36,740 research outputs found

    The Whole World in Your Hand: Active and Interactive Segmentation

    Get PDF
    Object segmentation is a fundamental problem in computer vision and a powerful resource for development. This paper presents three embodied approaches to the visual segmentation of objects. Each approach to segmentation is aided by the presence of a hand or arm in the proximity of the object to be segmented. The first approach is suitable for a robotic system, where the robot can use its arm to evoke object motion. The second method operates on a wearable system, viewing the world from a human's perspective, with instrumentation to help detect and segment objects that are held in the wearer's hand. The third method operates when observing a human teacher, locating periodic motion (finger/arm/object waving or tapping) and using it as a seed for segmentation. We show that object segmentation can serve as a key resource for development by demonstrating methods that exploit high-quality object segmentations to develop both low-level vision capabilities (specialized feature detectors) and high-level vision capabilities (object recognition and localization)

    Learning Adaptive Discriminative Correlation Filters via Temporal Consistency Preserving Spatial Feature Selection for Robust Visual Tracking

    Get PDF
    With efficient appearance learning models, Discriminative Correlation Filter (DCF) has been proven to be very successful in recent video object tracking benchmarks and competitions. However, the existing DCF paradigm suffers from two major issues, i.e., spatial boundary effect and temporal filter degradation. To mitigate these challenges, we propose a new DCF-based tracking method. The key innovations of the proposed method include adaptive spatial feature selection and temporal consistent constraints, with which the new tracker enables joint spatial-temporal filter learning in a lower dimensional discriminative manifold. More specifically, we apply structured spatial sparsity constraints to multi-channel filers. Consequently, the process of learning spatial filters can be approximated by the lasso regularisation. To encourage temporal consistency, the filter model is restricted to lie around its historical value and updated locally to preserve the global structure in the manifold. Last, a unified optimisation framework is proposed to jointly select temporal consistency preserving spatial features and learn discriminative filters with the augmented Lagrangian method. Qualitative and quantitative evaluations have been conducted on a number of well-known benchmarking datasets such as OTB2013, OTB50, OTB100, Temple-Colour, UAV123 and VOT2018. The experimental results demonstrate the superiority of the proposed method over the state-of-the-art approaches

    On Signatures of Twisted Magnetic Flux Tube Emergence

    Full text link
    Recent studies of NOAA active region 10953, by Okamoto {\it et al.} ({\it Astrophys. J. Lett.} {\bf 673}, 215, 2008; {\it Astrophys. J.} {\bf 697}, 913, 2009), have interpreted photospheric observations of changing widths of the polarities and reversal of the horizontal magnetic field component as signatures of the emergence of a twisted flux tube within the active region and along its internal polarity inversion line (PIL). A filament is observed along the PIL and the active region is assumed to have an arcade structure. To investigate this scenario, MacTaggart and Hood ({\it Astrophys. J. Lett.} {\bf 716}, 219, 2010) constructed a dynamic flux emergence model of a twisted cylinder emerging into an overlying arcade. The photospheric signatures observed by Okamoto {\it et al.} (2008, 2009) are present in the model although their underlying physical mechanisms differ. The model also produces two additional signatures that can be verified by the observations. The first is an increase in the unsigned magnetic flux in the photosphere at either side of the PIL. The second is the behaviour of characteristic photospheric flow profiles associated with twisted flux tube emergence. We look for these two signatures in AR 10953 and find negative results for the emergence of a twisted flux tube along the PIL. Instead, we interpret the photospheric behaviour along the PIL to be indicative of photospheric magnetic cancellation driven by flows from the dominant sunspot. Although we argue against flux emergence within this particular region, the work demonstrates the important relationship between theory and observations for the successful discovery and interpretation of signatures of flux emergence.Comment: 14 pages, 8 figures, accepted for publication in Solar Physic

    Stopping and Radial Flow in Central 58Ni + 58Ni Collisions between 1 and 2 AGeV

    Full text link
    The production of charged pions, protons and deuterons has been studied in central collisions of 58Ni on 58Ni at incident beam energies of 1.06, 1.45 and 1.93 AGeV. The dependence of transverse-momentum and rapidity spectra on the beam energy and on the centrality of the collison is presented. It is shown that the scaling of the mean rapidity shift of protons established for AGS and SPS energies is valid down to 1 AGeV. The degree of nuclear stopping is discussed; the IQMD transport model reproduces the measured proton rapidity spectra for the most central events reasonably well, but does not show any sensitivity between the soft and the hard equation of state (EoS). A radial flow analysis, using the midrapidity transverse-momentum spectra, delivers freeze-out temperatures T and radial flow velocities beta_r which increase with beam energy up to 2 AGeV; in comparison to existing data of Au on Au over a large range of energies only beta_r shows a system size dependence
    • …
    corecore