
1

Detecting and Mitigating Denial-of-Service Attacks
on Voice over IP Networks

Zahid Anwar, Shaya Potter, Chandra Narayanaswami, William Yurcik , Carl Gunter, Roy H Campbell
anwar@uiuc.edu, spotter@cs.columbia.edu, chandras@us.ibm.com, {byurcik, cgunter, rhc}@uiuc.edu

IBM Watson Research, Department of Computer Science
Columbia University, University of Illinois at Urbana-Champaign

Abstract— Voice over IP (VoIP) is more susceptible to Denial
of Service attacks than traditional data traffic, due to the
former’s low tolerance to delay and jitter. We describe the
design of our VoIP Vulnerability Assessment Tool (VVAT) with
which we demonstrate vulnerabilities to DoS attacks inherent
in many of the popular VoIP applications available today. In
our threat model we assume an adversary who is not a network
administrator, nor has direct control of the channel and key
VoIP elements. His aim is to degrade his victim’s QoS without
giving away his presence by making his attack look like a normal
network degradation. Even black-boxed, applications like Skype
that use proprietary protocols show poor performance under
specially crafted DoS attacks to its media stream. Finally we show
how securing Skype relays not only preserves many of its useful
features such as seamless traversal of firewalls but also protects
its users from DoS attacks such as recording of conversations
and disruption of voice quality. We also present our experiences
using virtualization to protect VoIP applications from ’insider
attacks’.

Our contribution is two fold we: 1) Outline a threat model for
VoIP, incorporating our attack models in an open-source network
simulator/emulator allowing VoIP vendors to check their software
for vulnerabilities in a controlled environment before releasing
it. 2) We present two promising approaches for protecting the
confidentiality, availability and authentication of VoIP Services.

I. INTRODUCTION

IP Telephony is gaining rapid momentum to become a core
part of our future communication infrastructure. However, be-
fore it can be widely deployed to fully replace traditional PBX
or telephone networks within enterprises, many challenges
need to be addressed. Besides maintaining continuous high
availability and error-free operation, the IP Telephony system
should be secure enough to maintain the integrity of the data
streams and protect the privacy of its users.

Quality of service (QoS) and security are the two major
issues that need to be addressed when voice traffic is trans-
ported over the Internet. While some traffic streams require
guaranteed delivery, real-time traffic (voice, video) requires
low end-to-end transmission delay across the network. Secu-
rity is another important aspect that needs to be considered
when using the Internet for communication. Due to the usage
of shared media, user data across the Internet is susceptible
to many attacks. Similar to data traffic, voice traffic is also
exposed to the security attacks.

This work was funded by NSF CNS 03-05537.

Only recently [23] a hacker breached into a Newark-
based company, which transmits VoIP services for other tele-
com businesses, using their networks to route calls for his
own customers. The victim company was billed for more
than 500,000 unauthorized telephone calls routed through its
calling network. Eavesdropping software [17] was used on
Vodafone’s voice service in Greece recording conversations
of the Prime Minister, security officials and other important
dignitaries around the time of the Athens Olympics.

It is a common myth that it is just Voice applications
based on IETF and open standards that are vulnerable and
that proprietary protocols such as Skype that obscure their
traffic are secure. A Chinese firm [13] recently showed how
scary it can be to trust another Skype user when they reverse-
engineered Skype to make free calls.

There are relatively few tools available today that check for
VoIP media vulnerabilities against realistic attacker models.
Vendors can claim that they encrypt every piece of information
of your call but how does that effect the quality? The reason its
hard to develop tools is because typically a VoIP application
can not be tested alone. Fundamentally a VoIP application is
at least a two-party software requiring multiple machines to
work properly and there is generally a requirement of some
sort of server support. For instance a SIP Voice call setup
will typically require two user agents (UA), one or more SIP
Proxies and optional Registration and/or Directory Servers.
Similarly a H.248 or MGCP call will require Signaling, Media
Gateways and Controllers apart from the actual end hosts.

In this paper we introduce VoIP Vulnerability Assessment
Tool (VVAT) and describe how it was designed by extending
a popular Network Simulator (J-Sim) to incorporate DoS
attacker models. Using J-Sim network emulation feature to
bridge between simulated and real applications we are able to
test third-party VoIP applications for security vulnerabilities.
For instance a SIP UA can be easily tested by peering it with
a simulated UA and Proxy running inside J-Sim and mounting
attacks on the transmitted traffic to check its behavior.

The remainder of this paper is organized as follows: Sec-
tion II puts this work in context by providing background on
existing VoIP network security tools and how they fall short.
Section III describes the architecture of VVAT and its key
components. Section IV describes the various attack models
in detail and investigates their devastating effect on different
VoIP Applications with a detailed case-study of the Skype P2P
network in particular. In Section V and VI we outline how to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

use Session Border Controllers as a more secure alternative to
Skype’s concept of relay nodes and how to secure USB-Key
VoIP phones that have been becoming increasingly popular
recently. We end with conclusions and ideas for extending
this work in Section VII.

