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Notation

General Notation
R Set of real numbers
R+ Set of positive real numbers
N Set of natural numbers
N+ Set of positive natural numbers
𝑎 Scalar
𝑎 Column vector
A Matrix
‖𝑎‖ Euclidean norm of vector 𝑎
det (A) Determinant of matrix A
(A)−1 Inverse of matrix A
I𝑁 Identity matrix of dimension 𝑁
( · )⊤ Transpose of a vector/matrix
𝛿(𝑎) Dirac-𝛿 distribution of vector 𝑎

Probability Theory

𝑠 Mean of a random variable 𝑠
𝑠̂ Mean of a random vector 𝑠
𝜎2

𝑠 Variance of random variable 𝑠
C𝑠 Covariance matrix of random vector 𝑠
𝑠 ∼ 𝑓 Random vector 𝑠 distributed according to PDF 𝑓
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State Estimation
𝑥𝑘 System state at time step 𝑘
𝑥̂𝑘 State mean at time step 𝑘
P𝑘 State covariance matrix at timestep 𝑘
𝑦

𝑘
Measurement at timestep 𝑘

𝑧𝑘 Source of the measurement at timestep 𝑘
𝑝

𝑘
A point in the same space as 𝑦

𝑘
C𝑤

𝑘 System noise covariance matrix at timestep 𝑘
C𝑣

𝑘 Measurement noise covariance matrix at timestep 𝑘
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Zusammenfassung

Beim Tracking von ausgedehnten Objekten (auf Englisch ‘extended object
tracking’, kurz EOT) geht es darum, die Form und Lage eines Zielobjekts
anhand von verrauschten Punktmessungen zu schätzen. Im Gegensatz
zu traditionellen Trackingverfahren, die das Zielobjekt als punktförmig
betrachten, modellieren wir das Objekt als ausgedehnte Form, deren
Parameter ebenfalls geschätzt werden. Diese Aufgabe ist nicht einfach,
da sie die folgenden Herausforderungen beinhaltet.

• Erstens liefern Sensoren stets verrauschte Messungen, und oft kann
nur Teil der ganzen Form beobachtet werden, zum Beispiel wegen
Verdeckungen oder Artefakten.

• Zweitens ist es möglich, dass nur wenig Vorwissen über das Zielob-
jekt zur Verfügung steht, zum Beispiel über die Formkomplexität
oder die Bewegung. Die verwendeten Modelle sollen deshalb flexibel
genug sein, eine große Vielfalt an potentiellen Formen zu beschrei-
ben, gleichzeitig aber robust und nicht anfällig für Overfitting.

• Drittens ist in vielen Fällen der Sensor nur in der Lage, wenige ver-
rauschte Messungen des Zielobjekts aufzunehmen, weil das Objekt
sich oft in großer Entfernung befindet.

Wegen diesen drei Faktoren ist es im Allgemeinen schwer, robuste und
präzise Lösungsansätze zu entwickeln, die gleichzeitig effizient und leicht
zu implementieren sind. Die Bewältigung dieser Herausforderungen ist
die Kernaufgabe dieser Arbeit.
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Zusammenfassung

EOT wird traditionell zur Verfolgung von Großobjekten wie Flugzeugen,
Schiffen, oder Autos verwendet. Allerdings ermöglichen Technologiefort-
schritte bei Tiefenkameras wie Microsoft Kinects mittlerweile sogar Laien,
Punktwolken aus ihrer Umgebung aufzunehmen. Das stellt eine neue
Herausforderung für EOT-Ansätze dar, die in modernen Anwendungen,
wie z.B. Objektmanipulation in Augmented Reality oder in der Robo-
tik, Zielobjekte mit vielen möglichen Formen anhand von Messungen
unterschiedlicher Qualität verfolgen müssen. In diesem Kontext ist die
Auswahl der Formmodelle ausschlaggebend, denn sie bestimmen, wie
robust und leistungsfähig der Schätzer sein wird, was wiederum eine
sorgfältige Betrachtung der Modalitäten und Qualität der verfügbaren
Informationen erfordert. Solch ein Informationsparadigma kann als ein
Spektrum visualisiert werden: auf der einen Seite, eine große Anzahl an
genauen Messungen, und auf der anderen Seite, nur wenige verrauschte
Beobachtungen. Allerdings haben sich die Verfahren in der Literatur
traditionell auf einen schmalen Teil dieses Spektrums konzentriert. Einer-
seits assoziieren ‘gierige’ Verfahren, die auf der Methode der kleinsten
Quadrate basieren, Messungen mit der nächsten Quelle auf der Form.
Diese Verfahren sind effizient und liefern sogar für komplizierte Formen
akkurate Ergebnisse, allerdings nur solange das Messrauschen niedrig
bliebt. Ansonsten kann nicht gewährleistet werden, dass der nächste
Punkt immer noch eine passende Approximation der wahren Quelle
ist, was zu verzerrten Ergebnissen führt. Andererseits sind probabilisti-
sche Modelle wie Raumverteilungen präzise für einfache Formen, sogar
bei extrem hohem Messrauschen, allerdings werden sie schon für wenig
komplexe Formen unlösbar oder numerisch instabil. Die Schwierigkeit
besteht darin, dass in vielen modernen Trackingszenarien die Menge an
verfügbarer Information sich drastisch mit der Zeit ändern kann. Das
unterstreicht den Bedarf an Ansätzen, die nicht nur die Stärken beider
Modelle kombinieren, sondern auch alle Bereiche des Spektrums und
nicht nur dessen Grenzfälle abdecken können.

Das Ziel dieser Arbeit ist es, diese Lücke zu füllen und somit die drei
oben angesprochenen Herausforderungen zu lösen. Dazu schlagen wir vier
Beiträge vor, die den aktuellen Stand der Technik signifikant erweitern.
Zuerst schlagen wir Level-set Partial Information Models vor, einen pro-
babilistischen Ansatz zur erwartungstreuen Formschätzung für Szenarien
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Zusammenfassung

mit Verdeckungen und hohem Messrauschen. Zusätzlich führen wir Level-
set Active Random Hypersurface Models ein, die von Konzepten aus EOT
und Computervision inspiriert sind, eine flexible Formparametrisierung
für konvexe und nicht-konvexe Formen ermöglichen, und die auch mit
wenig Information umgehen können. Darüber hinaus machen Negative
Information Models sogenannte ‘negative’ Information nutzbar, indem
Messungen verarbeitet werden, die uns sagen, wo das Zielobjekt nicht sein
kann. Schließlich zeigen wir eine einfach zu implementierende Erweiterung
von diesen Beiträgen, Extrusion Models, um dreidimensionale Objekte
mit realen Sensordaten zu verfolgen.

Der erste Beitrag dieser Arbeit betrachtet die erste Herausforderung, und
beschäftigt sich mit Shape Fitting in Szenarien mit niedriger Messqualität
und Verdeckungen. Die Schwierigkeit in diesem Kontext besteht darin,
dass es im Allgemeinen wegen des Sensorrauschens nicht möglich ist,
zu wissen, von welcher Quelle auf der Form eine gegebene Messung
generiert wurde. Inkorrekte Assoziationen verursachen wiederum verzerrte
Schätzungen, die verringerte Genauigkeit oder sogar Divergenz bei hohem
Messrauschen zur Folge haben. Um dieser Herausforderung zu begegnen,
stellen wir Level-set Partial Information Models vor. Kernidee hier
ist die Herleitung eines probabilistischen Terms zur Verzerrungskorrektur,
der durch eine Analyse der Formfunktion in der Nachbarschaft einer
approximierten Messquelle entsteht. Durch eine Neuinterpretation dieses
Terms als eine Integral über einer Niveaumenge der Formfunktion, lässt
sich die Korrektur mit beliebiger Genauigkeit und in geschlossener Form
berechnen. Diese Formulierung führt zu hoher Robustheit gegenüber
Rauschen und Verdeckungen, sogar in Szenarien, wo andere state-of-the-
art Verfahren divergieren.

