1,948 research outputs found

    Robust pedestrian detection and tracking in crowded scenes

    Get PDF
    In this paper, a robust computer vision approach to detecting and tracking pedestrians in unconstrained crowded scenes is presented. Pedestrian detection is performed via a 3D clustering process within a region-growing framework. The clustering process avoids using hard thresholds by using bio-metrically inspired constraints and a number of plan view statistics. Pedestrian tracking is achieved by formulating the track matching process as a weighted bipartite graph and using a Weighted Maximum Cardinality Matching scheme. The approach is evaluated using both indoor and outdoor sequences, captured using a variety of different camera placements and orientations, that feature significant challenges in terms of the number of pedestrians present, their interactions and scene lighting conditions. The evaluation is performed against a manually generated groundtruth for all sequences. Results point to the extremely accurate performance of the proposed approach in all cases

    Accelerated hardware video object segmentation: From foreground detection to connected components labelling

    Get PDF
    This is the preprint version of the Article - Copyright @ 2010 ElsevierThis paper demonstrates the use of a single-chip FPGA for the segmentation of moving objects in a video sequence. The system maintains highly accurate background models, and integrates the detection of foreground pixels with the labelling of objects using a connected components algorithm. The background models are based on 24-bit RGB values and 8-bit gray scale intensity values. A multimodal background differencing algorithm is presented, using a single FPGA chip and four blocks of RAM. The real-time connected component labelling algorithm, also designed for FPGA implementation, run-length encodes the output of the background subtraction, and performs connected component analysis on this representation. The run-length encoding, together with other parts of the algorithm, is performed in parallel; sequential operations are minimized as the number of run-lengths are typically less than the number of pixels. The two algorithms are pipelined together for maximum efficiency

    Recovering refined surface normals for relighting clothing in dynamic scenes

    Get PDF
    In this paper we present a method to relight captured 3D video sequences of non-rigid, dynamic scenes, such as clothing of real actors, reconstructed from multiple view video. A view-dependent approach is introduced to refine an initial coarse surface reconstruction using shape-from-shading to estimate detailed surface normals. The prior surface approximation is used to constrain the simultaneous estimation of surface normals and scene illumination, under the assumption of Lambertian surface reflectance. This approach enables detailed surface normals of a moving non-rigid object to be estimated from a single image frame. Refined normal estimates from multiple views are integrated into a single surface normal map. This approach allows highly non-rigid surfaces, such as creases in clothing, to be relit whilst preserving the detailed dynamics observed in video

    Pedestrian detection in uncontrolled environments using stereo and biometric information

    Get PDF
    A method for pedestrian detection from challenging real world outdoor scenes is presented in this paper. This technique is able to extract multiple pedestrians, of varying orientations and appearances, from a scene even when faced with large and multiple occlusions. The technique is also robust to changing background lighting conditions and effects, such as shadows. The technique applies an enhanced method from which reliable disparity information can be obtained even from untextured homogeneous areas within a scene. This is used in conjunction with ground plane estimation and biometric information,to obtain reliable pedestrian regions. These regions are robust to erroneous areas of disparity data and also to severe pedestrian occlusion, which often occurs in unconstrained scenarios

    Visual Object Tracking: The Initialisation Problem

    Get PDF
    Model initialisation is an important component of object tracking. Tracking algorithms are generally provided with the first frame of a sequence and a bounding box (BB) indicating the location of the object. This BB may contain a large number of background pixels in addition to the object and can lead to parts-based tracking algorithms initialising their object models in background regions of the BB. In this paper, we tackle this as a missing labels problem, marking pixels sufficiently away from the BB as belonging to the background and learning the labels of the unknown pixels. Three techniques, One-Class SVM (OC-SVM), Sampled-Based Background Model (SBBM) (a novel background model based on pixel samples), and Learning Based Digital Matting (LBDM), are adapted to the problem. These are evaluated with leave-one-video-out cross-validation on the VOT2016 tracking benchmark. Our evaluation shows both OC-SVMs and SBBM are capable of providing a good level of segmentation accuracy but are too parameter-dependent to be used in real-world scenarios. We show that LBDM achieves significantly increased performance with parameters selected by cross validation and we show that it is robust to parameter variation.Comment: 15th Conference on Computer and Robot Vision (CRV 2018). Source code available at https://github.com/georgedeath/initialisation-proble

