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Abstract

In this paper, a robust computer vision approach to detecting and tracking pedestri-
ans in unconstrained crowded scenes is presented. Pedestrian detection is performed
via a 3D clustering process within a region-growing framework. The clustering pro-
cess avoids using hard thresholds by using bio-metrically inspired constraints and a
number of plan view statistics. Pedestrian tracking is achieved by formulating the
track matching process as a weighted bipartite graph and using a Weighted Max-
imum Cardinality Matching scheme. The approach is evaluated using both indoor
and outdoor sequences, captured using a variety of different camera placements and
orientations, that feature significant challenges in terms of the number of pedestrians
present, their interactions and scene lighting conditions. The evaluation is performed
against a manually generated groundtruth for all sequences. Results point to the
extremely accurate performance of the proposed approach in all cases.
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1 Introduction

The vision of Ambient Intelligence (Aml) [1] depicts environments that are
able to adapt intelligently to facilitate the requirements of the people present.
Aml leverages a networked system of smart devices and sensors, which have
been smoothly integrated into the environment to act as a global interface
between users and information systems [2]. In this way, the control of the
augmented environment becomes action oriented, responding appropriately
to the behaviour of the human users present. This promises many benefits for
both single individuals and larger groups of people in a variety of application
scenarios.
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In order for Aml to become a reality, a number of key technologies are required
from a variety of disciplines [1]. These include unobtrusive sensor hardware,
wireless and fixed communication systems, software design, information fu-
sion, intelligent agents, to cite but a few. In this paper, a focus is made on
the requirement for robust detection and tracking of humans in unconstrained
scenes. This is a key enabling technology since knowing who is where in a scene
and what their actions have been allows other layers in an Aml framework to
infer beliefs about those people. Consider the example of an automated pedes-
trian traffic light system. An embedded intelligent system should be able to
determine the number of people waiting to cross, whether any special assis-
tance should be flagged for any individual pedestrian (e.g. wheelchair, children
or elderly pedestrians), estimate the time needed for everyone to cross, deter-
mine the state of traffic flow on the road and ensure each person crosses the
road successfully before allowing vehicular traffic to flow. Clearly detecting
and tracking the pedestrians is a necessary pre-processing step. However, this
poses significant challenges when pedestrian detection and tracking in uncon-
strained real world crowded environments is considered. For example, just
because a person is in the scene doesn’t mean that they want to cross the
road, however, if the person walks towards the crossroads, stops and waits,
then they probably do. RFID tagging is a possible solution for determining
this in constrained environments, but cannot help in scenarios where there is
no contact with people in a scene until they enter the environment.

Many of the person detection techniques described so far in the literature —
see section 2 — make assumptions about the environmental conditions, pedes-
trian and background colour intensity information, the pedestrian flow, that
a person will exist in the scene for a given number of frames, or that a person
enters the scene un-occluded. In this paper, a robust pedestrian detection and
tracking system for a single stereo camera is presented, which attempts to
minimise such constraining assumptions. It is able to robustly handle:

(1) occlusion, even when multiple people enter the scene in a crowd;

(2) lack of variability in colour intensity between pedestrians and background;

(3) rapidly changing and unconstrained illumination conditions;

(4) pedestrians appearing for only a small number of frames;

(5) relatively unconstrained pedestrian movement;

(6) relatively unconstrained pedestrian pose, appearance and position with
respect to the camera;

(7) varying camera heights, rotations and orientations;

(8) static pedestrians.

In addition, as the proposed pedestrian detection algorithm uses a simple
biometric person model that is defined with respect to the groundplane, the
system requires no external training to detect and track pedestrians. However,
although the proposed system was designed to minimise constraining assump-



tions, a small number of inherent assumptions still exist within the system
framework. They include;

(1) that pedestrians in the scene are standing upright with respect to the
groundplane;

(2) that all moving objects in the scene (within the volume of interest) are
caused by foreground pedestrians;

(3) that pedestrians in the scene are moving at a velocity of less than 3 metres
per second.

In addition to this, the system does have a small number of drawbacks on the
type of scenario it can survey. These include; (a) that a relatively flat ground-
plane is present within the scene, where no object of interest is located below
this groundplane; (b) the camera must be orientated so that the groundplane
is visible in the image plane; and (c) the system is only able to reliably de-
tect pedestrians for a short-medium range, up to a maximum distance of 8
metres from the camera. An area of future work envisioned by the authors
includes the investigation of techniques to further reduce these assumptions
and limiting constraints.

The main areas of contribution of this paper are twofold. The first lies in
the introduction of a novel, non-quantised, plan-view statistic (an overview of
such statistics is given in section 2) which incorporates global features into the
pedestrian clustering framework of the authors’ previous work [3]. The use of
this plan-view statistic within this framework significantly improves robustness
to both over- and under-segmentation of pedestrians in comparison to [3]. The
second main contribution area lies in the robust pedestrian tracking technique
that has been developed. Within this area a number of contributions can be
identified, which include; (a) a matching technique that incorporates a novel
weighting scheme for matching pedestrians to previous tracks; (b) a series of
kinematic constraints that model possible pedestrian movement through the
scene and that can be used to remove implausible matches of pedestrians to
previous tracks; and (c) rollback loops and post-processing steps to increase
track robustness to both over-/under-segmentation.

This paper is organised as follows: section 2 gives an overview of the related
work in the area of pedestrian detection and tracking techniques and outlines
the benefits of stereo information within this area. Section 3 gives an overview
of the key components to the overall pedestrian detection and tracking system.
Sections 3.1 and 3.2 discuss the details of the proposed approach to pedestrian
detection and tracking respectively. In section 4 experimental results (evalu-
ated against a groundtruth) are provided for indoor and outdoor situations at
various orientations containing multiple pedestrians at various depths, some
with severe occlusion and displaying a large variability in both local and global
appearance. Finally, section 5 details conclusions and future work.



2 Related Work

Robust segmentation and tracking of pedestrians within an unconstrained
scene is one of the most challenging problems in computer vision. A few of
the complicating factors to segmenting people include; the large variability
in a person’s local and global appearance and orientation [4]; occlusion of an
individual by one or several other persons, or objects, especially if the person
is located within a crowd; lack of visual contrast between a person and back-
ground regions. In addition, unconstrained real-world outdoor environments
tend to create further challenges, such as rapidly changing lighting conditions
due to varying cloud cover, shadows, reflections on windows, and moving back-
grounds.

A significant amount of research literature exists on person detection and
tracking. Various techniques for segmenting individual pedestrians have been
investigated using traditional 2D computer vision techniques. Unfortunately,
few of these, if any, produce reliable results for long periods of time in un-
constrained environments [5]. Reasons for this stem from various assumptions
regarding the environmental conditions and type of pedestrian flow being vio-
lated. For example, techniques, such as [6-10], depend on accurate segmenta-
tion of moving foreground objects from a background colour intensity model
as a first step in their algorithmic process. This relies on an inherent assump-
tion that there will be significant difference in colour intensity information
between people and the background. Other techniques [11-14] use rhythmic
features obtained from a temporal set of frames for pedestrian detection, such
as the periodic leg movement of a walking human, or motion patterns unique
to human beings, such as gait. However, the assumption that a person will
be moving (and normally in a predefined direction), means that people stand-
ing still, or performing unconstrained and complex movement, or in crowded
scenes when legs are occluded, will not be detected. Other techniques, such as
[6,7], make an assumption that a person will appear in the scene un-occluded
for a given period of time allowing a model of the pedestrian to be built up
while they are isolated. In addition, appearance-based techniques often fail
when two people get close together, as the algorithm fails to allocate the pix-
els to the correct model because of similarities in appearance, and tracking
is lost. To increase reliability, some systems, e.g. [15], integrate multiple cues
such as skin colour, face and shape pattern to detect pedestrians. However,
skin colour is very sensitive to illumination changes and face detection can
identify only pedestrians facing the camera.