Für die zweite Herausforderung brauchen wir eine geeignete Formparame-
trisierung, die mit wenig a-priori Information umgehen kann. Insbesondere
soll sie für alle möglichen Zielobjekte präzise Ergebnisse liefern, unab-
hängig von der Konvexität der Form, dem Startwert, oder wo sich die
Messquellen im Objekt befinden, da unter Umständen der Sensor auch
Messungen aus dem Inneren der Form beobachten kann. Obwohl in der
Literatur bereits mehrere Algorithmen existieren, die beliebige nicht-
konvexe Formen mit hoher Genauigkeit approximieren können, basieren

xi



Zusammenfassung

diese meistens auf sternkonvexen Parametrisierungen. Diese erfordern
jedoch die Existenz eines sogenannten ‘Zentralpunkts’, der sich mit al-
len Punkten auf der Oberfläche verbinden lässt, ohne die Oberfläche zu
schneiden. Leider führt die Verwendung dieser Ansätze bei Zielobjekten,
die nicht sternkonvex sind, zu fehlerhaften und vergrößerten Formschät-
zungen, die eine akkurate Berechnung der Pose schwierig machen. Um
diese Probleme zu beseitigen, werden Ideen des etablierten Konzepts
von Random Hypersurface Models erweitert zu Level-set Random Hy-
persurface Models. Die Hauptidee hier ist, die Formoberfläche durch
eine polygonale Parametrisierung zu beschreiben, die keinerlei Restrik-
tionen über die Konvexität erfordert, und dazu das Forminnere durch
Niveaumengen der Formfunktion zu modellieren. Diese Flexibilität er-
höht allerdings das Risiko von Overfitting und niedriger Robustheit, das
wir durch einen Regularisierungmechanismus reduzieren, der von Active
Contours aus der Computervision inspiriert wurde. Unser Beitrag ist
nicht nur flexibel und einfach zu implementieren, sondern erlaubt auch
den leichten Einbau von zusätzlichen dynamischen Modellen wie Shape
Morphing.

Allerdings kann die Verwendung von erwartungstreuen und flexiblen
Formmodellen allein nicht zu akkuraten oder robusten Ergebnissen füh-
ren, wenn die Menge an Information nicht ausreichend ist. Daher ist
es nötig, um die dritte Herausforderung zu behandeln, alle möglichen
Informationsmodalitäten eines Sensors einzubauen. Beispielsweise neh-
men Sensoren wie RGB- oder Tiefenkameras auch Messungen von der
Umgebung des Zielobjekts auf. Diese ‘negativen’ Messungen enthalten
ebenfalls wertvolle Information, denn sie teilen uns mit, wo das Zielob-
jekt nicht sein kann. Aus diesem Grund sind sie in Szenarien besonders
wertvoll, in denen es nur wenige bis gar keine ‘positiven’ Beobachtungen
des Objekts gibt. Um beide Arten von Messungen verwenden zu können,
führen wir Negative Information Models ein, die Ideen von probabi-
listischer Formschätzung und Shape Fitting kombinieren. Es ist allerdings
zu beachten, dass negative Messungen zwar ähnlich, aber nicht identisch
zur Idee von ‘negativer Information’ sind. Dort geht es darum, Wissen
aus dem Event abzuleiten, dass überhaupt keine Messung aufgenommen
wurde, während es in dieser Arbeit um Beobachtungen geht, die von
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Zusammenfassung

anderen Objekten stammen. Wir zeigen, dass unser Ansatz in Szenarien
mit viel Information ähnliche Ergebnisse wie Vergleichsverfahren aus der
Literatur liefert. In Szenarien mit Ausreißern oder Clutter kann unser
Ansatz aber dramatisch bessere Ergebnisse erzielen.

Die Untersuchung der Anwendbarkeit dieser Beiträge in realen Szenarien
ist in diesem Forschungsfeld von besonderem Interesse. Aus diesem Grund
wollen wir sicherstellen, dass unsere Konzepte sich auch mit dreidimen-
sionalen Daten verwenden lassen, wie sie bei z.B. in der Robotik oder
autonomer Navigation zur Verfügung stehen. Es werden daher für unsere
Modelle Erweiterungen zu 3D hergeleitet, die zusätzlich die Eigenschaften
von realen Sensormessungen beachten, um Overfitting zu vermeiden oder
mögliche Artefakte zu kompensieren. Ein einfacher Mechanismus, um
dieses Ziel zu erreichen, ist durch Extrusion Models. Dabei ist die
Grundidee, eine dreidimensionale Form durch die vertikale ‘Verschiebung’
einer planaren Grundform zu konstruieren, analog zur Konstruktion eines
Zylinders durch die Verschiebung eines Kreises. Zusätzlich können wir die
Grundform während der Verschiebung größer oder kleiner machen, um
komplexere Formen wie Flaschen, Dosen, oder Teekannen darzustellen.
Da diese Formulierung von Extrusionen kompatibel zu allen anderen in
dieser Arbeit vorgestellten Beiträgen ist, lässt sich die praktische An-
wendbarkeit dieser Modelle mit einer umfassenden Evaluierung zeigen,
in welcher die Form und Lage eines Objekts in Bewegung anhand realer
Sensordaten geschätzt wird.

xiii





Abstract

Extended object tracking (EOT) deals with estimating the shape and
pose of an object based on noisy point measurements. In contrast to
traditional tracking approaches, which assume that the target is a single
point, we model the target as a shape whose parameters also need to be
estimated. This task is not straightforward, in particular because we are
faced with the following three challenges.

• First, the sensor only provides noisy measurements, and may not
even be observing the entire shape, for example due to occlusions
and artifacts.

• Second, we may have little a priori information about the target, in
particular about the shape complexity or its motion. This means
that the shape model needs to be flexible enough to represent a
large variety of shapes while retaining robustness and avoiding
overfitting.

• Third, in many circumstances the sensor may only be able to provide
a small amount of low-quality measurements from the target, for
instance when sensor and target are far from each other.

These three factors make it difficult to develop robust, accurate estima-
tors that are also efficient and simple to implement. Addressing these
challenges is the main task of this thesis.

Traditionally, EOT has concerned itself with large objects such as planes,
ships, or cars, but with modern advances in depth cameras such as
Microsoft Kinect sensors, even laymen can capture point clouds of their
daily-life surroundings. This raises new challenges for EOT approaches,
as modern applications in fields ranging from robotics to augmented
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reality are now required to track targets with many different possible
shapes, while incorporating measurements whose quality may change in
time. In this context, the selection of appropriate shape models is crucial,
as it determines how robust and performant the estimator can be, and
requires a careful consideration of the amount of information available.
This paradigm can be visualized as a spectrum, with a high amount of
accurate measurements on one side, and few noisy observations on the
other. State-of-the-art approaches, however, have traditionally focused
narrowly on a single part of this spectrum. On the one hand, ‘greedy’
algorithms, such as those based on least squares methods, associate
measurements to the nearest source on the shape. These approaches
work efficiently even with very complex shapes, but only as long as the
measurement noise remains low, otherwise they yield biased estimates
as the nearest point ceases to be an appropriate approximation of the
true source. On the other hand, probabilistic techniques such as Spatial
Distribution Models are accurate for simple shapes, even with extremely
high noise, but become intractable or numerically unstable as soon as
the shape becomes moderately complex. The problem is that, in many
modern practical tracking scenarios, the amount and the quality of
available information may change drastically over time. This raises the
need for new approaches that combine the strengths of these models, but
can work suitably in any part of the information spectrum, not just on
the edges.

This thesis aims to bridge this gap, and presents four contributions to the
state-of-the-art which address the previously introduced challenges. First,
Level-set Partial Information Models present a probabilistic mechanism
for unbiased shape fitting that can handle situations with occlusions and
high measurement noise. Second, Level-set Active Random Hypersurface
Models provide a flexible shape representation for convex and non-convex
shapes, capable of dealing with scenarios with little a priori knowledge
by combining ideas from EOT and computer vision. Third, Negative
Information Models aim to increase the amount of available information
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by incorporating knowledge about where the target cannot be, exploit-
ing measurements usually discarded as clutter. Finally, we develop a
straightforward extension of these contributions, called Extrusion Models,
that allows them to estimate three-dimensional targets in real-world
scenarios.

The first contribution is aimed towards the first challenge, and focuses
on shape fitting scenarios with low measurement quality and occlusions.
The main difficulty in this context is the fact that, due to measurement
noise, it is generally not possible to know which source on the shape
generated the received measurements. Incorrect associations, in turn,
cause issues of estimation bias, leading to lack of accuracy and even
divergence if the noise is high enough. In order to address this, we
introduce Level-set Partial Information Models, which derive a
bias correction term by analyzing how the distance function behaves
around a potential source. This probabilistic correction term can be
evaluated with arbitrary accuracy by reinterpreting it as an integral over
a level-set, which can be calculated in closed form. This formulation
leads to high robustness against noise and occlusions even in scenarios
where state-of-the-art approaches diverge.

For the second challenge, we need an appropriate shape representation
that can handle situations with little a priori knowledge. In particular,
it must able to yield accurate results for arbitrary targets, independent
of the shape convexity, the initial value of the estimator, or whether
the sensor also receives measurements from the interior of the shape.
While state-of-the-art approaches have developed techniques capable of
closely approximating non-convex shapes, they have focused on star-
convex representations, which require a ‘center’ that can be connected
to all points in the boundary without intersecting it. Unfortunately,
applying these techniques on shapes that are not star-convex yields
inappropriate, oversized estimates that make it difficult to obtain an
accurate pose. In order to address this, we present Level-set Active
Random Hypersurface Models, which extend ideas from Random
Hypersurface Models from previous work. The key idea is to describe the
shape boundary using a polygonal representation, which does not impose
any demands of convexity, and model the interior using level-sets of the
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distance function. This increased flexibility, however, raises the risk of
overfitting and reduced robustness, which we avoid by introducing active
models, a regularization mechanism inspired from ideas of active contours.
This approach is not only flexible and easy to implement, but can also
easily incorporate additional dynamic models such as shape morphing.

