 1 remains fixed as
finger 2 squeezes, then the first contact will break while the fifth contact is maintained.
In this case the instantaneous center of rotation of the object is either the point q;4 or
qs4. If we assume that the fifth contact breaks implies that the center of rotation is q4.
Rotation counter-clockwise about q;, causes interference at the third contact; clockwise
rotation causes interference at the fifth c.onta.ct. Thus the assumption that the fifth
contact breaks is inconsistent with the instantaneous kinematics of the grasp. There-
fore, the first contact (and the third contact) must break while the fifth contact (and
the second and fourth contacts) is maintained. This conclusion is validated by the fact

that instantaneous clockwise rotation about gs, does not cause interference.

The result of the above arguments is that we may write:

By a similar argument one can show that

B42 B4, (M B4s (A7)
T>B3 NOT;s (A8)
T>B4 O T,;- (A9)

Also, because in S * the contact normals 4, must have a horizontal component to the
right, we note that it is impossible for any contact point to be in both sets B 4, and
B 3,

B4, M B3;=0 (A10)

where @ represents the null set. For a contact point to be elements of both sets would
require that the contact normal pass upward through (q, g9 oo,) or downward through
(Q13, %0") and upward through (qs,, cos") or downward through (qsy, oog”) which is

impossible. Similar arguments result in the following three equations

B4 Ts=9 (A12)

a2

Tlm T5= @. (A13)

The only set not accounted for is B3; (| B4;. All contact normals belonging to
this set must pass through the translation window (q;,, qs,). Consider the cone C,,
shown in Figure A2. If 4, passes through (qs,, q;s), then C 5 and C,, see each other,
i.e. the grasp is in the translation region. If 4, passes through (q;4, q;5/%, then the only
pairs of mutually visible cones are C 2g» C1a2nd —C,,, — Cs3. The corresponding
instantaneous centers of rotation are the points q;4 and gg3, respectively. The first pair
of cones implies that the third contact must break which requires counter-clockwise
rotation about q;,. This rotation causes interference at the fifth contact. The second
pair of cones implies that the fourth contact must break which requires clockwise rota-
tion about qg3. This rotation causes interference at the first contact. Therefore we con-
clude that motion is impossible. Thus points in S “ whose normals pass through the
translation window TW and through (q;4, Q5] belong to Jp which is a subset of J.
For the case of q;5 on the left of the translation region, the procedure for defining T
and Jp are identical except the segments (qs,, q;5) and (qy4, q;5] must be replaced by

(q1s, @1,) and [qys, Qs3), respectively. The set (B 3; (M| B4s) can now be written as the

union of two mutually exciusive sets

B3, M B4s=Jr U (Jr M B3N B4y (A14)
where the second term on the right hand side represents the portion of the set
(B3, M B4s) which is in the translation region. Also note that for a grasp in the
translation region with finger 1 fixed, q5 is the instantaneous center of rotation and
must lie to the left or right of the line of action of f5 or f, respectively. If q5 lies
between f; and f,, rotation counter-clockwise or clockwise causes interference at the
third and fourth contacts, respectively; a contradiction that both contacts three and

four break simultaneously.

The nature of lift-off for all 16 sets of S ° have been determined and are now be

combined to yield the liftability regions for the three-point initial grasp

B3=B3, M B3; (40)

8

Note that contact normals which pass through TW and (q;,, Q14 have already been as-
sign to the jamming region by relationship (AS).

64

B4=B4, M B4
J=JyUJsUJr

T=(B3NB4NJIrIUBSNOT)UB4HGNTY .-

g.e.d.

65

vl

edjqe 0 v, | f

////7//////////77/,1'///////////////////// 2IT500 /7727770777 ,‘, TXTT 77T
:a\

£ | |

F{(jura 3 @\,\CLV‘\;\'}\;?S Fo(EA%Q. L\Qrabtlﬂ\\j
Eefj'wims

TP 77 /,/////,//////////X//// s R EYE Vs
| T
f

LA = L. T4 O D

A i e A7 s
b s
| <
S
\‘,4\ '

o

s

Figue 5 Formahion of Edge. &3\‘0\8 23,84 and T

68

o e A et o e e

L TTTTTTTTT 77777 T 77 1777777 1177 77777707 s

| c

-
1
+

.

thu«m G QULO\T\AI'\JI\.QS Foc \Jer)rax L\"Lalm\\).\j ?J(?\;mg

8

TI777777 /,///7/////1/ ey /T/////

b

Fréum 7= Veerex L\'Halo\h“\] %ﬁm’ns

69

qv\q. /
f | -t3 —u— I/J

Figure 8: Three-Point Initial Grasp

959

Bt || 1

[N

Figure 9: Region, T, for an Edge

& AP

.

Figure 10: Region, T, of a Vertex

70

TTTTT772K7 77777777777 7277 7777707 7K 77707
] .

i‘% ' i‘Fq.
Fig'v\r& 1% R!Lﬁ‘.ﬂmS S and

ALK 17777777777 7777 IO 777777777

l{” I'F+

ﬁﬁw‘& 12 Reg@ms PT ard PT

71

83- ‘
COOLILLLR 1717277 f 777777777077 7777777777

i :

F\éjb\i‘ﬁ ‘3 R&CJ(GFLS B’ST)B‘\'Y ord T

F'_LCSU\\“’\ 14 %.3\@05 653) %dT:Y, ard 3

72

Fléu\v‘i 15 Lbkab

P77 {/ OIS T PP 7T 777

%

\‘T\j ?:Lq\srg Loc a hwo- Pl _Lm

/////r_////////

o

‘%\owl Gm%)

AR 1%
9 ‘Fs

13

B3

V2P ey dayiae

4/ L7707/ 000777007

o
"

F['c:)b\re, |G : L\1C+cxlél\i+y Ragqiong for o Theee - Pt Tnihal
Gmsp.

73

SE/EA S

F!éuﬂ \7: L\'F'l‘ab\}i’}‘j Qajims Foc Two-Tont and T}\m‘%‘}\q}

Tnihal Grasps of Soverad %)ﬁof\s. Note That 4hg
o\g')e_(‘:\‘ on Fhe lafd does net o(avdo? o translad s

re?)l‘m\ °

Nz s
///////// 2/ //////////////

7/////////.///// /7 77777771717/

uJ‘\'H\ F(“;C)Y\;S“r\

F\ﬁ“ e 2.0: aform closure grasp of the object. If the fingers
are locked the object cannot move at all.

—— . —
—— —— .

M

F\rju re . 2| +atypical force closure grasp.

7 7%

7777777 777 thi',

Figure 22 TIntended Inihal Gasp

76

Figure 24: Convex Cone and External Force

77

R%\,\(e 25: Convex Come C7 Maﬂo{d onto .H\e

L\';mcj Phase. Plang .

‘55 il‘kt LPP
- | f /'35
‘\\L i ,//
¢os ¥; Bl A ‘!‘\\\ -
- v S -
i D | P T~ =1
g 1E _ =
2
-1
g Bl
~~
e

Figure 26 : Trajectory of Yg-

78

F ut Vall

'
\\ / r‘e.atoh
\

Figure 27 : Trajectory after Switching Pushers

L I

F\(j'uw-e 28: Faded ?L\SV\'\AQ S’f‘fc\‘\‘ejj

79

Figure 29: Hand Rolling Strategy

L _J [l [

F(’jtl)\ri 50 : Suc\’.ess(-‘xd /P\.st\ CU‘\(/.{ /Rol\ S+(“o\+<’.jj

80

T7777707707007207

LIRS 77 /f//////i'/////f/}

7710007077077
83,N 335-—«/'

: I £,

Figure Al: Formation of tha Reqion B3,N 835

81

7700000070777 T (T 7/ 7777 707700077227

de

1y

F{aure A7 Pcw‘l"’ih'on‘\nﬁ of tha 'Reﬁ{m-\ B3, N ’845 {nto
Qeaxcms Jy and T.

Q9

A.3 A Medium-Complexity Compliant End Effector

83

A Medium-Complexity Compliant
End Effector”

Nathan Ulrich Richard P. Paul Ruzena Bajcsy

Department of Mechanical Engineering
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104

Abstract

Recent interest in end effector design has not yet resulted in a versatile
yet simple mechanism appropriate for a wide range of manipulation tasks.
The design of a novel end effector under development at the University of
Pennsylvania is explained in detail in this paper. The rationale supporting
this mechanism is explored, its geometry is described, experimental results
from the first prototype are shown, and some ideas for future work are
presented.

Introduction

In recent years there has been a great deal of attention focused on the design

of end effectors. Progress in grasping research, active sensing, assembly, and

*Supported by NSF grants MEA-8119884, DCR-8410771, CER/DCR-8219196, INT-
8514199, DMC-8517315, and DARPA/ONR grant N0014-85-K-0807. Any opinions, findings,
conclusions, or recommendations expressed in this publication are those of the authors and do
not necessarily reflect the views of the supporting agencies.

84

prototype construction has created a need for a versatile, robust, and economical
mechanical hand that can be used for experimentation. Although many designs
have been proposed and several prototypes built, a comprehensive effort which
combines the desire for performance with the reality of application has yet to
be undertaken. As a result, no single device is in common use.

Most previous end effector designs fall into two categories: complex “hands”
or simple grippers. Notable in the first class are the Utah/MIT Dextrous Hand
[1] and the Salisbury hand [2]. They incorporate a large number of degrees of
freedom (degrees of freedom) into a complex multi-fingered hand design which
imitates the human hand in speed, dexterity, and versatility. The resulting per-
formance is impressive, but the increased complexity precludes simple planning
procedures. The simple grippers do not have this problem—they are generally
one or two degrees of freedom and are powered by means of remote pneumatic
or self-contained electric actuators. They pay for this simplicity by being limited
in application, usually specialized for one type of task.

We feel that what is needed is a mediwn-complexity end effector: a device
that combines the simplicity characteristic of the simple grippers with some of

the versatility of the complex hands.

Design Philosophy

The design of any tool requires a precise definition of its intended use. It
is important to not only decide what tasks a robotic end effector needs to be
able to perform, but to also determine the limits of its performance. Previous
hand designs have used the human hand as a so-called “existence proof’ of the

appropriateness of such a geometry. Since our hands are capable of many varied

85

tasks, any mechanical end effector which duplicated the human hand would also
be capable of these tasks. But this is not sufficient reason for an anthropomorphic
geometry. The design of an end effector should be pursued in the same way
as any other design; establish the criteria for its performance and synthesize a
mechanism which satisfies these goals. For our specific research environment,
the end effector is required to machine and assemble parts, handle many different
sizes and shapes of objects, and perform exploratory and sensing tasks—it does
not need to be able to perform tasks outside of this environment. While the
human‘ hand seems to be ideal for performing the wide range of tasks required
of a person—from playing basketball to changing diapers to driving nails—it is
not necessarily the perfect tool for the specific areas in which robotic research is
now concentrated. Witness the number of tools to assist the human hand found
in a machine shop. It should be possible to design an end effector that is more

suited than the human hand for such an environment.

Design Criteria

The Medium-complexity Compliant End Effector (McCEE) is designed primar-
ily for three research areas: active sensing, assembly (and disassembly), and
grasping.! Although these subjects encompass a wide range of criteria, we feel
that they overlap sufficiently for the use of one basic end effector design.
Grasping research requires a versatile mechanism that allows application
of theoretical methods to experimental situations. The state of the art at this

point demands a more flexible tool than the simple grippers commonly used,

1Research in the application of this design to prosthetics is continuing, but is beyond the
scope of this paper.

86

but it is extremely important that the complexity of the end effector be limited.
Since theoretical principles cannot support a complex (e.g. 9 or more degrees
of freedom) model of grasping in three dimensions, we feel that a medium-
complexity device is most appropriate at this time. The simplicity of planning,
movement, and control associated with fewer degrees of freedom is an important
consideration—such a tool would be more accessible to the researcher. However,
it is important to note that 9 degrees of freedom is the minimum necessary to
allow arbitrary positioning of three fingertips in space. For this reason, our
design will concentrate on enveloping grasps; those that rely on the palmar
surfaces of the inside of the fingers and the palm to constrain an object, as
opposed to fingertip manipulation utilizing friction and fingertip contacts{3]. An
extension of the two degree of freedom grippers is necessary, but in interest of
utility, we would like to limit our end effector design to three or four degrees
of freedom.

Although recent advances in vision and other passive sensing techniques
have resulted in increased reliability and information gathering ability, it has
been shown that the use of active sensing is necessary to adequately define the
shape and orientation of an object(4][5][6]. In addition, psychological research
has defined a number of “exploratory procedures” that can be used to collect
such characteristics of an object such as texture, hardness, thermal conductivity,
and shape{7]. Such sensing will allow us to classify an object or verify a
hypothesis; an exact description is essential to allow us to perform manipulation
in an assembly operation or to support grasping experimentation. Therefore, the
end effector will need to serve as a platform for a number of specialized sensors

necessary for this work. It is necessary that a sensor package be incorporated in

87

the design of the end effector, but that the end effector be sufficiently versatile to
accomodate changes in sensor type and application. The primary sensors—those
integral to the design—provide position, tactile, force, and moment information
on contact surfaces. But the design must also consider easy mounting and
dismounting of other more exotic sensors (thermal and electrical conductivity,
proximity, specialized textural, etc.).

Assembly of parts and objects is an important area of robotics research
because of its relevance to industrial applications. However, assembly tasks
performed by robots today are limited to rigid, structured operations which usu-
ally require complex jigs and parts-feeding devices. Any appreciable uncertainty
in such an operation cannot be accomodated. This is essentially automation and
not robotics. At a certain level of production capacity, such automation becomes
cost effective. However, below this critical level, human workers are necessary
to supplement any generic automatic devices in use. A true robotic assembly op-
eration would combine grasping and sensing with computational sophistication,
and would be able to tolerate much larger errors in positioning and description.
Necessary to such an operation, however, are one or more versatile end effectors
that are suited for both a wide range of grasps and a variety of sensors. Such
a device should be able to handle both parts and tools, as well as possessing
the sensor sophistication to recognize and differentiate objects. But even with
these capabilities, an assembly operation still requires a model and procedure
to follow. Previous research has used human-based techniques to synthesize as-
sembly algorithms. However, the strengths and weaknesses of a robotic system
are inherently very different from those found in humans. By taking an object

apart, finding seams, joints, and fasteners, such a system could determine the

88

best way for a robot to reassemble the object. The ability to perform effectively
in such a disassembly operation is an important criterion for our end effector
design.

A number of criteria for the design of an end effector that could perform the
operations suggested above are related to convenience and utility. The mech-
anism would ideally be self-contained; discrete from the manipulator and able
to be mounted and dismounted quickly and easily to facilitate adjustment and
repair. A compact, sleek design integrating all cabling, sensing, and actuation
is important, but since it will be a research tool, the mechanical design should
be accessible, allowing changes in structure and operation without radical re-
construction or redesign. The use of the end effector to learn about objects
necessitates it use as a platform for many types of sensors. All of these sensors
do not initially need to be built-in, but the design must be able to accomo-
date their use. The end effector should, ideally, satisfy the research imperatives

described previously while attaining these objectives as well.

Supporting Research

Many researchers have attempted to classify the grasps required by a robotic
end effector. Schlesinger defined six prehension types used by humans in his
work[8], and Cutkosky and Wright further defined the grasps used by a machinist
at work{9]. Although other, different, classifications have been used (see [101
for a complete grasp taxonomy), we find these two sets of descriptive labels most
appropriate for our applications. The grasps required by assembly, disassembly,
prototype construction, and grasping research are contained within these types,

represented graphically in Figures 1 and 2.

89

O @ 5 D

cylindrical grasp spherical grasp
palmar prehension tip prehension
hook prehension lateral pinch

Figure 1: Schlesinger’s prehension types

While the actual apprehension of an object with a robotic end effector can
be modeled using the above classifications, the use of the device as a tool for
active sensing requires expansion of these models. Although a great deal of
haptic (kinesthetic plus tactile) information can be gained by simply holding
an object, the exploratory procedures described by Klatzky er al require other
sensory methods. Figure 3, adapted from [7], shows the properties that we
need to obtain by active sensing and the necessary actions of the end effector
to determine these properties. In order to perform these movements with an
end effector, we need several abilities. First, we need to be able to use the end
effector with one finger extended as a probe. This will allow us to perform the
exploratory procedures to test for texture, hardness, temperature, and will allow
us to determine the shape of the object by means of the procedures suggested

by Allen [5] and Stansfield [6]; i.e. determine surfaces, cavities, holes and

90

cylindrical &
spherical :

5 fingertip 5 ;

power

N U

© &0 (

hook

& (E (E
(D> Iy O

4 fingertip

3 fingertip 2 fingertip

L

lateral pinch E

Figure 2: Cutkosky and Wright’s manufacturing grips

91

Properties Hand Movements

§ Texture Lateral Motion
S 5| Hardness Pressure
4+ 5] Temperature| Static Contact
2 A Weight Unsupported Holding
E ,§ (Weight) (Unsupported Holding)
g 5| Global Shape| Enclosure, Contour Following
= 51 Exact Shape | Contour Following
» &| Volume Enclosure

Figure 3: Classification of properties and exploratory procedures

contours. In order to accomplish these tasks, this finger would need tactile
sensing capability, force and position sensing, and also specialized temperature
Sensors.

The end effector must also be able to enclose an object within its grasp
and lift it free of support. This will allow us to determine the weight, shape,
and volume of the object. Such a function requires similar properties as those
required by other aspects of our goals, but also requires precise sensing of the
object within the grasp. A determination of an object’s properties by means of
the exploratory procedures described above is essential to an accurate classifica-
ton of the object; such a classification is necessary for success in the assembly,
disassembly, and prototype construction workplaces described previously. It
follows, then, that in order for an end effector to be useful in these task-oriented

environments, it must also be a efficient tool for active sensing.

Mechanical Configuration

The shape of the end effector design was determined by the need to achieve wide
versatility with as few degrees of freedom as possible. We found that in order

92

pinch cylindrical spherical

mm = finger bases

palm surface

hook tip
Figure 4: The five grasping modes of McCEE

to obtain the grasping and sensing configurations necessary for our research,
we needed an end effector with at least four degrees of freedom. The actual
mechanical geometry is separated into two parts: the shape of the palm and its
relationship to the fingers, and the finger design.

The palm/finger relatonship consists of a one degree of freedom move-
ment of the fingers around the palm. Skinner proposed a similar movement
of the fingers, but his design did not incorporate the palm into the grasping
arrangement(11]. We wish the palm to be an important tool in the manipulation
of objects. Not only can the palm be used as a base against which to hold objects,
as a tool to perform pushing operations on objects, but also (with tactile sensors)
as a information-gathering instrument which will allow "footprints™ of objects
to be obtained. By separating the centers of rotation of the fingers, we obtain a
number of grasping configurations. Figure 4 shows these different modes. One
finger (which, although not precise biologically, we call the thumb) has its base
fixed with respect to the palm, while the other two move synchronously around

two different axes. The resulting scheme allows a very wide range of grasping

93

fingers fingers partially fingers
extended closed closed

Figure 5: Variations of the pinch grasping mode

types and, in addition, yields a pinching grasp between the two fingers similar
to that used by amputees who use a split hook. Another advantage to this con-
figuration is that the palmar surfaces of the fingers are always facing directly
inwards—simplifying the sensing of an object within a grasp—in contrast to the
human hand, where the lateral movement of the fingers does not allow this. The
five grasping modes are described below with their parallels in Schiesinger’s
and Cutkosky and Wright’s work defined as well:

The pinch grip occurs when the two movable fingers are brought together
on the opposite side of the palm from the thumb. The inside of these two
fingers are lined with rubber, which allows for friction grasping of small ob-
jects. This is primarily a precision grasp, used for picking up small, delicate
objects. It is similar to the lateral pinch grasp described by both Schlesinger
and Cutkosky and Wright. In addition, some operations which are usually per-
formed by Schlesinger’s tip prehension and Cutkosky and Wright’s two-finger
precision grasp can be achieved in this configuration. The flexibility of this
grasp is enhanced by the ability to change its nature by changing the angle of
the fingers. In Figure 5, this technique is illustrated. This grasp is very similar

94

_\\\\\\N\

(‘

Figure 6: Variatons in the cylindrical grasping mode

to the precision grasp used by amputees who have been fitted with a split hook
prosthesis. In this case, a cylindrical groove between the halves of the hook
allow for stable grasping of a pencil or similar small cylindrical objects. Such
an implementation in the robotic end effector could prove useful.

The cylindrical grasp, when the two fingers are opposite the thumb, is anal-
ogous to Schlesinger’s cylindrical grasp and Cutkosky and Wright’s cylindrical
power and precision grips. This mode allows for the apprehension of a wide
range of shapes and sizes, from small cylindrical objects to larger rectangular
box-shaped objects (see Figure 6). In addidon, this mode allows a version of
the lateral pinch grasp, when an object is held between the three fingertips. The
attractiveness of this grasp lies in its strength. Since the palmar surfaces of
all three fingers are holding the object against the palm, objects are held very
securely.

The spherical grasp, with the three fingers roughly 120 degrees apart, is
similar to Schilesinger’s spherical grasp and Cutkosky and Wright’s spherical
power and 3-finger, 4-finger, and 5-finger precision grasps. In a power grasp,
the palmar surfaces of the fingers are used to hold a spherical object against the
palm, while in a precision grip, the three fingertips form a three-sided fingertip

Figure 7: Variatdons of the spherical grasp

grasp which is similar to the chuck on a drill. In Figure 7, the application of
this grasp to various objects is shown.

When the two fingers are rotated until they are opposite each other, they can
be used in a tip grasping mode. This is exactly the tip prehension described by
Schilesinger and the 2-finger precision grip described by Cutkosky and Wright.
Although this grasp relies primarily on friction for stability, it can be useful
in apprehending objects that are ackwardly placed or for manipulating objects
securely held in some manner. The pinch grasp provides a more stable grasp of
most small objects.

The hook mode of grasping uses all three fingers located together on one
side of the palm. This allows for two types of grasping: a passive grip on a
handle or similar structure where the fingers act as a hook, or an active grasp
where all three fingers hold a large object against the palm. This is a grasp that
could be used to lift one side of a large flat object (in cooperation with another
hand) where the size of the object precludes an enveloping grasp. Figure 8
shows these uses.

Although these modes provide wide versatility in grasping, an equally flexi-
ble finger design is necessary in order to fulfill our design objectives. A finger of
fixed shape pivoting around the edge of the palm would provide only limited ca-
pability. Although it could hold many objects, such a finger could only perfectly

96

e B8

1IHIHHHIHTHIHTTI b

- e

Figure 8: Variations of the hook grasp

Figure 9: Variations in finger shape with changes in object shape

grasp a small number of objects with optimum contact points corresponding to
its fixed shape. In Figure 9, we show how ideal finger shape varies with object
geometry. We would like to have a finger which could change its geometry in
response to the shape of the object. A multi-jointed finger such as those found
on the Utah/MIT DH [1] and in the Salisbury hand [2] can comply to the object
shape by integration of sensor feedback and position control. However, these
fingers have 3 or 4 degrees of freedom. We need a finger which can achieve
this same function without the control and actuation complexity associated with
these added degrees of freedom.

The author originally proposed such a finger design in the Compliant Artic-
ulated Mechanical Manipulator (CAMM) [12], which incorporated a four-joint
finger with two degrees of freedom. We have modified the design to yield a
two-jointed one degree-of-freedom compliant finger design. The single degree

97

LEFT SIDE
cable A cable C
p o e
1 : >
A 3
— |

spring\ cable B RIGHT SIDE

401"““"!‘ —t)s
%

Figure 10: Schematic representation of actuation linkages

of freedom satisfies our need for simplicity, yet allows flexibility in object ap-
prehension. Figure 10 shows a schematic of the linkages involved. This finger
will passively shape itself to an object without the use of control computation or
sensor feedback. The finger incorporates a spring in its linkage to provide com-
pliance in one direction; this allows the second joint of the finger to continue to
rotate once the first joint contacts an object. However, no matter how much the
joints rotate independently, the finger will not comply in opening; that is, it will
always maintain pressure on the object dependent only on the torque produced
by the actuator. The compliance is implemented in the linkage contained on
the right side of the finger, while at the same time the drive linkage on the left
side of the finger actuates the finger and transfers gripping force. For a more
detailed description of this finger and its kinematcs, see [13].

98

Experimentation

It is common for a design to look good in theory and on paper, but to prove
disappointing in implementation. To prevent the investment of time and money
into a electrically-actuated, computer-controlled design that might prove useless,
we decided to build a prototype of our design which would use movement of an
experimenter’s fingers to actuate the fingers of the end effector. This device was
in essence a manual teleoperated end effector. This allowed us to test our ideas
very quickly, utilizing the experimenter’s brain as a control system, and his body
as the actuator. It was in experimentation with this device that the actual design
presented here was developed. This prototype was simple and inexpensive to
build and allowed quick modification. In combination with prototypes of the
finger design, we were able to finalize the design with little effort.

In the process of our experimentation, we found the device very useful; that
all of the grasps necessary for enveloping grasps and tool handling were possible,
and that the actions necessary for assembly and disassembly could be achieved.
However, the device does have limitations. As anticipated, the design is more
suited to enveloping grasps and handling large tools. Associated with the low
number of degrees of freedom is a loss of dexterity in small parts manipulation.
Although such objects can be grasped securely, movement of the objects within
the grasp requires interaction with a table surface or another hand. We do not
find this a serious fault for our work, since the use of two hands for assembly

tasks is probably necessary anyway.

99

Conclusion

We have presented the basis of a medium-complexity compliant end effector
design. The end result of our identification of a gap in end effector develop-
ment has led to a four degree of freedom flexible end effector design that is
especially suited for work in active sensing, assembly and disassembly, and
grasping. We have attempted to support the rationale for this design on fun-
damental good engineering practice as well as on previous research. There are
obviously many details of the design which have not been described here, but an
electrically-actuated self-contained end effector for use on the end of a robotic
manipulator is under construction. Use of this device will allow expansion of
present research topics and allow for experimentation in new areas related to

robotic manipulation.

100

References

[1] Jacobsen, S.C., E.K. Iversen, D.F. Knutti, R.T. Johnson, and K.B. Big-
gers, “Design of the Utah/MIT Dextrous Hand,” Proceedings of the IEEE
Conference on Robotics and Automation, San Francisco, April 1986.

[2] Salisbury, J.K., “Kinematic and Force Analysis of Articulated Hands,”
Ph.D. Thesis, Stanford University, July 1982.

(3] Trinkle, Jeffrey C., “The Mechanics and Planning of Enveloping Grasps,”
Ph.D. dissertation, University of Pennsylvania, June 1987.

[4] Bajcsy, R., “What can we learn from one finger experiments?” in M.
Brady and R. Paul, editors, The First International Symposium on Robotics
Research, MIT Press, Cambridge, 1984.

[5] Allen, P.X., “Object Recognition Using Vision and Touch,” Ph.D. disser-
tation, University of Pennsylvania, September 1985.

[6] Stansfield, S.A., “Primitives, Features, and Exploratory Procedures: Build-
ing a Robot Tactle Perception System,” Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, San Francisco, 1986.

[7] Klatzky, R.L., Ruzena Bajcsy, and Susan J. Lederman, “Object Exploration
in One and Two Fingered Robots,” Proceedings of the IEEE Conference
on Robotics and Automation, 1987.

[8] Schlesinger, G., Der Mechanische Aufbau der kunstlichen Glieder, Part 11
of Ersatzglieder und Arbeitshilfen, Springer Verlag, Berlin, 1919.

[9] Cutkosky, Mark R. and Paul K. Wright, “Modeling Manufacturing Grips
and Correlatdons with the Design of Robotic Hands,” Proceedings of the
IEEE Conference on Robotics and Automation, San Francisco, 1986.

[10] Iberall, Thea, “The Nature of Human Prehension: Three Dextrous Hands

in One,” Proceedings of the IEEE Conference on Robotics and Automation,
1987.

101

[11] Skinner, F., “Design of a multiple prehension manipulator system,”
ASME publication 74-DET-25, October 1974, and Mechanical Engineering,
September 1975, pp. 30-37.

(12] Ulrich, Nathan, “The Compliant Articulated Mechanical Manipulator,”
University of Pennsylvania, GraspLab Memo, April 1985.

(13] Ulrich, Nathan, “A Two-Jointed One Degree-of-Freedom Compliant Fin-
ger,” University of Pennsylvania, September 1987.

102

A.4 A New Computational Structure for Real-Time
Dynamics

103

A NEW COMPUTATIONAL STRUCTURE FOR REAL TIME DYNAMICS
Alberto Izaguirre, Minoru Hashimoto, Richard Paul, Vincent Hayward

ABSTRACT

In this paper we present a new structure for the computation of robot dynamics in real time. The
basic characteristic of this structure is the division of the computation into a high priority synchronous
task and a low priority background task. The background task computes the inertial and gravitational
coefficients as well as the forces due to the velocities of the joints. Each control sampie period, the
high priority synchronous task computes the product of the inertial coefficients by the accelerations
of the joints as well as performing the addition of the torques due to the velocities and gravitational
forces. Kircanski (Kircanski86) has shown that the band-width of the variation of joint angies and
their velocities is an order of magnitude less than the variation of the joint accelerations. This result
agrees with the experiments that we have carried out on a PUMA260 robot.

Two main strategies have been adopted to reduce the computétional burden of the dynamic
equations. The first involves the selection of efficient algorithms for the computation of the equations.
The second is the reduction in the number of dynamic parameters by identifying linear dependencies

among parameters, as well as by making a significance analysis on the contribution of the parameters
to the torques.

We chose an iterative procedure for the computation of the inertial and gravitational coefficients
(Izaguirre86, Renaud8S, Featherston84), and a recursive iteration for the computation of the veloc-
ity torques (Khalil86). In our experiments using the PUMA260 we obtained a set of 52 linearly
independent parameters from an initial set of 78 parameters. The identification of the parameters
revealed only 23 parameters to be significant.

These reductions permit the calculation of the inertias and gravitational coefficients, for the
PUMA260 without load, with 98 muitiplications and 70 additions; and the calcultion of the velocity
torques with 140 multiplications and 110 additions. In the case of an arbitrary load at the end
effector, the calculation of the inertias and gravitational coefficients require 190 multiplications and
150 additions and the velocity torques 200 multiplications and 170 additions. Velocity torques, inertial
coefficients, and gravitational coefficients can be computed in the background in 20 milliseconds using

an Intel 8087 microprocessor. The synchronous task requires only 6 muitiplications and 6 additions
per joint.

1 INTRODUCTION

The inverse dynamics equations of a robot expresses the necessary generalized forces or torques, to
be applied to the different joints of the manipulator as functions of the required position, velocity

104

and acceleration of the joints. The computed torque control scheme is based on calculating the
generalized forces from a model of the manipulator. These signals can be added as feed-forward
terms in a conventional feed-back control loop, in order to linearize and decouple the system. The
equations may be expressed in the following form

n
Fi=Du+ILi)«d+ Y. Dij*di+ Y Dije*dj*dx+ Di+ Fui=di+ Foi*sign(g:) (1)
J=17#1 i,k

Where :

D;; is the effective inertia at the joint ¢
D;; is the coupling inertia between joints ¢ and j
D; ;i are the Coriolis and centrifugal coefficients at the joint ¢
D; is the gravitationai force at the joint :
I,; is actuator inertia
Fj; is the viscous friction
F,; is the Coulomb friction
F; is the generalized force at the joint :
¢; is the velocity of the joint ¢
g; is the acceleration of the joint 7

This control scheme requires to compute the dynamic equations in real time, that is, within the
sample period of the controller. For this purpose, a great deal of research has been done to the
reduction of the complexity of these equations. However, the problems of the automatic generation
of the equations, and of the identification of the constant parameters in the equations, functions of
the moments of the links, frictions, dampings and inertias on the motors, are related problems in a
practical fashion.