3D stereo information has been proposed as a technique to overcome some
of these issues. The use of stereo information carries with it some distinct
advantages over conventional 2D techniques [5,16]:



(1) It is a powerful cue for foreground-background segmentation [17];

(2) It is not significantly affected by sudden illumination changes and shad-
ows [18];

(3) The real size of an object derived from the disparity map provides a more
accurate classification metric than the image size of the object;

(4) Occlusions of people by each other or by background objects can be
detected and handled more explicitly;

(5) It permits new types of features for matching person descriptions in track-
ng;

(6) It provides a third, disambiguating dimension for matching temporal
pedestrian positions in tracking.

However, range information also has its disadvantages; (a) it can be a noisy
modality where the standard deviation of the depth value at a pixel over time
is commonly of the order of 10% of the mean [5]; (b) it cannot segment fore-
ground objects at the same depth as background regions; and (c) no technique
has been developed that returns correct range information in all scenarios, all
of the time. However, despite these drawbacks, the authors consider a stereo-
based approach the most promising for the envisioned application scenarios.

In the literature, stereo-based range information has previously been applied
in pedestrian detection scenarios. In [19] it is applied to augment a background
colour intensity model to obtain foreground regions. These foreground pixels
are clustered together into blob regions of discrete disparity bounds, and fi-
nally the blobs are clustered into people-shaped regions by searching through
the space of possible groupings. A similar technique is used in [17] whereby
foreground blobs are temporally grouped into a single region if they have sim-
ilar disparity values, and the grouped region does not exceed the size range of
a normal person. However, these techniques are prone to under-segmentation
when faced with crowded conditions.

An inherent problem associated with mounting camera systems at oblique an-
gles is that partial occlusion of pedestrians is likely to occur. In [20] this issue
is addressed by mounting a stereo camera above a door and pointing it down-
ward, towards the ground. In this approach, 3D points within a 3D volume of
interest are selected. The groundplane is then broken up into square segments
corresponding to bins in a histogram, and the 3D points are orthographically
projected onto the groundplane. The more 3D points that are projected into
a given bin, the higher the bin’s occupancy. To detect people, a threshold is
applied to the occupancy map and Gaussians fitted to each peak [20].

This overhead viewpoint, however, does have disadvantages. Firstly, the cam-
era orientation is generally only applicable to indoor scenarios due to the
necessary overhead camera placement structures being unavailable in outdoor
environments. Secondly, a camera in this point of view generally has a limited



field of view [21], as a maximum height is constrained by a ceiling. This short
height can be restrictive as the field of view can be limited unless a wide field
of view lens is employed. However, this type of lens can result in significant
occlusion problems in all but the central portion of the image [21]. Therefore
with overhead camera viewpoints a trade-off exists between the field of view
and occlusion. An advantage to using stereo cameras over monocular cameras
is that this trade-off can be removed.

If the 3D groundplane is calibrated with respect to the stereo rig then 3D
points can be orthographically projected onto the groundplane no matter what
orientation the camera rig is positioned at, therefore allowing the occupancy
map approach of [20] to be applied from stereo cameras mounted at more
oblique angles. In this manner, the advantages of mounting the camera at an
oblique angle, which maximises viewing volume, and that of an overhead view,
which simplifies person modeling and reduces occlusions, can be exploited. Oc-
cupancy maps, however, have their own problems. For example, [22] illustrates
that occupancy maps cannot detect a person far from the camera because the
number of 3D points on a distant person is too small to create a single signif-
icant peak on the maps. However, the occupancy map is an example of one
of a number of plan-view statistics that are used in various other techniques
[22,5,23,24] where the camera is mounted at oblique angles.

Another type of plan-view statistic, proposed in [22], projects 3D voxels in-
stead of 3D points orthographically on the floor plane, and accumulates the
volumes. This allows people farther away from the camera to meet the re-
quired threshold to be segmented as a person. However, in crowded situations
the peaks often connect, resulting in under-segmentation. The height map,
another plan-view statistic, is introduced in [5] to complement two of the
occupancy map’s failings; namely its lack of virtually all object shape infor-
mation in the vertical dimension, and the decrease in saliency in the occupancy
map when the person is partially occluded by another person or object, as far
fewer 3D points corresponding to the person will be visible to the camera. The
height map is similar to the occupancy map but each bin is a single value,
namely the height above the ground-level plane of the highest point within
each vertical bin. It is effectively a simple orthographic rendering of the shape
of the 3D point cloud when viewed from overhead. New people are detected if
their height is over a given threshold and their occupancy is over a threshold.
However, depending on the height threshold, children may not be detected.

All these techniques can have difficulties when dealing with substantial occlu-
sion of a new pedestrian, where the occupancy count is unlikely to reach the
minimal required thresholds. Therefore they tend to introduce assumptions
that substantial occlusion does not occur before a person has been detected
and added to the tracked list. In addition to this, a resolution must be chosen
to quantise the 2D space into vertical bins; the resolution should be small
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Fig. 1. System overview.

enough to represent the shapes of people in detail but also must consider
the limitations imposed by the noise and resolution properties of the depth
measurement system. In the proposed technique, a new plan view statistic
is applied, which is used as a guide within the clustering process and is not
subject to fixed thresholds. Thus it is not subject to the threshold problems
outlined above. In addition, the 3D space is not quantised into discrete bins,
and so a quantisation resolution does not have to be fixed.

3 System Overview

Figure 1 illustrates an overview of the proposed system. As an input to the
pedestrian detection module, a dense disparity map of the scene is required. A
wide variety of dense stereo correspondence algorithms have been proposed in
the literature, any of which could be used to obtain the required input dispar-
ity map. However, a major flaw in many stereo-based techniques is that few
attempt to apply the use of scene features and temporal information to ob-
tain the highest quality disparity map that is possible within reasonable time
constraints. Instead, techniques tend to apply standard stereo correspondence
algorithms, and often the reasons for a specific choice of algorithm are not well
justified. The disparity estimation technique employed by the authors is that
of [3], which describes a dynamic programming based stereo correspondence
technique that has been specifically developed for pedestrian surveillance type
applications. This technique reduces artifacts in the calculated disparity map
via a number of enhancements to the dense disparity estimation algorithm —
however, this paper does not focus on the disparity map generation, and inter-
ested readers are directed to the relevant papers for further details. In should
be noted, however, that a lower quality disparity maps does not inherently
mean that the proposed pedestrian detection will fail and as such standard
disparity estimation approaches can be employed to generate the input map.

From the input disparity map, a set of 3D points is obtained via triangulation
— see figure 1. The disparity map is post-processed to remove artifacts and
constrain the 3D points to a volume of interest (VOI). This VOI is defined by
a maximum and minimum height with respect to the groundplane in the scene
and a maximum distance from the camera. In our experiments all 3D points
that are lower than 0.9 meters (~ 3 foot) in height, or greater than 2.1 meters



(~ 7 foot) in height are defined as outside the VOI and so are removed. In
addition, all 3D points further than 8 meters from the camera are also defined
to be outside the VOI. The VOI is limited to a distance of 8 metres due to
a small stereo camera rig baseline of 10cm and the degradation of accurate
stereo information beyond this distance. Finally, all remaining disparity points
are retained and labelled as foreground 3D points. For further information on
the post-processing of disparity values readers are directed to [25].

The resultant foreground points are then clustered together into detected
pedestrians via an iterative region growing framework. This technique is based
on the approach proposed in [3] — an overview of this technique is presented in
section 3.1. However, in this paper the technique is augmented with a novel,
non-quantised, plan-view statistic that incorporates global features into the
pedestrian clustering framework and as such reduces the over- and under-
segmentation of pedestrians in comparison to that of [3].

