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Abstract The paper deals with a novel control algorithm for simultaneous stabilization and
trajectory tracking of underactuated nonlinear mechanical systems (UNMS) with included
actuators dynamics. Simultaneous stabilization and trajectory tracking refer to arbitrary cho-
sen actuated and unactuated degrees of freedom (DOF) of the system. The proposed control
approach can be applied both to the second-order nonholonomic systems and the systems
with input coupling, while a general model of actuators dynamics includes electrical, pneu-
matic, and hydraulic drives. Control law is based on linear combination of two control sig-
nals, where the first signal is designed to separately control only actuated DOF, and second
to separately control only unactuated DOF. Simulation example of rotational inverted pen-
dulum driven by electrical DC motor is presented, showing the effectiveness of the proposed
approach.

Keywords Underactuated nonlinear mechanical systems · Sliding mode control ·
Trajectory tracking · Stabilization · Actuators dynamics

1 Introduction

Underactuated nonlinear mechanical systems (UNMS) are defined as systems in which the
dimension of the configuration space exceeds that of the control input space. The difficulty
of the control problem for UNMS is due to the reduced dimension of the input space. Exam-
ples of UNMS are mobile robots, cranes, airplanes, spacecrafts, missiles, underwater vehi-
cles, surface vessels, underactuated robot manipulators, etc. In this article, we deal with two
the most often used classes of UNMS, i.e., second-order nonholonomic mechanical systems
and UNMS with input coupling. These two classes of UNMS are distinguished because of
their often usage in different research fields. For instance, nonholonomic systems are the
most used in robotics, while UNMS with input coupling are the most used in aerospace and
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naval research fields. Nonholonomic systems are systems which satisfy classical nonholo-
nomic constraints [32]. If the system is a first-order nonholonomic system, then it satisfies
generalized coordinates and velocities constraints of the form Φ(q, q̇) = 0, and the con-
straints are nonintegrable (such constraints often occur in kinematic mathematical models
such are wheeled mobile robots and wheeled vehicles). If the system is a second-order non-
holonomic system, then it satisfies constraints on generalized coordinates, velocities, and
accelerations of the form Φ(q, q̇, q̈) = 0 and these constraints are nonintegrable (such con-
straints often occur in dynamic mathematical models for underactuated manipulators, un-
derwater vehicles, surface vessel, airplanes, space robots, etc.) [2]. If UNMS with second-
order nonholonomic constraints of the form Φ(q, q̇, q̈) = 0 are replaced by Φ(q, q̇, q̈) �≡ 0,
then such systems are called UNMS with input coupling (such systems often occur in dy-
namic mathematical models where the actuator’s dynamics affects directly on more than one
generalized acceleration) [18, 29].

The well-known control property of a general class1 of UNMS is its impossibility of
asymptotic stabilization around the equilibrium point using a continuous linear-time invari-
ant feedback control law [10]. This theorem is applied to general form of underactuated
manipulators [20] where the possibility of asymptotic stabilization to the equilibrium mani-
fold is shown. General class of UNMS can be asymptotically stabilized using discontinuous
[4], structural-variable [5] or time-variant [12] control feedback law. Conditions for partial
and full integrability of underactuated robot manipulators are shown in [20], and for under-
actuated vehicles in [31].

Euler–Lagrange’s approach to UNMS mathematical modeling can be found in [2, 18],
with classification to holonomic and nonholonomic systems together with definitions of
UNMS with input coupling. Among first ideas how to control actuated DOF only or un-
actuated DOF only of nonholonomic systems, the method of partial feedback linearization
(PFL) [25] is given. Generalization of PFL to UNMS with input coupling is described in
[18], but there is no known approach to control the arbitrary2 DOF. In another way, gen-
eralization of PFL to arbitrary controlled DOF is described in [23], but without interests
in UNMS with input coupling. In this paper, we consider modeling and control of both
second-order nonholonomic systems and UNMS with input coupling. In both cases, we take
actuators nonlinear dynamics into account, while modeling and control of UNMS with in-
cluded actuators dynamics is highlighted in this work. Neglecting of actuators dynamics in
UNMS controllers design can cause unstable system behavior [11]. A presented nonlinear
actuators model describes a class of pneumatic, electrical, and hydraulic drives, and it of-
fers an easy and simple mathematical way to connect to UNMS. Pneumatic and hydraulic
actuators have a complicated nonlinear dynamics that is often approximated by the first- or
the second-order dynamics [34]. Modeling and control of fully-actuated3 systems with in-
cluding actuator dynamics are considered in literature, using pneumatic-driven systems [24,
30], electrical-driven [13, 28] and hydraulic-driven [1] systems. After combining actuators
equations with dynamic equations of UNMS, the third- and higher-order dynamic equations
are obtained, what highly complicates control law derivation. A more challenging problem
in control of UNMS is simultaneous stabilization and trajectory tracking of particular de-
grees of freedom. A unified controller for both trajectory tracking and point regulation of

1There are some specific examples of UNMS that can be asymptotically stabilized around equilibrium point
using a continuous linear-time invariant feedback control law, but this is not possible for a general class.
2Arbitrary DOF means arbitrarily chosen DOF, and can be any actuated or any unactuated DOF.
3A dimension of a configuration space for fully-actuated systems is the same as a control input space dimen-
sion.
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second-order nonholonomic chained systems is given in [16], control of UNMS with servo-
constraints is presented in [7–9, 22], while control of holonomic and nonholonomic systems
using sliding mode is presented by the direct Lyapunov approach [15]. Specific examples of
simultaneous stabilization and/or trajectory tracking of UNMS are given in [3, 14, 27, 33].

Previous works in this area of research did not give results to: (a) control of arbitrary cho-
sen DOF of UNMS with included actuators dynamics and (b) enveloping both the second-
order nonholonomic systems and UNMS with input coupling. These generalizations from (a)
and (b) are not only contributions of this paper, but also a simultaneous control of arbitrary
chosen actuated and unactuated degrees of freedom of the system is provided.