II. BACKGROUND

In this section we give an overview of existing work on
tools available for testing VoIP security. Most of the work in
VoIP DoS has been geared towards testing of the SIP signaling
protocol, and it falls short when considering the security holes
of the underlaying media protocol.

SiVus the SIP Vulnerability Scanner [16] is a VoIP vulnera-
bility scanner developed for Miscrosoft Windows by the group
at vopsecurity.org. It comprises three parts, a SIP message
generator, a SIP discovery component and a SIP vulnerability
scanner. It checks the SIP parser of the test application to
see if it works smoothly with different variations of the SIP
signalling messages. Similarly, Security Testing of Protocol
Implementations (PROTOS) [14] implements a basic set of
functional tests for the SIP Signaling Protocol. It checks for
implementation errors and software robustness using black box
functionality testing by injecting anomalies and unexpected
input elements.

The SIP Torture tests [22] are a comprehensive set of
SIP parser tests to check grammer that is legal in the pro-
tocol specification but likely not implemented. For instance
they check whether the parser can withstand messages with
whitespaces (around colons, around semicolons), empty values
in unstructured headers (e.g. Subject), multiple requests in a
UDP packet, extra bytes at end of UDP packet etc.

The CERT website [15] provides a somewhat compre-
hensive list of VoIP Vendor Vulnerabilities although not all
of them are well documented. For instance there have been
security bug reports listed for the Columbia SIP User Agent
(sipc), Cisco Call Manager, Asterisk PBX , IPTel’s SIP Ex-
press Router and Nortel’s Communication Server 2000.

The Ethereal Network Analyzer [8] has some of the features
we use in VVAT. For instance it can capture packets and store
them to a file for later viewing and also has a easy-to-use
interface to view individual headers and IP options. However
unlike VVAT it does not allow real time manipulation of the
packets and does not support packet injection.

Many researchers have suggested using either layer-3 or
layer-4 encryption such as complex encryption mechanisms
like IPSec to protect the voice traffic. Unfortunately although
security mechanisms such IPSec are well know and established
e.g. VPNs; they suffer from many problems (mentioned below)
that render then infeasible to use with VoIP.

A. Call Setup Delay

It is impossible to use a single IPSec tunnel between the
end points, as the proxies must have access to the SIP packets
to set up the call. For example, if a call is being set up
between two telephones, each connected to the Internet via
a SIP proxy, and the call setup is to be protected end-to-end,
it will be necessary to negotiate and establish three separate

IPSec-protected paths for signaling: One each between the
telephone and its respective proxy, and one between the
proxies. According to our experiments, in the case where
all signaling is protected (hop-by-hop IPSec), the call-setup
delay is 24 seconds on a 100MB Ethernet which is probably
unacceptable to most users.

B. Packet Expansion

A typical 40-B packet will grow up to 96-B when it
undergoes tunnel-mode ESP expansion causing the ciphertext
I/O bitrate to be 2.4 times less than that of the cleartext bit-rate
which is not very suitable for media transformation. Besides
additional overhead, IPSec and its key exchange protocol
(IKE) suffer from other problems detrimental to VoIP e.g., lack
of support for header compression, lack of suitable transforms
and too many round trips required to complete key exchange.

C. No room for selective Encryption

IPSec security associations identify (i.e., trust) devices
rather than sessions and applications. Since IPSec is a network
layer solution it will encrypt everything which is a disadvan-
tage when several sessions and applications are running on the
same device, (some trusted and some not).

In previous work [3] we presented security design patterns
for VoIP and in this paper we extend that by developing a tool
that VoIP developers can use to check whether their products
conform-to or need to incorporate those patterns.

III. ARCHITECTURE

Our VoIP Vulnerability Assessment Tools (VVAT) high
level architecture is show in Figure 1.

A. Packet Capture and Injection

VVAT is built on top of Libpcap [20] and Libnet [9]
network tools. The packet capture library has access to all
the packets in the network driver’s buffer through the adapter
independent dev interface. In addition it can sniff packets in
promiscuous mode enabling all packets received at the NIC,
regardless of whether they originated at the machine to be
observed. The packets, along with the entire Ethernet, IP and
UDP/TCP headers is passed up to DoS layer which examines
the packets in real time and replays them (after modification
if desired) and logs them to a file for off-line examination.

The DoS layer can by programmed using a rule based
language, i.e, what action(s) to perform based on certain
criterion. For instance it can randomly or deterministically
drop, duplicate, garble or delay packets based on the header
information.

if i + + %2 then
ANY (udp, ip.dst == 10.0.12.127 AND ip.port ==
CURR SKY PE PORT, rand← 50) delay(20);

end if

The above is a very simple example of how Mallory will
use VVAT to randomly delay every other packet destined to
Bob 50% of the time.



3

We implemented the DoS engine as a Real Time Appli-
cation Interface (RTAI 3.1) kernel module in Linux kernel
2.6.17, which guarantees delay precision of 100µsec over any
specified packets of any flow despite the workload of the Linux
kernel. To facilitate the management of the DoS Engine from
user space, we also extended the netfilter/iptable mechanism in
the Linux kernel. This allows the adversary to utilize the traffic
flow recognition capability of the Classifier and Watermarking
modules and replay a group of packets simultaneously.

