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Synopsis 

       

      Navigational path planning problems of the mobile robots have received considerable 

attention over the past few decades. The navigation problem of mobile robots are 

consisting of following three aspects i.e. locomotion, path planning and map building. 

Based on these three aspects path planning algorithm for a mobile robot is formulated, 

which is capable of finding an optimal collision free path from the start point to the target 

point in a given environment. 

The main objective of the dissertation is to investigate the advanced methodologies for 

both single and multiple mobile robots navigation in highly cluttered environments using 

computational intelligence approach.  

Firstly, three different standalone computational intelligence approaches based on the 

Adaptive Neuro-Fuzzy Inference System (ANFIS), Cuckoo Search (CS) algorithm and 

Invasive Weed Optimization (IWO) are presented to address the problem of path planning 

in unknown environments. Next two different hybrid approaches are developed using CS-

ANFIS and IWO-ANFIS to solve the mobile robot navigation problems. The performance 

of each intelligent navigational controller is demonstrated through simulation results 

using MATLAB. Experimental results are conducted in the laboratory, using real mobile 

robots to validate the versatility and effectiveness of the proposed navigation techniques. 

Comparison studies show, that there are good agreement between them. During the 

analysis of results, it is noticed that CS-ANFIS and IWO-ANFIS hybrid navigational 

controllers perform better compared to other discussed navigational controllers. The 

results obtained from the proposed navigation techniques are validated by comparison 

with the results from other intelligent techniques such as Fuzzy logic, Neural Network, 

Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization 

(ACO) and other hybrid algorithms. By investigating the results, finally it is concluded 

that the proposed navigational methodologies are efficient and robust in the sense, that 

they can be effectively implemented to solve the path optimization problems of mobile 

robot in any complex environment. 

Keywords: Mobile robot, Navigation, ANFIS, Cuckoo Search, Invasive weed 

Optimization. 
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1.   INTRODUCTION                                                       

 

This chapter presents the motivation and overview of the research work carried out in the 

dissertation. The back ground and motivation of the research area have been depicted in 

the first part. Second part of the chapter contains the aim and objectives of the research 

work. The novelty of the research work has been presented in the third section. Finally, 

the last part of the chapter gives an outline of each chapter of the dissertation for the 

current research. 

1.1   Background and Motivation 

Nowadays robotic systems have the capability to behave autonomously and to improve 

the system performance by interacting with environments. Mobile robots are the kind of 

robots that are able to rove, sense, and respond in a given environment and are able to 

perform assignments and explore without human intervention. Path planning and control 

of a mobile robot in unrecognized environments are one of the most challenging task in 

the robotics field. The mobile robots have several applications in industrial environments, 

medical services, military reconnaissance, space exploration, cleaning, and agricultural 

sectors. As the robotic technology advances very fast, it has been envisioned that in 

future, the mobile robotic system will infiltrate into each aspect of the human lives and 

have an increasing number of real time implementations. So, the mobile robots must be 

able to perform various tasks autonomously without collision with obstacles and other 

robots.  

The autonomous navigation problem of mobile robot is consisting of the following 

additives: 

 Localization 

 Path planning  

 Map building  

Firstly, as the environment is partly known or totally unknown to the mobile robot and an 

adequate representation of the environment must be framed (Map building). Secondly, the 
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representation of the environment obtained from imperfect sensors with vulnerabilities 

must adapt to inaccurate localization. At last, the autonomous mobile robot must be able 

to simultaneously plan its motion based on the partly known environment information 

while extracting environmental information online. Based on these above three 

fundamental aspects, the path planning algorithm for a mobile robot is formulated, which 

is capable of finding an optimal collision free path from the source point to the target 

point in a given environment. The environment can be classified as known or structured 

environment, the semi-structured environment, and unknown environment. The different 

aspects of the mobile robot motion control scheme are shown in Figure1.1. 

 

 

The path planning or navigation problem of the mobile robot has been extensively studied 

by many researchers over the past two decades. The main difficulty of the path planning 

problem depends on whether the environment and obstacle positions are known in 

advance or not. The path planner has to search optimal route if the environment and the 

position of the obstacles are known in advance. These types of path planning methods are 

known as global or off line path planning. These methods are computationally more 

expensive and rarely implemented for the real time condition. If the environment is 

partially known or completely unknown, the estimation has to be determined on-line 
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  Figure 1.1 A block scheme of the navigation system. 
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under the real time condition. These types of path planner are known as local or reactive 

path planner. 

     Recently, there have been many interesting research works proposed by the 

researchers in the area of the robot path planning. But the presence of intricacy and 

uncertainty in the robot path planning problems, traditional path planning algorithms such 

as Voronoi diagram, Visibility graph, Grid, Cell decomposition algorithm, Road map 

approaches, and Artificial Potential Field (APF) method are not feasible for online 

applications. But the above indicated classical methods suffer from many draw backs, 

such as high cost of computation and may trap in the local minima situation, which make 

them inefficient in the method. The potential field method can be implemented effectively 

and can provide acceptable results for robot path planning. But the main problem is that 

the robot is trapped due to local minima, or when there is no passage between closely 

spaced obstacles.  

    Therefore many computational intelligence techniques such as Fuzzy logic, Artificial 

neural network, Evolutionary algorithms, and Swarm intelligence based techniques and 

hybrid approaches have been widely adopted in mobile robot navigation problems.  

   Despite the relative success of the above discussed methodologies, there is still stringent 

requirement of developing more advanced and effective navigation strategies in order to 

achieve the robust navigation in unknown environment with uncertainties by solving the 

three additives ( Localization, Path planning, Map building) simultaneously.  

1.2   Aim and Objectives of the Research  

This research work aims at the investigating of more advanced and effective path 

planning algorithms for single and multiple mobile robots using computational 

intelligence techniques. In this dissertation, Adaptive Neuro-Fuzzy Inference System 

(ANFIS), Cuckoo Search (CS) algorithm, Invasive Weed Optimization (IWO) algorithm, 

and hybridization of CS-ANFIS and IWO-ANFIS algorithms have been implemented to 

solve the navigational problem of mobile robots.  

The main objectives of the research work presented in the dissertation are as follows: 

 To carry out kinematic analysis of a differential wheeled mobile robot. 
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 To develop an adaptive neuro-fuzzy inference system (ANFIS) based navigational 

controller for mobile robots. 

 To build a navigational path planner based on the Cuckoo Search (CS) algorithm.  

 To formulate a navigational controller based on the Invasive Weed Optimization 

(IWO) algorithm. 

 To develop a hybrid navigational controller based on the CS-ANFIS approach for 

multiple mobile robots navigation. 

 To develop a hybrid motion planner based on the IWO-ANFIS approach for 

multiple mobile robots navigation. 

 Simulation and experimental verifications of the above discussed methods are to 

be carried out. 

1.3   Novelty of the Research Work 

     In the recent decades, various computational intelligence methods have been deployed 

by many researchers to solve the path optimization problems for mobile robots.  

In the current research work, a systematic effort is given to design and development of 

intelligent navigational controllers using Adaptive Neuro-Fuzzy Inference System 

(ANFIS), Cuckoo Search (CS), Invasive Weed Optimization (IWO), and hybridization of 

CS-ANFIS and IWO-ANFIS for solving the path planning problems of single and 

multiple mobile robots. But to the author’s knowledge CS, IWO, CS-ANFIS and IWO-

ANFIS algorithms are not yet implemented in the field of mobile robots navigation.    

Further the developed intelligent path planners have the capability to solve the 

navigational tasks for single and multiple mobile robots.  

1.4   Outline of the Thesis 

Following this current chapter, the remainder of the dissertation is organized as follows: 

 Chapter-2 presents the literature survey on kinematic models of differential 

wheeled robots and navigational methodologies used for mobile robots. 

 Chapter-3 discusses the modeling and analysis of wheeled robot kinematics. 

 The first part of the Chapter-4 presents the implementation of Adaptive Neuro-

Fuzzy Inference System (ANFIS) and the second part deals with Multiple 
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Adaptive Neuro-Fuzzy Inference System (MANFIS) for navigation of mobile 

robots in an unknown environment. 

 Chapter-5 describes the Cuckoo Search (CS) algorithm for single mobile robot 

navigation in unknown environments. 

 Chapter-6 presents the Invasive Weed Optimization (IWO) algorithm for single 

mobile robot navigation in unknown environments. 

 Chapter-7 discusses the CS-ANFIS hybrid algorithm for multiple mobile robots 

navigation. 

 Chapter-8 presents the IWO-ANFIS hybrid methodology for multiple mobile 

robots navigation in unknown environments. 

 Chapter-9 provides a comprehensive review of results obtained from all the 

discussed techniques adopted in the current research work.  

 Chapter-10 addresses the conclusion drawn from the research work carried out in 

the dissertation and gives the possible extension directions in the same domain.  
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2.   LITERATURE REVIEW 

 

The current chapter highlights the work related to development of path planning and 

control strategies for mobile robot navigation in various environments. The main 

objective is to survey the developments made by researchers during the past few decades 

on the mobile robot navigation. This chapter provides ample confidence to find an 

appropriate literature gap or methodological weaknesses present in the existing study 

area to solve the research problem. 

2.1   Introduction 

The path planning control system for an autonomous mobile robot must perform many 

information processing tasks in real time condition. A considerable amount of research 

has been carried out on the mobile robot path planning (RPP). In the general concept, the 

path planning means to produce collision free paths from the start point to the target point 

in a given work space. Several conventional [1] and computational intelligence 

techniques (CI) or reactive approaches [2-4] have been studied to represent environments 

and plan the routes for the mobile robots. Due to the NP-hardness (Non-deterministic 

polynomial time) of the path planning problem, computational intelligence techniques 

have outperformed the conventional approaches and have received wide popularity. The 

collision free paths are constructed by the path planning algorithms, and robot moves 

along the constructed paths to reach the target. The path planning system for the mobile 

robots is decomposed into a series of functional units, as shown in Figure 2.1 by 

continuous vertical slices. After deciding the computational requirements for a robot, the 

path planning system is decomposed into a series of horizontal functional units to achieve 

the desire task behaviour required for the robot. This is illustrated in Figure 2.2. After, 

surveying many research articles in the robot path planning field, a number of existing 

research works for each technique is identified and categorized.  
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2.2   Kinematic Analysis of Wheeled Mobile Robots 

2.2.1  Wheel Locomotion 

A mobile robot can have several locomotion mechanisms [5-8] such as normal walking, 

sliding, running, jumping etc. These mechanisms are mostly biologically inspired from 

human beings, snakes, four legged animals, animals like kangaroo respectively. The 

reason for choosing biological activities as locomotion mechanisms is that those activities 

are very much successful in several environments. But artificial making of biological 

mechanisms suffers from various difficulties such as mechanical complexity, use of 

biological energy storage systems used by animals and difficulty in mathematical 

analysis. Due to these difficulties, the simplest biological system with less number of 

articulated legs are widely used. In legged locomotion, there is involvement of more 

mechanical complexity, as there are more degrees of freedom. To avoid this difficulty, 

active powered wheels are preferred. Use of active wheels makes the analysis simple, and 

it is suitable for flat ground types. Literature reveals about many well-known algorithms 

those are proposed [9-10] in the past for controlling the motion of the mobile robots. 

Considering the mobile robot as a planar body, the relation between the chassis of the 

robot and the wheels that are attached to it can be found out in [11]. The wheels of a 

mobile robot are categorized in five sections considering the geometrical constraints in 

moving condition of the wheel. After classification of the wheels, kinematic and dynamic 

models can be proposed [12]. 

    There is absence of vertical axis of rotation for steering in the fixed standard wheels. 

The angle to chassis in this type of wheel is fixed, and there is flexibility for back and 

forth movement along the plane of the wheel and it can rotate around the contact point 

with the ground. Maneuverability, stability, and controllability are the three fundamental 

characteristics those are required for a mobile robot. To attain static stability, at least three 

wheels need to be attached to the mobile robot. Attachment of three independent standard 

steered wheels makes the mobile robot omnidirectional [13]. Standard steered wheels are 

preferred over other wheels because of their simplicity in design and reliability. Cariou et 

al. [14] have discussed the slipping phenomena in both angular and lateral terms and 

designed an automated path for navigation of a four-wheeled mobile robot. Marcovitz and 

Kelly [15] have derived a method to represent slip in all degrees of freedom and 

implemented them on wheels with skid steering mechanism. 
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      The mobility limitations of the standard steered wheels have led to the design of 

caster wheels making them suitable for use in hospitals, offices, homes, etc. In [16], the 

kinematics has been discussed for a standard caster wheel having double-wheel-type 

active caster. Chung et al. [17] have focused on modeling of holonomic and 

omnidirectional robots having wheels that are offset steerable. A dynamic model has been 

proposed introducing contact stability condition for power caster wheels in [18]. Kim and 

Lee [19] have proposed a condition of isotropy based on the kinematic model of a mobile 

robot equipped with three active caster wheels those are able to move in all directions. 

       In a swedish wheel, the rollers are mounted on the perimeter. Due to the presence of 

the rollers, the robot can move in any direction and turn anywhere, i.e. the presence of 

rollers make the robot omnidirectional. Indiveri [20] has analyzed the kinematic model of 

a mobile robot using n number of Swedish wheels. A path control law has been discussed 

in [21] for a Swedish wheel equipped mobile robot. Doroftei et al. [22] have designed a 

robot with Macanum wheel. In their robot, they used four Swedish wheels to avoid any 

use of steering system for the robot. 

      The use of spherical wheels offers greater stability and mobility to the mobile robots. 

The controlling mechanism and planning of motion for a spherical wheel is much more 

complex.  

In [23], a new spherical wheel has been introduced to make the robot omnidirectional. 

This wheel is able to climb the stairs easily. A combination of spherical and Omni wheels 

are discussed in [24]. The operation of this type of wheel is based on a simple spherical 

wheel driven by two omni-wheels at the perpendicular position. Two different algorithms 

have been proposed in [25] for “ball-plate problem” that deals with motion planning for a 

spherical mobile robot. One algorithm is based on Gauss-Bonet theorem achieving 

configuration through maneuvers of the spherical triangle, and another algorithm is based 

on standard kinematic model achieving reconfiguration through circular arcs and straight 

line segments. Lauwers et al. [26] have proposed a standard overall design of a robot 

equipped with spherical wheels that can move in any direction. 

      The use of a back stepping-like feedback mechanism for the tracking control of a 

differential drive robot has been proposed in [27]. In [28], a nonlinear feedback path 

controller has been proposed. Implementation of fuzzy logic for controlling the motion of 

mobile robots has been discussed in [29]. Menn et al. [30] have proposed a kinematic 

model using a genetic algorithm for motion control strategy. The use of a model-reference 
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adaptive motion controller is discussed in [31] and is implemented in a differential drive 

mobile robot. 

2.2.2  Motion Control Analysis for Differential Mobile Robot 

Over the past few years, the motion control of nonholonomic mobile robots has drawn 

attention of the researchers. Several algorithms have been proposed to solve the motion 

control problem. 

     In [32], a novel adaptive trajectory controller has been discussed for the nonholonomic 

mobile robot. Slusny et al. [33] have proposed an evolutionary algorithm with two motion 

control algorithms based on localization of mobile robot. Ali [34] has proposed a method 

for the development and implementation of a robotic platform. The testing of the semi-

autonomous platform helps for educational and research purposes. To interface various 

sensors and motor drivers to the ATMEL (AVR ATmega 32) microcontroller chip, a 

modular hardware design has been proposed. A known path following control law has 

been discussed in [35].  

2.3   Navigation Techniques used for Mobile Robots 

Since last few decades, the researchers have emphasized on various navigational 

techniques for control of mobile robots. The different navigational methods used for the 

mobile robots are summarized below. 

2.3.1   Classical Approaches  

Many classical methods are used by researchers to solve the path planning problem of a 

mobile robot. The reviews based on the classical methods are depicted below. 

2.3.1.1   Roadmap Approaches 

Path planning of mobile robots using roadmap approaches, such as the visibility graph, 

voronoi diagram, silhouette and the sub goal network, may have some disadvantages for a 

long path, sharp turns or collisions with obstacles. In these techniques, the robots may 

have unnecessary turn around crossing points which leads to longer paths and prevent 

smooth motion. The roadmap method is a class of topological maps representing the 

distinctly feasible space in environments. Review on various well known roadmap 

approaches are discussed below. 
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       The visibility graph builds the paths through connecting every pair of vertices of the 

obstacles by a straight line without navigating in the interior of the obstacles [36]. These 

set of routes are called as the roadmap. If a continuous route is found in the free space, the 

starting and the goal point is then joined to reach the final solution. There are more than 

one continuous paths found, Dijkstra's shortest path method [37] is often applied to search 

the best path. The generalized voronoi diagram is well known mapping approach that 

provides maximum clearance between the obstacles [38-40]. The diagram is framed by 

the paths maintaining an equal distance between the two obstacles. This method provides 

a safe path, which avoid the obstacles as much as possible. Some researchers have 

attempted to improve the efficiency of the voronoi diagram and proposed some path 

planning methods that make-up the draw backs of the voronoi diagram such as sharp 

turns and long loop [41]. A hybrid algorithm consisting of the voronoi diagram, visibility 

graph, and potential field method has been suggested by Masehian and Amin-Naseri [42]. 

They observed that the hybrid algorithm is not producing smooth path, and also the 

architecture of the algorithm is too complex. Yang and Hong [43] have proposed a new 

roadmap method for robot path planning using skeleton maps. They used crossing 

polygonal around crossing points to improve the efficiency of the skeleton maps. Wein et 

al. [44] have introduced a new type of hybrid diagram called the VV diagram (the 

visibility-voronoi diagram), which provides the shortest routes with preferred clearance 

value for a mobile robot in a planer environment. Figures 2.3 and 2.4 have shown the path 

generated using visibility graph and voronoi diagram respectively. Another popular 

methodology using Probabilistic Roadmaps (PRMs) for solving motion planning 

problems has been addressed by Kavraki et al. [45]. The paths obtained from the 

proposed methodology are piecewise linear but far from the shortest possible path. 

Sanchez and Latombe [46] have introduced an improvement over PRM by providing a 

lazy-in-collision-detection technique. Canny [47] has developed a roadmap method called 

silhouette method to solve the basic motion planning problem of the robot. Generally it 

consists of generating the silhouette in the robot’s work space, and constructing the 

roadmap by linking these silhouette curves together. 
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         The silhouette and the connecting curves form the roadmap from the start 

configuration to the target configuration. Bhattacharyya et al. [48] have tried to make-up 

the drawbacks of the silhouette method for robot path planning. They used Dijkstra 

shortest algorithm for finding the route between the two given points out of the 

connecting graphs.  In the subgoal-network path planning method, subgoals act as key 

configurations expected to be useful for searching collision free routes. A network of 

subgoals are generated first and maintained by a global planer, and a simple local 

operator is adopted to reach among subgoals. These two stage path planning methods 

have been first introduced by Faverjon and Tournassound [49].   

2.3.1.2   Cell Decomposition Methods 

      The idea of dividing large learning space into smaller ones resulting in the simplicity 

of exploration has been discussed by many researchers [50]. Motion planning methods for 

the robot based on the cell decomposition algorithm [51] have been extensively studied so 

far. In this algorithm, the robot’s free space is decomposed into a set of simple cells, and 

the adjacency relations between the cells are generated. A collision free route has been 

constructed between the start configuration to the goal configuration of robot by 

searching the two free cells containing the start and the goal and then joining them with a 

sequence of connected free cells.  

Cell decomposition algorithm can be categorized into two classes: 

1. Exact cell decomposition 

2. Approximate cell decomposition (Quadtree decomposition) 

S 

G 

S 

G 

Figure 2.3 Visibility Graph [36]. Figure 2.4 Voronoi Diagram [36]. 
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Figure 2.6 Approximate Cell  

                 Decomposition [54].  

             

               

                                 

      In the exact cell decomposition method [52-53], the robot’s free space decomposes 

into trapezoidal and triangular cells shown in Figure 2.5. In the second step, a 

connectivity graph is generated between the adjacency relation cells and searches the 

graph (sequence of consecutive cells) for a path. Finally, the sequence of connectivity 

cells is converted into a free path for the robot. In the approximate cell decomposition 

method [54-55], robot’s free space decomposes into smaller rectangles shown in Figure 

2.6. This type of decomposition is known as “Quadtree”. At the resolution, the cells 

whose interiors lie completely in the free space are utilized to generate the connectivity 

graph. In the end, the search algorithm finds a collision free path for the robot. 

2.3.1.3   Artificial Potential Field Approach 

      Artificial Potential Field (APF) approach to the field of mobile robot navigation is 

first introduced by Khatib [56] around 1986. In this strategy, obstacles and targets are 

considered as charged surfaces and the net potential create a force on the robot. These 

forces pull the robot towards the goal while pushing away from the obstacles as shown in 

Figure 2.7. So, the robot follows the negative gradient to avoid the collision caused by the 

obstacles and reach the target points. The main drawbacks of the method are;  

a) Local minima may occur in locations rather than the goal point and moving the robot 

in the wrong direction. 

b) There may be situations, where it is difficult to determine the potential field due to the 

shape of obstacles. 

Figure 2.5 Exact Cell Decomposition [52]. 
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 Many researchers have applied potential field method for mobile robot path planning and 

tried to make-up the disadvantages raised by the method. The following highlighted 

literature on the potential field methods are drafted below.  

      Local navigation of a mobile robot in a telerobotics context using potential field 

approach has been studied by Garibotto and Masciangelo [57]. Kim and Khosala [58] 

have developed a new potential field strategy to the obstacle avoidance problem for a 

mobile robot in a known environment. They used harmonic functions to eliminate the 

local minimum problem in a cluttered environment. Mobile robot path planning in 

dynamic environments using potential field method has been discussed by Ge and Cui 

[59]. They framed a new potential function with respect to both relative position and 

velocity between the robot, obstacles and the target. Collision free path planning for 

mobile robots using an electrostatic potential field (EPF) method has been studied by 

Valavanis et al. [60]. The laws of electrostatic are used to derive the potential function 

and generate an approximately optimal route in a real time condition. Velocity controlling 

of a mobile robot based on the potential field method has been discussed by Huang [61]. 

The proposed method has utilized both position and velocity information of the robot, the 

obstacles, and the goal in order to track the moving goal, while avoiding the obstacles 

along the route. Path planning method for a mobile robot using improved potential field 

function has been presented by Shi and Zhao [62]. The proposed navigation strategy 

includes both improved attractive potential function and improved repulsive potential 

function and can guarantee the goal point is the global minimum point. Navigation of a 

mobile robot in the unknown environments using improved potential field approach has 

been studied by Sfeir et al. [63]. In this proposed method, a new form of potential 
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Figure 2.7(a-b) Example of Potential Field Control Approach for Mobile Robot Path   

Planning. 
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function has been introduced to reduce oscillations and avoid conflicts, when the goal is 

nearer to obstacles. A rotational force is also incorporated into the system for producing a 

smoother trajectory around the obstacles. Controlling the motion of multiple mobile 

robots using potential field method has been solved by Hui [64]. The developed control 

system for multiple mobile robots navigation based on the same principle is discussed in 

[63]. Pimenta et al. [65] have discussed the problem of mobile robot navigation using 

potential field method. They transformed the navigation problem into electrostatic 

problem and solved by the finite element methods. Pradhan et al. [66] have presented a 

potential field method to navigate the multiple mobile robots in unknown environments. 

The simulation results are presented using ROBPATH tool to show the performance of 

the proposed approach. Borenstein et al. [67] have presented a real time obstacle 

avoidance method for a mobile robot. The navigation method considers the dynamic 

behaviour of a mobile robot and solves the local minima situation. To solve the 

oscillation problems near the obstacles, Biswas and Kar [68] have developed a powerful 

navigation system for a mobile robot using potential field method. They compared the 

results between the traditional method and Levenberg-Marquardt algorithm. The results 

demonstrated that the Levenberg-Marquardt method improves the oscillations problem 

and generates the smooth trajectory for the robot.     

2.3.2   Computational Intelligence (CI) Approaches 

Knowledge based or computational intelligence techniques are widely used as alternatives 

to classical approaches to model the navigation system for mobile robots. In this section, 

some of them and their application with examples are discussed below.   

2.3.2.1   Fuzzy Inference Methods   

      The sensor-based navigation technique for a mobile robot using fuzzy controller has 

been discussed by Ishikawa [69]. In this technique, he used two functions, one function is 

used for tracing a planned path and the other is used to avoid stationary and moving 

obstacles. The effectiveness of the developed method has been discussed with simulation 

results. Li and Feng [70] have presented a fuzzy logic technique for robot path planning 

in uncertain environments. They designed a fuzzy controller whose inputs comprise of a 

heading angle and the separation distances between the obstacles. The outputs are the real 

wheel velocities of the robot. Fuzzy logic techniques for mobile robot obstacle avoidance 

have been discussed by Reignier [71]. In this article, he has fuzzy logic controller to solve 
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various reactive behaviours for the mobile robot. Wu [72] has discussed the navigation of 

a mobile robot in the 2-dimensional unknown environment using a sensor based fuzzy 

algorithm. He used an optimal learning algorithm in the fuzzy system to minimize total 

covering distance of the robot. Beom and Cho [73] have introduced a sensor-based path 

planning strategy for a mobile robot in unknown environments using fuzzy logic and 

reinforcement learning. The viability of the developed algorithm has been confirmed by 

the simulation results. Intelligent collision avoidance by the automated guided vehicle 

(AGV) using a fuzzy logic approach has been described by Lin and Wang [74]. In this 

paper, they have mainly emphasized on the sensor modeling and trap recovering 

situations. Maaref and Barret [75] have presented a new sensor-based fuzzy navigation 

method of a mobile robot in an indoor environment. The proposed navigation strategy 

consolidates two sorts of obstacle avoidance behaivour, one for the concave types and 

other is for the convex. A new navigation strategy for mobile robots in challenging 

environments, using a fuzzy logic method has been discussed by Seraji and Howard [76]. 

They introduced a new traverse-terrain behavior that uses the regional traversability index 

to control the robot to the safest and the most traversable terrain. Navigation for a non-

holonomic mobile robot using fuzzy logic approach has been discussed by Abdessemed et 

al. [77]. They used an evolutionary algorithm to extract the optimized IF-THEN rules and 

a new fuzzy image concept is presented to avoid any collision with surrounding 

environment. Navigation of multiple mobile robots using fuzzy logic controller has been 

described by Parhi [78]. In this model (Figure 2.8), the fuzzy rules are embedded in the 

robot controller in order to avoid obstacles in cluttered environments. A set of collision 

prevention rules are designed using Petri-Net model to avoid collision among one 

another.  

 

 
Figure 2.8   Fuzzy logic approach for Mobile robot navigation proposed by Parhi [78]. 
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A behaviour based robotic control using fuzzy discrete event system (FDES) has been 

employed by Huq et al. [79]. The developed method exploits the features of fuzzy logic 

and discrete event system to frame the activity behaviour using fuzzy vector. Wang and 

Liu [80] have discussed fuzzy logic based real time robot navigation in unknown 

environments with dead end conditions. Navigation control of robotic vehicle based on 

the fuzzy behaviour system using multi valued logic framework has been addressed by 

Selekwa et al. [81]. The mobile robot navigation in local environment using a new fuzzy 

logic algorithm has been presented by Motlagh et al. [82]. The main task of the developed 

fuzzy controller is to perform obstacle avoidance and target seeking behaviour. 

Navigation of multiple mobile robots using fuzzy logic approach has been discussed by 

Pradhan et al. [83]. Fuzzy logic based navigational controller for Khepera-II mobile robot 

has been addressed by Obe and Dumitrache [84]. Samsudin et al. [85] have outlined an 

ordinal fuzzy logic controller for obstacle avoidance of Khepera-II portable mobile robot. 

It is easier to construct high elucidate rules over the conventional controller and genetic 

algorithm is incorporated to optimize the structure of the ordinal fuzzy controller. The 

reactive navigation of mobile robots using a new fuzzy control system has been 

introduced by Motlagh et al. [86]. They used a causal inference mechanism of the fuzzy 

cognitive map (FCM) to coordinate various motion concepts using input and output 

factors, and a genetic algorithm is introduced to tune the fuzzy inference system. Mo et al. 

[87] have presented a new behaviour based fuzzy control method for mobile robot path 

planning. They developed a fuzzy controller in which angular velocity of driving wheels 

is used as output of different behaviours. Abdessemed et al. [88] have presented a new 

navigation model for a mobile robot using fuzzy logic and stereo vision strategy. They 

found that some of the fuzzy rules are not triggered in the critical situation for which the 

stereo vision system can be used to navigate the robot successfully. Abdelkrim et al. [89] 

have presented a fuzzy algorithm using Kinect sensor for mobile robot path planning. The 

Kinect sensor is used to detect and localize the static and moving the object, and fuzzy 

controllers are incorporated for target seeking and obstacle avoidance.  

2.3.2.2   Neural Network Methods   

      Koh et al. [91] have presented a neural network based navigation system for a mobile 

robot in indoor environments. They mainly dealt with the three issues, which are the 

determination of the current position and heading angle, path control in order to follow 

the desired path and local path planning for uncertain environments. The fuzzy logic and 
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reinforcement learning are used for obstacle avoidance and vision system, and the neural 

network is used for path tracking control. Explanation based neural network learning 

algorithm for solving the navigational problem of a mobile robot in an indoor 

environment has been addressed by Thrun [92]. Mobile robot navigation using feed 

forward neural network has been addressed by Pal and Kar [93]. They have trained the 

neural network with sonar range inputs to obtain steering angle for the robot. Obstacle 

avoidance and path planning of mobile robot using an analog neural network dynamics 

have been proposed by Glasius et al. [94]. The neural network receives inputs, then the 

neuron in the controller starts to change their activity towards a specific value. The path is 

framed using neural activity gradient by adjusting the direction of the motor response. An 

efficient neural network navigational controller for real time motion planning of a mobile 

robot has been proposed by Yang and Meng [95]. The proposed controller is planned 

through the biologically inspired neural network without any prior information about the 

environment and without any learning process. Path planning and obstacle avoidance for 

a mobile robot using artificial neural network has been studied by Zarate et al. [96]. They 

proposed a path planner, which is based on the neural memorization of a path previously 

planned and it allows to move the robot from its start position to target by avoiding 

obstacles. Yao et al. [97] have presented the RAM based neural controller in mobile 

robotics to detect and avoid obstacles in real time. Janglova [98] has presented a new path 

planning strategy for an autonomous mobile robot in partially unstructured environments 

using neural networks. She used two neural networks; one is used to construct the free 

space using ultrasonic sensors, and other is used to find the safe direction of the robot 

while avoiding the nearest obstacle. Navigation strategy for a mobile robot using a 

probabilistic neural network (PNN) has been addressed by Castro et al. [99]. They 

implemented the proposed methodology in a real prototype robot, and the result obtained 

validates its feasibility. Wahab [100] has developed a new navigational system for a 

mobile robot based on the artificial neural network. He used two neural networks, one 

neural network for creating free space to avoid obstacles and the other is for navigating 

the robot towards the target. Behaviour control of a mobile robot using artificial neural 

network has been proposed by Leon et al. [101]. They designed several behavior modules 

for a mobile robot based on the neural network paradigms. The developed neuro-

controller has been validated through simulation results and tested on a Khepera robot. 

Mobile robot navigation in dynamic environments using heuristic rule based neural 
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networks has been addressed by Parhi and Singh [102]. They hybridized the heuristic 

rules with a neural network to create the required mapping between perception and 

motion. Singh and Parhi [103] have developed a path optimization algorithm for a mobile 

robot based on the neural network. They used four layer neural networks with back 

propagation algorithm to solve the path optimization problem of mobile robots. Motion 

and path planning of a mobile robot using neural network approach has been proposed by 

Engedy and Horvath [104]. They used back propagation through time (BPTT) training 

approach to train the neural network. Mobile robot path planning using neural network 

has been discussed by Mahmud et al. [105]. They applied the Kohonen type concurrent 

self-organizing map (CSOM) to determine the correct steering direction of the robot. 

Mobile robot navigation using the recurrent neural network (RNN) has been addressed by 

Brahmi et al. [106]. They used two RNN connected in series to control the motion of the 

mobile robot. Local path planning of a mobile robot using neural network strategy has 

been discussed by Motlagh et al. [107] shown in Figure 2.9. In this study, they utilized the 

neural network and reinforcement learning to enable the robot to learn environments on 

its own.  

 

 

Cao et al. [108] have presented a spiking neural network based path planner for the 

autonomous mobile robot. They used CCD cameras, encoders and ultrasonic sensors into 

spike train, which are embedded in the three layered spiking neural network to give 

motion to each motor.   

Figure 2.9   Neural Network approach for Mobile robot navigation proposed by Motlagh     

et al.  [107]. 
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2.3.2.3   Fuzzy-Neural Network Methods  

      Sensor based path planning for a mobile robot using fuzzy logic and neural network 

techniques have been addressed by Beom and Cho [109]. In this hybrid method, they used 

the neural network to preprocess the sensors’ information and situation of the robot at the 

present instant and fuzzy rules are used to make the decision on the action of the mobile 

robot. Song and Sheen [110] have developed a new local path planning method for a 

mobile robot using Fuzzy Kohonen Clustering Network (FKCN). In this study, they 

combined the heuristic rules of fuzzy logic with neural network for planning the required 

mapping between perception and motion. Kubota et al. [111] have presented a multi-

objective behaviour coordinate for a mobile robot using the fuzzy neural network. In this 

article, they updated the weights of fuzzy rules by a neural network according to the 

perceptual information. The simulation results demonstrate that the robot can control the 

multi-objective behaviour using the proposed hybrid technique. Ma et al. [112] have 

discussed a hybrid intelligent motion planning controller for a mobile robot including 

fuzzy logic and neural network. Er et al. [113] have developed a navigation system for 

real time control of a mobile robot based on the generalized dynamic fuzzy neural 

networks (GDFNN). Using this developed technique, not only fuzzy parameters can be 

optimized, but also the navigation system can be self-adaptive. Implementation of the 

fuzzy-neural network to improve the efficiency of the artificial potential field (APF) 

method has been discussed by Su et al. [114]. In this study, they used the fuzzy neural 

network to control the virtual forces in APF and adjust the weights associated with the 

each virtual force. A fuzzy neural based path planner for a mobile robot to avoid obstacles 

has been presented by He et al. [115]. Using this proposed hybrid system; the mobile 

robot can detect obstacles, take its action and then reach the target. A multisensor 

integration based fuzzy-neural method for obstacle avoidance of mobile robots has been 

discussed by Shi et al. [116]. Using this proposed strategy, the robot can recognize the 

obstacles and develop a collision free path. A fuzzy-neural network based intelligent 

motion planning strategy for a mobile robot has been proposed by Jolly et al. [117]. In 

this study, they designed a two dimensional fuzzification of the robot soccer field for the 

construction of proposed navigation system. The proposed strategy is flexible to 

accommodate all possible field configurations. Navigation of autonomous vehicle based 

on the fuzzy art map neural networks (FAMNNS) has been discussed by Chohra and 

Azouaoui [118]. Integration of fuzzy logic and neural network techniques for mobile 
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robot navigation has been suggested by Jeffril and Sariff [119]. They used fuzzy logic to 

extract the environment information and fed into the neural network for the training 

process. The performance of the proposed method has been validated through E-Puck 

mobile robot. 