Even if we employ unbiased and flexible shape models, the estimate cannot
be accurate or robust if there is little information to work with. Thus, in
order to address the third challenge, we need to be able to incorporate
every piece of information provided by the sensor. It is useful to take into
account that when sensors such as depth or RGB cameras observe a target,
they also capture measurements from its surroundings. These ‘negative’
observations carry important information that tells us where the target
cannot be, and become extremely valuable in situations where there are
few ‘positive’ measurements from the target. In order to incorporate both
types of information, we introduce Negative Information Models,
which combine ideas from probabilistic models and shape fitting. Note
that negative measurements are the result of actively observing an object
that is not the target being tracked, and thus, they differ conceptually
from the traditional idea of ‘negative information’, which represents
knowledge gained from the event that no measurement was received at
all. We show that our contribution works similarly to state-of-the-art in
situations with high-quality information, but conclusively surpasses them
in cases of outliers and clutter.

As usual in EOT, it is extremely important to take into account how the
proposed theoretical contributions can be used in real-life scenarios. In
particular, we are interested in potential applications that work with three-
dimensional data, for example in the fields of robotics or autonomous
navigation. This requires an extension of the previously explored ideas
into 3D, while taking into account the sensor characteristics and the
measurement quality in these scenarios, in order to compensate for
artifacts and to avoid overfitting. A straightforward mechanism to achieve
this is by using Extrusion Models, which construct a three-dimensional
surface by ’shifting’ a planar shape vertically, similarly to how a cylinder
is constructed from a circle. Furthermore, by making the planar shape
larger or smaller as it is being shifted, we can obtain even more detailed
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shapes such as bottles, cans, or teapots. Given that this formulation of
extrusions encapsulates all the previously explored ideas, we demonstrate
their applicability in real scenarios through a comprehensive evaluation
based on real-life captures of a moving object.
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CHAPTER
1

Introduction

(a) Image of a person holding a
bottle.

(b) 3D point cloud with segmented
bottle.

Figure 1.1: Illustration of a moving bottle being observed by a Microsoft Kinect 2
depth camera. The segmented bottle is shown in bright red, and an
example estimate is shown in black.

This thesis is concerned with estimating the shape and pose of an extended
object based on point measurements observed from its surface. This is not
a straightforward task, as illustrated by the scenario in Figure 1.1, where
we are required to estimate the pose, i.e., the position and orientation, of
the moving object. Applications such as this are relevant to a variety of
disciplines, including robotics, human-machine interaction, telepresence,
and augmented reality. We are faced with the following three challenges.
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Chapter 1. Introduction

• First, the measurements captured by the sensor are noisy, and
occlusions are usually present. In particular, we cannot guarantee
at any moment that we are observing the entire target, as happens
in Figure 1.1b where the sensor can only observe the bottle from
one side.

• Second, we may have little a priori information available about the
target shape, and we may not even know that we are observing a
bottle. This imposes important requirements on the selected shape
representation, as it needs to be flexible enough to describe a large
variety of targets while surviving situations of overfitting and high
uncertainty.

• Third, accurately tracking a moving target with an unknown shape
requires a minimum of information to be available, due to the
amount of parameters involved. However, under certain circum-
stances, such as the target being far from the sensor, only a low
amount of noisy measurements from the target may be available.
This motivates the derivation of approaches that optimally incor-
porate all the available sensor data.

The goal of this thesis is to provide reliable shape and pose estima-
tion techniques, as seen for example in Figure 1.1b, that address these
challenges.

1.1 Related Work

In order to appreciate in practical terms why this task can be difficult, it is
useful to take into account the wide variety of scenarios in which tracking
is applied, and the techniques that have been developed as solutions in
the last years. Broadly speaking, the source of all the difficulties we face
can be said to be uncertainty, which is an umbrella term that describes
a lack of information or knowledge about the system. The properties
of this uncertainty are critical, as they determine the assumptions that
can be made, the models to be applied, and the type of estimators that
should be employed. For illustration, we can consider the scenarios shown
in Figure 1.2. Let us start with Figure 1.2a, which shows an example of
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an airborne synthetic-aperture radar scan used for maritime surveillance.
In each scan, at most one single measurement becomes available for
each ship, as a consequence of their small size and the immense distance
between sensor and target. Because of this, it makes no sense to model
the spatial extents, and instead, the ‘small object’ assumption is employed
[1], where each target is described as a single point and their orientation
is assumed to be the same as the motion direction [2, 3]. Due to their
generality, low computational complexity, and wide applicability, single
point targets are commonly used in a variety disciplines [4, 5], but especial
attention has been given in literature to aircraft tracking [6, 7, 2, 5]. Even
if they ignore the target extent, the mathematical concepts explored by
these techniques have served as the cornerstone for the more complex
models that followed.

(a) SAR scan of maritime vessels [8],
©2011 IEEE.

(b) X-band radar scan of maritime
vessels [9], ©2016 IEEE.

(c) LIDAR scan from autonomous car
[10], ©2012 IEEE.

(d) Kinect scan for reconstruction [11],
©2011 IEEE.

Figure 1.2: Example practical tracking scenarios, sorted according to the
information available.
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In other scenarios, increased sensor quality allows for multiple measure-
ments per target to become available in each scan. This is the case in
Figure 1.2b, where marine X-band radar is being used to monitor the
ships traversing a harbor. The received information is generally suffi-
cient to detect the dimensions of the ship, which in turn can be used
for classification. It can also serve to determine which measurements
belong to clutter, such as the blurry gray lines produced by interference.
Because of these factors, models which treat targets as single points be-
come insufficient, raising the need to treat them as extended objects, i.e.,
possessing a non-zero area or volume. The discipline that deals with these
targets, and the focus of this thesis, is called extended object tracking
(EOT) [12, 13]. While there are several EOT works dealing explicitly
with radar data [14, 15], it can be seen that the provided information is
not sufficient to obtain a detailed reconstruction of the target. In cases
such as this, approximations using simple shapes are preferred, such as
ellipses [16, 17, 14, 15], rectangles [18, 19, 20], or line segments [147].

As sensor accuracy increases even further, much more information be-
comes available about the target’s shape. This can be seen for example
in Figure 1.2c, which shows a car using a rotating LIDAR to scan its
surroundings. By segmenting objects above the ground, the car can
detect and classify objects around it, allowing it to recognize which
objects are static (such as walls and lamp posts), and which can be in
motion (such as pedestrians, cars, or bicycles). This raises the need for
more flexible models able to reasonably approximate arbitrary shapes.
Approaches such as occupancy grids [21, 22, 23] can be used, which have
the advantage that they can be extended into navigation maps. Also
popular are parametric models, which describe knowledge about the
shape using a fixed (usually small) amount of parameters. Literature for
parametric estimation can be divided in two camps, based on whether
the observed target is ‘filled’ or not. For reference, when we talk about
filled shapes, we are referring to situations where observations stem both
from the target boundary and its interior. This can happen, for example,
in indoor navigation and autonomous driving (as in Figure 1.2c), where
the scene is flattened by projecting measurements onto the floor [24], or
in eagle-eye vehicle tracking, where targets are seen from above [1, 25].
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In these cases, the task is to obtain the smallest (or ‘tightest’) approx-
imation that contains all observed measurements. A commonly used
mechanism to describe the interior is by using boundary representations
such as Fourier series [26, 27, 28] or using ideas from Gaussian processes
[29], and then scaling the boundary inwards [30]. Another consists of
joining simple shapes together, such as ellipses, and ensuring spatial
coherency through unified kinematic models [31, 32, 33, 34]. However, if
the shape is not filled and we only observe its boundary, the task becomes
simply to obtain an estimate that minimizes some sort of distance or
metric to all measurements. In literature, this is known as shape fitting
[35]. While related work has focused on conic fitting [36, 37, 38, 39],
there are also works representing arbitrary shapes using polygons [40],
Bézier curves [41], Fourier series [27, 28], and Gaussian processes [29]. In
cases of occlusions, the missing information can be compensated using
assumptions of symmetry [42, 149]. Furthermore, it may be necessary to
correct for estimation bias caused by incorrect assumptions about the
source [148, 43]. If the shape is known a priori, and only the translation,
rotation and scaling need to be estimated, iterative closest point [44, 45]
can be used.