Fig. 1. VVAT High Level Architecture

B. J-Sim VoIP Components

We extended J-Sim [1] an open-source, component-based
compositional network simulation and emulation environment
to include VoIP RTP, SIP and H.248 stacks as components.
J-Sim’s network emulator allows a trade off between a real
testbed and pure simulation. Typically an experiment involves
network traffic that is generated by real systems and then
injected into the simulator to communicate with simulated
network elements. Allowing real traffic to interact with the
simulator, we avoid traffic monitoring problem, and gain the
ability to test real software without having to reimplement it
inside the simulator. It is also easier to run batch experiments
without having to configure complex VoIP servers. For more
details about J-Sim emulation see [19].

C. Classification

For practical monitoring, VVAT automatically classifies the
VoIP flows from the rest of the Internet traffic. It can retrieve
the RTP port numbers from the SDP information provided
in the signaling. If that avenue fails then it separates the
packets out based on the knowledge that RTP packets have a
small average packet length, packet runs or bursts (number of
back-to-back packets inbound versus outbound) and relatively
periodic inter-packet times typically between 30 and 40ms.

Tested Ap-
plication

Confidentiality (Codec
Used)

Availability (Resulting
Voice Quality)

Cisco Call-
Manager

Conversation Recorded
(ALaw), Identified par-
ties

Broken

Vonage
ATA

1-way Conversation
Recorded (G.711,
G.726 and G.729)

Broken

Skype - Noticably broken
LinPhone Conversation Recorded

(GSM)
Broken

X-Lite - Stutter
SJPhone Conversation Recorded

(iLBC)
Broken

Gizmo - Broken
Asterisk Conversation Recorded

(G.729)
Broken

Microsoft
Communi-
cator

- CPU usage up 3x at 250
pps. 10x at 25000 pps.
Voice Stutter

Minisip
registered
to openser

- Voice Stutter. a

Commercial
Videocon-
ferencing
Product b

- Crashed (Bug reported
and fixed)

aEnabling the SRTP (media payload encryption) option causes the application
to crash because it goes over the maximum MSDU limit

bRequested to remain anonymous

TABLE I
VVAT DOS ATTACKS ON VOIP PRODUCTS

D. Covert Channels and Watermarking in VoIP flows

VVAT has the ability to mark flows of interest, for instance
Bob talks to multiple parties simultaneously however Mallory
is only interested in disrupting his conversation with Alice.
Using VVAT, Mallory’s accomplice can mark Alice’s traffic
flow with a unique watermark before it enters the Internet such
that Mallory (who is on Bob’s subnet) can safely identify it
as it reaches Bob. There are two ways VVAT accomplishes
this: (1) shifting the Interpacket Delay (IPD) distribution and
(2) embedding custom packets into the stream during silence
periods.

IV. VVAT DOS ATTACKS ARSENAL

A. VoIP Threat Model

Let us examine the VoIP threat model under the classical
security principles (Confidentiality, Integrity, Availability, Au-
thentication) or CIAA. The adversary is interested in eves-
dropping on conversations (breach of confidentiality property),
degrade the QoS (and hence availability) of the service and
finally listen-in on conversations by posing as her victim.
We ignore breach of Integrity for the case of VoIP as that
is automatically verifiable when listening to the other party’s
voice.

For now we assume that the adversary does not have any
superuser and administrative privileges on any of the key
network entities such as servers and switches, and so she is
unable to place herself in the middle of the stream (Man-in-
the-Middle) at will. In addition she wants to avoid being overly



4

conspicuous because if her presence is detected the parties in
the call may change servers or simply use other means of
communication.

Fig. 2. Brute Force Attack on Sun’s JMF Studio VoIP Application

B. Overwhelming Victim’s Resources

The most basic DoS attack appears to work sufficiently
well on naive VoIP applications or ones that are running on
low-power and small devices. The idea is that the Adversay
bombards the victim with garbage RTP packets with spoofed
IP headers, overwhelming the victim’s RTP buffer and cor-
rupting the codecs that are thinking that they are processing
real audio packets. Figure 2 shows the voice quality of JMF
Studio degrade as the bit rate of the attack packets increases
to half the bitrate of the original RTP stream.

C. Using Signaling Vulnerabilities to DoS the Media

In the case of master-slave based VoIP protocols, the server
know as the Media Gateway Controller (MGC) contains all
the call-setup state for the slave or the Media Gateway (MG)
and commands it to perform certain tasks based on events that
it sends it. For instance when a user picks up the phone the
MG sends a OFF-HOOK event to the MGC. The MGC then
instructs the dumb MG to play a tone for the benefit of the
user. H.248 and MGCP specifications mandate the use of a
Authentication Header (AH) to authenticate the MG to the
MGC and vice versa.