    Vision-based analysis of pedestrian traffic data

    Get PDF
    Reducing traffic congestion has become a major issue within urban environments. Traditional approaches, such as increasing road sizes, may prove impossible in certain scenarios, such as city centres, or ineffectual if current predictions of large growth in world traffic volumes hold true. An alternative approach lies with increasing the management efficiency of pre-existing infrastructure and public transport systems through the use of Intelligent Transportation Systems (ITS). In this paper, we focus on the requirement of obtaining robust pedestrian traffic flow data within these areas. We propose the use of a flexible and robust stereo-vision pedestrian detection and tracking approach as a basis for obtaining this information. Given this framework, we propose the use of a pedestrian indexing scheme and a suite of tools, which facilitates the declaration of user-defined pedestrian events or requests for specific statistical traffic flow data. The detection of the required events or the constant flow of statistical information can be incorporated into a variety of ITS solutions for applications in traffic management, public transport systems and urban planning

    Skin Colour Detection Based On An Adaptive Multi-Thresholding Technique

    Get PDF
    Today, human region detection in complex scenes has received a great attention due to the wide use of websites and the considerable progress of the still and video images processing tasks. Skin detection or segmentation is a very popular and useful technique for detecting and tracking of human body parts, especially faces and hands. It is employed in tasks like face or hand detection and tracking, filtering of objectionable web images, people retrieval in databases and the Internet. This thesis aims to build a skin detection system that will discriminate between the skin and non-skin pixels in still coloured images. This is done by introducing a metric, which measures the distances of the pixel colour to skin tone. The need for a compact skin model representation stimulates the development of parametric skin distribution models which is used in this research.An adaptive skin colour detection model has been proposed in this thesis. The model is based on the bivariate normal distribution of the skin chromatic subspace. The model uses the 2D Single Gaussian model (SGM), and the 2D Gaussian mixture model (GMM) to represent the skin colour distribution. The model also based on the image segmentation using an automatic and adaptive multi-thresholding technique. This thesis shows that the Gaussian mixture model alone or the Gaussian single model does not improve the performance of the skin detection model due to the number of false detections for high correct classification. For this reason, a combination of SGM and GMM in the same model is proposed in this research. The results show that when processing images of different people taken in different imaging conditions, the use of only one single threshold value is not adapted, and since the proposed method is capable of adaptively adjusting its threshold values and effectively separating skin colour regions from non skin ones, it is applicable to images with various conditions. The experiment shows that the suggested algorithm achieves a noticeable performance improvement and offers a robust solution for skin detection under varying illumination. The results show that the average of the correct rate “True Positive” rate for the test images is equal to 94.064% while the False Positive average is equal to 13.166%

    A single-chip FPGA implementation of real-time adaptive background model

    Get PDF
    This paper demonstrates the use of a single-chip FPGA for the extraction of highly accurate background models in real-time. The models are based on 24-bit RGB values and 8-bit grayscale intensity values. Three background models are presented, all using a camcorder, single FPGA chip, four blocks of RAM and a display unit. The architectures have been implemented and tested using a Panasonic NVDS60B digital video camera connected to a Celoxica RC300 Prototyping Platform with a Xilinx Virtex II XC2v6000 FPGA and 4 banks of onboard RAM. The novel FPGA architecture presented has the advantages of minimizing latency and the movement of large datasets, by conducting time critical processes on BlockRAM. The systems operate at clock rates ranging from 57MHz to 65MHz and are capable of performing pre-processing functions like temporal low-pass filtering on standard frame size of 640X480 pixels at up to 210 frames per second

    Pose Estimation and Segmentation of Multiple People in Stereoscopic Movies

    Get PDF
    International audienceWe describe a method to obtain a pixel-wise segmentation and pose estimation of multiple people in stereoscopic videos. This task involves challenges such as dealing with unconstrained stereoscopic video, non-stationary cameras, and complex indoor and outdoor dynamic scenes with multiple people. We cast the problem as a discrete labelling task involving multiple person labels, devise a suitable cost function, and optimize it efficiently. The contributions of our work are two-fold: First, we develop a segmentation model incorporating person detections and learnt articulated pose segmentation masks, as well as colour, motion, and stereo disparity cues. The model also explicitly represents depth ordering and occlusion. Second, we introduce a stereoscopic dataset with frames extracted from feature-length movies "StreetDance 3D" and "Pina". The dataset contains 587 annotated human poses, 1158 bounding box annotations and 686 pixel-wise segmentations of people. The dataset is composed of indoor and outdoor scenes depicting multiple people with frequent occlusions. We demonstrate results on our new challenging dataset, as well as on the H2view dataset from (Sheasby et al. ACCV 2012)
    corecore