78 research outputs found

    Hierarchical robust fuzzy sliding mode control for a class of simo under-actuated systems with mismatched uncertainties

    Get PDF
    The development of the algorithms for single input multi output (SIMO) under-actuated systems with mismatched uncertainties is important. Hierarchical sliding-mode controller (HSMC) has been successfully employed to control SIMO under-actuated systems with mismatched uncertainties in a hierarchical manner with the use of sliding mode control. However, in such a control scheme, the chattering phenomenon is its main disadvantage. To overcome the above disadvantage, in this paper, a new compound control scheme is proposed for SIMO under-actuated based on HSMC and fuzzy logic control (FLC). By using the HSMC approach, a sliding control law is derived so as to guarantee the stability and robustness under various environments. The FLC as the second controller completely removes the chattering signal caused by the sign function in the sliding control law. The results are verified through theoretical proof and simulation software of MATLAB through two systems Pendubot and series double inverted pendulum

    The 1st International Conference on Computational Engineering and Intelligent Systems

    Get PDF
    Computational engineering, artificial intelligence and smart systems constitute a hot multidisciplinary topic contrasting computer science, engineering and applied mathematics that created a variety of fascinating intelligent systems. Computational engineering encloses fundamental engineering and science blended with the advanced knowledge of mathematics, algorithms and computer languages. It is concerned with the modeling and simulation of complex systems and data processing methods. Computing and artificial intelligence lead to smart systems that are advanced machines designed to fulfill certain specifications. This proceedings book is a collection of papers presented at the first International Conference on Computational Engineering and Intelligent Systems (ICCEIS2021), held online in the period December 10-12, 2021. The collection offers a wide scope of engineering topics, including smart grids, intelligent control, artificial intelligence, optimization, microelectronics and telecommunication systems. The contributions included in this book are of high quality, present details concerning the topics in a succinct way, and can be used as excellent reference and support for readers regarding the field of computational engineering, artificial intelligence and smart system

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Intelligent Control and Path Planning of Multiple Mobile Robots Using Hybrid Ai Techniques

    Get PDF
    This work reports the problem of intelligent control and path planning of multiple mobile robots. Soft computing methods, based on three main approaches i.e. 1) Bacterial Foraging Optimization Algorithm, 2) Radial Basis Function Network and 3) Bees Algorithm are presented. Initially, Bacterial foraging Optimization Algorithm (BFOA) with constant step size is analyzed for the navigation of mobile robots. Then the step size has been made adaptive to develop an Adaptive Bacterial Foraging Optimization (ABFO) controller. Further, another controller using radial basis function neural network has been developed for the mobile robot navigation. Number of training patterns are intended to train the RBFN controller for different conditions arises during the navigation. Moreover, Bees Algorithm has been used for the path planning of the mobile robots in unknown environments. A new fitness function has been used to perform the essential navigational tasks effectively and efficiently. In addition to the selected standalone approaches, hybrid models are also proposed to improve the ability of independent navigation. Five hybrid models have been presented and analyzed for navigation of one, two and four mobile robots in various scenarios. Comparisons have been made for the distance travelled and time taken by the robots in simulation and real time. Further, all the proposed approaches are found capable of solving the basic issues of path planning for mobile robots while doing navigation. The controllers have been designed, developed and analyzed for various situations analogous to possible applications of the robots in indoor environments. Computer simulations are presented for all cases with single and multiple mobile robots in different environments to show the effectiveness of the proposed controllers. Furthermore, various exercises have been performed, analyzed and compared in physical environments to exhibit the effectiveness of the developed controllers

    Advances in Spacecraft Attitude Control

    Get PDF
    Spacecraft attitude maneuvers comply with Euler's moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research. This book is meant for basic scientifically inclined readers, and commences with a chapter on the basics of spaceflight and leverages this remediation to reveal very advanced topics to new spaceflight enthusiasts. The topics learned from reading this text will prepare students and faculties to investigate interesting spaceflight problems in an era where cube satellites have made such investigations attainable by even small universities. It is the fondest hope of the editor and authors that readers enjoy this book

    Advances in Spacecraft Attitude Control

    Get PDF
    Spacecraft attitude maneuvers comply with Euler's moment equations, a set of three nonlinear, coupled differential equations. Nonlinearities complicate the mathematical treatment of the seemingly simple action of rotating, and these complications lead to a robust lineage of research. This book is meant for basic scientifically inclined readers, and commences with a chapter on the basics of spaceflight and leverages this remediation to reveal very advanced topics to new spaceflight enthusiasts. The topics learned from reading this text will prepare students and faculties to investigate interesting spaceflight problems in an era where cube satellites have made such investigations attainable by even small universities. It is the fondest hope of the editor and authors that readers enjoy this book

    Swarm Robotics

    Get PDF
    Collectively working robot teams can solve a problem more efficiently than a single robot, while also providing robustness and flexibility to the group. Swarm robotics model is a key component of a cooperative algorithm that controls the behaviors and interactions of all individuals. The robots in the swarm should have some basic functions, such as sensing, communicating, and monitoring, and satisfy the following properties

    Analysis and Development of Computational Intelligence based Navigational Controllers for Multiple Mobile Robots

    Get PDF
    Navigational path planning problems of the mobile robots have received considerable attention over the past few decades. The navigation problem of mobile robots are consisting of following three aspects i.e. locomotion, path planning and map building. Based on these three aspects path planning algorithm for a mobile robot is formulated, which is capable of finding an optimal collision free path from the start point to the target point in a given environment. The main objective of the dissertation is to investigate the advanced methodologies for both single and multiple mobile robots navigation in highly cluttered environments using computational intelligence approach. Firstly, three different standalone computational intelligence approaches based on the Adaptive Neuro-Fuzzy Inference System (ANFIS), Cuckoo Search (CS) algorithm and Invasive Weed Optimization (IWO) are presented to address the problem of path planning in unknown environments. Next two different hybrid approaches are developed using CS-ANFIS and IWO-ANFIS to solve the mobile robot navigation problems. The performance of each intelligent navigational controller is demonstrated through simulation results using MATLAB. Experimental results are conducted in the laboratory, using real mobile robots to validate the versatility and effectiveness of the proposed navigation techniques. Comparison studies show, that there are good agreement between them. During the analysis of results, it is noticed that CS-ANFIS and IWO-ANFIS hybrid navigational controllers perform better compared to other discussed navigational controllers. The results obtained from the proposed navigation techniques are validated by comparison with the results from other intelligent techniques such as Fuzzy logic, Neural Network, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and other hybrid algorithms. By investigating the results, finally it is concluded that the proposed navigational methodologies are efficient and robust in the sense, that they can be effectively implemented to solve the path optimization problems of mobile robot in any complex environment

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research
    corecore