Here is how we launched a DoS attack on the Avaz Media
Gateway. The adversary Mallory has no control over the MGC-
MG traffic and no way of decrypting it since she doesn’t
have the key. However using knowledge of the protocol itself,
she can identify the Modify Media SendOnly message as the
second-last message before the Modify Media SendandReceive
and the subsequent periodic media packets start on the wire.
By capturing the packets in one session and then later re-
playing it in another she can cut-off important pieces of
Alice’s and Bob’s conversation. Figure 3 illustrates this attack.
H.248 commands have unique transaction-ids that warn the
MG against obeying commands with older IDs. The Avaz
Media Gateway Control Protocol very predicatably uses the
same sequence of transaction IDs in each session and so it is
possible for Mallory to reuse commands from across multiple
sessions to DoS the media, provided she is careful to use one
with a transaction ID that is larger than the one the MG-MGC
are currently using.

Fig. 3. Replaying Signaling to DoS the Media

If Alice and Mallory work in the same office then Mallory
can also use timing to identify Signaling Messages. For
instance, as soon as Alice hangs up the phone the MG sends a
OFF-HOOK message to the MGC, to which the MGC sends
a Subtract command to Bob. Mallory can use this command
to cause subsequent calls to disconnect at anytime.

D. Exploiting Relayed Traffic to Launch DoS

Work on anonymity using Skype by Wang et al [25], [26]
has shown that it is relatively easy to discreetly watermark
Skype traffic flows such that even if the flows are made to
pass through an anonymizing network (e.g. Tor) it is possible
to identify the sender and receiver of the call. Research
by Suh et al [27] proposes several metrics to successfully
characterize and detect Skype relayed traffic. By running a
Skype continuously on an end-host with a good connection to
the Internet for a prolonged period of time any attacker can
become a Skype relay node. Once the attacker controls enough
relays he can determine the parties he is relaying the traffic
for and easily mount a DoS attack.

Skype, was our most intestering victim; it being the most
popular VoIP clients today with over 50 million downloads.
The company uses a proprietary protocol and security mech-
anisms not compliant with VoIP standards to obscure the
protocol.

We set up a scenario (see Figure 4) with two Skype parties
in a call. The parties were on different networks and 8 hops
apart. The calling party, Alice played a audio clip with a
distinctive waveform (1 sec period) to Bob. Alice’s and Bob’s
line-out were connected to a mixer that combined the two
inputs into the same audio stream with different channels and
displayed the channels side-by-side.

We used the ARP poison attack to enable Mallory to act as a
Skype Relay. Assuming that Bob’s IP is 192.168.0.12, and the
switch is 192.168.0.1. Mallory begins by sending a malicious
ARP “reply” (for which there was no previous request) to
the switch, associating her computer’s MAC address with
192.168.0.12. Now the switch thinks that Mallory’s computer
is Bob’s. Next, Mallory sends a malicious ARP reply to Bob,
associating her own MAC Address with 192.168.0.1. Now
Bob’s machine thinks Mallory’s computer is the switch. IP
forwarding is used to forward the network traffic from Bob’s
machine to the switch.



5

Fig. 4. Skype DoS Attack Scenario

Note that Mallory does not have full control over Skype’s
packets because Skype is engineered to change relays, ports
and transport mechanisms if its traffic is hindered. Mallory can
only launch a limited DoS attack as long as she can convince
Skype that the interference she creates is due to temporary
network degradations.

Figure 5 generated using Audacity 1.2.4 [4] shows the
effect on the voice quality of Alice’s incoming audio signal
when Mallory applies VVAT’s various DoS attacks on the
packets she forwards. Part a) shows the original periodic signal
sent by Alice. We verified that Mallory passive presence on
the wire did not have any effect on the end-to-end delay and
the mouth-to-ear latency (48 ms measured using the adelay
tool [2]).

1) Reordering Attack: This test was designed to check if the
VoIP application is vulnerable to a packet reordering attack.
Given any packet flow P1, ..., Pn with time stamps t1, ..., tn
respectively (ti < tj for 1 ≤ i < j ≤ n), the attacker swaps
the set of packets Pi, Pi+1, ..., Pi+k with Pj , Pj+1, ..., Pj+k

where d = j− i and (0 < d << n) and k is a small constant.
Part b of Figure 5 shows the effect is more noticeable for the
first part of the trace where the value of d is small. We see that
a portion of the later part of the track is played early and the
perceptual quality drops drastically. This means that Skype
plays the packets in the order in which they are delivered.
We find this behavior very unique to Skype as most other
VoIP applications tend to reorder packets before delivery. In
the later part of the trace a larger value of d causes Skype
to apply loss concealment but still subsequently play them on
arrival causing the whole waveform to be shifted all together
which improves the perceptual quality somewhat. k was kept
at a constant of 3 throughout the experiment. Humans tend to
comprehend delayed speech more easily than speech spoken
backwards.

The next two attacks focus on jitter and packet delay which
play a large factor in determining service quality (see Figure 6)

2) Packet Jitter Attack: This attack was designed to test
the performance of a VoIP application’s Jitter Control under
transient jitter and short-term delay variation. A jitter buffer
increases the chances (at the expense of extra delay) that, even
if some subsequent packets arrive late, enough packets will be
available in the buffer for the sound to continue uninterrupted.
If a packet is late and the delay is longer than the previous
packet can be held, it may be dropped. If too many are dropped
in a row, the speech sounds choppy. The jitter buffer can be

Fig. 6. The Playing of jitter and loss rate in Quality

dynamically sized to balance drops vs. delay. Only the receive
buffer knows if a late packet was discarded, and can indicate
this in RTCP packets to the talker. Both fixed and adaptive
jitter buffers are capable of automatically adjusting to changes
in delay.