The final stage of the pedestrian detection module — see figure 1 — involves
the post-processing of the resultant clustered 3D regions to remove regions
(or parts of regions) caused by noise and background objects. This archi-
tecture, whereby background-foreground segmentation is implemented after
pedestrian regions are created, contrasts to many techniques proposed in the
literature. For example, in techniques such as [26,8,9] motion segmentation
techniques are employed to obtain foreground subtracted pixels, from which
hypotheses of pedestrian objects are obtained. However, robust background-
foreground segmentation of pixels from background models is not a trivial
problem, especially in real-world conditions where rapid changes in lighting
conditions can occur. To date there is no background subtraction technique
that addresses all the traits required of background models in unconstrained
environments. As a result, techniques that are built upon this basis are limited
by the success of the underlying flawed segmentation algorithms of motion seg-
mentation. In the proposed methodology, background subtraction techniques
are applied to guide the final segmentation of the final clustered objects as
opposed to being the basis of a technique to obtain those objects. Using this
technique the reliance upon the background model is reduced significantly.
For further information on the post-processing of the final regions, readers are
directed to [3].

With regard to pedestrian tracking (see figure 1), the system initially de-
tects pedestrians in each frame independently. These detected pedestrians are
temporally tracked by representing previous tracks and current image pedes-
trians by a Weighted Bipartite Graph, described in section 3.2. A Maximum
Weighted Mazimum Cardinality Matching scheme is then employed, with ad-
ditional kinematic constraints, to obtain the best match from previous tracks
to currently detected pedestrians. A number of separate rollback loops are
used to backtrack the pedestrian detection module to various states to further



reduce over-/under-segmentation of detected pedestrians and increase tracking
robustness.

3.1 Pedestrian Detection

The technique for pedestrian detection proposed in this paper is based on that
described in [3], where an iterative region growing framework is employed. In
this paper the clustering algorithm is enhanced to significantly improve robust-
ness to both over and under-segmentation of pedestrians. This is achieved by
introducing a new plan-view statistic with a view to imposing more stringent
testing upon the clustering of regions in the final iteration of the algorithm.

The pedestrian detection algorithm of [3] clusters 3D points into pedestrian
shaped regions by incorporating a simple human biometric model directly into
the region clustering process. This model is dependent solely on the position
of the groundplane in the scene and the Golden Ratio, and therefore the only
constraint on the orientation of the camera rig in the scene is that the ground-
plane must be in view. The groundplane must be in view in order for it to be
calibrated using the stereo camera coordinate system.

An overview of the proposed pedestrian detection algorithm can be illustrated
using the example of the two pedestrians in figure 2(a). Using the technique
outlined in section 3, foreground 3D points are obtained — see figure 2(b), where
the brighter the colour, the closer the point is to the camera. These 3D points
are also illustrated (using their original colours) in figure 2(e) from a plan-
view orientation, whereby the viewing angle is parallel with the groundplane
normal and the 3D points are orthographically projected onto a 2D plane.
Note that for ease of illustration, figures 2(f)-(n) are also depicted from a
plan-view orientation. However it must be stressed, that this is for illustrative
purposes only and the described technique clusters 3D points, and not 2D
points.

As detailed in [3], initial clusters are obtained from the foreground disparities
— as illustrated in figure 2(g), where each colour represents a distinct region.
Each region, reg, is defined by; (1) regy: the regions maximum height above
the groundplane; and (2) reg.,: the central axis of the region, which is the
3D line that is parallel to the 3D groundplane normal and runs through the
average 3D point in the region. Figure 2(f) illustrates the heights of 3D points
above the groundplane, where the brighter the colour, the greater the height.

These initial regions are then iteratively grown in a controlled manner, where
the merging of two regions, reg! and reg?, is permitted if d'2 < ¢, where d'2
is the Euclidean distance from reg! and reg?,. From this previous inequality

it can be seen that the maximum distance permitted between two merging
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Fig. 2. (a) Image tile showing two pedestrians very close together; (b) Foreground
disparity; (c) & (k) Final regions (i.e. 7" iteration) without the under-segmentation
test; (d) & (n) Final regions (i.e. 7*" iteration) with the under-segmentation test;
(e) 3D points from a plan-view orientation; (f) 3D point heights; (g) Initial regions;
(h) Region clustering - 1% iteration; (i) 2" iteration; (j) 6 iteration; (1) Best-fit
ellipses of the 4 regions from (j); (m) Region diameter.

regions is constrained by the parameter 0. The value of § is obtained by a
biometric pedestrian model [25] that is based on the Golden Ratio, ® = /5 *
0.5 4 0.5 ~ 1.618. This parameter ® can be used to define the approximate
proportions of a human body if the height of the person is known [27]. Using
® and a height value, other points on the human body can be defined, such
as the width of the shoulders, |lo|, or the head, |mn|; the distance from the
top of the head to the neck, |af|, or the eyes, |ad|. Appendix A illustrates
these values with the aid of a diagram and lookup table. In the first stage
of the clustering process § = |ad|, where the height of a region is defined by
regp. This initialises ¢ as a value of roughly 0.05% of the height of the region.
Regions that have a central axis within a Euclidean distance § from reg,., are
then merged.

Throughout the clustering process § is gradually increased from |ad| to |lo].
As such, ¢ controls the growth rate in the algorithm. By increasing the value
of 9 slowly, each separate object region can be allowed to grow in isolation and
avoid being merged. The iteration from § = |ad| to § = |lo| occurs in seven
distinct steps. Seven was chosen since using ® there are 4 steps to go from |ad|
to |lo|, the extra three are halfway between two steps of ® and are needed to
ensure that the regions are not grown too fast, otherwise under-segmentation
is more likely to occur. Figures 2(g)-(j) depict the regions at various stages of
the process. However, in the 7", and final, iteration of the clustering algorithm,
the technique is prone to under-segmentation if two regions, regl, and reg?,,
belonging to two different pedestrians are positioned very close together, i.e.
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if d!2 < §. The result of such an event is illustrated in figures 2(c) and (k)
where two pedestrians have been clustered into one region. In addition, if for
two other regions that belong to a single pedestrian d!? is slightly greater
than [lo|, then they will not be merged and thus over-segmentation will occur.
The technique is therefore prone to both over and under-segmentation as the
clustering technique is based solely on the position of the central axes of
regions, without taking into account the global features associated with the
regions.

3.1.1 Robustness to Under- and Over-segmentation

The first contribution of this work is to augment the clustering framework
described previously with a novel plan-view statistic that incorporates the re-
quired global feature information from regions. This in turn leads to increased
robustness to both under- and over-segmentation of pedestrians.

During the final iteration of the clustering algorithm (i.e. when 0 is at its
maximum value of |lo]), robustness to under-segmentation can be enhanced
by invoking an additional constraint on the clustering of two regions. This
additional constraint, which will be referred to as the under-segmentation test,
is designed to compare the global shape of the two regions to determine the
possible presence of two people. The under-segmentation test incorporates a
novel plan-view statistic that approximates the global shape of each region by
a best-fit ellipse around the shoulder height of each region (see section 3.1.1.1
for details on how to obtain this ellipse). Figure 2(1) illustrates the best fit
ellipses for each of the four regions of figure 2(j) that exist before the final
clustering iteration occurs. Using these region statistics, two regions, reg! and
reg?, can be merged if two constraints are passed

(1) d!2 < |lo|, which states that two regions can only join if the distance
between their centres is less than the shoulder width of a person, and

(2) v < 2|lo|, which is defined as the under-segmentation test. In this in-
equality, let v be the maximum Euclidean distance between two region
ellipse points on the line [, where [ is a 2D line that passes through the
centre of the two region ellipses — see figure 2(m).

The under-segmentation test ensures that for two regions to be merged, the
distance across the two regions, parallel to their centres, must be less than the
combined shoulder widths of two people. This constraint, in addition to the
first central axis constraint, creates a powerful pair of clustering constraints
that result in a significant reduction in under-segmentation.