The paper is organized as follows. Section 2 consists of a UNMS mathematical model
in Euler–Lagrange (EL) and state space formalism. Here, we introduced novel ideas: how
to present EL equations in a state space form avoiding matrix pseudo-inversion. A matrix
pseudo-inversion is commonly used in noncollocated PFL to control just unactuated DOF.
In the same section, a general mathematical model of actuators dynamics is presented. Sec-
tion 3 shows development of novel control law derived as linear combination of two sepa-
rated control laws, where the first control law is designed to control only actuated DOF and
the second to control only unactuated DOF. Section 4 presents an illustrative example: con-
trol of rotational inverted pendulum (RIP) with a direct current electric actuator. Section 5
contains the conclusions.

2 Mathematical model

2.1 Euler–Lagrange equations

Mathematical modeling of UNMS is based on the Euler–Lagrange’s approach, as given by
expressions:

d

dt

∂L(q, q̇)

∂q̇a

− ∂L(q, q̇)

∂qa

+ Fdisa (q, q̇) = Ha(q)F (1)

d

dt

∂L(q, q̇)

∂q̇u

− ∂L(q, q̇)

∂qu

+ Fdisu (q, q̇) = Hu(q)F (2)

where index a refers to actuated, and index u to unactuated generalized coordinates.
Lagrangian L(q, q̇) is described as follows:

L(q, q̇) = K(q, q̇) − U(q) = 1

2
q̇T M(q)q̇ − U(q)

where q ∈ Q; n dimensional vector [19]:

q = col(qa,qu) ∈ Qa × Qu

dim(Qi) = ni i = a,u

n = na + nu

where “col”-column vector, dim(Q)-dimension of configuration space, and dim(Qi)-
dimension of configuration subspace Qi .
Variables q, q̇, q̈ ∈ R

n represent generalized vectors of position, velocity, and acceleration,
respectively; Fdisa (q, q̇) ∈ R

na and Fdisu(q, q̇) ∈ R
nu —vectors of generalized dissipation
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forces/torques; F ∈ R
na —vectors of generalized control forces/torques; Ha(q) ∈ R

na×na

and Hu(q) ∈ R
nu×na —input coupling matrices; K(q, q̇) ∈ R—kinetic energy; U(q) ∈ R—

potential energy; M(q) ∈ R
n×n inertia matrix.

Depending on the matrices Ha(q) and Hu(q) from (1) and (2), two classes of UNMS can
be expressed:4

– Nonholonomic 2. order systems: det(Ha(q)) �= 0, Hu(q) ≡ 0 (R1)

– UNMS with input coupling: det(Ha(q)) �= 0, Hu(q) �≡ 0. (R2)

where 0 is zero matrix.5 The control space dimension is less than the configuration space
dimension. In the case (R1), it is well defined (due to the nonholonomic constraints, where
Hu(q) ≡ 0) which generalized coordinates are actuated and which are unactuated, but in
the case (R2) this is not explicitly defined. To achieve a proper selection for both cases,
actuated and unactuated generalized coordinates have to be chosen so that they meet the
requirements (R1) and (R2) of input coupling matrices Ha(q) and Hu(q). Equations (1) and
(2) can be expressed as follows:

Ma1(q)q̈a + Ma2(q)q̈u + ha(q, q̇) + Fdisa (q, q̇) = Ha(q)F (3a)

Mu1(q)q̈a + Mu2(q)q̈u + hu(q, q̇) + Fdisu (q, q̇) = Hu(q)F (3b)

where ha(q, q̇) ∈ R
na and hu(q, q̇) ∈ R

nu include Coriolis, centrifugal, and gravitational
elements, while Mij (q), i ∈ {a,u}, j ∈ {1,2} are matrices Ma1(q) ∈ R

na×na , Ma2(q) ∈
R

na×nu , Mu1(q) ∈ R
nu×na i Mu2(q) ∈ R

nu×nu and constitute the matrix M(q):

M(q) =
[

Ma1(q) Ma2(q)

Mu1(q) Mu2(q)

]
(4)

2.2 Transformations to nonlinear state space

Here, we describe a specific way of transforming EL equations to state space form which
will enable us to simultaneously control arbitrary chosen actuated and unactuated DOF of
the system. Novelty is in selecting actuated and unactuated generalized accelerations from
(3a) and (3b) aiming to set state space vector without using matrix pseudo-inversions (ma-
trix pseudo-inversions are usually used in the noncollocated partial feedback linearization
[17, 25]). In the following, EL equations (3a) and (3b) are transformed into two equations,
so that in the first there is only acceleration q̈a and in the second one only acceleration q̈u.
Both equations represent the same system, but explicitly expressed by different acceleration
vectors. Such formalism enables direct approach to accelerations q̈a and q̈u through control
variable F, and enables an easy representation in the nonlinear state space, affine in control
variable. Acceleration q̈a is derived from (3a) and acceleration q̈u is derived from (3b) as
follows:

q̈a = −M−1
a1 (q)

[
Ma2(q)q̈u + ha(q, q̇) + Fdisa (q, q̇) − Ha(q)F

]
(5a)

q̈u = −M−1
u2 (q)

[
Mu1(q)q̈a + hu(q, q̇) + Fdisu (q, q̇) − Hu(q)F

]
(5b)

4These two classes of UNMS are distinguished because of their often usage in different research fields. For
instance, nonholonomic systems are the most used in robotics, while UNMS with input coupling are the most
used in aerospace and naval research fields.
5The expression Hu(q) �≡ 0 means that every row of the matrix Hu(q) has at least one nonzero element, for
all q.
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Matrices Ma1(q) ∈ R
na×na and Mu2(q) ∈ R

nu×nu are both full ranked and square matrices,
so invertible. This follows from uniform positive definiteness of the matrix M(q).
Acceleration expression from (5a) is replaced in (3b) to get (7). In the same way, accelera-
tion expression from (5b) is replaced in (3a) to get (6). This way of explicitly acceleration
selection will remove unnecessary pseudoinversion of the inertia submatrices Mij (q) what
will happen for any other selection of accelerations q̈a , q̈u.

