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ON TRAFFIC ANALYSIS ATTACKS TO ENCRYPTED

VOIP CALLS

YUANCHAO LU

ABSTRACT

The increasing popularity of VoIP telephony has brought a lot of attention and

concern over security and privacy issues of VoIP communication. This thesis proposes

a new class of traffic analysis attacks to encrypted VoIP calls. The goal of these

attacks is to detect speaker or speech of encrypted VoIP calls. The proposed traffic

analysis attacks exploit silent suppression, an essential feature of VoIP telephony.

These attacks are based on application-level features so that the attacks can detect

the same speech or the same speaker of different VoIP calls made with different VoIP

codecs. We evaluate the proposed attacks by extensive experiments over different type

of networks including commercialized anonymity networks and campus networks. The

experiments show that the proposed traffic analysis attacks can detect speaker and

speech of encrypted VoIP calls with a high detection rate which is a great improvement

comparing with random guess. With the help of intersection attacks, the detection

rate for speaker detection can be increased. In order to shield the detrimental effect of

this proposed attacks, a countermeasure is proposed to mitigate the proposed traffic

analysis attacks.
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CHAPTER I

INTRODUCTION

This thesis addresses on privacy issues of encrypted Voice over Internet Protocol

(VoIP) calls. A class of traffic analysis attacks is proposed to compromise the privacy

of encrypted VoIP calls. In this thesis, a countermeasure is proposed and studied to

the class of traffic analysis attacks.

With the rapid growth of broadband Internet access services, the popularity

of VoIP calls has grown significantly. As a competitor with traditional phone services

provided over Public Switched Telephone Networks (PSTN), VoIP services are known

for their lower cost and richer features.

The increasing popularity of VoIP telephony has brought a lot of attention

and concern over security and privacy issues of VoIP communication. To protect

confidentiality of VoIP calls, advanced users encrypt VoIP packets with Zfone [1] or

SRTP [2], the secure version of real time transport protocol.

To further protect privacy of VoIP calls, advanced users are using anonymity

networks to anonymize VoIP calls. For this purpose, low-latency anonymity networks

such as Tor [3] and JAP [4] can be used. The common anonymizing technique used
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in anonymity networks is rerouting which usually routes packets through a random-

selected and usually longer path instead of the shortest path.

A class of passive traffic analysis attacks is proposed to compromise privacy of

encrypted VoIP calls in this thesis. The procedure of proposed attacks is as follows:

First, the adversary collects traces of encrypted VoIP calls made by a victim, say

Alice. The adversary then extracts application-level features of Alice’s VoIP calls

and trains a Hidden Markov Model (HMM) with the extracted features. To test

whether a call of interest is made by Alice, the adversary can extract features from

the traces of the call and calculate likelihood of the calls made by Alice. The proposed

attacks can detect speeches or speakers of encrypted calls with a high probability. In

this thesis, two kinds of VoIP calls are involved: Skype and SIP-Based VoIP calls.

Because these two kinds of VoIP calls are two primary VoIP calls.

In comparison with traditional traffic analysis attacks, the proposed traffic

analysis attacks are different in the following aspects: (a) The proposed traffic anal-

ysis attacks are at application-level, and traditional traffic analysis attacks are at

transport-level or network-level: The proposed traffic analysis attack aim to detect

speeches or speakers of VoIP calls, and these detections are at application-level. Traf-

fic analysis used in these proposed attacks is based on application-level features. Most

traditional traffic analysis attacks [5, 6, 7, 8] aim to identify traffic flows, and these

identifications are at transport-level or network-level. These traditional traffic analy-

ses are based on transport-level or network-level features such as correlation between

traffic flows at sending end and receiving end. (b) Because of the previous difference,

the proposed traffic analysis attacks are more practical: (a) The proposed traffic

analysis attacks do not require simultaneous access to traffic flows at both ends. But

the simultaneous access is usually required for traditional traffic analysis attacks. For

international VoIP calls, simultaneous access at both ends of calls may not be possi-

2



ble in practice. (b) The attacks can detect the same speech or the same speaker of

different VoIP calls made with different VoIP codecs and protocols.

The contributions made in this thesis are summarized as follows:

• A class of traffic analysis attacks to compromise privacy of encrypted VoIP calls

is proposed. The attacks are passive and based on the HMM, a powerful tool

to model temporal data. It also proposes a method to extract application level

features from traffic flows for application-level traffic analysis attacks.

• The proposed traffic analysis attacks are evaluated through extensive experi-

ments over the Internet and commercial anonymity networks. For most of VoIP

calls made in the experiments, the two parties are at least 20 hops away, and

end-to-end delay between the two parties is at least 80ms. The experiments

show that the traffic analysis attacks are able to detect speeches or speakers of

encrypted VoIP calls with a high probability.

• Intersection attacks are proposed to improve the effectiveness of the proposed

attacks.

• A countermeasure is proposed to mitigate the proposed traffic analysis attacks

and analyzed the effect of the countermeasure on quality of VoIP calls.

The organization of this thesis is organized as follows: Chapter 2 reviews re-

lated work. In Chapter 4, the details of proposed traffic analysis attacks on Skype

VoIP calls are descried. Chapter 3 introduces the traffic analysis attacks on SIP-Based

VoIP Calls. Finally, the conclusion is offered in Chapter 5.

3



CHAPTER II

RELATED WORK

In this chapter, we review related work on low-latency anonymity networks

and related traffic analysis attacks.

2.1 Low-Latency Anonymity Networks

After Chaum proposed the anonymous communication for email in his seminal

paper [9], many low-latency anonymity networks have been proposed or even imple-

mented for different applications. The examples are ISDN-mixes [10] for telephony,

Web Mix [4] for web browsing, MorphMix [11] for peer-to-peer applications, GAP

base GNUnet [12] for file sharing. TARZAN [13], Onion Router [14], and Tor [3], the

second-generation onion router, are designed for general usage by low-latency applica-

tions. Especially Tor has some desirable features for low-latency applications such as

perfect forward secrecy and congestion control. In this thesis, we used the anonymity

network managed by findnot.com to anonymize VoIP calls instead of the Tor net-

work, because UDP traffic is not natively supported by Tor. The commercialized
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anonymous communication services provided by findnot.com can allow us to route

VoIP packets through entry points located in different countries into the anonymity

network.

Common techniques used in low-latency anonymity networks are encryption

and re-routing. Encryption prevents packet content access by adversaries. To confuse

adversaries, anonymity networks using re-routing techniques forward encrypted pack-

ets in a usually longer and random path instead of using the shortest path between

the sender and the receiver. To attack an anonymity network using the re-routing

technique, the attacker usually needs to be more powerful, for example, to be a global

attacker.

2.2 Traffic Analysis Attacks

Traffic analysis attacks can be classified into two categories, network-level traf-

fic analysis attacks and application-level traffic analysis attacks. Network-level traf-

fic analysis attacks target at disclosing network-level or transport-level information.

Most privacy-related network-level traffic analysis attacks focus on traffic flow iden-

tification or traffic flow tracking. The examples are Levine et al. [5] on anonymity

networks, the active attack proposed by Murdoch and Danezis [8] on Tor network,

and the flow correlation attacks [6]. Application-level traffic analysis attacks target

at disclosing application-level information. The examples are keystrokes detection

based on packet timing [15], web page identification [16], spoken phrase identification

[17] with variable bit rate codecs.

The traffic analysis attacks proposed in this thesis are at application-level.

These attacks can detect speeches or speakers of encrypted VoIP calls based on talk

patterns, the application-level features which do not vary from call to call.

5



CHAPTER III

TRAFFIC ANALYSIS ATTACKS ON

SIP-BASED ENCRYPTED VOIP CALLS

In this chapter, we address on privacy issues of SIP-Based encrypted VoIP

calls. A class of traffic analysis attacks is proposed to compromise the privacy of

encrypted SIP-Based VoIP calls. We propose and study countermeasures to the class

of traffic analysis attacks in this chapter.

The increasing popularity of VoIP telephony has brought a lot of attention and

concern over security and privacy issues of VoIP communication. To protect confi-

dentiality of VoIP calls, advanced users encrypt VoIP packets with Zfone [1] or SRTP

[2], the secure version of Real-time Transport Protocol (RTP). To further protect

privacy of VoIP calls, advanced users are using anonymity networks to anonymize

VoIP calls. For this purpose, low-latency anonymity networks such as Tor [3] and

JAP [4] can be used. One of the common anonymizing techniques used in anonymity

networks is rerouting which usually routes packets through a randomly selected and

usually longer path instead of the shortest path.