Robustness to over-segmentation can be enhanced using similar techniques via
an over-segmentation test. For example, if from two regions, reg' and reg?,
the statistics show that d!2 > |lo| but v < 2 [lo| — then the two regions may
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Fig. 3. Splintering of pedestrians; (a) Image data; (b) Foreground disparity; (c)
Over-segmented region; (d) reg; sub-regions; (e) regs sub-regions; (f) Merged region.

belong to either 1 or 2 people (if it is the latter, then merging the two regions
would result in under-segmentation). In order to determine whether the two
regions should be merged, further examination of the regions is required. In
the proposed approach, the two regions are allowed to merge if the diameter
of a second best-fit ellipse, fit to only the 3D points located above shoulder
height, equates to the size of a single persons head. Using this approach, two
best-fit ellipses (one from each region) are obtained, using ® to constrain the
3D points used in the creation of the ellipse to those above neck height (i.e.
higher than |aj| — |af]). If the radius of the major axis of both the ellipses are
greater than half the width of a head, %, then it is determined that two
head regions do indeed exist and therefore merging cannot occur. Otherwise,
the merging of reg' and reg? is permitted. Using this technique, reg! and
reg?, can be merged if

(1) d!2 > |lo|, and

(2) v < 2]lo|, and

(3) a< |m72n\ and 3 < @, where o and (3 are the major axis diameter of
the “head region” ellipses from reg' and reg? respectively.

3.1.1.1 Best-Fit Ellipse To determine the best-fit ellipse of a region, a
3D point set is created using ® to obtain all 3D points in the region that
are at or above a particular height — shoulder height is chosen in the under-
segmentation test as the best area to fit the ellipse, rather than the region
as a whole, as this area is less likely to be perturbed by objects, such as
backpacks or outstretched limbs. These 3D points are then orthographically
projected onto the groundplane, which removes one degree of freedom from
the points. This is similar to the techniques used in the generation of other
plan-view statistics such as those used in [22,5,23,24] except that the points
are not quantised into discrete bins. The best-fit ellipse is then obtained from
the resultant 2D point set in a manner similar to that presented in [28].
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3.1.2  Dealing with Distant Pedestrians

A prerequisite of the proposed algorithm is good disparity estimation and
3D reconstruction. The more accurate these are, the better the subsequent
segmentation. However, most stereo correspondence algorithms (including the
one employed by the authors) compute the disparity of a given point to be
a discrete value between 0 to n, where n is defined by the disparity limit
constraint. This means that if the disparity changes within an object then the
disparity difference has to be > 1. When the object is close to the camera, a
change in disparity of 1 between two pixels, u and v, still results in a smooth
surface as the Euclidean distance between the 3D position of the points, U
and V| is relatively small. However, the farther away an object becomes from
the camera, the greater effect a change of disparity will have in terms of
Euclidean distance. For example, if the disparity values at v and v were 1 and
0 respectively, then the Euclidean distance from U to V' becomes ooc.

Therefore, the farther away the pedestrian is from the camera, the more likely
it becomes that the 3D points belonging to a single person will become spread
out [3]. In addition, there are fewer 3D points belonging to the pedestrian and
therefore the central axis of a clustered region becomes more susceptible to
noise. A repercussion of this is that as the distance of a pedestrian from the
camera increases, then the likelihood of the two regions, reg; and regs, be-
longing to the same pedestrian having either v > 2|lo| or d'? > |lo| increases.
This can result in over-segmentation of a pedestrian, as seen in figure 3(c).

Solutions to this problem include to; (1) turn off the under-segmentation test
for regions at distances greater than a certain distance, dist,; (2) allow an
increase in the value for |lo| for regions at distances greater than dist,; or
(3) take into account the characteristic appearance of distant over-segmented
regions, and merge them appropriately. The first two options both involve an
unknown threshold, dist,, and both are subject to causing unnecessary under-
segmentation. In this paper, the third solution is adopted and it is observed
that, in general, over-segmentation at large distances results in a characteristic
splintering of regions in 2D image space. In the proposed approach, this splin-
tering is defined to have occurred if; (a) each of the two regions, reg; and regs,
are composed of more than one disjointed sub-regions in 2D image space — see
figures 3(d) and (e) where each sub-region of each of the two regions of figure
3(c) is coloured differently; and (b) the merging of reg; and regs would result
in two or more of the sub-regions in each of reg; and regs becoming connected
in 2D image space — see figure 3(f) where all the sub-regions of figures 3(d) and
(e) are now connected in 2D image space. Using this approach, if two regions,
reg; and rego, are found to be splintered, then the under-segmentation test
for the regions is not employed and reg; and regs can be merged simply if
d!? < |lo|. The authors have found that this splintering test works as well as
either option (1) or (2), but without the need to set any external thresholds.

13



| Final Weighting of w..,,

| Add e, to [ if Plausible Match
Group 1: Divide u,',fv‘lby 2.0, so that u,',fv‘le [0.25,0.5] |

Ty

Initial Weigthing of w,,,

Group 2 : No change towc_L_U, so that u,',fv‘le [0.5,1.0] |

| Obtain Histograms |

| We,,= Bhattaccharyya Distance |

Group 4 : Increase 'we,,,,,,bY 1.0, so that u,',fv‘IE [1.5,2.5] |

‘ Remove ifwe,, < 0.5 ‘
I

[
|
[
|
I Group 3 : Increase 'we,,,,,,bY 0.5, so that wewe [1.0,1.5] |
[
|
[
|

Group 5 : Increase 'we,,,,,,bY 2.0, so that u,',fv‘IE [2.5,3.5] |

Fig. 4. Creating and weighting e,,.
3.2 Pedestrian Tracking

Let p1, po, ... pn represent the N pedestrians that have been detected in frame
1 as outlined in the previous section, and tq, ¢y ...t represent the M pedestri-
ans that have been temporally tracked up to frame i—1. If M = 0 and N > 0,
then each p, is assigned a new track t,, where x = 1...N. For all frames
where M > 0, it is required to update the M tracks to incorporate pedestrian
data from frame 7. This is achieved by matching the N pedestrians in frame i
to the M tracks from frame ¢ — 1. However, it may not be possible to match
all pedestrians to tracks, or vice versa. In addition, a given pedestrian may be
more or less likely to be a continuation of a certain track.

This situation can be represented by a weighted bipartite graph, G = (V, E)
[29]. A graph is bipartite if there exists a partition of the vertex set V = VU4
so that both V; and V5, are independent sets, and an edge, e,,,, € F, can only
link v; € V] to vy € V5. In this scenario, V; represents the N pedestrians
detected in the current frame ¢, and V5 the M temporally tracked pedestrians
in frame ¢ — 1. e;, denotes a match between a pedestrian, p,, and a track,
ty, where z = 1...N and y = 1... M. To match pedestrians to tracks, a
subset of edges, E C E, is created, and each e, is weighted to indicate the
likelihood of a match between p, and ¢,. If there is no likelihood of a match
then e,, ¢ E. Figure 4 illustrates the process in which a single edge e, is
created and weighted. The creation and weighting of edges in E is described
in the next section.

In order to obtain the best matching of pedestrians to tracks, a Mazimum
Weighted Mazimum Cardinality Matching scheme is employed [29]. In graph
theory, a matching in G = (V, E) is a subset, S, of the edges E such that no
two edges in S share a common end node. A mazimum cardinality matching
has the maximum possible number of edges and a mazimum weighted matching
is such that the sum of the weights of the edges in the matching is maximised.
The scheme employed therefore maximises the number of pedestrians matched
to tracks, while simultaneously obtaining the maximum weighting for those
matches. The details of this matching scheme are presented in section 3.2.3.
A table of all symbols used in this section is provided in appendix A.
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3.2.1 Clreating E

For a correct matching of p, to t,, then e,, must be an element of E and
the weighting of the edge, w,,,, should be high enough to ensure that e,, is
included in the final path determined by the matching scheme. The existence
of the edge e, in the set E is determined solely by the constraints of the
physical world. For the following three sections, apart from the thresholds set
for comparing histograms, all thresholds are determined from observations of
pedestrians’ 3D physical movements between frames in test sequence data.