A common feature of the sensors mentioned before is that, due to their
high price, they have been out of reach to the layman. The arrival of
affordable, off-the-shelf depth sensors such as Microsoft Kinect [46, 47]
or Asus Xtion PRO changed this, which also allow for dense three-
dimensional point cloud captures with high measurement quality. This,
in turn, permits extremely detailed surface reconstruction in real time
such as in Figure 1.2d. Non-parametric representations are highly popular
in this context, in particular the KinectFusion application [11] and its
extensions [48]. This approach is based on three-dimensional occupancy
grids, a technique also used by [49, 50]. Other popular reconstruction
techniques include [51, 52], and off-the-shelf libraries implementing all
of these algorithms are also available [53]. Literature for parametric
representations in these scenarios, however, is less extensive. Approaches
that estimate three-dimensional shapes have been traditionally extensions
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of two-dimensional counterparts, such as going from ellipses to ellipsoids
[54], or cubes to cuboids [55]. While parametric works that deal exclu-
sively with three-dimensional shapes are scarce [1], exceptions include
[56, 57] which propose approximating targets as extrusions.

There are also related disciplines that are not directly relevant to the
main task of this thesis, but which are still worth mentioning for the sake
of completeness. On the one hand, the field of multiple target tracking
(MTT) [58, 59] deals with simultaneously estimating the position of
several targets, usually modeled as points. Unlike EOT, where the
sources have some spatial coherence in the form of a ‘shape’, in MTT
the point targets may appear, disappear, form groups, or separate at
any moment. In this case, managing hypotheses on which measurement
belongs to what target is critical, and several approaches exist that
address this task [60, 61, 62, 63, 64, 13, 16]. Others deal with a hybrid
system, tracking multiple extended targets simultaneously combining
ideas from MTT and EOT [65, 66, 67, 68]. On the other hand, it is also
worth discussing works that focus on object tracking using raster images
[69]. Unlike the main focus of EOT, which deals with separate point
measurements with individual noise characteristics, raster images work
with relative large pixel grids which can provide thousands or millions of
observations in each frame. It is then necessary to extract, or segment
[70, 71], the measurements that belong to the target, and then find a
simpler representation that contains all the relevant information, usually
in the form of a contour [69, 72] or a silhouette [73, 74]. The shape and
pose of the target are then tracked across frames [75, 76] using dynamic
models comparable to those employed in EOT and MTT. Note that, by
interpreting individual pixels from the target as point measurements,
EOT shape estimation techniques can also be used with raster images.
This approach is extremely useful in situations where a high amount of
gaps or measurement noise is expected, as is the case in depth images from
sensors such as Kinects or LIDARs, including the scenario illustrated
in Figure 1.1. Works that combine EOT with raster images include
[57, 56, 77, 147, 78].
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1.2 Contributions

As mentioned in the previous section, uncertainty in the system is a
key characteristic to take into account when choosing an estimation
procedure and the associated models. With this in mind, let us revisit the
scenario introduced at the beginning of this chapter, and its corresponding
three challenges. On the one hand, we saw that there is often very
little a priori information about the target, and thus, we may not know
how much measurement information will be available. This, in turn,
makes the selection of an appropriate shape representation, and its
initialization, extremely difficult. On the other hand, factors such as
measurement quality and the amount of observations may change in time.
For example, a target far from the sensor will yield sparse, extremely noisy
measurements, while another close to the sensor may produce enough
information for an accurate estimate in a single scan. This means that in
modern target tracking scenarios with rapidly moving targets, as seen in
disciplines such as robotics, indoor navigation, or even augmented reality,
the level of uncertainty in the system is constantly changing. Thus,
as modern applications begin covering wider ranges of the uncertainty
spectrum, categorizations based on which kind of measurement quality
an approach focuses on, as we did in Figure 1.2, are quickly becoming
less relevant. Taking this into account, in the following we enumerate the
contributions of this thesis and how they address these three challenges.

(a) Level-set PIMs. (b) Level-set
ARHMs.

(c) Negative
Information
Models.

(d) Extrusion
Models.

Figure 1.3: The four main contributions of this thesis.
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For the first challenge, we will focus on shape fitting scenarios with
low information quality, where it is important to retain an appropriate
level of accuracy and robustness even if only a few noisy measurements
are available. An important issue in this context is that it is difficult
to associate a measurement to the part of the shape that generated it,
as a consequence of the sensor noise. As an example, we observe that
finding the exact points on the grey circle that generated the red points
in Figure 1.3a is not straightforward. Inappropriate associations will
in turn cause estimation bias, yielding shapes with incorrect extents
and poses (such as the large circle with dotted line), raising the risk of
divergence when the uncertainty becomes large enough. Previous work
in literature alleviated this issue using multiple mechanisms [79, 43],
which were generalized in the form of Partial Information Models (PIMs)
[148]. The key idea for PIMs was to develop a probabilistic model of
how the distance function behaves around an assumed source, and use
this information to derive a bias correction term, which could in turn
be easily incorporated into an estimator. In this thesis, we introduce an
extension of this idea in the form of Level-set Partial Information
Models [160], capable of calculating this bias correction term with
arbitrary accuracy even in the presence of extremely high noise, as seen
for example in the circle estimate shown in black. This is achieved by
reinterpreting the calculation of the correction term as an integral over
level-sets of the distance function. Based on this improved formulation,
we show how our contribution is capable of robust, efficient, and accurate
shape estimation even in scenarios where state-of-the-art alternatives
produce invalid results.

The next challenge is to find an appropriate shape representation that
can handle situations with little a priori knowledge. As mentioned before,
shape complexity in literature can be described as a spectrum based on
the amount of information available, ranging from single points to convex
forms such as ellipses and rectangles, up to star-convex approximations.
The latter, despite its flexibility, requires the shape to have a ‘center’
that can be connected to all points in the boundary [26, 27, 28]. If this
is not the case, such as the gray shape in Figure 1.3b, the star-convex
approximation will not be capable of describing the target appropri-
ately (dotted line), losing vital information that can increase accuracy
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and robustness. In this thesis, we go even farther in the complexity
spectrum by introducing Level-set Active Random Hypersurface
Models (Level-set ARHMs) [156, 160] which extend ideas from Random
Hypersurface Models (RHMs) [30] from previous work. The advantage
of this contribution (shown in black) is that it can be used to estimate
arbitrary non-convex shapes, and can be employed both for shape fitting
or when the shape is filled. As an example implementation, we propose a
polygonal representation to describe the boundary, and model the interior
using level-sets of the distance function. While increased flexibility has
traditionally brought issues of overfitting and lack of robustness, we avoid
this problem by introducing a regularization mechanism inspired by ideas
of active contours [75, 76], called active models. The key idea here is
to model each vertex as a sort of spring, pulling each of its neighbors
slightly at each timestep. We show how our proposed model is capable
of not only describing non-convex shapes, but can also keep an accurate
representation while the target moves and morphs into another shape.

It should be pointed out that, even if the shape model and the estimation
procedure are robust and efficient, they cannot be accurate if there is
little information to work with, as can happen when the sensor is far
from the target. In order to address the third challenge, it is useful
to take into account that in scenarios where measurements are taken
from depth or RGB images, not only the target is being observed, but
also objects around it. This means that we can obtain knowledge about
where the target cannot be in the form of ‘negative’ measurements (blue
dots in Figure 1.3c), which can help us to compensate when positive
observations (red dots) are scarce. In order to exploit this additional
source of information, we introduce Negative Information Models,
capable of incorporating both positive and negative measurements from
the scenario. Note that negative measurements represent actively observ-
ing an object that is not the target being tracked, and thus, it differs
conceptually from the traditional idea of ‘negative information’, which
means gaining knowledge from the fact that no measurement was received
at all [80, 81, 82]. The proposed models are particularly useful in case of
occlusions (such as the light gray region in Figure 1.3c), given that they
make no assumptions in the case that fewer measurements are observed,

9



Chapter 1. Introduction

unlike probabilistic models such as [26, 57, 83] which immediately assume
that the target has shrunk. We show how models that exploit negative
measurements perform similarly to state-of-the-art in optimal conditions,
but outperform them in situations with outliers and occlusions.

Finally, as mentioned before, literature has traditionally focused on
two-dimensional shape estimation, while work with three dimensions
has usually been scarce [1] and dealt mostly with mere extensions of
2D models into 3D. While these approaches are mathematically sound,
they fail to take into account issues that appear only when dealing
with three-dimensional data. On the one hand, a much higher amount
of information is required than in planar counterparts, meaning that
trivial extensions from 2D may easily suffer from lack of robustness or
overfitting. Shape and pose models also need to be adapted to avoid
unobservable parameters, for example when trying to estimate the axial
rotation of a cylinder. On the other hand, it is necessary to keep in mind
the measurement quality provided by the sensors usually employed in
3D tracking scenarios, as they are often rife with outliers and artifacts.
We propose a mechanism to extend the previously explored ideas into
three dimensions while carefully taking these pitfalls into consideration,
in the form of Extrusion Models. The key mechanism is to describe
complex 3D shapes by interpreting them as extrusions, which can be
seen as the process of shifting a flat shape in the xy-plane vertically in
the z-axis, yielding a surface. For example, a cylinder can be obtained
by extruding a circle. Furthermore, by scaling the shape as it is being
shifted (as in Figure 1.3d), we can obtain even more detailed shapes,
allowing for the description of real-life objects such as bottles, cans, or
teapots. We explore different formulations and association models for
extrusion models, and then evaluate in what measure they can overcome
the low measurement quality and occlusions typical of 3D sensors.

