12 research outputs found

    Fast 3D Extended Target Tracking using NURBS Surfaces

    Full text link
    This paper proposes fast and novel methods to jointly estimate the target's unknown 3D shape and dynamics. Measurements are noisy and sparsely distributed 3D points from a light detection and ranging (LiDAR) sensor. The methods utilize non-uniform rational B-splines (NURBS) surfaces to approximate the target's shape. One method estimates Cartesian scaling parameters of a NURBS surface, whereas the second method estimates the corresponding NURBS weights, too. Major advantages are the capability of estimating a fully 3D shape as well as the fast processing time. Real-world evaluations with a static and dynamic vehicle show promising results compared to state-of-the-art 3D extended target tracking algorithms.Comment: In Proceedings of IEEE Intelligent Transportation Systems Conference (ITSC), 201

    Three-Dimensional Extended Object Tracking and Shape Learning Using Gaussian Processes

    Get PDF
    In this study, we investigate the problem of tracking objects with unknown shapes using three-dimensional (3D) point cloud data. We propose a Gaussian process-based model to jointly estimate object kinematics, including position, orientation and velocities, together with the shape of the object for online and offline applications. We describe the unknown shape by a radial function in 3D, and induce a correlation structure via a Gaussian process. Furthermore, we propose an efficient algorithm to reduce the computational complexity of working with 3D data. This is accomplished by casting the tracking problem into projection planes which are attached to the object's local frame. The resulting algorithms can process 3D point cloud data and accomplish tracking of a dynamic object. Furthermore, they provide analytical expressions for the representation of the object shape in 3D, together with confidence intervals. The confidence intervals, which quantify the uncertainty in the shape estimate, can later be used for solving the gating and association problems inherent in object tracking. The performance of the methods is demonstrated both on simulated and real data. The results are compared with an existing random matrix model, which is commonly used for extended object tracking in the literature

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Directional Estimation for Robotic Beating Heart Surgery

    Get PDF
    In robotic beating heart surgery, a remote-controlled robot can be used to carry out the operation while automatically canceling out the heart motion. The surgeon controlling the robot is shown a stabilized view of the heart. First, we consider the use of directional statistics for estimation of the phase of the heartbeat. Second, we deal with reconstruction of a moving and deformable surface. Third, we address the question of obtaining a stabilized image of the heart

    Simultaneous Tracking and Shape Estimation of Extended Objects

    Get PDF
    This work is concerned with the simultaneous tracking and shape estimation of a mobile extended object based on noisy sensor measurements. Novel methods are developed for coping with the following two main challenges: i) The computational complexity due to the nonlinearity and high-dimensionality of the problem, and ii) the lack of statistical knowledge about possible measurement sources on the extended object

    Tracking Extended Objects with Active Models and Negative Measurements

    Get PDF
    Extended object tracking deals with estimating the shape and pose of an object based on noisy point measurements. This task is not straightforward, as we may be faced with scarce low-quality measurements, little a priori information, or we may be unable to observe the entire target. This work aims to address these challenges by incorporating ideas from active contours and exploiting information from negative measurements, which tell us where the target cannot be

    Tracking Extended Objects in Noisy Point Clouds with Application in Telepresence Systems

    Get PDF
    We discuss theory and application of extended object tracking. This task is challenging as sensor noise prevents a correct association of the measurements to their sources on the object, the shape itself might be unknown a priori, and due to occlusion effects, only parts of the object are visible at a given time. We propose an approach to track the parameters of arbitrary objects, which provides new solutions to the above challenges, and marks a significant advance to the state of the art
    corecore