To obtain and weight the edges in E, the following statistics are obtained from
each p, region in frame 1;

(1) p*¥: the position of the centre of mass of a detected pedestrian’s 3D head

(2)

region orthographically projected onto the groundplane;
pm@® and p™™': the maximum and minimum heights above the ground-
plane of all the 3D points belonging to the pedestrian that are wvisible in

frame ¢ and within the required VOI defined in section 3;

(3) p<: the set of HSV colour values of all foreground points belonging to

Similarly, all ¢, have similar statistics in frame i — 1; tgdi_l, t;”“’”i_l, tZ””
tci—l
y

(1)
(2)

(3)
(4)

the pedestrian.

i—1
" and

. In addition, each ¢, has three additional statistics;

tZH: the number of frames for which the track has existed;

tZFl: the velocity of the track in the previous frame, where tZFl =

‘tidH — 377 % —=r and td;_; is the time difference (in milliseconds)
between frames ¢ _ 12 and 7 — 2 ;

tgdl: the extrapolated position of the track in the current frame, where if
t;: < 2 then 34" = 3", otherwise t3' = 3" 4 (£ x tdi_,);

t, : the track state, which is either walking, St*, accelerating, St®, or
standing, St°. A person is considered to be walking if they have either;
(a) moved in the same direction for 3 consecutive frames, (i.e. the an-
gles between tzdz_zl,152“'/1_3,@“”_2 and tzdz_l are greater than 90° in each
case), or; (b) moved in the same direction for 2 consecutive frames and
Edist(tidz*l,tgdlﬁ) > tnoise, Where Edist is Euclidean distance and t,,;sc
is the maximum distance a track’s tzd is allowed to fluctuate in one frame
when they are standing still. In our experiments ¢,,0;5¢ i set to 0.3 metres,
meaning it is expected that a pedestrian’s position will fluctuate by up
to 0.15 metres from its correct position in any given frame. A person is
deemed to be accelerating if Edist(tzd%l, ti‘fﬂ) > thoise. Finally, a person
is standing still if neither of the other states are possible.

To determine whether e, € E, Pz is compared to ¢, and an evaluation is made
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whether the match is physically plausible. For example, if the time difference,
td:_,, between frames ¢ — 1 and i is one second, and Edist(tidlfl,pzdl) = 20,
where Edist is Euclidean distance in metres, the edge e,, is not plausible,
as the pedestrian p, would have to moving at a rate of 72km/h! Therefore,
if Edz’st(tgd%l,pzdl) > tmae then e, & E, where tpup = distpee X tdi_, and
dist s 18 the absolute mazrimum distance a pedestrian is assumed to be able
to be the walk in a second. In this work, a threshold ?4,4e = distayge X td:_,
is also applied, where dist,,g is the average mazimum distance a pedestrian
is assumed to walk in a second. In our experiments, dist,,q., and distq,ge are
set to 3 and 2 metres per second respectively (however it should be noted
that the minimum value of ¢,,q; Or tg.4e should be set to t,. regardless of
the value of td’ ;). This limitation of possible pedestrian movement, where
Edist(tf/difl, pgdi) > tmae then ey, ¢ E, defines the first kinematic constraint
that form a contribution of this work. As a set, these constraints can be used
to remove implausible matches of pedestrians to previous tracks.

A second physical constraint is based on a pedestrian’s ability to turn while
walking at a sufficiently large velocity. It is assumed that due to the forward
momentum incurred, a pedestrian can only turn a certain angle # in a single
frame. This constraint can be formulated as follows. Let @ be the vector from

£34" t0 3¢ and b be the vector from 3¢ to p3?', and let 6 = cos! | 2L | be
y y y w |al[b]

the angle between @ and b (obtained using the dot product). From the statistics
of a track it can be assumed that a pedestrian is then moving at a high enough
velocity if Edz’st(tid%l,pzdz) > thoise and either; (a) a person is accelerating
very quickly (tzH = St* and either tZH or t;jH is greater than t,,4.), or; (b)
a person is walking and the velocity in the previous frame was greater than
that to be expected of a position change due to noise if the pedestrian has
suddenly stopped walking (t;l_1 = St* and tZl > tngise) Tf cither of these cases
are true then the pedestrian may either stop or continue on in roughly the
same direction in frame i, i.e. Edz’st(tzdlfl,pzdz) < thoise 07 0 < 0,0, Where
Onaz 1S the maximum angle that a walking pedestrian can turn per frame. 6,4,
is set to 60° in all our experiments. This is the second kinematic constraint
in this work used to remove implausible matches of pedestrians to previous
tracks. However, it should be noted that as the time difference, td, between
frames increases this constraint is invalidated. In this work it is assumed that
the latency between frames is less than the time taken for a pedestrian to stop
walking forward and make a turn greater than 6,,,,.

3.2.2  Weighting E
In order to obtain the correct matching of p, to t,, a weighting, we,,, must

be associated with e,,. This value should be high enough to ensure that e, is
included in the final path determined by the matching scheme. As illustrated
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in figure 4, the initial weighting of e,, is assigned by a colour histogram com-
parison measure between p, and t,. This value of w,,, is then adjusted by
a predetermined amount that forces the weights into five distinct groups of
varying importance. This novel weighting scheme for matching pedestrians to
previous tracks forms a contribution to this work.

In order to obtain the initial value of w,,,, a normalised histogram for the
pedestrian, pgi, is created using the hue value from the HSV colour values
in pg using 3D points that lie only in the overlapping height region between
Pt to p™n and t;’“”H to t;’””H. A similar histogram, tZH, is created for
the track. w,,, is determined by obtaining the Bhattacharyya distance [30]
between the corresponding pgi and tZ Thus, the value of w,,, will lie between

0 and 1. Finally, if w,,, < 0.5 then e, is removed from E as the colour match
is deemed to be too weak for a true match between a p, and ¢, to exist.

This weighting, w,,, , is then altered to force e, into one of five distinct weight-
ing groups, whereby the higher the value of e, the greater the importance
of that weight, and therefore the greater the probability of it being chosen for
the final matching. These groupings exist in order to reward good matches,
established tracks and penalise more implausible, but not impossible, matches.
As illustrated in figure 4:

e In Group 1, the weight is actually decreased by 50% of the original value.
This decrease is made in order to discourage plausible but unlikely matches.
ezy is part of this group if a person is walking or accelerating (zle_1 =
St or St*) and either; (a) Edist(t3 ", p2®") > t4u4, this discourages the
system from attempting to make large jumps in distance, as they rarely oc-
cur; (b) Edist(tid“l,pzdl) > tpoise and 6 > 9222 asif a person is accelerating
or walking then these changes in direction are unlikely to occur; or (c) if a
pedestrian has walked the same direction for 3 or more consecutive frames
and 0 > 0,42, even if Edist(tid%l, P3") < tnoise, as the previous history of
the track indicates that the angle of the track should be continuous even
with respect to noise.

e In Group 2, the weighting remains as it is — this is the default group.

e Group 3 rewards a good match in coverage between p, to ¢, in other areas,
besides histograms. So if the overlapping height regions are large (i.e. > 50%
overlap), then w,, is incremented by 0.5. Note that e,, may be a member
of this group and groups 4 or 5 at the same time — if this is the case, then
both group increments are added to we,, .

e In Group 4, a weighting increment is added to we,, to ensure that older,
more established, tracks have priority to be matched with pedestrians. This
ensures that established tracks are not left without a match, while new
tracks, which may have been initialised due to noise, have been given a
match. This is achieved by determining if £3% is close to p3* within a more
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constrained set of thresholds of angle and distance (simply half the previous
thresholds). If this is true and tZH = 2 then w,, is incremented by one.
As previously outlined, if e,, is also a member of group 3 then the total
increment between the two groups will be 1.5.

e In Group 5, a similar increment to that in group 4 is added to w,,,, but if
tZi_l > 2, the weighting is increased by two (leading to a total increment of
2.5 if e,y is also a member of group 3). In this way, tracks that have existed
for 3 or more frames have priority over those that have existed for 2 frames,
and tracks that have existed for 2 or more frames have priority over those
that have existed for only 1 frame.

