1,129 research outputs found

    Traffic Analysis Attacks on Skype VoIP Calls

    Get PDF
    Skype is one of the most popular voice-over-IP (VoIP) service providers. One of the main reasons for the popularity of Skype VoIP services is its unique set of features to protect privacy of VoIP calls such as strong encryption, proprietary protocols, unknown codecs, dynamic path selection, and the constant packet rate. In this paper, we propose a class of passive traffic analysis attacks to compromise privacy of Skype VoIP calls. The proposed attacks are based on application-level features extracted from VoIP call traces. The proposed attacks are evaluated by extensive experiments over different types of networks including commercialized anonymity networks and our campus network. The experiment results show that the proposed traffic analysis attacks can greatly compromise the privacy of Skype calls. Possible countermeasure to mitigate the proposed traffic analysis attacks are analyzed in this paper

    Traffic Analysis Attacks on Skype VoIP Calls

    Get PDF
    Skype is one of the most popular voice-over-IP (VoIP) service providers. One of the main reasons for the popularity of Skype VoIP services is its unique set of features to protect privacy of VoIP calls such as strong encryption, proprietary protocols, unknown codecs, dynamic path selection, and the constant packet rate. In this paper, we propose a class of passive traffic analysis attacks to compromise privacy of Skype VoIP calls. The proposed attacks are based on application-level features extracted from VoIP call traces. The proposed attacks are evaluated by extensive experiments over different types of networks including commercialized anonymity networks and our campus network. The experiment results show that the proposed traffic analysis attacks can greatly compromise the privacy of Skype calls. Possible countermeasure to mitigate the proposed traffic analysis attacks are analyzed in this paper

    On Traffic Analysis Attacks to Encrypted VOIP Calls

    Get PDF
    The increasing popularity of VoIP telephony has brought a lot of attention and concern over security and privacy issues of VoIP communication. This thesis proposes a new class of traffic analysis attacks to encrypted VoIP calls. The goal of these attacks is to detect speaker or speech of encrypted VoIP calls. The proposed traffic analysis attacks exploit silent suppression, an essential feature of VoIP telephony. These attacks are based on application-level features so that the attacks can detect the same speech or the same speaker of different VoIP calls made with different VoIP codecs. We evaluate the proposed attacks by extensive experiments over different type of networks including commercialized anonymity networks and campus networks. The experiments show that the proposed traffic analysis attacks can detect speaker and speech of encrypted VoIP calls with a high detection rate which is a great improvement comparing with random guess. With the help of intersection attacks, the detection rate for speaker detection can be increased. In order to shield the detrimental effect of this proposed attacks, a countermeasure is proposed to mitigate the proposed traffic analysis attack

    On Traffic Analysis Attacks to Encrypted VOIP Calls

    Get PDF
    The increasing popularity of VoIP telephony has brought a lot of attention and concern over security and privacy issues of VoIP communication. This thesis proposes a new class of traffic analysis attacks to encrypted VoIP calls. The goal of these attacks is to detect speaker or speech of encrypted VoIP calls. The proposed traffic analysis attacks exploit silent suppression, an essential feature of VoIP telephony. These attacks are based on application-level features so that the attacks can detect the same speech or the same speaker of different VoIP calls made with different VoIP codecs. We evaluate the proposed attacks by extensive experiments over different type of networks including commercialized anonymity networks and campus networks. The experiments show that the proposed traffic analysis attacks can detect speaker and speech of encrypted VoIP calls with a high detection rate which is a great improvement comparing with random guess. With the help of intersection attacks, the detection rate for speaker detection can be increased. In order to shield the detrimental effect of this proposed attacks, a countermeasure is proposed to mitigate the proposed traffic analysis attack

    Should Australian courts give more witnesses the right to Skype?

    Get PDF
    Millions of people use Skype, a common form of social media that permitspeople to talk to each other over the internet. Courts in Australia havepermitted witnesses in at least a few instances to testify by Skype to date. Thisarticle examines whether Australian courts should permit witnesses to testifyby Skype more often. The article considers using videoconferencing, asopposed to Skype, and security issues associated with Skype. It alsoconsiders the impact that Skype may have upon considering witness credibility.Ultimately, it argues that Australian judicial officers may want to considerpermitting witnesses to testify by Skype if testifying by videoconference is notpossible, on a case by case basis. The authors believe that this is the firstscholarly article in Australia to focus on the issue of witnesses testifying bySkype

    Detecting and Mitigating Denial-of-Service Attacks on Voice over IP Networks

    Get PDF
    Voice over IP (VoIP) is more susceptible to Denial of Service attacks than traditional data traffic, due to the former's low tolerance to delay and jitter. We describe the design of our VoIP Vulnerability Assessment Tool (VVAT) with which we demonstrate vulnerabilities to DoS attacks inherent in many of the popular VoIP applications available today. In our threat model we assume an adversary who is not a network administrator, nor has direct control of the channel and key VoIP elements. His aim is to degrade his victim's QoS without giving away his presence by making his attack look like a normal network degradation. Even black-boxed, applications like Skype that use proprietary protocols show poor performance under specially crafted DoS attacks to its media stream. Finally we show how securing Skype relays not only preserves many of its useful features such as seamless traversal of firewalls but also protects its users from DoS attacks such as recording of conversations and disruption of voice quality. We also present our experiences using virtualization to protect VoIP applications from 'insider attacks'. Our contribution is two fold we: 1) Outline a threat model for VoIP, incorporating our attack models in an open-source network simulator/emulator allowing VoIP vendors to check their software for vulnerabilities in a controlled environment before releasing it. 2) We present two promising approaches for protecting the confidentiality, availability and authentication of VoIP Services
    corecore