6



In this chapter, we propose a class of passive traffic analysis attacks to compro-

mise privacy of encrypted VoIP calls. The procedure of proposed attacks is as follows:

First an adversary collects traces of encrypted VoIP calls made by a victim, say Al-

ice. The adversary then extracts application-level features of Alice’s VoIP calls and

trains a Hidden Markov Model (HMM) with the extracted features. To test whether

a call of interest is made by Alice, the adversary can extract features from the trace

of interest and calculate likelihood of the call being made by Alice. The proposed

attacks can detect speeches or speakers of encrypted calls with high probabilities. In

comparison with traditional traffic analysis attacks, the proposed traffic analysis at-

tacks are different in the following aspects: (a) The proposed traffic analysis attacks

do not require simultaneous access to one traffic flow of interest at both sides. (b)

The attacks can detect the same speech or the same speaker of different VoIP calls

made with different VoIP codecs.

3.1 Background

In this section, we first review protocols used in current VoIP communica-

tions and then proceed with review of key principles in speech coding and silence

suppression related to VoIP communication and the proposed traffic analysis attacks.

In general, VoIP protocols can be classified into two categories: (a) Signaling

protocols: These protocols are designed for call setup and termination. SIP [18] and

H.323 [19] are two of most widely-used signaling protocols for VoIP. (b) Transport

protocols: These protocols are designed to transfer voice packets. A typical example

is Real-time Transport Protocol (RTP) [20]. Most current mass-market VoIP services

such as Vonage [21] and AT&T CallVantage [22] use SIP and RTP as the signaling

protocol and the transport protocol respectively. One exception is Skype VoIP service

that uses a proprietary protocol. In this chapter, we focus on mass-market VoIP

7



services based on SIP and RTP protocols.

3.1.1 Speech Coding

In VoIP telephony, an analog voice signal is first converted into a voice data

stream by a chosen codec. Typically in this step, compression is used to reduce data

rate. The voice data stream is then packetized in small units of typically tens of

milliseconds of voice, and encapsulated in a packet stream over the Internet.

We focus on Constant Bit Rate (CBR) codecs in this project since most codecs

used in current VoIP telephony are CBR codecs1. In this thesis, we evaluate the

proposed traffic analysis attacks against codecs of various bit rates.

3.1.2 Silence Suppression

To further save bandwidth, VoIP telephony employs functionality known as

silence suppression or voice activity detection (VAD). The main idea of silence sup-

pression is to disable voice packet transmission when one of the parties involved in

a call is silence. To prevent the other party from suspecting that the call is dead

and then dropping the call, comfort noise is generated at the receiving side. Silence

suppression is a general feature supported in codecs, VoIP softwares, and RTP.

A silence detector makes voice-activity decision based on voice frame energy,

equivalent as average voice sample energy of a VoIP packet. If the frame energy is

below a threshold, the voice detector declares silence. Traditional silence detectors

[23] use fixed energy thresholds. Because of the changing nature of background noise,

adaptive energy thresholds are used in modern silence detectors such as NeVoT SD

1Variable Bit Rate (VBR) codecs are primarily used for coding audio files instead of voice com-
munication [23]. Recently there are interests in using VBR codec such as Speex [24] for VoIP
telephony. But no implementation is publicly available according to our knowledge. We believe
proposed traffic analysis attacks can also be launched against VoIP services using VBR codecs since
silence suppression is a general feature of VoIP codecs.
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Table I: Major Parameters of G.729B Silence Detector

Parameter Meaning Default

Min Threshold Frame energy below which any signal is considered silence -55 dB
Silence Threshold Threshold used in detecting silence in signals Dynamic
Hangover Time Delay of silence decision Dynamic

(a) Voice Signal Waveform
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(b) Packet Train

Figure 1: An Example of Silence Suppression

[25] and G.729B [26]. Major parameters of G.729B silence detector, one of the most

popular silence detectors, are listed in Table I.

Hangover techniques are used in silence detectors to avoid sudden end-clipping

of speeches. During hangover time, voice packets are still transmitted even when the

frame energy is below the energy threshold. Traditional silence detectors use fixed-

length hangover time. For modern silence detectors such as G.729B, the length of

hangover time dynamically changes according to the energy of previous frames and

noise.

Figure 1 shows an example of silence suppression. Figure 1.(a) shows the

waveform of a sheriff’s voice signal extracted from a video published at cnn.com [27].

Figure 1.(b) shows the packet train generated by feeding the voice signal to X-Lite
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[28], a popular VoIP client. From Figure 1, we can easily observe the correspondence

between silence periods in the voice signal and gaps in the packet train. The length of

a silence period will be different from the length of the corresponding gap in a packet

train because of the hangover technique.

The proposed traffic analysis attacks exploit silence suppression. Different

people have different talk patterns in terms of talk spurts and silence gaps. For

example, some persons speak very fast with only a couple of short silence gaps while

some speak with long silence gaps. As shown in Figure 1, an eavesdropper can learn

a speaker’s talk pattern from packet timing. Based on talk patterns learned from

packet timing, the proposed traffic analysis attacks can detect speeches or speakers

of encrypted VoIP calls with high accuracy.

3.2 Problem Definition

In this chapter, we are interested in analyzing the traffic of encrypted VoIP

calls through anonymity networks. We focus on detecting speeches and speakers of

encrypted VoIP calls by analyzing the sensitive information revealed from the traffic

pattern at application-level.

The typical attack scenario focused in this chapter is as follows: An adversary

may want to detect whether the target speaker, say Alice, is communicating with

Bob now or not based on the previous encrypted VoIP calls made by Alice. The

previous calls may use different codecs than the one Alice using now. The adversary

may collect VoIP packets at any point on the path from Alice to Bob and may also

want to detect the content of the conversation, such as a partial speech in previous

calls.

Comparing with previous researches, the proposed attacks do not require si-

multaneous access to both sides of the links connected to Alice and Bob. Traces
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Figure 2: Network Model

of calls used in detection can be collected at different time and in different network

environment and these calls possibly made with different codecs.

3.2.1 Network Model

In this chapter, we also assume Alice uses mass-market VoIP services to com-

municate with Bob as shown in Figure 2. In other words, we assume SIP and RTP

are used as the signaling protocol and the transport protocol respectively. To protect

confidentiality of her VoIP calls, we assume Alice encrypts her VoIP packets by using

secure versions of the RTP protocol such as SRTP [2] and ZRTP used in Zphone [1].

To better protect privacy of her calls, we assume Alice routes these encrypted

VoIP calls through anonymity networks as shown in Figure 2. For better voice quality,

Alice can use low-latency anonymity networks such as Tor [3] and JAP [4].

3.2.2 Threat Model

We focus on passive attacks in this thesis. In other words, the attacks launched

by the adversary will not disturb existing network traffic. In comparison with active

attacks, the proposed attacks are harder to detect. We assume that the adversary

11



only has access to the links directly connected to participants of VoIP calls. This

assumption is widely used in traffic analysis attacks such as attacks on anonymity

networks and tracing VoIP calls [5, 8, 29, 30]. We do not assume the adversary as a

global attacker because rerouting techniques used in anonymity networks make global

attacks too costly to be practical. The threat model is weaker than threaten models

defined for traditional privacy-related traffic analysis attacks: The threat model does

not require simultaneous access to the links connected to participants of a VoIP

call which may not be feasible for international VoIP calls. Instead we assume the

adversary can collect traces of VoIP calls made by Alice in advance and use these

collected traces to detect whether Alice is a participant in the VoIP conversation

of interest. Our model is similar as the model for identifying a human being by

fingerprints: Fingerprints of human beings are collected in advance through driver

license applications. To identify a specific person, the fingerprint of interest such

as a fingerprint in a crime scene will be compared against the person’s fingerprints

collected in advance.

The threat model assumes the detections are based on different VoIP calls. So

the speaker identification should also be independent of the voice content of VoIP

calls.

3.3 Detecting Speeches and Speakers of SIP-Based

VoIP Calls

In this section, we describe traffic analysis attacks to detect speeches or speak-

ers of SIP-Based encrypted VoIP calls. We begin the section with an overview of

the proposed traffic analysis attacks and details of each step in our algorithm are

described after the overview.

12



3.3.1 Overview

The proposed traffic analysis attacks are based on packet timing information.