M̃a1(q)q̈a + M̃a2(q)
[
hu(q, q̇) + Fdisu(qu, q̇u)

] + ha(q, q̇) + Fdisa (q, q̇)

= [
Ha(q) + M̃a2(q)Hu(q)

]
F (6)

M̃u2(q)q̈u + M̃u1(q)
[
ha(q, q̇) + Fdisa (qa, q̇a)

] + hu(q, q̇) + Fdisu(q, q̇)

= [
Hu(q) + M̃u1(q)Ha(q)

]
F (7)

where

M̃u2(q) = Mu2(q) − Mu1(q)M−1
a1 (q)Ma2(q)

M̃u1(q) = −Mu1(q)M−1
a1 (q)

M̃a1(q) = Ma1(q) − Ma2(q)M−1
u2 (q)Mu1(q)

M̃a2(q) = −Ma2(q)M−1
u2 (q)

while M̃ij (q), i ∈ {a,u}, j ∈ {1,2} represents matrices M̃u2(q) ∈ R
nu×nu , M̃u1(q) ∈

R
nu×na , M̃a1(q) ∈ R

na×na and M̃a2(q) ∈ R
na×nu .

Accelerations q̈a, q̈u are explicitly defined from (6) and (7) as follows:

q̈a = fa(q, q̇) + fdisa (q, q̇) + Ba(q)F (8a)

q̈u = fu(q, q̇) + fdisu (q, q̇) + Bu(q)F (8b)

where

fa(q, q̇) = −M̃−1
a1 (q)

{
M̃a2(q)hu(q, q̇) + ha(q, q̇)

}
fu(q, q̇) = −M̃−1

u2 (q)
{
M̃u1(q)ha(q, q̇) + hu(q, q̇)

}
fdisa (q, q̇) = −M̃−1

a1 (q)
{
M̃a2(q)Fdisu (q, q̇) + Fdisa (q, q̇)

}
fdisu (q, q̇) = −M̃−1

u2 (q)
{
M̃u1(q)Fdisa (q, q̇) + Fdisu (q, q̇)

}
Ba(q) = M̃−1

a1 (q)
[
Ha(q) + M̃a2(q)Hu(q)

]
Bu(q) = M̃−1

u2 (q)
[
Hu(q) + M̃u1(q)Ha(q)

]

and fa(q, q̇), fdisa (q, q̇) ∈ R
na , fu(q, q̇), fdisu (q, q̇) ∈ R

nu , Ba(q) ∈ R
na×na , Bu(q) ∈ R

nu×na .
Both matrices M̃a1(q) and M̃u2(q) are square and invertible, i.e., have full ranks. Proof for
full rank of M̃a1(q) is given in (32), while for M̃u2(q) is given in (33), in Appendix A.
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Mechanical system can be easily transformed from (8a) and (8b) in nonlinear state space
form, affine in control variable,6 as follows:

ẋq =

⎡
⎢⎢⎣

xqa2

xqu2

fa(xq) + fdisa (xq)

fu(xq) + fdisu (xq)

⎤
⎥⎥⎦

︸ ︷︷ ︸
fq (xq )

+

⎡
⎢⎢⎣

0na×na

0nu×na

Ba(xq)

Bu(xq)

⎤
⎥⎥⎦

︸ ︷︷ ︸
Bq (xq )

F (9)

Vector function fq(xq) ∈ R
2n and matrix function Bq(xq) ∈ R

2n×na are defined in expres-
sion (9).
Space variables vector xq ∈ R

2n of mechanical system is defined as

xq =
[

q
q̇

]
=

⎡
⎢⎢⎣

qa

qu

q̇a

q̇u

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

xqa1

xqu1

xqa2

xqu2

⎤
⎥⎥⎦ =

[
xq1

xq2

]
(10)

2.3 Actuator model

Mathematical model of actuators connected to UNMS is described as follows:

F = γ ac(xac,xqa1,xqa2) − Macẋqa2 − Fdisac1(xqa1,xqa2) (11a)

ẋac = fac(xac,xqa1,xqa2) + gac(xac)u (11b)

where γ ac(xac,xqa1,xqa2) ∈ R
na is a vector of nonlinear functions,7 Mac > 0 ∈ R

na×na is
a constant diagonal matrix of actuators’ inertias, Fdisac1(xqa1,xqa2) ∈ R

na is a dissipation

vector, gac(xac) ∈ R
(
∑na

k=1 nk
ac)×na is an input matrix, fac(·) ∈ R

∑na
k=1 nk

ac is a nonlinear vector
function and u ∈ R

na is actuators’ input vector. The actuators’ state space vector xac ∈ Xac

is defined as follows:

xac = col
(
x1

ac,x2
ac, . . . ,xk

ac

) ∈ X1
ac × X2

ac × · · · × Xk
ac

dim
(
Xk

ac

) = nk
ac k = 1,2, . . . , na

dim(Xac) =
na∑

k=1

nk
ac

where: superscript “k” denotes kth actuator, “col”-column vector, dim(Xac)-dimension of
actuators’ state space, and dim(Xk

ac)-dimension of actuators’ state subspace Xk
ac .

An expanded form of (11b) is given by

⎡
⎢⎣

ẋ1
ac

...

ẋk
ac

⎤
⎥⎦ =

⎡
⎢⎣

f1
ac(x

1
ac,x1

qa1,x1
qa2)

...

fkac(x
k
ac,xk

qa1,xk
qa2)

⎤
⎥⎦ +

⎡
⎢⎣

g1
ac(x

1
ac) . . . 0

...
. . .

...

0 . . . gk
ac(x

k
ac)

⎤
⎥⎦

⎡
⎢⎣

u1

...

uk

⎤
⎥⎦

6In general, the system described as affine in control variable u has the form ẋ = f(x)+B(x)u. Vector function
f(x) represents the drift of the system. If f(x) = 0, then system is driftless.
7For convenience, in the remainder the vector function γ ac(xac,xqa1,xqa2) will be used in shorter forms
γ ac(xac,xq ) or γ ac , to reduce the length of further expressions.
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with definitions for k-th actuator: ẋk
ac ∈ R

nk
ac denotes time derivative of the state space vector

xk
ac , fkac(x

k
ac,xk

qa1,xk
qa2) ∈ R

nk
ac denotes a drift vector function, gk

ac(x
k
ac) ∈ R

nk
ac denotes an

input matrix and uk is a scalar input.
Note that the nonlinear functions in (11a)–(11b) depend on8 the UNMS state variables

xk
qa1,xk

qa2. These dependencies enable a simple way of connecting the actuators’ and the
UNMS’ mathematical models.