3.2.3  Maximum Weighted Maximum Cardinality Matching Scheme

After E has been created and weighted, the matching algorithm is invoked.
The matching scheme technique applied in this work — illustrated in figure
5(a) — is based on Berge’s Theorem [31], which states that a matching S in
G is maximum iff there is no augmenting path, P. In graph theory, a path is
the list of vertices of a graph where each vertex has an edge from it to the
next vertex and an augmenting path is one with alternating free and matched
edges that begins and ends with free vertices. If such a path is discovered then
the cardinality of the matching S can be immediately increased by one, simply
by switching the edge membership along P. As such, the proposed matching
scheme algorithm is initialised with an empty set of matches and then solves
the problem by iteratively searching for the augmenting path [29] with the
maximum weight. If an augmenting path is found then the edge membership
along P is switched. If no augmenting path is found then M is guaranteed to
have maximum cardinality with maximum weight, and by traversing through
the path the matches of pedestrians to tracks are obtained. This algorithm is
a classical solution to the N-to-M association problem using bipartite graphs.

Within the pedestrian tracking module of this work, an alteration to this N-to-
M matching scheme algorithm is made that enforces the physical constraints
of real-world pedestrian tracking to be taken into account within the matching
framework. When creating £ (see section 3.2.1) two kinematic constraints are
enforced, which ensures that all single edges e,, € E are physically plausible,
however these constraints do not ensure that pairs of edges are physically
plausible. Take for example figure 5(b), where t; is a track traversing the
scene from left to right, and ¢, is a second track that is travelling parallel to
t;. In frame 7, t; or t, can be matched to either p; or py, as each match is
physically plausible. However, if ¢; is matched to p, and t5 to py, then t; and
to must pass through, or crossover, the same physical space between frames
1—1 and 7. Depending on the time difference between the two frames this may
be physically impossible, as is the case in our experiments, where the latency
between frames difference is typically less than half a second. As such, pairs of
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Fig. 5. (a) Matching scheme; (b) Crossover; (c) Near crossover.

edges of this type are not allowed to coexist in a legitimate matching. As such,
a constraint is imposed that in a legitimate matching, no two physical track
segments between frames ¢ and ¢ — 1 may be within a distance of 10 cm of
each other. This eliminates all crossovers, and near crossovers, such as that in
figure 5(b), where t7 = 1 and p3¥ ~ 3¢ where although no actual crossover
has occurred, the two track segments must again occupy the same physical
space at some stage between ¢ and ¢ — 1. This limitation of possible pedestrian
movement defines the third, and final, kinematic constraint applied.

3.2.4 Pedestrian Detection Rollback Loops

After pedestrians have been assigned to tracks, rollback loops are used to
backtrack the pedestrian detection module in an attempt to find or extrapolate
lost tracks, and to further reduce over- and under-segmentation. The rollback
scheme, which forms a contribution to this work, employs three separate loops;
the first two aim to locate all lost tracks using two different techniques (the
second of which also reduces under-segmentation); the third is designed to
reduce over-segmentation. Fach rollback loop is now be examined in turn.

If ¢, is unmatched then the first rollback loop attempts to find the missing
pedestrian, p,, in the current frame. The post-processing stage of the pedes-
trian detection module (see section 3) declares a region as noise if it falls
below certain thresholds, such as the minimum number of pixels or if it does
not span a pre-defined range of heights. However, scenarios such as severe
occlusion could force p, below these thresholds. To retain this lost region,
the tracking module backtracks the pedestrian detection module to just be-
fore post-processing occurs and reapplies post-processing at half the original
thresholds. If any new regions emerge, which may be a feasible continuation
of the lost track, then the weighted bipartite matching scheme is reiterated.
If ¢, becomes matched then that new pedestrian region remains and all other
regions added by this module are removed.

If ¢, is still unmatched, a second rollback loop is employed that makes the
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assumption that under-segmentation of pedestrians occurred resulting in two
tracks, ¢; and t5, competing for the same region, p;. The rollback loop back-
tracks the pedestrian module to before the final iteration of region clustering,
which is then skipped and the regions are post-processed. If p; has been seg-
mented into 2 distinct regions, pia and p;b, where the orientation of t3d" to 34"
is similar to that of pa®® to pb>? then a possible match may exist. In this
approach, the maximum difference in orientation is set at 4+22.5° therefore
allowing a total range in orientation difference of 45°. It is believed that this
value allows enough variation in orientation, while simultaneously avoiding the
case of incorrect matches from the rollback loop. As in the first rollback loop,
if the re-segmentation is successful the weighted bipartite matching scheme
is reiterated. However, if the re-segmentation is not possible but an attempt
was made, i.e. p; exists whereby it can be matched to either ¢; and ¢y but it
could not be segmented into two regions, then it is assumed that p; actually
contains 2 pedestrians, and the unmatched track is extrapolated.

The third, and final, rollback loop is designed to reduce over-segmentation
by examining all unmatched pedestrians. The pedestrian detection module
is backtracked to before the final stage of merging regions and the under-
segmentation test is turned off. The final clustering stage and post-processing
is re-iterated and it is determined whether the unmatched pedestrian region
has become merged with a second region. If it does, then the region is consid-
ered to be over-segmented and two regions remain merged.

3.2.5 Track Post-processing

The final stage (and final contribution) of the tracking framework is designed
to post-process tracks with a view to increasing track stability with respect to
pedestrian over-segmentation problems. If the tracked pedestrian ¢; is over-
segmented in frame 7 as pya and p;b, then a choice has to be made whether
to match pia or pib. Let t; choose pya and let t1b be the new track initiated
by p1b. Each separate choice will affect ¢1’s statistics in frame ¢ + 1, meaning
that a bad choice could end the track prematurely, however the new track
from the choice not taken may still exist. If this is the case, then the wrong
choice was made. This type of occurrence can be rectified by flagging possible
over-segmentations and the resultant choice in frame 7. Then if ¢; is discontin-
ued before t1b and the two separate tracks have not diverged or t;b has not
demonstrated that it is a stable track by being able to reach a walking state,
t; is allowed to “steal” the track of ¢1b. If this scenario occurs, the history of
t; is replaced by that of t1b for the duration of #1b’s lifespan.

Finally, all unmatched tracks that have not been explicitly extrapolated in the

second rollback loop, are removed and all unmatched pedestrians are assigned
new tracks. In addition, every matched track is updated to incorporate the
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( (e)
Fig. 8. Corridor sequence, frame numbers; (a) 289; (b) 293; (c) 298; (d) 301; (e)
304; (£) 308.

new data from frame 3.

4 Experimental Results

The proposed technique has been quantitatively evaluated against 5 test se-
quences of resolution 640 x 480 captured between 2-6.5Hz. The sequences cover
three different scenarios, with varying camera height, camera orientation and
environmental conditions. The experimental sequences were chosen to test the
proposed technique extensively in several areas, such as disparity estimation,
foreground segmentation, pedestrian detection and tracking. None of the test
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Fig. 9. Corridor sequence, frame numbers; (a) 216; (b) 225; (c) 234; (d) 238; (e)
239; (f) 247.

(a) (b) () (d) (e) (f) (g)
Fig. 10. Grafton sequence 1, frame numbers; (a) 009; (b) 010; (c) 011; (d) 012; (e)
013; (f) 014; (g) 015.