2.3.2.4   Neural-Fuzzy Techniques  

      A neuro-fuzzy system (shown in Figure 2.10) based mobile robot navigation has been 

studied by Li. [120]. In this study, he used a neural network to determine reference 

motion direction, and fuzzy logic is used to coordinate conflicts among the multiple types 

of reactive behaviours. Ng et al. [121] have implemented a neural integrated fuzzy 

controller for controlling the motion of multiple mobile robots. They used only nine fuzzy 

rules to vary the speed and direction of the robot. The proposed navigation system shown 

in Figure 2.11. Navigation of a mobile robot in dynamic environments using neuro-fuzzy 

technique has been discussed by Tsoukalas et al. [122]. They developed an idealized 

mobile robot called MITOS, to study the path planning in unknown environments.  

 

 

Godjevac and Steele [123] have presented a navigation strategy of a mobile robot using 

neuro-fuzzy controller. The proposed hybrid method has been successfully applied to 

obstacle avoidance and wall following behaviour of a mobile robot. 

Fuzzy Set 
& 

Rule Base 

Left Wheel_V 

Right Wheel_V 

Right_Obs

tacle  

Left_Obs

tacle    

Front_Obs

tacle  

Reference motion 

direction  

Neural 
Network 

  Sensor data Heading angle 

Figure 2.10   Neuro-Fuzzy approach for Mobile robot navigation  

proposed by Li. [120]. 



 

22 

                                                             

 

Adaptive neuro-fuzzy system based navigation strategy of a mobile robot in unknown 

environments has been discussed by Nefti et al. [124]. They used mainly three sub-

modules such as following a wall, avoiding obstacles and target seeking to perform the 

various navigation tasks. Each sub-module acts as a T-S fuzzy controller and output 

correspond to the orientation of the robot. Marichal et al. [125] have presented a neuro-

fuzzy approach to guide a mobile robot in a maze environment. They used neuro-fuzzy 

system to extract the fuzzy rules and membership functions. Krishna and Kalra [126] 

have discussed a real time mobile robot navigation using a combination of Kohonen's 

self-organizing map and fuzzy art network. Wei et al. [127] have presented a new motion 

control method for a mobile robot based on the neuro-fuzzy system. They designed the 

execution part of the controller using adaptive neuro-fuzzy inference system. Ye et al. 

[128] have proposed a neural fuzzy system with mixed learning algorithm for obstacles 

avoidance of a mobile robot. They used a mixed learning algorithm, where supervised 

learning technique is applied for selecting the input and output membership functions, 

and reinforcement learning algorithm is deployed to tune the o/p membership functions of 

the proposed navigation system. The behaviour based mobile robot controller for indoor 

environments using ANFIS has been studied by Rusu et al. [129]. Wang et al. [130] have 

presented a neuro-fuzzy controller for mobile robot path planning. They processed the 

distance information through the neuro-fuzzy controller to adjust the velocity of 

differential drive robot. Obstacle avoidance of a mobile robot in the real world 

environment using neuro-fuzzy controller has been discussed by Meng and Deng [131]. 

The proposed neuro-fuzzy system is capable of re-adapting in a new environment. 

Figure 2.11 Neuro-Fuzzy approaches for Mobile robot navigation proposed by Ng 

and Trivedi [121]. 
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Pradhan et al. [132] have discussed the multiple mobile robots navigation using neuro-

fuzzy technique. The developed neuro-fuzzy navigation system comprises a neural 

network, which acts as a preprocessor for a fuzzy system. They used Petri-Net model to 

coordinate the multiple mobile robots. Navigation of a car-like mobile robot in a dynamic 

environment using neuro-fuzzy approach has been presented by Hui et al. [133]. They 

used different neuro-fuzzy approaches to improve the performance of the fuzzy 

controller. They noticed that GA optimized Mamdani controller and GA optimized neuro-

fuzzy controller (T-S model) give the comparable results. Zhu and Yang [134] have 

proposed a neuro-fuzzy strategy to mobile robot navigation in unknown environments. 

They developed a fuzzy logic system with two basic behaviours, obstacle avoidance and 

target seeking. Two learning algorithms are designed to tune the membership function 

parameters and suppress the redundant rules in the rule base. Real time mobile robot 

navigation in a dynamic environment using ANFIS has been discussed by Parhi and 

Singh [135]. Demril and Khoshnejad [136] have presented a neuro-fuzzy strategy for 

autonomous parallel parking of a car-like mobile robot. In this navigation system, they 

used three sonar sensors information to decide the turning angle of the car. Park et al. 

[137] have developed a neuro-fuzzy rule generation strategy for backing up navigation of 

a car-like mobile robot. The proposed navigation method is based on the conditional 

fuzzy C-means (CFCM) and fuzzy equalization (FE) methods. Using these methods, they 

obtained a compact size of fuzzy rules, which satisfy the given target condition. Dynamic 

path planning of a mobile robot in the 3-D environment using ANFIS has been discussed 

by Woo and Polisetty [138]. Joshi and Zaveri [139] have developed a neuro-fuzzy system 

based motion controller for navigation of a mobile robot. In this navigation study, they 

used sensors information as inputs to yield wheel velocities. Erdem [140] has proposed an 

application of ANFIS for controlling the motion of sumo robot. In this proposed method, 

he used fuzzy logic, which relates sensor output signals to motor control signals and 

neural network based learning algorithm is used for extraction of rules and tuning of 

membership functions. Mutib and Matter [141] have discussed a neuro-fuzzy based 

navigation strategy for a mobile robot. They integrated a transputer embedded real-time 

controller with the robot controller board to meet various intelligence requirements for 

collision-free navigation. Rouabah et al. [142] have developed a navigational controller 

for mobile robot based on the fuzzy logic and neuro-fuzzy approaches. Mayyahi et al. 

[143] have discussed an adaptive neuro-fuzzy inference system for ground vehicle 
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navigation. In this proposed navigation study, they used four ANFIS controllers; two of 

which are used for controlling the wheel velocities to reach the goal position and other 

two controllers are used to adjust the heading direction in order to avoid the obstacles. 

Baturone et al. [144] have optimized an FPGA (Field-Programmable Gate Array) 

embedded controller for a car-like robot path planning using the neuro-fuzzy technique. 

Navigation and obstacle avoidance of a mobile robot using ANFIS have been discussed 

by Algabri et al. [145]. They performed the simulation results using Khepera simulator 

(Kiks) within MATLAB environment. Melingui et al. [146] have developed a new 

modified Type-2 fuzzy-neural network for navigation of a mobile robot in unstructured 

and dynamic environments. The proposed modified navigation system includes a Type-2 

fuzzy process as the premise part and a two layer neural network as in the consequent 

part. Pothal and Parhi [147] have proposed an ANFIS navigational algorithm for multiple 

mobile robots navigation in unknown environments. They incorporated the ANFIS with 

ROBNAV software to generate the collision-free path for multiple mobile robots.   

2.3.2.5   Genetic Algorithm 

      Pratihar et al. [151] have proposed a new, efficient path finder for the mobile robot 

based on a fuzzy-genetic algorithm. In this path planner, fuzzy rule base is used to find 

obstacles free direction locally, and GA is applied as an optimizer to search optimal 

obstacle free paths for the robot. Nearchou [152] has presented a genetic-based algorithm 

for solving the navigational problem of a robot. He assumed a known environment of the 

robot consisting of knot points, which are given in a graph vertices format; the GA is used 

to find an optimal way between the start and goal position. Perception based GA path 

planner (PerGA) for a mobile robot in dynamic environments has been discussed by 

Kubota et al. [153]. The simulation results using the proposed method demonstrate that 

PerGA can be able to maintain various reactive behaviours according to environmental 

changes. Mobile robot path planning using GA-NN has been discussed by Navarro et al. 

[154]. In this proposed navigation system shown in Figure 2.12, the GA is used to train 

the neural network. 
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Genetic-Fuzzy based optimal navigational controller for a mobile robot has been 

presented by Liu et al. [155]. In this proposed navigation method, they used a genetic 

algorithm to optimize the fuzzy rule table and membership functions to obtain the shortest 

route for the robot. Castillo et al. [156] have discussed the multi-objective genetic 

algorithm (MOGA) for path optimization of a mobile robot. They compared the 

performance results using both conventional GA and MOGA. It has been noted that both 

types of GA controllers are efficient for solving the navigational problem of a robot. GA 

tuned fuzzy logic method for mobile robot path planning has been presented by 

Hassanzadeh and Sadigh [157]. They applied GA to optimize the I/P and O/P 

membership functions of the fuzzy controller. Kiks-II simulation tool is used to 

demonstrate the results of proposed navigation system. Taharwa et al. [158] have 

presented a new idea using GA for solving the path planning problem of a mobile robot in 

static environments. They framed a simplified fitness function that utilizes the path length 

as optimization criteria. Liu et al. [159] have discussed the path planning problem of a 

mobile robot using adaptive GA. In this adaptive GA, they used the specialized genetic 

operators and parameters of GA are adjusted adaptively to solve the path planning 

problem of a robot. Path planning strategy for multiple mobile robots using Petri-GA 

model has been presented by Mohanta et al. [160].The proposed algorithm is used to 

determine the suitable heading angle of the robots to find targets. The Petri-Net theory is 

implemented to avoid the inter-collision of the robots more effectively than the 

standalone GA. Global path planning for a mobile robot using A* and genetic algorithm 

have been proposed by Zhang et al. [161]. They used A* algorithm to find the shortest 

Figure 2.12   GA-NN approach for Mobile robot navigation proposed by Navarro et al. 
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path in the grid environment and genetic algorithm is applied to obtain the globally 

optimized path for the robot. Nagib and Gharieb [162] have presented a new methodology 

for global path planning of a mobile robot using genetic algorithm. In this proposed 

algorithm, each via point in the 2D workspace is a gene, which is represented by a binary 

code. The number of genes in one chromosome is a function of the number of obstacles in 

the map. Jiang et al. [163] have discussed the motion planning problem of a mobile robot 

using improved genetic algorithm. The proposed algorithm uses artificial potential field 

method to establish the initial population and increases the weight values in the fitness 

function to improve the smoothness of the robot's path. Global path planning of a mobile 

robot using memetic algorithm has been presented by Zhu et al. [164]. The proposed 

navigation strategy combined the effect of genetic algorithm based global path planning 

and a local path refinement. In each GA evolution, the local path refinement is used to the 

individual GA for improving the paths encoded.  

2.3.2.6   Particle Swarm Optimization 

      A modified PSO named stochastic PSO has been proposed by Chen and Li [166] for 

mobile robot navigation. They developed S-PSO with high exploration ability so that a 

small swarm size can generate the smooth paths for the robot. Lu and Gong [167] have 

described a new fitness function for mobile robot navigation using PSO. The developed 

fitness function of a particle is based on the position of the obstacles and targets in the 

environment. The optimal path is formed with this proposed algorithm. Gong et al. [168] 

have developed a new path planning strategy in uncertain environments using PSO. They 

framed a global optimal path by using PSO in an uncertain environment and finally a 

local optimal strategy is implemented to handle the unknown information detected by the 

robot in real time situation. Masehian and Sedighizadeh [169] have discussed a multi-

objective based PSO for the robot path planning. They deployed the PSO for global path 

planning while the probabilistic road map method (PRM) is applied for obstacle 

avoidance (local path planning). A specialized PSO algorithm for mobile robot navigation 

has been proposed by Li et al. [170]. The concept of ‘active region’ is introduced for 

particle in proposed algorithm to narrow the search space and increase the search rate. 

The invalid particles are replaced directly by a global optimum solution to reduce the 

iteration time. Path planning approach for a mobile robot using multi-objective PSO has 

been addressed by Gong et al. [171]. They introduced a self-adaptive mutation operation 

based on the degree of a path blocked by obstacles to improve the feasibility of a new 
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path. An intelligent motion planning and trajectory tracking of a mobile robot in a known 

environment has been presented by Susic et al. [172]. The PSO is used to generate the 

collision free paths from the start point to the goal point and the interpolation of collision-

free paths are solved by radial basis neural network and trajectory is generated based on 

the interpolation path. Cooperative motion planning of swarm mobile robots using PSO 

and multi-dynamic systems has been discussed by Tang and Eberhard [173]. The entire 

swarm mobile robots are guided by the PSO and multi-dynamic systems are also included 

considering the physical properties of the robot. Several simulation results are presented 

to verify the proposed motion planning strategy. Mohamed et al. [174] have described a 

new path planner for a mobile robot using simultaneous localization and mapping 

(SLAM) and accelerated PSO. In this proposed PSO algorithm, they carried out many 

experiments to obtain the best parameters settings in PSO to achieve the required results. 

A new random PSO algorithm for local path planning of mobile robots in unknown 

dynamic environments has been discussed by Mohajer et al. [175]. The criterion for 

optimal selection depends on the particles distance to target, and Gaussian cost function is 

assigned to detect obstacles. Some simulation results of the proposed algorithm are 

performed and compared by the artificial potential field method. An improved multi-

objective PSO algorithm for mobile robot path planning has been successfully 

implemented by Zhang et al. [176]. Firstly, they defined a fuzzy membership function to 

calculate the risk degree of the path. After considering the two performance merits; the 

risk degree and the distance of path, the path planning problem is defined as a bi-

objective optimization problem with uncertain coefficients. Then PSO algorithm is 

applied to tackle this problem. Finally, simulation results show the effectiveness of the 

proposed method. Cai and Yang [177] have applied a novel potential field based PSO 

algorithm approach for cooperative target searching of multiple mobile robots in 

completely unknown environments. In this proposed algorithm, the potential function is 

used as the fitness function for PSO, which evaluate the exploration priority of the 

unknown environment. The cooperation rules are defined to lead the multi-robot system 

to explore the unknown environment. Deepak et al. [178] have developed an intelligent 

navigational controller for the mobile robot based on the PSO algorithm. They designed a 

fitness function that is based on the distance between each particle of the swarm and 

target and the distance between each particle of the swarm and the nearest obstacle. 

Depending on the fitness function value, the global best position is selected, and the robot 
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reaches these positions in sequence to reach the target. A new global path planning for a 

mobile robot in a static environment by combining BBO (Biogeography-based 

Optimization), PSO, and approximate Voronoi boundary network (AVBN) have been 

presented by Mo and Xu [179]. In this proposed navigation strategy, the PSO is 

implemented to increase the diversity of population in BBO and then the obtained 

Biogeography particle swarm optimization algorithm (BPSO) is used to optimize the 

paths in the path network obtained by AVBN modeling.  

2.3.2.7   Ant Colony Optimization and Artificial Immune System 

      A method of collision-free trajectory for a cooperative robot team using a 

combination of Cellular Automata (CA) and ACO techniques have been discussed by 

Ioanndis et al. [180]. The proposed algorithms have been tested in a system using real 

world simulation environment called Webots. A fast two stage path planning for mobile 

robots using ACO algorithm has been addressed by Chen et al. [181]. The path planning 

algorithm is splitting into two stages; in the preprocessing stage the scent information is 

broadcasted to the whole map and then ants do path planning under the direction of scent 

information in the second stage. The proposed algorithm is demonstrated on various 

complex maps and compared with different algorithms. Implementation of ACO 

algorithm for multiple mobile robots navigation in cluttered environments has been 

presented by Parhi and Pothal [182]. Path planning for mobile robots using improved 

ACO algorithm has been addressed by Hsu et al. [183]. They improved the ACO 

algorithm by considering two aspects; continuous tuning of setting parameters and a new 

mechanism is established for updating pheromone. Yuan et al. [184] have proposed a 

novel method for robot path planning based on the ACO and AIS. The mechanism of 

stimulation and suppression between antigen and antibody are used to search the path, 

that solves complex environment modeling of ant colony algorithm and enhance the path 

planning efficiency. The simulation results indicated that the ACO-AIS performs better 

compared to standalone ACO and AIS. 

Adaptive immune based motion planner for mobile robot navigation in unknown cluttered 

environments has been introduced by Deepak and Parhi [186]. An improved path 

planning strategy for mobile robot based on the Artificial Immune System (AIS) has been 

presented by Yuan et al. [187]. They choose a new antibody choice operator that 

improved the search rationality of immune network. Application of artificial immune 
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system based motion planner for mobile robot path planning has been discussed in [188-

191].  

2.3.2.8   Cuckoo-Search Algorithm 

      A new metaheuristic algorithm called Cuckoo Search (CS) has been formulated by 

Yang and Deb [192]. This proposed algorithm based on the obligate brood parasitic 

behavior of some cuckoo species in combination with the levy flight behavior of some 

birds and fruit flies. Yang and Deb [193] have applied the CS algorithm to solve the 

engineering design problems, including the design of spring and welded beam structures. 

They observed that CS algorithm provides better solution compared to PSO algorithm. To 

improve the accuracy and convergent rate of CS algorithm, an improved CS algorithm 

has been proposed by Valian et al. [194]. They used a proper strategy for tuning the fixed 

parameters (Pa, α) in the CS algorithm. Then the modified CS algorithm is implemented 

for training of feedforward neural network. A modification of the CS algorithm has been 

investigated by Walton et al. [195]. They made two modifications to the original CS 

algorithm; the first modification is made to levy flight step size (α) and the second is to 

add information exchange between the eggs in an attempt to speed the convergence to a 

minimum. Training of spiking neural network using CS algorithm has been described by 

Vazquez [196]. The accuracy of the algorithm has been tested using several pattern 

recognition problems. A new hybrid metaheuristic algorithm based on the DE and CS has 

been proposed by Wang et al. [197] to solve the path planning problem of UCAV 

(uninhabited combat air vehicle). They have applied the DE to optimize the process of 

selecting cuckoo of the CS algorithm during the process of cuckoo in nest updating. Jati 

et al. [198] have implemented a discrete CS algorithm for solving the travelling salesman 

problem. In this discrete CS algorithm, the step size is defined as the distance between the 

cuckoo and best cuckoo at its generation. Training of neural network using CS algorithm 

has been addressed in [199]. Chandrasekaran and Simon [200] have proposed a hybrid CS 

algorithm integrated with the fuzzy system for solving the multi-objective scheduling 

problem. The fuzzy set is used to build the fuzzy membership search domain, where it 

contains all possible compromise solutions, and CS algorithm is applied to explore the 

best solution within the fuzzy search domain. A comparison studies of CS, PSO, DE 

(Differential evolution), and Artificial Bees Colony (ABC) algorithm have been discussed 

by Civicioglu and Besdok [201]. They noticed that the CS and DE algorithms are 

performed better than the PSO and ABC algorithms. Yang and Deb [202] have 
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formulated a new CS algorithm to solve the multi-objective optimization problems. 

Trajectory optimization of robotic arm using different metaheuristic algorithms such as 

ABC, BBO (Biogeography-based optimization), GSA (Gravitational Search Algorithm), 

CS, FA (Firefly Algorithm)), BA (Bat Algorithm), and TLBO (teaching–learning-based 

optimization) have been studied by Savani et al. [203]. They observed that the TLBO, 

ABC, and CS algorithms are performed well for the considered trajectory optimization 

problem for the searching of best solutions, convergence and workspace with obstacle 

avoidance. Application of Bio-inspired search algorithms to solve robotic assembly line 

balancing problems have been studied by Nilakantan et al. [204]. PSO and CS-PSO 

hybrid optimization algorithms have been applied to balance the robotic assembly line 

with objective of minimizing the cycle time. Recent advances and applications of CS 

algorithm have been discussed by Yang and Deb [205]. CS algorithm in other fields has 

been given in [206-208].      

2.3.2.9   Invasive-Weed Optimization 

      Invasive Weed Optimization (IWO) algorithm is a new biologically inspired 

algorithm that has been introduced by Mehrabian and Lucas in 2009[209]. The 

metaheuristic algorithm mimics the robustness, adaptation and randomness process of 

weed colonization behaviour of weeds. They compared results of the proposed algorithm 

with other evolutionary based algorithms such as GA, MA (Memetic Algorithm), PSO 

and SFL (Shuffled Frog-Leaping) through the benchmark multi-dimensional functions. It 

has been observed that IWO performs better than the results of other models. 

Hybridization of IWO and PSO for fast and global optimization has been proposed by 

Hajimirsadegli and Lucas [210]. The efficiency of the proposed hybrid algorithm has 

been tested and compared with IWO, PSO, and some other algorithms through common 

benchmark functions. Comparative studies of five evolutionary algorithms have been 

discussed by Krishnananda et al. [211]. The evolutionary algorithms (GA, PSO, ABC, 

IWO, and AIS) are tested on the multi variable benchmark functions. They noted that AIS 

and IWO algorithms performed well for high dimensional problems compared to other 

algorithms. Implementation of discrete invasive weed optimization to cooperative 

multiple task assignments of UAVs have been presented by Ghalenoei et al. [212]. The 

modification in the spatial dispersal step of IWO has shown the satisfactory performance. 

Efficient motion planning by a robot arm without obstacle collision using IWO algorithm 

has been proposed by Sengupta et al. [213]. They formulated a suitable cost function to 
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track the optimal path between an initial and final configuration of the robot arm joints. 

Multi-objective optimization with IWO algorithm has been discussed by Kundu et al. 

[214]. The results of the proposed algorithm have performed better than the existing 

evolutionary algorithms namely NSGAIILS, DECMOSA-SQP, MOEP and MOEADGM. 

Yin et al. [215] have proposed an improved IWO algorithm based on hybridization with a 

genetic algorithm. The developed hybrid algorithm improves the performance of the 

weeds and reduces the chance of getting trapped in local point. Basak et al. [216] have 

proposed a hybrid system that is combining the effect of DE and IWO for solving the real 

parameter and single-objective optimization problem. They noted that DE-IWO has a 

greater explorative power than standalone DE and IWO. IWO algorithm has been applied 

in various fields of engineering systems [217-220]. 

2.4   Discussions 

      The literature review on the mobile robot navigation is classified according to 

different approaches used by the researchers. Figure 2.13 shows a bar graph with the 

percentage of classical and computational Intelligence (CI) approaches employed by the 

authors. It has been noticed that, in the recent decade about 80% of the studied literature 

uses CI techniques to solve the path planning problem of mobile robots, whereas classical 

approaches have solved only 20% of path planning problems. However, the researchers 

have concentrated towards the CI approaches in order to reduce the computational 

complexity and to obtain the nearest optimal solution in a reasonable time.  
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Figure 2.14 presents a pie chart to provide the percentage of paper reviewed based on the 

CI methods to solve the path planning problem of mobile robots. It has been illustrated 

that about 60% of the studied literature uses fuzzy logic, neural network and genetic 

algorithm to solve the navigational problem, whereas only 40% of the literature employs 

nature-inspired algorithms to solve the same problem. However, path planning 

approaches using hybrid techniques are limited in the literature.  

  

 
 

 

Figure 2.14 Percentage of paper reviewed based on the CI techniques for Robot  

                   path planning. 

Figure 2.13    Application of classical and CI approaches for Mobile Robot navigation. 
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2.5   Summary 

      After an exhaustive study made in the literature, the following conclusions are drafted 

below:  

 The various navigational techniques have been developed by the researchers so far for 

controlling the motion of mobile robots in unknown or partially known environments.  

 It has been observed that the CI techniques are widely used for mobile robot path 

planning compared to classical techniques. 

 Most of the articles are focused on efficient heuristic algorithms that can be employed 

for solving the navigational problem of the mobile robots. However, it has been 

observed that these algorithms don’t always perform well as per expectation. 

 A limited number of research has been carried out based on the natured-inspired 

algorithms to solve the path planning problem of mobile robots in unknown or 

partially known environments.  

 

The present research work proposes new navigational methods i.e. ANFIS (Adaptive 

Neuro-Fuzzy Inference System), CS (cuckoo Search) algorithm, IWO (Invasive Weed 

Optimization), CS-ANFIS and IWO-ANFIS hybrid techniques for solving the path 

planning problem for single and multiple mobile robots in unknown or partially known 

environments. As per the author’s knowledge theses are algorithms are not yet 

implemented for robot path planning problems. 
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3.  MODELING AND ANALYSIS OF WHEELED ROBOT 

KINEMATICS 

 

Wheeled mobile robots (WMR) have been an interesting research area in the field of 

robotics over the past few decades. The study of kinematics deals with the motion of 

points, bodies and systems of bodies without reference to the forces which cause the 

motion. In mobile robotics, it is necessary to study the kinematics and dynamics behavior 

of the robot in order to develop suitable mobile robots for performing various 

assignments and to understand how to frame motion controlling software for a robot. 

This chapter describes the details of the kinematic analysis of a wheeled mobile robot. 

3.1   Introduction 

The wheeled mobile robots consist of a class of mechanical systems characterized by both 

kinematics and dynamics constraints and, therefore, cannot be ignored from the model 

equations. The significance is that the navigation techniques designed for the mobile 

robot without considering constraints are no more feasible. Therefore, kinematic 

modeling of a wheeled mobile robot is still a relevant issue [10-13]. Many researchers 

have designed methodologies for kinematic and dynamic analysis of wheeled mobile 

robot. Before understanding the motions of a robot, it is necessary to describe the 

involvement of each wheel contributes to motion. Each wheel of a robot has a crucial role 

to move the whole robot, and each wheel generates various constraints on the robot’s 

movement; for example to avoid slip laterally. In the current chapter, we described the 

expression of robot motion in a global or base reference plane as well as the robot’s local 

reference plane. Then, using this expression the forward kinematics for the robot has been 

derived. Next, kinematic constraints for each wheel have been derived and these 

constraints are combined to express the whole robot’s kinematic constraints. With the 

help of this geometry and wheel behavior, we can calculate the paths and the trajectory 

that define the robot’s maneuverability. 
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3.2   Representing the Mobile Robot Position 

Let us consider the kinematic model of a wheeled mobile robot (WMR) and the position 

of the robot in the plane as shown in Figure 3.1.  

 

                               

 

The global or base reference frame (OXIYI) is fixed in the plane of motion, and the 

moving frame (OXRYR) or local reference frame attached to the robot [223]. In this work, 

we have considered that the mobile robot is a rigid body connected with wheels, and it is 

travelling in a horizontal plane surface. The posture of the robot   in the reference plane 

is then completely specified by three variables x, y, θ in the vector form; 

  

x

y



 
 


 
  

                                                                           (3.1) 

In order to find out the robot position, it will require mapping the motion along the axes 

of the base reference frame to the motion along the axes of the robot’s moving frame or 

local reference frame. The orthogonal rotation matrix expressing the orientation of the 

base reference frame (OXIYI) with respect to the robot moving frame (OXRYR) is given by 

O 

Right Wheel 

Left Wheel 

Castor Wheel 

YI 

XR 

YR 

XI 

P 

θ 

         Figure 3.1   Schematic diagram of the Robot position in horizontal Plane. 
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 

cos sin 0

sin cos 0

0 0 1

R

 

  

 
 

 
 
  

                                                                                           (3.2)                                                              

The above rotation matrix can be used to map the motion in the base reference frame 

(OXIYI) to motion in terms of the moving frame or the robot frame (OXRYR). This 

expression is denoted by   IR    because the calculation of this equation depends on the 

value θ; 

  
. .

R IR                                                                              (3.3) 

3.3   Kinematic Wheels Description 

The wheeled mobile robots are widely used in many areas due to their advantages of 

locomotion. In general, wheeled mobile robots move faster and more energy efficient 

than other locomotion systems (e.g., legged robots or tracked vehicles). From the control 

point of view, less control effort is needed, due to their simple mechanisms and reduced 

stability issues. Although it is difficult to overcome rough terrain or uneven environment 

conditions, wheeled mobile robots meet for a large class of target environments in 

practical implementations. 

Before we derive the expressions of kinematic constraints for various types of wheels, 

different important assumptions are taken into consideration and shown in Figure 3.2.   

a) The plane of the wheel always remains vertical, and the wheel’s motions are purely 

rolling leading to a zero velocity at the contact point. 

b) No slipping, skidding, sliding or friction for rotation around the contact point. 

 

                          

 

Figure 3.2(b) Lateral Slip.  

X-axis 

 

X-axis 

 

Y-axis 

 

Z-Motion 

 
Figure 3.2(a) Rolling Motion. 
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3.3.1   Fixed Standard Wheel 
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The schematic diagram of fixed standard wheel is shown in Figure 3.3. Where ‘A’ is 

denoted the center of the fixed wheel and also is a fixed point of the robot frame (Fig.3.3). 

The position of the ‘A’ is defined using polar coordinates by distance PA=l and the angle 

α. The orientation of the plane of the wheel w.r.t PA is represented by the constant angle 

β.The rotation angle of the fixed wheels around its (horizontal) axle is denoted φ (t) and 

radius of the wheel is ‘r’. So the position of the fixed wheel is thus defined by four 

parameters α, β, l, r and its motion by time varying angle ϕ(t). When the components of 

the velocity of the contact point are projected on the fixed wheel plane, we can derive two 

following constraints: 

 Pure rolling condition: 

     
˙

         0sin cos lcos R r                                               (3.4) 

 Nonslip condition: 

       
˙

        0cos sin lsin R                                                         (3.5) 

 

Figure 3.3 Geometric parameters of fixed standard wheel. 
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3.3.2   Steered Standard Wheel (Centered orientable wheel) 

 

 

XR 

YR 

P 

A 
l v 

β (t) 

α 

Robot Chassis 

 

  

 

              

 

r, ϕ 

 

 

A steered standard wheel is such that the motion of the wheel plane w.r.t the frame is a 

rotation around a vertical axis passing through the center of the wheel (Figure 3.4). The 

expression is same as for a fixed standard wheel; the only difference is that now the angle 

β(t) is time varying. So the position of the wheel is characterized by three constant 

parameters l, α, r and its motion w.r.t the frame by two time-varying angles β(t) and φ(t). 

The expressions for various conditions are as follows, 

 Pure rolling condition: 

     
˙

                 0sin cos lcos R r       
 

        
 

                            (3.6) 

 Nonslip condition: 

      
˙

                0cos sin lsin R      
 

      
 

                                      (3.7) 

 

 

Figure 3.4 Geometric parameters of steered standard wheel. 
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3.3.3   Castor Wheel (Off centered orientable wheel) 

             

 

XR 

YR 

P 

A 
l 

β (t) 

α 

Robot Frame 

 

 
B d 

 

d 

r, ϕ 

 

 

In this type of wheel, the rotation of the wheel plane is around a vertical axis which 

doesn’t pass through the center of the wheel (Figure 3.5). ‘B’ is the center of the wheel 

and is connected to the frame by a rigid bar AB of length‘d’ which can be rotated around 

a fixed vertical axis at point ‘A’. The position of the wheel is defined by four constants α, 

l, r, d and its motion by two varying angles β(t) and φ(t). For this wheel, constrains are in 

following form:  

 Pure rolling condition: 

     
˙

               0sin cos lcos R r       
 

        
 

                              (3.8) 

 Nonslip condition: 

              0cos sin d lsin R d                                              (3.9) 

 

 

 

Figure 3.5 Geometric parameters of Castor wheel. 
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3.3.4   Swedish Wheel 

The position of the Swedish wheel w.r.t to the frame is characterized, as for fixed 

standard wheels, by the three constant parameters α, β and l (Figure 3.6). An additional 

parameter is necessary to describe the direction w.r.t to the plane of the zero component 

of the velocity of the contact point denoted by the angle ϒ.  
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 For this wheel, the constraints are expressed as; 

 Pure rolling condition: 

        
˙

         0sin cos lcos R rcos                                 (3.10) 

 Nonslip criteria is not constrained because of the free rotation sw  of the small 

rollers: 

        
˙

           0sw swcos sin lsin R rsin r                           (3.11) 

3.3.5   Spherical Wheel 

The wheel radius ‘r’ being the radius of the sphere, and its rotation angle is represented 

by φ(t) (Figure 3.7). The spherical wheel is clearly omnidirectional and places no 

constraints on the robot chassis kinematics. So the equation simply describes the roll rate 

of the sphere in the direction of motion VA of point ‘A’ of the mobile robot.  

Figure 3.6 Geometric parameters of Swedish wheel. 
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 Pure rolling condition: 

     
˙

         0sin cos lcos R r                                            (3.12) 

 No-slip condition: 

     
˙

        0cos sin lsin R                                                    (3.13) 

3.4   Restriction on Robot Mobility 

Let us consider a general wheel robot, consisting of N wheels of the four above described 

category. So, the total number of wheels in the is robot as follows: 

                                               f c ca swN N N N N                                                   (3.14) 

The number of wheels of each type is represented by: 

fN   No. of fixed standard wheels 

cN   No. of centered orientable wheel 

caN   No. of castor wheels 

swN   No. Swedish wheels 

The position of the wheel robot is represented by the following vector form. 

Figure 3.7 Geometric parameters of Spherical wheel. 
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 Posture coordinates: 

( )

( ) ( )

( )

x t

t y t

t





 
 


 
  

 the position of the coordinates in the plane. 

 Rotation coordinates: 

( )

( )
( )

( )

( )

f

c

ca

sw

t

t
t

t

t










 
 
 
 
 
  

 for the rotation angles of the wheels around 

their horizontal axis of the rotation. 

a) The rolling constraints of all the wheels can be written under general matrix form: 

   1 2   0sJ R J                                                        (3.15) 

In this expression  1 sJ  represented a matrix with projection of all wheels to their 

motion along their wheel planes: 

 
 

 

1

1

1

1

1

f

c c

s

ca ca

sw

J

J
J

J

J






 
 
 
 
 
 

                                                                  (3.16) 

where, 1 1 1,  ,  f c caJ J J and 1swJ are      [ 3], 3 , 3  and    3f c ca swN N N N    matrices whose 

forms arise from the constraint equations (3.4), (3.6), (3.8) and (3.10) respectively. 1 fJ  

and 1swJ  are constant while 1cJ and 1caJ  are time varying respectively through 

     and c cat t  . 2J  is a constant diagonal [N x N] matrix whose diagonal values are 

radii r of all standard wheels. 

b) Sliding constraints of all wheels can be written in the matrix form as follows; 

     1 0sC R                                                                    (3.17) 

   

 

1

1 1

1

f

s c c

ca ca

C

C C

C

 



 
 

  
 
 

                                                              (3.18) 
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where 1 1,   f cC C and 1caC  are    [ 3], 3     3f c caN N and N    matrices whose forms arise 

from the constraint equations (3.5), (3.7), (3.9) and (3.11). 1 fC  is the constant while 

1cC and 1caC are time varying. 