1.3 Outline

In order to close this chapter, we will present a short outline of the
remainder of this thesis.
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• In Chapter 2, we discuss the topic of Extended Object Tracking
in more detail, including mathematical formulations and techni-
cal concepts which will serve as the theoretical backbone for the
following chapters.

• Then, in Chapter 3, we introduce Partial Information Models in
order to address the issue of estimation bias caused by incorrect as-
sumptions about the measurement sources. In this chapter, we also
introduce our contribution Level-set Partial Information Models.

• Chapter 4 serves as a brief introduction into the topic of the extent
problem in shape fitting, and introduces two innovations in the
form of active models and Active Random Hypersurface Models.

• Chapter 5 deals with shape estimation for arbitrary non-convex
shapes, and presents our contribution Level-set Active Random
Hypersurface Models.

• Then, in Chapter 6 we discuss the incorporation of positive and
negative measurements using Negative Information Models, and
show the advantages of this contribution.

• After that, in Chapter 7, we talk about the topic of Modeling
Extrusions, where we extend the previously proposed ideas into
three dimensions and evaluate them.

• Finally, we close this thesis in Chapter 8 by presenting the Conclu-
sions.
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CHAPTER
2

Extended Object Tracking

This chapter presents a short introduction into the field of extended
object tracking (EOT). It also presents a selected list of state-of-the-art
publications and lays the theoretical foundation for the following chapters.
First, we present a brief formulation of the problem being discussed. Then,
we give an overview of object tracking and how traditional approaches
deal with this topic. Finally, we extend these concepts to extended objects
and derive measurement models describing the relationship between the
shape parameters and how sensors observe them. In particular, we
explain the ideas of Spatial Distribution Models (SDMs) and Greedy
Association Models (GAMs), which are the starting points for the ideas
and contributions presented later in this thesis.

2.1 Problem Formulation

The basic problem being considered is estimating the pose parameters,
i.e., the position and orientation, of a moving target based on incoming
measurements taken from it. The parameters to be estimated are con-
tained in the state vector 𝑥𝑘, where 𝑘 denotes the discrete timestep. The
received measurements take the form

𝒴𝑘 =
{︁

𝑦
𝑘,1, . . . , 𝑦

𝑘,𝑛

}︁
,
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where 𝑦
𝑘,𝑖
∈ R𝑑 are points in Cartesian coordinates with 𝑑 = 2 or

𝑑 = 3.

In order to relate the received measurements to the state parameters, it is
useful to develop a generative model that describes what measurements
a sensor will observe as a function of a state 𝑥𝑘. We assume that during
sensor observation, the source point 𝑧𝑘,𝑖 is corrupted by an additive noise
term 𝑣𝑘,𝑖, which yields the measurement 𝑦

𝑘,𝑖
, i.e.,

𝑦
𝑘,𝑖

= 𝑧𝑘,𝑖(𝑥𝑘) + 𝑣𝑘,𝑖 . (2.1)

In this measurement equation, 𝑧𝑘,𝑖(𝑥𝑘) is a sensor-specific function that
selects a single source point based on the state 𝑥𝑘, and the term 𝑣𝑘,𝑖 is a
noise term whose probability distribution, for the sake of simplicity, is
assumed to have the Gaussian pdf

p(𝑣𝑘,𝑖) = 𝒩 (𝑣𝑘,𝑖; 0, C𝑣
𝑘,𝑖) , (2.2)

where the covariance matrix C𝑣
𝑘,𝑖 is assumed to be known a priori. Note

that we assume that 𝑣𝑘,𝑖 is independent of the state, i.e., p(𝑣𝑘,𝑖 |𝑥𝑘) =
p(𝑣𝑘,𝑖).

The relationship between state and measurement in (2.1) can be described
by using the conditional probability distribution p(𝑦

𝑘,𝑖
|𝑥𝑘). When mul-

tiple measurements arrive, the conditional pdf for the entire set can be
described as

p(𝑦
𝑘,1, . . . , 𝑦

𝑘,𝑛
|𝑥𝑘) =

𝑛∏︁
𝑖=1

p(𝑦
𝑘,𝑖
|𝑥𝑘) , (2.3)

by assuming that the noise terms are independent from each other.
In consequence, we only need to concern ourselves with probabilistic
terms for individual measurements, as they can be combined easily
by multiplying them. An extremely important property of the term
p(𝑦

𝑘,𝑖
|𝑥𝑘) is that, by plugging the received measurements into it, we

obtain a function 𝑓𝐿
𝑘 (𝑥𝑘) which can be interpreted as a likelihood function.

In turn, this allows us to derive an estimator for any given generative
model simply by probabilistically describing the relation between the
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measurements and the state. For convenience, in the following p(𝑦
𝑘,𝑖
|𝑥𝑘)

will be treated both as a conditional pdf in 𝑦
𝑘,𝑖

and as a likelihood function
in 𝑥𝑘 depending on the situation. We will now drop the subindex 𝑖 for
legibility.

Once a likelihood function has been derived, we can estimate the state
using techniques such as maximum likelihood estimators [84] or with
recursive Bayesian estimators such as particle filters [85, 86, 87]. For
estimators such as Linear Regression Kalman Filters (LRKFs) [88, 89, 90],
briefly described in Appendix 9.4, the measurement function can be used
directly without deriving the term p(𝑦

𝑘
|𝑥𝑘) explicitly. Note that this

thesis is not concerned with deriving new filters, and will instead focus on
developing models for extended targets, i.e., deriving likelihood functions
and measurement equations for use with third-party estimators. Unless
otherwise specified, the proposed modeling approaches do not impose
any constraints on the estimator being used.

(a) Traditional
tracking.

(b) Group target. (c) Extended target.

Figure 2.1: Conceptual differences between traditional tracking (target is a single
point), group target tracking (multiple targets are treated as a single
object), and Extended Object Tracking (one target has multiple
sources).
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2.2 Dealing with Multiple Targets

Traditional tracking approaches (Figure 2.1a) assume low resolution
sensors and a faraway target that generally yields only one measurement
per scan [91], and thus, it becomes sensible to approximate the target
shape as a single point without any spatial extent. In this case, 𝑧𝑘(𝑥𝑘) is
well-defined, usually as the centroid of the target. By combining (2.1)
and (2.2), we obtain the likelihood for point targets

p(𝑦
𝑘
|𝑥𝑘) =

∫︁
R𝑑

p(𝑦
𝑘
|𝑥𝑘, 𝑣𝑘) · p(𝑣𝑘) d𝑣𝑘 (2.4)

=
∫︁
R𝑑

𝛿(𝑦
𝑘
− 𝑧𝑘(𝑥𝑘)− 𝑣𝑘) · p(𝑣𝑘) d𝑣𝑘

= 𝒩 (𝑦
𝑘
− 𝑧𝑘(𝑥𝑘); 0, C𝑣

𝑘) ,

by using the sifting property of the Dirac-𝛿 function. In particular, the
special case 𝑧𝑘(𝑥𝑘) = H𝑘 · 𝑥𝑘 leads to an estimator with a closed-form
optimal solution, in the form of the well-known Kalman filter [4]. As the
target is assumed to be moving, its motion also needs to be taken into
account using approaches such as [92]. The specifics of motion models in
object tracking are outside the focus of this thesis.

The single-source single-target model, however, becomes ineffective in
scenarios where a scan receives measurements from different sources, in
particular if they stem from different single-source targets moving close
to each other. In this case, determining which target generated which
measurement can become intractable [16]. The field of multiple target
tracking (MTT) [58, 59] proposes many techniques to address these is-
sues, which are mainly concerned with hypotheses of which measurement
belongs to which target. Examples include Multiple Hypothesis Tracking
(MHT) [60], Joint Probabilistic Data Association (JPDA) [61], Proba-
bilistic Multiple Hypothesis Tracking (PMHT) [62, 63], and Random
Finite Sets (RFS) [93]. In many scenarios, the targets do not move
independently, but can be said to share some sort of common motion
dynamics, which makes their states highly correlated (Figure 2.1b). In
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2.2. Dealing with Multiple Targets

this case, instead of trying to manage individual tracks separately, it
becomes more useful to track all the involved objects simultaneously
as a single group target [64, 13, 16]. Still, the association problem, i.e.,
associating measurements to a source point, needs to be addressed.