Here, we also define a relative degree of actuators, according to the system’s output (11a).
In words, a relative degree is a number that shows how many time derivatives of (11a) is
needed so that an input variable u from (11b) appear in it. An example of a pneumatic
actuator with proportional spool valve is given in Appendix C.

2.4 Model of UNMS with actuators

A model of the mechanical system with actuators is derived after joining (9) and
(11a)–(11b), as follows:

ẋ︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎣

ẋqa1

ẋqu1

ẋqa2

ẋqu2

ẋac

⎤
⎥⎥⎥⎥⎦ =

f(x)︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎣

xqa2

xqu2

f3(xq) + fdis3(xq) + B3(xq)γ ac

f4(xq) + fdis4(xq) + B4(xq)γ ac

fac(xac,xqa1,xqa2)

⎤
⎥⎥⎥⎥⎦+

g(x)︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎣

0na×na

0nu×na

0na×na

0nu×na

gac(xac)

⎤
⎥⎥⎥⎥⎦u (12)

Vector’s and matrix’s elements of (12) are defined in the following expressions:

f3(xq) = B̃−1
a (xq)fa(xq)

fdis3(xq) = B̃−1
a (xq)fdisa (xq) − B3(xq)Fdisac1(xqa1,xqa2)

B3(xq) = B̃−1
a (xq)Ba(xq)

f4(xq) = fu(xq) − Bu(xq)Macf3(xq)

fdis4(xq) = fdisu(xq) − Bu(xq)Fdisac1(xqa1,xqa2) − Bu(xq)Macfdis3(xq)

B4(xq) = Bu(xq) − Bu(xq)MacB3(xq)

(13)

where B̃a(xq) = I + Ba(xq)Mac is an invertible square matrix and I ∈ R
na×na is an identity

matrix.

3 Control law synthesis

In this section, we present derivation of the control law that is defined as a linear combination
of two separate controls. Every separated control is based on the sliding mode approach.

8This is due to a rigid connection (with a transmission ratio N) between actuators and UNMS. More precisely,
this means that the state variables of the actuators, which connect the actuators with the UNMS, are identified
with some state variables of the mechanical system. For instance, if DC electric motor drives kth generalized
coordinate with a transmission ratio N, then a relation between rotor’s angular velocity ω and generalized
velocity xk

qa2 of UMNS is xk
qa2 = 1

N
ω.
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First, we define the output vector y ∈ R
n of the system (9) that consists of generalized

coordinates:

y =
[

xqa1

xqu1

]
≡ q =

[
qa

qu

]
(14)

The output vector y, the desired output vector yd ∈ R
n and the control error e ∈ R

n are
defined by the following form:

yd =
[

(xqa1)d

(xqu1)d

]
e = y − yd =

[
ea

eu

]
(15)

First time derivatives ẏ, ẏd and ė are defined as

ẏ =
[

xqa2

xqu2

]
ẏd =

[
(ẋqa1)d

(ẋqu1)d

]
ė = ẏ − ẏd =

[
ėa

ėu

]
(16)

Second time derivatives ÿ, ÿd and ë are defined as

ÿ =
[

f3(xq) + fdis3(xq) + B3(xq)γ ac

f4(xq) + fdis4(xq) + B4(xq)γ ac

]
ÿd =

[
(ẍqa1)d

(ẍqu1)d

]

ë = ÿ − ÿd =
[

ëa

ëu

]
=

[
f3(xq) + fdis3(xq) + B3(xq)γ ac − (ẍqa1)d

f4(xq) + fdis4(xq) + B4(xq)γ ac − (ẍqu1)d

] (17)

Third time derivatives
...
y ,

...
y d and

...
e are defined as

...
y =

[
Υ 3 + B3(xq)γ̇ ac

Υ 4 + B4(xq)γ̇ ac

]
...
y d =

[
(
...
x qa1)d

(
...
x qu1)d

]
(18)

...
e = ...

y − ...
y d =

[
Υ 3 + B3(xq)γ̇ ac − (

...
x qa1)d

Υ 3 + B4(xq)γ̇ ac − (
...
x qu1)d

]
=

[ ...
e a...
e u

]

where are

Υ 3 = ḟ3(xq) + ḟdis3(xq) + Ḃ3(xq)γ ac

Υ 4 = ḟ4(xq) + ḟdis4(xq) + Ḃ4(xq)γ ac

The sliding variable s ∈ R
n is defined by the following expression:

s =
[

sa

su

]
= ë + λ1ė + λ2e (19)

where λ1,λ2 � 0 represent parameters matrices. The sliding variable vector s consists of
two vector functions sa ∈ R

na and su ∈ R
nu . The positive definite diagonal matrices λ1,λ2 ∈

R
n×n have the following form:

λ1 =
[

λ1a 0
0 λ1u

]
λ2 =

[
λ2a 0
0 λ2u

]
(20)

where λ1a,λ2a ∈ R
na×na , λ1u,λ2u ∈ R

nu×nu are positive diagonal matrices.
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The time derivative of the sliding variable is given by the following expression:

ṡ =
[

ṡa

ṡu

]
= ...

e + λ1ë + λ2ė =
[ ...

e a + λ1a ëa + λ2a ėa...
e u + λ1uëu + λ2uėu

]
(21)

i.e., in expanded form after implementation ė, ë,
...
e from (16), (17), (18) into (21), as follows:

[
ṡa

ṡu

]
=

[
Γ 3 + B3(xq)γ̇ ac

Γ 4 + B4(xq)γ̇ ac

]
(22)

where

Γ 3 = Υ 3 − (
...
x qa1)d + λ1a ëa + λ2a ėa

Γ 4 = Υ 4 − (
...
x qu1)d + λ1uëu + λ2uėu

The vector function γ̇ ac contains the input vector u as follows (detailed procedure is given
in Appendix B):

γ̇ ac = ∂γ ac

∂x
f(x) + ∂γ ac

∂xac

gac(xac)u (23)

It is important to note that γ ac is not necessarily a function of all elements of the state vector
xac . In the case where some element of xac does not appear in γ ac but its time derivative has
an input variable u, then it is needed to compute higher derivatives of γ ac to reach the input
vector u, as is shown in Appendix C.