As described in Section 3.1.2, silence suppression enables adversaries to recover talk

patterns in terms of talk spurts and silence gaps from packet timing. Adversaries can

create a Hidden Markov Model (HMM) to model Alice’s talk pattern recovered from

SIP-Based encrypted VoIP calls made by her. When adversaries want to determine

which SIP-Based encrypted VoIP call is made by Alice, adversaries can check talk

patterns recovered from the call of interest against Alice’s model.

The proposed attacks can be divided into two phases: the training phase and

the detection phase as shown in Figure 3. The two steps in the training phase are

feature extraction and HMMs training. The detection phase consists of three steps:

feature extraction, speech detection or speaker detection, and intersection attack.

The last step, intersection attack, is optional. We describe the details of each step

below.
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Figure 3: The Proposed Attack

3.3.2 Feature Extraction

The input and output of the feature extraction step are raw traces of VoIP calls

and feature vectors respectively. The feature vector used in the proposed attacks is

13



shown below:






ts1 ts2 · · · tsn

sg1 sg2 · · · sgn







where n is the length of a feature vector, tsi and sgj denote the length of the ith talk

spurt and the jth silence gap respectively.

Talk spurts and silence gaps are differentiated by a silence threshold Tsilence: If

an inter-packet time is larger than the threshold, the inter-packet time is declared as

a silence gap. Otherwise the inter-packet time is declared as a part of one talk spurt.

Obviously the threshold Tsilence is critical to overall detection performance. We

did initial experiments to investigate the suitable range of the threshold for detection:

We feed voice signals to VoIP clients and collect VoIP packets generated by VoIP

clients. Different values of the threshold Tsilence are used to determine silence gaps.

Actual silence gaps can be found by checking marker bits in RTP packets which

indicate the start of talk spurts2. We evaluate a value of the threshold by two metrics:

false positive rate and false negative rate. False positive rate is the fraction of talk

spurts that were erroneously declared as silence gaps. False negative rate is the

fraction of silences gaps that are erroneously declared as talk spurts. The experiment

results with different codecs3 are shown in Figure 4.

We can observe that for a wide range of the threshold Tsilence, both the false

positive rate and the false negative rate are low: When Tsilence is larger than 70ms,

the false positive rate is below 10% for all the codecs. The false negative rate is below

20% when Tsilence is less than 100ms. The wide range is because of the big difference

between inter-packet time of silence gaps and inter-packet time of talk spurts: Silence

gaps are in order of seconds. Inter-packet time during talk spurts is usually around

2Only in our initial experiments, VoIP packets are not encrypted so that we can determine actual
silence gaps from marker bits and then find suitable range of the threshold for detection. For all the
other experiments, VoIP packets are encrypted and proposed traffic analysis attacks have no access
to packet headers such as marker bit in the RTP protocol.

3Details of these codecs can be found in Table 3.1.
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Figure 4: Experiment Results on the Threshold Tsilence

packetization delay of 20ms or 30ms for most codecs.

We can also observe that increasing the threshold Tsilence decreases the false

positive rate and increases the false negative rate. The changes in these two rates

are again because the inter-packet time during silence gaps is larger than inter-packet

time during talk spurts.

A big challenge in feature extraction is to filter out noise caused by random net-

work delays in silence tests. Random network delays can cause errors in silence tests

especially at receiving side: Because of random packet delays, inter-packet time dur-

ing talk spurts can become larger than the threshold Tsilence. The main idea of filtering

noise in silence tests is to determine a silence gap based on N successive inter-packet

intervals instead of one inter-packet interval. The silence test with filtering techniques

works as follows: If one inter-packet interval is larger than the threshold Tsilence, we

declare a new silence gap only when none of the following ⌊ Tsilence

packetization delay
⌋ − 14

inter-packet intervals are shorter than a threshold Tspurt, used to filter out long inter-

packet intervals caused by network delays. The rationale behind the new silence tests

method is that: If an inter-packet interval is erroneously declared as a silence gap

4We use ⌊⌋ to denote floor operation.

15



0.0000.0040.0080.0120.0160.0200.0240.0280.0320.0360.040
0

0.2

0.4

0.6

0.8

1

T
spurt

 (s)

R
m

at
ch

 

 

Silence Test  with Filtering
Original Silence Test 

Figure 5: Match Rate Rmatch vs. Threshold Tspurt (µlaw Codec)

because network delays increase the length of the inter-packet interval, then following

inter-packet intervals must likely be shorter than normal inter-packet intervals during

talk spurts. The new silence tests can improve silence detection performance in terms

of the false positive rate. The filtering does not focus on false negative errors because:

(a) The false negative rate changes very little when Tsilence changes. (b) We take into

account false negative errors in choices of HMM structures.

We compare the new silence test with the original silence test through empirical

experiments: The two parties in a call through the Internet are at least 20 hops away

from each other. In this set of experiments, we evaluate the choices of parameters

with the match rate Rmatch:

Rmatch =
The number of the gaps found in both sending side and receiving side

The number of the gaps found in sending side

Ideally, the match rate Rmatch should be 1 meaning that silence gaps detected at

sending side can match silence gaps detected at receiving side exactly. The experiment

results are shown in Figure 5.

Figure 5 shows that the filtering technique can significantly increase the match
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rate Rmatch: The original silence test can only achieve match rate of 0.21. The silence

test with filtering techniques can achieve a match rate of 0.99 when Tspurt is between

3ms and 20ms. The match rate is low when Tspurt is less than 0.3ms because the

threshold Tspurt is too low to filter out large inter-packet intervals caused by network

delays. The match rate is low when Tspurt is larger than 20ms. It is because a tight

threshold Tspurt filters out most of silence gaps since normal inter-packet intervals

during talk spurts are of 20ms for µlaw codec. In following experiments, we set the

threshold Tspurt to be 10ms.

Feature vectors generated in this step are used for training or detection in

future steps.

3.3.3 HMMs Training

The input and output of this step are feature vectors and trained HMMs re-

spectively.

A Hidden Markov Model (HMM) based classifier is used to detect speeches

or speakers of VoIP calls. The HMM is a well-known tool to model temporal data

and it has been successfully used in temporal pattern recognition such as speech

recognition [31], handwriting recognition [32], and gesture recognition [33]. In the

proposed attacks, HMMs are trained to model talk patterns.

In this chapter, we consider each talk period including one talk spurt and one

silence gap as a hidden (invisible) state. The output observation from one state is

the length of a talk spurt and the following silence gap. Since each state corresponds

to a talk period, a VoIP speech is a process going through these hidden states. So

we use HMMs to model talk patterns. With the use of HMMs in our modeling, we

assume the Markov property holds. This assumption is widely used in speeches and

language modeling. Even when the assumption does not hold strictly, the extended

17



HMM can still work well [34].

Figure 6: HMM

The HMM used in traffic analysis attacks is the modified left-right HMM [34]

as shown in Figure 6. It is based on left-right models because of the nonergodic

nature of speech signals [34], i.e., the attribute of signals whose properties change over

time. The fundamental property of all left-right HMMs is that the state transition

coefficient from the ith state to the jth state (denoted as aij) is zero, when j is less

than i. Additional constraints are placed on the state transitions in the left-right

model to make sure that large changes in state diversion do not occur, i.e., aij = 0,

when j > i + ∆. For the well-known banded left-right model [34] and Bakis model

[35], ∆ is 1 and 2 respectively.

We extended classical left-right models to allow transition from the ith state to

the (i+3)th state, i.e., ∆ = 3, as hown in Figure 6. Our modification on the left-right

model is because of possible false negative errors made in the feature extraction step

and adaptive silence thresholds used in silence detectors as described in Section 3.1:

False negative errors made when some silence gaps are not detected in feature

extraction. The false negative errors can be caused by a large threshold Tsilence or

hangover time as described in Section 3.1. Hangover time reduces length of silence

gaps recovered from the packet timing since VoIP packets still being sent during the
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beginning and the end of silence duration to avoid end-clipping of speeches. The

reduction can cause false negative errors in silence tests.

Adaptive silence thresholds used in silence detectors can cause different silence

detection results for the same speech in different VoIP calls. In modern codecs,

the threshold used in a silence detector dynamically changes to adapt to changes in

background noise. Because of the dynamically changing threshold, silence duration

in the same speech can be detected as silence in one call or as a part of a talk

spurt in another call. Although the inconsistent detection because of adaptive silence

threshold does not happen very often, it affects our overall speech detection and

speaker detection performance.

To take into account the possible false negative errors made in the feature ex-

traction and inconsistency of VoIP silence detectors, we allow state transition from

the ith state to the (i+3)th state because up to three actual neighboring talk periods

can be detected as one talk period in our analysis of VoIP call traces. Our exper-

iments with different left-right models also show that the modified left-right model

can achieve better detection performance than other left-right models.