Jitter buffers have not been designed with active adversaries
in mind. Most root causes of jitter include CPU scheduling
delays, LAN and access link congestion, router load sharing,
routing table updates and timing drifts etc. The jitter buffer is
like a time window with the early side representing the recent
minimum delay and the late side representing the maximum
permissible delay before a packet would be discarded. By tun-
ing these min-max values the attacker can cause the window
to resize frequently and drop packets.

Jitter can be measured simply as a mean of the back to back
packet delay variation meaning avg(abs(ti ti−1)). However
this value corresponds to the peak to peak jitter level only if
the packets arrive alternately early and late but does not work
that well for other sequences such as a row of early arrivals
followed by late arrivals. For this purpose we use a metric
that gives us a moving average of the absolute packet delay
variation, which is a more meaningful measure of the actual
buffer behavior over short term period.

meandelay di ←
(G− 1).di−1 + ti−1

G

Pi = ti − di if ti > di

Ni = di − ti if ti < di

adjusted deviation← mean(Pi) + mean(Ni)

Where G is a gain parameter with a suggested value [11]
of 16 to give a good noise reduction ratio while maintaining
a reasonable rate of convergence.

Trace c) shows the running average delay variation plotted
against packet sequence number of VVATs jitter attack and
its effect on Skype’s audio quality and packet drops. VVAT
detects when Skype relays voice packets versus silence packets
to induce jitter (typically Skype’s voice packets are larger
≈ 100bytes with shorter inter-packet spacing ≈ 60ms as
apposed to ≈ 25bytes and ≈ 100ms for silence periods.
Skype deals with low jitter deviation elegantly, smoothly
playing consecutive series of delayed packets delayed by the
same amount. It attempts to change port numbers and setup
a new voice stream on the more reliable TCP protocol if



6

Fig. 5. MitM Attacks on Skype

VVAT delays too many packets for > 5sec. There are a few
observations to be made here: At seq number 243 a number
of packers arrive simultaneously, this being because VVAT
causes the first packets to be delayed significantly and the later
packets to arrive early. We see that Skype instead of dropping
the first packets because they were late, instead tries to queue
all packets and drops the later ones because the jitter buffer is
full. At seq number 269 we see that Skype anticipating large
jitter has increased the buffer size leading to less choppy sound
at the expense of a longer delay. Different VoIP applications
deal with this situation differently, for instance when Yahoo
Voice Messenger discovers that it has more packets queuing
up than it has space for, it typically plays the first packets at
a faster rate giving the user a fast-forward experience.

3) Changing Loss Rate Attack: In VoIP traffic there is no
time for retransmissions if packets get lost, however intelligent
algorithms can be employed by the receiver to send feedback
to the sender if it notices a large number of packets getting
dropped. The sender can then add redundancy to the packets
by piggybacking part of the already transmitted speech on the
subsequent packets so that in case of loss the receiver can at
least partially recover the missed speech. Trace d shows Bob’s
Skype adapting to dynamically changing loss rates induced
by Mallory. Skype embeds feedback information inside the
actual reverse path media packets. It is clear that it is able
to gracefully recover with a small cost to mouth-to-ear delay
from loss rates up to 25% as long as the variation is small.
However with rapidly changing loss rates Skype will perform
much more poorly.

It is worth noting that Mallory can cripple the feedback
mechanism if it were sent separate from the media. This is
achieved by blocking special RTCP packets used for reporting
back statistics to the sender. Skype hides feedback packets
inside the reverse path audio packets so this attack is not

possible.

Fig. 7. SRTP Encapsulation of RTP Packets

4) Replay Attack for Encrypted Media: Some VoIP appli-
cation vendors incorporate SRTP packet encryption to increase
confidentiality. Authenticating each packet prior to processing
discourages DoS attacks. However it is still possible to mount
a successful DoS attack using replays. Note: An attacker need
not decrypt packets in order to mount a successful attack.
All that is needed is a mechanism to overwhelm the victims
resources by having it do useless tasks preventing it the oppor-
tunity to process genuine media packets in a timely manner.
Figure 7 shows the placement of SRTP confidentiality and
integrity services in RTP and RTCP packets. A confidentiality
service is obtained by encrypting the payload so that only
the sender and receiver that are in possession of the keys can
read it. An integrity service is obtained by running a one-way
function on the message using a cryptographic key so that the
receiver can ensure that the sender of the message possessed
a secret key and that no party lacking that cryptographic key
modified the message while in transit. The keys for these
services are associated with the stream triple and are called
SRTP cryptographic context. SRTP uses the RTP sequence
number without changing the RTP header, adding it to a 32-
bit SRTP rollover counter (ROC) to get the 48-bit sequence
number, which is the SRTP packet index for the particular
packet. The packet index is encrypted with other parameters
to generate keystream segments, which is included in SRTP



7

integrity protection as shown in Figure 7. SRTP packet-index
determines the index of an invalid packet as well as a valid
packet. There can be no integrity check until the authentication
key is determined.