3.4.1   Degree of Mobility 

The mobility of a robot frame is defined as its ability to move directly in the environment. 

The basic constraint rule is that every wheel, must satisfy its sliding kinematic constraint. 

Now consider the  f cN N N   constraints from the equation (3.17) and written as  

 1 0fC R                                                                    (3.19 a) 

   1 0c cC R                                                               (3.19 b) 

For both of these constraints to be satisfied, when the motion vector   0R     must 

belong to the null space of the projection matrix  1  sC  : 

 
 
1

1

1

f

s

c c

C
C

C




 
  
 

                                                               (3.20)   

From the above investigation, we observed that the robot frame kinematics is a function 

of the set of independent constraints arising from all the standard wheels. Equation (3.17) 

defines all sliding constraints imposed by the wheels of the mobile robot. Therefore, the 

rank  1 sC     denotes the number of independent constraints. Before that it is significant 

to notice that equations (3.19 a) and (3.19 b) have a significant geometrical interpretation. 

At each time, the motion of the robot can be noticed as an instantaneous rotation around 

the instantaneous center of rotation (ICR) whose position with respect to the chassis can 

be time varying. Consequently, at each instant the velocity vector of any point of the 

frame is orthogonal to the straight line joining this points and the ICR. In fact this is true 

for the centers of the fixed standard wheel and steerable standard wheels. This indicates 

that at each time instant, the horizontal rotation axles of all the fixed standard wheels and 

steerable standard wheels are concurrent at the ICR. This observation is shown in Figure 

3.8. 
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The rank of the matrix  1 sC     depends on the construction of the mobile robot. We 

express the degree of mobility m  of a mobile robot as 

   1 13m s sdimN C rank C                                                                               (3.21)                                   

Hence, the degree of mobility satisfies the possible range of rank values of any robot as 

 10 3srank C      . 

Case -1: 

If the  1 0srank C       

This is only possible if there are zero independent constraints in  1 sC    .  In this 

condition, there are neither fixed nor centered orientable wheel attached to the robot 

frame  0f cN N  . 

Case -2: 

If the  1 3srank C      

Then the mobile robot is completely constrained in all possible directions and so, any 

motion on the plane is impossible. Therefore, it is concluded that m  must lies between 0 

and 3.  

Figure 3.8 b. Bicycle 
 

a) 

ICR 

b) 

ICR 

Figure 3.8 a. Four-Wheel vehicle with  

           Ackermann steering configuration               
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3.4.2   Degree of Steerability 

The degree of steerability is defined as the number of centered orientable wheel that can 

be oriented independently in order to steer the mobile robot. The degree of steerability is 

expressed as follows s  : 

 1[ ]s c crank C                                                                                                         (3.22) 

The possible range of  s  can be specified as: 0 2s  . The case 0,s   implies that 

the wheeled mobile robot has no steerable standard wheels, 0sN  , When the 1,s   is 

most common, the mobile robot frame consists of one or more centered orientable 

wheels. 

3.4.3   Robot Maneuverability 

Maneuvrability plays a very vital issue for a mobile robot to solve its assignments. The 

total degrees of freedom that a mobile robot can manipulate, known as the degree of 

maneuverability M , and it can be expressed in terms of degree of steerability and 

mobility:  

M m s                                                                                                                     (3.23) 

Hence, there are five types of wheeled mobile robots, corresponding to the five pairs of 

values of m and s according to following Table-3.1: 

Table-3.1 (Five Types of Robot’s Maneuverability) 

mδ   3 2 2 1 1 

sδ  0 0 1 1 2 

Mδ  3 2 3 2 3 

 

The design features of each type of wheeled robot are now explained briefly.  

Type-I 

3, 0 ,  3m s M       
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These types of robots have no fixed standard wheels  0fN   and no centered orientable 

wheels. Such types of robots are called omnidirectional because they have a full mobility 

and can be moved at each instant in any direction without any reorientation.  

 

Type-II 

2, 0 ,  2m s M      

These robots have no steered standard wheels  0cN    

 

Type-III 

2, 1 ,  3m s M      

These categories of robots have no fixed wheel ( 0)fN   and at least one centered 

orientable wheels ( 1)cN   If there are more than one centered orientable wheel, their 

orientation must be coordinated in such a way that rank  1 1c c sC     . 

 

Type-IV 

1, 1 ,  2m s M       

Figure 3.9 Omnidirectional type (Three castor wheels*) 

Castor Wheels  

P Y 

X 

Figure 3.10 Differential type (Two fixed wheel and one 

castor wheel*) 
Castor Wheels  

Fixed Wheels  

P Y 

X 

Figure 3.11.Omni-steer (one steer wheel and two 

castor wheel*) 

Steer Wheels  

Castor Wheels  

P 
Y 

X 
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These types’ robots have one or several fixed standard wheels with a single common axle. 

They have also one or several centered orientable wheels with the condition that the 

center of one of them is not positioned on the axle of the fixed standard and that their 

orientation are synchronized in such way that rank  1 1c c sC    . 

     

 

Type-V 

1, 2 ,  3m s M       

These robots have no fixed standard wheels. They have at least two centered orientable 

wheels ( 2)cN  . If there are more than two centered orientable wheels, their orientation 

is such that rank  1 2c c sC    .  

 

 

(* The castor wheels can be replaced by Spherical or Swedish wheels without affecting the 

maneuverability. Because all the three types of wheels are omnidirectional.) 

 

 

 

 

 

 

 

Figure 3.12.Tricycle (Two fixed wheels and one steer wheel). 

X 

P 
Y 

Fixed Wheels  

Steer Wheel 

X 

Figure 3.13.Two-steer type (one castor wheel
*
and  

 two steer wheels) 
Castor Wheels  

P Y 

Steer Wheels  
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3.5   Kinematic System Description of Differential Wheel Drive 

 

In the above schematic diagram shown in Figure 3.18, the position vector  
T

x y   is 

represented in the inertial frame, and the goal is at the origin of the inertial frame. 

Consider the kinematics of a differential drive robot derived in the inertial frame 

 , ,I IX Y  is given by;  

cos 0 cos .

sin 0 sin .

0 1

I
x v

v
y v

 

 


 

     
      

       
           

                                                                            (3.24 a)   

 

 

 

1
cos .

2

1
sin .

2

r l

r l

r l

v v

v v

v v

L





 
 

 
  
 
 

 
  

                                                                                                  (3.24 b)   

1 1
cos cos

2 2

1 1
sin sin

2 2

1 1
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r

v

v

L L

 

 

 
 
 

       
 
 
  

                                                                                          (3.24 c)                                                                                              

R 

YR 

XR 

θ 

v 

ω 

Goal 

YG=YI 

XG=XI 

L 

ICC 

Figure 3.18   Kinematic posture of the differential wheeled robot. 
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where, x  and y  represent the linear velocities of the inertial frame in the direction of XI 

and YI respectively. Similarly lv  and rv  represent the linear velocities of the left and right 

wheel of the robot and L is the distance from the centre of the wheels. 

Particular conditions: 

1. ( )lv t  = ( )rv t  i.e straight line trajectory  

( ) ( ) ( )r lv t v t v t    

 ( ) 0 ( ) 0t t t      Constant 

2. ( )lv t = ( )rv t  i.e circular path with ICC (Instantaneous Center of Curvature) on the 

midpoint between drive wheels. 

( ) 0v t   

2
( ) ( )tt v t

L
   

3.6   Summary 

The following summary has been drawn from this current chapter: 

 The description of the kinematic posture of a wheel mobile robot has been discussed, 

and it is important to compute the robot position in the global reference with respect 

to the robot’s moving frame.  

 The kinematic constraints for various types of wheels have been derived and the 

degree of mobility, steerability and maneuverability are also discussed for different 

wheeled mobile robots.  

 A wheel Jacobian matrix is framed in order to map the motions of individual wheels 

to the motion of the robot frame. It has been noticed that according to the restriction 

to the mobility generated by the various constraints, the wheeled mobile robots can be 

categorized into five types.  

 The kinematic description of the differential mobile robot is sufficient to explain the 

global motion of the robot in the target seeking environment. 
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4. ANALYSIS OF ADAPTIVE NEURO-FUZZY INFERENCE    

SYSTEM (ANFIS) FOR MOBILE ROBOT NAVIGATION 

         

      Continuous efforts have been given by the researchers to develop new path planning 

strategies related to mobile robot navigation. Mobile robots must have the ability to 

navigate autonomously in an unknown environment, to accomplish various tasks, where a 

variety of obstacles may endanger the safety of the robot. So, the primary aim of the robot 

is to frame a navigational algorithm, which consists of the planning and implementation 

of collision free motion in an unknown environment. This current chapter describes the 

path planning and navigation of mobile robot using Adaptive neuro-fuzzy inference 

system (ANFIS) in maze environments.  

4.1   Introduction 

      Over the last few years, artificial neural networks and fuzzy inference systems have 

shown their reputation to build an optimization model. However, there are certain 

disadvantages of each individual model. For example, the performance of the neural 

network based models depends upon the systematic training of its adjustable parameters 

(synaptic weights and bias parameters), the optimal selection of which is a very difficult 

task. The fuzzy inference system gives good decisions, but much more effort is required 

to generate the number of fuzzy rules with corresponding membership functions. It also 

needs an effective training to minimize the system output errors. The Adaptive neuro-

fuzzy inference system is a neural network based fuzzy inference system which combines 

the adaptability capability of the neural network and provide the human like reasoning (in 

the form of IF-THEN rules) of fuzzy systems. In this present chapter a newly developed 

ANFIS navigational controller is deployed to solve the navigational problem of a mobile 

robot in unknown and cluttered terrains.  
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4.2   Description of Adaptive Neuro-Fuzzy Inference System (ANFIS) 

         In recent times, intelligent soft computing tools such as fuzzy logic and artificial 

neural networks have been verified to be efficient and suitable for establishing intelligent 

systems. A fuzzy inference system depends mainly upon the selection and distribution of 

the membership functions, and its if-then rules are used to acquire knowledge from 

human experts to handle imprecise and vague systems. A neural network has the ability to 

learn from its environment and adapt in an interactive way. For these reasons, a neuro-

fuzzy system has been evolved, which takes the advantages of both fuzzy logic and 

artificial neural network. Takagi and Hayashi [149] have proposed the details of the 

neuro-fuzzy system. Originally developed by Jang [150] in 1993, the Adaptive neuro-

fuzzy inference system has become a well-known hybrid intelligent neuro-fuzzy system 

and functioning under the Takagi-Sugeno-type fuzzy inference system. ANFIS uses either 

a combination of least-squares estimation (LSE) method with the back propagation 

gradient descent method (BPGDM) or only back propagation gradient descent method to 

adjust premise and consequent parameters.  

                        

 

 

 

 

 

 

  

 

 

 

 

 

For the present simple architecture of ANFIS, we assume that the fuzzy inference system 

under consideration has two inputs x1 and x2 and one output y, as shown in Figure 4.1. 

Suppose the fuzzy inference system contains two IF-THEN rules of the Takagi-Sugeno 

type [150] as shown in Figure 4.2 ; 

Figure 4.1 An ANFIS with five layers and two inputs. 
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  1 1 2 2
1 1 2 2

1 2

W f W f
f y W f W f

W W


   


                                                                             (4.1) 

Rule 1: IF x1 is A1 AND x2 is B1 THEN 

y1= p1x1+q1x2+r1,                                                                                                        (4.2 a) 

        

Rule 2: IF x1 is A2 AND x2 is B2 THEN 

y2= p2x1+q2x2+r2,                                                                                                        (4.2 b) 

       

Where, A1, A2, B1, and B2 are the linguistic description of inputs x1 and x2 respectively. 

{p1, q1, r1} and {p2, q2, r2} are the consequent parameters, and y1 and y2 are the estimated 

output of the system. 

 

 

 

 

   Figure 4.2 Takagi-Sugeno type fuzzy reasoning. 

 

A1 

A2 

B1 

B2 

W1 

W2 

X 

X 

Y 

Y 

X Y 

1 1 1 1y p x q y r     

2 2 2 2y p x q y r     
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4.3    Control Architecture of the Adaptive Neuro-Fuzzy Inference 

System (ANFIS) for Mobile Robot Path Planning  

        The objective of the proposed ANFIS navigational controller is to predict the 

steering angle of the mobile robot. Here, we consider the adaptive neuro-fuzzy controller 

(Figure 4.3) under the consideration of four input parameters, i.e. Front obstacle distance 

(FOD) (X1), Right obstacle distance (ROD) (X2), Left obstacle distance (LOD)(X3) and 

Heading angle (HA)(X4).This information is collected by an array of sensors  which are 

mounted around the periphery of the robot.  

 

 

        In this work Bell-shaped type of membership functions are considered and each 

input variable has three bell membership functions (MF) or linguistic variables A1(Near), 

A2(Medium) and A3(Far), B1(Near), B2(Medium) and B3(Far), C1(Near), C2(Medium) and 

C3(Far), D1(Negative), D2(Zero) and D3 respectively; then a Takagi-Sugeno-type fuzzy 

inference system IF-THEN rules are constructed as follows; 

 IF(x1 is Ai and x2 is Bi and x3 is Ci and x4 is Di) 

THEN (steering angle (fn) = pnx1+qnx2+rnx3+snx4+un)                                               (4.3) 

A, B, C and D are the fuzzy membership sets for the input variables x1, x2, x3 and x4 

respectively.  

 

Figure 4.3 Robot initial position in environment. 

FRONT OBSTACLE 

RIGHT OBSTACLE 
LEFT OBSTACLE 

TARGET 

θ 

SENSOR 

X1 

X3 X2 

HEADING ANGLE (X4) 
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Figure 4.4 An ANFIS structure for current analysis. 
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Where, i=1,2,3 and pn, qn, rn, sn, and un are the linear or consequent parameters of 

function fn and changing these parameters we can adjust the output of the ANFIS 

controller. 

The function of each layer in the ANFIS structure (Figure 4.4) is discussed as follows: 

Input Layer:  In this layer the nodes receive signals from an array of sensors (X1, X2, X3 

and X4) which specify the position of the obstacles and the target. That is defined as 

follows  

0, 1

0, 2

0, 3

0,HA 4

( 1)

( 2)

( 3)

( 4)

FOD

ROD

LOD

O X input

O X input

O X input

O X input

  


  
 


  

                (4.4)                                                                                                                                                                                                    

First Layer: This layer is the adaptive fuzzy layer. The neurons in this layer complete the 

fuzzification process. Every node in this stage is an adaptive node (square node) and 

calculates the membership function value in the fuzzy set. For the four inputs, the outputs 

from the nodes in this layer are presented as  

1, 1

1, 2

1, 3

1, 4

( )

( )

( )

( )

i FOD

i ROD

i LOD

i HA

O X

O X

O X

O X









 


 



 

                                                                                                             (4.5)                                                                                                                        

Here O1,i is the Bell-shaped membership grade of a fuzzy set S (Ai, Bi, Ci and Di) and it 

specifies the degree to which the given inputs (X1, X2, X3 and X4) satisfy the quantifier S. 

The membership functions for A, B, C and D are the bell shape functions and which is 

shown in Figure 4.5. 
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                                                                                              (4.5 i)                                                                                                   
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                                                                                            (4.5 ii)                                                                                                      
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ai, bi and ci are parameters that control the centre, width and slope of the Bell-shaped 

function of node ‘i’ respectively. They are also known as the antecedent or premise 

parameters. Changing these parameters will give the various contours of a bell shaped 

function as required in accordance with the data set for the problem defined. The fuzzy 

membership function can be chosen in any form, such as triangular, Gaussian, 

Figure 4.5 d Figure 4.5 c 

Figure 4.5 b Figure 4.5 a 

          Figure 4.5 (a-d) Membership functions for input parameters. 
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trapezoidal, bell-shaped, etc. Usually, we choose the bell-shaped one with the maximum 

value equal to 1 and minimum value equal to 0. 

Second Layer: It is also known as the fuzzy rule layer. Every node in this layer is a fixed 

node (circular) and labeled as πn. Every node in this stage corresponds to a single Sugeno-

Takagi fuzzy IF-THEN rule. Each rule point receives inputs from the respective points of 

layer-2 and calculates the firing strength of each fuzzy rule. The output from each node is 

the product of all incoming signals. 

2, 1 2 3 4( ). ( ). ( ). ( )
i i in n Ai B C DO W X X X X                                                                    (4.6)                                                                         

Where Wn represents the firing strength or the truth value, of the n
th

 rule and n=1, 2, 

3…81 is the number of Sugeno-Takagi fuzzy rules. 

Third Layer: It is the normalization layer. Every node in this layer is a fixed node 

(circular) and labeled as Nn. Each point in this layer receives inputs from all points in the 

adaptive fuzzy rule layer and calculates the normalized firing strength of a given rule. The 

normalized firing strength of the n
th

 point of the n
th

 rule’s firing strength to the sum of all 

rules' firing strength. 

3, 81

1

n
n n

n

n

W
O W

W


 


                                                                                                           (4.7)                                                                                                                    

nw  represents the normalized firing strength of a given rule. 

Fourth layer: Every node in this layer is an adaptive node (square node). Each node in 

this layer is connected to the corresponding normalization node, and also receives the 

initial inputs X1, X2, X3 and X4. A defuzzification node determines the weighted 

consequent value of a given rule presented as, 

 4, 1 2 3 4( ) ( ) ( ) ( )n nn n n n n n nO W f W p X q X r X s X u                                                (4.8)                                                     

Where, nW  is a normalized firing strength from layer-3 and pn, qn, rn, sn and un are the 

parameters set by this node. These parameters are also called consequent parameters. 

Fifth layer: It is represented by a single summation node (circular node). This single 

point is a fixed point and is labeled as ∑. This point determines the sum of the outputs of 

all defuzzification points and gives the overall model output, that is the steering angle.  
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                                                                                               (4.9)                                                                                                    

Figure 4.4 shows the ANFIS navigational controller with its inputs and output signals. The 

sign convention for ANFIS in terms of heading angle (HA) with respect to obstacle is 

shown in Figure 4.6. The proposed ANFIS controller has been trained with about 800 

patterns of training behaviors; some of them are depicted in Figure 4.7. For example, 

Figure 4.7 (c) shows when a robot is moving towards an obstacle, another obstacle is 

being on its left hand side, and no target is sensed by the robot. The proposed ANFIS 

navigator is trained to steer towards the right hand side. The Table-4.1 depicts some 

examples of training patterns of the proposed path planner. The parameters setting for 

training variables of ANFIS model is shown in Table-4.2. In this navigational model 

mainly three reactive behaviours are used by the ANFIS and demonstrated in Table-4.3. 

The reactive behaviors communicate with the sensory data and steer the robot accordingly 

for successful navigation.  

 

 

 

Figure 4.6 Sign convention used in ANFIS in terms of heading angle (HA) with respect 

to obstacle position. 
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Figure 4.7 Examples of various reactive behaviors for ANFIS navigational controller. 
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d) e) f) 
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Table-4.1 Examples of training pattern for current navigational controller.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[OA: Obstacle avoidance, M: Medium, TS: Target seeking, HA: Heading Angle,  

SA:   Steering Angle, Positive: left turn, Negative: right turn, zero: straight F: Far,  

N: Near, M: Medium] 

 

 

SL.No. ACTION LOD FOD ROD HA SA 

1 OA N N N NO GOAL 

CONSIDERED 
POSITIVE 

2 OA F N N NO GOAL 

CONSIDERED 
POSITIVE 

3 OA N N F NO GOAL 

CONSIDERED 
NEGATIVE 

4 OA F F N NO GOAL 

CONSIDERED 
ZERO 

5 OA N F F NO GOAL 

CONSIDERED 
ZERO 

6 OA F N F NO GOAL 

CONSIDERED 
NEGATIVE 

7 OA N F N NO GOAL 

CONSIDERED 
ZERO 

8 OA N F N NO GOAL 

CONSIDERED 
POSITIVE 

9 TS F N F NEGATIVE NEGATIVE 

10 TS N F N NEGATIVE ZERO 

11 TS N F N POSITIVE ZERO 

12 TS F F N NEGATIVE ZERO 

13 TS F F F POSITIVE POSITIVE 

14 OA N N M NO GOAL 

CONSIDERED 
NEGATIVE 

15 TS N F M POSITIVE ZERO 

16 TS N M F POSITIVE POSITIVE 

17 TS N M N  NEGATIVE ZERO 

18 TS F N M NEGATIVE NEGATIVE 

19 TS M F N POSITIVE POSITIVE 

20 TS F M N POSITIVE POSITIVE 

21 TS F M N NEGATIVE ZERO 
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 Table 4.2 Parameters setting for training variables. 

Left Obstacle Distance (LOD)  

2cm to 10cm Front Obstacle Distance (FOD) 

Right Obstacle Distance (ROD) 

Heading Angle (HA) 30  to 30  

Steering Angle (SA) 90  to 90   

  

Table 4.3 Brief description of various reactive behaviours adopted by the Robot. 

Types of reactive 

behaviours 

Definition of the reactive 

behaviours 

Robot in action 

Obstacle Avoidance 

(OA) 

When a mobile robot is 

sensing any obstacle in front, 

left or right side. This 

behaviour is required to avoid 

hitting with an obstacle. 

The mobile robot set the 

steering angle accordingly 

by adjusting the speed. 

Target Seeking (TS) 

When a robot is directly 

sensing a target, and no 

obstacles are present around 

the robot, its main behaviour is 

to seek for the target. This 

behaviour is required to trace 

the target.  

 

The mobile robot adjusts 

its steering angle and 

moves quickly towards the 

target.   

Barrier Following 

(BF) 

When a mobile robot is 

searching a target, and it meets 

an obstacle (long Barrier) in 

front of it or having a barrier 

to the left or right hand side. In 

this condition, the robot has to 

follow the barrier to get the 

target successfully.   

The mobile robot controls 

its speed and fixes a 

constant heading angle 

towards the barrier. The 

robot moves parallely with 

the barrier to trace the 

target successfully. 
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4.4   Demonstrations of the ANFIS Navigational Controller 

The proposed navigation technique has been deployed in both simulation as well as real 

time experimental scenario in different environments. The simulation results are carried 

out with the help of MATLAB [228]. The size dimension of simulation platform in 

MATLAB is considered as 30x30 units and each unit is equal to 2mm. A real time 

experimental environment has been set-up in the laboratory containing static obstacles as 

well as a static target to validate the simulation results. Finally, the effectiveness of 

ANFIS navigational controller is analyzed, discussed and compared for the path 

optimization problem.   

4.4.1   Simulation Results  

 

      

The navigation problem for the mobile robots is generally decomposed into three main 

behaviors (sub-problems); target seeking, obstacle avoidance and barrier following. 

The analysis of simulation results of the proposed navigation strategy are shown in Figure 

4.8 to Figure 4.13. The average of 20 runs has been taken into consideration for each 

simulation and the best results have been shown in the graphical mode. When the sensors 

detect obstacles in the front, this means that any sensor readings are less than the 

threshold value , then the obstacle avoidance behaviour is activated for the mobile robot 

Figure 4.8 Obstacle avoidance behaviour shown by the robot using ANFIS. 
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to avoid collisions with obstacles as shown in Figure 4.8. The obstacle avoidance 

behaviour has given high priority compared to the other main behaviours.   

The barrier following behaviour is usually introduced when a robot detects a barrier in 

front of it and the target is presented opposite site of the barrier as shown in Figure 4.9. In 

case of a U-shaped obstacle or dead end situation, the goal is presented to the back side of 

the obstacle. In this condition, using barrier following behaviour the robot is moving 

along the barrier to escape the U-shaped obstacle and to reach the goal successfully. 

When the robot doesn’t find any obstacles around it, the main behaviour is to go for target 

seeking. The proposed ANFIS path planner mainly controls the robot motion direction 

and helps approaching towards to the goal if there is no obstacle present around the robot 

as shown in Figure 4.10. The robot must have multiple reactive behaviors, such as 

avoiding obstacles, following barriers, and seeking for the target and so on, according to 

the acquired sensor informations, until it reaches a definite target. In the proposed 

navigation strategy, the reactive behaviours are designed and trained by ANFIS. 

The navigation path of mobile robots using ANFIS methodology and escaping from the 

narrow passage and the dead end are shown in Figures 4.11, and 4.12 respectively. Figure 

4.13 shows a single robot navigating inside a maze environment.  

 

 

 

 

 

Figure 4.9   Barrier following behaviour shown by the robot using ANFIS. 
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Figure 4.11 Single robot escaping from a narrow passage using ANFIS. 

Figure 4.10 Target seeking behaviour shown by the robot using ANFIS. 
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     Figure 4.13 Single robot navigating inside a maze environment to reach 

                            target using ANFIS. 

Figure 4.12  Single robot escaping from a trap situation to reach target using 

ANFIS. 
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4.4.2   Experimental Validation with Real Mobile Robot 

In order to demonstrate the effectiveness of the ANFIS navigational controller in a static 

environment, the simulation results are verified with real time experimental results. We 

have implemented the ANFIS navigation algorithm on an actual mobile robot. The 

mobile robot has the dimension (30cmx25cmx10cm) with two fixed standard wheels, and 

has differential wheel drives developed in our laboratory. The real time experiments are 

carried out on a platform of size 225cmx175cm.The mobile robot is equipped with a ring 

of three infrared sensors, three ultrasonic sensors and wheel encoders. A brief description 

of the mobile robot developed in the laboratory is given in Appendix-A. The mobile robot 

is tested through extensive experiments in various environments with a fixed start point 

and target position. Real time experiments are conducted on the robot to demonstrate the 

effectiveness of the proposed ANFIS navigation system. It can be clearly seen that the 

mobile robot always tries to go towards the target position if there are no close obstacles. 

If it faces any obstacle, then slows down its motion and adjusts steering direction as per 

the ANFIS strategy to perform the obstacle avoidance behaviour. Figure 4.14(a-f) shows 

the experimental results obtained for the similar simulation environment depicted in 

Figure 4.11. Similarly, Figure 4.15(a-f) shows experimental results carried out in a similar 

simulation result as shown in Figure 4.13. It is clearly observed that the proposed 

algorithm endows the mobile robot with ability to response quickly the static 

environment. Table-4.4 and Table-4.5 show a comparison between the path covers and 

time taken by the robot in simulation and practical modes of obstacle avoidance and 

target seeking. During practical tests, it has been observed that the path covers and time 

taken by the robot to reach the target are more than the simulation path lengths and time 

taken. This happens due to of various errors (e.g. obstacle/ target tracking  error, presence 

of friction in rotating elements, signal transmission error in data-cable,  slippage between 

floor and wheels, friction between supported point and floor etc.). Figures given in the 

table are the averages of five practical tests on each environmental scenario, and best 

results are shown in the experimental Figures 4.14 and 4.15. 
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  Figure 4.14 (a)                                           Figure4.14 (b) 

     

Figure 4.14 (c)                                           Figure4.14 (d) 

     

                          Figure 4.14 (a)                                               Figure4.14 (b) 

   

  

Starting position 

Target position 

Path framed by the robot 

X 

Y 

Figure 4.14 (a-f) Experimental results for navigation of mobile robot in the 

environment shown in Figure 4.11. 
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Figure 4.15 (a)                                           Figure4.15 (b) 

    

Figure 4.15 (c)                                           Figure4.15 (d) 

    

 Figure 4.15 (e)                                          Figure 4.15 (f) 

 

 

Path framed by the robot 

Starting position 

Target position 

 

X 

Y 

Figure 4.15 (a-f) Experimental results for navigation of mobile robot in the     

environment shown in Figure 4.13. 
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   Table 4.4  Path length covered by the robot in simulation and experimental test to reach 

the target. 

 

Sl No. 
Path length in simulation 

(‘cm’) 

Path length in real 

time test (in ‘cm’) 
% of error 

Scenario-1 165.08 (Fig. 4.11) 175.29 (Fig. 4.14 f) 6.18 

Scenario-2 159.12 (Fig. 4.13) 169.19 (Fig. 4.15 f) 6.33 

   

    Table 4.5 Time taken by the robot in simulation and experimental test to reach the 

target. 

Sl No. 
Time taken in simulation 

(in ‘sec’) 

Time taken in real 

time test (in ‘sec’) 
% of error 

Scenario-1 16.90(Fig. 4.11) 17.96(Fig. 4.14 f) 6.27 

Scenario-2 15.15(Fig. 4.13) 16.02(Fig. 4.15 f) 5.74 

 

4.4.3  Comparison of the Developed ANFIS Navigational Controller with 

other Models 

      In this section a comparative study has been carried out for the developed ANFIS 

controller in simulation mode with Obe et al. [84] and Zhang et al. [148] for the single 

robot. We have replicated the environment as demonstrated by the authors. In this 

replicated environments, the robot moves from the starting position to the target position 

with the help of ANFIS controller. After successful completion of the navigational task 

from starting point to the target point, it has been compared with the path as illustrated by 

the authors. The effectiveness of the comparative study is mainly measured on the basis 

of the path length. The comparative simulation results are presented in Figures 4.16 and 

4.17 respectively. The size dimension of simulation platforms are considered as no. of 

units and each unit is in millimeter (mm).   
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Figure 4.16 (a) Navigation path framed for single mobile robot to reach target  

                        by Obe et al.[84]. 

 

Figure 4.16 (b) Navigation path framed for single mobile robot to reach target using 

 developed ANFIS technique. 
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Figure 4.17 (a) Path framed for single mobile robot to reach target by Zhang et al. [148]. 

 

 Figure 4.17(b) Path developed for single mobile robot to reach target using 

 current investigation. 
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       In the first comparison study both the path planners are employed in a complex 

environment. In this condition, the robot cannot sense the target directly due to the 

presence of the long barrier between them. From the simulation results shown in Figure 

4.16 (a), it can be observed that the navigational controller developed by Obe et al. [84] 

has a greater robot steering angle and prescribed a zigzag like the path for the similar 

environment. This difficulty has been taken care in the current investigation and 

presented in Figure 4.16 (b).   

      In the second case both the motion controllers are deployed in a situation like a dead 

end problem. The path proposed by Zang et al. [148] as shown in Figure 4.17 (a), the 

robot got trapped in the U-shaped scenario, and then it has relieved from the trap 

condition by taking a long loop and reaches the target. The path framed by the robot using 

the current method is shown in Figure 4.17 (b). Here the robot is initially heading towards 

the dead end and due to the additional sensor extracted information provided by the 

proposed path planner, the robot can capable of handling the situation. Finally, it reaches 

the target by maintaining a safe distance from the obstacle. The performance of the 

comparison study is mainly measured in terms of path length and tabulated in Table 4.6.  

  Table 4.6 Comparison of simulation results in terms of path length. 

Sl 

No. 
Environment types 

Path length from 

current system 

(in ‘cm’) 

Path length of 

reference 

model 

(in ‘cm’) 

% of 

deviation 

1 

Complex environment 

with different 

obstacles Figures 

4.16(a) and (b) 

12.3 14.1 12.77 

2 
U-Shaped 

environment 

Figures 4.17(a) and (b) 

15.3 17.2 11.05 
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4.5 Architecture of Multiple Adaptive Neuro-Fuzzy Inference System 

(MANFIS) for Mobile Robot Path Planning 

A new navigation model based on the neuro-fuzzy technique has been proposed in this 

section of the thesis. There are four inputs (Front obstacle distance (FOD), Right obstacle 

distance (ROD), Left obstacle distance (LOD) and Heading angle (HA)) and two outputs 

(Left wheel velocity (LWV) and Right wheel velocity (RWV)). This model consists of 

five layers, i.e. fuzzification layer, product layer, normalized layer, rule layer, and output 

layer as shown in Figure 4.18, which are already being discussed in the ANFIS 

navigational controller.  

The objective of the MANFIS path planner is to predict the left and right wheel velocity 

of the mobile robot. At first, we develop an adaptive fuzzy controller with four input 

parameters i.e   Front obstacle distance (FOD) (X1), Right obstacle distance (ROD) (X2), 

Left obstacle distance (LOD) (X3) and Heading angle (HA) (X4) and two output 

parameters i.e. Left wheel velocity (LWV) fLWV and Right wheel velocity (RWV) fRWV. 

Here we consider each input variable have three bell membership functions (MF) or 

linguistic variables A1(Near), A2(Medium) and A3(Far), B1(Near), B2(Medium) and 

B3(Far), C1(Near), C2(Medium) and C3(Far), D1(Negative), D2(Zero) and D3 respectively; 

The Takagi-Sugeno-type fuzzy inference system IF-THEN rules are defined for left 

wheel velocity and right wheel velocity  as follows: 

IF(x1 is Ai and x2 is Bi and x3 is Ci and x4 is Di) 

THEN (wheel velocity)(fn) = pnx1+qnx2+rnx3+snx4+un                                                 (4.10) 

A, B, C and D are the fuzzy membership sets of the input variables x1, x2, x3 and x4 

respectively.  

Where, i=1,2,3 and pn, qn, rn, sn, and un are the linear or consequent parameters of 

function fn and changing these parameters we can control the output of the ANFIS 

controller. 

Here, in the fifth layer first node is the first output for left wheel velocity (LWV) and the 

second node is the second output for right wheel velocity (RWV). From the wheel 

velocity the steering angle of the mobile robot can be computed by the following 

equation, 

Steering angle  ' LWV RWVf f

w



                                                                                 (4.11) 



 

74 

where fLWV  and fRWV are the left and right wheel velocities and w is the wheel base or 

distance between the two wheels. If fLWV > fRWV, the steering angle is in a clockwise 

direction and if fLWV < fRWV, the steering angle is in a counterclockwise direction and if 

fLWV = fRWV, then there will be straight motion. The computed steering angle is used for 

driving the robot. Examples of training pattern for proposed MANFIS controller are given 

in Table-4.7. The parametric values of training data are presented in Table-4.8.  

 

 

 

 

 

Figure 4.18 Proposed MANFIS navigational controller for current investigation. 
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[OA: Obstacle avoidance, BF: Barrier following, Med: Medium, TS: Target seeking, HA: 

Heading Angle, LWV: Left wheel velocity, RWV: Right wheel velocity] 

 

                          Table-4.8 Parameters setting for training variables.  