In the modified HMM, the number of states are heuristically set to be 10

according to length of feature vectors. Following the principle of Occam’s razor, the

number of states should be small enough to avoid over-fitting and large enough to

model the ergodic nature of VoIP calls. We get similar detection performance for

different number of states when the number of states is larger than five, as shown

in Figure 7. When the number of state is too large, the training of HMMs fails to

converge to an optimal solution.

In this step, two kinds of HMMs can be trained: (a) A speaker-specific model

can be obtained by training the HMM with traces of VoIP calls made by Alice. (b) For

speeches detection, we focus on detecting speeches made by one specific speaker, say
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Figure 7: Detection Rate with Different Number of States

Alice. So a speech-specific model can be obtained by training the model with traces of

the same speech made by Alice. The trained HMMs are used in the following speech

detection or speaker detection step.

3.3.4 Speech Detection and Speaker Detection

The inputs to this step are the Alice’s speech-specific or the Alice’s speaker-

specific HMM trained in the previous step and feature vectors generated from a pool

of raw VoIP traces of interest. The output of this step is the intermediate detection

result. For the speaker detection, the intermediate detection result is Ktop speakers

from the candidate pool with talk patterns closest to Alice’s talk pattern. For the

speech detection, the intermediate detection result isKtop speeches from the candidate

pool with speech patterns closest to speech patterns in training traces.

The detection step can be divided into two phases: (a) First, the likelihood of

each feature vector is calculated with the trained HMM. (b) The trace with the highest

likelihood is declared as the trace generated from one specific speech or by Alice if

the intersection step is not used. To improve detection accuracy, the intermediate
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detection results can be fed into the optional intersection attack step.

3.3.5 Intersection Attack

The intersection step is designed to improve detection accuracy. The input to

this step is the intermediate detection result from the previous step. The output is a

final detection result.

The main idea of the intersection attack step is similar as described in [36, 37,

38]: Instead of making a detection decision result based on one trial, we can improve

detection accuracy by a number of trials and the final detection result is determined

by combining (or intersecting) the results from all trials.

More specifically, for the proposed attacks, suppose it is possible to get m VoIP

call traces made by the same speaker, the adversary can have m trails as described

in Section 3.3.4. From each detection, the adversary can obtain Ktop traces with Ktop

highest likelihoods. The overall rank for each speaker is calculated by adding ranks

in m trails. The speaker with highest rank is determined to be Alice. Tie can be

broken by comparing the sum of likelihood in m trails.

In summary, the proposed traffic analysis attacks can be divided into two

phases: the training phase and the detection phase. Since application-level features

are extracted from VoIP calls, the traffic analysis attacks are independent from codecs

used for VoIP communication. In other words, it is possible to train the HMM with

traces of VoIP calls made with one codec and detect speeches or speakers of VoIP

calls made with another codec. We evaluate the proposed traffic analysis attacks with

empirical experiments as described below.
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Figure 8: Experiment Setup

Table II: Codec Information

Codec Sampling Frequency Frame Size Bit Rate Payload Size Packetization Delay
(kHz) (ms) (Kbit/s) (bits) (ms)

µlaw 8 (Narrowband) 10 64 1280 20
iLBC 8 (Narrowband) 20/30 15.2/13.3 304/400 30
BroadVoice-32 16 (Wideband) 5 32 160*n 20

3.4 Empirical Evaluation

In this section, we evaluate the effectiveness of the proposed traffic analysis

attacks.

3.4.1 Experiment Setup

The experiment setup is as shown in Figure 8. VoIP packets are first directed

to the anonymity network managed by findnot.com before arriving at the other side

of the call. We use the commercial anonymous communication services provided by

findnot.com5 mainly because it is possible to select entry points into the anonymity

network [39]. In our experiments, VoIP packets were directed through entry points

5We did not use Tor [3] to anonymize VoIP calls because Tor has no direct support of anonymizing
UDP packets and VoIP packets generally are UDP packets.
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in England, Germany, and United States as shown in Figure 8. For these VoIP calls

made through anonymity networks, the end-to-end delay is at least 80ms and the two

communication parties are at least 20 hops away from each other. About a quarter of

calls are made through the campus network so that traces of VoIP calls over a wide

range of networks are available for our experiments.

The audio signals are extracted from videos hosted on Research Channels [40].

Traces used in both training and detection are 14.7 minutes long on average if not

specified6. For the purpose of intersection attacks, at least three different speeches are

available for most speakers and each speech was sent through at least four different

network entry points7. Totally 360 VoIP calls were made through different entry

points of the anonymity network managed by findnot.com and through the campus

network.

In our experiments, VoIP calls were made with X-Lite [28], one of the most

popular SIP-based VoIP clients. X-Lite supports a wide range of codecs for different

voice quality. We choose three popular and representative codecs of high, medium,

and low bit rates for our experiments. More information about these three codecs is

listed in Table II.

3.4.2 Metrics

We use detection rate to measure effectiveness of the proposed attacks. In this

chapter, detection rate is defined as the ratio of the number of successful detections

to the number of attempts.

For both speech detection and speaker detection with traces generated by the

same codec, the detection rate for random guess is about 1
109

, because in each trial,

6For fair comparison, traces used in experiments contain the same number of talk periods. In
other words, feature vectors generated from these traces are of the same length. Because of the
difference in length of talk periods in different traces, traces are of different length in minutes.

7The campus network entry point is one of the choices.
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there are around 109 candidate traces in the pool if the pool size is not specified. One

of the traces in the pool is the “right” trace, i.e., the trace generated by a specific

speech. In each trial of speech detection, three traces of the same speech are used

for training and one trace of the same speech is one of the candidate traces. In each

trial of speaker detection, one trace of Alice’s speeches is used as one of the candidate

traces and Alice’s other traces are used for training.

For cross-codec detection, i.e., detection with traces generated from all codecs

used in experiments, the detection rate for random guess is about 1
325

, because in each

trial, there are around 325 candidate traces in the pool including the “right” trace.

In each trial of speech detection, eleven traces of the same speech from three different

codecs are used for training and one trace of the same speech is one of the candidate

traces. In each trial of speaker detection, one trace of Alice’s speeches is used as one

of the candidate traces and Alice’s other traces are used for training.

In all the experiments below, the training traces and candidate traces are all

collected from different VoIP calls. For better training, all the traces used in training

are collected from sending side, i.e., from the link connected to Alice’s computer.

3.4.3 Threshold Tsilence

This series of experiments are designed to test the effect of the parameter

Tsilence, the threshold used in silence tests.

Figure 9 shows speech detection performance with different threshold Tsilence.

In both Figure 9 and Figure 10, each detection rate is obtained based on 120 trials.

From Figure 9, we can observe: (a) For a wide range of Tsilence, the detection

rate is larger than 0.5, about 55-fold over random guess. The detection rate can

be higher than 0.55 for all the three codecs, so more than 61-fold improvement over

random guess. For BoradVoice-32 codec, the detection rate can reach 0.66. (b) In
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(a) Candidate Traces Collected from Sending Side
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(b) Candidate Traces Collected from Receiving Side

Figure 9: Speech Detection Performance with Different Threshold Tsilence
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(a) Candidate Traces Collected from Sending Side
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(b) Candidate Traces Collected from Receiving Side

Figure 10: Speaker Detection Performance with Different Threshold Tsilence
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general, the detection rate increases when the threshold Tsilence increases. When

Tsilence becomes large, the detection rate may drop simply because shorter feature

vectors are used for training and detection. When Tsilence is larger than 0.512s,

feature vectors are too short for detection so that the HMM training cannot converge

for the certain traces. (c) The detection rate for candidate traces collected from

sending side is comparable with the detection rate for candidate traces collected from

receiving side. It is because filtering techniques used in silence tests can largely filter

out noise caused by random network delays at receiving side which can vary from

call to call. Similar observations can be made from Figure 10. The detection rate for

speaker detection can reach 0.32, about 35-fold improvement over random guess. In

the following experiments, we set Tsilence to be 0.412 second.

3.4.4 Length of Training and Test Traces

This set of experiments are designed to investigate the effect of the length of

training and test traces on the detection performance. Since in general, the training

traces should be longer than test traces for better training, we vary the average

length of training traces from 5.4 minutes to 14.7 minutes and the average length of

test traces varies from 1.9 minutes to the average length of training traces used in the

same detection.