Finally, we propose control law that controls all degrees of freedom, as given by the
following equation:

u = ϕa(ueq)a + ϕu(ueq)u (24)

where ϕa , ϕu ∈ R
na×na are diagonal matrices, used for control law distribution of actuated

xqa1 and unactuated xqu1 degrees of freedom. Control vector (ueq)a ∈ R
na is responsible

only for stabilization and trajectory tracking of actuated degrees of freedom xqa1 of UNMS,
while control vector (ueq)u ∈ R

na is responsible only for stabilization and trajectory tracking
of unactuated degrees of freedom xqu1 of UNMS. Definition of separated (i.e., equivalent)
control laws (ueq)a and (ueq)u for simultaneous stabilization and trajectory tracking follows
from (22), (23) and is presented by following expressions:

(ueq)a = −Φ−1
3

[
Γ 3 + B3(xq)

∂γ ac

∂x
f(x) + χa(sa)

]
(25)

(ueq)u = −Φ+
4

[
Γ 4 + B4(xq)

∂γ ac

∂x
f(x) + χu(su)

]
(26)

Φ3 = B3(xq)
∂γ ac

∂xac

gac(xac) Φ4 = B4(xq)
∂γ ac

∂xac

gac(xac)

while Φ+
4 is the pseudoinversion of the matrix9 Φ4, and χa(sa), χu(su) represent functions

of convergence. The function χa(sa) ensures that the control (ueq)a steers the sliding vari-
able sa to the sliding surface sa = 0, on which ea → 0, t → ∞. The function χu(su) ensures

9For the right Moore–Penrose pseudoinversion Φ+
4 of the matrix Φ4 it holds: Φ4Φ+

4 = I, I ∈ R
nu×nu

identity matrix, Φ+
4 = ΦT

4 (Φ4ΦT
4 )−1.
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that the control (ueq)u steers the sliding variable su to the sliding surface su = 0, on which
eu → 0, t → ∞.
The vector function χ(s) can be signum function, tangens hyperbolic function, arcus tangens
or some other function that steers dynamic system to reference trajectories [5]. To prove
stability of the system for each separated control law, we use a scalar Lyapunov functions

Vi = sT
i si

2
> 0, i = {a, b}. The control law (ueq)i , i = {a, b} used for separated control of

actuated generalized coordinates makes the system stable if the following conditions are
valid: Vi > 0, V̇i = sT

i ṡi ≤ 0. To show the system’s stability by controlling only actuated
coordinates, we replaced u from top equation in (22) by (ueq)a from (25) getting V̇a =
sT
a ṡa = −sT

a χa(sa) ≤ 0, ∀sa . Also, we replaced u from bottom equation in (22) by (ueq)u

from (26) getting V̇u = sT
u ṡu = −sT

u χu(su) ≤ 0, ∀su. Stability conditions for using linear
combination of separated control laws (24) will be addressed in future work.

4 Simulations

Efficiency of the novel control law is demonstrated on simulation example of rotational in-
verted pendulum (RIP) which represents an example of second-order nonholonomic UNMS.

The model has two DOF and one control signal, which means that system is underactu-
ated. There is one actuator (DC electric motor) that drives the base link of RIP. This system
is linear controllable in unstable equilibrium, which means that system is stabilizable using
linear feedback time-invariant controller starting close to unstable equilibrium. Here, the
simultaneous stabilization and trajectory tracking using proposed control law with initial
conditions that are not close enough for usage of linear controllers will be shown.

Euler–Lagrange’s approach for modeling of rotational inverted pendulum [26] yields the
following expressions:

h1q̈a + h2 cos(qu)q̈u − h2 sin(qu)q̇
2
u + C1q̇a = τ

h2 cos(qu)q̈a + h3q̈u + h4 sin(qu) + C2q̇u = 0
(27)

where h1 = J1 +m2L
2
1, h2 = m2L1l2, h3 = J2 +m2l

2
2 , h4 = −m2l2g. Constants J1, J2, l1, l2,

L1,L2, C1,C2, m1,m2, g represent in the following order: center of mass inertia moment,
link distance from center of mass, link length, coefficient of viscous friction in joints, link
masses, and gravitation acceleration, with their values.10 Generalized coordinates qa = θ1,
qu = θ2 represent base link angle (actuated link) and angle of inverted pendulum (unactuated
link) as shown in Fig. 1. DC motor moment τ is the actuator output, i.e., mechanical system
input.

Relation between general UNMS model (3a), (3b) and RIP model (27) is given as fol-
lows: Ma1(q) = h1, Mu1(q) = h2 cos(qu), Ma2(q) = h2 cos(qu), Mu2(q) = h3, ha(q, q̇) =
−h2 sin(qu)q̇

2
u , hu(q, q̇) = h4 sin(qu), Fdisa (q, q̇) = C1q̇a , Fdisu (q, q̇) = C2q̇u, Ha(q) = 1,

Hu(q) = 0, F = τ . Transformations of EL equations into state space form are described in
Sects. 2.2 and 2.4. State variables are xqa1 = qa , xqu1 = qu, with time derivatives xqa2 = q̇a ,
xqu2 = q̇u. RIP equations (27) are presented in state space form (12) with functions defined

10m1 = 0.83 kg, L1 = 0.6 m, J1 = 0.00208 kg·m−2, m2 = 0.1 kg, L2 = 0.3 m, J2 = 0.001 kg·m−2, g =
9.81 m·s−2, l1 = 0.3 m, l2 = 0.1 m.
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Fig. 1 Rotational inverted
pendulum

by following expressions:

f3(xq) = h2 sin(xqu1)(h3x
2
qu2 + h4 cos(xqu1))

h1h3 − h2
2 cos2(xqu1)

fdis3(xq) = h2 cos(xqu1)C2xqu2 − h3C1xqa2

h1h3 − h2
2 cos2(xqu1)