We will now describe two basic ideas from the field of MTT, which
will serve as the groundwork for the concepts presented in the following
chapters. Assuming a list of possible targets ℳ𝑘 = {𝑚1, . . . , 𝑚𝑁}, two
basic mechanisms to address the association problem stand out. First,
we can assume that each target 𝑚𝑖 has an independent probability p(𝑚𝑖),
known a priori, of generating a measurement. By marginalizing 𝑚𝑖 out,
we obtain

p(𝑦
𝑘
|𝑥𝑘) =

𝑁∑︁
𝑖=1

p(𝑦
𝑘
|𝑥𝑘, 𝑚𝑖) · p(𝑚𝑖) , (2.5)

where p(𝑦
𝑘
|𝑥𝑘, 𝑚𝑖) is the conditional probability of 𝑦

𝑘
if 𝑚𝑖 generated it.

In a way, this means that 𝑦
𝑘

is associated to all possible sources, using the
source probabilities as weights [94, 95, 20, 96, 97]. The second mechanism
consists of approximating p(𝑚𝑖), usually unknown, as a function of the
received measurement 𝑦

𝑘
itself, i.e.,

p(𝑚𝑖) ≈ p(𝑚𝑖 | 𝑦𝑘
) . (2.6)

A common further simplification is to assume that p(𝑚𝑖 | 𝑦𝑘
) = 1 for the

closest 𝑚𝑖, and 0 for the rest, leading to a greedy association [94, 97].
Probabilistically speaking, this second approach may not appear to be
mathematically sound, as we are using 𝑦

𝑘
itself to determine the a priori

probability that it was generated, which, in an abuse of notation, could
be written as p(𝑦

𝑘
|𝑥𝑘, 𝑦

𝑘
). Nonetheless, this mechanism is time-efficient

and easy to implement, and will produce accurate results as long as the
approximation of 𝑚𝑖 is relatively close to the true source.
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Chapter 2. Extended Object Tracking

(a) Circle path,
parametric.

(b) Circle path, from
distance.

(c) Filled disk,
parametric.

Figure 2.2: Describing a circle and a disk, either constructively (using a parameter
to iterate through all points), or through a condition (e.g., a given
distance) that only its points fulfill. The subindex 𝑘 is omitted for
legibility.

2.3 Extended Targets

While MTT deals with a finite, usually small number of possible single-
source targets, the field of extended object tracking [12, 13, 98, 1], some-
times also known as extended target tracking (ETT), represents one
target as a set of multiple source points, which are spatially structured
(i.e., as shapes, see Figure 2.1c). Unlike point approximations, extended
targets are assumed to have an extension, and almost always generate
multiple measurements per scan. The number of potential sources is
usually infinite, making hypothesis management impractical. The con-
sidered motion models also differ, as group targets can be assumed to
fuse, split, or dissolve, while extended objects are usually only subject to
rigid transformations. Nonetheless, many of the theoretical foundations
of EOT can be constructed by drawing ideas from MTT, and conversely,
EOT can find applications in MTT scenarios such as when tracking
group targets [99] by approximating the entire group as a shape. A
straightforward combination of MTT and EOT also arises when tracking
multiple extended targets [65, 66, 67, 68].
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2.3. Extended Targets

Before we delve into the topic of EOT, we first need to introduce shape
models, which give us information about the shape 𝒮𝑥

𝑘 related to a given
state 𝑥𝑘. In formal terms, a shape 𝒮𝑥

𝑘 is defined as a compact (i.e., closed
and bounded) set in R𝑑 that can be described using a finite parameter
vector. The measure of the shape, i.e., its area or volume, is denoted as
‖𝒮𝑥

𝑘 ‖. It is generally assumed that the shape is a continuous set with
infinitely many potential source points, but in some cases, such as when
modeling specific sensors, it may be advantageous to assume that only a
fraction of those sources may generate a measurement [158, 153, 100, 101].
As a remark, while some sensors can also provide direct measurements of
the target extent [102, 103], this thesis only focuses on point measurements
with Cartesian coordinates as explained in Section 2.1.

An important concept in this context is the shape parametrization, which
allows us to iterate through all of the points in the shape. This, in turn,
will allow for an easy way to determine all possible sources in the target.
As an example, we will consider a unit circle and a unit disk in R2, with
center 𝑐𝑘 and radius 1. A circle is an example of a path (Figure 2.2a),
i.e., a one-dimensional shape whose points can be traversed using a scalar
𝑠𝑘. It can be described in the form

𝜑
𝑘
(𝑠𝑘) := 𝑐𝑘 +

[︂
cos(𝑠𝑘)
sin(𝑠𝑘)

]︂
, for 𝑠𝑘 ∈

[︀
0, 2𝜋

]︀
. (2.7)

This is also an example of a parametrization by arc length, i.e., the length
of the arc between any pair of points 𝜑

𝑘
(𝑠𝑘,1) and 𝜑

𝑘
(𝑠𝑘,2) is exactly

|𝑠𝑘,2 − 𝑠𝑘,1|. These parametrizations have the following two important
properties that hold for every 𝑠𝑘,⃦⃦⃦

𝜑′
𝑘
(𝑠𝑘)

⃦⃦⃦
= 1 , (2.8)

𝜑′
𝑘
(𝑠𝑘)⊤𝜑′′

𝑘
(𝑠𝑘) = 0 , (2.9)

i.e., the derivative has always length 1, and the second derivative is
always orthogonal to the first. Both properties will find applications in
Chapter 3. The second considered shape is a disk, which is an example
of a filled shape, i.e., a 𝑑-dimensional shape in R𝑑 including its interior.
In analogy to (2.7), the points of a disk can be traversed using the vector
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Chapter 2. Extended Object Tracking

𝑠𝑘 =
[︀
𝑠𝑘,1, 𝑠𝑘,2

]︀
(Figure 2.2c) by using the parametrization

𝜑
𝑘
(𝑠𝑘) := 𝑐𝑘 + 𝑠𝑘,1

[︂
cos(𝑠𝑘,2)
sin(𝑠𝑘,2)

]︂
, for 𝑠𝑘 ∈

[︀
0, 1
]︀
×
[︀
0, 2𝜋

]︀
. (2.10)

Another useful concept to describe shapes is implicit constraints, i.e.,
a relation that only the points in the shape fulfill (Figure 2.2b). For
example, a circle can be modeled using the equation

𝑝
𝑘
∈ 𝒮𝑥

𝑘 ↔
⃦⃦⃦
𝑝

𝑘
− 𝑐𝑘

⃦⃦⃦
− 1 = 0 , (2.11)

for 𝑝
𝑘
∈ R𝑑 and with ‖· ‖ being the Euclidean norm. Analogously, the

disk can also be described implicitly using the inequality constraint

𝑝
𝑘
∈ 𝒮𝑥

𝑘 ↔
⃦⃦⃦
𝑝

𝑘
− 𝑐𝑘

⃦⃦⃦
− 1 ≤ 0 .

We can generalize these ideas to arbitrary shapes by introducing shape
functions.
Definition 2.1 (Shape Function). The shape function of a surface 𝒮𝑥

𝑘

is any function 𝜙
𝑘

: R𝑑 → R𝑛 which fulfills

𝑝
𝑘
∈ 𝒮𝑥

𝑘 ↔ 𝜙
𝑘
(𝑝

𝑘
) = 0 . (2.12)

In literature, 𝜙
𝑘

is called a distance function if 𝑛 = 1.

Examples for shape functions include the algebraic or Euclidean distances
to some sort of nearest source, common in the shape of curve fitting[104,
36, 37, 54, 105]. Note that a shape function can return any value,
including scalars or multidimensional vectors.

For the sake of completeness, we will now define the Euclidean shape func-
tions, the Mahalanobis shape functions, and the radial shape functions,
which will be used throughout this thesis.
Definition 2.2 (Euclidean Shape Functions). Given two points 𝑝

𝑘
∈ R𝑑,

𝑞
𝑘
∈ R𝑑, their Euclidean distance takes the form

𝑑𝑒(𝑝
𝑘
, 𝑞

𝑘
) :=

⃦⃦⃦
𝑝

𝑘
− 𝑞

𝑘

⃦⃦⃦
=
√︁

(𝑝
𝑘
− 𝑞

𝑘
)⊤(𝑝

𝑘
− 𝑞

𝑘
) .
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We can apply this concept for shapes too. For example, the Euclidean
projection of 𝑝

𝑘
∈ R𝑑 to the shape 𝒮𝑥

𝑘 follows as

𝜋𝑒
𝑘(𝑝

𝑘
) := arg min

𝑝*
𝑘

∈𝒮𝑥
𝑘

(𝑝
𝑘
− 𝑝*

𝑘
)⊤(𝑝

𝑘
− 𝑝*

𝑘
) .

Based on this, we define the following three shape functions. First, the
Euclidean difference becomes

𝜙𝑒𝑑
𝑘

(𝑝
𝑘
) := 𝑝

𝑘
− 𝜋𝑒

𝑘(𝑝
𝑘
)

Second, we define the Euclidean distance as

𝜙𝑒
𝑘(𝑝

𝑘
) := 𝑑𝑒(𝑝

𝑘
, 𝜋𝑘(𝑝

𝑘
))

=
√︁

(𝑝
𝑘
− 𝜋𝑘(𝑝

𝑘
))⊤(𝑝

𝑘
− 𝜋𝑘(𝑝

𝑘
)) .