From experiment results shown in Figure 11, we can observe that even for

five-minute-long training and test traces, the detection rate for speech detection and

speaker detection can achieve 0.20 and 0.12, about 22-fold and 13-fold improvement

over random guess respectively. Figure 11 also shows that the detection rate increases

with the length of training traces and the length of test traces. In the following

experiments, we fix the average length of training traces and test traces to be 14.7

minutes.
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(a) Speech Test
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(b) Speaker Test

Figure 11: Detection Performance with Different Length of Training Traces and Test
Traces
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Figure 12: Detection Performance with Different Pool Size

3.4.5 Pool Size

In this set of experiments, we investigate detection performance with different

sizes of candidate pools. From the experiment results shown in Figure 12, we can

observe that when the pool size increases, the detection rate slightly decreases for all

the codecs, since it is harder to find the right one from a larger pool. But the ratio

between the speech detection rate and random guess rate changes from 20 to 70, when

the pool size changes from 28 to 109, meaning the traffic analysis attacks are more

effective when the pool size is large. We can also observe that for the µlaw codec, one

of the most frequently used codec in VoIP telephony, the speech detection and the

speaker detection can achieve detection rate of 0.72 and 0.65 when the pool size is

28, approximately 20-fold and 70-fold improvement over random guess respectively.
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Figure 13: Cross-Codec Detection Performance with Different Threshold Tsilence

3.4.6 Cross-Codec Detection

In this set of experiments, training traces and traces to be detected are gener-

ated with different codecs. We believe this set of experiments are important because:

(a) Practically training traces and the traces to be detected can be collected from

calls made with different codecs. (b) Since VoIP packets are encrypted and possibly

padded to a fixed length, adversaries may not be able to differentiate VoIP calls made

with different codecs.

Figure 13 shows performance of cross-codec detection with different threshold

Tsilence. Each detection rate in Figure 13 is obtained based on about 360 trials.

We can observe that the detection rates for speech detection and speaker detection

can reach 0.61 and 0.31 respectively, about 203-fold and 103-fold improvement over

random guess.

Figure 14 shows the detection performance with different length of training

traces and test traces. We can again observe the detection rate increases with the

length of training traces and test traces. The speech detection and speaker detection

with only five minutes of training traces and test traces can achieve 0.12 and 0.21,
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Table III: Performance of Intersection Attacks Combined with Cross-Codec Speaker
Detection

Tsilence (ms) Ktop = 1 Ktop = 2 Ktop = 4 Ktop = 8

212 0.3500 0.3625 0.3750 0.4000
412 0.4325 0.4500 0.6000 0.6250

40-fold and 70-fold improvement over random guess respectively.

Figure 15 shows the detection performance with different sizes of candidate

pools. We can again observe that the detection rate decreases slightly with the

increase of pool size. When the pool size is 82, the speech detection and speaker

detection can achieve 0.72 and 0.60 respectively.

3.4.7 Intersection Attack

In this set of experiments, we evaluate the effectiveness of intersection attacks

on cross-codec speaker detection. On average, there are 37 candidate speakers in each

trial. So the detection rate for random guess is about 1
37
. Each candidate speaker

has 9 VoIP traces available for detections. So the final detection result is obtained by

combining the intermediate detection results of 9 trials.

Table III shows the performance of intersection attack: First, intersection at-

tacks greatly improve the performance of cross-codec speaker detection. Second, the

detection rate can reach 0.625, about 25-fold improvement over random guess.

In summary, the proposed traffic analysis attacks can significantly improve the

detection rate over random guess. We believe that given more training traces, higher

detection rate can be achieved.

3.5 Detecting Speaker without Candidate Pools

The initial threat model assumes that the “right” speaker is in a candidate pool.

Although the assumption is valid for applications similar as identifying a human being
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with a group of fingerprints collected from a crime scene, we would like to investigate

the detection performance without the assumption of candidate pools.

Instead we assume that the adversary possesses traces of VoIP calls made by

Alice and other persons. We call these traces as labeled traces since these traces are

collected in advance and the adversary knows the identities of callers. The goal of

the adversary is to detect, whether Alice is the speaker of a VoIP call of interest.

3.5.1 Detection Approach

We modify the detection approach for the new traffic analysis attack as follows:

1 The adversary splits the labeled traces of Alice’s calls into two halves. An HMM

to model Alice’s talk pattern is established based on the first half of the traces.

2 A detection threshold Tlik is determined based on remaining labeled traces in-

cluding the second half of traces of Alice’s calls. The adversary evaluates each of

these traces against Alice’s model and calculates its likelihood. Given a thresh-

old Tlik, the false positive rate and the false negative rate on the remaining

labeled traces can be calculated as follows: (a) False negative rate is defined as

the proportion of Alice’s calls detected as calls made by other speakers, i.e., the

proportion of Alice’s calls with likelihood values less than Tlik. (b) False positive

rate is defined as the proportion of calls made by other speakers detected as

Alice’s calls, i.e., the proportion of other speakers’ calls with likelihood values

larger than Tlik. The threshold Tlik is selected so that the detection rates on the

remaining traces are maximized and both the false negative rate and the false

positive rate on the remaining labeled traces are below a tolerance threshold

Ttol.

3 The adversary makes a detection decision by evaluating a given trace with
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Alice’s HMM. If the calculated likelihood is larger than Tlik, the given trace is

declared as a trace of Alice’s call. Otherwise, the trace is declared as a trace

made by other speakers.

3.5.2 Performance Evaluation

We evaluate the detection performance with four metrics: detection rate, false

negative rate, false positive rate, and percentage of traces which can be tested. The

two metrics, the false negative rate and the false positive rate used in performance

evaluation, are calculated on the test traces. The last metric, percentage of traces

which can be tested, is needed because for certain traces, it is impossible to find a

threshold Tlik so that both false negative rate and false positive rate on the labeled

traces are below a given tolerance Ttol.

In this set of experiments, the average length of labeled traces and test traces

are 14.7 minutes. In each detection, there are 54 labeled traces and 6 traces of Alice’s

calls. The experiment results are averaged over 120 tests.

Experiment results shown in Figure 16 indicate that detection rate decreases

when the tolerance Ttol increases and in the mean time, the percentage of trace which

can be tested increases. A smaller tolerance Ttol means better training, and in turn,

better detection performance. A smaller tolerance Ttol also means stricter require-

ments so fewer traces can be tested. We can also observe that the detection rate can

reach 0.89 when Ttol = 0.1 and only 1% traces can be tested. When Ttol = 1, i.e., all

the traces can be tested, the detection rate is 0.63.

3.6 A Countermeasure and Its Performance

From the discussion above, it is apparent that the proposed traffic analysis

attacks can greatly compromise the privacy of encrypted VoIP calls. Countermeasures
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Figure 17: Countermeasure: Camouflaging Alice’s VoIP Packets

are needed for privacy protection. In this section, we introduce a countermeasure

which can both protect privacy with only marginally effect on quality of service (QoS)

of VoIP calls.

3.6.1 Overview

Simple countermeasures to the proposed traffic analysis attacks include padding

VoIP traffic to constant rate traffic or randomly delaying VoIP packets to hide talk

patterns. These simple approaches may render the proposed traffic analysis attacks

ineffective. But these approaches can cause significant waste of bandwidth or degrade

the QoS of VoIP calls significantly.

The main idea of our countermeasure is to camouflage the timing of Alice’s

VoIP packets according to another speaker’s traces. As shown in Figure 17, Alice’s

VoIP packets are first kept in a buffer. A token will be generated when it is time

to send a packet according to Speaker X’s VoIP traces. The transmissions of Alice’s

VoIP packets are controlled by these tokens. The transmission control in Figure 32

functions as follows: (a) Each packet transmission consumes a token. (b) When a

token is generated and the buffer is not empty, transmission control will transmit the

first packet in the buffer. (c) When a token is generated and the buffer is empty, a

dummy packet is transmitted by the transmission control. (d) When Nbuff packets
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are held in the buffer and no token is available, the first packet in the buffer will be

transmitted.

For the proposed countermeasure, dummy packets are sent only when necessary

for camouflaging. The parameter Nbuff is used to control queuing delays. This

parameter should be carefully chosen to balance the QoS of VoIP calls and privacy

protection to defeat traffic analysis attacks.

3.6.2 Performance Evaluation of the Countermeasure

We evaluate the countermeasure with two metrics: (a) The detection rate

defined in Section 3.4.2: It is used to measure the performance of privacy protection

of VoIP calls. (b) Additional packet delays caused by the countermeasure: It measures

the degradation of the QoS of VoIP calls.