In this paper, we are address these three problems making appropiate references to previous
works; explain our contributions, and show the results obtained from our experiments with the
PUMA260 robot.

2 OVERVIEW OF THE INVERSE DYNAMICS COMPUTATION

In this section we review the work that have been done in the past years from the point of view of
complexity, implementation and identification of the parameters of the inverse dynamic equations of
robot manipulators.

2.1 COMPLEXITY IN THE CALCULATION OF INVERSE DYNAMICS

There are two main approaches to derive the required equations: the Lagrange formalism and the
Newton-Euler formalism. The lagrangian approach, developped by Uicker (Uicker68), has been
used by several researchers, including Khan (Khan71), R. Paul (Paul72) and Bejcsy (Bejcsy74). The
pricipal disadvantage of this formulation is the complexity in the order O(n*), due to redundancies
in the calculation. A simplification using a forward recursion on the velocities and accelerations
of the joints and a backward recursion on the generalized forces was introduced by Hollerbach
(Hollerbach80,82). His approach simplified the computation substantially reducing the complexity
to a linear function of the number of joints, i.e. O(n). However, his method cannot compute the
dynamic coefficients that depend only on the joint angles. It thus encounters the same problem as
does the Newton-Euler computation. Megahed (Megahed84) calculated the dynamic equations based
on the Lagrange equations and the dynamic coefficients. The complexity acheived is in the order of
O(n?), requiring approximatively 1000 multiplications and 700 additions for a general manipulator
of 6 degrees of freedom.

Recently, Featherston (Featherston84), following a spatial notation, and Renaud (Renaud83,85),
following tensorial notation, have reduced the computation of the dynamic coefficients, using the
Lagrangian method and the notion of the “compound link”. We used the theorem of “conservation
of the momentum” (Izaguirre86), acheiving equivalent results in the calculation of the inertial and
gravitational coefficients. Basically, the computation consists of the calculation of the moments of
the “compound link ¢” (i.e. the link formed by the links : through the last link) in function of the
moments of the “compound link ¢ 4+ 1”. This recursion leads to a big saving on the calculations, as
well as a systematic way of calculating the dynamic coefficients. The complexity using this approach
is O(n3) if the entire dynamic model is computed, and O(n?) if only the inertial and gravitational
coefficients are calculated.

The second approach, i.e. the Newton-Euler method, consists of the calculation of the generalized
by using Newton’s law to calculate forces, and Euler’s law to calculate torques. One of the first
methods of calculation of the generalized forces was developed by Likins (Likins71). Luh, Walker and
Paul (Luh80) developed an algorithm using a forward recursion for the velocities and accelerations
of the joints, and a backward recursion for the calculation of the generalized forces. The complexity
of the algorithm is O(n) and it requires only 800 multiplications and 600 additions for a general six
degrees of freedom manipulator. Khalil, (Khalil86), based on Luh’s work, reduced the computation
by regrouping common terms. The dynamic equations can be calculated by his algorithm in 540
multiplications and 480 additions in the case of a general six degrees of freedom manipulator.

106

2.2 STRUCTURES OF COMPUTATION OF THE INVERSE DYNAMIC EQUA-
TIONS

Different approaches have been developed for the computation of dynamic equations in real time.
Luh, Walker and Paul (Luh80), based on the Newton-Euler method, computed the dynamic equa-
tions for the Stanford manipulator in 4.5 milliseconds using floating point assembly language in a
PDP-11/45. Raibert (Raibert77) used look-up tables to compute the dynamic equations. 460 multipli-
cations and 260 additions were required to calculate the equations of a general 6 degrees of freedom
manipulator, reducing the complexity of the Newton-Euler method by a factor of 2. Luh and Lin
(Luh82) described a procedure for scheduling subtasks of a group of 6 microprocessors, one per joint,
in order to compute the Newton-Euler equations. Their estimation indicates that 320 multiplications
and 280 multiplications are required to compute the dynamics of a 6 degrees of freedom manipulator.

Recently, Orin (Orin85) has introduced a structure of control by dividing it into ten different
tasks. He arrives at the conclusion that the longest task is the one that computes the inverse dynamics.
Lathrop (Lathrop85) has studied a parallel computation of the inverse dynamics. He has proposed
a pipelined architecture reducing the Newton-Euler computation by two orders of magnitude. The
latency to compute the dynamics of a 6 degrees of freedom manipulator would be of the order of 15
multiplications and 43 additions. He improves the Newton-Euler parallel implementation, reducing
the complexity to a logarithmic expression on the number of joints. Only 11 multiplications and 28
additions are required to compute the manipulator dynamics. Also, a systolic pipeline implementation
. is possible reducing the latency to only 4 floating-points operations.

The disadvantage of this method lies in the difficulty of implementation, because custom designed
VLSI devices are required, increasing the cost of the product. We will introduce later a solution
based on microprocessors, which has the advantages of a very easy implementation, maintaining at
the same time the required speed of computation and the accuracy in the calculation of the equations.

2.3 IDENTIFICATION OF THE ROBOT’S PARAMETERS

The constant parameters of the dynamic equations depend on the masses, centers of gravity and
inertias of the links, as well as on the inertias and frictions of the motor. Ferreira (Ferreira84) realized
that the expression of the torques couid be expressed as a linear function of these parameters. He
also realized that many parameters were linearly dependent, and that it was necessary to eliminate
these dependences. However, he didn’t give any algorithm for this purpose. In his experiments,
he identified the parameters using the torque measured in the first joint of the robot THS8, using a
Kalman filter.

Hollerbach (Hollerbach85) identified the parameters of a direct driven arm by using least squares
method to fit the measured torques in a given trajectory. He measured the joint position and torque
on the trajectory, estimating the velocity and acceleration. However he did not mention the problem

107

of the elimination of the linearly dependent parameters, that may introduce erroneous estimation of
the parameters. However, still the fitting seems good. Khosla and Kanade (Koshla86) presented an
algorithm to climinate the linear dependencies in the dynamic model. However this paper was not
ready on time for publication. Olsen (Olsen86) identified the constant parameters in simulation, but
special cases were considered to identify different parameters. Finally, Khatib (Khatib86) identified
the parameters of a PUMA 560 dismounting the robot and measuring directly the parameters. He
was able to do a significance analysis to reduce some of the parameters.

In the next section we will present an identification method based on fitting of the measured
torques over different trajectories, removing the linear dependencies and at the same time performing
a significance analysis, that reduces the computation considerably.

3 OUR APPROACH

In this section, we present a new approach, based on microprocessors, to compute the inverse
dynamics in real time. The scheme is based on the division of the computation into a high priority
synchronous task and a background task (Izaguirre85,86). The background task updates the inertial
and gravitational coefficients as well as the generalized forces due to the velocities of the joints. The
synchronous task computes the final generalized forces by multiplying the inertial coefficients by
the acceleration of the joints, adding at the same time the gravitational and velocities forces. This
computational scheme agrees with the experiments that have been done by Kircanski (Kircanski86).
He calculated trajectories for the PUMASG60 robot, analyzing the bandwith of the position, velocity
and acceleration of the joints respectively. He concluded that the position and velocitie’s spectra
are similar, and that the spectra of the acceleration is about 5 times larger. In our experiment we
estimated the velocities and accelerations from the measurements of the joint angles. If we examine
at Figure 1 through 5 in Appendix A, we can realize that the variations of position and velocity in
the joints are much smaller than the variations in acceleration.

We require to calculate the inertial coefficients as well as the forces due to the velocities as
fast as possible. To do so, we chose an efficient recursive algorithm to compute the inertial and
gravitational coefficients (Izaguirre86) and an efficient recursive algorithm to compute the velocity
forces (Khalil86). The identification of the parameters permits a further reduction by first eliminating
the linear dependencies and by dropping the parameters that are not significant.

In the next sections we will explain in detail the computation of the dynamic coefficients, as well
as the identification, explaining the resuits obtained for the PUMA260 robot.

108

4 CALCULATION OF THE DYNAMIC COEFFICIENTS

In this section we first develop the equations of the inertial and gravity loading coefficients for a
differential mass dm located in link j. The equations are elaborated from the theorem of conser-
vation of the momentum (Izaguirre85,86) leading to a very easy and understandable prcedure. The

calculation for the entire link will be obtained by integrating these formulas over the mass of the
link.

4.1 CALCULATION OF THE TERMS D;;

The coefficient D;; corresponds to the generalized force in the joint j due to the acceleration of the
joint :. We will consider only the terms for which ¢ < ; and then show that D;; = D;;. We consider
the four possible combinations for the joints : and j (revolute revolute, prismatic revolute, revolute
prismatic, and prismatic prismatic). In all the cases we assume the acceleration ¢; to be different
from zero, and that all the other accelerations and velocities are zero.

In the revolute-revolute case, the term D;; corresponds to the torque in the joint : due to the
acceleration §; only. This torque can be calculated by using the derivative of the angular momentum
around the axis ¢ with respect to time. We recall that the angular momentum of a point of mass
dm with respect a coordinate system is calculated by the cross product r x vdm, where r is the
position and v is the velocity of the differential of mass dm in this coordinate system. The variation
of the angular momentum around z; is : dm F; X (z; X Tj) - Z; ¢;At. The torque is calculated by
differentiating the angular momentum with respect to time:

IFi=dmr; x (ZJ X I‘J) Iy g (2)

The term D;; is then

Dy; =dmr; X (Z; X I‘j) A 3

D;; = dm (z; xry)- (25 xXTj)

Or as

This formula reveals the symmetry between D;; and Dj;.

In the prismatic-revolute case, the coefficient D;; corresponds to the force in the direction of the
joint : due to the acceleration §;. It can be calcuiated by differentiating the linear momentum
in the direction of the axis : with respect to time. The linear momentum in the direction z; is:
dm(z; X Tj) - 2;g; * At, and the force is given by the formula:

109

F,=dm (ZJ X l'j) - Zi§j. (4)

The coefficient D;; is then

Di; = dm (Zj xrj)-zi

(5)

In the revolute-prismatic case, the coefficient D;; corresponds to the torque in the axis ¢ due to the
acceleration §;. This torque is calculated by calculating the derivative of the angular momentum with
respect to time, leading to the following equation:

T;=dm (ry x Zj) - Z;g;. (6)

The terms D;; can be expressed as

D;; =dm (r; X z;) - 4 @
BJD;J' =dm (Zi Xl'i)-Zj

or

In the prismatic-prismatic case it is very simple to see that the generalized force is

F;=dm §; z; -7 (8)

and D;; is equal to

D,’j =dij-2i

4.2 CALCULATION OF D;

In order to compute the gravity coefficients D;, we consider both the revolute and prismatic cases.
In the first case, the torque exerted by the gravity on the revolute joint is equal to

Ti=dm (r;xg) -z, (10)

110

where :

g is the acceleration due to the gravity.

To compensate for the gravity load a torque must be exerted in the opposite direction. Thus the
coefficient D; is equal to

D; = —dm (T; X 8) 74 1)

or as D;=—dm(z; xr;) -8

Once again, in the prismatic case, the force is equal to m g - z;. To compensate for this force we
must exert an opposing force. The coefficient D; is then equal to

Di=-dmg-z.

(12)

4.3 INTEGRATION OF THE EQUATIONS

In this section we will integrate the equations derived earlier over one link. This link corresponds
to the “compound link” j, i.e. the link formed by the links j trough the last link n. In fact, the
calculation of the coefficients D;; and D; depend only on the acceleration of the joint j; the rest
of the links don’t move relatively to each other. An easy recursive calculation of the moments of
the “compound link” ;7 as a function of the “compound link” j + 1 leads to a big reduction in the

calculation of the inertial and gravitational coefficients. This recursion will be explained later in
detail.

The most difficult term to integrate is the parameter D;; for the revolute-revolute case. The
expression of this term for a point mass situated in the “compound link” 7, (7 > 1), is :

D;; =dm (z; X T}) - (25 X Tj) (13)
=dm(z; X (p; +1;)) - (z; x I5),
where:

- p; is the vector between the origins of frames ¢ and j,
- I; is the vector between the origin of frame j and the elementary mass dm.

The expansion of this expression leads to the following formula:

D;; =dm(z; x p;) - (25 x) (14)
+(z; x lj) . (zj X lj)].

I11

The integration of the first term is obtained by the sustitution of the point mass by the center of
gravity of the *“compound link”. The last term can be integrated using tensor notation. The term
(zi X lj) is expressed in tensor notation as —lj Z; or as zlj, leading to the foilowing expression :

dm(z; X)) - (25 X }j) = —dm z ’lt] Aj z; (15)
L 0 =iz 0 =iz
-} = - (l; 0 —ljz) (l;; 0 —ljx)
=iy Lz 0 -ljy Lz 0
s + by =ligly —liglia
= (—laliy ba® + 1 =l)
—laliz =lliz g + 1

This term integrated over the link corresponds to the inertial matrix of the “compound link™ j in
the frame j. The final expression is :

~

D;; = (% xpj)- (Zj X Mj * DJ) + zinzj (16)
=(z xpi)-(zxL;) + zljz,
where:
- M; is the mass of the compound link j,
- D; is the center of gravity of the “compound link™ j on the origin of the frame 7,
- L; is D; multiplied by Mj;, i.e. the first moment of the “compound link” j in the frame j.
- fj is the inertia matrix of the “compound link” j in the origin of the frame j.
All the other terms D;; for the other cases and the parameters D; are simple, with the integration

resulting the substitution of the coordinates of the center of gravity of the link for those of the point
mass.

44 CALCULATION OF THE COEFFICIENTS USING HOMOGENOUS TRANS-
FORMATIONS

In this section we explain how to compute the inertial and gravitational coefficients once the topology
of the robot is defined by homogenous transformations. These homogenous transformations describe
the relationships between the ** and j** coordinate frames. We will name these transformations the

112

T; ; matrix, with the convention that the first frame or base is the frame number 0, and that the last
link corresponds to the frame number n.

The part of the homogenous transformation corresponding to the rotation is the matrix R;;, and the
part corresponding to the translation is the vector p;;.

The matrix R;; can be decomposed in three vectors n;; o;; and a;; :
Nijz Oijz Gijz Pijc
| Mgy Oy Gi5y DPigy
T =

17
Nijz 0ijz Qijz Dijz

0 0 0 1

4.4.1 EXPRESSIONS FOR THE D;; COEFFICIENTS

In this section we will derive the expressions of the dynamic coefficients using homogenous trans-
formations.

For the revolute-revolute case, the equation 16 corresponds to the formula:

D ; =(010 /1) Ri; L; (0)0 [1)T + (18)
+ (=Pijy IPijz 10) Rij (—Ljy |Ljz 10)7,
where:
-i€[0,n—1]and j € [0,n — 1], n being the number of degrees of freedom.

-(Ljz, |Ljy, |Lj_) are the components of the first moments of the “compound link” j
expressed in the j frame.

- I, is the inertia matrix of the “compound link” j expressed on the ;j frame.

Equation 18 leads to the following:

I3,

Di; = (ijz 100,z 1@ig,z) (fz,s.j) (19)

I33;

+(A B) * (‘"Lw [Lj,x)T

with

A = (=Pijy * Nijjz + Pijx * Nijy)

B = (=Pijy * 0ijz + Pijz * 0ijy)

In the revolute-prismatic case, the formula 5 leads to :

Dij = (nijz 10ij2)(=Ljy |Ljz)T (20)

Similarly, in the prismatic-revolute case, equation 7 leads to :

Di; = Mj (-pijy Ipi,j,z)<ai'j”) (1)

iy
~(nijz l0ijz)(=Ljy |1Ljz)T.

And finally for the prismatic-prismatic case, Equation 9 may be expressed as

Dij = Mj * aijg- (22)

4.4.2 EXPRESSION OF THE D; COEEFICIENTS

We differentiate between the revolute and prismatic cases as before. In the first case Equation 11
can be expressed as

Di = — (9= |9y 192) Ro; (=Liy |Liz 10)7, (23)
where :

- (9z |gy |g-) are the components of the acceleration of gravity in the base frame.

If the gravity is parallel to the z axis of the base frame, Equation 23 takes the following simplified
form: ‘

D; = —g (no,i,z 100,i,2) (—Liy |Li,r)T (24)

In the second case, Equation 12 leads to the following expression:
D; = —M; (9= 9y 9:) (G0,iz |00,y l20,i2)T . (25)

114

Once again if the gravity is in the direction of the z axis of the base frame Equation 24 may be
expressed as:

D,’ = - J'g * lao’,"z. (26)

4.5 RECURSION OF THE TERMS

In the previous sections we derived the expression of the inertial and gravitational terms for the
“compound link” j. In this section we will work out the recursion for the calculation of the moments
of the “compound link” j in function of those of the “compound link” j + 1.

4.5.1 RECURSION FOR THE MASSES

Obviously M; = Mj4, + mj41, where m; is the mass of the link j and M; is the mass of the
“compound link” j.

4.5.2 RECURSION FOR THE FIRST MOMENTS

The first moment of the “compound link” j corresponds to the product of the mass M; by the
center of gravity of the “compound link” j. It can be expressed recursively by using the following
expression:

Li(7) = Byjer (£ + 1) + Li(G+ D +Pjin(G + 1) = M) (27)

where:
- L;(J) is first moment of the “compound link” j expressed in the frame j.

- £;(j+ 1) is the first moment of the link j expressed in the frame j + 1. The fact that we expressed
it in the frame j + 1 is due to the selection of the Denavit-Hartemberg parameters. The moments of a
link are constant with respect to the next frame rather than with respect to the j** frame. This is why
modified Denavit-Hartemberg parameters have been sometimes used (Khalil86) (Craig86), in which
case the moments of a link are constant with respect to the relative frame. However, computationally
both approaches lead to similar results, the differences are in the notation.

- p;,j+1(7 + 1) corresponds to the vector between the origins of frames 7 and j+ 1. It is also constant
with respect to 7 + 1 if we choose the Denavit-Hartemberg parameters, and is constant with respect
to j if we choose the modified Denavit-Hartemberg parameters.

115

4.5.3 RECURSION FOR THE INERTIA

The inertia of the “compound link” j can be expressed as a function of the “compound link” 7 + 1
by transforming the inertia of the “compound link” j + 1 from the origin of the frame j + 1 to its
center of gravity and from the center of gravity to the origin of the frame j. Also we have to add
the inertia of the link ;j in a similar procedure. This can be expressed as it follows :

LG+1) = LG+ 1) + Mipr # (D415 + 1) Dja (G + 1))
MG+ D) (DG + D)+ 85 G+ 1)) * Djn(G+ 1) + Bijra(G + 1)) (28)
+ Li(G + 1) + my + (d5(G + Dd;(G + 1))
— myx (d5(F + 1) + B (G + DG + 1) + Bijr (G + 1))

where :
- I;(j) is the inertia matrix of the “compound link” j (expressed in the j** frame),
- Z;(j + 1) is the constant inertia of the link j in the frame j + 1,
- Dj,j+1 is the tensor correponding to the vector p;_1 ;,

- 131-.,.1(j+1l)is the tensor corresponding to the center of gravity of the compound link 7 + 1
in the frame 7 + 1,

- 3,(j+ 1) is the tensor corresponding to the center of gravity of the link j in the frame 7 + 1.

This leads to the following equation:

Ly = Rij+1(Zi(G+)+ LG+ 1)+ M #9555 + 1)P5541(7 + 1)) (29)
RijmT = Bijnd) Li(G) = L;(4) Bijer(d)
where the term p; ;41(j + 1) is a constant if defined in the frame j + 1.

These terms can be easily calculated using homogenous transformation as explained before for
the cases of the inertial and gravitational coefficients.

5 CALCULATION OF THE VELOCITY TERMS

There are two main methods to calculate the velocity terms. The first requires the calculation of the
velocity coefficients, Coriolis and Centrifugal terms, and multiplication of these coefficients by the

116

velocities of the joint. The Coriolis and Centrifugal terms, can be efficiently calculated by using the
Christoffel symbols over the inertial terms (Renaud85). The second method comprises the calculation
of the velocity torques by using the Newton-Euler method. A simplification of this method using
intermediate variables has been proposed by Khalil (Khalil86). Using this algorithm, in order to
calculate the velocity torque, we have to initialize the velocities and accelerations to zero since we
don’t consider gravitational effects.

The advantage of using this last method is that the inertial and gravitational coeeficients, and the
velocity toques can be computed independently, unlike the Christoffel symbois which depend on the
inertial coefficient. Also, the complexity of the method is linear, rather than O(n?) for the method
using the Christoffel symbols.

The forward recursion for the velocities and accelerations considering only the influence due to
the velocities of the joints is the following:

w;(2) = RT, i+ (wisi(i—=1)+ (1= 0:)(0 |0 |g:)T (30)
wi () =RT _1i* (i = 1)+ (1 = 03) *wim1(3 = 1) x (010]¢:)T)) (31
0:(1) = RT;oqi*tm1(i— D)+ 2% 0 #wi(i) X RT;21:(0 10 |¢:)T + U; *+ pi1 (i) (32)

where : w;(7) is the angular velovity of the frame ¢ expressed in the frame ¢, w;(¢) and 9;(z) are
the angular and linear accelerations of the frame : expressed on the frame :, and U; is the matrix
U; = ’ti),'(i) -+ w;(i)w;(i).

The backward recursion can be expressed by using the formula :

Fi+1) = meb, G+ 1) + Usw = L.(3) (33)
NG+ 1) =Ti(i + Dbiga (G + 1) + wigr (i + 1) X Ti(6 + Dwiga (6 + 1) (34
fi(3) = Rean(fim(i+ D +F(i + 1) (35)
ni{1) = RirNi(i + 1) + i (i + 1) (36)
+Li(t+ 1)y X 954108 + 1)) + piita(2) X fi{d) 37

where %?(i 4+ 1) is the force due to the motion of link i,M(z‘ + 1) is the torque due to the mtion
of the link :, f;(7) is the total force in the link : expressed with respect to the frame ¢, and n;{:) is
the total torque in the link : expressed with respect to the frame .

Khalil chose some intermediate variables that further simplified the computation, and the reader
is referred to (Khalil86) for more details.

117

6 IDENTIFICATION OF THE DYNAMIC COEFFICIENTS

The torques can be expressed as linear functions of the masses of the, the first moments (the masses
of the links multiplied by the center of gravity of the links), and the second moments (the inertia
matrix of the links). The easiest way of showing this linear relationship is by considering the Newton-
Euler’s method. The forces and torques due to the velocities and accelerations of these links, are
calculated by linear functions of the moments of the links, i.e. multiplications of these moments by
functions that depend on the velocities and accelerations of the links, as show above. In the backward
recursion, these forces and torques transform from one link to the previous one in a linear form, and
the influence of the new link is taken into account by the addition of the forces and torques due to
previous link to the force and torque due to the actual link. Finally because the resulting force or
torque in the joint is a projection of the forces and torques in the joint, we show that the dynamic
equations can be expressed as a linear function of the link moments.

This result can be shown by using the results obtained in the calculation of the inertial and
gravitational coefficients. First, it is easy to verify that the compound link moments are a linear
function of the moments of the constituent links. Second, the coefficient D;; and D; are linear
functions of the moments of the compound link. Third, as the D;;; terms are calculated by the
Christoffel symbols that are additions of partial derivatives of the D;; terms with respect to the
joint angle, we prove that the terms D;;; are linear function of the link moments. Finally as the
computation of the forces or torques is made by multiplications of these coefficients by the velocities
and accelerations of the links, we prove that the forces/torques are linear functions of the link
moments.

The problem is however not trivial as many of these terms are mutually linearly. It is important
to calculate these dependencies in order to seek a reduction in the number of parameters to identify
as well as to arrive to a unique estimation. In the following paragraphs we explain the method used
to get rid off the dependencies as well as the experiments that we performed in the PUMA 260.

6.1 ALGORITHM TO IDENTIFY THE LINEAR DEPENDENCIES

Unless there are some analytical ways of calculating the linear dependencies between the moments
of the links, it is not easy to identify them. Therefore, we have programmed a numerical procedure
to find these dependencies. The algorithm is based in the calculation of the rank of a matrix.

The dynamic equations can be written as :

T; = D(q,4,§) * (pary pars...parm)T (38)

where

T'; is the generalized force of the joint i,

pariy, ... par, are the moments of the links, the Coulomb and viscous frictions and the inertias of
the motors,

D(q,4,§) is a function of the position, velocities and accelerations of the joints, and multiplies the
parameters to identify.

For the PUMA 260, there are 10 moments for each link, 6 static frictions, 6 dampings and 6
motors inertias, making a total of 78 parameters. The function D is computed numerically using
the Newton-Euler method, each time taking into account the torque due to each unit parameter, i.e.
the torque due to a parameter with value equal to 1. For the motor inertias, Coulomb frictions and
viscous frictions, the D parameters correspond to the acceleration, sign of the velocity and velocity
of the joint respectively.

Many measurements lead to :

I'=(D1Dg..Dp) % (parlparg...parm)T (39)

If we consider n different values of the position, velocity and acceleration of the joints, this system
has a dimension equal to (6 n, m) for the matrix D. If we consider 100 points, a 6 joint manipulator
has a D matrix of dimension (600, 78). The system is overdetermined, and the linear dependencies
will correspond to the dependencies between the columns of the matrix D. Suppose now that the
columns D, ... D; are linearly independent. We add the column D;,; and compute the new rank. If
the rank is equal to ¢ + 1 then the new submatrix Dy ... D;y; is linearly independent. If not, D; 4,
is linearly dependent of the previous columns, and we can obtain

ar*Di+ . +ai*Di+aip1*Diy1 =0 (40)

with ;4 different from zero by construction. We have next :

Diy1 = (—ay/aiy1) * Dy — ... = (ai/aiyq) * D; (41)
The new equation will be :

T = (Dy...Dy) = ((pary — paripy * a1/ ctiy1)...parm)T (42)

We remove the dependencies by droping the corresponding parameters, and modifying the old
parameters in this last equation. The algorithm to calculate the dependencies considers a D matrix
with 100 random points, and succesively computes the rank of the submatrices D; ... D; dropping
one parameter each time that we get a new dependency. We implemented the algorithm by computing
the rank using the singular value decomposition method. Each time we obtain the smallest singular
value of the order of 10 x e~1° we consider the matrix singular, due to the numerical errors.

119

Using the IMSL library in UNIX and “C” language, we found the dependencies for the PUMA
260 in 15 minutes of VAX CPU time. From a starting set of 78 independent parameters we got 52
linearly independent parameters. We chose the 6 motor inertias as the six first parameters because
they are constant numbers. Two parameters were dependent with the actuator inertias of links 1 and
2. The static frictions and damping are independent of the other parameters. This means that from
a total of 60 moments we get 34 linearly independent moments.

The identification carried out on these new independent parameters, we ran the PUMA260 robot
over 10 different trajectories.

7 EXPERIMENTS

The experiments were done by running a PUMA 260 over 6 predetermined trajectories and 4 randomly
generated trajectories. These trajectories were polynomials that fitted points inside the range of each
link of the robot. We preserved the continuity of the trajectory, imposing condition zero velocities at
the beginning and at the end of the trajectory. The experiment was performed at McGill University
by Vincent Hayward, using RCCL under UNIX environment. The curves were time scale updated
to obtain maximum torque responses and to enhance the noise to signal ratio. The sampling period
was 28 msec.

The collected data from the measured torque and measured position has been used to calculate
the velocities and accelerations of the joints and we substituted these values into the D model
of the PUMA 260. The velocitites and accelerations were calculated using the formulas »; =
(posiy1 — pos;—1)/56msec, and a; = (viy1 — vi—1)/56msec, to filter the accelerations and velocities
values (see appendix A). We also dropped the first 15 and last 15 samples to eliminate the effects of
the transients.

We used a weighted least squares procedure since the output torque due to the first three links
is between 10 to 50 times bigger than the output torque due to the last three links. This weighting
is possible because the influence of the last three links over the three first is not significant. We
calculated the average, standard deviation, maximum and minimum values of the parameters. Table
1 shows the results for the fitting of all 53 parameters.

120

|| parameter | representation | average | standard deviation | maximum | minimum |
1* ial 0.098889 0.050155 0.155265 0.07256 |
2* ia2 0.1436638 | 0.086779 0.243456 -0.0067
3 * ia3 0.048211 0.054446 0.136380 | -0.031769
4 * iad 0.003262 0.012358 0.032090 | -0.010854
S* ia5 0.012713 0.018743 0.041647 | -0.030187
6 * 126 0.002808 0.002849 %09251 -0.002870 |
7 * m6 2721895 | 1.119838 4311950 | 0.402778
8 x6 -0.0012975 | 0.002621 0.002830 | -0.005907
9 y6 -0.000464 | 0.002 0.002262 | -0.002939
10 * z6 0.012975 0.009833 0.023582 | -0.004141
11 a6 0.00340 0.006396 0.010470 -0.00916
_ 12 b6 -0.001549 | 0.005895 0.008865 -0.0107
T13 <6 0.000513 | 0.001691 0.003652 | -0.00208
14 6 20.000107 | 0.0.001391 0.002072 | -0.0030
15 eb 0.000655 0.001307 0.003036 -0.00168
16 {6 -0.000123 | 0.000831 0.001565 -0.0013
17 x5 0.005288 0.012584 0.035485 -0.00479
8 y3 0.0067 | 0014106 _____ | 0.039692 | -0.01085
19 as -0.000094 | 0.008077 0.012286 -0.0172
20 c5 -0.003878 | 0.016054 0.019385 -0.0296
21 ds 0.000206 0.004036 0.007888 -0.00736
22 e5 0.000139 0.002689 0.005776 -0.00354
23 5 0.002137 0.005822 0.016140 -0.00345
24 x4 0;004657 0.018356 0.046432 -0.01414
T2+ [va [0344338 | 0.229325 0.117723 | -0.6942 |
” 26 * | a4 1 0.086604 | 0.092222 | 0.196475 | -0.11892 !]
27+ [ca 10.078255 | 0.081800 [0.176402 | -0.11721 |
28 T da [0.006251_] 0.011871 [0.032354 | -0.01660 |
T2 T ea]-0.000380 | 0.004918 [0.008801 | -0.0053 |
[0 | =& 1 0.000146] 0.001974 [0.003355 | -0.00283 |

121

Table 1: Statistics for the obtained parameters

| parameter | representation | average | standard deviation | maximum | minimum ||
31 [x3 [0.015860 [0.077495 10242066 | -0.05096 |
2 |53 [0.068128 | 0.182303 [0254483] -0.33270 ||
[33 a3 10055563 [0.09324 [0.037403 | -0.3020 ||
[34 Td3 [0.004356 0020517 [0.031289 L-0.04308 |
[35 Te3 [0.004208 [0.027816 | 0.050051 | -0.03657 ||
[36 f3 [0.005254 [0.021493 _UJ031724] -0.03638 ||
0014250 | 0235012 0512454 | -0.32158 |
[38 Ty 0.040522 0.075899 | -0.0645 |
[3 — Ta -0.017301 [0.049358 [0.066779 | -0.0837 |
[0 [e2 [-0.015461 L026013 —T 025235 [-0.0641 |
41* [fsl ‘D690330 [0.074645 0776301 | 0565639]]
42+ fs2 [1379400 0.229495 T1.640865 [0.929609 |
43 * 53 0.600034 [0.127999] 0.831090 [0.382789 |
fs4 0.221244 J0.038097 [0288517 | 0.162633]
[@_*_-st [0.039534]0.037993 0.096793 | -0.03222 |
[46* 66 _[o 097322 | 0.027456 0.135677 | 0.062352
[47* _ Jdast_____ [0.640149]0.142105 0957472] 0.496185
[48* Tds2 [105#4% [_29279'—[_1 639506 | 0.646664 |
[4* _ Jds3 | 0419111 0.177024 | 0.653683 | 0.065445 |
50 * dsé 0.087686] 0.002107 [0.045901 [0.146658 |
[51* [ds5 10099686 [0.070966 [0.281025 | -0.00686 |
52 * ds6 0.033299 [0.012595 [0.053150 | 0.019065 |

Table 1: Statistics for the obtained parameters

In this table, the first 6 parameters correspond to the actuator inertias. The last 12 parameters
correspond to Coulomb frictions (i.e. fsi) and viscous frictions (i.e. dsi). The rest of the parameters
corresponds to moments of the links of the robot. The first column in Table 1 corresponds to the
parameter number in the identification. The parameters considered as significant are marked by a “*”
. The second column contains the representation of each parameter, the third through 6t* columns
contain the average value, standard deviation, maximum and minimum value respectively of the
parameter over a set of 10 different trajectories.