B3(xq) = h3

h1h3 − h2
2 cos2(xqu1)

f4(xq) = − sin(xqu1)(h
2
2 cos(xqu1)x

2
qu2 + h1h4)

h1h3 − h2
2 cos2(xqu1)

fdis4(xq) = h2 cos(xqu1)C1xqa2 − h1C2xqu2

h1h3 − h2
2 cos2(xqu1)

B4(xq) = h2 cos(xqu1)

h2
2 cos2(xqu1) − h1h3

(28)

Mathematical model of DC electric motor with influence of rotor’s coil inductance is
described as

Laẋac + Raxac + Kvω = u (29)

F = Ktxac︸ ︷︷ ︸
γac

(30)

where11 xac , Ra , La , Ka , Kt , u represent armature current, armature resistance, armature
inductance, back emf constant, motor torque constant, and the voltage input applied to ar-
mature circuit, respectively. Rotor’s angular velocity ω is connected with generalized veloc-

11Numerical values of DC motor parameters are: Kt = 1.68 N·m·A−1, Kv = 0.168 V·s, Ra = 28.6 �,
La = 0.01 H.
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ity of base link as ω = Nxqa2. Here, transmission ratio N between actuator and base link is
taken N = 1.
In relation to (11a) and (11b), we have Mac = 0 and Fdisac1 = 0.

Connection between actuator’s and UNMS’s dynamics gives the following expressions:

ẋqa1 = xqa2

ẋqu1 = xqu2

ẋqa2 = f3(xq) + fdis3(xq) + B3(xq)γac

ẋqu2 = f4(xq) + fdis4(xq) + B4(xq)γac

ẋac = −h5xac − h6xqa2 + h7u

y =
[

xqa1

xqu1

]

(31)

where h5 = Ra

La
, h6 = Kv

La
, h7 = 1

La
.

To show the efficiency of the proposed control law on this example, both links can be
either stabilized/positioned or can follow some time-dependent trajectory at the same time.
This gives 8 possibilities. We present 3 of them. First, stabilization of both links simultane-
ously, but with same initial positions to illustrate a power of the proposed nonlinear control
law, as shown in the Fig. 2. Second, a combination of stabilization and trajectory tracking,
where the Fig. 3(a) illustrates a stabilization of unactuated link while the actuated link fol-
lows time-dependent trajectory, and the Fig. 3(b) illustrates a stabilization of the actuated
link while unactuated link follows time-dependent trajectory. Also, a robustness of the con-
trol law was verified by two different simulations on the Fig. 3(b), first by increasing both
links’ masses for 30%, and second, if measurement noise appears on qa . The reference tra-
jectories in the Figs. 2 and 3 are shown by dashed lines. The graphs at the top of the figures
represent base link—actuated coordinate qa , the graphs in the middle of the figures repre-
sent free moving link – unactuated coordinate qu, and the graphs at the bottom of the figures
represent input control signal u.

4.1 Case 1: RIP stabilization

This case shows stabilization of both DOF, i.e. (xqu1)d = 0 rad, and (xqa1)d = 0 rad. Graphs
in the Fig. 2(a) show response of the RIP without viscous friction12 and initial pendulum
deflection equals π (180◦), where a linear control law can not be used for stabilization.
Control signal was in saturation ±40 V for short time, see Fig. 2(a) and time about 0.5
seconds, but that did not disable the process of stabilization. Graphs in the Fig. 2(b) show
cases in which (− · −) lines represent a case when masses of both links were increased for
30%, while full lines represent a case when measurement noise appears on qa . Increasing
masses, the control signal becomes more oscillating, inducing oscillations in both links.
When a measurement noise appears then control signal becomes very oscillating with high
values, which can easily destroy an actuator. In such a case, filtering of noise is needed.
Measurement noise is a random signal with amplitude ±1 milli-radians.

12Sliding variable: λa1 = 40, λu1 = 10, λa2 = 10, λu2 = 10, Initial conditions: xqa1(0) = 0.5 rad, xqu1(0) =
0.8 rad, Control law: ϕa = −0.4, ϕu = 1.4, α1 = 250, α2 = 250, χ(sa) = α1 tanh(sa), χ(su) = α2 tanh(su),
Viscous friction: C1 = 0 N·m·s, C2 = 0 N·m·s, Reference trajectory: (xqa1)d = 0 rad, (xqu1)d = 0 rad.
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Fig. 2 Stabilization of both actuated and unactuated link. Figure (a): xqa1(0) = 0.5 rad, xqu1(0) = 3.14
rad, C1 = C2 = 0 N·m·s, saturation ±40. Figure (b): (− · −) lines represent a case when masses of both
links were increased for 30%, while full lines represent a case when measurement noise appears on qa . Mea-
surement noise is a random signal with amplitude ±1 milli-radians. Dashed lines represent reference/desired
trajectories

4.2 Case 2: RIP stabilization and trajectory tracking

This case shows stabilization of one DOF simultaneously with trajectory tracking of other
DOF. Figure 3(a) illustrates13 a stabilization of unactuated link (xqu1)d = 0 rad while the
actuated link follows time-dependent trajectory (xqa1)d = sin(t) + 0.5 sin(1.5t) rad. Also,
Fig. 3(b) illustrates14 a stabilization of the actuated link (xqa1)d = 0 while unactuated link
follows time-dependent trajectory (xqu1)d = 0.2 sin(t) + 0.4 sin(1.5t) rad. Control signal
was in saturation ±20 V for short time (see Fig. 3(a) and time about 0.1 seconds), but that
did not destabilize the system. Tracking errors of generalized coordinates qa , qu are given
in the Figs. 4(a) and 4(b). It can be observed in Fig. 4(b) that some tracking error will stay
permanent. It happens due to the imposed behavior (qa)d ≡ (xqa1)d , (qu)d ≡ (xqu1)d on both
links at the same time.

5 Conclusion

Control algorithm for simultaneous stabilization and trajectory tracking of underactuated
nonlinear mechanical systems with included actuators dynamics has been presented. Sim-
ple and intuitive control law enables simultaneous stabilization and trajectory tracking of
arbitrary chosen actuated and unactuated degrees of freedom of the UNMS. Novel unified
controller for underactuated systems, including both the second-order nonholonomic sys-
tems and the systems with input coupling, shows very promising results on simulations.
Future work will consider the Lyapunov-based stability analysis with an aim to provide
exact controller tuning rules.