In this set of experiments, we use real traces collected from the experiment

environment described in Section 3.4.1.

Figure 18 shows the performance of the countermeasure. The threshold Tsilence

is set to 0.412s and the corresponding detection rate is 0.6 a threshold with as shown in

Figure 9. Figure 18(a) shows that the countermeasure can protect the privacy of VoIP

calls since most detection rates are around the probability of random guess. Figure

18(b) shows additional packet delays caused by the countermeasure. When Nbuff is

50 and 100, the additional delays caused by the countermeasure is less than 36ms and

68ms with a probability larger than 0.95 respectively. So the countermeasure will not

cause any significant change in the quality of VoIP calls since the additional delays

for Nbuff = 50 and Nbuff = 100 are still less than one third of and half of the delay

budget for VoIP calls [41] respectively. The detection rates for small Nbuff , such as

Nbuff = 1 and Nbuff = 10, cannot be obtained from experiments, because Nbuff is

too small and no silence gaps can be found in privacy VoIP traces.
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Figure 18: Performance of the Proposed Countermeasure
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3.7 Discussion and Future Work

Our experiments clearly show that the proposed traffic analysis attacks can

greatly compromise privacy of VoIP calls. The detection rates for speech detection

and speaker detection are 70-fold and 35-fold improvement over random guess. Higher

detection rate can be achieved with more training traces.

Comparable detection performances are achieved for both traces collected by

sending side and receiving side. It is an indication that when the threshold is large

enough, feature extracted in the proposed attacks are largely independent of network

dynamics.

The framework proposed in this chapter, including extracting application-level

features from network traffic traces and statistical analysis of extracted application-

level feature by HMMs, can be potentially used to infer other sensitive information

at application level. For example, the framework can be potentially used to detect

speaker’s emotion during a call suppose the speaker’s talk behavior can change signif-

icantly when the speaker’s mood changes. The framework may also be used to detect

different types of speeches such as seminar talk, conversation between two parties,

and classroom discussion. One of our future works is to explore the potential of the

framework experimentally and theoretically.
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CHAPTER IV

TRAFFIC ANALYSIS ATTACKS ON

SKYPE VOIP CALLS

In this chapter, we address on privacy issues of Skype calls. Skype is one

of the most popular VoIP service providers. Skype VoIP services are provided on

a peer-to-peer structure. Skype peers form an overlay network. A Skype call may

be dynamically routed through Skype peers during the call for better Quality of

Service (QoS) [42]. One of the main reasons for the popularity of Skype VoIP services

is its unique set of features to protect privacy of VoIP calls such as strong encryption

[43], proprietary protocols [43], unknown codecs [44], dynamic path selection [42],

and the constant packet rate [45].

In this chapter, we propose a class of passive traffic analysis attacks to compro-

mise privacy of Skype calls. The procedure of proposed attacks is as follows: First the

adversary collected Skype call traces made by a victim, say Alice. The adversary then

extracts application-level features of Alice’s VoIP calls and trains a Hidden Markov

Model (HMM) with the extracted features. To test whether a call of interest is made
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by Alice, the adversary can extract features from the trace of the call and calculate

likelihood of the call being made by Alice. The proposed attacks can identify speeches

or speakers of Skype calls with high probabilities.

4.1 Problem Definition

In this chapter, we focus on traffic analysis on Skype VoIP calls through

anonymity networks to disclose sensitive information at application-level. More specif-

ically, we are interested in detecting speeches and speakers of Skype VoIP calls by

analyzing traffic patterns at the application-level.

A typical attack scenario focused in this chapter is as follows: An adversary

who has possession of traces of previous Skype VoIP calls made by a victim, say Alice,

may want to detect whether Alice is talking to Bob now by collecting Skype packets

on the link to Bob. The adversary may also want to detect the speech content, such

as the repetition of a partial speech in previous Skype calls.

In this chapter, we assume that traffic traces used in analysis can be collected

at different time. This is the major difference between our research and the previous

researches. Most of the previous researches assume that the adversary has simulta-

neous access to both links connected to Alice and Bob during the Skype call between

Alice and Bob. By passively correlating VoIP flows at both ends or actively water-

marking VoIP flows, the adversary can detect whether Alice is communicating with

Bob. But for the typical attack scenario described above, both flow correlation and

watermarking techniques do not work because traces to be compared are collected

from different VoIP calls: (a) Correlation between different calls is low. (b) Water-

marks used to mark traffic flows of Alice’s VoIP calls can be different for different

calls because of recycling watermarks or simply because Alice is making a call from

a different computer.
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4.1.1 Network Model

In the chapter, we assume Alice makes VoIP calls by Skype. We are particularly

interested in Skype VoIP calls because: (a) Skype is based on peer-to-peer structure.

During a Skype call, VoIP packets may follow more than one path through different

Skype peers or Skype supernodes [42]. The peer-to-peer structure and dynamic path

selection make security attacks or eavesdropping on Skype calls more difficult. (b)

Skype uses proprietary protocols so that attackers cannot differentiate media packets

from signaling packets. (c) Skype uses unknown codecs that renders traffic analysis

exploiting characteristics of voice codecs nearly impossible [44]. (d) Skype calls are

encrypted and hard to decipher [43]. (e) Skype sends packets at the constant rate of 33

packet/second [45]. Due to the unique set of features listed above, Skype is known as

secure voice communication [43] which can protect privacy of communication parties.

As shown in Figure 19, we assume Alice routes Skype calls through anonymity

networks to further protect privacy of her Skype calls. For better voice quality, Alice

can use low-latency anonymity networks such as Tor and JAP.

4.1.2 Threat Model

We focus on passive attacks in this thesis. In other words, the attacks launched

by the adversary do not disturb the existing network traffic. In comparison with active

traffic analysis attacks [8, 46], the proposed attacks are harder to detect.
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We assume that the adversary only has access to the links directly connected

to participants of VoIP calls. This assumption is widely used in traffic analysis at-

tacks such as attacks on anonymity networks [8]. We do not assume the adversary

as a global attacker because re-routing techniques used in anonymity networks and

dynamic path selection employed by Skype make global attacks too costly to be

practical.

Our threat model does not require simultaneous access to the links connected

to participants of a VoIP call since it may not be feasible for long-distance calls,

such as international calls. Instead we assume the adversary can collect traces of

VoIP calls made by Alice in advance and use these collected traces to detect whether

Alice is a participant in the VoIP conversation of interest. Our model is similar as the

model for identifying a human being by fingerprints: Fingerprints of human beings are

collected in advance through driver license applications. To identify a specific person,

the fingerprint of interest such as a fingerprint in a crime scene will be compared

against the person’s fingerprints collected in advance.

The threat model assumes the detections are based on different Skype calls.

So the speaker identification should also be independent of the voice content of Skype

calls.

4.2 Detecting Speech and Speaker of Skype-Based

VoIP Calls

In this section, we describe traffic analysis attacks to detect speeches or speak-

ers of encrypted VoIP calls. We begin the section with an overview of the proposed

traffic analysis attack and details of each step in our algorithm are described after

the overview.

43



100 200 300 400 500 600 700 800 900 1000 1100
−1

−0.5

0

0.5

1

Sample Point

S
am

p
le

 V
al

u
e 

(s
m

p
l)

(a) Waveform

0 50 100 150 200 250
0

50

100

150

200

Time (s)

P
ac

ke
t 

S
iz

e 
(b

yt
es

)

(b) Packet Size

Figure 20: An Example

4.2.1 Overview

The proposed traffic analysis attacks are based on packet size information.

A simple experiment shown in Figure 20 indicates that packet size information can

disclose speech-level information. Figure 20(a) shows an audio signal with three

silence periods. Figure 20(b) shows the packet sequence generated by feeding the

audio signal into Skype clients. From the packet sequence plotted in Figure 20(b), we

can observe: (a) Even during silent periods, Skype clients still generate packets at a

constant rate. (b) During silent periods, VoIP packets generated by Skype are small

in comparison with packets generated during talk periods. We do not focus on packet

timing information in this chapter mainly because Skype clients send VoIP packets

at a constant rate [45].

One of the challenges in this chapter is to extract application-level features from

collected VoIP packet traces, i.e., features existing in different VoIP calls. Based on

the features existing in different VoIP calls, traffic analysis attacks can possibly detect

speeches or speakers of VoIP calls. The feature used in the proposed attacks is the

throughput vector [s1, s2, · · · , sn], where n is the length of the vector. The element
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si in the throughput vector is calculated as follows:

si =
sum of bytes received or sent during the ith sample interval

T
(4.1)

where T is the length of sample intervals.