(a) (b) () (d) (e) (f) ()

Fig. 11. Grafton sequence 2, frame numbers; (a) 017; (b) 021; (c) 024; (d) 027; (e)
029; (f) 031; (g) 035.

sequences were used in development of the proposed algorithms. Figures 6-12
give illustrative examples the sequences, which were specifically chosen to il-
lustrate both the success and possible failings of the proposed approach. In
each of these figures there are two rows of images. In the top row, each de-
tected pedestrian is enclosed by a bounding box of a certain colour. Directly
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(a) (b) () (d) (e) (f) (8)
Fig. 12. Grafton sequence 3, frame numbers; (a) 225; (b) 228; (c) 231; (d) 233; (e)
235; (f) 238; (g) 241.

Table 1

Experimental results overview.
Sequence Groundtruth | Detected | Correct | Precision | Recall
Grafton 1 666 620 577 93.0 86.6
Grafton 2 754 692 669 96.7 88.7
Grafton 3 457 388 362 93.3 79.2
Grafton Total 1877 1700 1608 94.6 85.7
Overhead Total 657 626 592 94.5 90.1
Corridor Total 1027 822 763 92.8 74.3
Total 3561 3148 2963 94.1 83.2

Fig. 13. Missed groundtruth persons; (a) Overhead sequence; (b) Corridor sequence;
(c) Grafton sequences.

beneath this row are plan-view images corresponding to the scenes in the top
row. In these plan-view images, the white lines indicate the bounds of the
scene, the position of detected pedestrians in that frame are illustrated by a
circle of the same colour as their bounding box, and tracks are depicted as
“tails” from the centre of the circle to previous positions in the scene. All of
results sequences, bar the Grafton sequences for legal reasons, are available to
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view on-line at [32].

The first sequence, which will be referred to as the Ouverhead sequence, see
figures 6 and 7, was set in an indoor scenario with the camera positioned at
around 3 metres above the ground. The camera was then orientated back to-
wards the groundplane. The camera rig in this point of view has a limited field
of view and due to its proximity with the groundplane it does not encounter
significant occlusion problems. The lighting conditions in the scene are stable,
but brightly illuminated with a highly reflective ground surface. The sequence
consisted of 418 images, captured at a frame rate of ~ 6.5Hz (~ 1.1 minutes).

The second sequence, which will be referred to as the Corridor sequence, see
figures 8 and 9, was set in an indoor setting with the camera positioned just
above 2 metres from the ground. The camera is orientated at 30 degrees to-
wards the groundplane. Again, the lighting conditions are stable, however the
scene’s illumination is more challenging than that of the Ouverhead sequence
as it is brightly illuminated on one side, and dark on the other side, due to
skylights in the corridor. This can cause a lack of texture in those areas, as
will be described later. In addition, the scene contains a staircase on the right
hand side, where people can descend and ascend at will. The sequence consists
of 697 images, captured at a frame rate of ~ 5.3Hz (=~ 2.3 minutes). For these
two sequences volunteers were recruited and asked to walk around in front of
the camera. No restrictions or instructions were provided as to where people
could go, what they could do or what they could wear.

The third, fourth and fifth sequences, see figures 10, 11 and 12, will be re-
ferred to as the Grafton sequences. These three separate image sequences
were taken from a camera mounted at 2.5 metres above the groundplane with
a 45 degree angle on a traffic light pole on a busy pedestrianised shopping
street in Dublin city centre. All the sequences contain pedestrians from the
general public walking during their daily routine. These sequences were de-
liberately chosen to contain challenging segments — groups of people walking
in multiple directions or standing still and rapidly changing lighting condi-
tions. Altogether, the three sequences consist of 330 images, captured at a
frame rate of &~ 2Hz (&~ 3 minutes). The first two Grafton sequences exhibit
constant illumination conditions that minimise shadows cast and background
illumination changes. The illumination conditions in Grafton sequence 3, see
figure 12, are constantly changing. To illustrate the severity of these condi-
tions, the illumination changes between figure 12(c)-(e) occurs in just under
5 seconds. The Grafton sequence 3 has 3 differing lighting conditions in its 60
second duration.

Each of the five sequences were manually groundtruthed by positioning a

separate bounding box around each person in the image. In the evaluation
process, a person is defined as someone who has a section of their body above
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the waist, no matter how small, visible in the image. If all that can be seen
of a person in the image is an outstretched hand or a backpack then they
are counted as being present. However, if just a leg or foot is present, then
they are not counted. The only other constraint is that a groundtruth was
not created for people who are further than 8 metres from the camera. This
constraint is necessary in the Grafton sequences as pedestrians can be seen for
over a hundred metres. Placing bounding boxes around all of these people and
evaluating against them would introduce significant of noise into the evaluation
process. The distance of 8 metres is chosen as the cutoff point as the proposed
system removes all 3d points greater than this distance from the camera as the
disparity map quality degrades rapidly after this point. In effect, the values
in table 1 are the precision and recall values for people within an 8 metre
distance of the camera.

In table 1; the second column, Groundtruth, represents the number of peo-
ple present in the groundtruth data; Detected, represents the number of dis-
tinct regions the proposed algorithm detected in the sequence and; Correct,
represents the number of Detected regions that correctly overlapped with the
Groundtruth. A correctly segmented pedestrian is defined as a region that over-
laps a groundtruth area by 50% or more. It is acknowledge that this percentage
is relatively low, but this work is more interested in detecting pedestrians than
detecting the correct number of pixels corresponding to a person. As such, this
percentage threshold was chosen. In table 1, Precision and Recall values are
also given, where Precision is the percentage of Correct with respect to De-
tected, and Recall is the percentage of Correct with respect to Groundtruth.
Analysis of where in the image sequences the proposed technique failed to cor-
rectly detect pedestrians can be simplified by obtaining the centroids of the
bounding boxes of all the groundtruthed people that did not have a match in
the data, see figures 13(a),(b) and (c), where the centroids are depicted as red
dots. In these figures, these points are overlaid onto a sequence image where
there is no foreground activity to provide a visual cue to “problem” areas in
the image sequences. The results of each test sequence will now be discussed.

The robustness of the proposed technique to cope with two people in close
proximity whilst being able to avoid over-segmentation is illustrated in the
Overhead sequences of figures 6 and 7. The tracks in both sequences are co-
herent and are not lost, even on close interaction. The recall of this sequence
was the highest of all tested. A factor in this was the close proximity of the peo-
ple to the camera resulting, in general, in good disparity estimation. Analysis
of figure 13(a) reveals that all but two of the pedestrians missed are positioned
around the boundaries of the scene, at the points where people enter and exit
the scene. This is not surprising for two reasons; (1) the disparity is less likely
to be well formed around the edges of the image and; (2) when a person enters
the scene, the first portion of their body that enters the scene is likely to be a
hand or their lower torso, followed shortly by their head and shoulders. There-
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fore, when entering and exiting the scene the regions observed by the camera
are lower to the ground and clustering of regions with the golden ratio will
result in a lower absolute value of §, which controls the maximum clustering
distance in the pedestrian detection module. This means that large foreground
regions will not be created until the shoulders and head enter the scene, and
may result in the region being removed by the pedestrian detection module’s
post-processing steps.

Figures 8 and 9 illustrate some issues with the proposed tracking technique.
As the two people detected in figure 8(a) approach the camera, they squeeze
together and merge as one in figure 8(b) for 5 frames and one of the tracks
is lost at this point. The techniques does not have any explicit full-occlusion
handling, so the track of a person is lost in figure 8(e) and a new one is started
for the same person 4 frames later when they emerge from behind a pillar.