The significant parameters were calculated by looking for the maximum contribution to the torque,
- for each parameter. The parameters whose contribution for all trajectories were less than 1 percent
of the maximum measured torque were considered as non-significant. Only 23 parameters were
found significant. A new identification was made using only these 23 parameters getting a better
distnbution, that is a smaller standard deviation. This result can be attributed to the condition of the

122

D matrix. In the first case the condition number, the quotient between the smallest singular value
and the biggest singular value, is 0.033/828.8. If we fit only 23 parameters, we get a condition
number of 0.35/146.0, which is 60 times better. The fitting of the parameters is shown in Table2.

[parameter | representation | average | standard deviation | maximum | minimum ||

1* ial 0.091631 [0.015729 0.115515 | 0.069620
2 * ia2 0.136312 | 0.037337 0.205561 | 0.084086
3+ a3 0.030843 | 0.022379 0.046165 | -0.032295
4 * iad 0.001781 [0.005213 0.013764 | -0.005222
5 * ia5 0.006759 | 0.012284 0.028195 | -0.015815
6* ia6 0.001262 | 0.002065 0.003792 | -0.004269
7 * mé6 2.768114 [0.139741 2.971715 | 2.395409
g * 26 0.014041 | 0.006980 0.022369 | 0.002290

9> | y4 | -0.382190 | 0.025796 [-0.315692 | -0.423311 ||

[10* [ad [0.079781 [0.022904 [0.118200 | 0.036028]

[ar* [c4 | 0.077761 | 0.021450 | 0.118039 | 0.033405 ||

[12+ [fs1 10787033 [0.048752 [0.861573 [0.703532]

TB* |[&2 [1389280 | 0221132 | 1.711836 | 1.08068L]

[1a= [£s3 [0.650706 | 0.045556 [0.751500] 0.593681 |

[15*« [fs4 [0.256854 [0.031520 [0301434 | 0.199465 |

[16* fs5 0.036607 | 0.041190 0.097840 | -0.03550 |

[Tts6 10.10659%4 [0.020605 [0.140304 | 0.077563 |

18+ [ds1 10.575662 1 0.057868 [0.685223 [0.465081 ||

[19+* [ds2 10.944670 [0.199482 1362454 | 0.558198 |

T20+ [ds3 10417502] 0.103817 [0.589464 | 0.292471 |

[l 21 * | ds4 [0.066791 | 0.033318 10.113687 [0.019180 ||

[22+% Tdss 10.101721]0.030324 10.155355] 0.044809 |

[23+ [ds6 10030363 [0.011657 [0.056091 | 0.016647 |

Table 2: Statistics for the significant parameters
7.1 IDENTIFICATION ERRORS

We displayed the measured and fitting torques, using the 23 parameters (i.e. the average) that resulted
from the fitting of the curves. The results for the first three joints are almost perfect, as very slight
differencies are found (see Appendix B). For the last three joints there are larger discrepancies, due
to the facts that the measured torques are small and that the last three links are mechanically coupled.
This coupling is not yet taken into account in the model.

123

If we compare the results of the frictions measured for the same robot by J. Lloyd (Lloyd84)
(see Table 3), we can see that they almost agree completely.

parameter number | representation Lalue found in J. Lloyd] value found by our method |
[1] fsl [0.760 0.7870 |

[1.620_ 1 13892 |

m 10 850 [0.6507 |
- s+ Joas 0.2568 ||
[5* [fs5 — lo01;8 | 0.0366 |
M6+ [6 [0.140 i 0.1065 |
7 Ja&1_____ _Joit | — 05756]
[+ — [ds2 — 055] I 0.9446 |
D [oo [04175 |
[10* Tds¢ [o0s T 0.066
[+ ____]dss [0.030 [0.101 ||

2% ds6 0.065 1 0.030]

Table 3: Comparison of the results obtained for the frictions

We also compared the dynamic coefficients that J. Lloyd measured to calculate the gravitational
coefficients. He found three parameters c/5 = —0.192N -~ m, ¢l3 = —1.762N — m and ¢/2 =
5.509N — m. Developping our formulas (see Appendix A) we found that the coefficients have the
following values : ¢I5 = —0.13743N — m, ci{3 = —1.768644N — m and ci2 = 5.51792 N-m.

Using these parameters we automatically generated the program that calculates the inertias and
gravitational coefficients as well as the program that calculates the velocity torques (see Appendix A).
These programs permit the calculation of the inertias and gravitational coefficients, for the PUMA260
without load, using 98 multiplications and 70 additions; and the caicultion of the velocity torques
using 140 multiplications and 110 additions. In the case of an arbitrary load at the end effector, the
calculation of the inertias and gravitational coefficients require 190 multiplications and 150 additions
and the velocity torques 200 multiplications and 170 additions.

7.2 ERRORS IN TRAJECTORY FOLLOWING

To test the validity of our dynamic model we have computed the necessary torques to follow a
predetermined trajectory. We have thus computed the trajectory by controlling the robot PUMA 260
in open-loop, using the computed torque, and obtaining the error with the real trajectory. We have
experimented with several trajectories all of them giving very good results, at low and high speed,
as well as we can totally compensate for the gravitational torque, freeing the robot.

In the experiments for the joints 1, 2 and 3 independently as well as for the 3 joints together, we
realized that the errors are smaller at high speed than at low speed due to the effect that it is very
difficult to modelize the static error when the robot is at rest. In the case that the motion is fast,

(about 180 degrees/second), the error in a trajectory of 90 degrees is smaller than 10 percent (Figure
13).

We also realized that the gravitational force builds up errors as the robot is moving, being the
errors of big magnitude in the case of slow motion. To correct this problem, we have compensated

for the gravitational torque in function of the joint’s position of the robot. We can see in the figure
15 of the appendix, that the errores are reduced considerably.

Finally in figure 14 and 16 we can realize that the model works well when three different joints

move together, proving that the coupling inertias as well as the centrifugal and Coriolis terms are
compensated.

8 CONCLUSION

The method developed in this paper allows for the real time computation of the dynamic equation of
robot manipulators. This has been achieved by dividing the computation into background and syn-
chronous task. Additionally, in the background computation we could divide the inertial gravitional
part from the velocity torques, computing them in parallel. The reduction of parameters from 78 to
52 independent parameters, and the reduction from 52 to 23 significant parameters make this even
more efficient. Effectively the computational of the inertial and gravitational terms takes 100 multi-
plications and 70 additions, and the computation of the velocity torques takes a similar computation
effort. In the case that the manipulator has an arbitrary load at the end effector, the computation
for the inertial and gravitational terms is 200 multiplications and 150 additions approximatively, the
same number of operations is needed for the velocity torques.

We have also experimented measuring the errors by controlling the robot in open, fitting the
robot controller with the calculated torques to follow predetermined trajectories. The results are very
good for slow and fast motion, proving the validity of the model.

Several points could be taken into account in order to improve the results. First, we considered the
friction constant, which is not true in a real manipulator. This might explain most of the discrepancies

of our identification results. However, the range of variation is small, making the approximation
reasonable, obtaining at the same time a very good fitting.

As a conclusion we feel that the identification procedure explained in this paper is very robust
and applicable to real time control, with very small errors between the measured and calculated
torque. Also, the computational structure should be adaptable to new robot manipulator design, as
the research is focussed in obtaining manipulators having very small coupled inertias.

125

References

(Bejcsy74) A. K. Bejczy
Robot Arm Dynamic and Control
NASA Tech. Memo. J.P.L. 15 Fev (1974) 33-699.

(Craig86) Craig, J.
Introduction to robotics mechanics and control.
Addison-Wesley 1986, California.

(Featherstone84)R. Featherstone
Robot Dynamics algorithms
Ph D. Thesis, University of Edinburg 1984

(Ferreira84)E. Ferreira
Contribution a I’identification de parametres et a la commande dynamique adaptative de robots
manipulateurs
Doct. Engenieur Thesis, Toulouse France, 1984

(Hollerbach80) J. Hollerbach
A recursive Lagrangian formulation and a comparative study of dynamics formulations.
IEEE Trans. on System Man and Cyber. vol SMC-10, n 11, pp 730-736

(Hollerbach82)J. Hollerbach
Dynamics
Robot Motion, Planning and Control, MIT Press 1982, chapter2

(Hollerbach85)Chae H. An, Christopher G. Akteson, J. Hollerbach
Estimation of inertial parameters of rigid body links of manipulators.
Proc. of the 24th Conf. on Dec. and Control, Fort Lauredale, Dec 1985, pp 990-1002.

(Izaguirre 85) A. Izaguirre, R. P. Paul
Computation of the inertia and gravitational coefficients of the dynamic equations for a robot ma-
nipulator with a load

IEEE Conference on Robotics and automation March 1985

(Izaguirre 86) A. Izaguirre, R. P. Paul
Automatic generation of the dynamic equations of the robot manipulators using a LISP program
[EEE Conference on Robotics and automation March 1985

(Khan71)M.E. Khan, B. Roth

The near minimum time control of open loop articulated kinematic chains.

126

Trans. of ASME. Journal of Dyn. Systems Eng. and Control, pp 164-172

(Khalil 86) W. Khalil, J.X. Fleifinger, M. Gautier
Reducing the Computational burden of the dynamic model robots
IEEE Conference on Robotics and automation March 1986

(Khatib86) B. Armstrong, O. Khatib, J. Burdick
The explicit dynamic model and inertial parameters of the PUMAS60 Arm
Proc. Conf. IEEE Robotics and Automation, San-Francisco, pp 510-518

(Kircanski 86)N. Kircanski, M. Kircanski, M. Vukobratovic, O. Timcenko
An approach to development of real time robot models
IFToMM Symp. ROMANCY, KRAKOW 1586.

(Khosla86)P. Khosla
An algorithm to determine the identifiable parameters in dynamic robot models
Proc. Conf. IEEE Robotics and Automation, San-Francisco, (not-in-time)

(Lathrop85)R. Lathrop
Parallelism in manipulator dynamics
Proc. Conf. IEEE Robotics and Automation, Saint-Louis Missouri, pp 772-778

(Likins71)P. Likins
Passive and Semi-active attitude stabilizations-flexible spacecraft
ARGARD-LS pp 45-71, October 1971

(Lloyd 86) J. E. Lloyd
Implementation of a robot programming environment
Master Thesis, Mc Gill University 1986, Dept. of Elect. Eng.

(Luh80) J. Luh, M. Walker, R. Paul
On-line computational scheme for mechanical manipulators IEEE TRans. Automatic Control 25, 3
1980, pp 468-474

(Luh82) J. Luh, C. Lin
Schedulling of parallel computation for a computer-controlled mechanical manipulator
IEEE Trans. on System, Man and Cybemetics. vol SMC-12, n-2 1982,pp 214-234

(Megahed84)S.M. Megahed
Contribution 2 la modelisation geometrique et dynamlque des robots manipulateurs a structure de
chaine cinematique simple ou complexe
These d’ état, Université Paul Sabatier, Toulouse (1984).

(Orin85) D. Orin, H. Chao, K. Olson, W. Schrader
Pipeline/parallel algorithms for the Jacobian and inverse dynamics computations
Proc. Conf. IEEE Robotics and Automation, Saint-Louis Missouri, pp785-789

(Oslen86) H. Oslen, G. Bekey
Identification of Robot Dynamics
Proc. Conf. IEEE Robotics and Automation, San-Francisco, pp 1004-1010

(Paul 82)R. Paul
Modelling, trajectory calculation and servoing of a computer controlled arm
AIM 77, Nov 1972, Stanford University

(Paul 81)R. Paul
Robot manipulators : Mathematics, programming, and control
M.I.T. Press, Cambridge, Massachussetts, and London, England, (1981).

(Raibert77)M. Raibent
Analytical equatons vs. look-up table for manipulation : a unifying concept
Proc. IEEE Conf. on Decision and Control, New Orleans, LA. Dec 1977

(Renaud83)M. Renaud

An efficient iterative analytical procedure for obtaining a robot manipulator dynamic model
First International Symposium of robotic re-
search, Brextton Woods, U.S.A., August (1983).

(Renaud 85) M. Renaud

An efficient iterative Analytical procedure for obtaining a robot manipulator model
Robotics Research 1984, pp. 749-764

(Uicker68)J. Uicker

Dynamic behaviour of spatial linkages
Trans. of ASME n 68, Mech 5, pp1-15.

128

A Automatic generator of dynamic equations using the LISP machine

To use the automatic generator in the LISP machine, one has to load the packages “LAG” and “VEL”
respectively. The actual packages are implemented on a Symbolic Lisp machine using version 6.0.
The command to load the packages are *“(make-system ’inertia)” and “(make-system ’velocity)”
respectively. '

The package “LAG” pemits the creation of a “C” program that calculates the inertia and grav-
itational coefficients of the dynamic equations. To do this, we have to type the LISP command
“(LAG:principa <input-file> <output-file>)”, where <input-file> corresponds to the input file con-
taining the specifications of the robot (number of links, Denavith-Hartemberg parameters, masses,
first-moments, inertias of the links,...) and <output-file> corresponds to the output file containing a
“C” program.

The package “VEL” pemits the creation of a “C” program that computes the torques due to the
joint velocities. It includes the contribution due to the frictions. To do this, one has to type the
LISP command : "(VEL:principa <input-file> <output-file>)”, where <input-file> corresponds to
the file containing the specifications of the robot, as explained before, and <output-file> contains
the “C” program to calculate the velocity torques.

The source code for the package “LAG” and “VEL” are in the directories
“upenn:usr:{alberto.lagrange]” and "upenn:usr:[aiberto.velocity]” respectively.

A.1 Examples of input files for the PUMA260 robot

In the following lines we show the input file for the generation of the ”C” program that calculates
the inertial and gravitational coefficients of the dynamic equations, for the PUMA 260 without any
load at the end effector. The input file is the following :

number links 6

mass 0 0 0 0 0 m6

sigma 0 0 0 0 0 O

alpha 90 0 -30 90 -%0 O
dpar 0 0d3d4 00

apar 0 a2 0000
adyna 0 0 0 ad4 0 O
bdyna 0 0 0 0 0 O
cdyna 0 0 0 cd4 0 O
ddyna 0 0 0 0 0 O
edyna 0 0 0 0 0 O
fdyna 0 0 0 0 0 O

xgrav 0 0 0 0 0 O

ygrav 0 0 0 y4 0 O

zgrav 0 0 0 0 0 =z6

ia ial ai2 ia3 ia4 ia5 iaé6
option moment
option_update moment
variable m6 2.768114
variable z6 0.01401

variable y4 -0.382190
variable ad4 0.079781
variable cd4 0.077761
variable ial 0.091631
variable ia2 0.136312
variable ia3 0.030843
variable ia4 0.001781
variable ia5 0.006759%
variable ia6 0.001262
variablea a2 0.20320

variablea d3 0.12624

variablea d4 0.20320

stop

The file is almost self-explanatory. The first line contains the number of links of the manipulator.
The second line contains the masses of the links. The third line contains the types of the joints, i.e.
revolute or prismatic. In the case of the PUMA 260 all joints are revolute, so the values of the sigma
parameters are zero. If the joints are prismatic the value of sigma is 1.

The next three lines correspond to the ¢, d and a, Denavit-Hartemberg parameters following the
notation of R. Paul (Paul81). The next six lines correspond to the values of the inertia parameters
of the links expressed on the corresponding link frame. The parameters adyna, bdyna and cdyna
correspond to the diagonal terms of the inertia matrices in the z, y and z directions respectively.
The parameters ddyna, edynae and fdyna correspond to the inertias in the z *x y, y * z and = * 2
directions. The inertia matrix can thus be expressed in the following expression:

adyna ddyna fdyna
ddyna bdyna edyna)

fdyna edyna cdyna

The next three lines correspond to the center of gravities of the links or the first moments, i.e.
the center of gravities multiplied by the masses of the link, depending on the value of option. In our
case option is set to the value “moment” indicating that the values comrespond to the first moment.

130

The next line correspond to “proper inertia” of the motors expressed on the link frame.

In the next two lines, if option is set to the value “update” the values of the inertia terms correspond
to the inertia of the link in the origin of the link frame, and the values of the parameters zgrav,
ygrav and zgrav correspond to the first moment of the link in the origin of the link frame. On the
other hand, if the value of option is different from “update” the inertia parameters correspond to the
inertia of the link expressed in a frame parallel to the link frame, placed on the center of gravity of
the link. The parameters zgrav, ygrav and zgrav, in this last case, correspond to the coordinates of
the center of gravity of the link expressed on the link frame. The variable "option_update” is similar
to “option” but it corresponds to the parameters that are variable in the last frame.

Finally, the rest of the {ile contain lines with the numerical values of the physical parameters.
The last line contains always the word “stop” indicating the end of file.

The next file contains the information necessary to generate the inertial and gravitational coeffi-
cients of the dynamic equations for the case of the PUMA260 with an arbitrary load at the effector.
The input file is the following:

number_links 6

mass 0 0 0 O O mé
sigma 0 0 0 0 0 O

alpha 90 0 -90 90 -390 O
dpar 00d3d400
apar 0a2 0000

adyna 0 0 0 ad4 0 adsé
bdyna 0 0 0 0 O bdé6
cdyna 0 0 0 cd4 0 cdé
ddyna 0 0 0 0 0 ddé
edyna 0 0 0 0 0 edé
fdyna 0 0 0 0 0 £d6
xgrav 0 0 0 0 0 x6
ygrav 0 0 0 y4 0 yé6
zgrav 0 0 0 0 O zé6

ia ial ai2 ia3 ia4 iasS ia6
option moment
option_update moment
variablediff m6 2.768114
variablediff z6 0.01401
variablediff x6 0.0
variablediff y6 0.0
variablediff adé6 0.0
variablediff bd6 0.0
variablediff cd6é 0.0
variablediff ddé 0.0

131

variablediff ed6 0.0
variablediff £de6 0.0

variable
variable
variable
variable
variable
variable
variable
variable
variable

v4

ad4
cd4
ial
ia2
ia3
ia4
ia5s
iaé

variablea a2
variablea d3
variablea d4

stop

The difference between this file and the previous one is in the parameters corresponding to the last
link, i.e. the 6** link. As this link may vary its parameters, i.c. masses, inertias and first moments
may change due to the addition of the extra load, the numerical values of the extra link contain the
word “variablediff” instead of the word “variable”. The resulting program contains a procedure that
permits to update the values of these parameters when new values of the extra load are identified.

The file for the generation of the velocity torques for the PUMA 260 without load contains the

-0.382190
0.079781
.077761
.091631
.136312
.030843
.001781
.006759
.0012%2
.20320
.12624
.20320

OO OO0 0000 oo

following information:

number_ links 6

mass 0 0 0 0 0 mé

sigma 0 0 0 0 0 O

alpha 90 0 -90 90 -90 O
dpar 0 0d3 d4 00

apar

adyna
bdyna
cdyna
ddyna
edyna
fdyna
xgrav
ygrav
zgrav

O OO O OO O o o

O O OO OO oo

0

o
[}
N

O OO OO OO oo

00
ad4
00
cd4

0
0

O OO0 o000 oo
o

O O OO

4 00
0 0 z6

<O OO0 o

ia 1ial ai2 ia3 ia4 ia5 iaé6

friction rsl rs2 rs3 rs4 rs5 rseé

damping rdl rd2 rd3 rd4 rd5 rdé
option moment

option_update moment

variable mé 2.768114

variable z6 0.01401

variable y4 -0.382190
variable ad4 0.079781
variable cd4 0.077761
variable ial 0.081631
variable ia2 0.136312
variable ia3 0.030843
variable ia4 0.001781
variable ia5 0.006759
variable ia6 0.001262
variable rsl 0.787033
variable rs2 1.389280
variable rs3 0.650706
variable rs4 0.256854
variable rs5 0.036607
variable rs6 0.106594
variable rdl 0.575662
variable rd2 0.944670
variable rd3 0.417502
variable rd4 0.066791
variable rd5 0.101721
variable rd6é 0.030363
variablea a2 0.20320

variablea d3 0.12624

variablea d4 0.20320

stop

The only difference with the first file is in the lines that start with the words “friction” and “damping”
respectively. The first line contains the information corresponding to the static friction of the motors
expressed on the link frame. The second corresponds to the damping, i.e. viscosous friction, of the
motor expressed on the link frame. The corresponding lines with numerical values are added to the

file. It is to note, that this file may also be used to generate the “C” program to calculate the inertia
and gravitational coefficients.

To generate the “C” program that calculates the velocity torques for the PUMA 260 with an
arbitrary load, we used the following file:

number_links 6

133

mass 0 0 0 0 0 mé
sigma 0 0 0 0 0 O

alpha 90 0 -30 20 -%0 O

dpar 0 0 d3 d4 0 90

apar 0 a

adyna
bdyna
cdyna
ddyna
edyna
fdyna
xgrav
ygrav
zgrav

O OO0 OO0 O o o

ia ial ai2 ia3 ia4 ia5 ia#6
rsl rs2 rs3 rs4 rs5 rs6
damping rdl rd2 rd3 rd4 rdS rdé

friction

O OO OO0 OO0

0

2
0
0
0
0
Q
0
0
0
0

0
0
0
0
Y
0

0000
ad4 0 adsé
0 0 bdé6
cd4 0 cd6
ddé6
ed6
fde
X6

4 0 y6

0 z6

o O O O

option moment
option_update moment

variablediff mé 2.768114
variablediff z6 0.01401

variablediff x6 0.0
variablediff y6 0.0

variablediff adé
variablediff bdé6
variablediff cd6
variablediff ddé6
variablediff ed6

O O O O o
OO O O O

variablediff f£46 0.0
y4 -0.382190
ad4 0.079781
cd4 0.077761
ial 0.091631
ia2 0.136312
ia3 0.030843
ia4 0.001781
ia5 0.006758%
ia6 0.001262
rsl 0.787033
rs2 1.389280
rs3 0.650706
rs4 0.256854
rs5 0.036607

variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable
variable

134

variable rs6 0.106594
variable rdl 0.575662
variable rd2 0.944670
variable rd3 0.417502
variable rd4 0.066791
variable rdS 0.101721
variable rd6 0.030363
variablea a2 0.20320

variablea d3 0.12624

variablea d4 0.20320

stop

The only differences with the above file are the changing parameters corresponding to the last link
frame. These files are on the directory “upenn:usr:[{alberto.gene]”.

A.2 Ouput files

To generate the “C” program to calculate the inertias and gravitational coefficients for the case of
the PUMA 260 without load, we used the LISP machine command

“(LAG:principa “[alberto.gene]input260.lisp” [alberto.lagrange]output260.lisp™)”. The listing of the
file "upenn:usr{aiberto.lagrange Joutput260.lisp” is the following :

#define M6 2.768114
#define 26 0.01401

#define Y4 -0.38219

#define AD4 0.079781
#define CD4 0.077761
#define IAl1 0.091631
#define IA2 0.136312
#define IA3 0.030843
$#define IA4 0.001781
#define IAS5 0.006759
#define TIA6 0.001262

#define MC6 M6
#define MCS MC6
#define MC4 MCS
#define MC3 MC4
#define MC2 MC3
#define MCl MC2
#define A2 0.2032
#define D3 0.12624

#¥define D4 0.2032 ‘
#define KP21 A2 |
#define XKP32 (- D3) |
#define KP42 D4 ‘

#define FP42 KP42 * MC4 |
#define FP32 KP32 * MC3 |
#define FP21 XKP21 * MC2 |
#define NP411l MC4 * (KP42*KP42) |
#define NP433 MC4 * (KP42*KP42) |
#define NP311 MC3 * (KP32*KP32) \
#define NP333 MC3 * (KP32*KP32)
#define NP222 MC2 * (KP21*KP21l)
#define NP233 MC2 * (KP21*KP21l)

#include <math.h>

dyn_robot (Q,DIJ,DI)

float QI[71,DIJ(7]1(7],DI[7]:
{

float GRAV=9.81;

float S1,82,S53,54,S85,56;

float C1,C2,C3,C4,C5,C6;

float C23,S23;

float C4C4,S84S4,54C4,C3C3,8353,83C3,C2C2,82C2:;

float S$252,C1lC1,S1C1,S81s81i;

float T1214,7T1224,T1411,T1414,T1424,T1421;

flocat BS21,BS23,BS22,BA31,BS33,BS31,BS32,BA42;

float BS43,BS42,BS41,B8A52,BS52,B851,8863;

float JS222,JS8223,JS233,JA322,JA333,J5311,08312,J8322;
float JS313,JS8323,J8333,JA411,JA433,J5411,J5412,355413;
float JS422,JS423,JA511,JA533;

float PS031,PS041,PS042,PS131,PS141,PS142,PS241;

S1 = sin(QI[11):

Cl = cos(Q[1]):

S2 sin(Q(2]);

C2 = cos{(Q[2]):

S3 = sin(Q(3]);

C3 = cos(QI[31):;
S4 = sin(Q[4]):
C4 = cos(Q[4]):

SS = sin(Q(5]):
C5 = cos(QI[51):

S6 = sin(Q[(6]):
Cé6 = cos(Q[6]):
C23 = cos(Q[21+Q[3]1):
S23 = sin(Q[2]1+Q(3]):
C4C4 = C4 * C4:;

S4S4 = S4 * S4;
S4C4 = 5S4 * C4;
C3C3 = C3 * C3;
S383 = 83 * S3:
S3C3 = 83 * C3;
C2C2 = C2 * C2;
S2C2 = S2 * C2;
S282 = 82 * S2;
ClCl = Cl1 * Cl:
S1Cl1 = S1 * C1:
S1S1 = S1 * S1;

T1214 = (C2 * A2);

T1224 = (S2 * A2);

T141l1 = ((C23 * C4)):

T1414 = (- (S23 * D4) + T1214):
T1424 = ((C23 * D4) + T1l224);
T1421 = ((S23 * C4)):

BS63 = (26);

BS51 = (- (S5 * BS63)):

BS52 = ((CS * BS63));

BAS52 = ((Y4 + BSS52) + FP42);

BS41 = ((C4 * BSS1)):

BS42 = ((S4 * BSS51)):

BS43 = (BAS52);

BA42 = (BS42 + FP32);

BS32 = ((S3 * BS41l) + (C3 * BS43)):
BS31 = ((C3 * BS41) - (S3 * BS43)):
BS33 = (- BA42);

BA31l = (BS31 + FP21):

BS22 = ((S2 * BA31l) + (C2 * BS32)):
BS23 = (BS33):

BS21 = ((C2 * BA3l) - (S2 * BS32)});

JAS533 (CD4 - NP433);
JA511 = (AD4 - NP41l1l);
JsS423 (0 - (D4 * BS42));

137

JS422
JS413
JS412
JS411
JA433

|

i

]

JA41l =

JS333
JsS323
JS313

Js322 =

JS312
JS311
JA333
JA322
JS233

JS223 =

((S4S4 * JAS11l) + (C4C4 * JA533) + (2.0 * (D4 * BS43))):
(0 - (D4 * BS4l)):
((S4C4 * (JAS1l -
((C4C4 * JAS511) + (5454 * JA533) + (2.0 * (D4 * BS43))):

(- NP333);

(JS411 - NP31l1l):
(JS422):;

(- (83 * Jgs412) -
(- (C3 * JsS412) -
{(S383 * JA4l1ll) +
((S3C3 * (Ja41ll -
((C3C3 * JA41l1l) +
(JS333 - NP233):
(JS322 - NP222):

(JA333 + (2.0 * ¢
((S2 * JS313) + (C2 * JS323) - (Tl224 * BS23)):

JS222 = ((S282 * JS311)

* (T1214 * BS21))):

PS031 =
PS041
PS042
PS131
PS141
PS142 =

il

PS241 = (-

DIJ(1] (1]
DIJ[1] (2]
DIJ([1][3]
DIJ[1] (4]
DIJ[1][5]
DIJ[1][6]
DIJ[2] [2]
DIJ[2] [3]
DIJ[2] [4]
DIJ[2][5]
DIJ(2] (6]
DIJ[3] (3]
DIJ(3] [4]
DIJ[3][5]
DIJ[3][6]
DIJ[4] [4]

(-

(.-

!

((C23 * D3));
((T1411 * D3) + (S4 * T1414));

(S23 * D3)):

(- (C23 * T1224) + (S23 * T1214));
(T1411 * T1424) + (T1421 * T1414)):
((S23 * T1424)
(C4 * D4));

+

+

JAS533))):

(D3 * BS32));

(D3 * BS31)):;

(C3C3 * JA433) + (2.0 * (D3 * BS33))):
JA433))):

(S353 * JA433) + (2.0 * (D3 * BS33))):

(T1224 * BS22) + (T1214 * BS21)))):

{((2 * S2C2) * JS312) + (C2C2 * JA322) +

(C23 * T1414));

((JS222) + IAl);

(JS223) ;

((S2 * JS313)
((S23 * JS413) - (BS42 * PS031) + (BS41 * T1214));
(- (BS52 * PS041) + (BSS51 * PS042));

(0);

+ (C2 * JS323)):

((JS233) + IAZ);

(JS422 + (BS31 * A2)):

(BS42 * PS131)):

(- (BS52 * PS141) + (BSS51 * PS142));

(- JS423 -

(0);

((JS422) + IA3);

(- JS423):

(- (BS52 * PS241));

(0);

= IA4;

138

DIJI[4] [5]

(0}

(BS21)):
(- (BS32
(- (BS42
(= (BSS2

DIJ[4][6] = (0):
DIJ[5]([5] = IAS;
DIJ(S] (6] (0);
DIJ[6]1([6] = IAG:;
DI{1] = (0):
DI[2] (GRAV *
DI{3] = (GRAV *
DI[4] = (GRAV *
DI[5] = (GRAV ~*
DI[6] = 0

}

The routine “dyn_robot(Q,DIJ,DI)” calculates the inertia coefficients in the two dimensional array
DIJ and the gravitational coefficients in the one dimensional array DI. The values in DIJ are
expressed in N — m/rad?, and those in DI are N — m. The one dimensional array @ contains the

angles in rads, of the six joints.

To generate the “C” program that calculates the inertias and gravitational coefficients for the case

* S2) + (BS31 * C2))):
* 523))):
* T1421) + (BSS1 * C23))):

of the PUMA 260 with arbitrary load, we used the LISP machine command

”(LAG:principa “[alberto.gene]input260all.lisp” [alberto.lagrange]output260all.lisp”)””. The listing of

the file "upenn:usr{alberto.lagrangejoutput260ail.lisp” is the following :

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

Y4 -
AD4
CD4
IAl
IA2
IA3
IA4
IAS
IA6
A2 0.
D3 0.
D4 0.
Kp21
KP32
KP42

Q.