The length of sample interval T should be selected in the order of seconds for

the following two reasons: (a) Because of re-routing techniques used in anonymity

networks and dynamic path selection employed in Skype, VoIP packets can arrive

at destination in an order different from the order at sending end. A larger sample

interval can largely absorb the difference. This is also the reason why we do not use

per-packet size as the feature vector. (b) Talk patterns are of low frequency while

network dynamics is of higher frequency. Network dynamics is usually in the order of

millisecond while the patterns such as silent periods are in the order of seconds [47, 48].

The averaging effect of sample intervals is equivalent as low-pass filtering. A larger

sample interval in the order of seconds can filter out network dynamics information

which can vary from call to call and keep the low-frequency talk patterns.

The Hidden Markov Model (HMM) has been introduced in 3.3.3. In the pro-

posed attacks, HMMs are trained to model talk patterns used for speech detection or

speaker detection.

The proposed attacks can be divided into two phases: the training phase and

the detection phase as shown in Figure 21. The two steps in the training phase are

feature extraction and HMMs training. The detection phase consists of three steps:

feature extraction, speech detection or speaker detection, and intersection attack.

The last step, intersection attack, is optional. We describe the details of each step

below.
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Figure 21: Steps of The Proposed Attacks

4.2.2 Feature Extraction

The input and output of the feature extraction step are raw traces of VoIP

calls and throughput vectors respectively.

Two parameters are used in this step to control the generation of throughput

vectors: (a) Length of sample interval T : As described in Section 4.2.1, the length

of sample interval should be large enough to filter out network dynamics different

from call to call and keep talk patterns. At the same time, it is desired to select

a sample interval small enough so that throughput vectors are long enough for the

training purpose. (b) Threshold on packet size Hpacket: The threshold is used to

filter out signaling packets and excluding signaling packets can lead to better trained

HMMs of talk patterns. Since Skype uses proprietary protocols, unknown codecs, and

encryption, it is impossible to separate signaling packets based on protocol headers.

We heuristically differentiate signaling packets from media packets by the threshold

Hpacket: Signaling packets are usually smaller than media packets. In raw VoIP traces,

we also find that packets of small and fixed sizes are sent or received periodically and

independent of speech activities. The guidelines on the choice of these two parameters

are given in Section 4.3.

46



���
Figure 22: Left-right Hidden Markov Model

4.2.3 HMM Training

The input and output of this step are throughput vectors and trained HMMs

respectively.

The Markov Model is a tool to model a stochastic process with the Markov

property that the transition from the current state to the next state depends only on

the current state, i.e., independent from the past states. In a Hidden Markov Model,

the state is not directly visible, but outputs influenced by the state are observed. Each

state has a probability distribution over the possible outputs. Therefore the sequence

of outputs generated by an HMM gives some information about the sequence of states.

In the proposed attacks, HMMs are trained to model talk patterns used for

speech detection or speaker detection. More specifically, the attacks are based on

on-off patterns of silence in speeches which have been used as one feature for speaker

detection [49]. As shown in Figure 20, the on-off patterns in speeches can be possibly

recovered from packet size. But the pattern recovery is noisy because: (a) It is

impossible to differentiate voice packets from signaling packets. (b) A sample interval

may contain several on-off periods or may be a part of a long silent gap or talk spurt.

Ideally only two states, talk and silence, are enough to model talk patterns with a

voice silence detector as used in [49]. Because of the noise in pattern recovery, more

states of different combinations of on-off periods are used in the HMM. The number
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Figure 23: Detection Rate with Different Number of States

of states in HMM is heuristically set to be eight according to the length of through

vectors. Following the principle of Occam’s razor, the number of states should be

small enough to avoid over-fitting and large enough to model the ergodic nature of

VoIP calls. We get similar detection performance for different number of states when

the number of states is larger than five, as shown in Figure 23. When the number of

state is too large, the training of HMMs fails to converge to an optimal solution.

The HMM used in traffic analysis attacks is the left-right HMM [34] as shown

in Figure 22. We choose the left-right model because of the nonergodic nature of

speech signals [34], i.e., the attribute of signals whose properties change over time.

Each node in Figure 22 represents a state in one sample interval. The observable

variable is the throughput of each sample interval.

Two kinds of HMMs can be trained: (a) For the speech detection, we focus

on detecting speeches made by one specific speaker, say Alice. So a speech-specific

model can be obtained by training the model with traces of the same speeches made

by Alice. (b) A speaker-specific model can be obtained by training the HMM with
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traces of VoIP calls made by a specific speaker. The trained HMMs are used in the

following speech detection or speaker detection.

4.2.4 Speech Detection and Speaker Detection

The inputs to this step are the Alice’s speech-specific or the Alice’s speaker-

specific HMM trained in the previous step and throughput vectors generated from

a candidate pool of raw VoIP traces of interest. The output of this step is the

intermediate detection result. For the speaker detection, the intermediate detection

result isKtop speakers from the candidate pool with talk pattens closest to Alice’s talk

pattern. For the speech detection, the intermediate detection result is Ktop speeches

from the candidate pool with speech pattens closest to talk patterns in training traces.

The detection step can be divided into two phases: (a) First, the likelihood of

each throughput vector is calculated with the trained HMM. (b) The trace with the

highest likelihood is declared as the trace generated from a specific speech by Alice

if intersection attack is not used. To improve detection accuracy, the intermediate

detection results can be fed into the optional step, intersection attack.

4.2.5 Intersection Attack

The intersection step is designed to improve detection accuracy. The input to

this step is the intermediate detection result from the previous step. The output is a

final detection result.

The main idea of the intersection attack is similar as described in [36, 37,

38]: Instead of deciding the detection result based on one trial, we can improve

detection accuracy by a number of trials and the final detection result is determined

by combining (or intersecting) the results from each trial.

More specifically, for the proposed attacks, suppose it is possible to getm Skype

49



Alice Bob

Anonymity Networks
Eavesdropping Point

Intermediate Skype 

Peers
Eavesdropping Point

UK

USA

GER

Figure 24: Experiment Setup

call traces made by the same speaker, the adversary can do m trials as described in

Section 4.2.4. From each detection, the adversary can obtain k traces with the Ktop

highest likelihoods. The overall rank for each speaker is calculated by adding ranks

in m trials. The speaker with the highest rank is determined to be Alice. Tie can be

broken by comparing the sum of likelihood in m trials.

4.3 Empirical Evaluation

In this section, we evaluate the effectiveness of the proposed detections.

4.3.1 Experiment Setup

The experiment setup is as shown in Figure 24. Skype packets are first di-

rected to the anonymity network managed by findnot.com and then relayed by Skype

peers or supernodes before arriving at the other end of the call. We use the commer-

cial anonymous communication services provided by findnot.com mainly because it is

possible to select entry points into the anonymity network [39]. In our experiments,

Skype packets are directed through entry points in England, Germany, and United

States as shown in Figure 24. For these Skype calls made through anonymity net-

works, the end-to-end delay is at least 80ms and the two communication parties are

at least 20 hops away from each other. About a quarter of calls are made through

the campus network so that traces of VoIP calls over a wide range of networks are
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available for our experiments.

The audio signals are extracted from videos posted on Research Channels [40]

for consistent sound quality. The length of extracted audio signals is about 38.5

minutes. At least three different speeches are available for most speakers and each

speech is sent through at least four different network entry points1. In total 116 Skype

calls are made through different entry points of the anonymity network managed by

findnot.com and through the campus network.

4.3.2 Metrics

We use detection rate to measure effectiveness of the proposed attacks. In

this chapter, the detection rate is defined as the ratio of the number of successful

detections to the number of attempts.

For both speech detection and speaker detection, the detection rate for random

guess is about 1
105

, because in each trial, there are 105 candidate traces in the pool on

average. One of the traces in the pool is the “right” trace, i.e., the trace generated

by a specific speech or speaker. In each trial of the speech detection, three traces of

the same speech are used for training and one trace of the same speech is one of the

candidate traces. In each trial of the speaker detection, one trace of Alice’s speech is

used as one of the candidate traces and Alice’s other traces are used for training.

In all the experiments below, the training traces and candidate traces are all

collected from different Skype calls. For better training, all the traces used in training

are collected from the sending end, i.e., from the link connected to Alice’s computer.
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Figure 25: Effect of Parameter T on Speech Detection
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Figure 26: Effect of Parameter T on Speaker Detection
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4.3.3 Effect of Parameter T (Length of Sample Interval)

This series of experiments are designed to test the effect of the parameter T ,

the length of sample intervals.