13Same as in footnote 12, except: Sliding variable: λa1 = 5, λu1 = 10, λa2 = 5, λu2 = 20, Control law:
α1 = 250, α2 = 200, Reference trajectory: (xqa1)d = sin(t) + 0.5 sin(1.5t) rad, (xqu1)d = 0 rad.
14Same as in footnote 12, except: Sliding variable: λa1 = 3, λu1 = 10, λa2 = 5, λu2 = 10, Control law:
α1 = 250, α2 = 250, Reference trajectory: (xqa1)d = 0 rad, (xqu1)d = 0.2 sin(t) + 0.4 sin(1.5t) rad.
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Fig. 3 Figure (a) shows trajectory tracking of actuated link simultaneously with stabilization of unactuated
link where xqa1(0) = 0.5 rad, xqu1(0) = 0.8 rad (about 46◦). Figure (b) shows stabilization of actuated link
simultaneously with trajectory tracking of unactuated link where xqa1(0) = 0.5 rad, xqu1(0) = 0.8 rad. The
dashed lines represent reference/desired trajectories

Fig. 4 Figure (a) shows tracking errors of generalized coordinates qa , qu given in Fig. 3(a), while fig. (b)
shows tracking errors of generalized coordinates qa , qu given in Fig. 3(b)

Appendix A

A proof of the matrix inversion for matrix M̃a1(q), is derived in the similar way as given in
[25], and is given by the following expression:

[
Ma1(q) Ma2(q)

Mu1(q) Mu2(q)

][
Ina×na

−M−1
u2 (q)Mu1(q)

]
=

[
M̃a1(q)

0nu×na

]
(32)

where Ina×na ∈ R
na×na is identity matrix, and 0nu×na ∈ R

nu×na is zero matrix. Since the
matrix M(q) is positive definite matrix, and matrix

[
Ina×na

−M−1
u2 (q)Mu1(q)

]
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has full column rank na , it follows that matrix M̃a1(q) has full rank na , i.e. it is invertible.
A proof of matrix inversion for matrix M̃u2(q), is derived in the similar way as given in

[25], and is given by the following expression:

[
Ma1(q) Ma2(q)

Mu1(q) Mu2(q)

][−M−1
a1 (q)Ma2(q)

Inu×nu

]
=

[
0na×nu

M̃u2(q)

]
(33)

Since the inertia matrix M(q) is positive definite matrix, and matrix

[−M−1
a1 (q)Ma2(q)

Inu×nu

]

has full column rank nu, it follows that matrix M̃u2(q) has full rank nu, i.e., it is invertible.

Appendix B

Relation between the function γ̇ ac(xac,xq) and the input vector u using expressions from
(9) and (12) is given by

γ̇ ac(xac,xq) = ∂γ ac

∂xac

ẋac + ∂γ ac

∂xq

ẋq

= ∂γ ac

∂xac

[
fac(xq ,xac) + gac(xac)u

] + ∂γ ac

∂xq

ẋq

= ∂γ ac

∂xac

fac(xq ,xac) + ∂γ ac

∂xq

ẋq + ∂γ ac

∂xac

gac(xac)u

= ∂γ ac

∂x
f(x) + ∂γ ac

∂xac

gac(xac)u (34)

where γ ac(xac,xq) = [γ 1
ac(xac,xq), γ

2
ac(xac,xq), . . . , γ

k
ac(xac,xq)]T is a vector function, at

k = na , while γ k
ac(xac,xq) is a scalar function. The matrix of partial derivatives ∂γ ac(xac,xq )

∂xac
is

defined by the following expression:

∂γ ac(xac,xq)

∂xac

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂γ 1
ac(xac,xq )

∂x1
ac

∂γ 1
ac(xac,xq )

∂x2
ac

. . .
∂γ 1

ac(xac,xq )

∂xk
ac

∂γ 2
ac(xac,xq )

∂x1
ac

∂γ 2
ac(xac,xq )

∂x2
ac

. . .
∂γ 2

ac(xac,xq )

∂xk
ac

...
...

...
...

∂γ k
ac(xac,xq )

∂x1
ac

∂γ k
ac(xac,xq )

∂x2
ac

. . .
∂γ k

ac(xac,xq )

∂xk
ac

⎤
⎥⎥⎥⎥⎥⎥⎦

(35)

where, for instance, the matrix element in (35) is in position (1,2) defined as shown:

∂γ 1
ac(xac,xq)

∂x2
ac

= ∂γ 1
ac(xac,xq)

∂x2
ac1

+ ∂γ 1
ac(xac,xq)

∂x2
ac2

+ · · · + ∂γ 1
ac(xac,xq)

∂x2
acj

(36)

Here, j = n2
ac, i.e. j represents a number of the state space variables of the actuator 2, while

the number 2 from j = n2
ac denotes a mark for actuator and does not mean squaring of nac .
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Fig. 5 Schematic representation
of the pneumatic cylinder-valve
system

Appendix C

A pneumatic actuator with proportional spool valve consists of a pneumatic cylinder with
piston and a proportional spool valve, as shown in Fig. 5. A mathematical model of the pneu-
matic actuator [6, 21] consists of model of the piston dynamics, model of the fluid pressure
dynamics and model of the proportional valve spool dynamics, while for kth actuator is a
vector of the state space variables defined as follows:

xk
ac =

⎡
⎢⎢⎣

xk
ac1

xk
ac2

xk
ac3

xk
ac4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

p1

p2

xs

ẋs

⎤
⎥⎥⎦ (37)

where state variables represent: p1—air pressure in the left cylinder chamber, p2—air pres-
sure in the right cylinder chamber, xs—spool displacement and ẋs—spool velocity. In mod-
eling, this actuator has two additional state variables, xc—cylinder piston displacement,
and ẋc—cylinder piston velocity, but these variables are replaced by the state variables
(xk

qa1,xk
qa2) of the mechanical system. This replacement is a consequence of an assump-

tion of the rigid connection between the actuator and mechanical system, as explained in
Sect. 2.3. For that case, variables xc i ẋc do not belong to the vector xk

ac .