O OO OO OO0

0.
20
12
20
A2
(_
D4

38219

.079781
.077761
.091631
.136312
.030843
.001781
.006759

001262
32

624

32

D3)

struct var_const{
float M6;
float 26;

float X6:;
float Y6:
float AD6;
flcat BD6;
float CD6;
float DD6;
float EDG6;
float FD6;
float MC6:
float MC5;
float MC4:
float MC3;
float MC2:
flocat MCi:
loat FP42;
float FP32:
float FP21;
float NP411:
float NP433;
float NP311i;
float NP333;
float NP222:
float NP233;

}SIX={2.768114,0.01401,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, }:

update (M6, 26, X6, Y6, AD6,BD6,CD6,DD6,ED6,FD6, SIX)

float M6, 26,X6,Y6,AD6,BD6,CD6,DD6,ED6,FD6;
struct var_const *SIX;
{

SIX->M6 = M6,
SIX->Z26 = 26;
SIX->X6 = ¥X6;

SIX->Y6 = Y6;
SIX->AD6 = AD6;

SIX->BD6 = BD6;
SIX->CD6 = CD6;
SIX->DD6 = DD6;
SIX->ED6 = ED6;
SIX->FD6 = FD6;
SIX->MC6 = M6
SIX->MCS5 = SIX->MC6;
SIX->MC4 = SIX->MCS5;

SIX->MC3 = SIX->MC4;

140

SIX->MC2 = SIX->MC3;

SIX->MCl = SIX->MC2;

SIX->FP42 = SIX->MC4 * KP42 ;
SIX->FP32 = SIX->MC3 * KP32 ;
SIX->FP21 = SIX->MC2 * KpP21 ;
SIX->NP411 = SIX->MC4 * (KP42*KP42) ;
SIX->NP433 = SIX->MC4 * (KP42*KP42) ;
SIX->NP311l = SIX->MC3 * (KP32*KP32)
SIX->NP333 = SIX->MC3 * (KP32*KP32) ;
SIX->NP222 = SIX->MC2 * (KP21*KP21) ;
SIX->NP233 = SIX->MC2 * (KP21*KP21l) ;
}

#include <math.h>

dyn_robot (Q,DIJ, DI, SIX)

float Q{7],DIJ[(71(71,DI[7]:;

struc

{

float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
float
S1
C1l
S2 =
C2

t var_const *SIX:

GRAV=9,81;
S1,82,53,54,S5,86:;
c1,Cc2,C3,C4,C5,C6;
C23,S23;
C6C6,S6C6,S6S6,C5C5, S5C5,S5S5,C4C4,S4C4;
S484,C3C3,83C3,83S83,C2C2,82C2,S8282,C1C1;
S1C1,S181;
T3511,T3513,T3521,T3523,T1214,T1224,T1421,T1423;
T1411,T1414,T1424,T1521,T1522,T1523,T1511,T1514;
T1512,T1524;
BS21,BS23,BS22,BA31,BS33,BS31,BS32,BA42;
BS43,BS41,BS42,BA52,BS52,BS51,BS53,BS61;
BS63,BS62;
JS222,J8223,J8233,JA322,JA333,J8311,JS312,JS8322;
JS313,J8323,JS333,JA411,JA433,JS411,JS413,J0S433;
JS412,J5423,JS422,JA511,JA533,JS511,JS513,JS533;
JS512,J8523,JS522,JS611,JS613,JS633,JS612,JS623;
JS622;
PS031,PS041,PS042,PS051,PS052,PS131,PS141,PS142;
PS151,PS152,PS241,PS251,PS252;
sin(Q(1]):
cos(Q[1]1):
sin(Q(2]):
cos(Q[2]):

141

S3 = s
C3 =c¢
S4 = s
C4 = ¢
S5 = s
Cs =c¢
S6 = s
C6 = ¢

in(QI[31):
0s(Q[31):
in(Q[41):
os(Q[41):
in(QI[S1):
os(Q[(5]1):;
in(Q[61):
os(Q[61):

= cos(Q[2]1+Q[3]):

S23 = sin(Q[2]1+Q[3]):

Cé6Co6 =

C6 * C6;
S6 * C6;
= S6 * S6;
C5 * C5;
= 85 * CS;
= 85 * S5;
= C4 * C4;
= S4 * C4;
= 54 * S4;
C3 * C3;
S3 * C3;
S3 * S$3;
= C2 * C2;
= S2 * C2;
S2 * S2;
= Cl * Cl;
S1 * C1l;
= S1 * S1:

= ((C4 * C3)):

i

((S23 ~*
((S23 =*
((C23 ~*
(- (823
((cz23 ~*
((sS23 =
(- (823
= ((S23 *

i

I

(= (C4 * 83));
((S4 * C3)):
(= (54 * 83));
(C2 * A2);

(S2 * A2);

C4)):

S4)):;

C4)):

* D4) + T1214);

D4) + T1224):;

T3511) + (C23 * S5)):
* S4)):

T3513) + (C23 * CS5));

142

T1511

Tl514 =

T1512
T1524

BS62 =
BS63
BS61
BSS53
BS51
BSS2
BA52Z =
BS42
BS41
BS43
BA42
BS32 =
BS31
BS33
BA31l
BS22
BS23
BS21 =

JS622
+ ((2
JS623
JS612
JS633
JS613
JS611
JS522
JS523
JS512
JS533
JS513
JS511
JAS533
JAS11
JS422
+ (C4C
JS423
JS412

*

I

4

((C23 * T3511)

(- (S23 * D4)

(= (C23 * S4)):
((C23 * D4) + T1l224);

(S23 * S5)):

+ T1214);

((S6 * SIX->X6) + (C6 * SIX->Y6)):
(SIX->26):
((C6 * SIX->X6)
(- BS62);

((C5 *
((SS *
((Y¥Y4 +
((S4 *
((Ca *
(BA52) ;

BS61)
BS61l)
BS52)
BSSL)
BSS51)

I+ + 1

+

(S6 * SIX->Y6)):

(BS42 + SIX->FP32):
{(S3 * BS41l) + (C3 * BS43)):
- (S3 * BS43)):

((C3 =

BS41)

(- BA42);
(BS31 + SIX->FP21):
((S2 * BA31l) + (C2 * BS32)):;

(BS33):;

((C2 * BA31l)

(SS * BS63)):
(C5 * BS63));
SIX->FP42);

(C4 * BSS53)):
(S4 * BSS3)):

- {(S2 * BS32));

((S6S6 * SIX->ADS6)
SeC6) * SIX->DD6) + (C6C6 * SIX->BD6)):

((S6 * SIX->FD6)

((S6Cs ~*
(SIX->CD6);

((C6 * SIX->FD6)
((C6C6 * SIX->ADS)
((S585 * JS611)
(- (S5 * JS612)

((S5C3 =*

(JS622) ;
(= (C5 * JS612)
((C5C5 * JS611)
(CD4 + JS533 - SIX->NP433):
(AD4 + JS511 - SIX->NP411);
((S454 * JAS51l)
* JAS533) +
((S4 * JSs512) -
((S4C4 * (JAS511 - JAS533)) +

(JS611

+

+

+ (C6 * SIX->ED®6)):

(SIX->AD6 - SIX->BD6))

(S6 * SIX->EDS6)):

- ((2 * S6Ch)
((2 * S5C3)

(CS * JS623));
((= S5S5 + C5C3) * JS613));

JS633)) +

(S5 * JS8623));

((2 * S5C3)

((2 * S4C4) * JS513)
(2.0 * (D4 * BS43))):
(C4 * JS523)

143

+ ((- S6S6 + C6C6) =* SIX->DD6)):

* SIX->DD6) + (S6S6 * SIX->BD6)):
* JS613) + (C5C5 * JS6&33));

* JS613) + (S555 * JS633)):

- (D4 * BS42)):

((54S4 - C4C4)

* JS513)):

JS433 = (JS522);

JS413 = ((C4 * JSS512) + (S4 * JS523) - (D4 * BS4l1l)):
JS411 = ((C4C4 =* JAS11) + ((2 * S4C4) * JS513)

+ (S4S4 * JAS533) + (2.0 * (D4 * BS43)});

JA433 = (JS433 SIX->NP333);

JA411 = (JS411 SIX->NP311);

JS333 = (JS422)
JS323 (- (83
JS313 = (- (C3

JS412)
JS412)

(C3 * JS423) - (D3 * BS32)):
(S3 * JS423) - (D3 * BS31)):

* *ﬁ.

+

JS322 = ((S3S3 * JA41l) + ((2 * S3C3) * JS413) + (C3C3 * JA433) +
(2.0 * (D3 * BS33)});
JS312 = ((S3C3 * (JA411 - JA433)) + { (- S383 + C3C3) * JS413)):

JS311 = ((C3C3 * JA41ll)
+ (2.0 * (D3 * BS33))):
JA333 = (JS333 - SIX->NP233):

((2 * S3C3) * JS413) + (S3S3 * JA433)

JA322 = (JS322 - SIX->NP222);
JS233 = (JA333 + (2.0 * ({(T1224 * BS22) + (T1214 * BS21)})):
JS223 = ((S2 * JS313) + (C2 * JS323) - (T1224 * BS23)):

JS222 = ((S282 * JS311) + ((2 * S2C2) * JS312) + (C2C2 =* JA322)
+ (2.0 * (T1214 * BS21))}):

PS031 = ((C23 * D3)):

PS041 = ((T1411 * D3) + (84 * T1i4l4)):

PS042 = (- (S23 * D3)):

PS051 = ((T1511 * D3) + (T3521 * T1514)):
PS0S2 = ((T1512 * D3) + (C4 * T1514));

PS131 = (- (C23 * T1l224) + (S23 * T1214)):
PS141 = (- (T1411 * T1424) + (T1421 * T1414)):

PS142 = ((S23 * T1424) + (C23 * T1l414)):

PS151 (= (T1511 > T1524) + (T1521 * T1514)):
PS152 (= (T1512 *~ T1524) + (T1522 =* T1514));
PS241 = (- (C4 * D4)):

PsS251 (- (T3511 * D4));

PS252 = ((S4 * D4));:

DIJ(1][1] = ((JSs222) + IAl);

DIJ[1]1[2] = (J8S223);

DIJ[1]([3] = ((S2 = JS313) + (C2 * JS323)):

DIJ(1][4] = ((S23 * JS413) + (C23 * JS522) - (BS42 * PS031) + (BS41 ~
T1214)):

DIJ[1][5] = ((T1421 * JS513) + (C23 * JS523)

+ (T1423 * JS622) - (BS52 * PS041l) + (BS51 * PS042));
DIJ[1] (6] = ((T1521 * JS613) + (T1522 =* JS623)

+ (T1523 * SIX->CD6) -

DIJ[2][2]
DIJ(2][3]
DIJ[2] [4]
DIJ[2] (5]
PS142));
DIJ[2] [6]

- (T3523 * SIX->CD6) -

DIJ[3](3]
DIJ[3] (4]
DIJ[3] (5]
DIJ[3][6]

= (- (S4 * JS513) + (C4 * JS622)
(C4 * JS623)

((JsS233) + IA2):
(JS422 + (BS31 * A2)):
(- JS423 - (BS42 * PS131)):

(- (S4 * JS513) + (C4 * JS622)

(- (T3521 * JS613) -

((JS422) + IA3);
(- JS423);

(- (T3521 * JS613) -

(C4 * JS8623)
(BS62 * PS151) + (BS61 * PS152));

(BS62 * PS051) + (BS61 * PS052)):

(BS52 * PS141) + (BSS51 ~*

(BS52 * PS241));

- (T3523 * SIX->CD6) - (BS62 * PS251) + (BS61 * PS252)):

DIJ[4][4] = ((JS522) + IA4);

DIJ[4] (5] = (JS523):

DIJ[4]1([6] = ((S5 * JS613) + (C5 * SIX->CD6)):
DIJ[S5] (5] = ((JS622) + IAS3);

DIJ[5] (6] (- JS623);

DIJ[6][6] = ((SIX->CD6) + IA6):

DI[1] = (0);

DI[2] (GRAV * (BS21)):

DI[3] = (GRAV * (- (BS32 * S2) + (BS31 * C2))):
DI[4] = (GRAV * (- (BS42 * S23))):

DI[S5] = (GRAV * (- (BS52 * T1421) + (BSS51 * C23))):
DI[6] = (GRAV * (- (BS62 * T1521) + (BS61 * T1522)));

}

The difference in this program is the procedure “update” that permits to update the values corre-
sponding to the last link. These canges are stored on a structure “var_const™ that is passed as a
parameter to the procedure "dyn_robot”.

To generate the “C” program that calculates the velocity torques for the case of the PUMA 260
without load, we used the LISP machine command
"(LAG:principa “[alberto.genelinput260v.lisp” [alberto.lagrange]output260v.lisp™)”. The listing of
the file "upenn:usr{alberto.lagrangeloutput260v.lisp” is the following :

#define M6
#define Z6
#define Y4
AD4
CD4
IAl

#define
#define
#define

2.768114
0.01401
-0.38219

0.079781
0.077761
0.091631

#define IA2
#define IA3
#define IA4
#define IAS
#define IA6
#define RS1
#define RS2
#define RS3
#define RS4
#define RSS
#define RS6
#define RD1
#define RD2
#define RD3
#define RD4
#define RD5
#define RD6

.136312
.030843
.001781
.0067583
.001262
.787033
.38928

.650706
.256854
.036607
.1065%24
.575662
.94467

.417502
.066791
.101721
.030363

OO OO0 0O0OO0O0OO0O0OKH OO0 OO0 Oo

#define A2 0.2032
#define D3 0.12624
#define D4 0.2032
#define KP21l A2
#define KP32 (- D3)
#define KP42 D4

#include <math.h>
vel robot (Q,QD, TORQUE)

float
{

float
float
float
float
float
float
float
float
float
float
float
float
float

Q[71,QD([7],TORQUE [7]:

S1,S82,83,54,85,86;

ci1,Cc2,C3,C4,C5,C6;
WV22,WV21,WV31l,WV32,WV33,WV4l, WV42,WV43:
WV51,WV52,WV53,WV6l,WV63,WV6E2;
WP211l,WP221,WP222,WP321,WP322,WP333,WP331,WP431;
WP432,WP443,WP441,WP541,WP542,WP551,WP651,WP6E52;
WP662,WP661;
vp21,vP22,VP23,VP31,VP32,VP33,VP41,VP42;
vP43,VP51,VP53,VP62,VP61;
pv233,DV222,DV212,DV213,DV312,DV311,DV333,DV323;
Dpv412,DVv411,DV433,DV423,DV413,DV613,DV623,DV611;
DV622;
Uv211,Uv231,0vV312,0V322,0V332,0V412,0V422,0V432;

146

float UV613,0V623,UV633;

float F¥P61,FP62,FP63,FP43,FP41,FP42;

float NP41l,NP43,NP42;

float FL62,FL61,FL51,FL52,FL43,FL41,FL42,FL32;
float NL61,NL62,NL51,NL52,NL41,NL43,NL42,NL31;
float NL32,NL22:;

S1 = sin(Q(11):

Cl = cos(Q[1]):

S2 = sin(Q[2]):
C2 = cos{Q2]):
S3 = sin(Q[3]):
C3 = cos(Q{3]):

S4 = sin(Q[4]):

C4 = cos(Q(4]):
S5 = sin(Q[5]):
C5 = cos(QI[51):

S6 = sin(Q[6]1):
C6 = cos(Q([6]):
WV22 = (C2 * QD[1]);
WV21 = (S2 * QD([1]):

WV31l = ((C3 * WV21l) + (S3 * Wv22)):
WV32 = (- (QD[2] + QD[3])):

WV33 = ((= (S3 * WV21l)) + (C3 * WV22)):;
WV4l = ((C4 * WV31l) + (S4 * WvV32));
WV42 = (WV33 + QD[4]):

WV43 = ((S4 * WV3l) - (C4 * WV32)):
WV51 = ((C5 * WV4l) + (S5 * Wv42));
WV52 = (- (WV43 + QD(51)):

WV53 = ((- (S5 * WV4l)) + (C5 * WvV42)):
WV61l = ((C6 * WV51l) + (S6 * WV52)):;
WV63 = (WVS3 + QD[6]);

WV62 = ((- (S6 * WV51l)) + (C6 * WV52)):

WP21ll = (QD([1] * QD[2]):

WP221 = (C2 * WP21l1l):

WP222 = (= (S2 * WP21l));

WP321 = (WP221 + (WV22 * QD[3])):

WP322 = (WP222 - (WV21 * QD[3]));

WP333 = ((- (S3 * WP321)) + (C3 * WP322)):
WP331 = ((C3 * WP321) + (S3 * WP322)):;
WP431 = (WP331 + (WV32 * QD[4])):

WP432 = (- (WV31l * QD[4]));

WP443 = ((S4 * WP431l) - (C4 * WP432)):

L47

WP441
WPS41
WP542
WP551
WP651
WP652
WP662
WP661

DV233
Dv222
bv2iz
DV213
DVv312
DV311
DV333
DV323
Dv412
Dv41ll
DV433
DV423
DVvV413
DV613
DV623
DV611
DV622

uovall

l

i

i

gva3l =

ugv3iz
gv322
Ugv332
gvalz
gvaz2
gv432
Uvels
uve23
Uve633

VP21 =

VP22
VP23

I

VP31l =

1l

1

I

1

I

((C4 * WP431)

(WP441
(WP333

((C6 * WPE51) +

+

(S4 * WP432));

(Wv42 * QD(51));
(Wv4l =~ QD([5])):
({(CS * WP541)
(WP551 + (WVS2 * QD[6]1)):

{((— WP443) - (WV51 * QD[6])):
((~ (S6 * WP651)) + (C6 * WP652)):

+ (S5 * WP542)):

(S6 * WP632));

(= (QD[2] * QD[2]))}:
(= (WV22 * WV22));:
(WV21 * WV22);

(WV21 * QD[2]):

(WV31 * Wv32);
(= (WV31 * WV31l));
(= (WV33 * Wv33)):;
(WV32 * WV33);
(WV41 * Wv42);
(= (WV4l * Wv4l)):
(= (WV43 * WV43)):
(WV42 * WV43);
(WV41l * WV43);
(WV61 * WV63):
(WV62 * WV63):
(- (Wvel
(- (Wve2

{DV233
(DV213
(DV31i2
(DV31l1l
{DV323
(DV412
(DV4ll
(DV423
(DV613
(DV623
(DV611

+

+ 4+ + 1+ 4

* WV61l));
* WV62)):;

DvV222);
WP222) ;
WP333);
DV333);
WP331):
WP443) ;
DV433) ;
WP441) ;
WP662) ;
WPa6l) ;
DV622});

(UV211 * A2);
(DV212 * A2);
(UV231 * a2):;
(((C3 * VvpP2l) +

(S3 * VP22)) -

148

(UV312 * D3)):

VP32
VP33
VP41l
VP42 =
VP43
VP51
VP53
VP62
VP61l =

FP61
FP62
FP63
FP43
FP41
FP42

NP41
NP43
NP42

FL62
FL61 =
FL51 =
FL52
FL43 =
FL41l =
FL42
FL32 =

NL61 =
NL62
NLS1
NL52
NL41
+ (S4 *
NL43 =
NL42 =
(Ca ~*
NL31
NL32
NL22 =

I

((- VP23)
(C(=

- (Uv322 * D3)):
(S3 * VP21)) + (C3 * VP22))

(((C4 * VP31l) + (S4 * VP32))

(VP33 + (UV422 * D4)):;
(((S4 * VP31)

((C5 * VP41l) + (SS * VP42));

((=
((- (S6 * VPS1))
((C6 * VP51)

((M6 * VP61)
((M6 * VP62)
((M6 * VP53)
(Gv432 * Y4);
(V412 * Y4);
(Uv422 * Y4);

+ (UV613 * Z6));
+ (UV623 * Z86));
+ (UV633 * 26)):

+

(Uv41l2 * D4)):

(C4 * VP32)) + (UV432 * D4)):;

(S5 * VP41l)) + (CS * VP42));
(Cé * VP43)):;
(S6 * VP43)):

((WP441 * AD4) + (DV423 * CD4)):

((WP443 * CD4)

(DV41l3 * (AD4 - CD4)):

((S6 * FP61) + (C6 * FP62)):;
((C6 * FP61l) - (S6 * FP62));
((CS5 * FL61) - (SS * FP63)):
((SS5 * FL61l) + (CS * FP63));
(FL52 + FP42);

{(C4 * (FLS1

((S4 * (FL51
((S3 * FL41)

+ FP41))

((=
((=
(CS
(S5

(Cé6 * (26 * VP62)))
(S6 * (26 * VP62)))
* NL61):;
* NL61);

(DV412 * AD4)):;

(UV332 * D3));

+ FP41l)) + (S4 * ((- FL62) + FP43))):

(C4 * ((- FL62) + FP43))):

+

+ (C3 * FL43)):

(S6 =
(Ce =

((C4 * (NL51 + (NP41 + ((D4 ~*

((- NL62) + (NP43 +
(NL52 + NP42);

((S4 * (NL51 + (NP4l +
((- NL62) + (NP43
((C3 * (NL41 - (D3 *
((S3 * (NL4l1 - (D3 =
((S2 * NL31) + (C2 *

((-

+

(-

((D4 *

(D4

FL43)))

149

¥*

(26 * VP61))):;
(26 * VP61))):

((- FL62) + FP43)) + (Y4 * VP43)))))
(D4 * (FLS1 + FP41)))

(Y4 * VP41)))))):

((- FL62) + FP43)) + (Y4 * VP43)))))

(FL51 + FP41l)))
(S3 ~*

(Y4 * VP41)))))):

- (NL43 + (D3 * FL41)))):
FL43))) + (C3 * (NL43 + (D3 * FL41)))):
(NL32 + (A2 * FL42)))):

TORQUE[1] = NL22 + RS1 * sgn{(QD([1]) + RD1 * QD[1l]:

TORQUE (2] = ((- NL42) + (A2 * FL32)) + RS2 * sgn(QD(2]) + RD2 * QD[2]:;
TORQUE[3] = (- NL42) + RS3 * sgn(QD(3]) + RD3 * QD(3]:

TORQUE (4] = (NL52 + NP42) + RS4 * sgn(QD[4]) + RD4 * QD[4]:

TORQUE (5] = (- NL62) + RS5 * sgn(QD[5]) + RDS * QD[5];

TORQUE (6] = 0 + RS6 * sgn(QD[6]) + RD6 * QD[6];

}

The procedure “vel_robot” computes the velocity torque in the armay TORQUE in N — m,
and the input arrays Q and QD contain the angles and velocities of the joints in rad and rad/sec
respectively.

To generate the “C” program to calculate the velocity torques for the case of the PUMA 260
with arbitrary load, we used the LISP machine command
”(LAG:principa “[alberto.gene]input260allv.lisp” [alberto.lagrange]output260allv.lisp™)”. The listing
of the file "upenn:usr{alberto.lagrangeloutput260allv lisp™ is the following :

#define Y4 -0.38219

#define AD4 0.079781
#define CD4 0.077761
#define IA1 0.091631
#define IA2 0.136312
#define IA3 0.030843
#$define IA4 0.001781
#define IAS5 0.006759
$#define IA6 0.001262
#define RS1 0.787033
#define RS2 1.38928

#define RS3 0.650706
#define RS4 0.256854
#define RSS 0.036607
#define RS6 0.106594
#define RD1 0.575662
#define RD2 0.94467

#define RD3 0.417502
#define RD4 0.066791
#define RDS 0.101721
#define RD6 0.030363

$define A2 0.2032
#define D3 0.12624
#define D4 0.2032
#define KP21 A2

#define KP32 (- D3)
#define KP42 D4
struct var_const{
float MS6;

float 2Z6;

float X6;

float Y6:

float ADS6;

float BD6;

float CD6;

float DD6:

float ED6:;

float FD6;
}SIX={2.768114,0.01401,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1}:

update (M6, 26,X6, Y6, AD6,BD6,CD6,DD6,ED6,FD6, SIX)
float M6,26,X6,Y6,AD6,BD6,CD6,DD6,ED6,FD6;
struct var_const *SIX;

{

SIX->M6 = M6;
SIX->26 = 26;
SIX->X6 = X6;
SIX->Y6 = Y6;
SIX->AD6 = AD6;
SIX->BD6 = BD6;
SIX->CD6 = CD6;
SIX->DD6 = DD6;
SIX->ED6 = EDG6;

SIX->FD6 = FD6;
}

#include <math.h>

vel robot (Q,QD, TORQUE, SIX)
float Q([71,QD[7],TORQUE(7]:
struct var_const *SIX;

{

float S1,S82,S3,S54,S5,56:;

float C1,C2,C3,C4,C5,Ch;

float WV22,WV21l,WV32,WV31l,WV33,WV42,WV4l,WV43;

float WV52,WVS51l,WV53,WV62,WV63,WV61l;

float WP211,WP221,WP222,WP321,WP322,WP331,WP333,WP431;

151

float WP432,WP441,WP443,WP541,WP542,WP551,WP553,WP651;
float WP652,WP661,WP662;

float VP21,VP22,VP23,VP31,VP32,VP33,VP41,VP42;

float VP43,VP53,VP51,VP62,VP61;

float DV233,DV222,DV212,DV213,DV312,DV311,DV333,DV323;
float DV412,DV411,DV433,DV423,DV413,DV623,DV612,DV613;
float DV633,DV622,DV611l;

float UV211,0UV231,U0V312,0V322,0V332,0V412,0V422,0V432;
float UV621,UV631,0Ve632,0V612,UV613,0V623,UVe11,UV622;
float UV633;

float FP61,FP62,FP63,FP43,FP41,FP42;

float NP61,NP62,NP63,NP41,NP43,NP42;

float FL62,FL61,FLS1,FL52,FL43,FL41,FL42,FL32;

float NL61,NL#3,NL62,NL51,NL52,NL41,NL43,NL42;

float NL31,NL32,NL22;

S1 = sin(Q(11):

Cl = cos(Q(1]):

S2 = sin(QI[21):

C2 = cos(Q[2]):
S3 = sin(Q{31):
C3 = cos(Q[31):
S4 = sin(Q[4]);
C4 = cos{Q[4]):
85 = sin(QI[S]}):
CS = cos(Q[51):

S6 = sin(Q[6]1):

Cé6 = cos(Q[61);

WV22 = (C2 * QD(1]):

WV21 = (82 * QD[(11):

Wv32 = (- (QD(2] + QD{3]})~

WV31l = ((C3 * WV21l) + (S3 * WvV22));
WV33 = ((- (S3 * WV21l)) + (C3 * Wv22)):
WV42 = (WV33 + QD[4]):

WV4l = ((C4 * WV31l) + (S4 * WV32)):
WV43 = ((S4 * WV31l) - (C4 * WV32)):
WV52 (- (WV43 + QD{51)):

WVS1l ((C5 * WV4l) + (S5 * WvV42));
WV53 = ((- (S5 * Wv4l)) + (CS * WV42)):
WV62 ({- (S6 * WV51)) + (C6 * WV52)):
WV63 (WVS3 + QD(6]);

WV6l = ((C6 * WV51l) + (S6 * WV52));

WP211 = (QD({1] * QD[2]);

o
(@3]
NS

Wp221 = (C2 * WP21ll):

WP222 = (- (S2 * WP21ll)):

WP321 (WP221 + (WV22 * QD[3])):

WP322 = (WP222 - (WV21 * QD[3]1)):

WP331 = ((C3 * WP321) + (83 * WP322));
WP333 = ((- (S3 * WP321)) + (C3 * WP322)):;

WP431 = (WP331 + (WV32 * QD[4])):
WP432 = (- (WV31l * QD[4])):

WP441 = ((C4 * WP43l) + (S4 * WP432)):
WP443 = ((S4 * WP431l) - (C4 * WP432)):
WP541 = (WP441 + (WV42 * QD[5])):
WP542 = (WP333 - (WV41l * QD[5])):
WPS551 = ((CS5 * WP541l) + (S5 * WPS542)):
WP553 = ((- (S5 * WP541)) + (C5 * WP542)):
WP651 = (WPS551 + (WV52 * QD[6])):
WP652 = ((- WP443) - (WV51] * QD[6])):
WP661 = ((C6 * WP651) + (S6 * WP652)):

WP662 = ((- (S6 * WP651)) + (C6 * WP652));

Dv233 = (- (QD[2] * QD[2]));

DV222 = (- (WV22 * WV22)):
DV212 = (WV21 * WvV22);
DV213 = (WV21 * QD(2]):
DV312 = (WV31l * WV32);
DV31ll = (- (WV31 * WV3l)):
DV333 = (- (WV33 * WvV33)):
DV323 = (WV32 * WV33);
DV412 = (WV41l * WV42):
DV41l = (- (WV41l * WV4l)):;
DV433 = (- (WV43 * WV43)):
DV423 = (WV42 * WV43);
DV413 = (WV4l * WV43);

DV623 = (WV62 * WV63);

DV61l2 = (WV6l * WV62);
DV61l3 = (WVel * WV63):
DV633 = (- (WV63 * WV63)):
DV622 = (- (WV62 * WV62)):

DV61l = (- (WV61l * WV61l)):

Uv21ll = (DV233 + DV222);
Ugva3l (DV213 WP222) ;
gv3lz (DV312 WP333);
Uv322 = (DV31ll + DV333):;

153

Uv332 = (DV323 + WP331l}):

Uv4l2 = (DV41l2 - WP443):
Uv422 = (DV41ll + DV433):
UvV432 = (DV423 + WP441);
Uv621 = (DV61l2 + WPS553):
UV631 = (DV613 - WP662);

UV632 = (DV623 + WP661);
Uv61l2 = (DV61l2 -~ WPS553):;

UVéel3 = (DV613 + WP662);
Uv623 = (DV623 - WP5S61);
UV6ll = (DV633 + DV622);
Uv622 = (DV611l + DV633);
UV633 = (DV61ll + DV622);

VP21 = (UV21ll * A2);

VP22 = (DV212 * AZ2);

VP23 = (UV231 * A2);

VP31l = (((C3 * VP21l) + (S3 * VP22)) - (UV31l2 * D3)):
VP32 = ((=- VP23) - (UV322 * D3)):

VP33 = (((- (S3 * VP21)) + (C3 * VP22)) - (UV332 * D3)):
VP41l = (((C4 * VP31l) + (S4 * VP32)) + (UV4l2 * D4));
VP42 = (VP33 + (UV422 * D4)):

VP43 = (((S4 * VP3l) - (C4 * VP32)) + (UV432 * D4));
VP53 = ((- (S5 * VP41l)) + (CS5 * VP42)):

VP51 = ((CS * VP4l) + (S5 * VP42));
VP62 = ((- (S6 * VP51l)) - (Cé6 * VP43));
VP6l = ((C6 * VP51) - (S6 * VP43)):

FP61 = ((SIX->M6 * VP61l) + (((UV61ll * SIX->X6)
+ (UV61l2 * SIX->Y6)) + (UV613 * SIX->Z6)));
FP62 = ((SIX->M6 * VP62) + (((UV621 * SIX->X6)
+ (UV622 * SIX->Y6)) + (UV623 * SIX->Z6))):;
FP63 = ((SIX->M6 * VP53) + (((UV631l * SIX->X6)
+ (UV632 * SIX->Y6)) + (UV633 * SIX->Z6))):;

FP43 = (UV432 * Y4);

Fp4l (UV41l2 * Y4);

FP42 = (UV422 * Y4);

NP61 (((((WP661 * SIX->AD6) + (DV623 * (SIX->CD6 - SIX->BD6)})
+ (UV621 * SIX->FD6)) - (UV631 * SIX->DD6)) + ((DV633 - DV622) * SIX~->ED6)):
NP62 = (((((WP662 * SIX->BD6) + (DV613 * (SIX->AD6 - SIX->CD6)))
+ (UV632 * SIX->DD6)) - (UV61l2 * SIX->ED6)) + ((DV61l1l - DV633) * SIX->FD6)):
NP63 = (((((WP553 * SIX->CD6) + (DV61l2 * (SIX->BD6 - SIX->AD6)))

+ (UV61l3 * SIX->ED6)) - (UV623 * SIX->FD6)) + ((DV622 - DV61ll)
NP41 = ((WP441 * AD4) + (DV423 * CD4));

NP43 = ((WP443 * CD4) - (DV41l2 * AD4));

NP42 = (DV41l3 * (AD4 - CD4)):

FL62 = ((S6 * FP6l) + (C6 * FP62));

FL61 = ((C6 * FP61l) - (S6 * FP62)):

FL51 = ((C5 * FL6l) - (S5 * FP63)):

FL532 = ((S5 * FL61l) + (C5 * FP63)):

FL43 = (FL52 + FP42):

FL41 = ((C4 * (FL51 + FP41l)) + (S4 * ((- FL62) + FP43))):
FL42 = ((S4 * (FL51 + FP41l)) - (C4 * ((- FL62) + FP43))):

FL32 = ((S3 * FL41l) + (C3 * FL43)):;

NL61 = ((C6 * (NP61 + ((SIX->Y6 * VP53) - (SIX->Z6 * VP62))))
- (S6 * (NP62 + ((SIX->26 * VP6l) - (SIX->X6 * VPS53))))):
NL63 = (NP63 + ((SIX->X6 * VP62) - (SIX->Y6 * VP61l))):

NL62 = ((S6 * (NP6l + ((SIX->Y6 * VP53) - (SIX->26 * VP62))))
+ (C6 * (NP62 + ((SIX->Z6 * VP6l) - (SIX->X6 * VP53))))):
NL51 = ((C5 * NL61) - (S5 * NL63)):

NLS2 ((S5 * NL61) + (C5 * NL63)):

NL41 = ((C4 * (NLS51 + (NP4l + ((D4 * ((- FL62) + FP43))

+ (Y4 * VP43))))) + (S4 * ((- NL62)

+ (NP43 + ((- (D4 * (FLS1 + FP41))) - (Y4 * VP41l)))))):

NL43 = (NL52 + NP42):

NL42 = ((S4 * (NL51 + (NP4l + ((D4 * ((- FL62) + FP43))

+ (Y4 * VP43))))) - (C4 * ((- NL62)

+ (NP43 + ((- (D4 * (FLS51 + FP4l))) - (Y4 * VP4l)))))):

NL31 = ((C3 * (NL41 - (D3

NL22

((s2 * NL31) + (C2 (NL32 + (A2 * FL42)))):
TORQUE (1] = NL22 + RS1 * sgn(QD({1]) + RD1 * QD[1]:;
TORQUE [2]
TORQUE [3] = (- NL42) + RS3 * sgn(QD(3]) + RD3 * QD(31:
TORQUE [4] = (NL52 + NP42) + RS4 * sgn(QD(4]) + RD4 * QD([4]:
TORQUE [5] (- NL62) + RS5 * sgn(QD[5]) + RDS * QD[5]:
TORQUE [6] = (NP63 + ((SIX->X6 * VP62) - (SIX->Y6 * VP61)))
+ RS6 * sgn(QD[6]) + RD6 * QD[6];
}

* SIX->DD6)):

* FL43))) - (S3 * (NL43 + (D3 * FL41))));
NL32 = ((S3 * (NL41 - (D3 * FL43))) + (C3 * (NL43 + (D3 * FL41))));
*

((- NL42) + (A2 * FL32)) + RS2 * sgn(QD{2]) + RD2 * QD([2]:

The difference with the previous program is in the procedure "update” that permits one to update

the values of the parameters corresponding to the last link as explained before.