In figure 9, a track is lost again due to a large, but not full occlusion. In figure
9(c), the person on the right (surrounded by a pink bounding box) walks
away from the camera, but in figure 9(d), the left hand side of their body
is fully occluded. This artificially forces their centre of gravity to the right
fooling the system into believing the person to be turning left. The track is
then lost in the next frame as this manoeuvre is considered impossible by the
tracking system. Whilst the person interactions in this Corridor sequence are
not very challenging, the sequence is interesting in terms of the distance at
which these occur (greater than that of any of the other sequences) as well
as the lighting conditions. The right hand of the scene is very bright whilst
the left is much darker. Therefore, if people wearing brightly coloured clothes
are on the right there is little texture information and vice versa on the left.
This lack of texture has a degrading affect on the quality of the disparity
and the pedestrian detection post-processing, so 3D regions in these areas are
clustered less effectively and are more likely to be removed in post-processing.
These issues are not unique to the proposed technique as other techniques
that rely on disparity, foreground segmentation or edge gradients would be
similarly affected. People on the stairs tend to be missed as the regions here
are closer to the groundplane and will therefore, as in the Qverhead sequences,
be removed by the pedestrian detection module’s post-processing steps. The
missed groundtruth pedestrians depicted in figure 13(b) confirms this. Other
missed groundtruths tend to congregate around the 8 metre mark as expected.

Finally, the Grafton sequences depicted in figures 10-12 illustrate the robust-
ness of the detection and tracking techniques when subjected to unconstrained
crowded conditions. They all depict multiple pedestrians travelling in various
directions being tracked robustly. In these sequences, up to 13 people are suc-
cessfully tracked concurrently. For example, in figures 11(e)-(g) a pedestrian
(surrounded by a yellow bounding box) makes a u-turn in the sequence and
is successfully tracked. A bad track does occur on the right between frames
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(d) and (e), when one pedestrian (surrounded by a grey bounding box) leaves
the scene in (e) and another person enters the scene at similar location in the
same frame. Figure 12 demonstrates the same issues that were present in the
Corridor sequences, whereby although shadows do not cause a problem to
system precision (notice how the precision in table 1 remains stable regardless
of the lighting conditions), the recall is affected by the strong shadows caused
by buildings. These shadows result in a lack of texture, and therefore cause
tracks that, up to that point, have been stable to become lost. Figure 13(c)
backs up the observations made for other sequences, whereby the vast major-
ity of pedestrians missed tend to congregate either around the 8 metre mark
or at the scene boundaries.

5 Conclusions and Future Work

In this work a technique for the robust detection and tracking of humans
in crowded scenes was presented. The approach is sufficiently generic to be
applicable to many different camera placement and orientation scenarios. It is
acknowledged that there are some outstanding questions with the groundtruth
and evaluation process in this work, such as:

e When is a person exactly 8 metres from the camera? For 2D evaluation,
an imaginary bounding line is drawn across the groundplane based on mea-
surements taken from the scene, but this is not ideal.

e How accurate are the 3D statistics obtained from each pedestrian, such as
height, velocity and 3D position?

e When is a person “in the scene”? The evaluation process was implemented
on the right camera image. Due to the offset of the left stereo image, people
to the far right of the right image who are groundtruthed may not appear
at in the left image.

e How accurate is the system for a maximum distance of 5,6,7 or 8 metres?
Does the system’s performance degrade gradually or is there a threshold
distance after which there a large drop off in performance?

To help answer some of these questions, in future work it is planned to
groundtruth the system against a 3D Vicon infrared motion analysis system
[33]. In this work, objects other than pedestrians are not detected, such as
push prams, buggies or bicycles. In fact, the system removes all points under
0.9 meters in height above the groundplane. Varying this feature should be
investigated to determine the ideal threshold for a given application scenario,
in order to detect different kinds of pedestrians. Future work may also include
the fusion of more than one technique for pedestrian detection and track-
ing, based on estimating the distance of the pedestrian from the camera and
switching to another approach, such as appearance-based tracking [6,7], when
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appropriate. In addition, the robustness of the technique should be evaluated
against a higher image capture frame rate. Using this higher frame rate would
also allow the introduction of a fourth pedestrian state, whereby a pedestrian
can be standing, accelerating, walking or running.

Finally, techniques to reduce the computational complexity of the proposed
algorithms should be investigated. In our experiments, the proposed system
was implemented in un-optimised C++, designed in a highly object-oriented
framework, and run on a 2GHz laptop. In general, the overall processing time
for each frame varies — the more pedestrians within the frame and the more
foreground disparity points need to be clustered. This leads to longer pro-
cessing times. On average the processing of a single 640 x 480 pixel frame
takes between 10-20 seconds. Obviously this is far from real-time processing.
However, throughout the system development, the algorithmic design took
precedence over complexity, which was rarely addressed. Apart from optimis-
ing code, a number of research paths exist that would maintain the main
algorithmic features, but decrease complexity.
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A  Appendix

The height above the groundplane can be used to define the proportions of a
human body by applying the golden ratio ®, (® = /5% 0.5 4+ 0.5 ~ 1.618)
[27]. Figure A.1(a) shows how a body is segmented using ®. Let |aj| be the
Euclidean distance between the horizontal lines a and j. Therefore, |aj| is
the height of a human body. Using ® and |aj| various other points on the

human body can be defined. In figures A.1(a) and (b); |ai| = @, lah| =

@...\am = @ [27] and |mn| is equivalent to |ae|. Similarly |lo| = |ag| and
lkp| = |ah|. Distances of interest are outlined in table A.1. Various parameters

and employed notation for pedestrian detection and tracking are collected in
tables A.2 and A.3 respectively.
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Table A.1

Biometric distances overview.

Distance | Meaning
|aj] the height of the human body
lac| the distance from the head to the forehead
lad| the distance from the head to the eyes
|mn| the width of the head
|af]| the distance from the head to the base of the skull
lo] the width of the shoulders
|ah| the distance from the head to the navel and the elbows
Table A.2
Pedestrian detection symbols overview.
Symbol | Meaning
P the golden ratio ® = /5 % 0.5 + 0.5 ~ 1.618
) controls the rate of growth in the clustering process
l the 2D line that passes through centre of the two region’d best fit ellipses
0% the maximum Euclidean distance between two region ellipse points on [
T€Gcx the central axes of the region, which is the 3D line that is parallel to the 3D
groundplane normal and runs through the average 3D point in the region
di? the Euclidean distance, from regl, and reg?,
2.,
' (a) «imee e (b)
Fig. A.1. Golden ratio; (a) Vertical; (b) Horizontal.
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Table A.3

Pedestrian tracking symbols overview.

Symbol | Meaning

G the weighted bipartite graph G = (V, E)

E the weighted bipartite graph G’s edges, each edge is a match from
a pedestrian x to a track y

E a subset of the weighted bipartite graph G’s edges

Exy ey € I and possibly an element of E, it is a match from a pedes-
trian z to a track y

Wey, the weighting associated with ez,

P pedestrian number x in frame i

pidi the position of the centre of mass of a detected pedestrian’s 3D head
region orthographically projected onto the groundplane in frame ¢

pgmi the maximum height above the groundplane of the pedestrian in
frame ¢

pg“'”i the minimum height above the groundplane of the pedestrian in
frame

ty track number ¥ in frame 7 — 1

t;i_l the set of HSV colour values of all foreground points belonging to
the pedestrian in frame ¢ — 1

tidFl the position of the centre of mass of a tracked pedestrian’s 3D head
region orthographically projected onto the groundplane in frame
i—1

tym‘“i_l the maximum height above the groundplane of the pedestrian in
frame ¢ — 1

t;”i”Fl the minimum height above the groundplane of the pedestrian in
frame ¢ — 1

th/Fl the set of HSV colour values of all foreground points belonging to
the pedestrian in frame ¢ — 1

tZFI the number of frames for which the track has existed

tZFI the velocity of the track in frame 7 — 1

tidi the extrapolated position of the track in frame i

t;Fl the track state, which is either walking, St*“, accelerating, St®, or
standing, St°

Edist FEuclidean distance

tdt_, the time difference between frames ¢ and 7 — 1
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