Fig. 8. Packet Replay Window

Figure 8 shows a fixed-size window on the RTP sequence
number space (SEQNUM ) that indicates if a packet with
the particular sequence number has been received. Packets
within the window are accepted, and a packet higher than
the window (SEQ = w′ > w) causes it to be advanced. The
lower edge of the sliding window is advanced to the highest
sequence number that has been received, only if the packet is
successfully authenticated (w = w′).

The SRTP default window size is 64, which means that
an authenticated packet with a sequence number that is less
than 64 packets behind the highest-numbered packet or ahead
of the window are discarded. Those within the window are
discarded if the RECEIV ED? bit is set, which indicates
that the particular packet has already been received.

Thus, an attacker can send a bogus packet that is within
64 packets ahead of the highest sequence number received
causing it to pass replay protection. This will cause the
window to be tentatively advanced; it will then fail the message
authentication and the window will be restored. In that sense,
the attack succeeded in forcing the receiver to run an HMAC-
SHA1 hash against the packet before discarding it and restor-
ing the replay window, SL, and SEQ to their original values.
Table 1 shows the effect of the Replay Attack on three VoIP
applications employing sRTP; X-Lite stuttered, while Minisip
and a Commercial VoIP Phone crashed when bombarded with
replayed packets within their received windows.

V. SECURING THE RELAYS

One of the solutions to securing VoIP against DoS is to
secure the relays. Skype relays offer benefits such as seamless
traversal of firewalls and NATs. Securing these is not plausible
in the case of Skype, because in a P2P network the relays are
untrusted. In fact, the very weakness of Skype security is that
Skype trusts any peer that speaks the Skype language. So how
do we use Skype’s concept of super nodes acting as relays and
at the same time establish a trust relationship between them?
The answer lies with an entity in today’s VoIP infrastructure
known as the Session Border Controller.

A. The Session Border Controller (SBC)

In the past, enterprises have used VoIP internally with a
VoIP to PSTN Gateway to talk across enterprises. Today more
and more enterprises are adopting the concept of hosted VoIP
services or VoIP peering (see Figure 9) where enterprises don’t

bother to deploy their own VoIP Servers but offload them to
commercial VoIP service providers.

This has given rise to the concept of the SBCs; these (so far
unstandarised) servers are located at the edge of the enterprise
network and provide different sorts of services for instance:

• NAT/Firewall Traversal and Emergency 911 services
• Monitor for QoS and adherence to SLAs
• Conceal valuable route information from competitors
SBCs are put into the signaling and media path between

calling and called party. SBCs intercept SIP packets and
change them so that both media and SIP signaling can tra-
verse a NAT/firewall interface. In truth an SBC is the exact
equivalent of the Skype relay and is in a natural point in the
VoIP infrastructure to perform security operations for its users.

Fig. 9. Hosted VoIP Services. For instance Enterprise B does not have its
own SIP Proxy

B. Securing VoIP at the SBC

SBCs today are “pre-standard” media relays but ultimately
they will implement the “Traversal using Relay NAT” (TURN)
protocol [12] and provide the capability to traverse firewalls
seamlessly without having to explicitly open holes. We de-
scribe an approach for key exchange which could include the
SBC in the “Circle of Trust”. Let us consider the situation
where the Signaling Protocol used is SIP, it will work similarly
with other protocol such as H.248, H.323, IAX etc. Initially the
User Agents authenticate each other using a Deffie Hellman
(DH) Key Exchange between the end points. This could be
done using either S/MIME (requires PKI), SDP (assuming the
Signaling is secure) or inside the media channel itself using
techniques such as ZRTP or EKT. After the integrity of DH
key setup is verified by ABCs and XYZs digital signatures,
the endpoints connect to the SBC TURN relay using TLS
and authenticate themselves. As a result the endpoints receive
a port and IP address from the SBC to relay the media. An
extra message could easily be added to TURN to communicate
the session key to the relay. Once the relay knows the
key it can authenticate traffic on behalf of the client. This
is useful because normally the SBC will be running on a
dedicated machine with more resources than the end hosts.
End hosts such as smart phones and PDAs will typically run
out of resources much faster under a DoS attack than an



8

SBC managing multiple connections. In addition the SBC can
employ other security measures that are normally difficult at
the application layer for instance: Media Rate Limiting. The
SBC can read the codec information to determine the rate of
the media channel and drop packets if the packet rate exceeds
the allocated rate. In the case where a Adversary injects DoS
packets into a connection, this will prevent congestion at the
SBC and protect the infrastructure. SBCs could also help the
application check for replay attacks by keeping a local replay
list and throwing away duplicates in the range of the current
RTP receive window.