155

B Identification results

In this appendix we show the results by fitting torques with the dynamic model. The directory that
contains the programs to fit the dynamic model are in “grasp:/usr/alberto/DYNAMIC”.

In figure 1 we show the joint position corresponding to the first trajectory. In figure 2 we show
the velocity of the first trajectory, calculated by the formula v; = (p;41 — pi)/(At), where v; is the
estimated velocity at the sample 1, p; is the joint position at the saple i, and At is the increment in
time between two sample periods. In our case the sample period is 28 msec. In figure 3 we show
the velocity calculated by using the formula v; = (pi+1 — pi-1)/(2.0 * At). This formula produce
a more accurate and smoother estimation of the velocity and has been used for the identification
procedure.

In figure 4 we show the acceleration calculated for the same trajectory by using the formula
a; = (vi+1—v;)/(At), where a; is the acceleration at the sample 1, v; is the velocity shown in Figure 5.
In figure 6 we show the acceleration calculated by using the formula a; = (viy1 — vi—1)/(2.0 x At),
where v; is the velocity shown in Figure 7. The last calculation produces a more accurate and
smoother estimation of the acceleration, and was used in the identification of the constants of the
dynamic coefficients.

Figure 8 contains the measured and estimated torques for the first trajectory, using all the 52
linearly independent parameters. The fitting is very accurate for all six joints. Figure 9 contains the
measured and estimated torques for the first trajectory, using 23 significant parameters. The fitting
is very accurate for the first three joints, having small differences in the last three joints.

Finally, figures 10 to 15 contains plots of measured and estimated torques for six different
trajectories, using the average of the 23 significant parameters. The fitting for the three first joints is
very accurate. The fitting for the last three joints is less accurate, although the errors are less than
20 percent of the torque. This may be due to the fact that the torque in the three joints is small, but
also to the fact that the three last joints are coupled. Effectively, rotation of joint 4 affects rotation
on joints 5 and 6, as well as rotation of joint 5 affects the rotation of joint 6, and these effects are
not taken into account in the dynamic model.

156

ec—s g

[X X4

150

100

jomuyume jontg/ume

T T T 200 F

o
-

Jonts/nme Jonta/nme

T T L T 1

00

[X 4

-100 |

-200 -

L i

oL
oL
8

50 100
Time Time

Jonts/ nme Jonte/ ume

T 1 T

00 -

sCcCTR g

Figure 1: Joint position for the first trajectory

400

200

L X X4

~200

-400

ec—m<
=S

-500

Figure 2: Velocity of the joints calculated by the first method and first trajectory

vell/time

T T 750

250

oC B

7 =260

~ -500

1
ec—m<
o

-§00

-100Q0

velastme

T T

eE=n<

100
Time

vels/ume

T T T I

-

S]

Time

veld/nme

=T T T

veig/time

i T

ecTR L

-200

-400

eETB g
(-]

-500

-280

-5§00

Figure 3: Velocity of the joints caiculated by the second method and first trajectory

reaiveivume

H ¥

L 4
C 1 | 1 7
o 50 100
Time
reaveis/nme
T Ll 1
1 L L
Q 50 100
Time
reaveis; ime
LI ¥ 1
- -
L -
- -
1 1 1
Q 50 100

Time

g 8

[XSt N4
o

-250

-500

1000

ec—n <
o

-800

TN g

reaiveil;ume

I l L
Q 50 100
Time
reaveia;ume
T 1 T
-
L 1 | 1
[} 50 100
Time
reaiveis/ umse
- 1 1
Il L
0 50 100
Time

Figure 4:

5000

ec—mg
-]

-5000

-10000

§000

Yt B3

-5000

10000

4000

Y it X4

-5000

Acceleration of the joints calculated by the first method and first trajectory

acceisraionyyume

1 H T

! ul
;”‘MWV |
L |

5000

Y-l X4

J
|
|

-5000

|
:

; :
o] 50
Time

100

Acceisrations/ume

4 10000

PETM

-10000

oy

T

\‘ K/

5000

.
ec—m<

|

-5000

[
‘ﬂ WW/

o

160

accHiorarionZ;ume

100
Time

acceieranions;uime

C Nk | \KM B
_\4&‘ W :
s

Time

5000

eETR L
-

-5000

5000

2500

[Xl B

-2500

-5000

5000

ec—n

-5000

Figure 5: Acceleration of the joints calculated by the second method and first trajectory

real_accynme
T 13 T
1 L]
o 50 100
Time
real_accd/ume
T 1 1
L 1 L
Q 50 100
Time
real_accs/nme

N

|

)| 1

[}
Time

-2500

~-5000

10000

5000

ec—w<

-10000

5000

2500

ec—e g

-5000

161

reai_accs/ume

T 1 1
-
-
d | 1
o] 50 100
Time
real_acca/nme
1 1 1
L L -
] 100
Time
real_accts/tume
T T T
Lo
-
L 1 1
Q 50 100
Time

L Nl W

Y-l X3

Yt s

part_resuitorquel/ume
+ T 18
2 F)
0 - —
)
2 [
i i 1
1] 50 100
Time
Part_resuitcrques/ tme
T T T
4
2 -
o b
-2 k
-4 F
L i L
] 50 100
Time
part_resuitorques/ume
T T T
04 =
02 -
a
-0.2
L 1
o] 50 1
Time

ec—m<
-

-1

0.4

0.3

0.2

sc™—m g

0.1

pari_resuitorquez/time

1 1 i

= -
L 3
L i i —_T
s} 50 10Q
Time
part_resuitorqued/ume
1 T T
- -
- -
| 1 -1
[+} 50 100
Time

part_resuitorqued/ume

T T T
o _
b -
L 4

e Il A
0 50 100
Time

Figure 6: Fitting of the torques for 6 joints, 52 parameters

[

ec—m<

sc~n g

ec—m<g

-2

-2

-4

0.4

0.2

part_resurtterquely ime
T T 1]
- -
- -
b 4
] 1 |-
o 50 100
Time
part_resurnorques/ume
T T T
- -
= -
- .
1 L i
] 50 100
Time
part_resuitorques/ ume
T T T
- -
. -
I L 1
Q 50 100
Time

Part_resuttorquex/ume

T T T
0 -1
5 -
0+ 4
-5 L 4
-0 4
I i L
0 50 100
part_resurtorquea/nme
075 [T T 3
05 -
025 -
Qo -
-0.28 -
-0.5 -
i | L
] 50 100
uﬂ_ruunomuoelmo
T T T
o4 r -
03 <
v
a
i o2 L -
']
[]
[*X B -
o :
L I L
] 50 100
Time

part_resuitorquet/ume part_resuitorquez;/ume

i T v T T

T

2 - - 1 =
a3
J | 5]
o
2 - - -5 r
-0 -
|

L Xt
(=]
Y- X3

L L .l I 1
] 50 100 0 50 100
Time Time
part_resuitorques/ lime part_resuitorqued/ume
s [T T T B o7s L T T ‘:j'
/ o5 L 4
2 4
11 \.Io.zs - B
h 9 + 4
u u - -
L] [} °
_2 f— -
-0.28 -
-4 -
-0.5 Il \ -{
| A 1 L L |
[+ 50 100 a 50 100
Time Time
part_rssuitorques/ume part_resultorques, ume
T o T T !
04 - 0.4
Coom]
; Aﬂ “MUU 1
0.2 - 4% | 7
v v t | '\H i
a a i A
I Ty oz | i A
Y o~ 4 u ‘ . AA i 4
e [} t]
o1 f | _j
-0.2 - - ; i ;
b
‘ o L j
—_— -
[I FI-J L L ._:
o] o] 50 100
Time

Figure 8: Fitting of the torques for 6 joints, 23 “averaged” parameters

16 4

sETHE L

eCTm L

part_resunorquev ume

T T T T T
a4 -
, L]
9 -
-2 -
-4 =] ! s -
] 50 100 150 200
Time
part_resuitorques; nme
T T T T T
2 | -
.2 - .
!
1 1 1 1 1
1] 50 100 150 200
Time
part_resuitorques/nme

LN T H 1 T
04 =
0.2 -~ B
o F -
-0.2 = -
-0.4 + .

1 L L L t

50 100 160 200

Time

eETP L

c=e g

o —m<

10

-10

0.5

0.28

-0.25

0.2

0.1

part_resuitorquez/ume
1 1l T ¥ ML
! 1 1] 1
0 50 100 150 200
Time
part_resuitorquea/ume
1 4 3 i T 1
L d
. 1 Il 1 1
1] 50 100 150 200

Time

part_resultorgues/nume

1 T T T T
|

— -4
- 4
C =1

L . L] Ll

0 50 100 150 200
Time

Figure 9: Fitting of the torques for 6 joints, 23 parameters

16!

pII“_ resultorquel/ ume

! 1 T T T j
4 -~ -
v
a 2 -
l
u
b4 H
o L
2 r i I) i
o] 50 100 150 200
Time
part_resuitorques/time
i TT T T T 1
4 - -
2 F -
v
a
[o r -
u
e
-2 | 4
-4 -
A 1 I 1 b
Q 50 100 150 200
Time
part_resuitcrques/ume
04 [‘ ‘ e
t |
| I
!
0.2 r
\' : |
r 1
u o - 4
) |
02 -

PR

(.

] 50 100 160
Time

200

10

ec—B <&

-5

0.2

Y-t S

-0.2

part _rozunorquoz/ ume

L

| fl L

Q 50 100 150
Time

part_resuitorqued;/ume

o I

0 50 100 150
Time

part_resultorques/ume

200

o v}

i

[-

B U

EUUNNIN SEU S

Q 50 100
Time

150

200

Figure 10: Fitting of the torques for 6 joints, 23 parameters

66

acCTE L

YA X3

Yt B4

P.ﬂ_f.lu“ﬂw.'ll ume
T T T T T
2 -
A
Q - -
-2 */ N
-4 k£ i I L il
L] 50 100 150 200
Time
part_resuitorques/ nme
a4 7 T T T ™3
2 | -
o + .
-2 - 5
. -4 - -
. I . ! il
s} 50 100 150 200
Time
part_resuitorques/ume
o4 [T T T -
0.2 + -
o F —1 -
-0.2 | h
L I L 1

Time

100

ec—m<

YAt X4

ec—w

-10

-0.8

0.2

part_resuitor queZ/ime

T ¥ 1 T T

-

L 1 1 1 1

[b] 25 50 75 100
Time
part_resurtorguea/ume
T T 1 i
| I H i 1
Q 50 100 150 200
Time
part_resultorques/ume
1 Al] 1 T

i A L 1 1

o} 50 100 150 200
Time

Figure 11: Fitting of the torques for 6 joints, 23 parameters

167

eC—B <

ec—m» <

Y 9

-2

-4

0.4

PIN_(’.SUHOFQU.'U ume

1

] T T

1]

r 7
] | | ! .
o} 50 100 150 200
Time
part_resuitorques/ums
1 T T T
= . B
= !
L 3
C 1 i i i] -J
0 50 100 150 200
Time

part_resuitorquea;/ume

100
Time

160

200

10

ec—

-5

0.5

0.28

'Yl X

-0.25

0.2

2.1

0c—m

part_resultorques/ume

v 1 v T

- -

L L

- -
L 1 st ! Il
[¢] 50 100 150 200

Time
part_resuntorqued/tume
T T T T
M
\ '

L N
L i 1 i
o] 50 100 150 200

Time

part_resultorqued/ume

Y

1 L | L

Y
r

l.___,,
SUUEVUIE IPEI ENDUAI IUNND DU B

100 150
Time

200

Figure 12: Fitting of the torques for 6 joints, 23 parameters

sCc—® <

sc—m<

[¥ X4

-1

-2

-2

0.2

part_resuitorque/ ume
T ¥ Ri ¥ T
L il i 1 !
o 50 100 150 200
Time
part_resuitorques/ ume
14 1 T 11 1
= 3
e 1 - L i
Q 50 100 150 200
Time
part_resuitorques/umse
T 1 1 1 1
|
b \ -
i 1 L i I
0 50 100 150 200
Time

ec—® <

eETE L

ec—m<

10

-10

part_resuitorque/ume

T 1 T 1 T

i i | i I

o 50 100 150 200
Time
part_resuitorques/time
i T T T T
i} L L " L
o 50 100 150 200
Time
part_resulterques/ume
MR T T T il "}
- -
[-
A L L 1 Il
[} 50 100 160 200
Time

Figure 13: Fitting of the torques for 6 joints, 23 parameters

169

o(Tor traji/ume orror rajzZ/ume

T ! t

04) -

0.2 =~

scTR
o - N
¥ T T
1 1
eE"B
R

Il

1] b L i 1
o 20 a0 8o] 10 20 30
Time Time

orror traj3/ume orror trajizume

ocTeg
[
o
tn
T
1 L L L
sc—w<
- ~ w
T T T
1 1 i

T T 1 T

-1

-8 =

Time

orfor raji/ume ofror rajs/ume

V L

0.5 - /

-1

(X 2l 4
o o
& - L
T ¥ T
1 i DU N
[XAl XS
o
T]
\\\\
1 1 PN Y

Figure 14: Input and real trajectory for joints 1,2,3 slow and fast motion

170

ofYof traji/ume orrof trajZ/ume

1 1 ! I

B+ 4 1k 4
078 - J

1 - -
05 P -

s - B
0268 <
1] T [+ I .-

:

YR X4
YAl X3

r 1 1 I i H 1 1 L
[} 10 20 30 [s] 10 20 30
Time Time
error rags/ume ofror traji/ume
T T I T 1 T T 1

Y Ps
A é
o
L] o
T T T ¥
L L \ n
ec—m<
o
o L - &
| T | I
i 1 L L

i 1 1 [- 1 ! I

a 10 20 30] 5 10 13
Time Time
efror trajz/ume error trajs/ume
T 1 T T 1] T 1 T
1 b 4 0 r 1
075 | 4
v v~0.5 - -
I. a
1
u 06 - 1 u
L] L] -1 [—
028 = 4
o L 4 -1.5 - B
L S 1 L. L 1 L
[~} 5 10 15 L] 5 10 18
Time Time

Figure 15: Input and real trajectory for joints 1,2,3 together slow and fast motion

171

Figure 16: Input and real trajectory for joints 1,2,3 slow and fast motion, with compennsation of

gravity

ofror without gravity traji7ume

3 -

2 -

oc—m<

1 -

/
o}
1 1 i i

]

-

]

o

20

40
Time

80

orror without gravity irajs/uime

Q =

s |

YA 3

1 T T

4
/ J
! i L

[}

=

XAl 'S

SIDGIUEN B

L.

oL

ocTHe

ec—w <

oE TN <

172

ofror without gravity wa 2/ume

1 T T / T
04 - Y/ <
0.2 - ~
g 4
A 1 1. 1
D] 1 20 30
Time
error witnout gravity trajl/ume
i i T l
3 - -
2 + -
1+ 4
0 - -
i 1 . e
o] 10 20 30
Time
error WItnout gravity trajs/ume
T v il ’
°T]
0.5 - / / .
Yy j
1
a]
. |
-1
)
lb e 1 A 5 a
Q 5 10 16
Time

OFror without gravity trajizume OfTOr WIthout gravity trajZ/ume

T 1 L T T H ¥
15 - - 1 + 4
078 - -
v 1 = <4 Vv
))
u u 0.5 ~
° o8 °
025 [4
0o 4 o - 3
L1 L 1 L i 1 i3 1
(4] 0 20 30 o 0 20 30
Time . Time
orror WIthout gravity trajd/time ofTor without gravity traji/time
¥ T 1 T LN T ¥ 1
o B 7 1.8 - —
v -05 | 1 v 1 L 1
a a
1 |
u u
e 9 4 e
0.5 |- -
8 8 o L]
1 1 1 L .] i L
o] 10 20 30 6] 5 10 18
Time Time
error WIthout gravity traj/tume ofror WIthout gravity trajs/ume
T T T T T T T LB
1 b - °or 7
078 ~
v v -0.5 -~ -
r P
L os | 1!
* e t_ 4
028 - J
0 sor 1
1 1 1 L L i 1 1
[+]] 10 15 1] 5 10 16
Time - Time

Figure 17: Input and real trajectory for joints 1,2,3 together slow and fast motion

173

A.5 RFMS Software Reference Manual

174

CONTENTS

Page

1. INETOAUCHON eeecveeeeeeerereerseessseessaeessesssessnsasssessssessasssssesssesssnsssssasssasssnessssssssassssssassansasess 1

2. USET INTEITACE «..eoeeveeeeerrrreesreessssassssecssasaestessssssesssssesssssessssasssasaessssassssnaesssaessesatessossasss 2

2.1. Programs of the USer INTEIfaCeccverirueicncniciinniniiniiiitiiint it 3

2.2. AN EXAMPIC....iioceireeeniiiiintinrensesiessssestessssessesasuesssstsnssssstsststsssssisssssssesssnesssnse 5

3. Ethernet INTEITACE ..cuveeeeeecrreceeeceeereeescsestesssesessesssnmsssnsssnessansssssssssesssssssssassuasastesssassssss 6

4. TNLEL CONITOLLET «..ccoonvreererreeeerreesaseeeeteesasesessssessssessssssassssesssssassssaessssaessssanssssns sessasasassases 8

4.1, SUPETVISOT.cceeteururrrsercsrsrsrseresssasasasasssessssssasssasasassestssststssssssssssssssmssnsrssasessasasanans 9

4.1.1. Background PTOCESScocevririenrereriesssennssitsesntsnsstsntencssssnssssnsenssasssssssens 10

4.1.2. REAl-tIME PrOCESS....cccveerreeenteererissanssesssiesssissssessssessasessasesssasssasssasasssessnases 11

4.2, JOINE PrOCESS .euuieeereecrareraeeseeestassansssacsssesssessssresssessanassasssssassasassassssssssasesseasssasssas 14

4.3, Math PTOCESS «..eveeeerierrereeseeeessascssesssssssssssssesssassssssssssasssssasassssasssasssesssssssonsasassens 15

5. POSISCTIPE 1eveurereeeneereerncsnecesessssesessassssessssesastasesassessasasess sacatessasasttestssssssssstsssessssessones 16
APPENDICES

Appendix A: RODONELcouiveitieieeetntetetessstencesess st sttt ettt sttt sassbsan s canans 17

AL USEI™S GUIAR ... eeeeececreecrecntessenettesetessssssasessseessesssassssassssnessssasssassssssssassssanen 17

A.1.1. The Network Software on the VAX Side......c.ccovvvvmmninninnninseicsiinsiienn 18

A.1.2. The Network Software on the Intel Side.......cocvcnvvinviniienncnieniecinnennen. 19

A.2. RODONEL: AN OVEIVIEW ..ccceiirinienntirintcesneiisasiesatiessassssssssssssasessasasssssasssssass 20

A.3. The Physical and Data Link Layers in RODONEL........coceeiiiiienriciieieeceennnee. 21

A.4. The Logical Link Control Layer in RoboNet.........ccooioeniiiioiniiiieinene. 22

A.4.1. The LLC PacKet Ty PeS..ccciercieeierrierstenseencstessstessstssasesssssessssssssssssssssssesans 22

A.4.2. The Algorithm for the LLC on the VAX Sideoovivviiivininniiininnnnnen. 22

A.4.3. The Algorithm for the LLC on the Intel Sideccoeviiiimiiniiieninnnnnnnen. 25

ALS. MISCEIIANEOUSceeereereeccatiattecrttecntiesettesssttesssassssssssssseesssssessssasssssasssssssasssnsanns 26

Appendix B: Use of C-8086 Cross COMPIIETccoviiiiiniinininsininiinrienreieseee s ssnesanenens 27

B.1. INOAUCHONciiiiiiiiiiiiiintatcninttecnutt e ceeresesessntse s sssssesssssnasesssssasessnssssasassessnsns 27

B.2. Cable HOOK-UP.....cociiiiieeieearensteenececaeesnsssnateaetesstesusesassssas ssasesasssssssssssssssssessnss 27

B.3. Down Loading the Loader via SDMccccccevirmiicrnicntinneecnctinseessssssssessasanne 28

B.4. Cross COMPILET...c...uiiiieieieenitnctenietesnecsssatessressnsssssstssss st assssssessasasssssssassssanes 29

B.5. Down Loading Your AppliCationccocceriinuinnniiniinsiinnnisssniessnesneansssesseseans 31

B.6. SDM - System Debug MONItOT......ccoiiiiiinenniinniienneeniectnenstieessnesneesesnessnesns 31

B.6.1. X COmMANA......cccceerrieniineeeneinstnietessuesssivsssecssessseesssesssssesssssssssossssasesans 32

B.6.2. D COmMMAN.......cccceeerreraeeecneeecseresseescessesssassessstessssssesssssssssssssssssasssssssses 32

B.6.3. G COMMAN......ccoceiiueereenneenneaeseenserteseeeseetenstseseersssessssessssesssassnsessssssssssn 33

175

B.6.4. BUZS.cciiioiireeienieneensreesteeeeseecseenaens eeeereesteete e e e aae e te st e se e saeseeanrans vreeennsd

3

B.7. Miscellaneouscccveevcnvvecniencennnen eeeesteeenteenae e naeaeaneas reeeereeeraerneas ceteeeseereeenns 33

B.8. AN EXAMIPIE .ottt ettt et st s e e s 33

B.0. /O LIDIAIY ouicccieeeceieeeciteciieeeerieeesaeeesseesoeeessnssassssanssasassasesssasesssasasssanssnsassnsass an 37

B.10. Math Library.....ccccovveeeeencennecenieneaesnneennnne cveeeesnnaans eereteeeserereeeeseeeeaesaaraeeeesrranns 37

B.11. 8087 Floating Point Stack Programming ceereeaeereeeennes ceveeeeereeasenraeaeesaaaaeans 37
REFERENCES

176

RFMS SOFTWARE REFERENCE MANUAL

Hong Zhang
Department of Computer and Information Science
The University of Pennsylvania

1. Introduction

This manual explains the software of the Robot Force and Motion Server
(RFMS)(1], a high performance robot control system designed and implemented in the
GRASP laboratory. In this system, the robot manipulator is considered a force/motion
server to the robot and a user application is treated as a request for the service of the
manipulator. The user application is created on one of the Unix/VAX machines in 'C’
programming language as a set of function calls. The application is carried out in a
multi-processor controller, which consists of Intel single board computers and provides
computing power necessary for computationally intensive tasks. The VAX machine
and the Intel controller communicate through Ethemet, a local area network, which
also allows interaction between the user and sensors. Design principles of the system
can be found in [2].

The software of the system involves a variety of computers: the user interface is
written to be executed on a Unix/VAX machine; the control software is written to be
executed on Intel 8086-based single board computers; and the network software is
written to be executed on a Unix/VAX machine on one end and Intel processor on the
other. The rest of the documentation will be organized according to where the execu-
tion of the program is. Section Two will discuss user interface, and for those who
intend to only use the system for specific applications, it is adequate to read this sec-
tion. Secton Three will discuss the implementation the Ethernet software. This sec-
tion is useful only if one would like to make changes to the communication protocols
between the user and the Intel controller. Section Four will discuss the software writ-
ten for the robot controller which consists of Intel single board computers to control
the robot manipulator, a PUMA 260 in our case. It is important for one to understand
this section if what is provided in the system is insufficient to carry out his applica-
tions.

This material is based on work supported by the National Science Founda-
tion under Grant No. ECS-8411879. Any opinions, findings, conclusions, or
recommendations expressed in this publication are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

We would like to mention that the system is yet to be finalized, for we have been
using it for research and thus need to constantly make changes. Several versions of the
system exist among the people who have used and modified the system for their own
needs. We will Ty to be consistent throughout this documentation, though confusion
may occur from time to tume. The programs are organized by the processor on which
they are executed, with one directory per processor and common include files in two
separate directories. The following table roughly explains the contents of the direc-
tories under /usr/users/hz on robo.cis.upenn.edu and /usriusers/hz/robo on
grasp.cis.upenn.edu.

Directory Content

/VAX user interface and Ethemet driver on the
VAX side

/include include files for /VAX directory

/186 Ethernet driver on the Intel side

/h include files for the Intel controiler

/super programs written for the supervisor of the
Intel contoller

i programs on the ith joint

/math programs for the math processor

/sys library functions for 8086 (I/O, interrupt
control, vector operations, etc.)

/c86 cross compiler for 8086, loader, and optim-
izers

/c186 cross comipler for 80186

Table 1. RFMS Directories

All source files will be underiined and all functions will be iralicized.

2. User Interface

From a user’s point of view, the available functions can be classified into three
categories: world-model definition, motion record definition, and motion requests.
Another category, task synchronization, enables the user to wait until the completion
of a sub-task before the next one starts. Although it is not available at this time, it can
be easily added. Sensor input is another area yet to be integrated into the system, and
all the mechanisms exist. The structure of the program is similar to that of an RCCL

178

program in spirit, whose underlining principles can be found in [3]. A user requests
the service of the robot controller by making function calls from a ’C’ function named
pumatask().

2.1. Programs of the User Interface

A total of eight programs constitute the user interface of the system. Since the
emphasis of the system is not to construct a comprehensive robot programming sys-
tem, effort made to create the user process is kept at minimum. We have used this part
of the system only for testing the robot controller.

A user defines a task by making calls to the system functions. A task defines the
world model in terms of the transformations (relationships between coordinate frames
of interest) and position equations (definitions of points in the work space to which the
manipulator is to move). The fashion in which a move to a position is conducted such
as segment time, compliance specification, etc., is defined by a motion record. Upon
any call to create one of these, the created data structure is first stored in the
corresponding symbol table and then a copy of it is sent to the RFMS through the Eth-
ernet. To initiate an action, a move is called with two parameters: a pointer to the desti-
nation position and a pointer to a motion record. Fundamental to the user interface are
the three symbol tables storing transformations, position equations, and motion records
that have been created. The move requests are not stored in a symbol table because
they are not referred to by other variables. This may change, however, once task syn-
chronization is needed for the system has to keep track of the move requests have been
issued. Once the application is created and compiled, one can run the application like
any other ’C’ programs by a.out.

The main.c allocates memory for static symbol tables for the user process, initial-
izes the communication link between the user process and the RFMS, and then calls
pumatask() defined in, say, myapp.c, by the user, which contains a stream of function
calls to the system. After defining an application, the user may call the function
debug(), which logs data coming from the Intel controller in real-time and store them
in six different files, corresponding to six joints of the robot manipulator. The nature
of the data is entirely up to the user, but there must be an agreement in what the Intel
controller sends and what the user interprets. This function call is optional and has

been used as a debugging tool so far. One can expect to log one set of data every four
to five sampling periods.

There are currently a number of ways to create a transformation: a transformation
with pure translation and no rotation by gentr_trsi(), a rotation transformation defined
in terms of either Euler angles or roll-pitch-yaw angles by gentr_eul() or gentr_rpy().
All functions related to transformation creation are defined in trans.c.

179

A position equation is created by a call to makepst() in pst.c. One must provide a
name to the position as a string of characters in the first argument and three constants
for the three configurations lefty, up, and flipped, associated with the PUMA 260. Since
a position equation may contain a number of wansformations on either side, makepsi()
must be able to handle variable number of arguments[4]. The last argument of
makepst() when defined is declared to as a pointer to a transformation, the same data
type as the rest of the arguments that follow it when the actual call is made. Two key
words, EQ and TL in the actual call help interpret where left-hand side ends and which
transformation is the tool transformation [5].

A motion record specifies how a motion is to be executed. and it contains such
attributes as segment time, acceleration time, mode of the motion, and compliance
specification. These attributes then become the four input arguments to a call to mak-
emot(), which is contained in the program mot.c. Both segment time and acceleration
time are in seconds, and mode of the motion can be either Cartesian or joint. Compli-
ance uses a bit pattern as in Figure 1 to indicate the physical constraints to the motion

MSB R,[Ry[R(|T,[T,[T,|LSB

Figure 1. Bit Pattern Representing Compliance

where R; represents rotational compliance along a certain Cartesian direction and T;
translational compliance along a certain Cartesian direction. In this example, four
motion records are defined. The first simply defines a joint motion with a segment time
of 2 seconds an acceleration time of 0.2 seconds. The third motion records defines a
Cartesian motion with a 20 second segment time, a 0.5 second acceleration time, and
compliance along z direction.

The program move.c contains the function move(). The function uses the two
input arguments, a pointer to position and a pointer to the motion record, to issue a
move request.

At the end of each function call, a message is issued to the RFMS. Functions in
the file mess.c handle packet preparation. Currently, the user application is not receiv-
ing any messages, even though the software could handle it. The format of the mes-
sages is defined in msgs.h. The message type identifies the content and interpretation of
the message. A message is written into the buffer, msg, before function mess() is
called, which prepares the Ethemnet packet and invokes Ethemet function Send() in
comm.c to send it.

All floating point numbers are modified before being sent, since the VAX
machine and Intel computers represent a floating point number differently, as illus-
trated in Figure 2.