Finally, we define the signed Euclidean distance as

𝜙𝑠𝑒
𝑘 (𝑝

𝑘
) :=

{︂
𝜙𝑒

𝑘(𝑝
𝑘
) if 𝑝

𝑘
outside 𝒮𝑥

𝑘

−𝜙𝑒
𝑘(𝑝

𝑘
) otherwise . (2.13)

The Euclidean projection 𝜋𝑒
𝑘 is usually denoted simply as the ‘closest

source’.

Definition 2.3 (Mahalanobis Shape Functions). The Mahalanobis dis-
tance [106] is an extension of the Euclidean distance that uses a covari-
ance matrix Σ ∈ R𝑑×𝑑 as a weight. Given two points 𝑝

𝑘
, 𝑞

𝑘
∈ R𝑑, their

Mahalanobis distance takes the form

𝑑𝑚(𝑝
𝑘
, 𝑞

𝑘
) :=

√︁
(𝑝

𝑘
− 𝑞

𝑘
)⊤Σ−1(𝑝

𝑘
− 𝑞

𝑘
) .

Note that the Euclidean distance is a special case of this term when Σ = I.
The extension of this concept to shapes follows similarly to Definition 2.2,
and will be describe in the following for the sake of completeness. Thus,
the Mahalanobis projection of 𝑝

𝑘
∈ R𝑑 to 𝒮𝑥

𝑘 becomes

𝜋𝑚
𝑘 (𝑝

𝑘
) := arg min

𝑝*
𝑘

∈𝒮𝑥
𝑘

(𝑝
𝑘
− 𝑝*

𝑘
)⊤Σ−1(𝑝

𝑘
− 𝑝*

𝑘
) . (2.14)
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Then, the Mahalanobis difference is obtained from

𝜙𝑑
𝑘
(𝑝

𝑘
) := 𝑝

𝑘
− 𝜋𝑚

𝑘 (𝑝
𝑘
) ,

while the Mahalanobis distance results from

𝜙𝑚
𝑘 (𝑝

𝑘
) := 𝑑𝑚(𝑝

𝑘
, 𝜋𝑘(𝑝

𝑘
)) (2.15)

=
√︁

(𝑝
𝑘
− 𝜋𝑘(𝑝

𝑘
))⊤Σ−1(𝑝

𝑘
− 𝜋𝑘(𝑝

𝑘
)) ,

and, finally, the signed Mahalanobis distance is simply

𝜙𝑠𝑚
𝑘 (𝑝

𝑘
) :=

{︂
𝜙𝑚

𝑘 (𝑝
𝑘
) if 𝑝

𝑘
outside 𝒮𝑥

𝑘

−𝜙𝑚
𝑘 (𝑝

𝑘
) otherwise . (2.16)

Definition 2.4 (Radial Parametrizations and Shape Functions). Let the
shape 𝒮𝑥

𝑘 be star-convex, i.e., there exists a center point 𝑐𝑘 so that, for any
source point 𝑧𝑘 ∈ 𝒮𝑥

𝑘 , the segment that connects 𝑐𝑘 and 𝑧𝑘 is completely
contained in the shape. This allows us to derive a radial function 𝑟𝑘(𝜃𝑘)
defined as the distance between 𝑐𝑘 and the boundary at a given angle
𝜃𝑘. In turn, this allows us to parametrize the shape based on its radial
function, for example as

𝜑
𝑘
(𝜃𝑘) := 𝑐𝑘 + 𝑟𝑘(𝜃𝑘) ·

[︂
cos(𝜃𝑘)
sin(𝜃𝑘)

]︂
for 𝜃𝑘 ∈

[︀
0, 2𝜋

]︀
.

For a given point 𝑝
𝑘
, let the function ∠(𝑝

𝑘
) denote its direction in relation

to the origin. We define the radial projection as

𝜋𝑟
𝑘(𝑝

𝑘
) := 𝜑

𝑘
(∠(𝑝

𝑘
− 𝑐𝑘)) ,

i.e., the point on the boundary located in the direction from 𝑐𝑘 to 𝑝
𝑘
. This

projection can be plugged into (2.15) or (2.16) to define radial Mahalanobis
shape functions. We can also define the radial distance to the boundary
as

𝜙𝑟
𝑘(𝑝

𝑘
) :=

⃦⃦⃦
𝑝

𝑘
− 𝑐𝑘

⃦⃦⃦
− 𝑟𝑘

(︀
∠
(︀
𝑝− 𝑐𝑘

)︀)︀
(2.17)

:=
⃦⃦⃦
𝑝

𝑘
− 𝑐𝑘

⃦⃦⃦
−
⃦⃦⃦
𝜋𝑟

𝑘(𝑝
𝑘
)− 𝑐𝑘

⃦⃦⃦
.

Note that this shape function fulfills the same sign criteria as (2.13) and
(2.16), i.e., it is negative inside the shape and positive outside of it.
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2.4. Spatial Distribution Models

In the following, we assume that the shape model is known a priori,
i.e., we already have a parametrization 𝜑

𝑘
or a shape function 𝜙𝑘 of the

target shape (or an approximation of it). Thus, when we speak of shape
estimation, we refer to estimating the parameters of those functions, such
as a center or a rotation, all of which are contained in the state vector
𝑥𝑘. We will now aim to derive measurement equations and likelihood
functions that probabilistically associate incoming measurements with
the parameters to be estimated.

2.4 Spatial Distribution Models

When dealing with extended targets, unlike point targets, we need to take
into account that measurements can potentially originate from any source
point on the shape. In this context, the key idea of SDMs [20, 96] is to
treat all points in R𝑑 as potential sources 𝑧𝑘 with probability p(𝑧𝑘 |𝑥𝑘)
of generating a measurement. Naturally, points outside the target would
have a probability of zero and different points of the target may have
varying probabilities depending on the sensor and the application.

Similar to (2.4), we now marginalize 𝑧𝑘 in addition to 𝑣𝑘, leading to

p(𝑦
𝑘
|𝑥𝑘) =

∫︁
R𝑑

∫︁
R𝑑

p(𝑦
𝑘
| 𝑧𝑘, 𝑣𝑘, 𝑥𝑘) p(𝑣𝑘) p(𝑧𝑘 |𝑥𝑘) d𝑣𝑘 d𝑧𝑘 (2.18)

=
∫︁
R𝑑

∫︁
R𝑑

𝛿(𝑦
𝑘
− 𝑧𝑘 − 𝑣𝑘) p(𝑣𝑘) p(𝑧𝑘 |𝑥𝑘) d𝑣𝑘 d𝑧𝑘

=
∫︁
R𝑑

𝒩 (𝑦
𝑘
− 𝑧𝑘; 0, C𝑣

𝑘) p(𝑧𝑘 |𝑥𝑘) d𝑧𝑘 ,

essentially convolving the source distribution with the Gaussian pdf
of the noise term, and yielding a result analogous to (2.5). This is a
mathematically simple approach that yields accurate results in theory. In
practice, however, using this formulation directly presents the following
two challenges. First, it is often difficult to model p(𝑧𝑘 |𝑥𝑘), as this
distribution depends on a myriad of factors, such as sensor characteristics,
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occlusions, artifacts, how the target material physically responds to the
sensor signal, and many others. In many cases, this distribution is
unknown, and can be also assumed to change over time. Furthermore,
a false approximation can lead to estimation bias or lack of robustness.
There is also the problem that, even for simple shapes, (2.18) is usually
either intractable or numerically unstable, especially given that the
integral usually resolves to a difference of two almost equal terms. Even
worse, it may be extremely difficult to obtaining the logarithm of the
result, a representation preferred by robust implementations given that
it can better represent values very close to 0.

In order to address these issues, a commonly used approach is to assume
that sources are uniformly distributed on the shape 𝒮𝑥

𝑘 [20, 96, 147, 159].
This leads to

p(𝑧𝑘 |𝑥𝑘) = 1
‖𝒮𝑥

𝑘 ‖
· 1𝒮𝑥

𝑘
(𝑧𝑘)

by using the indicator function of 𝒮𝑥
𝑘 , defined as

1𝒮𝑥
𝑘
(𝑧𝑘) :=

{︃
1 if 𝑧𝑘 ∈ 𝒮𝑥

𝑘

0 otherwise .

This allows (2.18) to be simplified as

p(𝑦
𝑘
|𝑥𝑘) =

∫︁
R𝑑

𝒩 (𝑦
𝑘
− 𝑧𝑘; 0, C𝑣

𝑘) · p(𝑧𝑘 |𝑥𝑘) d𝑧𝑘 (2.19)

= 1
‖𝒮𝑥

𝑘 ‖

∫︁
𝒮𝑥

𝑘

𝒩 (𝑦
𝑘
− 𝑧𝑘; 0, C𝑣

𝑘) d𝑧𝑘 .