Left Obstacle Distance (LOD) 
 

2cm to 10cm 
Front Obstacle Distance (FOD) 

Right Obstacle Distance (ROD) 

Heading Angle (HA) 30  to 30   

Left Wheel Velocity (LWV) 0 to 0.3 m/s 

Right Wheel Velocity (RWV) 0 to 0.3 m/s 

 

 

 

SL. No. BEHAVIOUR LOD FOD ROD HA LWV RWV 

1 OA Near Near Near Zero Slow Slow 

2 OA Near Near Med Negative Slow  Med 

3 OA Near Near Far Zero Fast Slow 

4 OA Near Med Near Negative Slow Slow 

5 OA Near Med Med Positive Fast Med 

6 OA Near Med Far Positive Med  Slow 

7 OA Near Far Near Zero Slow Slow 

8 OA Near Far Med Negative Fast Med 

9 OA Near Far Far Positive Fast Slow 

10 OA Med Near Near Negative    Med Fast 

11 BF Near Med Med Negative Slow Slow 

12 BF Far Near Med Zero Med Slow 

13 TS Far Far Far Zero  Fast Fast 

14 TS Far Far Med Positive Slow Med 

15 TS Far Med Far Negative Med Fast 

16 TS Med Far Far Zero Fast Fast 

17 TS Far Far Far Positive Fast Med 

18 TS Far Far Med Negative Med Fast 

 Table-4.7 Examples of training pattern for MANFIS navigational controller. 
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4.6   Demonstrations of the MANFIS Path Controller 

The proposed navigation model has been tested in simulation with different 

environmental scenarios. The experimental verification has been carried out with a real 

robot to verify the efficacy of the navigation model. Finally, the results obtained from the 

MANFIS path planner have been compared with other intelligent techniques.  

4.6.1   Simulation Results and Discussion 

In the following simulation investigations shown in Figures 4.19 to 4.22, the mobile 

robot’s task is to travel from the source position to the target position in an unknown 

environment using MANFIS navigational algorithm. If there is no obstacle present in the 

target path, that means the path towards the goal is clear, then the robot moves at its 

maximum velocity to reach the goal. The speed of the robot is reduced using MANFIS 

strategy, only where the robot is heading towards the obstacle. The barrier following 

behaviour is shown by the robot in Figure 4.19. Figure 4.20 shows, how the robot reaches 

the target by avoiding obstacles. The simulation results presented in Figures 4.21 and 

4.22, show the effectiveness of the new hybrid navigation model with dealing with 

various scenarios such as corridor following and maze like environments.  

 

 

             

 

Figure 4.19 Obstacle avoidance and Barrier following behaviour shown by the single      

robot using MANFIS technique. 
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Figure 4.21 Single robot following a corridor to reach at target  

                           using MANFIS technique. 

Figure 4.20 Target seeking behaviour shown by the single robot  

                   using MANFIS technique. 
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4.6.2   Experimental validation with Real Mobile robot  

After satisfying the simulation results, the proposed navigation system has been 

implemented and tested in our laboratory experimental platform of dimension 225cm 

x175cm. The details regarding experimental analysis have been discussed in the previous 

chapter (in section 4.4.2). To show the effectiveness and feasibility of the developed 

hybrid system, the simulation results are validated against experimental results and 

illustrated in Figures 4.23 and 4.24 respectively. The performance of the validation has 

been measured in terms of path length and time taken by the robot to reach the target, and 

it is tabulated in the Tables 4.9 and 4.10 respectively.  

 

 

 

Figure 4.22 Single robot navigating inside a dense environment to reach at target using      

MANFIS technique. 
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  Figure 4.23(a)                                               Figure 4.23(b)  

 

  

Figure 4.23(c)                                               Figure 4.23(d) 
 

     

Figure 4.23(e)                                               Figure 4.23(f) 
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Figure 4.23 (a-f) Experimental results for navigation of mobile robot 

in the environment shown in Figure 4.21. 
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  Figure 4.24(a)                                               Figure 4.24(b) 

     

  Figure 4.24(c)                                               Figure 4.24(d) 

     

Figure 4.24(e)                                               Figure 4.24(f) 
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Figure 4.24 (a-f) Experimental results for navigation of mobile robot in 

                           the environment shown in Figure 4.22. 
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Table 4.9 Path length covers by the robot in simulation and experimental test to reach the 

target.  

Sl No. 
Path length in simulation 

(‘cm’) 

Path length in real 

time test (in ‘cm’) 
% of error 

Scenario-1 108.36 (Fig. 4.21) 115.33 (Fig. 4.23 f) 6.43 

Scenario-2 182.98 (Fig. 4.22) 195.02 (Fig. 4.24 f) 6.58 

 

Table 4.10 Time taken by the robot in simulation and experimental test to reach the 

target. 

 

Sl No. 
Time taken in 

simulation (in ‘sec’) 

Time taken in real 

time test (in ‘sec’) 
% of error 

Scenario-1 11.23(Fig. 4.21) 12.01 (Fig. 4.23 f) 6.94 

Scenario-2 17.43(Fig. 4.22) 18.65 (Fig. 4.24 f) 6.99 

 

 

4.6.3   Comparison of the Design MANFIS Navigational Controller with other 

Models 

      In this part, a comparative study has been carried out from the developed MANFIS 

approach with results proposed from the other techniques. The simulation study has been 

performed to show the performance of the proposed hybrid system. The size dimension of 

simulation platforms are considered as no. of units and each unit is in millimeter (mm). 

         In the first comparative study, the proposed MANFIS navigational controller has 

been implemented in an environment shown in Figure 4.25(a). It has been noticed that 

using the developed method the robot covers a shorter path compared to the result 

proposed by Shi et al.[116]. However, it can be seen from the Figure 4.25(a) that the 

fuzzy-neural method proposed by author produces a smoother path to reach the goal, but 

it doesn’t guarantee a shorter compared to the MANFIS technique results shown in Figure 

4.25(b). 

         In the second comparative study, the developed hybrid path controller has been 

applied in a similar environment as stated by the Mo et al.[87]. They used the fuzzy 

behaviour based navigational controller to navigate the robot safely in very small gaps as 

illustrated in Figure 4.26(a). From the simulation result, it is clearly seen that where the 

robot is making turns, there are some instances where the mobile robot closer to an 

obstacle than the required safe distance. This problem has been taken care of by the 
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proposed hybrid algorithm and depicted in the Figure 4.26(b). The effectiveness of both 

comparative studies has been measured on the basis of path length and tabulated in Table-

4.11. A comparative study has been carried out between ANFIS and MANFIS navigation 

systems in terms of path lengths to demonstrate the effectiveness of the path planner and 

tabulated in Table-4.12. 

                       

 

 
          

 

Figure 4.25 (a) Navigation path framed for a single mobile robot to reach target by       

Shi et al. [116]. 

 

Figure 4.25 (b) Navigation path framed for a single mobile robot to reach target using 

developed MANFIS method. 
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Figure 4.26 (a)  Navigation path framed for a single mobile robot to reach target 

by Mo et al. [87]. 

 

Figure 4.26(b) Navigation path framed for a single mobile robot to reach goal using 

                          developed MANFIS method. 
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Table 4.11  Comparison of results in terms of path length. 

Sl 

No. 
Environment types 

Path length from 

current system 

(in ‘cm’) 

Path length of 

reference 

model (in‘cm’) 

% of 

deviation 

1 Complex environment 

with long obstacles 

Figures 4.25(a) and 

4.25(b) 

7.6 8.8 13.64 

2 Maze environment 

Figures 4.26(a) and 

4.26(b) 

7.9 9.3 15.05 

 
 

Table 4.12  Comparison of ANFIS and MANFIS results in terms of path length. 

Sl 

No. 
Environment types 

Path length using 

ANFIS system 

(in ‘cm’) 

Path length 

using MANFIS 

model (in‘cm’) 

%of 

deviation 

1 Scenario-1 6.34 6.61 4.08 

2 Scenario-2 8.30 8.59 3.37 

3 Scenario-3 7.78 8.10 5.18 

4 Scenario-4 10.25 10.49 2.28 
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4.7  Summary  

      This chapter has described the implementation of ANFIS and MANFIS techniques for 

the mobile robot navigation.  

The following salient features are drawn based on the simulation and experimental results 

using ANFIS technique. 

 The developed novel ANFIS navigational controller has been successfully used to 

control the robot in a highly cluttered environment. 

 With the help of this proposed navigation system, the robots are able to perceive the 

environment condition and reach the goal successfully. 

 In the simulation results, it clearly observed that various reactive behaviours such as 

obstacle avoidance, barrier following and target seeking have been performed by the 

proposed navigational controller. 

 A series of practical tests have been carried out with a real developed robot to show 

the efficacy and effectiveness of the proposed navigation algorithm. They are found 

to be in good agreement. The percentages of errors are found to be within 7% for 

both path length and time taken for the robot to reach the target and tabulated in 

Tables 4.4 and 4.5 respectively. 

 A comparative study is carried out between the performance of the proposed 

navigation and those of obtained by authors [87, 116] in simulation mode. It has been 

observed that the proposed navigation method provides better results compared to 

other techniques. The performance of the comparison study is mainly measured in 

terms of path length and tabulated in Table 4.6. 

The following conclusions are drawn on the basis of simulation and experimental results 

using MANFIS methodology.  

 The proposed methodology has been successfully implemented for solving the 

navigational problem of a mobile robot in an unknown or partially known static 

environment.  

 The efficacy of the proposed navigation technique has been demonstrated through 

various exercises. During experimentation, it has been observed that the proposed 

path planner has the ability to avoid obstacles in a cluttered environment.  

 The real time experimental tests have been performed to validate the developed 

navigation system. The percentages of errors are found to be within 7% for both path 
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length and time taken for the robot to reach the target and tabulated in Tables 4.9 and 

4.10 respectively. 

 A comparative graphical study has been demonstrated to find out the effectiveness of 

the proposed navigational controller and percentage of deviation is shown in the 

Table-4.11.  

 Finally, it has been inferred that the proposed path planning system produce closer 

results to the ANFIS navigation system.  

In the consequent chapters Cuckoo search algorithm and Invasive weed optimization 

algorithm have been investigated and examined as standalone methods. These algorithms 

are then combined and hybridized with ANFIS to produce better navigational controller 

for mobile robots. 
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5. ANALYSIS OF CUCKOO SEARCH ALGORITHM FOR 

NAVIGATION OF MOBILE ROBOTS 

        

    This chapter presents the analysis of a navigational controller for solving the path 

planning problem of the mobile robot based on the Cuckoo search (CS) algorithm. The 

new novel technique is implemented in path optimization problem of the mobile robot. 

This nature inspired metaheuristic algorithm is analyzed and applied to the real robot in 

order to get the effective path planning.  

5.1   Introduction 

Nowadays, there are so many nature inspired metahuiristic algorithms used in various 

areas of science and engineering. Metahuiristic approaches such as Genetic algorithm, 

Evolution strategies and Differential evolution are usually bio-inspired and don’t expose 

the drawbacks of the classical techniques (Linear programming and Non-linear 

programming). In recent times, most popular nature-inspired meta-heuristic algorithms 

such as Genetic Algorithm (GA), Simulated Annealing (SA), Ant Colony Optimization 

(ACO), Firefly Algorithm (FA) and Particle Swarm Optimization (PSO) have been 

applied for path planning of mobile robots. Most of these meta-heuristic algorithms are 

inspired and mimicked from successful features of the biological, physical or sociological 

systems. These methods have gained acceptance because of their ability and efficiency of 

searching for an optimal solution in a defined problem space. The analysis and 

development of navigational algorithms for a mobile robot in an unknown environment 

densely cluttered with obstacles is one of the major issues in the robotics field. In this 

current investigation, CS algorithm has been implemented for the mobile robot path 

optimization problem. An effective navigational algorithm has been designed using CS 

algorithm, which will steer the mobile robot safely from the source point to the 

destination point with covering the minimum path and shortest possible time. The 

distance between the robot position to obstacles and target are commonly adopted 

criterion for the proposed algorithm. The CS algorithm can optimize the above criterion 

for the robot during navigation. 
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5.2   Overview of Cuckoo Search Algorithm 

In 2009, Yang and Deb [193] introduced an efficient Cuckoo search (CS) algorithm, and 

it has been seen that CS is more effective than the other existing metahuiristic algorithm 

including Particle swarm optimization (PSO). The CS algorithm is inspired by the brood 

parasitism of some cuckoo species. In nature, cuckoos use an aggressive reproduction 

strategy that includes the female laying their eggs in the nests of other birds. If the eggs 

are discovered by the host birds, they may abandon the nest completely or throw away the 

alien eggs. This phenomenon of evolving to best lay parasitic eggs is the essence of the 

cuckoo search algorithm.  

For the implementation of CS method Yang and Deb [193] have used following three 

idealized rules [192]: 

 Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest. 

 The best nests with the high quality of eggs (solutions) will carry over to the next 

generations. 

 The number of available host nests is fixed, and a host can discover an alien egg with 

a probability  0,1aP  . In this case, the host bird can either throw the egg away or 

abandon the nest so as to build a completely new nest in a new location. 

For simplicity, this last rule can be approximated by a fraction aP  of ‘n’ nests being 

replaced by the new nests (with new random solutions at new locations). Pseudo code of 

CS algorithm is presented in Figure 5.1.  

When generating new solutions  ( 1)tX   for, say cuckoo I, a levy flight random walk is 

performed. A levy flight [226] is used for performing effectively both local and global 

searches in the solution space and the steps are distributed in terms of step lengths 

according to a heavy tailed probability distribution. In levy flight, the random walk is 

distributed according to the power law that is 

y x                                                                        (5.1) 

where 1<β<3 and therefore has an infinite variance. 

For the present problem, we used the simplest approach where each nest has only a single 

egg. The following equation number (5.2) is used to produce a new solution ( 1)tX  , for a 

cuckoo I, by a levy flight: 

( 1) ( ) ( )t t

i iX X levy                                                               (5.2) 
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where α>0 is the step size which should be related to the scales of the problem of interest. 

In most of the cases, we can use α= 1. The product means entry wise multiplication. 

This entry wise product is similar to those used in PSO, but here the random walk via 

Levy flight is more efficient in exploring the search space, as its step length is much 

longer in the long run. 

 

 

 

 

                                               

 

 

 

Figure 5.1 Algorithm of Cuckoo search. 

Objective function ( ),f x  1 2( , ,...... )T
dx x x x  

Generate initial population of n host nests  ( 1,2,.........n)ix i   

while (t<Max Generation) or (Stop criterion) do 

Get a cuckoo randomly by Levy flights 

Evaluate its quality/fitness iF  

Choose a nest among n (say j) randomly 

If ( )i jF F  then 

replace j by the new solution 

end 

A fraction (pa) of worse nests are abandoned and new ones- are built 

Keep the best solutions (or nests with quality solutions) 

Rank the solutions and find the current best 

End while 

Post process results and visualization 

End 
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5.3   Problem Formulation for Robot Path Planning with CS Algorithm 

      The shortest/optimal path planning is essential for efficient operation of autonomous 

vehicles. In this chapter a new nature inspired meta-heuristic algorithm has been applied 

for mobile robot path planning in an unknown or partially known environment populated 

by variety of static obstacles.  

The path planning problem is one of the most fundamental issues in the robot navigation 

field. CS algorithm is a new optimization concept which broadly falls under meta-

heuristic evolutionary computation techniques. The objective of the problem considered 

in the section is robot path planning in a partially or totally unknown environment 

populated by a variety of static obstacles. If the robot moves in an environment with 

unknown obstacles, it is essential to detect and avoid obstacles as the robot moves 

towards the target. Based on the sensory information about the target and obstacles, we 

adopt the CS algorithm to solve it. First, we have transformed the navigation problem into 

a minimization problem and formulated an objective function equation based on the 

position of the goal and the obstacles present in the unknown environment. The objective 

function satisfies the conditions of obstacle avoidance and target seeking behavior of 

robot present in the terrain. Depending on the objective function value of each nest 

(cuckoo) in the swarm, the robot avoids the obstacles and proceeds towards the target. 

Here, we have implemented the CS algorithm to solve the above path optimization 

problem. During this process of result and visualization, the locations of the globally best 

nest (cuckoo) in each iteration are chosen and robot moves to these locations in the series. 

When the robot does not detect any obstacles in its target path, then it will travel directly 

towards its destination. Then it is not necessary to implement any intelligence computing 

technique to travel the robot within its environment. The developed flow chart diagram 

for the current analysis is given in Figure 5.2. 
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Yes 

Robot proceeds…. towards the target 

 Implement CS algorithm 

Generate initial population of host nests 

 Calculate the current best location for each nest 

Yes 

No 

No 

Calculate global best location for nest from swarm according 

to function values of each nest 

 Start/Sensing 

Is there any obstacle 

on the target path? 

Abandon a fraction of worse nest and build 

new ones at new position via levy flights 

Has the robot  

reached 

at target? 

     End/Stop 

Robot proceeds… towards the global best nest 

location 

            Figure 5.2  Flow chart represented for the proposed navigation system  

using CS algorithm. 



 

92 

5.3.1   Formulation of the Objective Function using the CS Algorithm 

      Let the robot is at start point (A) and moves to the goal point (B) in the environment 

as shown in Figure 5.3. The line A to B is the desired route for the robot to reach the 

target with the optimal path length. The robot has to reach the target while avoiding 

obstacles present in the environment. When the robot reaches near the obstacles, its 

sensors detects obstacles. Then the CS algorithm will be activated to avoid the obstacles 

present in the desired target path. Note that whenever an obstacle falls within the 

periphery of the robot sensing range, the CS algorithm will be initiated to find the best 

nest position for the robot (according to objective function value) to avoid collisions with 

obstacles present in the target path. Each solution in the problem space is associated with 

a numeric value. In the CS algorithm, a nest egg of the best quality (chance of producing 

cuckoo chick) will lead to a new generation. Therefore, the quality of a cuckoo’s egg 

(new cuckoo) is related to the optimized path length of the robot. As explained in the 

above meta-heuristic optimization problem, each step to be moved by the robot is 

calculated based on the distance between the positions of the nests (cuckoo) to the goal 

and the obstacles present in the unknown environment. 

 

 

 

 

 

 

 

 

Figure 5.3 Activation of CS Algorithm. 

Starting point of the Robot 

A 

B 

(XR,YR) 

Target 

(XG,YG) 

OBSTACLE 

ROBOT SENSING RANGE 

Activation of CS algorithm 

(Initialization of Nests) 



 

93 

In general, the robot path planning mainly depends upon the following two behaviors,  

a) Obstacle avoidance behavior 

The obstacle avoidance behavior is used to avoid hitting with obstacles (such as 

walls) present in the environment. The position of the best nest (cuckoo) should have 

kept up the maximum safe distance from the nearest obstacle. The Euclidean distance 

between the best nest and nearest obstacle is calculated by the following equation in 

terms of objective function as follows:  

   
2 2

( .)
i iN OB OB N OB NDist x x y y                                                    5.3 (a)    

where, xNi and yNi are the nest (cuckoo) position at x and y coordinates. (Dist.)N-OB is the 

Euclidean distance from the nest (cuckoo) to the nearest obstacle.   

Note: The nearest obstacle to the robot can be calculated by the following expression: 

   
2 2

( .)
n nR OB OB ROB OB ROBDist x x y y                                                                  5.3(b) 

b) Target seeking behavior 

In its simplest form, the move to target behavior can express the desire to move to a 

specific robot position. The position of the best nest (cuckoo) should have kept up the 

minimum distance from the goal. The Euclidean distance between the nest and goal is 

calculated by the following equation in terms of objective function as follows: 

   
2 2

( .)
i iN G G N G NDist x x y y                                                   5.3(c) 

where, xG and yG are the goal position at x and y coordinates. (Dist.)N-G is the minimum 

Euclidean distance from the nest (cuckoo) position to the robot.  

Based on the above two important behaviors of the robot, the objective function of the 

each nest for the path optimization problem can be expressed as follows: 

d
j d

i 1 2 N -G

N -OB
OB OB

1
Objective function (f )= C . +C . Dist

Distmin
∈

                                (5.4) 

Based on the above-discussed objective function, here we assumed that the ‘n’ number of 

obstacles are present in the environment, and we represent them as OB1, OB2, OB3 … 

OBn, their center coordinates are (xOB1,yOB1), (xOB2,yOB2), (xOB3, yOB3)… (xOBn, yOBn). Due to 

threshold of the robot sensor, in each move it can recognize a number of obstacles present 

in the environment and number of obstacles being recognized by the robot sensor in some 

stage are represented as OBd Є{OB1, OB2, OB3, …OBn}. It can be seen from the objective 
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function that when Ni is nearer to the goal, the objective function value of  
N - G

Dist  will be 

reduced and when Ni is away from the obstacles, the objective function value of  

j

j d

N - OB

OB ÎOB

min Dist  will be large. So from the above discussions, we have concluded that path 

planning problem for mobile robot solved by CS algorithm is a minimization one. 

The objective of the CS algorithm is to minimize the objective function (fi). When a robot 

falls in an obstacle sensing range, obstacle avoidance behavior based on the CS algorithm 

is activated to find the best position for the nest (Cuckoo). From equation no. (5.4), it can 

be clearly observed that the nest or cuckoo having minimum objective function value can 

be the best nest (cuckoo) in the swarm and the corresponding nest is maintaining the 

maximum distance from the nearest obstacle and minimum distance from the target. The 

selection of best nest (cuckoo) will continue for several iterations until the robot avoids 

obstacles or reaches its target. 

From the objective function equation, it can be clearly understood that the controlling or 

fitting parameters C1 and C2 have influence on the robot trajectory. When C1 is large, the 

robot will be far away from the obstacles if it is less there will be a chance to hit with 

them. Other side, when C2 is large, the robot has a great potential to move to the goal, 

resulting in the path length being short, otherwise it will be large. The proper selection of 

the controlling parameters may result in faster convergence of the objective function and 

elevation of the local minima point. In this work, we have chosen the controlling 

parameters by the trial and error methods. 

 

Steps of CS algorithm for Mobile Robot Navigation: 

Step 1: Initialize the start and goal position of the robot. 

Step 2: Proceeds the robot towards the goal until it will be stuck by an obstacle. 

Step 3: When the target path is obstructing by an obstacle, implement the CS algorithm. 

Step 4: Generate the initial population of host nests, each representing one trial solution 

of the proposed optimization problem.  

Step 5: Calculate the current best nest and then find the global best nest in the swarm by   

equation no. 5.4. 

Step 6: Abandon the worse nest and built the new nest by Levy flight (equation no. (5.2). 

Step 7: Proceed the robot towards the best nest position. 

Step 8: Repeat the steps 2-7 until the robot avoids obstacles or reaches its goal. 
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5.4   Demonstrations of the CS based Path Planner 

The proposed CS based path planner has been employed in both simulations as well as 

real time experimental scenario with partially or totally unknown environments. The 

simulation results are conducted using MATLAB [229] processing under Windows XP. 

All simulation results are conducted on PC with Intel core2 Duo processor running on 

3.0GHz, 4GB RAM and a hard disk of 160GB. A real time experimental environment has 

been set-up in the laboratory containing static obstacles as well as a static target to 

validate the simulation results. Finally, the effectiveness of the CS based path planner is 

analyzed, discussed and compared for the path optimization problem. 

5.4.1   Simulation Result and Discussions 

The navigation workspace for a collision free motion and obstacle avoidance of a single 

robot with the single target has been shown in Figure 5.4. This exercise demonstrates that 

the robot reaches the target without colliding with obstacles and by following the shortest 

trajectory. It can be observed that the robot moves in a smooth trajectory from its start 

point to end point by maintaining a safe distance from the obstacles and finds the 

destination efficiently. In simulation graph, the red color path represents the path 

generated by using CS algorithm.  

The simulation result shown in Figure 5.5 involves a single robot escaping from a narrow 

passage using CS algorithm. It has been observed that the robot reached the target in an 

efficient manner without any collision with obstacles present in the unknown 

environment using CS technique. The CS path planner has been demonstrated for other 

cases of simulations shown in Figures 5.6 and 5.7 respectively. The parameter values 

considered for the proposed algorithm are given in Table 5.1.  

 

                         Table-5.1 (Parameters used in CS algorithm.) 

Parameters Values 

No. of Nests 10-50 

No. of Iterations 100-150 

Pa 0.05-0.3 

C1 0.1 to 1 

C2 0.01 to 0.0001 
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In the simulation experiments, we have tried to vary the no. of nests (population/nest size) 

n=10, 20, 30, 40, 50, 60 and 70 and mutation probability factor Pa = 0.1, 0.15, 0.2, 0.25 

and 0.3. From our simulation results analysis, it is clearly observed that at n=25-30 and 

Pa=0.25, good results are provided compared to the other conditions. The simulation 

results in different choice parameters in the CS algorithm (N and Pa) will affect the shape 

of the trajectory and are illustrated in Figures 5.8-5.10. The path length covered by the 

robots during simulation has been presented in Tables 5.2 to 5.4 respectively. In the 

simulation graph length of X and Y axes are considered as 40x40 units and each unit is 

equal to 2mm. 

 

 

  

                

 

 

  

 

 

 

 

 

 

Figure 5.4 Obstacle avoidance behaviour by a single robot using CS algorithm. 
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Figure 5.6  Single robot escaping from trap condition using CS algorithm. 

 

 

 

Figure 5.5 Single robot escaping from narrow end using CS algorithm. 
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Figure 5.8  Path generated for the mobile robot to avoid a wall at different  

values of N and Pa of CS algorithm. 

 

 

 

Figure 5.7  Single robot navigating in a highly cluttered environment to reach the 

                    target using CS algorithm. 
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Sl. No. Pa N 
Path length covered by the robot 

(in ‘cm’) 

Avoid Collision 

(Yes/No) 

1 0.05 10 6.88 No 

2 0.10 15 7.14 No 

3 0.30 25 7.80 Yes 

4 0.25 26                7.74 (optimal) Yes 

5 0.25 30 7.96 Yes 

6 0.25 33 8.01 Yes 

7 0.28 35 8.12 Yes 

8 0.27 37 8.09 Yes 

9 0.30 40 7.99 Yes 

10 0.30 45 8.44 Yes 

Table-5.2 Path length covered by the robot during simulation by considering   

different values of Pa and N. (shown in Figure 5.8) 

 

Figure 5.9  Path generated for the mobile robot to escape narrow condition at 

different values of N and Pa of CS algorithm. 
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Sl. No. Pa N 
Path length covered by the robot  

( in pixels) 

Avoid Collision 

(Yes/No) 

1 0.05 15 6.89 No 

2 0.15 18 6.86 No 

3 0.26 25                 6.73 (optimal) Yes 

4 0.29 25 6.65 No 

5 0.25 30 6.78 Yes 

6 0.25 33 6.80 No 

7 0.28 35 6.58 No 

8 0.26 36 6.84 Yes 

9 0.30 41 6.82 No 

10 0.30 45 7.01 No 

Figure 5.10  Path generated for the mobile robot in a maze environment at 

different values of N and Pa of CS algorithm. 

 

 

 

Table-5.3  Path length covered by the robot during simulation by considering     

different values of Pa and N. (shown in Figure 5.9) 
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5.4.2   Experiments with Real Mobile Robot 

To show the effectiveness of the proposed algorithm, a variety of real time experiments 

have been conducted using Khepra-III mobile robot and programming languages are used 

in MATLAB [228] and C++. MATLAB code is used to execute the path planning 

algorithm in simulation mode, and the C++ code is used to get the executable program 

during experimental analysis with a real robot. The experimental investigation has been 

carried out using an environment containing a variety of obstacles of different shapes and 

sizes. The mobile robot has 10 infrared sensors, and 5 ultrasonic sensors mounted around 

the front periphery in order to extract the information about the position of the obstacles 

and the target. The specification details of the Khepera-III mobile robot are given in 

Appendix-A. The proposed navigation algorithm is authenticated at following scenarios 

as shown in Figures 5.11 and 5.12 to show the effectiveness of the developed path 

planner. 

 

 

Sl. No. Pa N 
Path length covered by the robot 

(in pixels) 

Avoid Collision 

(Yes/No) 

1 0.05 10 8.02 No 

2 0.15 15 7.92 No 

3 0.29 25 6.67 Yes 

4 0.25 26                6.60 (optimal) Yes 

5 0.30 27 6.71 Yes 

6 0.25 30 6.64 Yes 

7 0.30 32 6.84 No 

8 0.25 33 6.69 Yes 

9 0.26 34 6.89 No 

10 0.28 35 6.95 No 

11 0.30 45 6.92 No 

Table-5.4  Path length covered by the robot during simulation by considering    

different values of Pa and N. (shown in Figure 5.10) 
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Figure 5.11 Experimental results for navigation of mobile robot in the environment  

shown in Figure 5.5. 

 

Figure 5.11 (f) 

 

Figure 5.11 (e) 

 

Figure 5.11 (d) 

 

Figure 5.11 (c) 

 

Figure 5.11 (b) 
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Figure 5.12 (a) 

 

Figure 5.12 Experimental results for navigation of mobile robot in the environment  

shown in Figure 5.6. 

 

Figure 12 (f) 

 

Figure 12 (e) 

 

Figure 12 (c) 

 

Figure 12 (d) 

 

Figure 5.12 (b) 
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Two different environmental conditions (Figures 5.5 and 5.6) which are already verified in 

simulation mode have been verified experimentally (Figures 5.11 and 5.12) to show the 

effectiveness and feasibility of the proposed navigational controller. The autonomous 

mobile robot decides its path in the shortest trajectory to reach the desired target by getting 

the optimized objective function values obtained from meta-heuristic based cuckoo search 

algorithm. The paths obtained from experiments follow closely to those traced by the 

robots during simulation mode. From the above experimental study, it can be clearly seen 

that the robot can indeed avoid obstacles and reach the destination successfully. It has been 

concluded by comparing the results of the simulation as well as experimental study that, 

the robot can follow the route by using the developed navigational algorithm for 

successfully reaching the destination without colliding with any obstacle present in the 

environment. The real time experimental analysis shows the effectiveness of the proposed 

navigational method. The performance of the current navigation system using CS 

algorithm has been checked on the basis of average path length (in‘cm’) and time (in‘sec’) 

taken by the robot to reach the target. For calculation of the path length and time taken, 

about 20 runs are considered for the proposed navigation system, which are presented in 

Tables 5.5-5.8 and the best results are presented in the simulation and experimental graphs. 

It has been noted that the average errors are found to be within 6% for both path length and 

time taken by the robots using proposed algorithm.  
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Table 5.5: Comparison of the path length during simulation and experimental for a single 

robot shown in Figures 5.5 and 5.11 using CS navigational algorithm. 

   

No. of  

Runs 

Path length covered during 

simulation (in ‘cm’) 

Path length covered during  

experiment (in ‘cm’) 
% of error 

1 164.32 173.50 5.58 

2 164.22 174.99 6.56 

3 164.89 174.26 5.68 

4 164.94 174.15 5.58 

5 163.88 175.25 6.94 

6 164.41 173.36 5.44 

7 164.33 174.77 6.35 

8 164.68 174.76 6.12 

9 164.79 173.64 5.37 

10 164.87 174.20 5.66 

11 164.03 172.73 5.30 

12 164.74 171.50 4.99 

13 164.70 174.09 5.70 

14 163.83 174.84 6.71 

15 163.76 175.30 7.04 

16 164.42 172.89 5.15 

17 165.23 174.21 5.43 

18 164.15 173.91 5.94 

19 164.57 172.54 4.83 

20 163.94 173.51 5.83 

Average 

path 

length 

covered 

164.43 173.92 5.76 
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 Table 5.6: Comparison of path length during simulation and experimental for a single 

robot (Shown in Figures 5.6 and 5.12) using CS navigational algorithm. 

 

No. of  

Runs 

Path length covered during 

simulation (in ‘cm’) 

Path length covered during 

the experiment (in ‘cm’) 
% of error 

1 197.55 207.90 5.24 

2 195.30 208.45 6.73 

3 199.76 208.38 4.82 

4 199.29 212.54 6.65 

5 201.02 211.26 5.10 

6 199.63 210.11 5.25 

7 197.92 209.90 6.05 

8 194.25 205.83 5.96 

9 198.34 208.99 5.37 

10 197.32 208.92 5.88 

11 196.57 204.59 4.98 

12 199.29 210.13 5.44 

13 200.33 212.15 5.90 

14 197.19 211.36 7.19 

15 201.36 213.12 5.84 

16 198.15 213.20 7.60 

17 194.77 206.95 6.25 

18 193.26 203.86 5.48 

19 198.54 208.77 5.15 

20 197.26 208.08 5.49 

Average 

path 

length 

covered 

197.86 209.22 5.75 
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Table 5.7: Comparison of time taken by a single robot during simulation and 

experimental (Shown in Figures 5.5 and 5.11) using CS navigational 

algorithm. 

 

No. of  

Runs 

Time taken by the robot 

during simulation (in ‘sec’) 

Time taken by the robot 

during experiment (in ‘sec’) 
% of error 

1 15.49 16.39 5.81 

2 15.32 16.24 5.99 

3 14.91 15.67 5.13 

4 15.33 16.10 4.99 

5 14.89 15.78 5.94 

6 15.03 15.84 5.43 

7 14.72 15.56 5.66 

8 15.05 15.97 6.12 

9 15.56 16.40 5.37 

10 15.28 16.54 8.25 

11 14.99 15.79 5.30 

12 14.82 15.76 6.35 

13 14.77 15.69 6.21 

14 14.72 15.56 5.70 

15 15.35 16.51 7.53 

16 15.42 16.44 6.62 

17 15.22 16.00 5.14 

18 15.18 16.12 6.16 

19 14.81 15.66 5.74 

20 14.75 15.61 5.84 

Average 

time 

taken  

by the 

robot 

15.08 15.98 5.96 
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Table 5.8: Comparison of time taken by a single robot during simulation and 

experimental (Shown in Figures 5.6 and 5.12) using CS navigational 

algorithm. 