C.1 Cylinder piston dynamics

A cylinder piston dynamics is described by ordinary second-order differential equation, as
shown by the following expression:

Fk = A1p1 − A2p2︸ ︷︷ ︸
γ k
ac(x

k
ac,x

k
qa1,xk

qa2)

− Mc︸︷︷︸
Mk

ac

q̈k
a︸︷︷︸

ẋk
qa2

−Fdisac1

(
qk

a , q̇
k
a

)
︸ ︷︷ ︸
Fk

disac1
(xk

qa1,xk
qa2)

(38)

where Mc , A1, A2 are positive constants, representing mass of the piston, active surface area
of the piston for chambers 1 and 2, respectively. The expression Fdisac1(xc, ẋc) represents
friction force (which is in Fig. 5 denoted as Fdis) dependent on the state variables of the
cylinder. The expression A1p1 −A2p2 represents a force acting on the piston and caused by
air pressures p1 and p2, while Fk is a force produced by a kth pneumatic actuator. A rigid
connection between state variables of the actuator and mechanical system is described by
expressions xc = qk

a and ẋc = q̇k
a . For this case, a transmission ratio is N = 1. An underlined

representation in the equation (38) is a state space form, where state variables are xac1 = p1

and xac2 = p2.
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Fig. 6 Schematic representation
of valve spool dynamics

C.2 Fluid pressure dynamics

Air pressures in cylinders’ chambers are defined as follows:

ẋac1︷︸︸︷
ṗ1 =

f k
ac1(xk

ac,x
k
qa1,xk

qa2)︷ ︸︸ ︷
κRT

VD + V0 + A1qk
a

ṁ1(xs,p1) − κA1

VD + V0 + A1qk
a

p1q̇
k
a

ṗ2︸︷︷︸
ẋac2

= κRT

VD + V0 − A1qk
a

ṁ2(xs,p2) + κA2

VD + V0 − A2qk
a

p2q̇
k
a︸ ︷︷ ︸

f k
ac2(xk

ac,x
k
qa1,xk

qa2)

(39)

where index 1 refers to the left chamber and index 2 refers to the right chamber of the
cylinder.
Parameters κ , R, T , VD , V0, A1, A2 are constants greater the zero, representing the specific
heat ratio, ideal gas constant, temperature, inactive cylinder volume at the and of stroke and
admission port, half of the active cylinder volume, and the piston effective area, respectively.
Variables pi and ṁi , for i ∈ {1,2} represent air pressures and mass flow rates in cylinder
chambers. Mass flows ṁi , for i ∈ {1,2} are expressed as functions of pressures and spool
displacement xs (see Fig. 6), and described by following equations:

ṁ1(xs,p1) =
⎧⎨
⎩

Cf Av(xs)C1
ps√
T

if p1
ps

≤ pcr

Cf Av(xs)C2
ps√
T
(

p1
ps

)
1
κ

√
1 − (

p1
ps

)
κ−1
κ if p1

ps
> pcr

(40)

ṁ2(xs,p2) =
⎧⎨
⎩

Cf Av(xs)C1
p2√
T

if pe

p2
≤ pcr

Cf Av(xs)C2
p2√
T
(

pe

p2
)

1
κ

√
1 − (

pe

p2
)

κ−1
κ if pe

p2
> pcr

(41)

where: Cf , C1 and C2 are constants greater the zero, Av(xs) is the valve effective area
for input/exhaust paths which depends on spool displacement, ps is the pressure in the air
reservoir, pe is the exhaust pressure, pcr is critical pressure value.

C.3 Valve spool dynamics

Msẍs + cs ẋs + Fdisac3(xs, ẋs) + 2ksxs = Fc (42)

where Ms , ks , cs are constants greater the zero, representing the spool coil assembly mass,
the spool springs constant, and the viscous friction coefficient, respectively. The expression
Fdisac3(xs, ẋs) represents the friction force (which is in Fig. 6 denoted as Fdis) dependent on
the valve’s state variables. The input Fc represents the force produced by the coil, and it can
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be linearly described as a function of electric current Fc = Kf cic or voltage. The equation
(42) can be expressed in a state space form as follows:

ẋac3 =
f k
ac3(xk

ac,x
k
qa1,xk

qa2)︷︸︸︷
xac4 (43)

ẋac4 = −Fdisac3(xac3, xac4) + csxac4

Ms

− 2ks

Ms

xac3︸ ︷︷ ︸
f k
ac4(xk

ac,x
k
qa1,xk

qa2)

+ Kf c

Ms︸︷︷︸
gk
ac4(xk

ac)

ic︸︷︷︸
uk

(44)

where state variables are xac3 = xs and xac4 = ẋs .

The whole model of the pneumatic actuator (39), (43), (44), and (38), with general form
presented in Sect. 2.3, is given by the following expressions:

ẋk
ac︷ ︸︸ ︷⎡

⎢⎢⎣
ẋac1

ẋac2

ẋac3

ẋac4

⎤
⎥⎥⎦ =

fkac(x
k
ac,x

k
qa1,xk

qa2)︷ ︸︸ ︷⎡
⎢⎢⎣

f k
ac1(x

k
ac,xk

qa1,xk
qa2)

f k
ac2(x

k
ac,xk

qa1,xk
qa2)

f k
ac3(x

k
ac,xk

qa1,xk
qa2)

f k
ac4(x

k
ac,xk

qa1,xk
qa2)

⎤
⎥⎥⎦+

gk
ac(x

k
ac)︷ ︸︸ ︷⎡

⎢⎢⎣
0
0
0

gk
ac4(x

k
ac)

⎤
⎥⎥⎦uk

F k = γ k
ac

(
xk

ac,xk
qa1,xk

qa2

) − Mk
acẋ

k
qa2 − Fk

disac1

(
xk

qa1,xk
qa2

)

(45)

Note: A relative degree of this pneumatic actuator, according to the output Fk , is r = 3.
A first time derivation of γ k

ac contains xs , a second time derivative of γ k
ac contains ẋs , while

a third time derivative of γ k
ac contains ẍs and it contains the input uk according to (44).
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