180

low word | sign exponent (8 bits)

high significant (7 bits)

low significant (16 bits)

Intel Floating Point Representation

low word low significant (16 bits)

sign exponent (8 bits)

high significant (7 bits)

DEC Floating Point Representation

Figure 2. Floating Point Representation

We choose to convert floating point numbers on the VAX machine since it is faster
than any Intel computer and time on the Intel computers is more valuable. The func-
tion convert() in mess.c performs the conversion.

2.2. An Example

The following example further illustrates how an application program is created.

include "../include/datdef-h"
include ”../include/extdef.h”
include " ../include/condef.h"

pumatask()
{
TRSF *12;
PST *home_pst;

MOT *myjnt, *mwait, *mcart, *mcwait, *mcartcz, *mcartcx;

12 = gentr_trsi("12”,2032, -12623,203.2);

/* home */

home_pst = makepst("home”, RIGHT, DOWN, FLIP, 16, EQ, 12, TL, t6);

mjnt = makemot(2.0, 0.2, JNT, 0);

mcart = makemot(4.0, 0.3, CAR, 0);
mcartcz = makemot(20.0, 0.5, CAR, Ox4),
mcartcx = makemot(15.0, 0.5, CAR, Ox1);

move(home_pst, mcartcz);
move(home_pst, mjnt);

The three include files in the beginning are necessary for the user to define local
variables of the data types created for robot programming (4/datdef.s), to make func-
don calls to the system (h/extdef.n), and to make use of the constants defined in the
system (h/condef.h). TRSF, PST, andMOT represent data type transformation, position
equation, and motion request, respectively. In the instruction section of pumatrask(), a
transformation is first created by providing function gentr trsi() with three transla-
tional components of the p vector in the order of X, y, and z.

The Function call, makeps:(), creates a position equation with transformations
either known to the system or defined by the user. In our case, it has 16, which is
known to the system, on one side and 2, which is defined by the user, on the other.
Configurations of this position are specified as right, down and flip. Four motion
records are defined in this program, with one joint motion, and three Cartesian motion,
of which two require compliance.

Two motions are requested in this task. The arm will move to the same position
as the initial position (i.e., remain stationary), while complying along z direction.
Once this is finished, the arm will move back to home position.

Once the application is created, it can be compiled and linked with the rest of the
system. The application is executed in the same fashion as any other Unix executable
file, when the Intel controller is initialized and ready to accept tasks.

3. Ethernet Interface

The user and the Intel controller communicate through Ethernet, a local area net-
work. The implementation details of this interface can be found in [6] and in Appen-
dix A. Here we only outline some of its features users need to know in order to use it.

The interface on the users’ side is performed on a Unix/VAX machine. Unix sup-
ports Ethernet and, for robot control, our software is built as the data link layer by
making use of the Data Link Interface (DLI). The interface on Intel’s side is built from
scratch and has two layers, the data link and logic link. The protocol used between the
two machines is one-bit-sliding window and positive acknowledgement with
retransmission, which means the machine sending a message keeps trying until it
receives acknowledgement or the number of trials exceeds a limit. A token exists
which determines who can send a message at any given moment. It is usually held by
the VAX machine and the Intel machine has it only when the VAX machine requests a
message from the Intel controller. Typically the VAX machine sends a message to the
Intel machine whenever it wants and the arrival of a message creates an interrupt to the
Ethernet board 186/51[14] of the Intel controller, which then reads the message in its
interrupt handling procedure. The Intel controller, on the other hand, cannot send a

182

message to the VAX unless it is explicitly asked to do so. This is caused by the fact
that the software on the VAX side is not written as an interrupt handler, but rather as a
listener and therefore can not deal with any unexpected incoming messages.

Two primitives on the VAX for sending and receiving a message have the syntax:
Send (buffer, size)
and
Recv(buffer, size).
The counterpart on Intel side employs two primitives:
Recv_Frame(buffer)
and
Send_Ack() or Ans_Send_Req().

Which one to use to send a packet depends upon if the message just received is a real
message or a request for a message to be sent to the VAX. Once messages are
received by the 186/51, they are queued in an array, waiting to be processed by the
supervisor of the Intel controller.

The communication software for VAX is contained in one file comm.c, and for
the Intel controller there are three ’C’ files in the directory /186, dld.c, lc.c, and
main.c. The program dld.c contains the data link layer, and the program /lc.c contains
the logic link layer. The program main.c first initializes the data link layer by
Init 586(), sets up a linear array of messages in which the incoming messages are
stored, and inform the supervisor of the array address by storing it at a fixed memory
location accessible to both supervisor. Two other assembly programs in this directory,
reint.a86 and handler.a86, deal with the interrupt control of the 186/51.

There is only limited memory space on the 186/51 and, therefore, the size of the
message queue can be of only a finite length. Currently, a total of 100 messages can be
stored, of which each has a fixed size of RBUF_SIZE bytes. Since the supervisor keeps
looking in the queue for available new entries, overflow never occurs if we assume the
speed of processing messages by the supervisor is faster than the that of the incoming
messages. The system fails if this assumption is not valid. A dirty bit in the last byte of
a message buffer indicates if the buffer contains an unprocessed message.

There are currently two 186/51 computers of different models: one is an ES and
the other an S. In additional to their difference in jumper locations and notations, the
only software difference one needs to know is the Ethernet address defined for the Eth-
ernet chip 82586. The S model has an address of

0x08, 0x00, 0x2b, 0x02, 0x89, Oxfc,
and the ES model has an address of v
0x08, 0x00, 0x2b, 0x02, 0x96, 0x74.

183

4. Intel Controller

This part of the software runs on Intel single board computers, and it is developed
on a VAX machine where the user process is and cross-compiled and down-loaded to
the targets via a serial line. (The information on the cross-compiler can be found in
Appendix B) The controller is a multi-computer system with shared memory and a
common bus, through which data communication and control signals are transmitted.
Each computer in the system contains dual-ported memory, of which part is defined as
global so that other computers in the system can access it as well. Information
exchange takes place in the form of mail boxes and system synchronization is achieved
by interrupts. There are currently nine computers running in parallel, six joint proces-
sors, a supervisor, a math processor, and an Ethernet computer. There is a real-time
synchronized interrupt driven process on each of the joint processors, the supervisor
and the math processor. In addition, there is a background process on the supervisor
and the math processor. 186/51 runs asynchronously with the rest of the system.

Supervisor, joints and the rest of the system need to communicate with each other
and exchange information. Also the kind of data each one requires of any other is
known a priori. To facilitate such communication, mail-boxes are created on each
computer with their addresses stored at pre-defined memory locations. These addresses
are currently stored in the topmost part of the memory from segment 0xff00 so as not to
interfere with the code, data, or stack segments. During the initialization process,
supervisor waits until ready flags are cleared in all processors before it picks up
addresses of the mail-boxes where it will either drop or pick up mails. Most of the glo-
bal memory access is done by the supervisor. Currently the only access by the joints is
during the compliance when every joint needs to collect other joints’ errors. Two sys-
tem functions, rblock() and wblock() facilitate global memory access. The sources and
destinations of the mail boxes are summerized in the following table.

184

data type | source buffer | destina- description
(origin) tion
buffer
S_MAIL MAIL MAIL one copy to each joint to instruct what
(supervisor) actions to take
M_MAIL | MMAIL MMAIL information math processor needs to
(supervisor) compute Jacobian matrices and
dynamics
J_MAIL JIMAIL IMAIL: one from each joint to the supervisor
(joints) i=l..n to return the status of the joint
PARCEL PARi PARCi results computed by math and collect-
(math) i=l.n ed by supervisor for one of the joints
PARCEL | PARCI PARC one on each joint distributed by the
i=l..n supervisor
(supervisor)

Table 2. Mailbox Description

Both trajectory generation and inverse kinematics are performed on this parallel
processor and a lot of efforts have been devoted to computation distribution. Trajec-
tory generation at Cartesian level, i.e., calculation of the end effector position and
orientation, is performed on the supervisor. Joints, on the other hand, plan their indivi-
dual trajectories given the end effector coordinates. The dependency exists among the
inverse kinematics of the joints, for the ith joint requires solutions of all prior i - 1
joints. This dependency, however, can be eliminated when each joint uses other joints’
solutions in the previous period. This scheme is approximate, but it allows the system
to compute the kinematics in paralle] thus speeding up the system substantially. The
details of the trajectory trajectory can be found in [7] and the details of the parallel
inverse kinematics can be found in [8].

4.1. Supervisor

Two concurrent processes, one being interrupt driven and the other in the back-
ground, are executed on the supervisor. The background process reads the messages
stored in the 186/51 and sets up data structures, which the second interrupt driven pro-
cess uses to coordinate the operation of the controller and the generation of motion tra-
jectories. Supervisor runs on an iSBC 86/30 computer{22].

185

The program, main.c, initializes the system and interacts with the user to go
through the manual mode, the calibration mode, and then onto the set-point mode. Its
serial port is connected to a terminal where the user operates for the purpose of down-
loading the code and monitoring the controiler operation during system development.
Eventually, the interactive session should take place between the VAX machine where
the user really is and the control system through the Ethernet.

4.1.1. Background Process

The background process program is stored in bkgd.c. To process messages stored
on the 186/51 (refer to Section 3), the supervisor maintains a pointer to the next avail-
able message in the message queue. Depending upon the type of the message, different
action is taken. The format of the messages are defined in the include file A/msgs.A.
Dara structure definitions in this file must agree with those in include/datdef.h, if the
supervisor is to interpret the messages correctly. When there is no message in the
queue, the background process simply waits.

Upon the arrival of a message, the type of a message is determined, and a
corresponding data structure may be created and added to the world model. Currently,
there are six possible types, INIT, STOP, TTR, TPOS, TMD, TREQ. The first two
simply are signals for the beginning and end of a task definition. The rest are for a
transformation, a position, a mode, and, motion request message, respectively. The
definitions of these data structures can be found in A/datadef.h.

These data structures refer to or are linked with each other. For example, a posi-
tion contains pointers to transformations defined previously. If the messages came
from the same machine as the one that receives it, the addresses could be used as
pointers. Unfortunately this is not the case. A linked structure must be sent piece by
piece and the receiving machine must be able to resolve all the cross references. In
order to be able to locate the dependencies, we associate each message of a given type
with an identification number. To facilitate a fast search, four symbol talbes, 1zb/[],
mtbl[], ptbl[], rtbi[], are set up to store the pointers to the data structures and the id
numbers are indeces in the symbol tabies.

When a position equation message arrives, a ring structure is created[5]. The pro-
gram, pstn.c, contains functions necessary to create the structure. A ring consists of a
number of items representing transformations in the equation, of which each contains a
pair of atoms containing the forward and inverse transformation. Function Atom()
allocates memory for one atom, NewTerm() links a pair of atoms, Listn()’s link »
terms, and MakePos() takes two lists of terms as left and right hand sides of the equa-
tion and forms the ring.

Processing of other messages requires much less work and is dealt without any
primitive functions.

4.1.2. Real-time Process

The real-time process is executed upon a periodic interrupt signal generated by
the programmable timer on the supervisor. The entire process runs like a finite state
machine and action taken in each period depends on two state variables. The variable,

rtstate, in program rtisr.c, changes among eight possible states, IDLE, FREE, MANU,
CALIB, HOLD, SETP, STOP, and EMGCY. These constants are defined in file

comm.h. The state the system may fall in is illustrated by the following graph.

IDLE

HOLD
_GUB

@TP STOP @

Figure 1: State Diagram of the RFMS

\&/

aUAY;

The interpretation of each state is summerized in the following table.

187

state action

IDLE get current position and keep the power off

FREE get current position and send current compensating for gravity

CALIB keep incrementing joint position until zero index is observed

SETP call jsetp() and derive encoder position and compute observed
sin and cos

HOLD turn the power on

MANU increment desired encoder position by 4 counts either clock-
wise or counterclockwise

Table 3. Real-Time State

In IDLE state, the system is in the initializaton process. The free state is one in
which the all joints are freed and compensate only for the gravity. This state is useful
when we check the gravity loading constants we compute from the dynamics equa-
tions. In MANU state, the joints can be controlled manually in order to position the
manipulator. The state CALIB indicates that the joints are going through a calibration
procedure by looking for the zero indeces while making incremental moves. The state
SETP is entered once the calibration is finished. Finally states STOP and EMGCY
represent when the joints should stop and when the joints have detected abnormal con-
ditions and need to come to a stop, respectively.

If the system is in SETP state, another variable staze, in file serp.c, determines the
stage in which the trajectory generation is. The number of states correspond to the
number of cases in the motion control summary in [7], plus two additional states for
the stationary case when there is no next motion command and for the case when the
manipulator is coming to a stop. The state diagram in stare is given in Figure 2.

188

Start

Figure 2. State Diagram of the Trajectory Generator

where the states are defined in Table 4.

state definition

SO wait for a new move request

S1 straight line motion segment

S2 one sampling period before the transition
S3 beginning period of the transition

S40 initialization of the transition

S4 during the transition

S5 end of a motion with no next move

Table 4. Definition of state

Whichever state the system is in, supervisor exchanges information with and for
the rest of the system. Four data structures, also defined in h/comm.h, function as
buffers holding information to be exchanged. The structure, S_MAIL, contains what to
be shipped to the joints from the supervisor, J_MAIL, contains what to be shipped
from the joints to the supervisor, and M_MAIL, contains information updated by the
math processor for the joints. Another structure, PARCEL, contains information
related to manipulator kinematics, such as dynamics and Jacobian matrices, that is pro-
vided to the joints at a low rate. In fact, each joint receives its new PARCEL every n
periods, where n is the number of joints.

A few points concerning mails need to be clarified. First, there are three sets of
sines and cosines returned from each joint in J_MAIL. The first two sets are expressed
in terms of a sine and the sign the the cosine. They correspond to the sines and cosines

189

of the current and the next destination and positions, respectively. The third set is sine
and cosine of the observed joint position. Secondly, The interpretation of the integer
for the sign of the cosine is illustrated by the following figure where a clear bit in the
corresponding position represents positive and set bit negative.

MSB| T6[I5[34[13[12[71] LSB

Figure 3. Bit Pattern Representing Signs of the Cosines

Thirdly, the fields in S_MAIL Csigns and CsignsC are simply the oring of the
corresponding signes from all the joints.

The program serp.c depends on a number of functions. Functions Dequeue() and
Unqueue() either take next modon request out of or and put back a fetched motion
request to the motion request queue. GerEX() and Ge:LDR() compute the next Tg in
joint motion and Cartesian motion, respectively. All these functions are stored in file
expr.c. Another function /nitD(), defined in file drive.c, initializes the constant parts of
the drive transformation for the next segment of Cartesian motion.

4.2. Joint Process

We describe the joint processes by showing how one joint works, since other
joints are simply replicates of this example and differ mainly in the constants used in
the programs. There are two joint independent programs, jsetp.c and jric.c, In addi-
tion, there is one joint dependent program in each joint directory, jnti.c, where i refers
to the joint number, in each joint directory. The executable file of each joint is made up
of the joint dependent and independent files. Joints share only the source code, not the
executable code.

The program, jnii.c, contains the entry point, main(), that initializes joint depen-
dent global variables and calls rzc() in jrec.c to begin joint’s operation. Two other
functions in jnti.c, InvKine(), and, /nvKineC(), compute inverse kinematics from two
different set of parameters provided in supervisor mail. Manulnc() is used during
manual mode to compute the amount of position increment. /sReady() determines if
the joint should start calibrating or wait. This is necessary to overcome the mechanical
coupling among joints during calibration. AngToEng() performs conversion between
the encoder count and the joint angle in radians. WriteEnc() writes the change in its
joint angle to the other joints that are coupled with this joint in order for them to make
compensation. ReadChgs() copies the changes in other joints written in its memory
into "C’ variables so as to be refered to later. Function PID calculates the control law.

190

Finally StartS() informs the supervisor of the completion of the joint’s initialization.

The interrupt handler Reisr() in jrzc.c is dictated by the same rtszate variable as on
the supervisor to determine what the joint should do. It is executed at the same rate as
the supervisor’s interrupt service routine and computes the desired joint position in
encoder count. According to the current rtstate, the fashion in which the desired posi-
tion is computed varies. The result is passed on to the function Servo(), which actually
performs servoing of the joint with the position computed in the previous sampling
period. Currently it is either a PD or a PID control with gravity and friction compensa-
tions. Should the compliance be required, the servo error is adjusted in Adjust() before
used to compute reacting torque.

JSetp() in jsetp.c computes the joint set-point. The variable state drives the pro-
cess. There are several worth-noting points. First, all information needed by the joints
is assumed to be available in the data structure MAIL, the buffer sent by the supervi-
sor. Secondly, since in general the kinematic solution for ith joint requires the solution
of inner i-1 joints, values of those joints computed in the previous sampling period are
used in order for the joint not to wait for solutions to be computed, as has been men-
tioned previously. Finally, the joints should not have to wait for the supervisor to
finish before they can start doing inverse kinematics. Instead, the Tg is pipelined so
that supervisor and joints start computing at the same time.

4.3. Math Process

The purpose of this process is to compute dynamic coefficients and Jacobian-
relation matrices. Current computed joint angles are passed to this process as input
and it provides gravity loadings and the compliance matrix as output to one joint per
sampling period cyclically. The reason for only one joint per period is that the update
of the parameters takes place at a much slower rate than the sampling rate and there is
no point of sending XX The incoming information is deposited in MMAIL, the mail
box for the math process from the supervisor and the output is returned in the buffer
PARIi, whose content applies to the joint specified in MMAIL.joint.

Again there is a real-time interrupt driven process that handles interaction with
the supervisor and there is a background process that computes in an endless loop. The
calculation of the dynamic coefficients is based on equations in [9], which uses
Lagrangian mechanics to express dynamic terms explicitly and determines the con-
stants in the coefficient from experiments. Procedures in [10] are used for the calcula-
tion of the compliance matrix. In order to prevent from happening the situation where
the real-time interrupt service routine copies results partially updated by the inter-
rupted process, a binary variable is used to indicate which of the two copies of a partic-
ular quantity, such as Jacobian matrix, is valid.

191

Currently only the Jacobian matrices from the base of the robot to the end-
effector are considered. Should a tool be added to the system, modification would be
necessary. Further, velocity dependent dynamic coefficients as well as the effects of a
load at the robot end effector on the dynamics are not considered.

5. Postscript

One of the lessons we have learned from the RFMS project is that it is extremely
difficult to program a multiprocessor system without a powerful development system.
It is then predictably difficult to try to explain the system to someone wishing to under-
stand and modify the system. To fully master the system requires a lot of time. It is
however not as overwhelming to simply use the existing software to program the robot.
This single document provides but a portion of the knowledge one must learn before he
can feel comfortable working with the controller. It is strongly recommended that one
read other related documentations and the hardware reference manual being prepared
for this system for a better understanding.

192

Appendix A

RoboNet: A Local Area Network for Robot Systems

This documentation is about RoboNet, an Ethernet-based local area network that
the we have designed and implemented. This documentation serves two purposes: as a
user’s guide to give robot system users a brief description on how to use the network
software to transfer data from one machine to another, and as a system programmer’s
manual for those who maintain this network and those who are interested in customiz-
ing part of this network or extending it for other applications.

The remainder of this documentation is organized in four sections. Section two
describes the network software function calls, their usage, and the results of those
calls; Section three describes the network and its layers; Section four describes the log-
ical link layer of RoboNet; and Section 5 describes the data link layer of RoboNet.
Two appendixes describe how to compile the network software, where to find the files,
and how to maintain the network software. For those who are interested only in using
the software, we suggest that you read section two and three. For system programmers,
we suggest that you read the entire documentation.

A.l. User’s Guide

Currently only Grasp (VAX 11/785), Robo (Microvax II) and Intel 186/51 have
RoboNet software. These machines are physically all attached to the Ethernet cable.
We use RoboNet to transfer messages from the VAX machines to the Intel 186/51 and
vise versa. Exchanges of messages among VAX machines are performed by software

already available on these machines running Unix. The RoboNet is illustrated in Figure
1.

The VAX users can send messages to the Intel machines by invoking the network
software. If the VAX user desires a particular piece of information from the Intel, he
must send a message request to the Intel. The Ethernet communication on the Intel side

is not accessible at the user level. A user can assume that process exists on the 186/51
that handles the messages and message request.

This appendix is an edited and revised version of the reference manual,
"RoboNet: A Local Area Network for Robot Systems”, prepared by Peari Pu,

the Department of Computer and Information Science, the University of
Pennsylvania.

193

Ethemet

1 i}

grasp Robo Intel
VAX 785 HLVAX 186/51
. Multibus
)
Supervisor Ji
86/30 86/30

Figure A.1. RoboNet
A.1.1. The Network Software Function Calls for the VAX users

To be able to use these function calls, you have to have a Grasp, or Robo account.
You have to know how to program in C. And finally you have to know what you are
doing with these messages on the Intel side.

In order to use the software, you have to do the following:
1. Include vax.h in your program.
2. Compile your program with vax_Ilc.o.

The network software, seen at the user level, consists of the following C function
calls: Init_ Comm_Link(), Sync(), Send(), and Recv().

Init Comm_Link():
This function initializes the communication link between the host where
the user is located and the Intel 186/51. The Intel Ethernet address is
specified in this routine automatically as the destination address in sending
and source address in receiving. Note that if the Intel address changes, one
needs to notify the system programmer to modify this address accordingly.

Sync():
This routine synchronizes certain variables between the user process on the
VAX and the communication process on the Inte! 186/51.

Send(msgsptr, length):
msgsptr is a pointer to the buffer which contains the message you want to
send, and length is an integer that specifies the length of the message

string. Note that length can not be greater than MAX FRAME or less than
MIN _FRAME in vax.h.

194

Recv({type, msgsprr, length}):

type specifies what type of information you would like to receive from the
Intel side. There are ten types of such information. msgsptr points to the
buffer area where you want to receive the message. Lengra returns the
actual length of message received. For certain reasons, all messages com-
ing from Intel must be of one size. That size is specified by R_SIZE

(receive packet size) in vax.h.

An example program, which illustrates how to use the network software on the

VAX side, is shown in Figure 2.
main()

{

inti;
char msgs[100], buffer(R_SIZE];
int length,

/* fill up the msgs to be sent out */
for(i=0; i<100; i++)
msgs[i]="a + (i% 10);

Init Comm_Link();
Sync();

/* send the same message 10 times */
for (i=0; i<10; i++)
Send(msgs, sizeof(msgs));

Recv(type2 buffer, &length); [* receive type2 message */

buffer(length]= NULL,
printf(""The received message is %os", buffer);

Figure 2. An Example Program

A.1.2. The Network Software on the Intel Side

Currently user support on the Intel side is entirely tailored to the need of the robot
controller, which is a multiprocessor system based on Intel 86/30s with a supervisor
handling message bookkeeping. All the messages sent from a user process on any of
the VAXes or Microvaxes are queued up in a large buffer area on the 186/51. The

195

beginning address of the large buffer area is stored in the RAM of the 186/51 at
0x1ff00. The robot controller decides where each message finally goes. If the user
requests a piece of information to be sent back to the VAX side, the network software
on the Intel side will take care of this request.

To bring up the network process on the Intel 186/51, you have to ask the system
programmer to do so. This process, once brought up, should be running continuously.

A.2. RoboNet: An Overview

RoboNet is a research effort to investigate the feasibility of designing a tailored
local area network for robot systems, and stimulate further interest in this area. The
current trend for robot systems is to distribute user tasks and robot tasks on different
processors to increase computation speed. This introduces, however, communication
problems between the users and the robot controller. To solve the communication
problems, there are two solutions: one is to use existing software; the other is to design
new software.

The reason we designed and implemented our own communication network
stemmed from the observation that existing local area network protocols[11][12] are
for large data file transfers. The header in each packet is usually complicated and the
data large. If we use these protocols for transferring messages of small sizes, which is
the situation with communication in robot systems, the system will.be inefficient.

User Application
Logical Link
Data Link IEEE 802.2
Physical IEEE 802.3

Figure A.2. Layers in RoboNet

RoboNet is designed with four layers as shown in Figure 3. The lowest layer, the
physical layer, is an IEEE 802 standard. The data link layer is an IEEE compatible
layer. IEEE 802.2 consists of data link and logical link layers. We only chose to imple-
ment the data link layer with the standard. It is hoped that RoboNet will be adaptable,
should there be more suitable protocols. For instance, MAP (Manufacturing Automa-
tion Protocol) is another IEEE 802 standard. It is claimed that MAP is more efficient
than Ethernet, and it does not degenerate when the load of the network becomes heavy.
Therefore, if MAP is found to be more suitable for our application and affordable, we

196

can replace Ethernet by MAP without changing anything above. Another advantage of
a standard implementation of the lower layers is to support heterogeneous machines.
The robot system we have here contains VAX 11/78S5s, Microvax IIs, Intel micropro-
cessors. In the future, it may also have Lisp machines. Since most computer manufac-
tures now make Ethernet chips available to most of their machines, in order to install
RoboNet on a machine we only have to install the upper three layers.

In the next two sections, we will describe the three lower layers. Section two is a
description of the user application layer. Currently RoboNet is installed on Grasp
(VAX 11/785), Robo (Microvax II), and Intel 186/51. As mentioned earlier, since this
part of documentation is for system programmers, we will concentrate on not only
design issues but also implementation details.

A.3. The Physical and Data Link Layers in RoboNet

As shown in Figure 3, the physical layer is the IEEE 802.3 (Ethernet) standard.
On the VAX machines (VAXes, Microvaxes), this layer comes with the machine. On
the Intel 186/51, there is a network coprocessor called the 82586, which is essentally
an Ethernet chip that handles low level packet sending, receiving, framing, etc. For a
detailed description of the 82586, refer to [13][14]. The 82586 is the coprocessor to
the main CPU 80186.

The data link layer on the VAX machines uses the data link interface (DLI) from
the Digital Equipment Cooperation. All packets sent out from the DLI are Ethernet
packets. The DLI only takes care of damaged packets by verifying the check sum.
Lost, duplicated, and out-of-order packets, however, are not taken care of.

On the Intel 186/51 microprocessor, the data link layer has to be implemented
since there is no existing software. Fortunately, there is a manual{13] which describes
how to program the 82586 coprocessor. We largely adopted an example from this
manual as the data link layer. According to the manual, this example implements an
IEEE 802.2 compatible data link layer.

Some differences between the example and our implementation are worth men-
tioning.
1. Muldcast is not supported in our implementation.

2. The address for ISCP is found to be different in our case from that specified in the
example. The correct ISCP address on our board is OxffO (absolute) instead of
Oxfff0.

3. The interrupt from 82586 is the zeroth interrupt instead of the third.

Broadcast mode is disable, i.e., no broadcast messages from the Ethernet will be
received.

197

A.4. The Logical Link Control Layer in RoboNet

We designed this layer. The principal mechanism used to prevent the network
from losing, duplicating, and sending out-of-order packet is called one-bit-sliding win-
dow and positive acknowledgement with retransmission protocol[15]. We describe the
characteristics of the logical link control (LLC) in RoboNet by describing the LLC
packets and the algorithms used on both the Intel and the VAX sides.

A.4.1. The LLC Packet Types

SYNC:
This type of LLC packets take care of synchronization problems between the two
sides. A network process runs on the Intel 186/51 continuously, whereas network
processes come and go on the VAX side. Synchronization of sequence numbers is
a problem if not taken care properly. We solve this problem by sending a SYNC
packet every time a network process comes up on the VAX side. Upon receiving
this packet, the Intel network process will initialize the sequence number.

ACK:An acknowledgement packet is sent out whenever the network process receives a
good packet (i.e., with good check sum) other than an acknowledgement packet,
that is, we do not acknowledge ACK packets.

REG:A regular packet will be passed to the host for processing if the sequence number
matches expected frame number (specified by FrameExpected in //c.c). This is to
ensure that no dupiicated packet, from retransmission, is passed to the host.

SendReq:
A packet of this type can only be sent out from the VAX machines. This type of
packet will cause a message to be sent out from the Intel to the network process
on the VAX. For instance, a SendReq packet with T6 specified in the first byte
will cause the T6 matrix, which is stored and kept updated on the Intel 186/51, to
be sent to the VAX. This way, the robot system users can be updated with infor-
mation from the Intel machines.

A.4.2. The Algorithm for the LLC on the VAX Side

procedure Send(type, msgsptr, length):

/* type: one of (ACK, REG, SYNC, SendReq)
msgsptr: points to data to be sent
length: the length of message
Functionality: this routine prepares a LLC header for each
message pointed by msgsptr by adding the rype, sequence fields,
then sends out the message. If an acknowledgement does not

198

arrive within the timeout period, this routine will send out
again the same message. It keeps doing so until either an ack

arrives, or exceeds the allowed trial limit (maxtimeout).
*/

var f.frame;

if (type== SendReq)
sendreq= TRUE;
f.type = type; I* specify packet type */
f.seq = NextFrameToSend; /* append sequence number */
f.data = msgsptr;

Acked= FALSE;
timeoutcnt=0;

/* keep trying if no ack, and # of tries has not exceeded the limit */

while(timeoutcnt < maxtimeout AND Acked== FALSE) do
begin
sendf(f); /* ransmit a frame */
Timeout=FALSE;
StartTimer();
Recv_Ack; I* timer can timeout in this routine */
end;

if (timeoutcnt >= maxtimeout)
write("Error: a frame is lost.”);
Inc(NextFrameToSend), /* invert sender seq number */

end; I* end of Send */

procedure Recv_Ack():

/* Functionality: this routine waits for an acknowledgement to
arrive from the other side. If timer times out, it will stop
waiting and return to Send, which will resend the same message
If an ack comes, it will set the flag to indicate so.

*/

199

var r : frame; /* place to put received frame */

While (Acked== FALSE AND Timeout== FALSE) do
begin
wait(event); i*note: timer can timeout while waiting */
if (event== FrameArrival AND r.seq== NextFrameToSend)
Acked== TRUE;

/* if the packet sent out was a sendreq,
* then acknowledge packet contains info. */

if (sendreq == TRUE)
To Host(r); [* pass message to host */
Inc(FrameExpected);
end;

end; /* end of Recv_Ack */

procedure Isr_Timer():

/* Functionality: this routine will be called when the timer times our.
*/

Timeout=TRUE;

timeoutcnt= timeoutcnt+1;

end; /* end of Isr_Timer */

/* type specifies what type of information to be sent back
msgsptr returns the address of received message
length returns the length of received message
Functionality: Receiving a message is similar to sending a message.
The requested message is sent back from the Intel in the Acknowledge
packet. This is called piggybacking.

*/

var req : frame;
req.data[0] = type; /* specify what information to receive */
Send(SendReq, req, sizeof(req)); /* send a request frame */

200

end, [* end of Recv */

procedure Sync():

/* Functionality: This routine sends out a packet to synchronize
sequence numbers on both VAX and Intel side.

*/

var fframe;
Send(SYNC, f, sizeof(f));

end; /* end of SYNC.*/

A.4.3. The Algorithm for the LLC on the Intel Side

procedure Recv_Frame(f):

/* f points the received frame
Functionality: This procedure is invoked when 82586 receives a frame
and issues an interrupt to CPU. It does different things according

to the type of messages it received.
*/

case f.type
ACK: /* there will be no ACK frame on the intel side */

REG: Send_Ack (f.seq),
if (f.seq == FrameExpected)
putf(f.dara); /* put f in big buffer */
Inc(FrameExpected); /* invert seq */

SYNC: Send_Ack(f.seq);
FrameExpected=0; /* reinitialize */
NextFrameToSend; /* reinitialize */

SendReq: Ans Send Req(); /* answer send request */

if (f.seq == FrameExpected)
Inc(FrameExpected),

201

end; /* of case */
end; /* of Recv_Frame */

procedure Send_Ack(seq):

/* Functionality: this routine sends out an acknowledgement packer.
*/

var f: frame;

f.rype= ACK;
f.seq= seq;
sendf (f); /* ransmit a frame */

end; /* of Send_Ack */

procedure Ans_Send_Req (seq);
/* Functionality: this routine piggyback the requested information

in the acknowledgement packet.
*/

var f : frame;

f.rype= ACK;

f.seq= seq;

f.data = getf(data);

sendf(f); [/* transmit a frame */

end, /* of Ans_Send_Req */

A.S. Miscellaneous

The data link layer for the 186/51 is contained in file dld.c. The packet size from
the Intel controller to the VAX can be changed by modifying constant R _SIZE in
vax.h, in llc.h, and the field in so_addr.choose_addr.dli_eaddr.dli_protype in vax_lic.c.
If you get errors like "ERROR: enable toget CB, TBD, or FD", you should consider to
increase the size of the CB, or TBD, or FD queues by changing the CB_CNT,
TBD _CNT,or FD_CNT in gld_lic.h.