 

No. of  

Runs 

Time taken by the robot 

during simulation (in ‘sec’) 

Time taken by the robot 

during experiment (in ‘sec’) 
% of error 

1 18.34 19.31 5.28 

2 18.88 19.97 5.74 

3 17.36 18.49 6.55 

4 19.21 20.30 5.68 

5 17.53 18.55 5.79 

6 17.83 18.77 5.32 

7 17.31 18.19 5.07 

8 17.42 18.29 5.00 

9 18.23 19.19 5.31 

10 18.23 19.14 4.98 

11 17.60 18.91 7.49 

12 17.56 18.66 6.26 

13 17.41 18.56 6.64 

14 17.25 18.21 5.56 

15 18.46 19.38 4.95 

16 19.21 20.46 6.49 

17 17.08 17.97 5.23 

18 16.97 17.89 5.46 

19 17.51 18.55 5.96 

20 17.41 18.35 5.41 

Average 

time 

taken  

by the 

robot 

17.84 18.86 5.71 
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5.4.3  Comparison of the Developed CS Controller with other Navigational  

Controllers 

      In this section, a comparative study has been made between the proposed navigational 

controller and other intelligent controllers in simulation mode. The performances of the 

navigational controllers are discussed in the graphical mode. We have replicated the 

environment as stated by the authors. The size dimension of simulation platforms are 

considered as no. of units and each unit is in millimeter (mm).The proposed controller has 

been applied to the replicated environments as shown in Figures 5.13 and 5.14 

respectively.  

     In the first case Wang et al. [165] and Mohamed et al. [174] have developed their 

navigation system based on the GA (Genetic algorithm) and PSO (Particle Swarm 

Optimization) techniques. The simulation results obtained from the discussed navigation 

system have been given in Figures 5.13(a) and 5.13(b) respectively. The result obtained 

from using current investigation is shown in Figure 5.13 (c).  
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Figure 5.13(a) Simulation results from Genetic algorithm (GA) (Wang et al. [165]). 
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Figure 5.13(c) Simulation results obtained from current investigation. 

Figure 5.13(b) Simulation results from Particle swarm optimization (PSO)  

                         (Mohamed et al. [174]). 
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Similarly, in the second case the Figure 5.14 (a) shows the simulation results obtained 

from Mohamed et al. [174] using PSO algorithm. Results obtained using the current 

investigation is shown in the Figure 5.14(b).   

 

 

 

 

        

     

 

                       

Figure 5.14(b) Simulation results obtained using current investigation. 

 

Figure 5.14(a) Simulation results from Particle Swarm optimization (PSO) 

      (Mohamed et al. [174]). 
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SL. 

No. 
Environment types 

Path length 

using current 

navigation 

system  

(‘in ‘cm') 

Path length 

from the 

reference 

model 

(‘in ‘cm') 

Percentage of 

deviation 

1 

Obstacle avoidance 

behavior by the robot  

Figures 5.13(a) and 5.13(c) 

6.39 7.21 11.37 

2 

Obstacle avoidance 

behavior by the robot  

Figures 5.13(b) and 5.13(c) 

6.39 6.66 4.05 

3 

Obstacle avoidance 

behavior by the robot 

5.14(a) and 5.14 (b) 

6.44 6.63 2.86 

 

 

From the above comparative simulation study, it has been clearly observed that the 

proposed navigational path planner provides better path trajectory in terms of smoothness 

compared to other navigational methods, and also it can be efficiently implemented to 

drive a mobile robot in a cluttered terrain. The comparison of simulation results in terms 

of path length (in cm) covered by the robot to reach target is presented in the Table-5.9.  

5.5   Summary  

This chapter has described a novel methodology for a fully autonomous mobile robot 

navigating in an unknown or partially known environment containing static obstacles. 

The following salient features are concluded based on the simulation and experimental 

results. 

 A new objective function has been formulated between the robot and the target and 

obstacles, which satisfied the conditions of obstacle avoidance and target-seeking 

behaviour of robot present in the terrain. 

 Depending upon the objective function values in the swarm, the robot avoids 

obstacles and reaches the target successfully.  

 The developed path planning strategy has been validated through simulations as well 

as experiments, which demonstrate the ability of the proposed navigation system. The 

results are in good agreement. The average percentages of errors are found to be 

Table 5.9: Comparison of simulation results in terms of path length. 
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within 6% for both path length and time taken by the robot to reach target and 

tabulated in Tables 5.5-5.8 respectively.   

 The results from proposed navigation system have been compared with other 

navigation techniques such as GA (Genetic algorithm) and PSO (Particle Swarm 

Optimization). From the comparative simulation study, it has been clearly seen that 

the proposed path planner has the ability to navigate the robot successfully in 

unknown environments with optimized path length. The percentage of deviation has 

been depicted in the Table 5.9.   

 Finally, it is concluded that by using this nature inspired algorithm the navigation 

performance in unknown environments can be greatly improved.  

 

In the next chapter a new biologically inspired algorithm based on colonizing property of 

weeds has been applied for the path optimization problem of a mobile robot.  
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6. ANALYSIS OF INVASIVE WEED OPTIMIZATION 

ALGORITHM FOR MOBILE ROBOT NAVIGATION 

 

     This chapter presents a population based meta-heuristic algorithm for solving the 

navigational problem of a mobile robot in unknown or partially known environments 

containing static obstacles. This meta-heuristic algorithm named Invasive weed 

optimization (IWO) has been successfully implemented in the path analysis problem of 

autonomous mobile robot. 

6.1   Introduction 

Recently more researchers have attracted towards the swarm intelligence based 

algorithms such as: Particle Swarm Optimization (PSO), Ant Colony Optimization 

(ACO), Artificial Bee Colony (ABC), Harmony search, Cuckoo Search (CS) etc. These 

research techniques are important branches of Artificial Intelligence (AI) and successfully 

applied in many areas of engineering. Path planning for mobile robots in unknown 

cluttered environments is one of the important issues in the robotics field. The 

biologically nature inspired optimization techniques such as Genetic Algorithm (GA), 

ACO, Artificial Immune System (AIS), Bacteria Foraging Optimization (BFO), and PSO 

have been employed for path planning of mobile robots as discussed in (Chapter-2). Most 

of these metaheuristic algorithms are inspired from the successful features of the 

underlying biological, physical or sociological systems. These algorithms have gained 

acceptance because of their ability and efficiency of searching an optimal solution in a 

specified problem area. However, to some extent, theses algorithms have flaws in large 

calculations, and complicated coding. The feasibility and robustness of ACO are 

restricted to the grid division. In the current investigation a new biologically inspired 

algorithm [209] based on the colonizing property of weeds has been applied for the path 

optimization problem of a mobile robot. The path optimization strategy is regarded as an 

optimization problem to search an optimal position of the mobile robot step by step. Here 

the optimization concept considers the distances between the robot to obstacles and target 

in order to find the suitable position and for avoiding collisions. This algorithm has also 

shown successful results in various fields of engineering [216-220]. Due to its broad 
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range of applications, we are motivated to employ this algorithm for solving the robot 

navigational problem.  

6.2   Outline of Invasive Weed Optimization Algorithm 

Invasive weed optimization (IWO) algorithm was first introduced by Mehrabian and 

Lucas in 2006 [209]. This novel stochastic optimization algorithm is based on the 

colonizing property of weeds. It has been observed that following the properties of the 

invasive weeds, leads to an effective optimization method.  

The IWO algorithm is summarized as follows: 

Initialize a population   

A finite number of seeds are being randomly dispread over the defined search space. Each 

random seed’s position is considered as an initial solution to the optimization problem. 

Reproduction 

In this stage, each individual seed produces flowering plants. Before the plant produces 

new seeds, they are ranked according to their fitness values. In another sentence, the 

number of seeds produced by each flowering plant depends on its fitness function values 

and increases linearly from the minimum possible seeds production to its maximum. The 

plant will produce seeds based on the colony’s lowest and highest fitness to make sure the 

increase is linear. Figure 6.1   shows the reproduction procedure. This stage adds an 

important property to the weed algorithm by allowing all of the plants to participate in the 

reproduction process.  

Spatial dispersal 

The produced seeds in the previous step are being randomly scattered over the define 

search space by a normal distribution with mean equal to zero (or location of the 

producing plants) and varying standard deviation. In simulation, the standard deviation 

can be expressed by   

 max

max

n

iter initial final final

iter iter

iter
   

 
   
 

                                                                                (6.1) 
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where itermax is the maximum number iterations. σinitial and σfinal are defined initial and 

final standard deviations respectively, and n is the non-linear modulation index. 

 

 

 

Competitive exclusion 

In the above step, all seeds have found their positions in the defined search area. The 

newly generated seeds grow to produce plants, and they are ranked together with their 

parents on the basis of fitness values. The flowering plants having lower fitness values in 

the colony are discarded to reach the maximum number of allowable populations (plants) 

in the colony Pmax. The process is repeated on the reproduction stage until the maximum 

iteration is reached, or fitness criterion is met.    

 

 

 

 

 

 

 No. of seeds 

Max no. of seeds 

Floor 

Min no. of seeds 

Max fitness 

in the colony 
Min fitness 

in the colony 

Plant’s fitness  

Figure 6.1 Seed production procedure in a colony of weeds [209]. 
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Begin; 

Generate an initial random population of  N solutions; 

for iter=1 to the maximum number of iterations; 

        Determine the fitness function value of each individual;  

        Calculate maximum and minimum fitness in the colony: 

        For each individual weed (w∈N); 

        Determine number of seeds of w, corresponding to its fitness;  

        Randomly distribute the generated seeds over the problem search space with 

normal distribution around the parent plant (w);  

        Add the produced seeds to the initial solution set, N; 

end; 

If N>Nmax ;  

        Arrange the population N in descending order of their fitness; 

Sort the population of weeds with smaller fitness until N=Nmax; 

end If; 

Next iter 

end; 

 

 

   

Figure 6.2 Pseudo code for IWO algorithm. 
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6.3    Problem Formulation for Robot Path Planning using IWO 

Algorithm  

The online path planning strategy of the mobile robot using Invasive weed optimization 

(IWO) algorithm is discussed in the present study. The proposed algorithm is based on 

seeds randomly distributed in front of a robot. The path optimization strategy is regarded 

as an optimization problem to search an optimal position of the mobile robot step by step. 

Here the optimization concept considers the distances between the robot to obstacles and 

target in order to find out the suitable position and to avoid collisions. The development 

of navigation system for mobile robot is one of the most important issues in the robotic 

research field. Recently nature inspired metahuristic algorithms have received 

considerable attention for solving the navigational problem for the mobile robot. Here we 

implement the IWO algorithm to find the optimal/shortest path for the mobile robot in 

highly cluttered environments. Firstly, we introduce an objective function equation based 

on the distances between the robot to obstacles and target, which satisfies the criteria of 

avoid collisions with obstacles and reaches the target behaviour of the robot. Based on the 

individual objective function value of each plant in the colony, the robot avoids collisions 

with obstacles and finally reaches the target. The plant having minimum objective 

function value is selected to be the next optimal position for the robot. This process will 

be continued until the robot reaches the target. When the robot does not detect any 

hurdles in its target path, then it will travel towards the designed target. Then it is not 

necessary to employ any navigational optimization techniques to travel the robot within 

its environment. The concept of the robot path planning using proposed strategy is given 

in Figure 6.3.   
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Initialize the starting and target position of the robot 

Robot proceeds towards the target 

 

Yes 

Call the IWO algorithm 

 
Initialize the parameters of IWO algorithm 

 
Randomly generate the finite number of seeds in search space of the robot 

 
Calculate the objective function value of each seed and sort them in ascending order 

 

Search the best seed (Lowest objective function value) 

 
Proceed… the robot towards best seed position 

 

Eliminate the seeds having a lower rank in the population  

 

Yes 

No 

Yes 

No 
Has robot reached 

at target? 

 End/Stop 

No 

Has robot reached 

at target? 

 Start 

Is there any 

obstacle 

on the target path? 

Show the optimal  

path animation 

       

 

 End/Stop 

Figure 6.3 Flowchart of the proposed IWO algorithm for robot path planning. 
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Let the robot is at start point ‘A’ and moves to the target point ‘C’ in the environment 

shown in Figure 6.4. The robot aim is to reach the target with avoiding obstacles present 

in the environment. Here a robot searches its optimal position by using IWO algorithm. 

The current position of the robot is marked as (xa, ya) and the robot freely moves towards 

to the position B (xb, yb) without implementing any navigational technique. When the 

sensor detects an obstacle at position ‘B’ the robot uses its own IWO algorithm to search 

the next optimal position, which maintains the maximum safe range of the obstacles and 

minimum distance from the target. In the IWO algorithm, each seed/agent represents the 

one possible optimal position of the mobile robot.   

The current position of the robot is marked by (xb, yb) and the possible positions of the 

robot are denoted by (xs, ys ), S=1,2,…n, where n is the selected number of virtual position 

i.e., population number. Then the robot searches its optimal position from the possible 

locations in the searching area using IWO algorithm. From the population, the seed/weed 

having a minimum objective function value (the optimal location) is treated as the next 

optimal position for the robot. 

6.3.1   Formulation of the Objective Function using the IWO Algorithm 

The objective function for the robot path planning depends mainly on two rules: 

 Avoid collision with obstacles 

 Reach to target behaviour  

STARTING POINT OF THE ROBOT 

(xa ,ya) 

TARGET

S (XG,YG) 

OBSTACLE 

ROBOT SENSING RANGE 

Activation of IWO algorithm 

(xb ,yb) 

distrob-obs 

rth 

A 

B 

C 

Figure 6.4 Illustration of the IWO algorithm for searching of optimal point. 
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a) Objective function for avoiding collision with obstacles 

The objective function for obstacle avoidance is used to avoid collision with obstacles 

(such as obstacles, walls, etc.). The objective function is formulated based on the distance 

information between the robot and obstacles, and is defined as 

0, 1,2,...

1 1
1,2,...

i j th

obstacle

i j th

thi j

S obs r j p

f
S obs r j p

rS obs

   


 
   




                               (6.2) 

where Si  represents the position of the i
th

 individual seed (or the possible optimal position 

for the robot), obsj represents the center of the j
th 

obstacles, r
th

 represents the threshold 

value between the robot to obstacles and p represents the number of obstacles. Here our 

aim is to minimize the objective function value obstaclef . In order to avoid collision with 

obstacles, the distance between the robot to obstacles should be more or equal to the 

threshold value (rth). When the robot is very nearer to the obstacles j, the objective 

function results in a non-zero value, otherwise a zero objective value is obtained.  

Note: Here we consider the nearest obstacle to the robot. The nearest obstacle to the robot 

can be calculated by the following expression: 

min 1,2,...
jrob obs b jdist rob obs j p     .  

where, robb represents the robot position at point ‘B’. The position of the robot will be 

varied according to the environmental scenario. 

b) Objective function for reach to target behaviour 

The objective function for the target is used to reach the target with minimum path length. 

The objective function is designed based on the distance information between robot to 

target, defined as, 

argt et if S T                                                                                                                 (6.3) 

where Si  represents the position of the i
th

 individual seed (or the possible optimal position 

for the robot), the T represents the target position. Here our objective is to minimize the 

target function (ftarget), which implies to minimize the distance between the possible 

optimal positions of the robot to target.     
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So the total objective function for optimizing the robot’s path planning strategy can be 

written as, 

argn obstacle t etf f f                                                                                                       (6.4) 

where   and   denote the controlling or weight parameters that influence the robot 

trajectory and fn is the fitness value of the N number population. Here we choose the 

controlling parameters by trial and error methods.  

When an obstacle is not detected in the robot’s sensing range, obstaclef  is zero and in this 

situation the robot directly moves towards the target. When the robot detects an obstacle, 

obstaclef  gets a nonzero value. In this condition after performing the IWO algorithm, all the 

seeds are sorted in ascending order of the objective function value and the seed having 

lowest objective function value is treated as the new position of the robot. Thus, the same 

process is repeated for several iterations until it satisfies the convergence criteria or the 

robot avoids collision with obstacles and reaches its target effectively.   

Steps of IWO algorithm for path planning strategy of mobile robot: 

Step-1: Initialize the starting and target position of the robot. 

Step-2: Proceed the robot towards the target until it will be stuck by an obstacle. 

Step-3: When an obstacle is obstructing the target path call IWO algorithm. 

Step-4: Initialize, the population of seeds in the search space of the robot, each of which 

represents one trial possible optimal position for the robot.  

Step-5:  Evaluate the fitness (fn) of the population, sort the population in ascending order, 

this process continues until the maximum number of plants is produced. 

Eliminate the plants having a lower rank in the population.  

Step-6: Sort the population according to the objective function value, the seed/agent 

having minimum objective function value is selected as the new optimal position 

for the robot. 

Step-7: Move the robot towards the new optimal position. 

Step-8: Repeat the step-4 to step-7 until the robot avoids all obstacles and reaches its 

target.  
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 6.4   Demonstrations of the IWO based Navigational Controller 

      In this section, the results are illustrated, and the efficiency of the proposed algorithm 

is analysed. The simulation results are validated with experimental results to show the 

effectiveness of the developed path planner, and they are in good agreement. The 

proposed navigation system is also compared with the other path planning algorithms. 

Finally, the overall efficacy of the IWO path planning system is analysed based on the 

path length, the smoothness of the path, the total travel time and the planning success rate.  

6.4.1   Simulation Result and Discussions 

Several simulation results are illustrated to demonstrate the performance and 

effectiveness of the proposed approach. In the simulation environment, a Gaussian cost 

function is virtually represented by each obstacle and a 2D sphere function is assigned to 

the target. Four different scenarios have been framed by arranging the obstacles in 

different positions for IWO based navigational controller to show the ability of proposed 

control technique. The simulation results obtained using the proposed algorithm has been 

shown in Figures 6.5 to 6.8. The size dimension of simulation platforms are considered as 

no. of units and each unit is in millimeter (mm).The best parametric values of proposed 

algorithm have been selected after performing a series of simulation experiments on 

partially or totally unknown environments, and it is tabulated in the Table-6.1. It has been 

observed that some parameters in the proposed algorithm are almost insensitive to select 

them, whereas other parametric values affect the performance of the proposed navigation 

system. It has been observed that there are mainly three parameters affecting the 

convergence of the proposed algorithm, the initial standard deviation (σinitial), the final 

standard deviation (σfinal) and the non-linear modulation index (n). The simulation results 

considering different choice parameters are illustrated in Figures 6.9 and 6.10 

respectively. The path lengths covered by the robot during simulation have been 

presented in the Table-6.2 and 6.3 respectively.  
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Table-6.1 Details of IWO parameter values used for the robot path planning optimization 

problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol 

 

Description 

 

Value 

 

N 

 

Number of initial population 

 

20 
 

itermax 

 

Maximum number of iterations 

 

300 

 

pmax 

 

Maximum number of plant population 

 

20-30 

 

Smax 

 

Maximum number of seeds 

 

5-10 

 

Smin 

 

Minimum number of seeds 

 

0 

 

n 

 

Non-linear modular index 

 

3 

 

σInitial 

 

Initial value of standard deviation 

 

3-4 

 

σFinal 

 

Final value of standard deviation 

 

0-0.001 

 

α 

 

Controlling parameter-1 

 

1 

  

β 

 

Controlling parameter-2 

  

1x10
-06
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Figure 6.5 Single robot avoiding obstacles to reach target using IWO algorithm. 



 

126 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z
-A

x
is

 

Figure 6.6 Single robot escaping from a trap condition to reach target using IWO 

algorithm. 
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Figure 6.7 Single robot passing through a narrow corridor to reach target using IWO 

algorithm. 
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Figure 6.8 Single robot navigating inside a maze environment to reach target using IWO 

algorithm. 
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Sl. No. σinitial σfinal n 
Path length covered by the robot 

 (in ‘cm’) 

Avoid Collision 

(Yes/No) 

1 3.5 0.005 3 6.39 Yes 

2 3.6 0.006 3 6.29 Yes 

3 3.7 0.007 3 6.21 Yes 

4 3.8 0.008 3 6.18 Yes 

5 3.9 0.009 3                6.16 (optimal) Yes 

6 4 0.01 3 6.13 No 

7 4.1 0.02 3 6.12 No 

8 4.2 0.03 3 6.04 No 

9 4.3 0.04 3 6.00 No 

10 4.4 0.05 3 5.96 No 

Z
-A

x
is

 

Table-6.2 Path covered by the robot during simulation by considering different values     

of σinitial and σfinal of IWO algorithm. (Shown in Figure 6.9) 

 

Figure 6.9 Path generated for the mobile robot at different choice parameters of IWO. 
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Sl. No. σinitial σfinal n 
Path length covered by the robot 

 (in ‘cm’) 

Avoid Collision 

(Yes/No) 

1 3.5 0.005 3 6.07 No 

2 3.6 0.006 3 6.08 No 

3 3.7 0.007 3 6.09 No 

4 3.8 0.008 3 6.11 No 

5 3.9 0.009 3 6.12  No 

6 4 0.01 3                6.13 (optimal) Yes 

7 4.1 0.02 3 6.17 Yes 

8 4.2 0.03 3 6.21 Yes 

9 4.3 0.04 3 6.20 Yes 

10 4.4 0.05 3 6.23 Yes 

Z
-A

x
is

 

Figure 6.10 Path generated for mobile robot at different choice parameters of IWO. 

 

Table-6.3 Path covered by the robot during simulation by considering different 

values of σinitial and σfinal of IWO algorithm. (Shown in Figure 6.10) 
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6.4.2 Comparison of the Developed IWO Path Controller with other 

Navigational Controllers  

      In this part, a comparative study has been carried out between the proposed 

navigational controller and other intelligent navigational controllers in simulation mode. 

First, we have replicated the environment as stated by other authors and implemented the 

developed IWO algorithm to the replicated environments to demonstrate the efficacy of 

the proposed algorithm. The X and Y axes of the simulation graph are considered as a 

sized of 30x30 units and each unit is equal to 20mm. 

1. Liang et al. [227] have discussed the path planning strategy of a mobile robot using 

Self Adaptive Bacteria Foraging Optimization Algorithm (SABFO). In this proposed 

navigational system, a robot mimics the behavior of bacteria to find an optimal collision 

free route between the start point and a goal point in the environment surrounded by 

obstacles at various locations. The simulation results obtained using SABFO navigation 

system is demonstrated in Figure 6.11 (a). The results obtained using current investigation 

is presented in the Figure 6.11(b).  

 

                             

 

 

TARGET 

START 
OBSTACLES 

Figure 6.11 (a) Path generated for the robot using SABFO algorithm (Liang et al. [228]). 
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2.   Mobile robot navigation based on Ant Colony Optimization (ACO) approach has 

been presented by Cen et al. [181]. The information of workspace constraints and route 

length are integrated into the fitness function which is calculated by neural network, the 

path nodes are viewed as an ant, so using an ACO algorithm, and best path has been 

selected. The simulation results using ACO algorithm is shown in Figure 6.12(a) and also 

compared with the Particle Swarm Optimization (PSO) algorithm to show the feasibility 

of the proposed navigation system. The simulation results obtained using current 

investigation is shown in Figure 6.12(b). 

3.   Route planning for a mobile robot using an adaptive genetic algorithm has been 

discussed by Wang et al. [165]. This algorithm focuses on the automatic tuning of 

crossover probability and mutation probability with variable environmental constraints. 

The simulation results obtained using adaptive genetic algorithm is presented in Figure 

6.13(a). The simulation graph obtained using IWO based navigational controller is shown 

in Figure 6.13(b).  

  

 

Figure 6.11 (b) Simulation path obtained using current investigation. 
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Figure 6.12(a) Path generated for single robot using ACO algorithm  

                            (Chen et al. [181]). 

 

Figure 6.12(b) Path generated for single robot using IWO. 
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Figure 6.13(a) Path generated for single robot using Adaptive GA  

                         (Wang et al. [165]). 

 

Figure 6.13(b) Path generated for single robot using current investigation. 
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From the comparative study, it has been clearly noticed that the proposed navigational 

algorithm delivers better path trajectory in terms of smoothness compared to the other 

discussed navigational systems and also it can be efficiently implemented to drive a 

mobile robot in a hurdles environments.  

 

SL. 

No. 
Environment types 

Path length 

using current 

navigation 

system  

(‘in ‘cm') 

Path length 

from the 

reference 

model 

(‘in ‘cm') 

Percentage of 

deviation 

1 

Robot inside a maze 

environment, Figures 

6.11(a) and 6.11(b) 

7.10 7.53 5.71 

2 

Obstacle avoidance 

behavior by the robot  

Figures 6.12(a) and 

6.12(b) 

6.68 7.04 5.11 

3 

Obstacle avoidance 

behavior by the robot 

6.13(a) and 6.13 (b) 

6.47 7.21 10.26 

    

 

6.4.3   Experiments with Real Mobile Robots 

Experimental validation of simulation results of the developed IWO algorithm has been 

performed using Khepra-III mobile robot. The specification of the robot is given in 

Appendix-A. The experimental results are conducted in the robotic platform of sized 

225cmx175cm in the laboratory. The programming languages for the robot are used as 

MATLAB and C++. Three different comparative studies are discussed in the above 

section, which are already verified by the simulation, and have been verified 

experimentally (Figures 6.14-6.16) to prove the effectiveness of the proposed approach.  

 

 

 

Table-6.4 (Comparison of simulation results in terms of path length) 
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Figure 6.14(c) 

 

 

 

    

                                                                       

    

           

  

                                            
   

 

 
 
 

 

Target position 

Path framed by the robot 

Starting position 
X 

Y 

                           Figure 6.14(d) 

  

Figure 6.14 Experimental results for navigation of mobile robot in the environment  

                   shown in Figure 6.11(b). 

 

Figure 6.14(f) Figure 6.14(e) 

 

Figure 6.14(b) 

 

Robot 

Obstacles 

 

                Target 

Figure 6.14(a) 
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Target position Path framed by the robot 

Starting position 

X 

Y 

 Figure 6.15  Experimental results for navigation of mobile robot in the environment 

                     shown in Figure 6.12 (b). 

 

Figure 6.15(d) Figure 6.15(c) 

 

Figure 6.15(b) Figure 6.15(a) 
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Path framed by the robot 
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X 
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Figure 6.16 Experimental results for navigation of mobile robot in the environment 

shown in Figure 6.13(b). 

 

Figure 6.16(f) Figure 6.16(e) 

 

Figure 6.16(d) Figure 6.16(c) 

 

Figure 6.16(b) Figure 6.16(a) 

Robot 

             Target  

    Obstacles 
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From the experimental study, it can be clearly observed that the mobile robot reaches 

their destination successfully without colliding with obstacles present in the environment. 

The optimal trajectory is generated with this developed algorithm and the path obtained 

from experiment follows closely those followed by the robot during simulation study.  

 

Three different conditions (Figures 6.11-6.13) which are already verified in simulation 

mode have been verified experimentally (Figures 6.14-6.16) to show the effectiveness of 

the proposed navigational system. The mobile robot decides its path in the shortest 

trajectory to reach the desired goal by getting the optimized objective function values 

found from IWO algorithm. It has been concluded by comparing the results of the 

simulation as well as experimental study that, the path followed by the robot using the 

developed path planning algorithm can successfully reach the destination without hitting 

any obstacles present in the environment. The real time experimental investigation shows 

the effectiveness of the proposed navigational algorithm. The performance of the current 

navigation system has been checked on the basis of average path length (in‘cm’) and time 

(in‘sec’) taken by the robot to reach the goal. For calculation of path length and time taken, 

about 20 runs have been taken into consideration for proposed navigation system, which is 

presented in Tables-6.5 to 6.10 respectively and best results are presented in the simulation 

and experimental graph.  
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Table 6.5: Comparison of the path length during simulation and experimental results for a 

single robot shown in Figures (6.11(b) and 6.14) using IWO navigational 

algorithm. 

 

No. of  

Runs 

Path length covered during 

simulation (in ‘cm’) 

Path length covered during  

the experiment (in ‘cm’) 
% of error 

1 168.98 180.70 6.94 

2 170.46 179.65 5.39 

3 169.70 177.69 4.71 

4 169.59 178.72 5.39 

5 170.72 178.06 4.90 

6 168.77 178.81 5.95 

7 170.23 179.74 5.59 

8 170.22 180.25 5.90 

9 169.07 179.85 6.38 

10 169.64 181.27 6.85 

11 168.12 180.20 7.18 

12 168.06 178.58 6.26 

13 169.53 180.90 6.71 

14 170.30 182.78 7.33 

15 170.78 179.60 5.17 

16 171.38 181.13 5.69 

17 169.65 178.86 5.43 

18 169.34 181.10 6.95 

19 169.99 180.21 6.01 

20 168.93 177.56 5.11 

Average 

path 

length 

covered 

169.67 179.78 5.96 
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Table 6.6:   Comparison of the path length during simulation and experimental results for 

a single robot shown in Figures (6.12(b) and 6.15) using IWO navigational 

algorithm. 

 

No. of  

Runs 

Path length covered during 

simulation (in ‘cm’) 

Path length covered during  

the experiment (in ‘cm’) 
% of error 

1 159.12 169.21 6.34 

2 161.98 172.22 6.32 

3 161.00 170.32 5.79 

4 160.92 172.05 6.92 

5 162.62 171.61 5.53 

6 161.44 172.04 6.56 

7 161.47 171.29 6.08 

8 162.44 172.13 5.97 

9 162.22 172.51 6.34 

10 161.31 172.11 6.70 

11 159.73 171.21 7.19 

12 159.96 170.03 6.30 

13 161.55 170.33 5.44 

14 159.11 170.34 7.05 

15 160.96 172.02 6.87 

16 159.67 169.32 6.04 

17 162.91 171.07 5.01 

18 161.85 170.77 5.51 

19 161.00 169.22 5.10 

20 160.88 171.02 6.30 

Average 

path 

length 

covered 

161.37 171.04 5.99 
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Table 6.7: Comparison of the path length during simulation and experimental results for a 

single robot shown in Figures (6.13(b) and 6.16) using IWO navigational 

algorithm. 

 

No. of  

Runs 

Path length covered during 

simulation (in ‘cm’) 

Path length covered during  

the experiment (in ‘cm’) 
% of error 

1 153.15 163.08 6.48 

2 156.72 165.33 5.49 

3 156.50 164.97 5.41 

4 156.40 166.05 6.17 

5 157.52 167.80 6.52 

6 156.05 165.96 6.35 

7 156.09 166.22 6.49 

8 157.30 166.98 6.16 

9 157.03 165.74 5.55 

10 155.88 165.88 6.41 

11 153.91 162.33 5.47 

12 154.20 163.21 5.84 

13 157.43 166.55 5.79 

14 153.81 163.55 6.33 

15 155.45 163.99 5.49 

16 153.84 164.08 6.66 

17 157.89 166.89 5.70 

18 156.56 166.67 6.46 

19 155.50 164.99 6.10 

20 156.36 166.22 6.31 

Average 

path 

length 

covered 

155.94 165.32 5.92 
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Table 6.8: Comparison of time taken by a single robot during simulation and 

experimental results (shown in Figures 6.11(b) and 6.14) using IWO 

navigational algorithm. 

 

No. of  

Runs 

Time taken by the robot 

during simulation (in ‘sec’) 

Time taken by the robot 

during experiment (in ‘sec’) 
% of error 

1 16.71 17.70 5.91 

2 16.65 17.56 5.49 

3 15.89 16.72 5.27 

4 16.22 17.19 5.97 

5 17.02 18.19 6.88 

6 15.99 17.13 7.08 

7 17.27 18.35 6.29 

8 16.81 17.89 6.40 

9 17.07 18.24 6.90 

10 15.84 16.76 5.77 

11 17.03 18.24 7.10 

12 17.56 18.63 6.09 

13 16.65 17.92 7.60 

14 17.36 18.62 7.28 

15 16.62 17.76 6.88 

16 17.35 18.62 7.29 

17 16.15 17.07 5.68 

18 15.97 17.16 7.42 

19 17.38 18.65 7.31 

20 15.91 16.88 6.10 

Average 

time 

taken by 

the 

robot 

16.67 17.76 6.54 
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Table 6.9: Comparison of time taken by a single robot during simulation and 

experimental results shown in Figures (6.12(b) and 6.15) using IWO 

navigational algorithm. 

 

No. of  

Runs 

Time taken by the robot 

during simulation (in ‘sec’) 

Time taken by the robot 

during experiment (in ‘sec’) 
% of error 

1 13.88 14.71 5.98 

2 14.58 15.59 6.94 

3 14.49 15.33 5.79 

4 13.44 14.22 5.80 

5 14.64 15.45 5.53 

6 13.59 14.53 6.92 

7 14.61 15.60 6.75 

8 14.62 15.66 7.12 

9 14.60 15.53 6.34 

10 13.58 14.59 7.44 

11 13.21 14.17 7.27 

12 14.40 15.30 6.30 

13 14.63 15.44 5.54 

14 13.55 14.31 5.61 

15 14.49 15.51 7.06 

16 14.37 15.41 7.24 

17 14.66 15.40 5.01 

18 14.57 15.37 5.51 

19 14.49 15.39 6.22 

20 13.62 14.48 6.31 

Average 

time 

taken 

by the 

robot 

14.20 15.10 6.33 
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Table 6.10: Comparison of time taken by a single robot during simulation and 

experimental results shown in Figures (6.13(b) and 6.16) using IWO 

navigational algorithm. 

 

No. of  

Runs 

Time taken by the robot 

during simulation (in ‘sec’) 

Time taken by the robot 

during experiment (in ‘sec’) 
% of error 

1 12.65 13.46 6.36 

2 13.30 14.14 6.35 

3 13.01 13.77 5.79 

4 14.60 15.64 7.12 

5 13.33 14.03 5.27 

6 12.74 13.58 6.57 

7 13.12 14.14 7.83 

8 12.82 13.64 6.34 

9 12.52 13.37 6.81 

10 14.27 15.09 5.74 

11 13.91 14.63 5.14 

12 12.32 13.21 7.21 

13 12.93 13.85 7.12 

14 12.60 13.23 5.02 

15 13.39 14.33 6.99 

16 12.60 13.44 6.69 

17 13.30 14.04 5.57 

18 13.24 14.13 6.72 

19 12.71 13.57 6.80 

20 13.98 15.12 7.84 

Average 

time 

taken  

by the 

robot 

13.17 14.02 6.46 
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Tables 6.5 to 6.10 show the performance of the proposed navigational controller using 

IWO algorithm. The results obtained with IWO algorithm implies, no improvement over 

the CS navigational algorithm. The average errors are found to be about 6% for both path 

length and time taken by the robot to reach target.  

6.5   Summary  

This chapter provides an extensive study of IWO algorithm implemented for a mobile 

robot path planning problem. The path planning problem has been applied to an unknown 

or partially known environment with static obstacles. The followings outcomes from 

proposed algorithm have been extracted based on the simulation and experimental results. 

 The developed navigational algorithm is effective in avoiding obstacles and the robot 

reaches the goal successfully.  

 A new objective function has been generated based on the position of the obstacles 

and goal. The generated objective function has been successfully implemented to find  

nearest optimal paths for the robot in unknown environments. 

 Based on the objective function values the robot is roving towards the goal while 

avoiding obstacles.  