Fig. 10. Sequence Diagram of VoIPPod and SBC setting up a VoIP Session

VI. HANDLING INSIDER ATTACKS: BUGS IN THE
TELEPHONE SET

In this section we address the problem of Authentication in
the CIAA threat model. Hackers can be insiders, with easy
access to data files, conference phones and computers. The
modern day version of wiretapping and planting bugs in the
phone is installing Spyware, Trojans, and voice loggers in
the OS while the victim is away. Recall the XCP program
[7], developed by First4Internet in Britain and used on music
CDs by Sony BMG to restrict copying and sharing, that acts
like virus software and hides deep inside a computer where it
leaves the backdoor open for other viruses.

A. VoIP Pod Architecture

USB VoIP phones are becoming very popular [24], increas-
ing the risk of having your phone, address book, passwords
etc stolen. We extended the idea of SoulPad (Reincarnating
PCs with Portable SoulPads) [5] for VoIP appliances and

Fig. 11. A Secure and Portable VoIP Soft Phone

present our experiences with developing a secure and portable
virtualized VoIP Phone on a WiFi memory stick. We divide
a 1 GB USB Key into four main partitions: (Figure 11) a
small typically (< 100MB) Boot Partition, an encrypted swap
partition, a Linux ext3 partition and a hidden and encrypted
data partition. We modified the boot-up sequence scripts to
load USB drivers prior to mounting the file system and to boot
up directly from the USB drive. Partition 3 contains a very
small stripped down version of the Autoconfiguring KNOPPIX
Distribution (250MB) responsible for starting up Xen VMM
and the encrypted VoIP Phone image stored on partition 4.
Network Setup scripts probe to check if the USB is plugged
to a machine with an active Ethernet connection otherwise it
uses XSupplicant [21] WiFi Libraries to associate the Wireless
NIC on the stick to the AP selected by the user. The entire
Linux Partition is mounted as a Read Only UNIONFS [18]
file system preventing download and permanent storage of
malicious code. To protect the VoIP Phone if a VoIPPod is
misplaced or stolen, we encrypt the disk partition that holds
the VM image using the AES128 block cipher. We used the
publicly available LUKS [10] cryptosetup loop-aes package
in our implementation. The advantage of using LUKS is
that the partition can by easily and securely mounted in a
a Microsoft Windows OS using the FreeOFTE tool [6]. The
encryption key is generated by hashing a user supplied pass
phrase. On bootup, the user is prompted for a pass phrase
which if supplied incorrectly, results in the resulting hash not
corresponding to the AES key and the mount operation to
fail since the decrypted data will not correspond to a valid
file system. In order to defeat brute force attacks that attempt
to guess the pass phrase, the loop-aes package requires the
pass phrase to be at least 20 characters long. The AES key
is retained in kernel memory while the phone is running
and is erased when the partition is unmounted. The swap
partition is similarly encrypted to prevent viewing of swaped-
out pages. The key is however auto-generated for every session
since swap state is not preserved across boot cycles. VoIPPod
doesn’t write to internal disk and therefore, there is no risk
of leaving sensitive data on the PCs persistent storage after
disconnecting.

B. VoIP Pod Performance

Our experiments show that running off a USB 2.0 (480
Mbps) has no noticable effect on VoIP performance. Whereas



9

USB data transfer (as apposed to IDE) might be an issue for
data intensive applications, it makes no difference to VoIP
applications that are loaded and run entirely from memory.
Virtualization does have its processing overheads though,
which manifest itself as a fixed increased delay of 3-4 ms
(on VMWare Server 1.0) adding to the mouth-to-ear latency.
Fortunately there is no effect on jitter or on loss, so this extra
delay is tolerable for the security it provides. Figure 10 shows
the detailed message exchange and the processing delay when
Alice and Bob were using VoIP Pod with Intel Pentium 4, 1
GHz laptops running Linux 2.6. Libcrypto was used for the
cryptographic operations.

In addition to compartmentalizing the application via a
virtual machine hyper-visor and isolating it from Operating
System bugs, malware and spy ware, VoIPPod allows the con-
venience of carrying your VoIP phone, contacts and settings
on person on a key ring.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented VVAT-a DoS attack simulation
tool. VVAT makes it easy to test third party VoIP applications
by pairing them with simulated VoIP components. Pitted
against a number of VoIP applications, VVAT showed that
many do not employ any confidentiality measures allowing
the passive recording of conversations. Even applications that
do employ encryption are still vulnerable to DoS Attacks
whereby the Adversary can disrupt the conversation suffi-
ciently by brute-forcing the application buffer. Skype is also
vulnerable to attacks despite its use of a proprietary protocol.
A VoIP vendors first line of defense is to incorporate a packet
encryption tool such as sRTP and to use trusted Skype-like
relays to forward voice traffic. SBCs are a natural equivalent
of Skype relays that use open standards. We demonstrate a
key-exchange mechanism to bring the SBC into the ’circle
of trust’. VoIP is also vulnerable to ’insider’ attacks where
attackers can install malware on the machine and have victims’
conversations streamed to them on convert channels. To this
effect we developed VoIPPod - a VoIP application which
boots and runs off of a USB memory key inside a VM
compartmentalizing it from viruses and Trojans.