202

Appendix B
Use of 8086 Cross Compiler Under Unix

B.1. Introduction

This document is interesting to those who intend to program an 8086/87-based
single board computer under a VAX/Unix environment. The compiler introduced here

was initially obtained from MIT Laboratory for Computer Science; however, it was
written for an IBM-PC/MS-DOS environment. Modification to this compiler is mostly
done to the I/O library and math library. In addition, Intel’s iSDM (System Debug
Monitor) is incorporated to the system to allow both down-loading of users’ programs
and debugging of them. Efforts have been made to optimize the intermediate assembly

programs generated by the compiler so that a 15 to 30 percent better performance can
be achieved after running the optimizer.

This document serves as a users’ manual of the cross compiler without elaborat-
ing on the details. It assumes a user to have experience with C language and Unix.
Knowledge of 8086/87 assembly language is necessary for debugging a program.

Throughout the discussion, host computer refers to the one where you develop
your programs. The target computer is the 8086-based single board computer. Unix C
compiler is simply called compiler and the cross compiler is explicitly qualified.

Running a C program consists of several steps. First, you should properly connect
the hardware. The search path of your account should be set up correctly so that you
can access the library files. The compilation of your C program using cross compiler
follows similar syntax as to those of the C compiler. Before running an executable file,
it should be down loaded to the target computer. Finally, you can run your program
with the help of Intel’s System Debug Monitor (referred to as SDM from now on).

B.2. Cable Hook-up

Your interface to both Unix and the target computer is all done from a singie ter-
minal. Normally, your terminal acts just like a regular Unix terminal and the target
computer is simply another tty to the same host computer. You should connect your
terminal to the a tty line and the serial port of the target to another tty line, both using
standard RS232. After the lines are connected and power plugged in, turn on the
switch of the the target system and initialize its line to Unix by

% stty 9600 raw -echo > /dev/ttyxy

203

where xy is the target’s tty number.

B.3. Down Loading the Loader via SDM

Setting up your path on Unix correctly is important because your program need to
find the libraries and you need to access several executable files. The directory of
these files is machine dependent, but on Upenn-GRASP, the following in your .cshrc
or .tcshre is adequate:

set path=($path /usr/users/hz/c86/1ib86)
If you are a shell user, use in .profile
PATH = SPATH:/usr/users/hz/c86/1ib86
export PATH

Initiate the communication with the target by kemmit function of Unix which
changes your Unix terminal to a virtual terminal of the target. Kermit is invoked by the
following command:

% kermit clb /dev/ttyxy 9600

You are then communicating to the target through the SDM from this point on.
The SDM responds with the following message followed by either a dot (.) or aster-
isks(*), the latter indicating that SDM has not been booted and you are talking to it for
the first time.

iSDM 86 Monitor Vx.y
Copyright 1983 Intel Corporation

To boot, type capital U and you will see the monitor respond with a dot indicating
it has been booted. To exit kermit thereby exiting SDM upon completion of your job,
type ~ followed by a letter ¢ and message "C-kermit Disconnected" will be printed.

Although you could use SDM to down load your application program, the slow
loading speed prohibits development of any large program. Alternatively, a fast loader
is available to directly read your program from serial port and store it into memory
without going through SDM. The idea is then to load the fast loader with SDM and to
load your program with the fast loader. To load the fast loader, type:

% 1d1d
You will then asked if the tty of the target is the right one such as
ttyh3? (y/n)

You should answer accordingly. The loaded data and the corresponding addresses will
echo on the screen. This fast loader is invoked later by the dl command to load the

204

application program.

B.4. Cross Compiler

As a C programmer, you may be used to writing programs under Unix and not
aware of what is C and what is Unix. Therefore, it is important that you read through
this document before attempting to write any C program. Basically, C is a high level
language that allows you to express your algorithms in terms of C functions, whereas
Unix is an operating system which provides C with an environment. Many things you
use in the form of function calls are intrinsic to Unix, such as multi-processes, file sys-
tems, and I/O interface. When your program is intended for an 8086/87, many utilities
on Unix are no longer available on your target board. For example, you can not open
files or write to a file. Any library with which your program is linked must be created
for 8086/87.

Theoretically, the language definition of the C cross compiler is 100% compatible
with Unix C, i.e., all variable types, data structures, operations, type specifications, etc.
follow the conventions in [16]. However, there are major differences between this
compiler and Unix C compiler in the Unix interface and I/O libraries. In fact, the only
system calls you can make are limited to those of standard I/O (see in Appendix A),
although they may expand in the future. The reason for not implementing them is obvi-
ously that your single board computer does not contain a sophisticated operating sys-
tem which actually provides these system functions. Our thought on I/O library sup-
port was that a total compatibility would require a major undertaking which may not
be necessary although not impossible.

The options accepted by the compiler are the following:

-P run only the C preprocessor (cpp) and leave the result in prog.i,
where prog.c was the input file.

-S do not run the assembler, leaving the assembly language output
file in prog.a86, where prog.c was the input file.

-C compile, assemble, but do not create a .com file, leaving binary
file in prog.b, where pr.c was the input file.

-0 name changes the name of the generated default a.abs file to
"name.abs".

-Im links the program with the mathematics library

-Ir links the program with the RFMS library

-Ilib specifies a directory to be searched when processing #include

statements during preprocessor stage.

To cross compile your programs for the 8086/87 target system, use the shell script cc86 as

205

% cc86 [options] ...file ...

Unless -o option is specified, the default name of the output is a.abs, instead of
a.out, where abs stands for absolute file. It has a format understandable by the fast
loader and, apparently, it can not be executed on the host computer. The input to cc86
can be more than one file; it can be a combination of assembly programs, object files,
and C programs. There are two standard libraries: I/O library, which is always linked
with your programs, and the math library. Read Appendix B for the math functions
provided by the math library.

As usual, there are three parts to this cross compiler: a compiler that produces
assembly programs from input C programs, a assembler that reads the output of the
compiler and the input assembly programs and assembles them to the object files, and
a linker that links everything together. Unfortunately, the intermediate assembly
language, A86, is not standard ASM-8086 assembly language but a hybrid between
ASM-8086 and VAX-11 assemblers; nor is it equivalent to ASM-8086 particularly in
its instructions dealing with data allocation and the floating point stack. Therefore, if
you need to write assembly programs, the best you could do is using -S option of the
cross compiler to generate sample assembly programs and figure your way out, with
the help of 8086/87 and VAX-11 literatures [17][18][19][20]. Appendix C contains a
table of encodings of 8087 stack arithmetic instructions, which may be useful when
you need to program 8087 and would like to achieve efficiency.

Because of the nature of the program execution, the main program can no longer
have arguments argc and argv, which are usually handled by the operating system.
Also be warned that you are at your own risk if you do not initialize variables, local or
global. Your target computer does not do everything the Unix does such as initializing
memory. Failure to comply to this may resuit in meaningless outcomes. We have also
found that the cross compiler can not handle functions which return a float; you must
define these functions to return a double. Further, when a function is declared double,
it must have a return statement to avoid underflow of the float stack on 8087. Finally,
an integer variable on 8086 is 16 bits long rather than 32 as on VAX and a double is
eight bytes.

206

B.5. Down Loading Your Application

The next step is to load your program to the memory of the target. The default lo-
cation of the starting address of your program is at hex 1000 or 4 kilobytes from the

beginning. This information is useful later when you debug your program. To load
the program, simply type:

% dl <abs file>

The down loading speed is about one kilobytes per second, or 9600 baud. You
may examine the size of your program to figure out how long a down loading takes.

The location of the code segment and data segment can be at any 16-byte boun-

dary by changing two constants in the down loading program. Currently, the memory
format of the target is set to the following diagram:

0x0000
Reserved for SDM
0x0900
Fast Loader
0x1000 CS (code segment)
Code
0x10000 DS, SS, ES
Data + Stack

0x1ff00 = top of the stack
SP (stack pointer) = 0xff00
End of 128 K Ram

The size of your programs is limited to almost an 8086 segment and can be as
. large as 60 kilobytes. Data and stack may take another 64K segment less 256. The
sizes are examined by the linker and warnings are issued when the actual sizes exceed

or approach the limits.

B.6. SDM - System Debug Monitor

DLYaYi

SDM is an assembly language level debugger that offers such features as
disassembling code, single step, changing register and memory contents, break point,
and displaying register and memory contents. You ¢an monitor your program on the
target directly from your Unix terminal with the help of the on board SDM through
kermit which changes a Unix terminal to that of your target computer. As mentioned
above, this can be done by

% kermit clb /dev/ttyxy 9600

and you will also see SDM respond as before. In case it has crashed for any reason,
push the reset button of the target and type capital U to reboot the system.

We will ory to explain a few commands that are particularly useful in executing your
program. It is su'onglii recommanded that you read [21] if you reaily want to learn
how to use SDM. This section gives just a tiny subset of the rich debugging com-
mands of SDM.

B.6.1 X Command

This command allows you to examine and modify registers.
X
will display all the 8086 registers.
To modify a register, do
X register = value

where value can be a hexadecimal number, another register, or an expression of the
sum or difference of numbers and registers.

X1

displays the 8087 registers and stack registers and you can change the values of stack
registers by

.xst(1) = real number

where 1 is the stack register number from O through 7 and real number is represented in
exponential notation such as 1.23 e-4

B.6.2 D Command

This command displays memory contents in a given data type which can be
integer(i), long integer(li), long real(lr), short integer(si), short real(sr), binary code
decimals(t), temporary real(tr, ten bytes), word(w), or disassembled instruction(x).
Address is represented as segment:offset. The default segment is code segment(cs)
and default offset is instruction pointer (ip). For example,

J4dx

displays 14 disassembled instructions from location cs:ip.
d ds:5#16t¢

displays 16 decimal bytes in both hexadecimal and ASCII format, beginning at ds:5
Sdtr 10

displays five temporary real values, begmnmg at ¢s:10 in both temporary real hexade-
cimal and decimal format.

B.6.3 G Command

This command instructs the monitor to begin executing your program at the

current cs:ip. It can be followed by a starting address and addresses where you want to
break the program. For example,

.g 7fa, 1f0:e20

will stop either at cs:7fa or 1f0:e20, whichever comes first.
.g2d0:113, ip

tells the monitor to begin execution instructions at 2d0:113 and continue until it gets to
the current cs:ip.

When the program stops at a break point, the following message is printed
*BREAK at xxxx:yyyy

B.6.4. Bugs

As usual, there are bugs associated with SDM package. The single step feature is
shaky at times when you use 8087. For example, to step through a program by G com-
mand may generate a different result from that you obtain to go all the way by G com-
mand; or when you single step, the board may not do what the next instruction says it
will do, etc. We have no solutions to this and encourage you to ask Intel for help

B.7. Miscellaneous

In 1ib86 directory, there exist several utility programs to convert files from one
format to another.

abshex - converts an abs file to a hex file,
ldabs - converts an Id file (output of MIT compiler) to an abs file,
ldhex - converts an 1d file to a hex file.

B.8. An Example

209

In this section, we will go through an example to demonstrate how the cross compiler
and the debugger work. Suppose you have created the following program on Unix:

include <marh.h>
define RAD TO_DEG 5729578

main()
{
double x, y;
inti;
x=0.1;
for(i=0;i< 10;i++) {
y+=x;
printf("sin(%4.1f) = %f\in\r", y*RAD TO_DEG, sin(y));
}
}

First compile the program using the C compiler and test it on Unix as

% cc prog.c -lm
% a.out

sin(5.7) = 0.099833

sin(11.5) = 0.198669

sin(17.2) = 0.295520

sin(22.9) =0.389418

sin(28.6) = 0.479426

sin(34.4) = 0.564642

sin(40.1) = 0.644218

sin(45.8) =0.717356

sin(51.6) = 0.783327

sin(57.3) = 0.841471

Of course, on Unix we can only test the portion of the program not dependent on the

target hardware.
After making sure the program is free of errors as far as you can go on Unix, you
can then cross compiler your program:

% cc86 prog.c -lm

210

An a.abs is created at this point for you to down load. You are then ready to try it out
on your target computer. As the first step, properly connect the Unix tty (e.g. ttyh3)
line to your target computer and turn on the power. A typical sequence of commands
may look like:

% stty 9600 raw -echo > /dev/ttyh3
% kermit clb /dev/ttyxy 9600

iSDM 86 Monitor Vx.y
Copyright 1983 Intel Corporation

*** (capital U is pressed here)

(o)

C-Kermit Disconnected
% 1dld

ttyh3 ? (y/n) y

S 0090:0000
0090:0000 00 - b8,
0090:0001 00 - 90,
0090:0002 00 - 00,
0090:0003 00 - 8e,

0000:007F FF - 00,
0090:0080 FF -

211

% dl a.abs (wait approximate 5 seconds)
% kermit clb /dev/ttyxy 9600

iSDM 86 Monitor Vx.y

Copyright 1983 Intel Corporation

X

AX =0006 CS = 0100 IP = 0000 FL = F046 O0 D0 JO TO SO Z1 A0 P1 CO
BX = 1AE3 SS = 1000 SP = 0000 BP = 0000

CX = 0000 DS = 009B SI = 0000

DX =00DS8 ES = 0000 DI = 0000

x ip=0

.np,

0100:0000 FA CLI-,

0100:0001 B83F13 MOV AX, 133FH ;1= +4927-,

0100:0004 B104 MOV CL, 4

-£

sin(5.7) = 0.099833

sin(11.5) = 0.198669
sin(17.2) = 0.295520
sin(22.9) = 0.389418
sin(28.6) = 0.479426
sin(34.4) = 0.564642
sin(40.1) = 0.644218
sin(45.8) = 0.717356
sin(51.6) = 0.783327
sin(57.3) = 0.841471

*BREAK at 0100:002B

X

AX =0006 CS = 0100 IP = 0020 FL = F046 O0 D0 JO TO SO Z1 A0 P1 CO
BX = 1AE3 SS = 1000 SP = FF00 BP = 0000

CX = 0000 DS = 1000 SI = 0081

DX =00D8 ES = 1000 DI = 0000

.(c)

C-Kermit Disconnected

%

212

You are now at the end of a debugging session.

B.9. I/O Library

Only standard input and output functions are provided by the library, i.e., input to
the program and output from the program can only go through your terminal. Further-

more, I/O functions are restricted to the following. Attempt to invoke any other will
result in an undefined function error.

char getchar();

char *gets();
putchar(ch) char ch;
putw(word) int word;
puts(s) char *s;
printf(s, arg) char *s;

It should be pointed out that the line feed character n’, when used to obtain a
new line, must be accompanied by a carriage return "\r’ in order to move the cursor
back to the beginning of the next line. This second character is put out by Unix
automatically so that your printing program need not use it explicitly.

B.10. Math Library

The following math functions are provided in the math library.
double fabs(), 1dexp(), modf();
double sqrt();

double sin(), cos(), tan(), asin(), acos(), atan(), atan2();
double sc(sc_p, angle)

struct sncs *sc_p; double angle;
where sncs is

struct sncs {
float sin;
float cos;

};

B.11. 8087 Floating Point Stack Programming

The compiler does not make use of the floating point stack registers one through
seven for the sake of simplicity. On the other hand, at times you may desire to achieve
better efficiency by programming in A86 and taking advantage of the floating registers.
Unfortunately, the A86 does not provide instructions which handle the float stack

registers except for the top, it is necessary to program in 8087 machine code directly.
The following table provides some of the frequently used arithmetic instructions to

213 -

manipulate on the float stack. An example is also presented to illustrate the idea and

the technique.

!

Instructions i=0 =1 =2 =3 =4 =3 =6 =7
fadd st, s(i) 0xc0d8 | Oxcld8 | 0xc2d8 | Oxc3d8 | Oxc4d8 | Oxc5d8 | Oxc6d8 | Oxc7d8
fadd st(i), st OxcOdc | Oxcldc | Oxc2dc | Oxc3dc | Oxcddc | OxcSdc | Oxcédc | Oxc7dc
faddp st(i), st OxcOde | Oxclde | Oxc2de | Oxc3de | Oxcdde | OxcSde | Oxcé6de | Oxc7de |
fsub st, st(i) 0xe0d8 | Oxeld8 | Oxe2d8 | Oxe3d8 | Oxe4d8 | Oxe5d8 | Oxe6d8 | Oxe7d8
fsubr st, st(i) 0xe8d8 | 0xe9d8 | Oxead8 | Oxebd8 | Oxecd8 | Oxedd8 | Oxeed8 | Oxefd§
fsub st(i), st Oxe8dc | 0xe9dc | Oxeadc | Oxebdc | Oxecdc | Oxeddc | Oxeedc | Oxefdc
fsubr st(i), st Oxe0dc | Oxeldc | Oxe2dc | Oxe3dc | Oxeddc | OxeSdc | Oxe6dc | Oxe7dc |
fsubp st(i), st Oxe8de | Oxe9de | Oxeade | Oxebde | Oxecde | Oxedde | Oxeede 'y Oxefde ;
fsubrp st(i), st OxeQde | Oxelde | Oxe2de | Oxe3de | Oxed4de | OxeSde | Oxe6de | Oxe7de
fmul st, st(i) 0xc8d8 | 0xc9d8 | Oxcad8 | Oxcbhd8 | Oxccd8 | Oxcdd8 | Oxced8 | Oxcfd8
fmul st(i), st Oxc8dc | 0xc9dc | Oxcadc | Oxcbdc | Oxccde | Oxcddc | Oxcedc | Oxcfdc
fmulp st(i), st Oxc8de | Oxc9de | Oxcade | Oxcbde | Oxccde | Oxcdde ! Oxcede | Oxcfde
fdiv st, st(i) 0xf0d8 | Oxfld8 | 0xf2d8 | 0xf3d8 | 0xf4d8 1[0xf5d8 | O0xf6d8 | 0xf7d8
fdivr st, st(i) 0xf8d8 | 0xf9d8 | Oxfad8 | Oxfbd8 | Oxfcd8 | 0xfdd8 | Oxfed8 | Oxifd8
fdiv st(i), st [0xt8dc | 0xf9dc | Oxfadc Oxtbdc | Oxfcdc Oxfddc | Oxfedc Oxtfdc %
fdivr su(i), st | 0xf0dc Oxfldc 0xf2dc | Oxf3dc | Oxfddc 0xf5dc 0xf6édc Oxf7dc
fdivp st(), st Oxt8de | 0xf9de | Oxfade Oxfbde | Oxfcde Oxfdde i Oxfede ; Oxffde ‘z
fdivrp st(i), st Oxf0de | Oxflde | Oxf2de | Oxf3de | Oxfdde | Oxf5de | Oxfé6de | 0xf7de |
fld st(i) 0xc0d9 | Oxcld9 | 0xc2d9 | 0xc3d9 | Oxc4d9 | 0Oxc3d9 ‘ 0xc6d9 | 0Oxc7d9
fxch st(i) 0xc8d9 | 0xc9d9 | Oxcad9 | Oxcbd9 | Oxccd9 | OxcddS 2 Oxced9 | Oxcfd9
fst st(i) 0xdOdd | Oxdldd | 0xd2dd | Oxd3dd | Oxd4dd | 0xd5dd | Oxdédd | Oxd7dd

| fstp st(i) Oxd8dd | 0xd9dd | Oxdadd | Oxdbdd | Oxdedd | Oxdddd | Oxdedd | Oxdfdd |

Table A.1. Encodings of 8087 Float Stack Arithmetic Instructions

Suppose you would like to program a partial sinus function using 8087’s partial
tangent call. It may look like:

214

.globl _psin
I double psin(x) x double; compute sinus of x in radians
_psin: mov bx, sp
fidd *2(bx)
fptan
fwait
.word 0Oxc8d8 | fmul st, st(0)
fwait
.word Oxcl1d9 [fid st(1)
fwait
.word Oxc8d8 | fmul st, st(0)
fwait
.word Oxclde | faddp s(1), st(0)
fsqrt
fwait
.word Oxf9de | fdivp st(1), st(0)
ret

Note that every instruction must be preceded by a float wait o instruction to assure nor-
mal function of the hardware. Also, if you are serious about programming 8087,
always remember to clean up the float stack before exiting a function, with the return
value of the function on the stack if there is any. Pushing too many things on to the
saturated float stack leads to unexpected result as the values at the bottom of the stack
will not drop out as one would think.

REFERENCES

(1]

[2]

(3]

(9]

Paul, RP. and Zhang, H. 1985. "Design of a Robot Force/Motion Server".
Proceedings of IEEE International Conference on Robotics and Automation,
St.Louis, MO.

Paul, R.P., Zhang, H., Hashimoto, M., Durrant-Whyte, H., Izaguirre, A., Trinkle,
J.,Zhang, Y., Fuma, F., Ulrich, N., and Donham, M. 1986. "A Distributed System
for Robot Manipulator Control”, Department of Computer and Information Sci-
ence, the University of Pennsylvania. 1986.

Hayward, V. and Paul, R. 1984. "Introduction to RCCL: A Robot Control C Li-
brary", Proceedings of IEEE International Conference on Robotics and Automa-
tion, Atlanta, GA.

Pu, P. 1986. "RoboNet: A Local Area Network for Robot Systems”, Department
of Computer and Information Science, University of Pennsylvania.

Paul, R.P. 1981. "Robot Manipulators: Mathematics, Programming, and Con-
trol", MIT Press.

Paul, R.P. and Zhang, H. 1984. "Robot Motion Trajectory Specification and
Generation"”, ISRR Proceedings , Japan.

Zhang, H. and Paul, R.P. 1988. "A Parallel Solution to Robot Inverse Kinemat-
ics", Proceedings of IEEE International Conference on Robotics and Automation,
Philadelphia, PA.

Izaguirre, A., Hashimoto, M., and Paul, R. 1987. "A New Computational Struc-
ture for Real-time Dynamics”. Proceedings of International Workshop on Robot-
ics: Trends, Technology, and Applications, Madrid, Spain.

[10] Paul, R. P. and Zhang, H. 1986. "Computationally Efficient Kinematics for Mani-

pulators with Spherical Wrists Based on the Homogeneous Transformation
Representation”. International Journal of Robotics Research 5(2):32 - 44.

[11] Postel, J., 1980. "User Datagram Protocol"”, RFC 768, Information Sciences Insti-

tute.

[12] Postel, J., 1982. "TCP-IP Implementations”, Network Information Center, SRI

Int.

[13] Intel 1985. "Local Area Networking (LAN) Component User’s Manual”,

230814-002, Intel Corporation.

[14] Intel 1984. "iSBC 186/51 COMMputer Board Hardware Reference Manual,"

122136-002, Intel Corporation.

[15] Tanenbaum, A., 1981. "Computer Networks", Englewood Cliffs, N.J., Prentice-
Hall,

[16] Kernighan, B.W and Ritchie, D.M. 1978. "The C Programming Language",
Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632.

[17) Intel Corporation, "iSBC 337 Multimodule Numeric Data Processor Hardware
Reference Manual", Intel Corporation, 3065 Bowers Avenue, Santa Clara, Cali-
fornia 95051.

[18] Rector, R. and Alexy, G, "The 8086 Book", Osborne/McGraw-Hill, 630 Bancroft
Way, Berkeley, California 94710.

[19] Levy, HM. and Eckhouse, R H., "Computer Programming and Architecture”, Di-
gital Equipment Corporation, Bedford, MA 01730.

[20] Intel Corporation, "ASM86 Language Reference Manual", Intel Corporation,
3065 Bowers Avenue, Santa Clara, California 95051.

[21] Intel Corporation, "iSDM 86 System Debug Monitor Reference Manual”,
Hardware Reference Manual", Intel Corporation, 3065 Bowers Avenue, Santa
Clara, California 95051.

[22] Intel 1982. "iSBC 86/14 and iSBC 86/30 Single Board Computer Hardware
Reference Manual," 14404-002, Intel Corporation.

A.6 A Parallel Solution to Robot Inverse Kinematics

218

A Parallei Solution to Robot Inverse Kinematics

Hong Zhang
Richard P. Paul

Department of Computer and Information Sciences
University of Pennsylvania
Philadelphia, PA 19104

Abstract — In this paper, we introduce an algorithm by which the inverse kinematics
of a robot manipulator with closed-form solution can be computed in parallel to reduce
the computational complexity roughly by a factor of », the number of joints of the manipu-
lator. Further, we study the errors introduced by the algorithm statistically to demon-
strate that the algorithm is stable, well behaved and, for all practical purposes, it produces
satisfactory results. Comparison with other methods employing approximation is made to
show the superiority of the algorithm. Finally, we briefly describe its implementation on a
mulitiprocessor system.

I. INTRODUCTION

A robot task is specified in the Cartesian space, while the robot manipulator is actuated in
the joint space. The inverse kinematics problem is defined as the mapping from the Cartesian
space to the joint space,

R,p)—> 6 (D

i.e., given the position, p and orientation, R, of the end effector of the robot manipulator, solve
for the joint coordinates which will result in the desired position and orientation.

Typically, a robot manipulator is designed as a six-joint mechanical linkage with the last
three joints intersecting each other, forming a wrist. In this case, it has been repeatedly shown
that a closed form solution exists to the inverse kinematics problem. The value of joint i can be
expressed in terms of the end effector position and orientation and values of prior i-1 joints. If
we represent the manipulator position and orientation by a homogeneous transformation called
T, we have the following general equation,

8 = A(Ty) 2)

This material is based on work supported by the National Science Foundation under Grant No.
ECS-8411879. Any opinions, findings, conclusions, or recommendations expressed in this publi-
cation are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

219

or, in a more detailed fashion, as
8; =Ai (T, 051, * -, 09) (3)
for i=1 through 6.

The inverse kinematics as solved above requires a number of multiplications and divisions,
additions and subtractions, and trigonometry functions. Depending upon the processor on
which the computations are performed and the way programming is done (e.g., in assembler or
in a high level language), its computational complexity lies typically between two to ten mil-
liseconds. Using the PUMA 260 robot manipulator as an example, the inverse kinematics
requires 40 multiplications and divisions, 21 additions and subtractions, 1 square root, eight
inverse trigonometry calls, and four sets of sine/cosine calls {1]. If this is to be programmed in
’C’ and computed on an 8086/8087 based system in floating point with the overhead of the
compiler considered, it will take about seven milliseconds {2].

Of course a manipulator control system must compute more than just the inverse kinemat-
ics. It must, for example, derive the next T4 from the task specification before inverse kinemat-
ics can be solved. In case of a Cartesian motion, this may involve a number of matrix opera-
tions. Adding the time required to compute Ty, it takes well over ten milliseconds to derive
each point along a motion trajectory.

Robot control is a real-time process, the output of which provides to the joint servos a
sequence of positions, called setpoints, that are evenly spaced in time and separated by one
sampling period, Az, which must be small enough to ensure a smooth and stable motion. If a
robot task requires a straight line motion, inverse kinematics must be performed periodically.
However, it is usually impossible to compute the inverse kinematics at the same rate as the sam-
pling rate due to its computational complexity. Instead, a new setpoint is generated only every
T,gd > Az, and one often resorts to one of two solutions to fill the missing setpoints between two
updates: either generating the setpoints off line or employing numerical methods such as poly-
nomial interpolation. The off-line programming would be fine if the trajectory were not to be
modified while being followed, which is not the case in many tasks such as compliance or a
sensor-driven motion. Therefore, off-line programming is of value only in simple pick-and-
place operations with fixed and known task geometry.

The numerical interpolation is widely applied to reduce the computational load, but it
ought to be used with an understanding of its consequences. First, since in general a linear
motion in Cartesian space requires a non-linear motion in joint space, the interpolated inter-
mediate points will only generate an approximately straight line motion in the Cartesian space.
Suppose that between two computed positions of joint i 6;(z) at & and 6; (zx+1) at x4}, nine
more points, one every Az, are interpolated linearly, the result is illustrated in Fig. 1, where the
arc is the trajectory that the joint must follow to generate a straight line Cartesian motion and
the line segment is the result of the interpolation of two computed joint positions The difference
between the arc and straight line would lead to errors in the Cartesian space. In general, this

220

piece-wise linear motion of joint i contributes to errors in all Cartesian directions.

0; (te+1)
GI(W
t At t
A T T T ol T S O W

——n Tuci,d

Fig. 1. Error due to joint space interpolation

The second and more important reason why one would like to minimize TG, is related to
robot tasks such as tracking, in which the trajectory is modified while being executed. If the
rate at which the points are generated falls short of that at which trajectory is modified, tracking
inaccuracy will result. This would be the case where the changes occur faster than the system
can compute, even though mechanically the manipulator may still be able to react. Fig. 2 illus-
trates a bad case of tracking error when the interpolating process tells the joint to go one way
(solid straight line) while the modification tells it to go the other (dotted curve).

ei (fk+1)

0; (%)

.......
EICRPEN
* e
..
c e,
e
.
.
.
.
.
.
.
.
.
.
.
.
.

Fig. 2. Error due to path modification during execution

Such a characteristic associated with numerical interpolation limits the range of applica-
tions a robot manipulator can perform, creating a situation where the controller limits the per-
formance of the manipulator. In general, if the update takes place every TG4, the modification
to motion, whether by a tracking camera or by contact with the environment during compliance,
must take place at a rate slower than 1/Tgy in order for the modification to be meaningful.

The key question now becomes how we can minimize T, ideally, to the level when the
manipulator can still respond. If we break the process of generating a new setpoint into two
steps, first computing the next desired Cartesian position Tg, then performing inverse

kinematics, we can reduce T4 by decreasing the time spent on solving the inverse kinematics,
denoted here as Tufgd. In the next few sections, we will describe a parallel solution to the inverse
kinematics problem to achieve the above goal, discuss the implications of the solution, and
show an actual implementation of the solution on a multi-processor system.

II. PROPOSED PARALLEL INVERSE KINEMATICS (PIK)

The advance in micro-electronics technology has made a multi-processor system a solution
to many problems that were not feasible before. The use of multi-processors is also justified
economically by the fact a uni-processor system usually costs more than the multiprocessor sys-
tem with the same throughput. Though the technology has been widely applied to robot control
problems, we have yet to see the inverse kinematics problem be solved with a multi-processor
system. As argued above, if the time spent on solving inverse kinematics is reduced, the entire
system can be driven and respond at a higher rate, thereby improving its performance.

The inverse kinematics is generally viewed as a serial process, since it is solved from the
first joint of the manipulator up to the last joint one after another due to the 6;’s dependency on
the prior i -1 joints. Mathematically for a six-joint robot manipulator this can be expressed as

81 = A1(Te)

82 = A (Te, 01)

83 = A3(Ts, 61, 62)

84 = Ay(Ts, 01, 82, 83)

85 = As(Te, 01, -, 84)

86 = As(Ts, 81, - , B5) 4

Notice that since the process of generating setpoints is repetitive, there is a time implicitly
associated in Eq(4). To be explicitly in time, we have in general,

0i (te) = Ai (To(te), O1(8e), -~ -, Bim1(2e)) &)
Joint three, for example, cannot be computed until joints one and two are finished to make
01(z¢) and 9,(z;) available.