 A large number of simulation experiments are done using MATLAB to demonstrate 

the performance of the proposed navigation system.   

 The developed path planner has been validated through simulation as well as real time 

experiment, and they are in good agreement. The average percentages of errors are 

found to be within 5% for path length and 6% for time taken by the robot to reach 

target and tabulated in Tables 6.5-6.10 respectively.     

 The proposed IWO based navigation system has been compared to other 

computational techniques such as; Ant colony optimization (ACO), Particle swarm 

optimization (PSO) etc. By analyzing results, it has been seen that the IWO based 

navigational controller performs better than other navigation techniques. The 

percentage of deviation has been given in the Table 6.4.    

 Finally, it is concluded that the proposed IWO path planner has been successfully 

generated collision free paths for mobile robots in unknown environments with 

shortest possible path length. 

In the next section, CS-ANFIS hybrid technique has been implemented for single as well 

as multiple mobile robots navigation.  
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7. IMPLEMENTATION OF CS-ANFIS HYBRID 

ALGORITHM FOR MULTIPLE MOBILE ROBOTS 

NAVIGATION 

 

7.1   Introduction 

      Recently, hybrid algorithms are getting more popular and may be implemented in the 

majority of engineering optimization problems. The concept of hybrid algorithm method 

is based on hybridization of two or more algorithms. Several machine learning algorithms 

might be good to solve the problems to find the required solutions. There are many 

difficulties, where a direct machine learning algorithm may fail to get a convenient 

(optimal solution) solution. To overcome these difficulties, we need hybridization of 

machine learning algorithms with other optimization algorithms. There are some possible 

advantages of hybridization algorithm, which are as follows: 

 Improve the performance of the machine learning algorithm. 

 Precisely handle the problem with large data, uncertainty, and vagueness. 

 Improve the convergence rate. 

In this part, a new hybrid algorithm, (i.e hybridization of Cuckoo Search (CS) and 

Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques) has been applied to solve 

the multiple mobile robots navigational problems. A brief description of the Cuckoo 

Search (CS) and Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques are 

discussed in the Chapter-4 and Chapter-5 respectively. In this new hybrid navigational 

methodology, Cuckoo search (CS) algorithm is used for training the premise part and 

least square estimation (LSE) method is used for training the consequent parameters of 

the adaptive neuro-fuzzy inference system (ANFIS). The proposed hybrid optimal path 

planner is developed based on a reference motion, direction, distances between the robot 

and the obstacles, and distance between the robot and the target, to calculate the suitable 

steering angle of the mobile robot. In order to avoid collision against one another, a set of 

collision prevention rules are embedded into each robot controller, using Petri-Net model.
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 The effectiveness of the algorithm has been demonstrated through a series of simulation 

experiments. The experimental investigations are conducted in the laboratory, using a real 

mobile robot to validate the versatility and effectiveness of the proposed hybrid 

technique. A comparison of the simulation and experimental results showed that there is 

good agreement between them. The results obtained from the proposed hybrid technique 

are validated by comparison with the results from other intelligent techniques. Finally, it 

is concluded that the proposed hybrid methodology is efficient and robust in the sense, 

that it can be implemented on the robot for navigation in any complex terrain. 

Many different neuro-fuzzy models for mobile robot path planning have been proposed in 

[141-146]. Among these techniques, the adaptive neuro-fuzzy inference system (ANFIS) 

is a neural network based on the fuzzy approach, which combines the parallel 

computation, and capability of adaptation of the neural network and human-like 

knowledge representation of fuzzy systems [149]. The training and updating of the 

premise and consequent parameters in ANFIS is one of the major problems. The training 

part for ANFIS is mostly based on the gradient descent algorithms. The main 

disadvantage of this algorithm is the calculation of gradients in each step, and it may also 

cause the local minimum and affects the accuracy of the system.   

 In the gradient descent method, the selection of the best learning parameters is very 

difficult, and the convergence rate of parameters is also slow. To overcome these 

difficulties, we implemented a nature inspired meta-heuristic algorithm to train the 

antecedent parameters, and the least square estimation (LSE) method to optimize the 

consequent parameters of the ANFIS navigational controller, for reducing training and 

testing errors. Cuckoo search (CS) is an optimization metaheuristic search algorithm, 

developed by Yang and Deb in 2009 [192-193], which was inspired by the obligate 

parasitic behavior of some cuckoos, who lay their eggs in the nest of other host birds. The 

Cuckoo search algorithm does not require any learning rate and provides a faster 

convergence rate of parameters in ANFIS. An advantage of the CS algorithm is that the 

number of parameters to be tuned is less than those of the GA and PSO [221] and thus it 

is potentially more generic for application in a wider class of optimization problems, and 

also it has proved that the cuckoo search algorithm satisfies the global convergence 

necessities, and thus, has guaranteed global convergence properties. Due to its broad 

range of implementations in various engineering problems [198-200,206-208], we are 
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motivated to apply this nature inspired cuckoo search algorithm for optimizing the ANFIS 

parameters and solving the navigational problem for multiple mobile robots.  

7.2 Architecture of CS-ANFIS Hybrid Controller for Multiple Mobile  

Robots Navigation 

The main objective of the research work is to predict the steering angle (SA) for mobile 

robots to navigate safely in an environment using CS based ANFIS controller. The initial 

position of the robot is shown in Figure 7.1. 

  

 

Here we assume, the cuckoo search based adaptive neuro-fuzzy navigational controller 

(shown in Figure 7.2) under consideration. It has four sensor based input parameters, such 

as Front obstacle distance(FOD) (x1), Right obstacle distance(ROD) (x2), Left obstacle 

distance(LOD)(x3), Heading angle(HA)(x4), and each input variable has three bell 

membership functions(MF) A1(Near), A2(Medium) and A3(Far), B1(Near), B2(Medium) 

and B3(Far), C1(Near), C2(Medium), and C3(Far), D1(Negative), D2(Zero) and 

D3(positive) respectively.  

Then the Takagi-Sugeno-type fuzzy inference system  IF-THEN rules are constructed as 

follows; 

 IF(x1 is Ai and x2 is Bi and x3 is Ci and x4 is Di ) 

THEN (steering angle (fn) = pnx1+qnx2+rnx3+snx4+un) 

Ai, Bi, Ci, and Di, are the fuzzy membership sets of the input variables x1, x2, x3, and x4 

respectively.  

 

Figure 7.1 Initial position of the Robot in real environment. 
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Figure 7.2 CS-ANFIS hybrid controller for Mobile robot navigation. 
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Where i=1, 2, 3 and n=1, 2…81, pn, qn, rn, sn, and un are the linear parameters of output fn, 

also known as consequent parameters, and changing these parameters we can adjust the 

output of the CS-ANFIS controller. The fuzzy membership function can be chosen in any 

form such as Triangular, Gaussian, Trapezoidal, Bell-Shaped etc. Usually, we choose the 

Bell-Shaped one with the maximum value equal to 1 and minimum value equal to 0. 

Here, the membership functions for all input parameters are considered as the Bell-

Shaped function (shown in Figure 7.3). 

 

   

Where a, b, and c are the bell-fuzzy numbers. They are also known as the antecedent or 

premise parameters.   

In our proposed CS-ANFIS model total 12 sets of premise parameters or non-linear 

parameters {ai, bi, ci} for inputs are presented in the proposed ANFIS navigational 

controller. The total number of premise parameters to be tuned is 12x3=36numbers. The 

number of fuzzy rules formulated is 3x3x3x3=81 numbers and there are 81x5=405 

numbers of consequent parameters or linear parameters {pn, qn, rn, sn, un} to be trained in 

ANFIS, to get the system output. In our proposed hybrid learning algorithm, the CS and 

least square estimation (LSE) methods are used in ANFIS for training and adjusting the 

premise parameters and consequent parameters. The ANFIS controller is used to 

determine the objective function value of the steering angle for a mobile robot generated 

by the CS algorithm. Finally, the error between the system output and actual training data 

can reach a minimum value through the iteration of the CS algorithm. Here, the objective 

Figure 7.3 Parameters in Bell Membership function. 
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function of the CS optimizer is defined as the root mean square error (RMSE) of the 

proposed ANFIS model. 

RMSE=  
2

'

1

1 p

i i

ip
 



                                                              (7.1) 

Where i  is the actual value of the steering angle, '
i  is the predicted value of the mobile 

robot obtained from the ANFIS based CS model, and p is the total number of 

observations. The iterations will stop when the RMSE value remains unchanged, or in 

other words, the CS algorithm cannot find any better parameters to reduce the error value. 

It has been observed that the CS-ANFIS hybrid algorithm produces a lower error rate than 

the conventional ANFIS. The coding of the premise parameters for ANFIS in each nest is 

shown in Figure 7.4.  

ai1 bi1 ci1 ai2 bi2 ci2 ai3
 
    bi3 ci3 ai4 bi4 ci4 ................. anj bnj cnj 

 

aij, bij, and cij are the bell membership function parameters. 

i=1,2,3,…………..n. (Total number of membership functions for input parameters) 

j=1….4. (Number of input parameters) 

Figure 7.4 Nests contain all information of membership function parameters for all input.  

Therefore, the number of parameters present in each nest will specify a real value of all 

possible premise parameters of FIS (Fuzzy Inference System). An excel file has been 

prepared that contains all the 36 numbers of antecedent parameters of ANFIS, and it can 

be retrieved by the MATLAB during coding. Initially, 25 number of nests are randomly 

generated, each represented by a vector having dimension [36x1]. The detailed flow chart 

of the proposed hybrid algorithm has been presented in Figure 7.5. The membership 

function for the fuzzy part was chosen to be the bell function, with the maximum value 

equal to one and the minimum value equal to zero. The proposed CS-ANFIS hybrid 

algorithm can be used to reduce the probability of being trapped in local minima situation 

and also enhance the accuracy and global search ability of ANFIS training. It has been 

noted that the new hybrid algorithm can save time in adjusting all parameters of ANFIS 

navigational controller. 
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Figure 7.5 Flow chart diagram for the proposed hybrid algorithm. 
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Steps of CS-ANFIS hybrid algorithm for mobile robot path planning: 

Step-1: Randomly generate the initial population of host nests in the search space, each 

representing a set of 36 numbers of antecedent parameters of ANFIS in sequence.  

Step-2:  Randomly a nest (sequence of antecedent parameters) is generated; its objective 

function (RMSE) is determined as per the equation no. 7.1 and compared with 

that of the randomly chosen nest, if the nest is better, it replaces the chosen nest, 

otherwise it leaves intact.  

Step-3: The worst nests (as per the value of pa) are removed and replaced with new nests 

by the Levy flight technique as well as by random generation. 

Step-4: Solutions (sequence of antecedent parameters) are ranked and then the nest is 

updated again via Levy flight method and steps 2 to 4 are repeated until the CS 

algorithm finds any better parameters to reduce the error value.  

Step-5: Train the optimal fuzzy parameters to ANFIS, in order to calculate the suitable 

steering angle.   

The parameters of the navigational controller obtained from the CS algorithm are used to 

train the ANFIS in order to determine the suitable steering angle for any reactive 

condition. The various reactive behaviours and training patterns of ANFIS for mobile 

robot path planning are discussed in the Chapter-4.   

7.3 Inter-collision Avoidance among the Robots using the Petri-Net  

Controller 

      The Petri-Net theory was developed by Petri [224-225] and is widely used to 

represent the dynamic systems. As per the robot navigation system, condition (place) 

represents the state of motion and is denoted by a circle. A state of transition (event) 

represents the change in robot motion, and it is shown by a bar symbol. The location of 

the token represents the holding of robot motion (current position) and is marked with a 

red symbol. The schematic diagram of this proposed model to avoid inter-collision and 

obstacle avoidance during navigation is shown below in Figure 7.6. The proposed Petri-

Net controller consists of 6 states (or places) which are described briefly.  

Initially, it is assumed that the robots are in a maze environment, without any prior 

information about one another and the position of the obstacles and targets. This implies 
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that each robot is in state “Place-I” (Wait for the start command to search for the goal) or 

the token is at location “Place-I”.  

     Once the robots have received a command to start searching for goals, they will try to 

trace them while avoiding obstacles and one another. Thus, the robots are in “Place-II 

(“Navigating, avoiding obstacles, and searching for goals”). 

       While roving in a cluttered environment, if the pathway to the goal is blocked by 

another robot, then a conflict situation is found (“Place-III”: “Detecting Conflicts”). 

When two robots are in a conflict situation, they will negotiate with each other to decide 

which one has the priority.  

 
      

 

The lower-priority robot will be considered as a static obstacle and the higher priority 

robot as a proper mobile system (“Place-IV”: “Negotiating”). As soon as a conflict 

problem is resolved, the robots will look for other conflicts and if there are none they will 

execute their movements. (“Place-V”: “Checking for conflict and executing 

movements”). 

If a robot meets two other robots already in a conflict situation, then its priority will be 

lower and it will be considered as a static obstacle, (“Place-VI”: “Waiting”) until the 

conflict problem is resolved. When this is finished, the robot will re-enter the state 

“Place-II”. Finally, combining these conditions, the navigation of multiple mobile robots 

in an unstructured environment can be made possible.  

The simulation and experimental results obtained based on CS-ANFIS controller while 

navigation of mobile robots are demonstrated and discussed below. 

Figure 7.6 Developed Petri-Net controller for Multiple Robots Navigation. 
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7.4   Simulation Results and Discussion    

In this section, various simulation exercises have been performed with single and multiple 

mobile robots to show the capability of the proposed hybrid controller. The simulation 

space is a rectangular environment with different types of obstacles at various locations, 

and X and Y axes are considered as 30x30 units, each unit is equal to 2mm. The best 

parametric values for the CS algorithm have been selected after performing a series of 

simulation exercises on partially or totally unknown environments and are given in Table-

7.1. It has been seen that the parametric values affect the performance of the proposed 

navigation system. 

 

        Table-7.1 (Parameters used in CS algorithm.) 

Parameters Values 

No. of Nests(n) 10-40 

No. of Iterations 100-200 

pa 0.05-0.3 

 

From our simulation exercises, it has been clearly noticed that n=25-30 and pa=0.23-0.26, 

provide best results compared with other parametric values of CS algorithm. 

7.4.1   Simulation results for a Single Robot 

In the current motion planning system, we have framed three main reactive behaviors: 

one for target seeking, one for wall following, and the last for avoiding obstacles. The 

descriptions of various behaviours are discussed in Chapter-4. 

Let us consider that every obstacle is far away from the robot and only then, the “reach 

target behavior” is activated. On the other side when a robot is close to an obstacle, it 

must change its steering angle, to avoid the obstacle present on the path. Various reactive 

behaviors are activated, depending upon the situation between the robot and obstacles. 

The simulation results are obtained by placing the obstacles in random positions and a 

random heading angle to verify the various reactive behaviors developed by the current 

hybrid navigational controller. A comparative simulation study has been made between 

the ANFIS and CS-ANFIS hybrid techniques as shown in Figures 7.7-7.12 respectively. 

The importance of these two techniques is mainly measured, based on the path length 
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covered by the robot and is given in Tables 7.2 respectively. It can be noticed that the CS-

ANFIS hybrid algorithm yields better results compared to the ANFIS technique and also 

provides smoothness to the robot trajectory. 

 

 
                        

            
 

 

 
  

 
 

Figure 7.8  Wall following behavior by a single robot using ANFIS 

technique. 

 

Figure 7.7  Wall following behavior by a single robot using CS-ANFIS  

Hybrid technique. 
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Figure 7.10  Escaping from a narrow end by a single robot using  

ANFIS technique. 

Figure 7.9   Escaping from a narrow end by a single robot using 

CS-ANFIS Hybrid technique. 
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Figure 7.12  Navigating inside a maze environment by a single robot using 

ANFIS technique. 

Figure 7.11 Navigating inside a maze environment by a single robot 

using CS-ANFIS Hybrid technique. 
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Table-7.2 (Comparison of CS-ANFIS and ANFIS results in terms of path length) 

SL. 

No. 

Path covers by the Robot 

using CS-ANFIS (in ‘cm’) 

 

Path covers by the Robot 

using ANFIS (in ‘cm’) 

 

Percentage of 

deviation 

1 6.31 (Fig. 7.7) 6.68 (Fig. 7.8) 5.53 

2 

 

6.20 (Fig. 7.9) 6.55 (Fig. 7.10) 5.34 

3 7.60 (Fig. 7.11) 7.80 (Fig. 7.12) 3.18 

 

7.4.2   Simulation results for Multiple Robots 

 Obstacle avoidance, Wall following and Goal seeking by Multiple Robots: 

This simulation experiment shown in Figure 7.13 involves four robots with four goals at 

different positions of the environment. The walls present between the robots and targets 

acts as obstacles. As the robots navigate towards their goals, they find the walls in their 

way along which they continue to travel by implementing the wall following rules. 

Finally, the robots are able to reach their goals successfully.   

 Obstacle avoidance and collision-free motion of Multiple Robots in a maze 

environment:   

The obstacle avoidance and collision-free motion of multiple mobile robots in two 

different maze environments have been shown in Figures 7.14 and 7.15 respectively. In 

this simulation study, only four robots are employed for easy visualization. It can be 

noticed that the robots have effectively reached their goals without any collision with one 

another and the obstacles.  
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Figure 7.14  Multiple mobile robots navigating in a maze environment using 

CS-ANFIS Hybrid technique. 

 

Figure 7.13 Obstacle avoidance and wall following behavior by multiple mobile 

robots using CS-ANFIS Hybrid technique. 
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7.5   Experimental Validation with the Simulation Results 

The proposed navigation method has been validated through a series of real-time 

experiments using Khepera-II mobile robot to show its effectiveness. The specification of 

the Khepera-II mobile robot has been given in the Appendix-A. The experimental 

investigation has been conducted in an environment containing a variety of obstacles of 

different shapes and sizes and located in different locations. There is total eight infra-red 

proximity and ambient light sensors with up to 100mm range are mounted around the 

periphery of the mobile robot in order to extract the information about the distances 

between the robots and the obstacles. The results shown in Figures 7.16-7.19, are already 

performed in simulation mode, and have been validated experimentally to demonstrate 

the efficiency of the developed path planner.  

 

 

 

 

 

Figure 7.15  Path framed by multiple mobile robots in a maze environment using   

CS-ANFIS hybrid technique. 
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Figure 7.16 (f) Figure 7.16 (e) 

Figure 7.16 (d) Figure 7.16 (c) 

Figure 7.16 (a) Figure 7.16 (b) 

Figure 7.16 (a-f) Experimental results for navigation of mobile robot in the 

                                 environment shown in Figure 5.26. 
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Figure 7.17 (f) Figure 7.17 (e) 

Figure 7.17 (d) Figure 7.17 (c) 

Figure 7.17 (b) Figure 7.17 (a) 

Figure 7.17 (a-f) Experimental results for navigation of mobile robot in the  

                           environment shown in Figure 5.28. 
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Figure 7.18 (a-f) Experimental results for navigation of multiple mobile robots in the  

                            environment shown in Figure 5.30. 
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Figure 7.19 (a-f) Experimental results for navigation of multiple mobile robot in the 

                           environment shown in Figure 5.31. 
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Table-7.3   The Path travelled by the single robot during simulation and experimental 

analysis by the proposed hybrid navigation system shown in Figures 7.9 and 

7.16 respectively. 

 

No. of  

Runs 

Path length covered 

during simulation 

(in ‘cm’) 

Path length covered 

during  the experiment 

(in ‘cm’) 

% of error  

1 163.17 171.84 5.31 

2 163.04 170.18 4.38 

3 163.96 171.02 4.31 

4 164.03 171.67 4.66 

5 162.57 170.33 4.77 

6 163.30 172.13 5.41 

7 163.19 171.16 4.88 

8 163.67 169.79 3.74 

9 163.82 169.82 3.66 

10 163.93 170.19 3.82 

11 162.78 172.01 5.67 

12 163.75 170.27 3.98 

13 163.69 172.06 5.11 

14 162.51 170.14 4.69 

15 162.41 171.34 5.50 

16 163.32 170.50 4.40 

17 164.42 170.89 3.93 

18 162.94 170.16 4.44 

19 163.52 171.39 4.81 

20 162.66 170.95 5.10 

Average 

path 

length 

covered 

163.33 170.89 4.63 
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Table-7.4   The Path travelled by the single robot during simulation and experimental 

analysis by the proposed hybrid navigation system shown in Figures 7.11 

and 7.17 respectively. 

 

No. of  

Runs 

Path length covered 

during simulation 

 (in ‘cm’) 

Path length covered  

during  the experiment  

(in ‘cm’) 

% of error 

1 186.15 195.89 5.23 

2 186.52 194.35 4.20 

3 183.36 193.50 5.53 

4 186.55 195.47 4.78 

5 185.41 196.02 5.72 

6 183.25 193.50 5.60 

7 183.98 194.39 5.66 

8 185.06 194.39 5.04 

9 186.73 195.89 4.90 

10 186.76 194.65 4.23 

11 185.22 195.17 5.37 

12 186.15 193.93 4.18 

13 186.73 194.73 4.29 

14 184.82 192.91 4.38 

15 186.09 195.98 5.31 

16 183.42 193.78 5.65 

17 184.56 193.95 5.09 

18 186.56 194.56 4.29 

19 186.06 196.57 5.65 

20 186.74 195.36 4.62 

Average 

path 

length 

covered 

185.51 194.75 4.99 
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Table-7.5    Time taken by the single robot during experimental and simulation analysis 

by the proposed navigation system shown in Figures 7.9 and 7.16. 

 

No. of  

Runs 

Time taken by the 

robot during 

simulation (in ‘sec’) 

Time taken by the robot 

during experiment  

(in ‘sec’) 

% of error 

1 13.49 14.14 4.83 

2 13.14 13.82 5.21 

3 13.04 13.66 4.74 

4 13.43 14.09 4.89 

5 12.01 12.65 5.31 

6 13.63 14.38 5.49 

7 13.41 14.10 5.12 

8 13.71 14.34 4.58 

9 13.28 13.98 5.23 

10 13.43 14.05 4.61 

11 13.24 13.88 4.80 

12 13.43 14.08 4.77 

13 12.98 13.58 4.67 

14 13.83 14.46 4.54 

15 13.33 14.05 5.40 

16 13.62 14.25 4.65 

17 12.92 13.59 5.19 

18 14.03 14.78 5.34 

19 13.42 14.11 5.14 

20 12.96 13.59 4.87 

Average 

time taken  

by the 

robot 

 

13.32 13.98 4.97 

 

 

 



 

170 

 

 

Table-7.6   Time taken by the single robot during experimental and simulation analysis by 

the proposed navigation system shown in Figures 7.11 and 7.17 

 

No. of  

Runs 

Time taken by the 

robot during 

simulation (in ‘sec’) 

Time taken by the 

robot during 

experiment (in ‘sec’) 

% of error 

1 16.91 17.87 5.65 

2 17.25 18.11 5.01 

3 16.52 17.26 4.51 

4 17.12 18.06 5.51 

5 16.63 17.35 4.31 

6 16.21 16.94 4.52 

7 16.48 17.28 4.85 

8 15.94 16.65 4.42 

9 15.63 16.49 5.52 

10 15.67 16.56 5.69 

11 16.46 17.35 5.42 

12 16.98 17.73 4.44 

13 16.35 17.06 4.36 

14 16.98 17.90 5.42 

15 16.54 17.42 5.32 

16 16.42 17.21 4.79 

17 15.76 16.52 4.85 

18 16.78 17.62 5.01 

19 16.51 17.27 4.58 

20 16.59 17.31 4.31 

Average 

time taken  

by the 

robot 

 

16.49 17.30  4.92 
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Table-7.7    The Path travelled by the robots during simulation and experimental analysis 

by the proposed hybrid navigation system shown in Figures 7.13 and 7.18 

respectively. 

No. of  

Runs 

 

Robot No. 

Path covered by 

the robots during 

simulation 

analysis (in ‘cm’) 

Path covered by 

the robots during 

experimental 

analysis (in ‘cm’) 

% of error 

1 

Robot-1 (Start-1) 176.47 185.50 5.12 

Robot-2 (Start-2) 168.88 176.55 4.54 

Robot-3 (Start-3) 139.89 146.24 4.54 

Robot-4 (Start-4) 122.27 127.46 4.24 

2 

Robot-1 (Start-1) 176.31 186.01 5.50 

Robot-2 (Start-2) 167.04 176.23 5.50 

Robot-3 (Start-3) 140.71 148.38 5.45 

Robot-4 (Start-4) 124.68 129.24 3.66 

3 

Robot-1 (Start-1) 177.42 186.22 4.96 

Robot-2 (Start-2) 167.97 175.72 4.61 

Robot-3 (Start-3) 143.18 149.48 4.40 

Robot-4 (Start-4) 123.97 128.95 4.01 

4 

Robot-1 (Start-1) 177.51 185.17 4.32 

Robot-2 (Start-2) 168.69 176.27 4.50 

Robot-3 (Start-3) 140.63 148.05 5.27 

Robot-4 (Start-4) 125.23 129.84 3.69 

5 

Robot-1 (Start-1) 175.74 185.05 5.29 

Robot-2 (Start-2) 168.23 175.23 4.16 

Robot-3 (Start-3) 143.77 149.97 4.31 

Robot-4 (Start-4) 124.95 130.10 4.12 
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6 

Robot-1 (Start-1) 176.92 186.20 5.25 

Robot-2 (Start-2) 169.65 176.65 4.13 

Robot-3 (Start-3) 142.86 149.07 4.35 

Robot-4 (Start-4) 125.78 131.52 4.57 

7 

Robot-1 (Start-1) 176.49 185.03 4.84 

Robot-2 (Start-2) 168.12 177.10 5.34 

Robot-3 (Start-3) 141.75 148.34 4.65 

Robot-4 (Start-4) 125.72 130.57 3.86 

8 

Robot-1 (Start-1) 177.07 185.72 4.88 

Robot-2 (Start-2) 166.61 176.01 5.64 

Robot-3 (Start-3) 142.16 148.61 4.54 

Robot-4 (Start-4) 123.27 128.86 4.53 

9 

Robot-1 (Start-1) 177.26 186.40 5.16 

Robot-2 (Start-2) 166.65 175.86 5.53 

Robot-3 (Start-3) 140.59 146.61 4.28 

Robot-4 (Start-4) 124.87 130.01 4.11 

10 

Robot-1 (Start-1) 177.39 185.35 4.49 

Robot-2 (Start-2) 167.05 175.10 4.82 

Robot-3 (Start-3) 141.61 148.77 5.05 

Robot-4 (Start-4) 122.67 128.36 4.64 

Average 

path 

length 

covered 

Robot-1 (Start-1) 176.86 185.66 4.98 

Robot-2 (Start-2) 167.89 176.07 4.88 

Robot-3 (Start-3) 141.72 148.35 4.68 

Robot-4 (Start-4) 124.34 129.49 4.14 
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Table-7.8     The Path travelled by the robots during simulation and experimental analysis 

by the proposed hybrid navigation system shown in Figures 7.14 and 7.19 

respectively. 

No. of  

Runs 
Robot No. 

Path covered by 

the robots during 

simulation 

analysis (in ‘cm’) 

Path covered by 

the robots during 

experimental 

analysis (in ‘cm’) 

% of error 

1 

Robot-1 (Start-1) 172.22 179.88 4.45 

Robot-2 (Start-2) 169.44 176.41 4.11 

Robot-3 (Start-3) 161.75 170.18 5.21 

Robot-4 (Start-4) 154.55 160.92 4.12 

2 

Robot-1 (Start-1) 174.46 181.35 3.95 

Robot-2 (Start-2) 167.22 173.01 3.46 

Robot-3 (Start-3) 165.60 174.32 5.27 

Robot-4 (Start-4) 153.64 160.70 4.59 

3 

Robot-1 (Start-1) 173.44 180.59 4.12 

Robot-2 (Start-2) 165.15 172.22 4.28 

Robot-3 (Start-3) 167.93 175.91 4.75 

Robot-4 (Start-4) 156.58 163.71 4.56 

4 

Robot-1 (Start-1) 172.13 179.73 4.42 

Robot-2 (Start-2) 166.24 173.19 4.18 

Robot-3 (Start-3) 166.38 174.15 4.67 

Robot-4 (Start-4) 154.49 160.94 4.18 

5 

Robot-1 (Start-1) 172.90 181.25 4.83 

Robot-2 (Start-2) 165.54 173.67 4.91 

Robot-3 (Start-3) 162.90 171.59 5.34 

Robot-4 (Start-4) 155.46 162.21 4.34 
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6 

Robot-1 (Start-1) 173.99 180.84 3.94 

Robot-2 (Start-2) 166.33 173.91 4.56 

Robot-3 (Start-3) 164.20 172.83 5.26 

Robot-4 (Start-4) 153.23 158.77 3.62 

7 

Robot-1 (Start-1) 172.29 180.98 5.05 

Robot-2 (Start-2) 167.33 175.49 4.88 

Robot-3 (Start-3) 164.87 173.08 4.98 

Robot-4 (Start-4) 153.09 159.63 4.27 

8 

Robot-1 (Start-1) 174.53 182.89 4.79 

Robot-2 (Start-2) 167.87 173.97 3.63 

Robot-3 (Start-3) 168.66 175.31 3.94 

Robot-4 (Start-4) 155.62 162.35 4.33 

9 

Robot-1 (Start-1) 172.50 180.88 4.86 

Robot-2 (Start-2) 167.43 175.09 4.57 

Robot-3 (Start-3) 162.65 169.43 4.17 

Robot-4 (Start-4) 150.84 158.73 5.23 

10 

Robot-1 (Start-1) 175.26 181.90 3.79 

Robot-2 (Start-2) 170.04 176.66 3.89 

Robot-3 (Start-3) 167.74 174.87 4.25 

Robot-4 (Start-4) 151.16 158.13 4.61 

Average 

path 

length 

covered 

Robot-1 (Start-1) 173.37 181.03 4.42 

Robot-2 (Start-2) 167.26 174.36 4.25 

Robot-3 (Start-3) 165.27 173.17 4.78 

Robot-4 (Start-4) 153.87 160.61 4.38 
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Table-7.9 (Time taken by the robots during experimental and simulation analysis by the 

proposed navigation system shown in Figures 7.13 and 7.18) 

No. of  

Runs 

 

Robot No. 

Time taken by 

the robots during 

simulation 

analysis (in ‘sec’) 

Time taken by 

the robots during 

experimental 

analysis (in ‘sec’) 

% of error 

1 

Robot-1 (Start-1) 16.24 16.93 4.22 

Robot-2 (Start-2) 21.70 22.71 4.62 

Robot-3 (Start-3) 19.37 20.25 4.56 

Robot-4 (Start-4) 16.99 17.85 5.06 

2 

Robot-1 (Start-1) 15.36 16.22 5.60 

Robot-2 (Start-2) 23.14 24.35 5.25 

Robot-3 (Start-3) 19.69 20.79 5.61 

Robot-4 (Start-4) 18.44 19.32 4.77 

3 

Robot-1 (Start-1) 15.62 16.31 4.43 

Robot-2 (Start-2) 22.90 24.13 5.37 

Robot-3 (Start-3) 20.30 21.36 5.22 

Robot-4 (Start-4) 17.60 18.52 5.26 

4 

Robot-1 (Start-1) 16.35 17.05 4.30 

Robot-2 (Start-2) 23.15 24.23 4.65 

Robot-3 (Start-3) 19.56 20.44 4.48 

Robot-4 (Start-4) 18.46 19.27 4.39 

5 

Robot-1 (Start-1) 16.39 17.26 5.34 

Robot-2 (Start-2) 22.87 23.93 4.63 

Robot-3 (Start-3) 20.26 21.22 4.73 

Robot-4 (Start-4) 18.04 18.82 4.30 
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6 

Robot-1 (Start-1) 15.45 16.26 5.25 

Robot-2 (Start-2) 22.54 23.53 4.37 

Robot-3 (Start-3) 20.80 21.88 5.23 

Robot-4 (Start-4) 19.10 20.09 5.19 

7 

Robot-1 (Start-1) 15.52 16.38 5.57 

Robot-2 (Start-2) 21.17 22.14 4.56 

Robot-3 (Start-3) 20.38 21.29 4.50 

Robot-4 (Start-4) 17.98 19.01 5.74 

8 

Robot-1 (Start-1) 16.16 16.86 4.31 

Robot-2 (Start-2) 22.11 23.32 5.49 

Robot-3 (Start-3) 20.38 21.22 4.11 

Robot-4 (Start-4) 17.72 18.51 4.43 

9 

Robot-1 (Start-1) 15.25 15.92 4.39 

Robot-2 (Start-2) 22.70 24.01 5.77 

Robot-3 (Start-3) 19.76 20.85 5.49 

Robot-4 (Start-4) 17.10 17.96 5.05 

10 

Robot-1 (Start-1) 16.34 17.07 4.49 

Robot-2 (Start-2) 21.96 23.09 5.11 

Robot-3 (Start-3) 19.67 20.52 4.34 

Robot-4 (Start-4) 17.39 18.29 5.15 

Average 

time  

taken  

by the 

robots 

Robot-1 (Start-1) 15.87 16.63 4.79 

Robot-2 (Start-2) 22.42 23.54 4.98 

Robot-3 (Start-3) 20.02 20.98 4.83 

Robot-4 (Start-4) 17.88 18.76 4.93 
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Table-7.10  (Time taken by the robots during experimental and simulation analysis by the 

proposed navigation system shown in Figures 7.14 and 7.19) 

No. of  

Runs 

 

Robot No. 