Figure 25 shows the effect of the parameter T on speech detection. From these

two figures, we can observe: (a) For a wide range of T , the detection rate is larger

than 0.1, about 10-fold improvement over random guess. (b) When T is small, the

detection rate is relatively low. It is because a small T cannot be used to extract

talk patterns usually in the order of second as discussed in Section 4.2.1. (c) When

T becomes large, the detection rate may drop simply because shorter throughput

vectors are used for training and detection. (d) The detection rate can be as high

as 0.33, about 35-fold improvement over random guess. (e) The detection rate for

candidate traces collected from the sending end is comparable with the detection rate

for candidate traces collected from the receiving end. It is because T is big enough to

filter out network dynamics at receiving end which can vary from call to call. Similar

observations can be made from Figure 26. The detection rate for speaker detection

can reach 0.18, about 18-fold improvement over random guess.

4.3.4 Effect of Parameter Hpacket (Threshold on Packet Size)

This series of experiments are designed to test the effect of the parameter

Hpacket, the threshold on packet size.

Figure 27 shows the effect of the parameter Hpacket on speech detection. From

Figure 27, we can observe: (a) When Hpacket is less than 100 bytes, the detection rate

is low. We believe it is because small Hpacket cannot be used to remove all signaling

packets. (b) When Hpacket is larger than 130 bytes, the detection rate may decrease.

The reason is too few packets left because of the larger threshold. (c) The detection

1The campus network entry point is one of the choices.
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Figure 27: Effect of Parameter Hpacket on Speech Detection
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Figure 28: Effect of Parameter Hpacket on Speaker Detection
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rate for speech detection can achieve 0.33, about 35-fold improvement over random

guess.

Figure 28 shows the effect of the parameter Hpacket on speaker detection. We

can observe: (a) The best range of Hpacket for speaker detection is from 110 bytes to

130 bytes. (b) The detection rate can reach to 0.2, about 20-fold improvement over

random guess.

4.3.5 Length of Training Traces and Test Traces

The length of training traces and test traces available for traffic analysis largely

determines the effectiveness of proposed traffic analysis. In this set of experiments, we

evaluate performance of the proposed attacks with different length of training traces

and test traces. Figure 29 shows the experiment results on length of test traces.

The results are obtained with training traces of length 38.5 minutes, T = 110s, and

Hpacket = 120bytes. We can observe that the detection rates for both speech detection

and speaker detection increase with the length of test traces. When test traces are 25

minutes long, the detection rates for speech detection and speaker detection are 0.28

and 0.18, about 28-fold and 18-fold improvement over random guess respectively.

4.3.6 Pool Size

In this set of experiments, we investigate the performance of traffic analysis

attacks with different size of candidate pools. From the experiment results shown

in Figure 30, we can observe that when the pool size increases, the detection rate

slightly decreases for both speech detection and speaker detection, since it is harder

to find the right one from a larger candidate pool. But the ratio between the speech

detection rate and the corresponding random guess rate changes from 12.59, when

pool size is 27, to 35 when pool size is 105, meaning the traffic analysis attacks are
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Figure 29: Detection Rate vs Test Time and Training Time on Speech Detection and
Speaker Detection
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Figure 30: Detection Performance with Different Pool Size

more effective when the pool size is large.

4.3.7 Intersection Attack

In this set of experiments, we evaluate the effectiveness of intersection attacks

on speaker detection. On average, there are 33 candidate speakers. So the detection

rate for random guess is about 1
33
. Each candidate speaker has 3 Skype traces available

for detection so the final detection result is obtained by combining the intermediate

detection results of three trials.

From previous experiments, we learned specify explicitly suitable ranges for

parameters T and Hpacket to achieve higher detection rate. We use parameters in

these ranges in the intersection attacks described below and parameters used in the

following experiments are given in figures.

Figure 31 shows the performance of the intersection attack. From Figure 31,

we can observe: (a) In general, when Ktop, the number of most likely candidates

selected from each trial, increases, the detection rate increases because more high-
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likelihood traces are considered in the intersection attack step. (b) The detection

rate can reach 0.44, about 15-fold improvement over random guess. (c) The detection

rate for candidate traces collected from the sending end is again comparable with the

detection rate for candidate traces collected from the receiving end.

In summary, the proposed traffic analysis attacks can significantly improve the

detection rate over random guess. We believe that given more training traces, higher

detection rates can be achieved.

4.4 A Countermeasure and Its Performance

From the discussion above, it is apparent that the proposed traffic analysis

attacks can greatly compromise the privacy of Skype calls. Countermeasures are

needed to protect privacy of Skype calls. In this section, we introduce a countermea-

sure which can protect privacy at the cost of marginally effect on quality of VoIP

calls.

4.4.1 Overview

The main idea of the countermeasure is to camouflage Alice’s Skype packets

according to another speaker’s traces. As shown in Figure 32, Alice’s Skype packets

are re-packetized according to packet sizes of another speaker’s Skype packets. The

re-packetization is controlled by the byte tokens generated according to packet size

of Speaker X’s Skype packets: when it is time to send Speaker X’s Skype packet of

size v-byte, a v-byte token is generated to signal the re-packetization module to allow

v-byte Skype payload stored in buffer to be transmitted.

Another possible countermeasure is to pad all the packets to the same size. We

do not propose this countermeasure because: (a) A significant amount of bandwidth
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Figure 31: Performance of Intersection Attack
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can be wasted to send padding bits. (b) Skype flows of constant packet sizes may

catch special interest from adversaries.

4.4.2 Performance Evaluation of The Countermeasure

We evaluate the countermeasure with two metrics: (a) The detection rate

defined in Section 4.3.2: It is used to measure the performance of preserving privacy

of Skype calls. (b) Packet delay caused by the countermeasure: We use it to measure

the degradation of quality of VoIP calls.

In this set of experiments, we use real traces collected from the experiment

environment described in Section 4.3.1.

Figure 33 shows the performance of the countermeasure. Figure 33(a) shows

that the countermeasure can preserve the privacy of Skype calls since the detection

rate is around the probability of random guess. Figure 33(b) shows the distribution

of packet delay caused by the countermeasure. The mean of the delay caused by the

countermeasure is 0.10ms. The delay is less than 0.102ms with a probability larger

than 0.95. So the delay caused by the countermeasure is negligible. In other words,

the countermeasure will not cause any significant change in the quality of Skype calls

since it is much less than the delay budget for VoIP calls [41].

4.5 Discussion and Future Work

Our experiments clearly show that the proposed traffic analysis attacks can

greatly compromise privacy of Skype calls. The detection rates for speech detection

and speaker detection are 35-fold and 15-fold improvement over random guess. Higher

detection rate can be achieved by adding more training traces.

The traditional speaker detection problem assuming access to speech signals

has been well studied [50]. In this chapter only noisy talk patterns recovered from
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packet sizes are available for traffic analysis. In [49], a speaker detection approach

based on face, mouth motion and silence detection is proposed. In comparison with

the 90% high detection rate achieved in [49], our detection rate is relatively low since

fewer features are available for traffic analysis.

The framework proposed in this chapter, including extracting application-level

features from network traffic traces and statistical analysis of extracted application-

level feature by the HMM, can be potentially used to infer other sensitive information

at application-level. For example, the framework can be potentially used to detect

speaker’s emotion during a call suppose the speaker’s talk behavior can change sig-

nificantly when the speaker’s mood changes. One of our future works is to explore

the potential of the framework.
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CHAPTER V

CONCLUSIONS

In this thesis, we propose a class of passive traffic analysis attacks to com-

promise privacy of Skype calls and SIP-Based VoIP calls. The proposed attacks

are based on application-level features extracted from VoIP call traces. The proposed

attacks are evaluated by extensive experiments over different types of networks includ-

ing commercialized anonymity networks and our campus network. The experiments

show that the proposed traffic analysis attacks can detect speeches and speakers of

SIP based VoIP calls with 0.65 and 0.32 detection rate respectively, about 70-fold and

35-fold improvement over random guess. For Skype calls, the speech detection rate

and speaker detection rate are 0.33 and 0.44, about 30-fold and 15-fold improvement

over random guess. Countermeasures are proposed to mitigate the proposed traffic

analysis attacks by camouflaging. The proposed countermeasures can largely mitigate

the traffic analysis attacks and does not cause significant degradation on quality of

VoIP calls.
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