This serial process, however, can be parallelized approximately by recognizing the

dynamic nature of the process and the continuity of joint trajectories. Rewrite Eq(5) to the gen-
eral form:

0:(2) = A (To(tg), O1(te—1), ~**, 8i=1(tk-1)) (6)
Inverse kinematics for joint three, for example, becomes
03(tk) = A3(Te(ti), 81(tk—1), B2(te-1)) @)

222

In effect, the ith joint uses the values of the prior i-1 joints in the previous sampling period.
Obviously Eq (7) will not generate the same values as the original due to the approximation,
one can however argue that since the difference in time between two neighboring points is
small, one expects only a reasonably small error in 83. (We will better quantify reasonably in
the next section.) What comes out of the conversion process is a set of six parallel processes so
that when one processor is assigned to each joint, all six processors can start computing the
inverse kinematics of their respective joint angles at the same time. Assuming when inverse
kinematics is solved serially, the computational complexity is

Tserial = 2 T; ®
where T; is the computation time of Eq(4), then the complexity of the parallel inverse kinemat-
ics is roughly

Tpara =max{T1, Y TG} (9)

We say roughly since 7T; may change when we change a serial process to a parallel process, as
certain intermediate results used in a serial process no longer exist in the parallel process.

To illustrate the method, we use a simple two-link manipulator in Fig. 3. It has two revo-
lute joints and both links are of unit length.

-
-
-
-

91 X

Fig. 3. A simple manipulator

Suppose we are interested in positioning the manipulator arbitrarily on the x—y plane, the direct
kinematics has the form:

x =cos(8; + 8,) + cos(8y)
y =sin(8y + 87) + sin(8,) (10)

And the inverse kinematics has the form:

223

v 2
0, = tan'l—;’- + cos‘l—x—22—+L
1 y—sin(8y) _
x—cos(91)

(11
0, =tan~

Using the parallel algorithm in Eq(6), we employ two processors. On the first processor, we
compute first half of Eq.(11), which can be rewritten with time variable expressed explicitly:

12) | Nx2(t 1y %)

81() = tan~! s A (12)
and on the second processor, we compute,

S oy a1 Y @)—SIn®@y(f-1) A

02(z) = tan % () —c0s(01 (Ce—)) 81(te-1) (13)

Notice in Eq(13) that 6, at 7; is solved in terms of the current Cartesian position (x, y) and the
01 at time #;_;.

The difference between Eq(8) and Eq(9) in terms of computational complexity can be con-
siderable. In the ideal case when all T; are equal, the complexity would be reduced by a factor
of six, the number of joints of the robot. More realistically, we use PUMA 260 as an example
to calculate the difference in computational complexity on a per-processor basis. The costs of
various operations listed in Table I are determined based on the actual times of execution of

those operations when executed on an Intel 8087 floating point processor, taking into account
the overhead for fetching and storing data.

operation fme of exec
adds/subs 40us
multiply/divide 53us
inverse trig 350us
sin/cos pair 360us
square root 100us

Table I. Time of Execution of Different Operations

Table II lists the computational compiexity of the serial inverse kinematics in terms of the
weighted cost. The weighted cost of an operation is one-tenth of the actual time of execution in
milliseconds. The complexity of the entire inverse kinematic equals the sum of the complexi-
ties of the individual joints if the inverse kinematics is solved serially as in Eq (4).

224

+or- | *or/ | trig-! | sin/cos | sqrt | weighted cost
0, 1 2 2 1 0 120.6
0, | 5 7 2 1 1 173.1
03 5 8 1 0 0 97.4
04 3 7 1 0 0 84.1
Os 2 5 1 0 0 69.5
06 7 15 1 0 0 142.5
| 21 | 40 8 2 1 687.2

Table II. Computational Complexity When Executed in Serial

Table II1 lists the complexity when the inverse kinematics is solved in parallel as in Eq(6).
In this case, the complexity of each joint solution may vary from the serial case, for as men-
tioned the joints can no longer share intermediate results, but overall the complexity of the
inverse kinematics is reduced by a factor of about four, from a relative cost of 687.2 to 173.7, as
we expect.

+or- | *or/ | tig~! | sin/cos | sqrt | weighted cost
0, 1 2 2 1 0 120.6
0, 5 7 2 1 1 173.1
03 4 6 1 0 0 82.8
04 5 11 1 0 0 113.3
05 7 15 1 0 0 142.5
06 9 19 1 0 0 171.7
max(=8;) | 5 7 2 1 1 173.1

Table III. Computational Complexity When Executed in Parallel

The reduction in computational complexity, however, is not obtained without paying a
price. First, a multiprocessor or parallel machine is more difficult to program, and there is over-
head involved in data communication and system synchronization. Second, errors are intro-
duced as the result of approximating the current joint angles by the previous ones. The fact that
the update period TG, is usually small assures to certain extent that the approximation we use
will not yield a trajectory substantially different from the accurate one. However, it is

b s XY

necessary to evaluate the error in both more qualitative and quantitative terms.

III. ERROR ANALYSIS

In general, the manipulator moves along a straight line from the initial to the final confi-
guration defined by (R; p;) and (Ry, py), respectively. To simplify the analysis, we ignore
transition between path segments and assume that the position changes linearly with time by
evaluating the equation

p=pi +*(pr —pi) (14)

where the motion parameter %2 linear with time varies from O to 1 to bring the manipulator from
initial to final position. The orientation change in a Cartesian motion can be accomplished in a
number of ways, as a linear rotation in space cannot be uniquely defined. In one commonly
used approach, the orientation change, R, takes place about the unit vector n which remains
constant before and after the change. The vector can be defined by two Euler angles, ¢ and v, as

n=CypSyl+SeSyj +Cyk 15

and the rotation change by an angle 6. Those three variables can be found by solving the equa-
tion [5]

R(n, 6) = R{ IRy (16)
which, when multiplied by the initial orientation, produces the final orientation. Similar to

position change, we vary the amount of rotation successively by multiplying 8 with motion
parameter 4 to bring the manipulator from the initial to the final orientation.

A. Error Definirion

Errors are defined as the difference between the nominal position and orientation of the
manipulator and the position and orientation as the result of the approximation in our parallel
inverse kinematic solution. As position error is decoupled from orientation error as far as
inverse kinematics, they are considered separately.

Similar to [3], the deviation of the position vector, e, is computed by
ep()=p()—pp () 4 a7

where p is the position vector for a given time and p, the position vector corresponding to the
joint angles that are computed with the parallel scheme from p, and the norm of e

5,(t)=1¢, | (18)
we define as the position error.

It is less clear what we should define as the orientation error; one may favor one way or
another depending upon the application. Here, we outline two conventions used in defining

226

orientation errors.

One popular approach [3] defines the error as the absolute value of the difference between

the desired amount of rotation and the actual amount of rotation when inverse kinematics is
computed in parallel, i.e.,

S, (2) = |angle R(n, h* 8)) — angle (R, (1)) |

= |h*0 —angle R, (2))| 19

where the function angle returns the actual amount of rotation about the unit vector n.

Another convention to define orientation error is based on Cartesian coordinates or dif-

ferential rotations about the principle axes [4]. Since the actual rotation R, (z) is close to the
desired rotation R(z), the matrix multiply

dR=R-1()R,(2)

20)
is a valid differential rotation with the general form
1 &z -dy
dR=|-%z 1 & 3y
oy —&x 1

where 8x, 8y, and 3z represent errors of rotation about x, y, and z axes. We now can define
the orientation error as the norm of the vector (3x, dy, 8z)

8, (r) = Vox2 + 5y2 + 522 22)

B. Statistical Models of Errors

Now that the error criteria have been specified for any given moment along a trajectory, it
is yet another problem how to study the behavior of the error in order to reach conclusions valid
over the entire robot workspace. Unfortunately, it is extremely difficult to come up with an
analytical expression for Eq(18) or Eq(22) even for a simple manipulator. Therefore, we cannot

derive the error analytically first and then base our evaluation of the method on the analytical
form of the error.

To establish the fact the method produces results acceptable from a practical point of view,

we can statistically investigate the errors due to the approximation by showing their characteris-

tics such as bounds and averages. If our domain of trajectories covers the entire robot

workspace and if the method is well behaved statistically even in the worse case, then we can be
confident that the method is applicable in practice. '

While we conduct such a statistical study, we should also consider the effect of time
parameters on the error. Intuitively, for example, the shorter T, and slower the motion is, the
smaller the errors, since the previous joint positions more closely approximate the current ones.

Given the fact that we deal with the manipulators with three positioning joints and an
intersecting wrist, we can build the statistic model for position error as follows:

Let p; and p, be the initial and destination position vectors of a motion segment. The Cartesian
trajectory planner G produces successive p(tx) as
PC) =G (pi, Pa> %) (23)
and, if we apply Eq(6), the first three joints solve for their joint angles from the position vector
P(%) by
01(tk) = Ar(P(%e))
O2(tk) = Aa(P(te)» B1(7k-1)
03(tk) = A3(P(te), 01(tk-1), 82(e-1)) (24)
The resultant vector, p, (z) is computed using direct kinematics
Pp (1) = A~1(81(2k), O2(tk), O3(%e)) (25)
The position error function is then
8p (te) = | P(try — Pp (%) | (26)

Now the position error function is a function of the initial and destination positions, and
manipulator kinematics. For a given manipulator, the kinematics is fixed. The statistic model
of the errors can then be established by randomizing the initial and final positions, p; and pg,
the error function in Eq(26) becomes basically a stochastic process dependent on random vari-
ables, p; and py, and on time z. It can be interpreted as follows: at any given time ¢, 3, is a ran-
dom variable itself; and for any two chosen p; and py, 3, (¢) becomes an ordinary function of
time.

At this point, we bring two other important variables into the error function, the motion
segment time Ty, and sampling period T,E,;,d. For a given robot control system, the sampling
period, once chosen, usually remains unchanged. Segment times, however, change from motion
to motion, but in a much more predictable fashion than the positions the manipulator may move
to. Therefore, we can take this into account by considering the error function for a few represen-
tative and fixed values of Ty,,. With the time parameters, Eq (23) is rewritten as

P(t%) =G (pi, Pa ,Tseg > 1) 27

Orientation error function can be similarly computed. Given R; and R, we compute n, 6

that defines the rotation change. Applying Eq (24) we arrive at the first three joint solutions in
PIK. We then carry out Eq (28) to complete the solution.

228

04(tx) = A1 (R(1k), 01(t-1),s ** * » B3(tk=1))
Os(te) = ARt), 81(tk-1)s ** * 5 Ba(ti—1))
Bs(ti) = As(R(t), B1(tk-1)s ***, Bs(tk=1)) 28)

Similar to Eq (26) the equivalent rotation of the above solution is computed by the direct
kinematics

R, (try= A~1(6(22)) (29)

By applying Eq (20) through (22) to compute orientation error d, (1), we can compute orienta-
tion error at each point along a motion trajectory. Furthermore, if we randomize the parameters
v, ¢, and O that define orientation change over the entire robot orienting space, we can evaluate
our algorithm by studying the characteristics of Eq (22).

So far we have introduced our parallel inverse kinematics solution and a method to con-
struct statistical models of position and orientation error functions. Both the solution and the
technique for constructing error models are applicable to a number of robot manipulators with a
closed-form inverse kinematic solution. In the next section, we use a specific example to evalu-
ate our algorithm.

IV. EVALUATION ON PUMA 260

We evaluate the algorithm on a PUMA 260 manipulator, which has six degrees of freedom
with six revolute joints and a reach of approximately 40 centimeters. The symbolic inverse
kinematics and Jacobian matrices we use here are based on those in [1]. We break the section
into two parts - in the first part, we study the position errors; in the second, we study orientation
errors. In each case, we vary the time parameters, Ty, segment time and T3, the setpoint
update period, and we examine distributions of two variables, the mean error § and maximum
error 3M2% in both position and orientation. All simulation programs are written in 'C’ using
single precision floating point arithmetics.

A. Position Error Analysis

While generating random initial and final positions, one must make sure the Cartesian tra-
jectory between the two positions lies inside the robot workspace and does not include any
singularity points. While one could test the condition whether a singularity is reached after a
new setpoint is generated, one could also use the following criteria to predict the presence of
any position singularity along the trajectory without performing any inverse kinematics.

The position workspace of PUMA 260, which contains only an elbow position singularity,
can be viewed as the space between a sphere and a cylinder as illustrated in Fig. 4.

229

R1=D;

Fig. 4: Position workspace of PUMA 260

The sphere is the space swept by the arm when it is fully extended, and the cylinder is the
space the arm cannot reach due to the shoulder offset, D;. We ignore the joints’ limits since
they are irrelevant as far as our analysis is concerned. To determine if the two randomly chosed
positions p; and pr, where

Pi=(xi,)’i,2i)s Pd'_'(xd,)’d,zd) (30)

form a Cartesian trajectory that does not contain the elbow singularity and that lies entirely in
the workspace, the trajectory p = p4 — p; must satisfy two conditions:

(i) The end points of two vectors, p; and pg, must lie in the workspace. For this to be true,
the it is necessary that

x2+y2>R¢, xF+yfF>R¢ (31)
and that

Ipi <R3, |Pal<R; (32)

(it) If (i) is true, in order for every point on between p; and p, to be inside the workspace it
must be true that when p;, and A are defined as

Pmin = Pi + AMpa—Pi) (33)

Pmin'(Pa—Pi) =0 (34)
for some 0 <A £ 1, pmin must satisfy

X2in +V&im > RE (35)

and
[Pmin| < R2 (36)

In case the solution leads to A > 1 or A <0, the trajectory also lies entirely in the
workspace. Geometrically, we shrink the sphere and grow the cylinder symmetrically,
then make sure the line segment between the two end positions lies entirely inside the
volume between the shrunk sphere and grown cylinder. Such a test can determine the

feasibility of a Cartesian trajectory most efficiently without actually generating intermedi-
ate points.

In generating the initial and final vectors, the x,y and z coordinates are randomly gen-
erated by a random number generator with uniform distribution between (0, R) for x, (=R,
Ry) fory, and (=R, R,) for z. The reason why x is chosen to be alway positive is that it is suf-
ficient to study a semisphere as all other cases simply correspond to semispheres that can be

obtained by rotating this one about the waist axis; such a rotation does not affect the nature of
the problem.

We choose to have segment times of 3 and 7 seconds, and Tg,d of 3 ms 7 ms, which cover
the range of values for these parameters in typical robot control systems. Unless otherwise indi-
cated, every distribution is obtained from 1000 randomly selected trajectories.

Error 8, Case 1: Ty =Tsecs and TGy = Tms

In the first set of plots, we display the distributions of the maximum and mean of the posi-
tion error function in Eq(26) for the time parameters given above.

231

0 0.5 1 1.5
(@
0 —
|] 1 i
0 0.2 0.4 0.6
(b)

Fig. 5. Position Error Distributions (in mm). (a) 2% (b) Sp,

Each distribution is interpreted as a density function with the either mean error or the max-
imum error as the horizontal axis. Therefore, the probability for a randomly chosen trajectory
to have a mean or maximum error less than x is given by the integration from O to x of the
respective distribution. Bounds on errors can also be easily identified. In our first case, the
maximum errors are bounded by about 1.2 mm and the average error by roughly 0.5 mm, for
the specified set of time parameters. For the majority of the trajectories, the maximum error is
less than 0.8 mm and the mean error less than 0.4 mum.

232

Error 8, Case 2: Effect of the Segment Time

Intuitively, a smaller segment time with unchanged displacement requires higher Cartesian
velocity, leading to larger joint errors. To verify the conjecture, we set the setpoint update time
at 3 ms but vary the segment time from 3 secs to 7 secs. The number of trajectories over which
distributions are computed remains unchanged.

Tgpp=Tsecs

: s L i Tseg=3secs
| i [}]
0 0.5 1 1.5
@
Tseg=Tsecs
i . Tseg =3secs
0d &7 M T T e,

i 1 i 1

0 0.2 0.4 0.6

, (b)
Fig. 6. Effect of Ty, at Tg,d =3ms. (a) 85“‘”‘ (in mm). (b) _5-,, (in mm).

The curve corresponding to the distribution of smaller segment time is a compressed ver-
sion of the one corresponding to larger segment time, with the envelope preserved. By compar-
ing the peaks of the two curves, we can see that the change in the magnitude of the errors is
approximately inversely proportional to that in the segment time. Upper bound on position
error for Tseg = 7 secs is about 0.6 mm.

233

Error 8, Case 3: Effect of Update Period

On the other hand, if we increase the rate at which the new setpoints are computed, we
expect to see decrease in errors. The next two plots display the effect of the update periods on
position errors. The error function is studied for TGy = 3ms and T4 = Tms.

Tg, =3ms

ng =Tms
0 - .. ‘-. K .
| 1] |]
0 1 2 3 4
(a)
T,gd =3ms
L TGa=Tms
b {
1 1.5
(b)

Fig. 7. Effect of Tg,d on & Distribution at T, = 3secs (a) 3% (in mm). (b) S'p (in mm).

The update period has the similar effect on errors to the inverse of segment time. In all
distributions there is a clear upper bound. Also notice that the distribution for T,gd = 3ms and
Tseg = 3secs in Fig. 7 is almost the same as that for Tg,d = Tms and Ty, = Tsecs, implying that
the determining factor of the error characteristics is the ratio between T, and T,gd, rather than
the size of each parameter.

234

Orientation Error Analysis

We now turn our attention to the analysis of orientation errors. To generate random orien-
tation changes, we generate the first two Euler angles, ¢ and v, to create unit vector Eq(15), and
then we generate a rotation random between 0.1 and 0.9 of one = for 8, which rotates about the
unit vector. Additionally, the above random rotation is accompanied by a random translation
change as described in the previous section. While generating the random rotations, unlike the
case for position trajectory generation, there is no simple way such as Eq (25) through Eq (30)
to predict if the orientation trajectory will reach any orientation singularity regions[8]. Instead
we have to test if a point is inside the singularity region after it is generated.

Using the parallel inverse kinematics, we tested the solution over a large number of trajec-
tories again to arrive at our statistical evaluation. Conclusions similar to position error analysis
can be drawn from the results of our study on orientation errors. In our analysis we use Eq (22)
to calculate orientation error on each point along a trajectory as the square root of the sum of
squares of rotational errors about each principle axes. Since the conclusions are similar, here we

simply display some of the plots to show the characteristics of the distributions, again of mean
orientation errors and maximum orientation errors.

Error 8, Case 1: Tqpp =Tsecs and TGy = Tms

0 0.5 1 1.5 2 2.5

@

235

1 5 i I
0 0.1 0.2 0.3

(b)
Fig. 8. Orientation Error Distribution (in degs). (a) 322X, (b) J, .

As we can see, the maximum errors for the given set of time parameters are almost always
less than 1.5 degrees and mean errors less than 0.2 degrees. Compared with the position error
distribution, the peak of the error distribution occurs more closely to zero. The upper bound
corresponding to the worst case over the entire workspace in each case occurs at a relatively
large value. This may be caused by the fact the orientation of T is determined by all six joints
so that the outer joints’ computation bares the noises due to approximation that are generated by
all prior joints, leading to the drifting of errors to a large upper bound before they disappear.
For position errors, since solution of the the positioning joints is independent of that of the
orienting joints, they are less noisy than the orientation errors.

Error 3, Case 2: Effect of Segment Times

Next we study the orientation errors by varying the segment times of motion trajectories
between 3 and 7 seconds but maintaining the same update time at 3 mm.

236

Tspg=Tsecs

Tyeg=3secs

(@)

Tseg=Tsecs

Tseg=3secs

T T T 1 l
0.15 0.2 0.25

O —
©
()
(v
o
p—

(b)
Fig. 9. Effect of Tgey on 3, at TGy =3ms. (a) 322 (in degs). (b) d, (in degs).

The decrease of the update time compresses the distribution, but preserves its envelope
Further, the decrease in error is roughly linear to the decrease in update period.

C. Comparison to Resoived Motion Control

Now we have statistical models of the mean and maximum errors, but we have not
answered the question: how does the method compare with other similar approaches in terms of
these errors? As we mentioned the parallel algorithm gains efficiency through approximation.

Therefore, it is only fair to compare the method with other representative approximation
methods used to generate Cartesian trajectories.

One widely applied approach is Resolved Motion Rate Control (RMRC) proposed by
Whitney. The approach is based on the idea that the joint velocity vector can be derived from
the Cartesian velocity vector by using the inverse Jacobian. However since the setpoint process
is discrete in time, the desired joint velocity vector at the entire update period is approximated
by that at the beginning of the period, ignoring second or higher order effects. Further, since
the update of Jacobian matrix takes a considerable amount of time, it is usually computed in
background at a slower rate, causing further deviation of the computed trajectory from the
desired one. The effect of both factors on tracking error is illustrated in Fig. 10, where T4 is
usually a few times longer than TG,.

Tda

Fig. 10. Linear Approximation In Jacobian Control

Errors caused by the approximation can be readily computed. We denote J(¢) as the Jaco-
bian matrix and desired Cartesian rate can be computed from the initial and final configurations
as

X = (xf =X)/Tseg (37)

where each x is a vector of six Cartesian coordinates, three translation and three rotations. The
desired joint velocity is then

9=J1x (38)
the joint position is computed by

4

8(:)=0(0) + t[J1xdr (39)

To calculate the error, we first perform the direct kinematics to find out the position of the
end-effector corresponding to the computed joint positions,

Te(t) = A1(8(2)) (40)

The error is computed by comparing Eq (40) and the desired Ts. One can easily get the
desired T¢ from the initial and final configurations and the time variable. Using Eq (40) we can
calculate error in position 3, (¢) and error in orientation §, (¢) as we did when studying PIK. By

238

randomizing the initial and final manipulator configurations, we obtain the statistical models of
these error functions.

Another disadvantage of this formulation is that once the real trajectory deviates from the
planned one, the deviation will remain without correction since the velocity is not adjusted
according to where the end-effector is. To reduce the tracking error, one can continuously
recompute the desired Cartesian velocity based on where the end-effector really is, x(z), where
it is heading, x;, and how much time there is left for the current trajectory T, —¢, by the equa-
tion

which is no longer constant over [0, T,].

We evaluate the error function again using PUMA 260 as the representative manipulator.
The performance of RMRC is studied over 1000 randomly chosen trajectories and the results
are are compared with those of the parallel algorithm under various time conditions.

Comparison of 8, Case 1: Ty = Tsecs, Tu{, =14 ms and T,gd =Tms

Here we assume the Jacobian matrix update takes place at one half of the the rate of the
inverse kinematics computation, a more optimistic ratio favoring Jacobian control than actuality
when they are performed on the same processor. On the PUMA robot for example{1], symbolic
evaluation of the inverse Jacobian matrix requires 118 multiplications, 50 additions, and 6 tri-
gonometry function calls, with a weighted cost of 1035.4; on the other hand, the parallel inverse
kinematics has a weighted cost of 173.1 (Table III), excluding the overhead, corresponding to a
ratio of 1 to 7. Even in the serial solution, the relative cost is 687.2 (Table II), corresponding to
a ratio of 1 to 1.5. In the following plots, the dotted curve represents the maximum position
error distribution of RMRC and the solid curve the maximum position error distribution of PIK.

239

(@)

RMRC

(b)
Fig. 11. Comparisons of 3, Distributions (in mm). (a) 2. (b) &,

The comparison of dMa shows remarkable similarity in the envelopes of the two distributions,
with the distribution of RMRC shifted toward right, implying larger maximum errors. Further,
the distribution for RFMS is much more sparse and worse behaved than PIK. Distribution for
RMRC does not have a clear cut-off error, the value above which no more errors would be
observed. However, in the case of PIK in each case we have studied, position error is well
bounded by a cut-off value. In our experiments, this characteristic is maintained regardless the
number of trajectories over which the distribution is computed.

The disparity becomes more apparent in the distributions of mean position errors with the
RMRC'’s distribution shifting further right and drifting to zero at much larger value than PIK.

240

Comparison of 8, Case 2: Tseg =3secs, Ty =6ms,and TGy =3 ms

In the next set of plots, we cut both the segment time and sampling period by one half and
maintain a two-to-one ratio between the Jacobian matrix update period and the sampling period.
This corresponds to having the Jacobian update period of 6 milliseconds, a figure hard to ap-
proach even by the best microprocessor on the market. The comparative results are displayed in
Fig. 12 with the distribution for RMRC in dashed curve and that for PIK in solid curve.

RMRC
| | I
2 3 4
(@
s RMRC
1 |] |
0 0.5 1 1.5
(b)

Fig. 12. Comparisons of 3, Distributions for Smaller Ty, and T, gd (in mmy). (a) 372%. (b) Sp.

Similar conclusions can be drawn from the above figures. Again the PIK is superior to
RMRC in terms of tracking accuracy by a large margin. Also we can note that the distributions
do not change much from the Fig. 11, indicating the determining factor is the ratio between the
segment time and TG,4. D. Comparison to VAL

241

Comparison of PIK can also be made with the control system of PUMA 260, VAL[8], pro-
vided by the manufacturer (Unimation). VAL is typical of industrial robot controllers with a
long Tg,d but a small Az. In particular, VAL computes a new position every 28 milliseconds
and a faster servo loop, running at about a kilohertz, performs a linear interpolation between
two neighboring points. In our study, we set the segment time at 7 seconds, the update period
for PIK at 2 milliseconds, which is about about the best achievable time in an 8086/8087-based
multiprocessor (Table II). The update period for VAL is set at 28 ms, with 13 interpolated
points for each computed point. The result of comparison is displayed in Fig. 13.

: VAL
006 :

004 i

0.02 —

0

0 0.2 0.4

@
0.1 4

. 1 VAL

0.05

(b)

Fig. 13. Comparison between VAL and PIK (in mm).(2) 552, (b) 5.

In terms of the mean error distribution, VAL has a better performance than PIK with a
upper bound of 0.07 mm. PIK’s mean errors are bounded by 0.2 mm. In terms of the two max-
imum error distributions, the more important comparison of the two, it is not clear which

242

method is preferred to the other, since VAL has a larger upper bound but PIK a larger mean of
maximum errors. When comparing the two methods by their response times to modification,
PIK is much more superior to VAL: PIK modifies trajectory every 2 ms, enabling the robot to

react to input signals at up until 500 hertz, whereas VAL can handle the input signals only at up
until 35 hertz.

V. IMPLEMENTATION

The parallel solution outlined above is implemented using Intel single board computers as
part of a robot control system to control a PUMA 260 manipulator [9]. The system is illustrated
in Fig. 14. Each joint employs an 8086-based 86/30 and is equipped with an 8087 co-processor

so that computations can be performed in floating point. The system is based on the Multibus to
enable joints to communicate with each other.

Ethernet
)

iSBC iSBC

186/51 86/30

Comm Super

y
< Multibus >
A A
\
iSBC iSBC iSBC iSBC iSBC iSBC
86/30 86/30 86/30 86/30 86/30 86/30
J1 2 3 J4 J5 J6

Fig. 14. System Implementation

The trajectory generation algorithm used is based on [5] which is formulated to take
advantage of a multiprocessor system. The process is interrupt driven with an even update
period TGy, which we set at 6 ms due to various considerations other than inverse kinematics,
although it can be as small as 3.0 ms. The system supervisor computes the desired Cartesian
positions Tg and joints compute inverse kinematics in parallel. Between motion segments,
joints perform transitions also in parallel, to remove any discontinuities in position and velocity
between the current and next segment of motion. At the servo level, the system runs a PID con-
trol loop with a sampling period of 1.5 ms. The servo derives the position commands by
linearly interpolating setpoints computed by the trajectory generation process.

243

Joints and supervisor communicate via the Multibus through shared memory. At the end of
each sampling period, each joint stores, to known locations or mail boxes, the computed results,
which then are collected, and distributed to other joints if necessary, by the supervisor. The
overhead is dominated by such data collection and distribution among supervisor and the joints.
The supervisor sends a buffer of about 100 bytes to the joints, the buffer containing one of vec-
tors of the current Tg, sines and cosines of other joints, etc., which each joint needs for inverse
kinematics. A joint sends a buffer of 36 bytes back to the supervisor, reporting what was com-
puted in the last period. The amount of data transfer totals 816 bytes in each sampling period.
Since there can be only one bus master at any given moment, the data transfers occur in serial.
Consegquently, the system spends about 0.8 ms on exchanging data.

The controller communicates with the external world through an Ethernet communication
processor 186/51. Task definitions are first sent to the controller through this process. While
the task is being executed, task geometry can be modified through this communication. We are
able to handle input changing at up to 30 hertz.

V1. CONCLUSION

A parallel algorithm for the inverse kinematics of a robot manipulator with closed-form
solution has been described in this work. The method is highly efficient as demonstrated by the
four-fold reduction in the computational complexity when applied to solving the inverse
kinematics of PUMA 260. Such an improvement in computation efficiency allows the robot to
react to external modifications at a high rate, which is critical for execution of real-time sensor
driven tasks.

We have also introduced a method to study the behavior of the algorithm from the statisti-
cal point of view. The method allows us to arrive at statistical models of error functions, on
which the evaluation of the algorithm can be based to study such important parameters as mean
errors and upper bounds, over the entire workspace of the robot. Further, the method can be
applied effectively as well to other problems in which it is difficult to derive symbolic expres-
sions for the variables of interest.

The parallel inverse kinematics is applied to a specific robot manipulator, PUMA 260, and
the error analysis technique is used to evaluate the algorithm. The study shows that the method
introduces errors much in the acceptable range; the errors disappear in at most six sampling
periods at the end of the motion. When the update period is seven milliseconds and segment
time is seven seconds, for example, the position errors are upper-bounded by 1.5 millimeters
and the average errors by 0.6 millimeters (Fig. 5). Even though the method has about the same
performance as the interpolation method normally employed in industrial robots in terms of
upper bound on errors, the algorithm can be executed at a speed 5 to 10 times faster, thereby
minimizing errors due to modification to the trajectory.

244

The algorithm we have introduced can be implemented using special architecture on a

single-board multiprocessor. The device should be made programmable so that it can solve
kinematics of various robot manipulators. The single-board implementation cuts down the
communication overhead, the physical size, and, hopefully, the cost. With today’s micro-
processor technology, it is conceivable that such an inverse kinematics processor can run at
about 1 Kilohertz, a rate at which the errors are upper-bounded at about 0.2 »vn, small enough
for virtually any application.

(1]

(2]

[3]

(4]

[5]

(6]

!

(8]

(9]

REFERENCES

R. P. Paul and H. Zhang, "Computationally efficient kinematics for manipulators with
spherical wrists based on the homogeneous transformation representation,” Inz. J. Robotics
Res.,, vol. §, no. 2, pp. 30-42, Summer, 1986.

H. Zhang, "Use of the C/8086 cross compiler," Internal Memo., Department of Computer
and Information Sciences, University of Pennsylvania, Philadelphia, PA., 1985.

R. H. Taylor, "Planning and execution of straight line manipulator trajectories,” /BM Jour-
nal of Research and Development, vol.23, no.4. July, 1979.

R. P. Paul, Robot Manipulators: Mathematics, Programming and Control. Cambridge,
MA: MIT 1981.

R. P. Paul and H. Zhang, "Robot motion trajectory specification and generation". Proc.
2nd International Symposium of Robotics Research, pp: 373-380, August 20-23, Kyoto,
JAPAN. 1984.

Whitney, D. E. "The mathematics of coordinated control of prostheses and manipulators,”
J. Dynamic Systems, Measurement, Control, pp: 303-309, December, 1972.

R. P. Paul and C.N. Stevenson, "Kinematics of robot wrists," Int. J. Robotics Res., vol. 2,
no. 1, pp.31-38, Spring, 1983.

Unimation Inc., “Breaking away from VAL or how to use your PUMA without using VAL,”
Unimation Inc., 1982.

H. Zhang and R. P. Paul, "A robot force and motion server," Proc. 1986 ACM/IEEE Com-
puter Society Fall Joint Computer Conference, Dallas, Texas, November 1986.

245

	A Distributed System for Robot Manipulator Control
	Recommended Citation

	A Distributed System for Robot Manipulator Control
	Abstract
	Comments
	Author(s)

	tmp.1193772583.pdf.rTt35