Time taken by 

the robots during 

simulation 

analysis (in ‘sec’) 

Time taken by 

the robots during 

experimental 

analysis (in ‘sec’) 

% of error 

1 

Robot-1 (Start-1) 23.09 24.15 4.58 

Robot-2 (Start-2) 20.20 21.14 4.68 

Robot-3 (Start-3) 17.38 18.23 4.86 

Robot-4 (Start-4) 16.98 17.83 4.97 

2 

Robot-1 (Start-1) 24.18 25.18 4.15 

Robot-2 (Start-2) 21.27 22.05 3.69 

Robot-3 (Start-3) 18.79 19.76 5.18 

Robot-4 (Start-4) 17.96 18.59 3.49 

3 

Robot-1 (Start-1) 23.79 24.78 4.18 

Robot-2 (Start-2) 19.80 20.65 4.26 

Robot-3 (Start-3) 17.42 18.35 5.31 

Robot-4 (Start-4) 17.27 18.13 4.95 

4 

Robot-1 (Start-1) 24.15 25.42 5.25 

Robot-2 (Start-2) 23.23 24.05 3.54 

Robot-3 (Start-3) 18.46 19.42 5.21 

Robot-4 (Start-4) 17.73 18.40 3.78 

5 

Robot-1 (Start-1) 23.31 24.40 4.70 

Robot-2 (Start-2) 23.06 24.05 4.30 

Robot-3 (Start-3) 19.03 19.89 4.51 

Robot-4 (Start-4) 18.01 18.74 4.13 
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6 

Robot-1 (Start-1) 22.58 23.72 5.03 

Robot-2 (Start-2) 21.63 22.58 4.40 

Robot-3 (Start-3) 17.18 18.01 4.82 

Robot-4 (Start-4) 17.58 18.46 4.98 

7 

Robot-1 (Start-1) 22.62 23.72 4.86 

Robot-2 (Start-2) 19.87 20.62 3.79 

Robot-3 (Start-3) 19.10 20.15 5.51 

Robot-4 (Start-4) 17.61 18.35 4.19 

8 

Robot-1 (Start-1) 24.02 25.10 4.49 

Robot-2 (Start-2) 20.34 21.23 4.38 

Robot-3 (Start-3) 18.89 19.78 4.69 

Robot-4 (Start-4) 17.22 17.98 4.38 

9 

Robot-1 (Start-1) 21.60 22.76 5.37 

Robot-2 (Start-2) 20.72 21.57 4.11 

Robot-3 (Start-3) 17.68 18.48 4.54 

Robot-4 (Start-4) 17.78 18.43 3.67 

10 

Robot-1 (Start-1) 21.98 23.11 5.13 

Robot-2 (Start-2) 21.96 22.96 4.56 

Robot-3 (Start-3) 17.18 18.12 5.48 

Robot-4 (Start-4) 17.43 18.26 4.78 

Average 

time  

taken  

by the 

robots 

Robot-1 (Start-1) 23.13 24.13 4.77 

Robot-2 (Start-2) 21.21 22.09 4.17 

Robot-3 (Start-3) 18.11 19.02 4.96 

Robot-4 (Start-4) 17.56 18.32 4.33 
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      The average of 20 runs is considered for each simulation and experimental result. The 

best results are presented in simulation and experimental graph. The performance of the 

experimental results have been verified by the simulation results in terms of average path 

lengths and time taken by single and multiple mobile robots, presented in Tables7.3-7.10 

respectively. From the experimental analysis, it has been clearly seen that the paths traced 

experimentally followed closely to that traced by robots during simulation mode. The 

maximum percentage of deviation between experimental and simulation results for single 

and multiple robots in terms of path lengths are 4.99% and 4.98% respectively. Similarly, 

the maximum percentage of deviation between experimental and simulation results in 

terms of time taken by single and multiple robots are 4.97% and 4.96% respectively.  

 

7.6  Comparison of the Developed CS-ANFIS Hybrid Controller with 

other Navigational Controllers 

      In this part, a comparative study has been done between the proposed navigational 

algorithm and other intelligent navigational controllers in simulation mode. Firstly, we 

have replicated the environment as illustrated by the researchers [148,90,139]. In this 

environment, the robot moves from the source position to the target position with the help 

of CS-ANFIS navigational controller. The CS-ANFIS path planner is embedded in the 

controller of the mobile robot. After successful completion of the navigational task, it has 

been compared with the path as illustrated by the authors [148,90, 139]. During exercises, 

utmost care has been taken to replicate the environment as that of the environment 

represented in the Figures 7.20, 7.21 and 7.22. The size dimension of simulation 

platforms are considered as no. of units and each unit is in millimeter (mm). 

a) A neuro-fuzzy technique for mobile robot navigation has been proposed by Zhang et 

al.[148]. In this method, the result obtained from fuzzy logic is used by the neural 

network to make navigation decisions. Here, both the navigational controllers are 

implemented in an environment, where the robot cannot see the goal directly due to the 

presence of obstacles between them. The obstacle avoidance behavior rules (shown in the 

Table-4.3) are embedded to cope up with the situations in order to avoid obstacles 

successfully. From the simulation results, it has been observed that in both the cases the 

robot is successfully avoiding obstacles while seeking for a target and in the meantime, it 

can be noted that the path length (in ‘cm’) covered by the robot as shown in Figure 
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7.20(a) is more compared to the current navigation technique. Figures 7.20(a) and (b) 

show the path generated by the robot using the neuro-fuzzy technique [148] and CS-

ANFIS hybrid technique respectively. 
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Figure 7.20(a) Path framed for the robot using Neuro-Fuzzy technique [148]. 

 

Figure 7.20(b)  Path framed for the robot using CS-ANFIS Hybrid technique. 
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b) Path planning for the mobile robot using fuzzy logic has been addressed by Cherroun 

and Boumehraz [90]. In this technique, various reactive behaviors are designed using a 

fuzzy logic approach. The simulation results demonstrated that the proposed fuzzy 

algorithm can effectively control the robot movement from its start position to the goal 

position without hitting with the obstacles. In this problem, both the path planners are 

applied to a maze environment, where the obstacles are randomly placed. The simulation 

results using fuzzy logic [90] and current navigational algorithm are depicted in Figures 

7.21(a) and 7.21(b) respectively. 

              

 

 

 
Figure 7.21(b) Path framed for the robot using CS-ANFIS Hybrid technique. 

Figure 7.21(a) Path framed for the robot using Neuro-Fuzzy technique [90]. 
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c) The mobile robot navigation based on the neuro-fuzzy approach has been presented by 

Joshi and Zaveri [139]. The performance of the navigation technique has been compared 

with neural network and fuzzy logic approaches. During the navigation, it has been 

noticed that the path generated by Joshi and Zaveri takes a long loop compared to results 

obtained using the current investigation. Figures 7.22(a) and 7.22(b) show the results 

obtained from [139] and current hybrid algorithm.        
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Figure 7.22(b)  Path framed for the robot using CS-ANFIS technique. 

 

Figure 7.22(a)  Path framed for the robot using Neuro-Fuzzy technique [139]. 
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In this case, both the motion planners are imposed to a U-shaped situation that would 

create the existence of the ‘dead-end’ concept. In this condition, the robot cannot see the 

goal directly due to the presence of long U-shaped wall between them. In the initial stage, 

the robot is heading towards the target. The wall following rules (shown in Table-ANFIS) 

will be implemented on the robot, until it is escaped from the trap situation and reaches 

the target with a smoother motion.  

Table-7.11 (Comparison of simulation results between current investigation and other 

intelligent techniques) 

 

 

SL. 

No. 
Environment types 

Path length 

using current 

navigation 

system  

(‘in ‘cm') 

Path length 

from the 

reference 

model 

(‘in ‘cm') 

Percentage of 

deviation 

1 

Obstacle avoidance 

behaviours by the robot, 

Figures 7.20(a) and 7.20(b) 

8.12 9.41 13.7 

2 

Robot inside a cluttered 

environment Figures 7.21(a) 

and 7.21 (b) 

6.21 6.83 9.07 

3 
Robot inside a U-shaped 

obstacle 7.22(a) and 7.22(b)  
12.64 13.40 5.67 

  

The performance of the comparative study is mainly measured on the basis of path length 

(in ‘cm’) and smoothness of the trajectory, which is presented in Table-7.11. From the 

above simulation analysis, it is clearly seen that the developed hybrid methodology can 

efficiently control the robot in any environment. 

7.7   Summary 

The following salient features are presented on the basis of the simulation and 

experimental results. 

 The proposed CS-ANFIS navigational algorithm has been successfully 

implemented for single and multiple mobile robots in static environments. 
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 The Cuckoo search (CS) algorithm and least square estimation (LSE) method 

have been applied to optimize the premise and consequent parameters in ANFIS 

and to calculate the suitable steering angle of the mobile robots. 

 In order to avoid collision problems between the mobile robots, collision 

prevention rules have been formulated and effectively embedded in the robot 

controller, using the Petri-Net model. 

 The effectiveness, feasibility, and robustness of the proposed path planning 

algorithm have been tested in both the simulation and experimental modes, and 

they are in a good agreement.  

 The maximum percentage of deviation between experimental and simulation 

results for single and multiple robots in terms of path lengths are 4.99% and 

4.98% respectively. Similarly, the maximum percentage of deviation between 

experimental and simulation results in terms of time taken by single and multiple 

robots are 4.97% and 4.96% respectively. 

 The current navigational methodology has been compared with other models of 

different authors, and it has been seen that the developed methodology yields 

better results compared to other techniques. The percentage of deviation is 

depicted in the Table 7.12.   

In the next chapter IWO-ANFIS hybrid algorithm has been implemented to the path 

optimization problem of multiple mobile robots. 
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8.  ANALYSIS OF IWO-ANFIS HYBRID ALGORITHM FOR 

MULTIPLE MOBILE ROBOTS NAVIGATION 

 

8.1   Introduction 

     In this present chapter, a new hybrid intelligent motion planning approach to mobile 

robot navigation has been described. In this new hybrid methodology the Invasive Weed 

Optimization (IWO) algorithm is used for training the premise parameters and the Least 

Square Estimation (LSE) method is used for training the consequent part of the Adaptive 

Neuro-Fuzzy Inference System (ANFIS). A brief description of the Invasive Weed 

Optimization and Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques are 

discussed in the Chapter-4 and Chapter-6 respectively. In this proposed navigational 

model, different kinds of sensor extracted informations, such as front obstacle distance 

(FOD), right obstacle distance (ROD), left obstacle distance (LOD) and heading angle 

(HA) are given as input to the hybrid controller, for calculating the suitable steering angle 

(SA) for the robot. In order to avoid collision against one another, a set of collision 

prevention rules are also incorporated into each robot controller, using the Petri-Net 

model. The simulation results for single and multiple robots are verified by the real-time 

experimental results, using the Khepera-II and Khepera-III mobile robots to show the 

versatility and effectiveness of the proposed hybrid navigational algorithm. The results 

obtained using the proposed hybrid algorithm is validated by comparison with the results 

from other intelligent algorithms. Finally, it is proved that the proposed hybrid 

navigational controller can be implemented in the robot for navigation in any complex 

environment.  

Intelligent soft computing techniques such as artificial neural network and fuzzy logic 

approaches are verified to be efficient and appropriate when implemented for variety of 

systems. Recent years both techniques have been rising interest and as a result, neuro-

fuzzy techniques have been developed. There are many neuro-fuzzy models for the 

mobile robot path planning discussed by many researchers [123,124,129,133]. The 

ANFIS is a hybrid machine learning intelligent system, which takes the advantages of
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both artificial neural network and fuzzy inference system [149-150]. The training and 

updating of the premise and conclusion parameters in ANFIS is one of the major 

problems. Gradient descent algorithm usually determines the fuzzy membership 

function's antecedent parameters. However, the calculation of the gradients in each step 

becomes difficult and may lead to the local minimum and due to this the adaptive system, 

affects the accuracy.   

To overcome these problems, in this study an approach benefiting from the combination 

of adaptive network based fuzzy inference system (ANFIS) and Invasive Weed 

Optimization (IWO) algorithm is proposed to solve the navigational problem of a mobile 

robot. In this proposed hybrid algorithm, the IWO technique is introduced to enhance the 

performance of ANFIS by tuning the membership function parameters and subsequently 

minimizing the root mean square error (RMSE). The Invasive Weed Optimization (IWO) 

is a metaheuristic search algorithm proposed by Mehrabiana and Lucas in 2006 [209]. 

This optimization algorithm is based on the colonizing behaviour of weeds. An important 

feature of the IWO algorithm over GA and PSO is that,  by tuning the important 

parameters in the IWO, the initial and final standard deviation, a high-level control in the 

convergence rate and accuracy of the algorithm are obtained.. However, to our 

knowledge, the IWO-ANFIS hybrid algorithm has not been implemented for mobile robot 

navigation till date.  

8.2  Architecture of IWO-ANFIS Hybrid Controller for Multiple Mobile 

Robots Navigation 

As specified earlier an ANFIS and IWO based obstacle avoidance scheme are used for 

path planning of mobile robot in cluttered environments. The main objective of this 

chapter is to predict the optimized steering angle for the robot using IWO based ANFIS 

navigational controller. In this proposed navigational model, different kinds of sensor 

extracted informations, such as front obstacle distance (FOD), right obstacle distance 

(ROD), left obstacle distance (LOD) and heading angle (HA) are given as input to the 

hybrid controller, in order to calculate the suitable steering angle (SA) for the robot. The 

detail navigation architecture for the ANFIS model is previously discussed in the 

Chapter-4. Figure 8.1 shows the schematic architecture for IWO-ANFIS.  
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Figure 8.1 IWO-ANFIS hybrid controller for Mobile robot navigation. 
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Implementation of the IWO algorithm for training ANFIS 

The detailed membership function parameters of ANFIS are discussed in previous 

chapter.  

The coding structure of a seed is shown as following:  

ai1 bi1 ci1 ai2 bi2 ci2 ai3
 
    bi3 ci3 ai4 bi4 ci4 ................. anj bnj cnj 

 

Where the parameters aij, bij, and cij control the centre, width, and slope of the Bell-

shaped membership function.  

i=1,2,3,...n. (Total number of membership functions for input parameters) 

j=1….4. (Number of input parameters) 

The initial values of the seeds are randomly generated in the first generation. The 

important step in implementing IWO algorithm is to select the suitable objective function, 

which is used to determine the fitness of each seed. Here, we have used same the 

objective function (Equation no. 7.1) as previously used in CS-ANFIS hybrid algorithm.  

Here, the number of population is set to 20 for considering excessive running time. As 

each seed has 36 parameters, the colony size is [20X36] elements. The number of 

membership function parameters present in each seed will specify a real-value of all 

possible premise parameters of the fuzzy system. In the IWO algorithm the objective 

function is determined for each seed and sorted the population in the ascending order, this 

process continues until the maximum number of plants produced. Eliminate the plants 

having a lower rank in the population. Sort the population according to the objective 

function values, the seed having minimum objective function value is selected as the 

optimal point. The IWO algorithm runs until the maximum number of iterations, or 

minimum value of the objective function criteria is attainable. It is noticed that the new 

hybrid model can save the computation time in adjusting all parameters of ANFIS system. 

The flow chart of the sequential combination of IWO and ANFIS is given in Figure 8.2. 
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Figure 8.2 Flow chart diagram of the proposed hybrid algorithm. 
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Steps of IWO-ANFIS hybrid algorithm: 

Step-1: Generate the initial population of host seeds in the search space, each representing 

a set of antecedent parameters of ANFIS in sequence.  

Step-2: Determine the membership function value, the firing strength, and the normalized 

firing strength, using equations 4.5, 4.6, and 4.7 (Chapter-4) respectively.  

Step-3: The consequent parameters are calculated using the LSE method and these are 

used to determine the overall ANFIS output, using equation 4.9 of Chapter-4.  

Step-4: In this step the root mean square error (RMSE) between the predicted output and 

actual training data for each seed (plant) is calculated, which is also the objective 

function value of the n
th

 seed.  

Step-5: The RMSE values of each seed (plant) are compared; the plant that has the 

smallest RMSE is selected as the best one. 

Step-6:  Eliminate the plants with lower fitness to reach the maximum number of plants.  

Step-7: The iteration ends when the maximum numbers of iteration criterions are 

satisfied, and the best values of the antecedent parameters with consequent 

parameters are identified. 

The optimized antecedent parameters of the fuzzy system obtained from the IWO 

algorithm are used to train the ANFIS navigational controller in order to determine the 

suitable steering angle of a mobile robot for any reactive condition. The various reactive 

behaviours and training patterns of ANFIS model for mobile robot path planning have 

been discussed in the Chapter-4. 

8.3   Simulation Results and Discussion  

To validate the performance of the current hybrid navigational controller, we have 

demonstrated the simulation exercises for both single and multiple robots to verify the 

robot trajectory in partially or completely unknown environments. The best parametric 

value of the IWO algorithm has been selected after performing a series of simulation 

experiments and is given in the Table-6.1. 

The simulated robot path planning algorithm has been developed by putting the robot, 

goal and obstacles in different positions in the environment. In the current navigation 

model, we have mainly considered the three reactive behaviors: target seeking, wall 
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following and obstacle avoiding. In order to avoid an obstacle and generate the trajectory 

of the mobile robot, the controller needs to decide the steering direction in which the 

robot should move to reach the target. To decide the correct reactive behavior, the 

proposed navigation model should consider all accounts of information. When a robot is 

close to an obstacle, it must change its steering angle to avoid the obstacle. If a mobile 

robot senses a target, it will decide whether it can reach that target, i.e. it will judge 

whether there are any obstacles that will obstruct its path or not. If the path leading to the 

goal is clear, the robot will turn and proceed towards the destination. Wall following 

behavior will be activated when the robot is sensed an obstacle in front of it and the target 

is present on the opposite side of the obstacle; then the robot will travel towards the goal 

by following the left or right side of the wall to reach the target.  

8.3.1   Simulation results for a Single Mobile Robot 

A comparative simulation study for single mobile robot considering various reactive 

behaviors have been made between the IWO-ANFIS and ANFIS techniques as shown in 

Figures 8.3-8.8. The performance of the techniques is mainly measured, based on the path 

length given in Table-8.1. It can be noticed that the IWO-ANFIS hybrid algorithm yields 

better results in terms of smoothness, compared to the ANFIS technique. In the 

simulation graph X and Y axes are taken as 300 units and each unit is equal to 0.2mm.  
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Figure 8.4  Wall following behavior by a single robot using ANFIS 

technique. 

 

Figure 8.3   Wall following behavior by a single robot using IWO-ANFIS      

Hybrid technique. 
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Figure 8.6   Single robot escaping from a trap condition using ANFIS 

hybrid technique. 

 

Figure 8.5   Single robot escaping from a trap condition using IWO-ANFIS 

hybrid technique. 

 



 

194 

  

 

 

 

 

 

 

 

 

                                                 

 

Figure 8.8  Single robot navigating inside a cluttered environment 

using ANFIS hybrid technique. 

 

Figure 8.7  Single robot navigating inside a cluttered environment using 

IWO-ANFIS hybrid technique. 
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  Table-8.1 (Comparison of IWO-ANFIS and ANFIS results in terms of path length) 

 

SL. No. 
Path covered by the Robot 

using IWO-ANFIS (in ‘cm’) 

 

Path covered by the Robot 

using ANFIS (in ‘cm’) 

 

% of 

deviation 

1 9.30 (Fig. 8.3)          10.12 (Fig. 8.4) 8.10 

2 9.80 (Fig. 8.5) 10.30 (Fig. 8.6) 4.85 

3 

 

10.20 (Fig. 8.7) 11.02 (Fig. 8.8) 7.44 

 

8.3.2   Simulation Results for Multiple Mobile Robots 

The simulation results for multiple mobile robots or inter-collision avoidance among the 

robots have been performed using the Petri-Net theory. The details of Petri-Net theory for 

multiple mobile robots navigation has been discussed in the Chapter-7. The simulation 

experiments involve four robots with four goals at different positions of the environment. 

The simulation results for multiple robots navigation in various environments are 

presented in the Figures 8.9 to 8.11. In the results, various reactive behaviors are 

demonstrated by the robots. It can be observed that the robots have effectively reached 

their targets without any collision with one another and the obstacles. In this simulation 

graph X and Y axes are taken as 40 units and each unit is equal to 20mm.    

 

                 

 

Figure 8.9   Obstacle avoidance and wall following behavior by multiple 

mobile robots using IWO-ANFIS hybrid technique. 
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Figure 8.11 Path planning of multiple mobile robots in a maze  

                   environment using IWO-ANFIS hybrid technique. 

 

Figure 8.10  Multiple mobile robots navigating in a maze environment    

using IWO-ANFIS hybrid technique. 
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8.4   Experimental Validation with the Simulation Results 

The effectiveness of the proposed algorithm has been verified through a series of real 

time test on Khepera-II and Khepera-III mobile robots. The experimental results are 

conducted for both single and multiple mobile robots. The details specification of the 

robots are given in the Appendix-A. During the experiment, the robots perform the 

various reactive behaviours like wall following, obstacle avoidance, and target seeking as 

per the training of ANFIS data.  The results for single and multiple robots are shown in 

Figures 8.12-8.16, which is already verified in the simulation mode, and has been verified 

experimentally to show the efficacy of the developed path planner. During 

experimentation, paths followed by the robot to reach the target are traced. The average of 

20runs is taken into consideration for each simulation and experimental results. The best 

results are shown in the simulation and experimental graph. The path length and time 

taken by the robots to reach the target have been recorded and presented in Tables 8.2-

8.11. It has been observed that the experimental results are closer to the simulation 

results, which validate the proposed navigation methods. The maximum percentage of 

deviation between experimental and simulation results for single and multiple robots in 

terms of path length are 4.93% and 4.97% respectively. Similarly, the maximum 

percentage of deviation between experimental and simulation results for single and 

multiple robots in terms of time taken are 5.10% and 5.17% respectively.  
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Figure 8.12 (a)                                      Figure 8.12 (b) 

                   

Figure 8.12 (c)                                      Figure 8.12 (d) 

                   

Figure 8.12 (e)                                      Figure 8.12 (f) 
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Figure 8.12  Experimental results for navigation of mobile robot in the  

                    environment shown in Figure 8.3. 
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                          Figure 8.13 (a)                                      Figure 8.13 (b) 

         

                          Figure 8.13 (c)                                      Figure 8.13 (d) 

         

                          Figure 8.13 (e)                                      Figure 8.13 (f) 
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Figure 8.13  Experimental results for navigation of mobile robot in the  

                    environment shown in Figure 8.5. 
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                          Figure 8.14 (a)                                      Figure 8.14 (b) 

                 

                          Figure 8.14 (c)                                     Figure 8.14 (d) 

                 

                         Figure 8.14 (e)                                      Figure 8.14 (f) 
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Figure 8.14  Experimental results for navigation of mobile robot in the  

                    environment shown in Figure 8.7. 
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                          Figure 8.15 (a)                                      Figure 8.15 (b) 

               

                          Figure 8.15 (c)                                      Figure 8.15 (d) 

       

                         Figure 8.15 (e)                                     Figure 8.15 (f) 
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Figure 8.15       Experimental results for navigation of mobile robots in the 

environment shown in Figure 8.9. 
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                    Figure 8.16 (a)                                     Figure 8.16 (b) 

                

                   Figure 8.16 (c)                                      Figure 8.16 (d) 

                

                   Figure 8.16 (e)                                     Figure 8.16 (f) 
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Figure 8.16  Experimental results for navigation of mobile robots in the 

environment shown in Figure 8.10. 
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 Table-8.2  The Path travelled by the single robot during simulation and experimental  

analysis by the proposed hybrid navigation system shown in Figures 8.3 and 

8.12 respectively. 

 

No. of  

Runs 

Path length covered 

during simulation  

(in ‘cm’) 

Path length covered 

during  the experiment  

(in ‘cm’) 

% of error 

1 171.80 179.44 4.45 

2 172.23 180.34 4.71 

3 169.74 179.82 5.94 

4 173.52 181.64 4.68 

5 170.92 179.25 4.87 

6 168.34 177.56 5.47 

7 174.22 182.02 4.48 

8 170.51 179.67 5.38 

9 174.98 183.48 4.86 

10 172.52 181.61 5.27 

11 172.38 179.96 4.39 

12 168.80 177.59 5.21 

13 174.98 183.56 4.90 

14 170.21 179.03 5.18 

15 172.98 181.47 4.91 

16 171.06 180.64 5.60 

17 169.90 177.51 4.47 

18 173.53 182.82 5.35 

19 171.69 181.17 5.52 

20 174.99 182.85 4.49 

Average 

path 

length 

covered 

172.11 180.57 4.91 
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Table-8.3  The Path travelled by the single robot during simulation and experimental 

analysis by the proposed hybrid navigation system shown in Figures 8.5 and 

8.13 respectively. 

 

No. of  

Runs 

Path length covered 

during simulation 

 (in ‘cm’) 

Path length covered during  

the experiment  

(in ‘cm’) 

% of error 

1 173.01 180.39 4.27 

2 174.71 183.55 5.06 

3 176.14 184.60 4.80 

4 173.62 182.31 5.01 

5 175.74 185.10 5.33 

6 176.91 184.72 4.41 

7 174.68 183.69 5.16 

8 176.80 185.19 4.74 

9 174.60 183.73 5.23 

10 175.64 183.86 4.68 

11 173.60 182.02 4.85 

12 176.05 185.38 5.30 

13 175.93 185.24 5.29 

14 174.57 182.39 4.48 

15 175.85 184.25 4.78 

16 176.41 184.68 4.69 

17 173.37 182.45 5.23 

18 175.34 183.40 4.60 

19 172.90 182.01 5.27 

20 174.82 184.17 5.35 

Average 

path 

length 

covered 

175.03 183.66 4.93 
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Table-8.4  The Path travelled by the single robot during simulation and experimental 

analysis by the proposed hybrid navigation system shown in Figures 8.7 and 

8.14 respectively. 

 

No. of  

Runs 

Path length covered 

during simulation 

(in ‘cm’) 

Path length covered during  

the experiment  

(in ‘cm’) 

% of error 

1 161.07 169.73 5.38 

2 161.20 168.59 4.58 

3 159.53 166.35 4.27 

4 161.20 168.89 4.77 

5 161.99 170.14 5.03 

6 162.15 170.75 5.30 

7 159.77 167.37 4.75 

8 160.47 169.15 5.41 

9 160.31 167.38 4.42 

10 161.94 169.24 4.51 

11 163.28 170.17 4.22 

12 159.81 167.73 4.96 

13 160.07 168.63 5.35 

14 160.32 168.71 5.24 

15 159.96 168.11 5.10 

16 159.92 166.79 4.30 

17 159.69 167.55 4.93 

18 161.27 168.63 4.56 

19 159.19 167.61 5.29 

20 159.96 166.75 4.25 

Average 

path 

length 

covered 

160.66 168.41 4.83 
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Table-8.5   Time taken by the single robot during simulation and experimental analysis by 

the proposed hybrid navigation system shown in Figures 8.3 and 8.12 

respectively. 

 

No. of  

Runs 

Time taken by the robot 

during simulation  

(in ‘sec’) 

Time taken by the robot 

during experiment  

(in ‘sec’) 

% of error  

1 18.75 19.75 5.32 

2 19.44 20.45 5.20 

3 18.77 19.69 4.90 

4 19.66 20.56 4.58 

5 20.01 21.02 5.05 

6 18.75 19.55 4.27 

7 18.59 19.60 5.46 

8 19.12 20.11 5.18 

9 18.53 19.40 4.70 

10 19.66 20.56 4.58 

11 20.01 20.88 4.33 

12 18.99 19.99 5.27 

13 19.25 20.25 5.19 

14 19.32 20.39 5.54 

15 18.70 19.55 4.55 

16 19.74 20.71 4.91 

17 19.23 20.14 4.73 

18 20.10 21.07 4.83 

19 18.82 19.78 5.12 

20 19.43 20.50 5.51 

Average 

time 

taken  

by the 

robot 

 

19.24 20.20 4.96 
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Table-8.6   Time taken by the single robot during simulation and experimental analysis by 

the proposed hybrid navigation system shown in Figures 8.5 and 8.13 

respectively. 

 

No. of  

Runs 

Time taken by the robot 

during simulation  

(in ‘sec’) 

Time taken by the robot 

during experiment  

(in ‘sec’) 

% of error  

1 20.20 21.30 5.45 

2 22.24 23.23 4.44 

3 20.22 21.23 5.02 

4 21.50 22.66 5.39 

5 22.06 23.25 5.37 

6 19.87 20.96 5.49 

7 20.02 21.14 5.60 

8 21.23 22.31 5.08 

9 21.01 22.20 5.66 

10 21.76 22.77 4.65 

11 21.52 22.46 4.40 

12 21.49 22.70 5.63 

13 22.55 23.78 5.46 

14 20.79 21.76 4.66 

15 19.10 20.04 4.95 

16 21.23 22.13 4.25 

17 22.48 23.51 4.56 

18 22.02 23.21 5.39 

19 20.26 21.30 5.10 

20 21.96 23.14 5.41 

Average 

time 

taken  

by the 

robot 

 

21.18 22.25 5.10 
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Table-8.7   Time taken by the single robot during simulation and experimental analysis by 

the proposed hybrid navigation system shown in Figures 8.7 and 8.14 

respectively. 

 

No. of  

Runs 

Time taken by the robot 

during simulation  

(in ‘sec’) 

Time taken by the robot 

during experiment  

(in ‘sec’) 

% of error  

1 23.95 25.09 4.75 

2 22.86 24.03 5.12 

3 22.75 23.89 4.99 

4 23.84 25.13 5.42 

5 23.76 25.09 5.58 

6 23.18 24.41 5.31 

7 23.06 24.20 4.96 

8 22.60 23.59 4.36 

9 22.63 23.88  5.52 

10 23.35 24.43 4.63 

11 22.82 24.08 5.54 

12 22.86 23.99 4.94 

13 23.35 24.41 4.54 

14 22.19 23.47 5.77 

15 24.10 25.31 5.02 

16 22.78 24.01 5.38 

17 23.15 24.34 5.14 

18 22.85 23.87 4.46 

19 23.66 24.79 4.78 

20 23.34 24.42 4.63 

Average 

time 

taken  

by the 

robot 

 

23.15 24.32 5.04 
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Table-8.8     The Path travelled by the robots during simulation and experimental analysis 

by the proposed hybrid navigation system shown in Figures 8.9 and 8.15 

respectively. 

 

No. of  

Runs 
Robot No. 

Path covered by 

the robots during 

simulation 

analysis (in ‘cm’) 

Path covered by 

the robots during 

experimental 

analysis (in ‘cm’) 

% error 

1 

Robot-1 (Start-1) 146.72 153.21 4.42 

Robot-2 (Start-2) 185.30 195.03 5.25 

Robot-3 (Start-3) 172.26 179.85 4.41 

Robot-4 (Start-4) 180.96 189.10 4.50 

2 

Robot-1 (Start-1) 149.61 156.78 4.79 

Robot-2 (Start-2) 185.12 194.98 5.33 

Robot-3 (Start-3) 170.38 179.14 5.14 

Robot-4 (Start-4) 184.52 192.84 4.51 

3 

Robot-1 (Start-1) 148.77 155.23 4.34 

Robot-2 (Start-2) 186.29 195.89 5.15 

Robot-3 (Start-3) 171.33 180.02 5.07 

Robot-4 (Start-4) 183.48 192.98 5.18 

4 

Robot-1 (Start-1) 150.27 158.01 5.15 

Robot-2 (Start-2) 186.38 194.01 4.09 

Robot-3 (Start-3) 172.06 179.69 4.43 

Robot-4 (Start-4) 185.34 194.86 5.14 

5 

Robot-1 (Start-1) 149.94 156.89 4.64 

Robot-2 (Start-2) 184.53 193.98 5.12 

Robot-3 (Start-3) 171.59 179.22 4.44 

Robot-4 (Start-4) 184.92 193.54 4.66 
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6 

Robot-1 (Start-1) 150.93 157.69 4.48 

Robot-2 (Start-2) 185.77 195.31 5.14 

Robot-3 (Start-3) 173.04 180.59 4.36 

Robot-4 (Start-4) 186.15 195.98 5.28 

7 

Robot-1 (Start-1) 150.86 158.58 5.11 

Robot-2 (Start-2) 185.32 194.18 4.78 

Robot-3 (Start-3) 171.49 180.62 5.33 

Robot-4 (Start-4) 186.07 194.79 4.69 

8 

Robot-1 (Start-1) 147.92 156.21 5.60 

Robot-2 (Start-2) 185.93 194.83 4.79 

Robot-3 (Start-3) 169.95 179.98 5.90 

Robot-4 (Start-4) 182.44 192.55 5.54 

9 

Robot-1 (Start-1) 149.85 157.05 4.81 

Robot-2 (Start-2) 186.12 195.51 5.05 

Robot-3 (Start-3) 169.99 178.33 4.91 

Robot-4 (Start-4) 184.81 193.63 4.77 

10 

Robot-1 (Start-1) 147.20 154.26 4.79 

Robot-2 (Start-2) 186.26 194.49 4.42 

Robot-3 (Start-3) 170.39 177.77 4.33 

Robot-4 (Start-4) 181.55 191.44 5.45 

Average 

path 

length 

covered 

Robot-1 (Start-1) 149.21 156.39 4.81 

Robot-2 (Start-2) 185.70 194.82 4.91 

Robot-3 (Start-3) 171.25 179.52 4.83 

Robot-4 (Start-4) 184.02 193.17 4.97 
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Table-8.9     The Path travelled by the robots during simulation and experimental analysis 

by the proposed hybrid navigation system shown in Figures 8.10 and 8.16 

respectively. 

 

No. of  

Runs 
Robot No. 

Path covered by 

the robots during 

simulation 

analysis (in ‘cm’) 

Path covered by 

the robots during 

experimental 

analysis (in ‘cm’) 

% error 

1 

Robot-1 (Start-1) 189.52 199.12 5.07 

Robot-2 (Start-2) 187.06 196.03 4.79 

Robot-3 (Start-3) 174.79 182.25 4.27 

Robot-4 (Start-4) 152.84 160.25 4.85 

2 

Robot-1 (Start-1) 193.25 202.30 4.68 

Robot-2 (Start-2) 186.88 195.65 4.69 

Robot-3 (Start-3) 172.89 181.88 5.20 

Robot-4 (Start-4) 155.85 162.85 4.49 

3 

Robot-1 (Start-1) 192.16 201.32 4.77 

Robot-2 (Start-2) 188.07 197.59 5.06 

Robot-3 (Start-3) 173.85 180.95 4.08 

Robot-4 (Start-4) 154.97 163.09 5.24 

4 

Robot-1 (Start-1) 194.10 203.01 4.59 

Robot-2 (Start-2) 188.16 197.02 4.71 

Robot-3 (Start-3) 174.59 183.69 5.21 

Robot-4 (Start-4) 156.53 164.68 5.20 

5 

Robot-1 (Start-1) 193.67 202.33 4.47 

Robot-2 (Start-2) 186.29 194.88 4.61 

Robot-3 (Start-3) 174.12 182.32 4.71 

Robot-4 (Start-4) 156.18 163.25 4.53 
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6 

Robot-1 (Start-1) 194.95 204.15 4.72 

Robot-2 (Start-2) 187.54 196.58 4.82 

Robot-3 (Start-3) 175.59 183.59 4.56 

Robot-4 (Start-4) 157.22 165.33 5.16 

7 

Robot-1 (Start-1) 194.87 204.55 4.97 

Robot-2 (Start-2) 187.08 196.22 4.88 

Robot-3 (Start-3) 174.01 182.82 5.06 

Robot-4 (Start-4) 157.15 165.11 5.07 

8 

Robot-1 (Start-1) 191.07 199.44 4.38 

Robot-2 (Start-2) 187.70 197.05 4.98 

Robot-3 (Start-3) 172.44 179.98 4.37 

Robot-4 (Start-4) 154.09 161.55 4.84 

9 

Robot-1 (Start-1) 193.56 202.65 4.70 

Robot-2 (Start-2) 187.89 196.99 4.84 

Robot-3 (Start-3) 172.49 180.22 4.48 

Robot-4 (Start-4) 156.07 163.80 4.94 

10 

Robot-1 (Start-1) 190.14 198.69 4.50 

Robot-2 (Start-2) 188.03 197.04 4.79 

Robot-3 (Start-3) 172.90 181.96 5.24 

Robot-4 (Start-4) 153.34 160.59 4.73 

Average 

path 

length 

covered 

Robot-1 (Start-1) 192.73 201.76 4.68 

Robot-2 (Start-2) 187.47 196.51 4.82 

Robot-3 (Start-3) 173.77 181.97 4.72 

Robot-4 (Start-4) 155.43 163.05 4.90 
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Table-8.10   Time taken by the robots during simulation and experimental analysis by the 

proposed hybrid navigation system shown in Figures 8.9 and 8.15 

respectively. 