A. Future Work

We are also looking at designing an attack that exploits the
sRTP Diffie-Hellman key exchange. In this attack, Mallory
can intercept Alice’s public value and send her own public
value to Bob. When Bob transmits his public value, Mallory
substitutes it with her own and sends it to Alice. Mallory and
Alice thus agree on one shared key and Mallory and Bob
agree on another. This vulnerability is present because Diffie-
Hellman key exchange does not authenticate the participants.

Using VoIP over wireless connections with its lossy, con-
tention based channel access raises many interesting research
questions in improving performance (using larger voice pack-
ets for instance). The 802.11E extension for wireless is spe-
cially designed with VoIP in mind to give higher priority to
voice packets. However having a shared medium, the ability to
jam signals and multi-hop scenerios open many new avenues

for the adversaries interested in mounting DoS attacks. We
plan to explore this area further.

While emulation software like VVAT can be useful for
unearthing poorly written VoIP programs, their limitations
must also be understood. As explained by Dijkstra, “Program
testing can show the presence of bugs, but never their absence.”
We have not yet addressed the issue of a designing a jitter
buffer algorithm that recognizes the presence of an attacker
(as apposed to normal congestion) and raise an alarm. This
looks like a promising area to explore in the future.

REFERENCES

[1] J-Sim. http://www.j-sim.org/.
[2] ADelay. Measure the delay between two audio channels. In

www1.cs.columbia.edu/ IRT/ software/ adelay/ adelay.html.
[3] Zahid Anwar, William Yurcik, Ralph E. Johnson, Munawar Hafiz, and

Roy H. Campbell. Multiple Design Patterns for Voice over IP (VoIP)
Security. In Workshop on Information Assurance (WIA) , held in
conjunction with 25th IEEE International Performance Computing and
Communications Conference (IPCCC), April 2006.

[4] Audacity. The Free, Cross-Platform Sound Editor. In audac-
ity.sourceforge.net/.

[5] Ramon Caceres, Casey Carter, Chandra Narayanaswami, and M. T.
Raghunath. Reincarnating PCs with Portable SoulPads. 2005.

[6] Sarah Dean. FreeOTFE: A free ”on-the-fly” transparent disk encryption
program for MS Windows 2000/Windows XP. 2006. www.freeotfe.org/.

[7] Charlie Demerjian. The Sony DRM Scandal”. 2005.
www.theinquirer.net/? article=27426.

[8] Ethereal. Ethereal Network Analyzer. In www.ethereal.com.
[9] Packet Factory. Network Library. In www.packetfactory.net/libnet/.

[10] Clemens Fruhwirth. TKS1 - An anti-forensic, two level, and iterated
key setup scheme. July 2004.

[11] Network Working Group. RFC1889 Real Time Control Protocol. 1996.
[12] IETF. Traversal using Relay NAT. 2004. www.jdrosen.net/ papers/

draft-rosenberg -midcom-turn-02.html.
[13] The Skype Journal. Skype responds to ”Skype protocols opening up,

ready or not.”. 2006. www.skypejournal.com/blog/archives/2006/07/.
[14] Rauli Kaksonen. A Functional Method for Assessing Protocol Im-

plementation Security. In Technical Research Centre of Finland, VTT
Publications 447. 128, volume 447, page 128.

[15] Center of Internet Security Expertise (CERT). CERT/CC VoIP Vulner-
abilities. In www.kb.cert.org/vuls/id/528719.

[16] Voice over Packet Security Forum. SiVus, The VoIP Vulnerability
Scanner. 2004. www.vopsecurity.org/html/tools.html.

[17] The Register. Greece rocked by mobile phone tapping scandal. 2006.
www.theregister.co.uk 2006/ 02/06/.

[18] Josef Sipek. UnionFS: User and Community-oriented Development of
a Unioning Filesystem. 2006.

[19] Ahmed Sobeih, Wei-Peng Chen, Jennifer C. Hou, Lu-Chuan Kung,
Ning Li, Hyuk Lim, Hung-Ying Tyan, and Honghai Zhang. J-Sim:
a simulation and emulation environment for wireless sensor networks.
IEEE Wireless Communications Magazine, April 2005.

[20] Sourceforge. Packet Capture Library. In source-
forge.net/projects/libpcap/.

[21] SourceForge. Open Source Implementation of IEEE 802.1X. 2006.
open1x.sourceforge.net/.

[22] Robert Sparks. SIP Torture Tests. In (draft-ietf-sipping-torture-tests-04).
[23] New York Times. Hacker Said to Resell Internet Phone Service. 2006.

www.nytimes.com 2006/06/07/technology/07cnd-voice.html.
[24] Vonage. V-Phone. vonage.com/device.php? type = VPHONE.
[25] X. Wang, S. Chen, and S. Jajodia. Tracking Anonymous Peer-to-Peer

VoIP Calls on the Internet. In ACM CCS, 2005.
[26] X. Wang and D. Reeves. Robust Correlation of Encrypted Attack Trac

Through Stepping Stones by Manipulation of Interpacket Delays. In
ACM CCS, 2003.

[27] X. Wang and D. Reeves. Characterizing and Detecting Skype-Relayed
Traffic. In INFOCOM, 2006.