 

No. of  

Runs 
Robot No. 

Time taken by 

the robots during 

simulation 

analysis (in ‘cm’) 

Time taken by 

the robots during 

experimental 

analysis (in ‘cm’) 

% of  error 

1 

Robot-1 (Start-1) 20.39 21.48 5.35 

Robot-2 (Start-2) 25.02 26.34 5.27 

Robot-3 (Start-3) 22.18 23.29 5.01 

Robot-4 (Start-4) 22.94 24.11 5.11 

2 

Robot-1 (Start-1) 22.12 23.25 5.09 

Robot-2 (Start-2) 26.88 28.25 5.08 

Robot-3 (Start-3) 22.60 23.91 5.79 

Robot-4 (Start-4) 24.89 26.15 5.07 

3 

Robot-1 (Start-1) 21.12 22.21 5.18 

Robot-2 (Start-2) 26.59 27.99 5.25 

Robot-3 (Start-3) 23.50 24.57 4.54 

Robot-4 (Start-4) 23.76 24.96 5.07 

4 

Robot-1 (Start-1) 22.15 23.14 4.48 

Robot-2 (Start-2) 26.83 28.10 4.74 

Robot-3 (Start-3) 22.48 23.51 4.56 

Robot-4 (Start-4) 24.92 26.13 4.87 

5 

Robot-1 (Start-1) 21.65 22.68 4.75 

Robot-2 (Start-2) 26.50 27.76 4.75 

Robot-3 (Start-3) 23.27 24.40 4.87 

Robot-4 (Start-4) 24.36 25.51 4.72 
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6 

Robot-1 (Start-1) 22.92 24.18 5.50 

Robot-2 (Start-2) 26.08 27.29 4.65 

Robot-3 (Start-3) 23.82 25.17 5.65 

Robot-4 (Start-4) 25.78 27.11 5.14 

7 

Robot-1 (Start-1) 21.57 22.79 5.64 

Robot-2 (Start-2) 24.60 25.68 4.40 

Robot-3 (Start-3) 23.34 24.49 4.92 

Robot-4 (Start-4) 24.27 25.45 4.86 

8 

Robot-1 (Start-1) 21.27 22.41 5.37 

Robot-2 (Start-2) 25.69 27.05 5.30 

Robot-3 (Start-3) 23.14 24.40 5.46 

Robot-4 (Start-4) 23.93 25.12 4.99 

9 

Robot-1 (Start-1) 20.52 21.51 4.85 

Robot-2 (Start-2) 26.44 27.85 5.34 

Robot-3 (Start-3) 22.70 23.98 5.63 

Robot-4 (Start-4) 23.08 24.30 5.28 

10 

Robot-1 (Start-1) 20.87 21.85 4.71 

Robot-2 (Start-2) 25.58 26.78 4.69 

Robot-3 (Start-3) 22.42 23.60 5.26 

Robot-4 (Start-4) 23.48 24.58 4.70 

Average 

path 

length 

covered 

Robot-1 (Start-1) 21.46 22.55 5.09 

Robot-2 (Start-2) 26.02 27.31 4.95 

Robot-3 (Start-3) 22.95 24.13 5.17 

Robot-4 (Start-4) 24.14 25.34 4.98 
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Table-8.11   Time taken by the robots during simulation and experimental analysis by the 

proposed hybrid navigation system shown in Figures 8.10 and 8.16 

respectively. 

 

Run  

No. 
Robot No. 

Time taken by 

the robots during 

simulation 

analysis (in ‘cm’) 

Time taken by 

the robots during 

experimental 

analysis (in ‘cm’) 

% of error 

1 

Robot-1 (Start-1) 21.24 22.28 4.90 

Robot-2 (Start-2) 24.96 26.23 5.08 

Robot-3 (Start-3) 20.15 21.06 4.56 

Robot-4 (Start-4) 18.69 19.71 5.46 

2 

Robot-1 (Start-1) 23.05 24.16 4.85 

Robot-2 (Start-2) 26.61 28.01 5.28 

Robot-3 (Start-3) 20.47 21.52 5.11 

Robot-4 (Start-4) 20.25 21.25 4.94 

3 

Robot-1 (Start-1) 22.00 23.11 5.07 

Robot-2 (Start-2) 26.33 27.66 5.05 

Robot-3 (Start-3) 21.11 22.22 5.22 

Robot-4 (Start-4) 19.36 20.37 5.26 

4 

Robot-1 (Start-1) 23.07 24.19 4.86 

Robot-2 (Start-2) 26.62 27.98 5.10 

Robot-3 (Start-3) 20.35 21.26 4.48 

Robot-4 (Start-4) 20.30 21.29 4.87 

5 

Robot-1 (Start-1) 22.55 23.62 4.72 

Robot-2 (Start-2) 26.30 27.67 5.20 

Robot-3 (Start-3) 21.07 22.07 4.73 

Robot-4 (Start-4) 19.85 20.75 4.54 
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6 

Robot-1 (Start-1) 23.87 25.08 5.05 

Robot-2 (Start-2) 25.92 27.17 4.82 

Robot-3 (Start-3) 21.63 22.76 5.23 

Robot-4 (Start-4) 20.74 21.71 4.70 

7 

Robot-1 (Start-1) 22.47 23.58 4.93 

Robot-2 (Start-2) 24.35 25.57 5.02 

Robot-3 (Start-3) 21.19 22.15 4.50 

Robot-4 (Start-4) 19.78 20.88 5.58 

8 

Robot-1 (Start-1) 22.15 23.19 4.68 

Robot-2 (Start-2) 25.42 26.55 4.43 

Robot-3 (Start-3) 21.20 22.07 4.11 

Robot-4 (Start-4) 19.49 20.36 4.43 

9 

Robot-1 (Start-1) 21.37 22.49 5.24 

Robot-2 (Start-2) 26.11 27.45 5.15 

Robot-3 (Start-3) 20.56 21.62 5.18 

Robot-4 (Start-4) 18.81 19.76 5.05 

10 

Robot-1 (Start-1) 21.74 22.80 4.89 

Robot-2 (Start-2) 25.26 26.54 5.07 

Robot-3 (Start-3) 20.45 21.34 4.34 

Robot-4 (Start-4) 19.13 20.05 4.82 

Average 

path 

length 

covered 

Robot-1 (Start-1) 22.35 23.45 4.92 

Robot-2 (Start-2) 25.79 27.08 5.02 

Robot-3 (Start-3) 20.82 21.81 4.75 

Robot-4 (Start-4) 19.64 20.61 4.97 
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8.5  Comparison of the Developed IWO-ANFIS Hybrid Controller with 

other Navigational Controllers 

      Comparisons of the developed IWO-ANFIS path planner with other intelligent path 

planners have been carried out in simulation mode. The developed IWO-ANFIS path 

planner has been applied to similar environments as stated by the researchers. Figures 

8.17 and 8.18 depicted the path traced for the robot using developed hybrid technique and 

other intelligent techniques respectively. The size dimension of simulation platforms are 

considered as no. of units and each unit is in millimeter (mm). It has been found that the 

proposed path planner is more efficient compared to other discussed path planners.     

The first comparative study has been carried out with Mo et al. [87] for single robot path 

planning. In this study both the path planners have implemented to the similar 

environments. The developed IWO-ANFIS hybrid technique is found to be more effective 

compared to the technique applied by Mo et al. [87]. 

 

 
 

 
                                                                              
 

 

 

Figure 8.17 (a) Navigation path for mobile robot to reach target using  

                        Mo et al. [87] developed technique. 
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Similarly the second comparative study has been carried out with He et al. [115] for 

single robot navigation. From the graphical analysis, it has been clearly observed that the 

developed hybrid technique performs more efficiently compared to the technique 

implemented by the He et al. [115].  

                                  

 

Figure 8.18 (a) Navigation path for mobile robot to reach target using  

                             He et al. [115] developed technique. 

 Figure 8.17 (b) Navigation path for mobile robot to reach target using  

                          current developed hybrid technique. 
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The comparison performances among different methods have been recorded in terms of 

path length (in ‘cm’) and presented in the Table-8.12. From the above simulation 

analysis, it has been clearly seen that the developed hybrid path planner can efficiently 

handle the robot navigation in any complex environments. 

Table-8.12   Comparison of simulation results between the current investigation and other 

intelligent techniques. 

 

SL. 

No. 
Environment types 

Path length 

from the 

current system  

(‘in ‘cm') 

Path length 

from the 

reference model 

(‘in ‘cm') 

% of 

deviation 

1 

Maze environment with 

narrow passages, Figures 

8.17(a) and 8.17(b) 

7.4 8.7 14.94 

2 

Long barrier is presented 

between the robot and 

target, Figures 8.18(a) 

and 8.18(b) 

7.1 8.1 12.34 

 

Figure 8.18 (b) Navigation path for mobile robot to reach target using  

                             current developed hybrid technique. 
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8.6  Summary 

In this section, the following conclusions are obtained from the IWO based ANFIS 

navigational controller.  

 A novel approach for controlling the navigation of multiple mobile robots, using 

the IWO based adaptive neuro-fuzzy inference system (ANFIS) has been 

effectively applied in highly cluttered environments. 

 The IWO algorithm has been deployed to optimize the membership function 

parameters and least square estimation (LSE) method has been used to identify the 

conclusion parameters in ANFIS, and to calculate the suitable steering angle of 

the mobile robot. 

 The developed navigational methodology uses sensor extracted information, in 

order to determine the change required in the steering angle for obstacle 

avoidance. 

 In order to avoid collision problems between the mobile robots, collision 

prevention rules have been designed and effectively loaded in the robot controller, 

using the Petri-Net model. 

 The real-time experimental tests using Khepera-II and Khepera-III  mobile robots, 

have been validated with the simulation results, showing that the IWO based 

ANFIS controller performs better to navigate the mobile robot safely in a terrain 

populated by a variety of obstacles.  

 The maximum percentage of deviation between experimental and simulation 

results for single and multiple robots in terms of path length are 4.93% and 4.97% 

respectively. Similarly, the maximum percentage of deviation between 

experimental and simulation results for single and multiple robots in terms of time 

taken are 5.10% and 5.17% respectively. 

 The current navigational technique has been compared with other intelligent 

motion controllers, and it has been observed that the developed methodology 

yields better results than the other techniques. The percentage of deviation has 

been shown in the Table-8.12.  
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9.   RESULTS AND DISCUSSION 

 

9.1   Introduction 

The feasibility and effectiveness of the several navigational methods for mobile robots 

have been have been carried out in the current chapter of the dissertation The 

performance of the each developed intelligent controller has been presented 

systematically through both simulation and experimental validation. Different 

navigational techniques have been implemented in the current research work for the path 

planning of mobile robots in various environments and they are Adaptive Neuro-Fuzzy 

Inference System (ANFIS) and Multiple Adaptive Neuro-Fuzzy Inference System 

(MANFIS), Cuckoo Search (CS) algorithm and Cuckoo Search-Adaptive Neuro-Fuzzy 

Inference System hybrid algorithm (CS-ANFIS), and Invasive Weed optimization (IWO) 

and Invasive Weed optimization-Adaptive Neuro-Fuzzy Inference System (ANFIS) 

hybrid algorithm (IWO- ANFIS).  

9.2   Analysis of Simulation Results 

Two different simulation exercises have been carried out to compare the performances of 

the developed navigational controllers for single mobile robot. The obstacle avoidance, 

target seeking, barrier following and collision free path depend on the intelligence of the 

path planner. In the first simulation exercise, the robot is presented inside three long 

rectangular obstacles, and a target is situated in the environment. Figure 9.1(a) shows the 

initial condition of the scenario for all the navigational techniques. Figures 9.1(b) to 

9.1(g) represent the simulation results obtained for the robot using ANFIS, MANFIS, CS, 

CS-ANFIS, IWO, and IWO-ANFIS respectively. For each navigational controller, the 

average of 20 trials has been taken into consideration to show the best simulation paths. 

The total path lengths covered by the robot using proposed navigation techniques are 

measured in ‘cm’ for the single robot. Similarly, time taken for the robot to reach the goal 

using proposed navigation techniques is recorded in ‘sec’ for the single robot. The path 

length covered by the robot and time taken to reach the target are considered as an 

objective to compare the performance of different navigational methods. It has been
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observed that CS-ANFIS and IWO-ANFIS hybrid algorithms perform the best among the 

other discussed navigational methods. In the second simulation exercise shown in Figure 

9.2, the robot is navigating in a cluttered environment using the proposed navigational 

methods. It has been noted that the CS-ANFIS and IWO-ANFIS hybrid algorithms 

perform better compared to the other discussed navigational techniques. Similarly, a 

comparative study has been performed for multiple mobile robots using CS-ANFIS and 

IWO-ANFIS hybrid navigational strategies. The simulation results are presented in 

Figure 9.3(a) and Figure 9.3(b) respectively. It can be found that the CS-ANFIS and 

IWO-ANFIS hybrid algorithms perform better and successfully used for solving 

navigational problems of multiple mobile robots. The CS-ANFIS hybrid algorithm also 

produces a smooth trajectory for the robots compared to the IWO-ANFIS hybrid 

algorithm. In simulation graph the length of X and Y axes are taken as 30 units each and 

one unit is equal to 2mm.   

 

 

   

     Figure 9.1 (a)                                             Figure 9.1 (b) 
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                                 Figure 9.1 (c)                                                    Figure 9.1 (d) 

    

  Figure 9.1 (e)                                                     Figure 9.1 (f) 

  

                        Figure 9.1 (g)  

 

 

Figure 9.1 Comparison of path of single robot during simulation using  

                 different techniques. 

Figure 9.1 (a) Environmental scenario for 

navigation. 

Figure 9.1 (b) Navigation using ANFIS  

Figure 9.1 (c) Navigation using MANFIS 

Figure 9.1 (d) Navigation using CS 

Figure 9.1 (e) Navigation using IWO 

Figure 9.1 (f) Navigation using CS-ANFIS 

Figure 9.1 (g) Navigation using IWO-ANFIS 
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  Figure 9.2 (a)                                              Figure 9.2 (b) 

 

  Figure 9.2 (c)                                            Figure 9.2 (d) 

    

     Figure 9.2 (e)                                              Figure 9.2 (f) 
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                              Figure 9.2 (g) 

 

 

 

               Figure 9.3 (a)                                             Figure 9.3 (b) 

 

        

 

 

Figure 9.3 Comparison of path of multiple robots during simulation  

                  using CS-ANFIS and IWO-ANFIS techniques. 

Figure 9.2 Comparison of path of single robot during simulation using  

                  different techniques. 

 

 Figure 9.2 (a) Environmental scenario for 

navigation 

Figure 9.2 (b) Navigation using ANFIS  

Figure 9.2 (c) Navigation using MANFIS 

Figure 9.2 (d) Navigation using CS 

Figure 9.2 (e) Navigation using IWO 

Figure 9.2 (f) Navigation using CS-ANFIS 

Figure9.2 (g) Navigation using IWO-ANFIS 
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9.3   Experimental Validation with Simulation Results 

The experimental analysis has been conducted in our laboratory platform (225cmx175cm) 

using a real robot (shown in Appendix-I) to demonstrate the effectiveness of the 

developed navigational methods. The experiments have been performed to validate 

simulation results obtained from the different path planners. The details of experimental 

procedures have been discussed in the previous chapter. Figures 9.4-9.7 present the 

experimental results obtained for ANFIS, MANFIS, CS, IWO, CS-ANFIS, and IWO-

ANFIS techniques for a single robot similar to the environment as shown in Figures 9.1 

and 9.2 respectively. It has been noted that the path obtained experimentally follows 

closely those traced by the robot during simulation results. From the experimental figures, 

it can be clearly seen that the robots can successfully avoid obstacles and reach the goal. 

The proposed hybrid navigational strategies (CS-ANFIS and IWO-ANFIS) have been 

implemented to solve the multiple mobile robots tasks shown in Figures 9.8-9.10. It has 

been seen that the robots closely follow the simulation path using the developed motion 

planning approach and able to rove in a highly cluttered environment. The final 

comparison between simulation and experimental results in terms of path lengths and 

time taken using different navigational strategies have been depicted in Table-9.1-9.3. It 

has been found that the CS-ANFIS and IWO-ANFIS hybrid motion planning approaches 

perform best among the other discussed navigational approaches. The error between 

simulation and experimental results are found to be within 5% for path length and 6% for 

time taken by the robot to reach the target. 
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    Figure 9.4 (a)                                                  Figure 9.4 (b) 

   

  Figure 9.4 (c)                                                Figure 9.4 (d) 

   

                            Figure 9.4 (e)                                                 Figure 9.4 (f) 

 

  

 

 

 

 

Starting position 

Target position 

Path framed by the robots 

Obstacle 

X 

Y 

             Navigation using ANFIS 

          Navigation using MANFIS 

          Navigation using CS Algorithm 

          Navigation using CS-ANFIS 

          Navigation using IWO 

          Navigation using IWO-ANFIS 

 

Target 

Robot 

Obstacles 

Figure 9.4 Comparison of experimental path by single robot using different   

techniques shown in Figure 9.1.  
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 Figure 9.5(a)                                                  Figure 9.5(b) 

  

Figure 9.5(c)                                                 Figure 9.5(d) 

  

Figure 9.5(e)                                               Figure 9.5(f) 

 

 

 

 

Starting position  

Path framed by the robots  
Target  

X 

Y 

Target 

Robot 

Obstacles 

Figure 9.5 Comparison of experimental path by single robot using different  

                 techniques shown in Figures 9.2(b), 9.2(f) and 9.2(g). 

             Navigation using ANFIS                Navigation using CS-ANFIS 

             Navigation using IWO-ANFIS 
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    Figure 9.6(a)                                                   Figure 9.6(b) 

   

Figure 9.6(c)                                                   Figure 9.6(d) 

   

                           Figure 9.6(e) 

 

 

 

 

    Starting position 

         Path framed by the robots Target 
position 

X 

Y 

Target 

Robot 

Obstacles 

Figure 9.6 Comparison of experimental path by single robot using MANFIS and IWO 

techniques shown in Figures 9.2 (c) and 9.2 (e).  

             Navigation using MANFIS 

             Navigation using IWO 
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 Figure 9.7(a)                                                   Figure 9.7(b) 

    
 

  Figure 9.7(c)                                             Figure 9.7(d) 

 

   

                                Figure 9.7(e)                                                   Figure 9.7(f) 

 

           

 

 

 

Starting position 

Path framed by the robot 

Target position 

X 

Y 

Target 

Robot 

Obstacles 

Figure 9.7 Comparison of experimental path by single robot using CS algorithm 

shown in Figure 9.2 (d). 
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Figure 9.8 Real-time scenario for Mobile robot path planning. 

 

      

  

 

     

                        

 

a) 

X 

Y 

a) 

X 

Y 

Robot-1 Robot-2 

Robot-3 
Robot-4 

Target-2 

Target-1 
Target-4 

Target-3 

Path framed by the robots 

b) 

Robot-1 Robot-2 

Robot-3 
Robot-4 

Target-3 
Target-4 

Target-1 

Target-2 

Path framed by the robots 

b) 

Figure 9.10 (a-b) Comparison of experimental path by multiple robots using 

IWO-ANFIS hybrid algorithm shown in Figure 9.3 (b). 

 

Figure 9.9 (a-b) Comparison of experimental path by multiple robots using  

                           CS-ANFIS hybrid algorithm shown in Figure 9.3 (a). 

 

Robot-1 Robot-2 
Robot-3 

Robot-4 

Target-3 Target-4 

Target-1 

Target-2 

Obstacles 
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Different 

navigation 

techniques 

Average 

Path 

lengths in 

simulation 

(in ‘cm’) 

Average 

Path 

lengths in 

experiment 

(in ‘cm’) 

% of 

Average 

error 

Average 

Time 

taken in 

simulation 

(in ‘sec’) 

Average 

Time 

taken in 

experiment 

(in ‘sec’) 

% of 

Average 

error 

ANFIS 164.62 174.34 5.91 21.11 22.5 6.58 

MANFIS 165.01 175.00 6.05 21.72 23.22 6.91 

CS 163.14 172.41 5.68 20.6 22.02 6.89 

IWO 161.73 170.82 5.62 20.55 21.92 6.67 

 CS-ANFIS 159.69 166.71 4.40 20.11 21.22 5.52 

IWO-

ANFIS 

157.89 165.37 4.74 19.98 21.06 5.41 

Bold color shows the best results compared to other discussed techniques. 

  

Different 

navigation 

techniques 

Average 

Path 

lengths in 

simulation 

(in ‘cm’) 

Average 

Path  

lengths in 

experiment 

(in ‘cm’) 

% of 

Average 

error 

Average 

Time 

taken in 

simulation 

(in ‘sec’) 

Average 

Time  

taken in 

experiment 

(in ‘sec’) 

% of 

Average 

error 

ANFIS 179.80 190.89 6.17 22.12 23.64 6.87 

MANFIS 181.52 192.67 6.14 22.98 24.46 6.44 

CS 181.26 191.42 5.61 22.46 24.02 6.95 

IWO 179.58 190.32 5.98 22.38 23.9 6.79 

CS-ANFIS 176.33 185.09 4.97 21.18 22.42 5.85 

IWO-ANFIS 179.12 187.55 4.71 20.94 22.18 5.92 

Bold color shows the best results compared to other discussed techniques. 

 

 

 

 

Table 9.2 Comparison of path lengths and time taken by the robots for 

                Scenario-2 (Figure 9.2 and Figures 9.5-9.7). 

Table 9.1 Comparison of path lengths and time taken by the robots for 

                Scenario-1 (Figure 9.1 and Figure 9.4). 
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Different hybrid 

navigation 

techniques 

Average 

Path 

lengths in 

simulation 

(in ‘cm’) 

Average 

Path 

lengths in 
experiment 

(in ‘cm’) 

% of 

Average 

error 

Average 

Time  

taken in 

simulation 

(in ‘sec’) 

Average 

Time  

taken in 
experiment 

(in ‘sec’) 

% of 

Average 

error 

 

CS-

ANFIS 

Robot-1 

 

173.37 181.03 4.42 23.13 24.13 4.77 

Robot-2 167.26 174.36 4.25 21.21 22.09 4.17 

Robot-3 165.27 173.17 4.78 18.11 19.02 4.99 

Robot-4 153.87 160.61 4.38 17.56 18.32 4.33 

 

IWO-

ANFIS 

Robot-1 

 

172.96 180.14 4.15 22.87 23.89 4.45 

Robot-2 169.33 176.74 4.38 21.57 22.56 4.59 

Robot-3 165.45 172.96 4.53 19.69 20.66 4.93 

Robot-4 157.91 165.33 4.70 18.33 19.21 4.80 

 

9.4   Summary 

      In the present chapter, six types of navigational controllers such as ANFIS, MANFIS, 

CS, IWO, CS-ANFIS, and IWO-ANFIS have been discussed. To show the efficacy of the 

navigational algorithms for single mobile robot, two different types of scenarios (shown 

in Figures 9.1 and 9.2) have been taken into consideration. In each case, the average of 20 

runs has been taken into account. The best simulation graph has been presented in the 

results. The experimental verifications also have been done for the different hybrid 

navigational algorithms to corroborate with their respective developed working model in 

reality. They are found to be in good agreement. The path length covered and time taken 

by the single robot to reach the target using different techniques have been depicted in the 

Table-9.1 and Table-9.2 respectively. During the analysis of the results, it has been 

noticed that the hybrid navigational controllers such as CS-ANFIS and IWO-ANFIS 

performs better than the other discussed algorithms. The average percentage of errors for 

path length and time taken are found to be within 5% and 6% respectively. By 

investigating the results obtained from the proposed CS-ANFIS and IWO-ANFIS 

methodologies, it has been observed that the developed hybrid navigational controllers 

can be effectively implemented to solve the path planning optimization problems of 

mobile robots.     

Table 9.3 Comparison of path lengths and time taken by the robots for       

Scenario-3 (Figure 9.3, 9.9(b) and 9.10(b)). 
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     The best hybrid navigational path planners (CS-ANFIS and IWO-ANFIS) have been 

implemented for multiple mobile robots navigation. Similarly the path length and time 

taken by the robots to reach the targets are depicted in Table-9.3. During experimentation, 

it has been found that the robot closely follow the simulation path while avoiding 

obstacles. By analyzing the results, it has been observed that the CS-ANFIS and IWO-

ANFIS hybrid algorithms provide smoothness and best path trajectory compared to the 

other developed intelligent navigational controllers. It has been noticed that the average 

percentage of errors are found to be within 5% for both path length and time taken by the 

robots to reach targets.  

     Finally, the CS-ANFIS and IWO-ANFIS hybrid path planners are found to be suitable 

for solving the navigational problem of multiple mobile robots.   
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10. CONCLUSION AND SUGGESTIONS FOR FUTURE        

RESEARCH 

 

      The work presented in this emphasizes in the analysis and development of effective 

and efficient intelligent navigational controllers for multiple mobile robots navigation in 

partially or completely unknown environments. In this chapter, the results of intelligent 

navigational controllers discussed in the previous chapters are summarized. The main 

contribution to the research work, and scope for future research directions based on the 

work carried out in this dissertation are also presented.  

10.1   Important Contributions 

The following are important contributions of the dissertation: 

 The description of the kinematic posture of a wheeled mobile robot has been 

discussed, and it is important to calculate the wheel velocities of the mobile robot. 

From the wheel velocities, the steering angle of the robot is determined. The 

kinematic description of the mobile robot is sufficient to explain the global motion of 

the robot in the target seeking environment. 

 A novel straight forward Adaptive Neuro-Fuzzy Inference System (ANFIS) with three 

bell shaped membership functions have been considered for mobile robot navigation. 

The developed navigational strategy has been taken the advantages of both fuzzy 

logic and neural network. A Multiple Adaptive Neuro-Fuzzy Inference System 

(MANFIS) based navigational controller has been developed to control the motion of 

the robot in unknown or partially known environments. It has been observed that 

using the above navigational techniques the robots are able to avoid obstacles and find 

the goals effectively.   

 The optimization algorithm Cuckoo Search (CS) has been successfully implemented 

for the mobile robot navigation. This optimization algorithm has been modified to 

produce a hybrid CS-ANFIS technique for enhancing the navigational performance of 

the mobile robots. Using this hybrid algorithm the mobile robots has been 

successfully avoiding the inter-collisions problem. A new Petri-Net model has been
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developed and embedded in the CS-ANFIS hybrid controller for multiple mobile 

robots navigation.  

 The Invasive Weed Optimization (IWO) algorithm has been applied for mobile robot 

path planning. The developed optimization algorithm has been hybridized with 

ANFIS for enhancing the navigational performance of the robots. In order to avoid 

collision problems between the mobile robots, collision prevention rules have been 

designed and effectively loaded in the robot controller, using the Petri-Net theory.   

 Experimental set-ups have been developed to validate the simulation results using 

above discussed navigational strategies.   

10.2   Conclusions 

The conclusions, drawn on the basis of simulation and experimental results obtained from 

various navigational systems as discussed above are depicted below. 

 The kinematic analysis of wheeled mobile robot has been discussed. From the 

analysis, it has been confirmed that wheel velocities of the robot are used to determine 

the suitable steering of the robot. The kinematic description of the mobile robot is 

sufficient to explain the global motion of the robot in the target seeking environment. 

 In chapter four, an effective adaptive neuro-fuzzy system has been developed for 

mobile robot navigation in the presence of static obstacles. From the simulation and 

experimental results, it has been observed that the developed hybrid navigational 

controller can effectively control the mobile robot in unknown or partially known 

environments. Similarly, the developed MANFIS path planner provides closer results 

to the ANFIS controller.  

 The implementation of the Cuckoo Search (CS) algorithm for mobile robot navigation 

has been discussed in chapter five. This algorithm has increased the navigational 

performance of the robots compared to ANFIS technique and also produced 

smoothness in the robot trajectory. Similarly, in chapter seven CS-ANFIS hybrid 

technique has been successfully implemented for robot path planning, which provides 

better results compared to both standalone CS and ANFIS techniques. It has been also 

concluded that the CS-ANFIS hybrid technique can be successfully applied for 

multiple mobile robots navigation in unknown cluttered environments.  
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 In chapter six, a weed colonization based Invasive Weed Optimization (IWO) 

algorithm has been introduced to generate the optimal trajectory for the mobile robot. 

The path analysis result shows that IWO based navigational controller gives better 

results compared to ANFIS controller. Similarly, the IWO-ANFIS hybrid algorithm 

has been used for multiple mobile robots navigation. It has been observed that the 

results obtained using IWO-ANFIS are closer to the CS-ANFIS hybrid technique. 

 The best performing methods are based on CS-ANFIS and IWO-ANFIS techniques, 

which provide robust navigation results in unknown or partially known environments. 

These two hybrid (CS-ANFIS and IWO-ANFIS) techniques also give better results 

than the other discussed techniques.  

10.3   Suggestions for Future Research 

After the review of the research work in this dissertation, this part lists several 

suggestions recommended for future directions which are further to investigate for 

extending the results developed in this dissertation.  

 In the current work, different navigational architectures have been developed for 

multiple mobile robots navigation to avoid the collision among each other and static 

obstacles. However, further development may be needed for the avoidance of moving 

obstacles (Man, moving machine, animals, etc.) other than the robots. 

 Multi-robot coordination may be required for the co-operative task with static as well 

as dynamic obstacles. 

 The navigational methods have been developed in this thesis for detecting the static 

targets. Further modification may be required to detect the dynamic targets and also to 

reach them. 

 Furthermore, it may be a good idea to implement the active vision technology so that 

the robot can actively percept the environment conditions and avoid the robots and 

obstacles in an intelligent manner. 

 More robust hybrid intelligent navigation systems may be developed to solve the path 

planning optimization problem of multiple mobile robots.    
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APPENDIX-A 

 
Details description of Experimental Mobile Robots 

 

  

 

         
 

 

 

 

 

 

 

 

 

 

Front View Top View 

Left View Right View 

c) d) 

b) a) 

Figure A.1 (a-d) Differential Mobile Robot with different views. 
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        Elements Technical specification 

1 Processor ATmega2560 ( Arduino Mega 2560, Arduino UNO) 

2 RAM 8KB, EEROM-4KB 

3 Flash 256 KB ( 8KB used for boot loader) 

4 Motors 2-DC gear motors with incremental encoders 

5 Sensors 3 Infrared sensors with up to 150cm range. 

3 Ultrasonic sensors with up to 400cm range. 

6 Speed Max: 0.47m/s, Min:0.03m/s 

7 Power Power adapter or Rechargeable NiMH Battery ( 

2000mAh)  

8 Communication USB connection to the computer 

9 Size Length: 26cm,  Width: 20cm,  Height: 12 cm 

10 Weight Approx. 1300 g 

11 Payload Approx. 4200g 

12 Remote control 

Software via USB cable 

C/C++ ® (on PC, MAC )  

MATLAB ® (on PC, MAC, Linux )  

 

 

 

 

Table A.1 Technical specification of Differential Mobile robot 
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        Elements Technical specification 

1 Processor Motorola 68331 CPU, 25MHz 

2 RAM 512KB 

3 Flash 512 KB 

4 Motors 2-DC brushed Servo motors with incremental encoders 

5 Sensors 8 Infrared proximity and ambient light sensors with up 

to 100mm range. 

6 Speed Max: 0.5m/s, Min:0.02m/s 

7 Power Power adapter or Rechargeable NiMH Batteries 

8 Communication Standard Serial Port, up to 115KB/S 

9 Size Diameter: 70 mm , Height: 30 mm 

10 Weight Approx. 80 g 

11 Payload Approx. 250g 

12 Remote control 

Software via tether or 

LabVIEW ® (on PC, MAC or SUN) using RS232  

a) b) 

Table A.2 Technical specification of Khepera II Mobile robot 

Figure A.2 (a-b) Khepera II Robot with front and top view. 
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radio MATLAB ® (on PC, MAC, Linux or SUN) using  

RS232  

SysQuake ® (on PC, MAC, Linux or SUN) using  

RS232  

Freeware Any other software capable of RS232 

communication 
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        Elements Technical specification 

1 Processor DsPIC 30F5011 at 60MHz 

2 RAM 4 KB on DsPIC 

3 Flash 66 KB on DsPIC 

4 Motors 2-DC brushed Servo motors with incremental 

encoders 

5 Sensors 8 Infra-red proximity and ambient light sensors with 

up to 30cm range, 2 Infra-red ground proximity 

sensors for line following applications, 5 Ultrasonic 

sensors with range 20cm to 4 meters. 

6 Speed Max: 0.5m/s, Min:0.02m/s 

7 Power Power Adapater or Swapable Lithium-Polymer 

battery pack (1350 mAh) 

8 Communication Standard Serial Port, up to 115kbps USB 

communication 

9 Size Diameter: 130 mm,  Height: 70 mm. 

10 Weight Approx. 690 g 

a) b) 

Table A.3 Technical specification of Khepera III Mobile robot 

Figure A.3 (a-b) Khepera III Robot with front and bottom view. 
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11 Payload Approx. 2000g 

12 Remote control Software 

via tether or radio 

LabVIEW ® (on PC, MAC or SUN) using RS232  

MATLAB ® (on PC, MAC, Linux or SUN) using  

RS232  

SysQuake ® (on PC, MAC, Linux or SUN) using 

RS232  

Freeware Any other software capable of RS232 

communication 

 

 

 