This formulation allows SDMs to be interpreted as integrals over a
region, which can be solved using change of variable techniques [107]. An
illustrative example for a rectangle SDM, taken from [159], can be found
in Section 9.2.1.
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Nonetheless, in many cases, the change of variables may be difficult or a
uniform distribution may be an inappropriate approximation. Another
alternative is to define SDMs by modeling a probability for 𝑠𝑘 directly,
instead of over 𝑧𝑘. For paths, this yields

p(𝑦
𝑘
|𝑥𝑘)

=
∫︁
S𝑘

𝒩 (𝑦
𝑘
− 𝜑

𝑘
(𝑠𝑘); 0, C𝑣

𝑘) · p(𝑠𝑘 |𝑥𝑘) ·
⃦⃦⃦
𝜑′

𝑘
(𝑠𝑘)

⃦⃦⃦
d𝑠𝑘 , (2.20)

which for filled shapes translates to

p(𝑦
𝑘
|𝑥𝑘)

=
∫︁
S𝑘

𝒩 (𝑦
𝑘
− 𝜑

𝑘
(𝑠𝑘); 0, C𝑣

𝑘) · p(𝑠𝑘 |𝑥𝑘) ·
⃒⃒⃒
det
(︁

J𝜑
𝑘(𝑠𝑘)

)︁⃒⃒⃒
d𝑠𝑘 , (2.21)

where |· | denotes the absolute value, and S𝑘 defines the set of possible
values for 𝑠𝑘 or 𝑠𝑘. Note that, when considering paths with arc length
parametrizations such as (2.7), the norm of the derivative vanishes due
to (2.8). An illustrative example for a line segment SDM, taken from
[160], can be found in Section 9.2.2.

An alternative derivation of SDMs can be obtained as a function of
the measurement equations, similar to (2.1). This allows us to use
straightforward and intuitive descriptions of a target shape, such as the
parametrizations from (2.7) and (2.10), and incorporate them directly
into an estimator. Generally speaking, we can say that the observed
measurements are related to the state in the form of

𝑦
𝑘

= 𝜑
𝑘
(𝑠𝑘) + 𝑣𝑘

= ℎ(𝑥𝑘, 𝑣𝑘, 𝑠𝑘) ,

where 𝑠𝑘 is interpreted as an additional “shape noise” term. Proba-
bilistically speaking, this relation can be modeled as the conditional
pdf

p(𝑦
𝑘
|𝑥𝑘, 𝑣𝑘, 𝑠𝑘) = 𝛿(𝑦

𝑘
− 𝜑

𝑘
(𝑠𝑘)− 𝑣𝑘) . (2.22)
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Finally, by marginalizing 𝑣𝑘 and 𝑠𝑘 from this expression, we once again
obtain (2.21).

Working with SDMs can be challenging when dealing with arbitrary
shapes, even after applying the proposed approximations. On the one
hand, as mentioned before, it can be difficult to obtain a numerically
stable log( · ) form of the likelihoods. On the other hand, measurement
equations may require adaptations in the used LRKFs, such as quadratic
extensions [108, 147]. In order to alleviate these issues, a multitude of
different techniques and approximations have appeared in literature, and
in the following we describe some of them. Works like [159, 161, 147]
have focused on accurate estimators of line segments and rectangles,
as any compact shape can be approximated with arbitrary accuracy by
combining them. Others approximate the source distribution of an elliptic
shape by means of a Gaussian pdf with mean 𝑥𝑐

𝑘 ∈ R𝑑 and covariance
matrix X𝑘 ∈ R𝑑×𝑑, i.e., the state contains both 𝑥𝑐

𝑘 and X𝑘. The resulting
likelihood is

p(𝑦
𝑘
|𝑥𝑘) =

∫︁
R𝑑

𝒩 (𝑦
𝑘
− 𝑧𝑘; 0, C𝑣

𝑘) ·𝒩 (𝑧𝑘; 𝑥𝑐
𝑘, X𝑘) d𝑧𝑘 (2.23)

= 𝒩 (𝑦
𝑘
; 𝑥𝑐

𝑘, X𝑘 + C𝑣
𝑘) .

In [16, 33], this idea is developed further by using the mean and covariance
matrix of all received point measurements as a pseudo-measurement. This
approach, based on the idea of random matrices, can also be extended
to construct more complex shapes by combining multiple ellipses [31,
34, 109, 32]. An example implementation can be found in Section 9.5.1.
Tracking multiple elliptic targets using random matrices has also been
explored in [65, 66, 67]. While Gaussian elliptical approximations are
fast and efficient, they omit important shape information. For example,
a square would be reduced to a circle, and thus, its rotation could not be
estimated.

Another probabilistic aspect related to SDMs is the number of expected
measurements. Unlike traditional tracking, which generally produces one
single measurement per scan, in EOT we can obtain information about
the target based on the number of measurements, as it can be assumed
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that this amount is proportional to the target extent. Assuming that
measurements are observed uniformly in the sensor field of view, the num-
ber of expected target measurements can be assumed to follow a binomial
distribution, and as the number of measurements increase and target size
in the sensor decreases, the binomial distribution converges towards a
Poisson distribution. Models that incorporate a Poisson distribution for
EOT include [20, 96, 68].

2.5 Greedy Association Models

An alternative approach to dealing with source probabilities is to minimize
some sort of distance between the measurements and a corresponding
point on the shape. This characterizes the field of curve fitting. In
literature, explored approaches are generally based on least-squares min-
imization [110] of a distance metric, and focus particularly on conic
[104, 36, 37, 54] or polygonal [105] approximations. In general, fitting is
not concerned with dealing with dynamic models or probabilistic associ-
ations, preferring instead batch processing with ad-hoc scalar weights.
However, techniques that implement fitting with a variation of Kalman
filters, such as [111, 112, 40, 38], can be adapted to take these aspects into
account. Also worth referencing are approaches that deal with estimating
transformations for extended shapes [113, 114] but are not concerned
with shape tracking, in particular the well-known Iterative Closest Point
algorithm [44]. Furthermore, curve fitting is mostly concerned with paths
which only generate measurements from their boundary, in contrast to
SDMs, which can also handle filled shapes.

We observe that the theoretical background of distance minimization, in
its multitude of applications, intersects with many aspects of probabilistic
modeling. Because of this, we have worked to formalize these ideas and
incorporate curve fitting into a probabilistic framework in the form of
Greedy Association Models[150]. In contrast to the forward modeling
of SDMs, the key idea of GAMs consists of treating 𝑦

𝑘
as if it was a

priori knowledge, in a similar fashion as (2.6). In essence, we deal with
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Chapter 2. Extended Object Tracking

measurement equations such as

0 = ℎ(𝑥𝑘, 𝑦
𝑘
, 𝑣𝑘) . (2.24)

The main difference with (2.22) is that previously we only used the state
𝑥𝑘 and noise terms in order to generate an expected measurement, to
be compared against the observation 𝑦

𝑘
Here, we use 𝑦

𝑘
itself as part of

the measurement equation in order to generate a pseudo-measurement,
which we then relate to 0. As we will see, this has the effect of reducing
the complexity of the resulting likelihood drastically.

Given a shape function, a simple approach to obtain a measurement
equation in the form of (2.24) could be achieved by plugging the assumed
source 𝑧𝑘 = 𝑦

𝑘
− 𝑣𝑘 into (2.12), yielding

0 = 𝜙
𝑘
(𝑦

𝑘
− 𝑣𝑘) (2.25)

:= ℎ(𝑥𝑘, 𝑦
𝑘
, 𝑣𝑘) .

As in (2.22), we can derive a likelihood function using a Dirac-delta
function in the form of

p(𝑦
𝑘
|𝑥𝑘, 𝑣𝑘) = 𝛿(0− 𝜙

𝑘
(𝑦

𝑘
− 𝑣𝑘)) ,

and marginalizing out 𝑣𝑘. However, this mechanism leads to two problems.
On the one hand, working with this pdf directly produces the same
problems of intractability and lack of robustness present in SDMs. On the
other hand, this approach indirectly causes the noise term to considered
twice. This can be seen by plugging the Euclidean difference into (2.25),
leading to

0 = 𝑦
𝑘
− 𝑣𝑘 − 𝜋𝑘(𝑦

𝑘
− 𝑣𝑘) ,

i.e., the noise appears both in the distance and in the projection. GAMs
deal with this problem in the following way [56, 150]. First, we simplify
(2.25) by ignoring the noise term in the projection, i.e.,

0 = 𝑦
𝑘
− 𝑣𝑘 − 𝜋𝑘(𝑦

𝑘
) (2.26)

:= ℎ(𝑥𝑘, 𝑦
𝑘
, 𝑣𝑘) .
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Second, we introduce the random variable
𝑙𝑘 := ℎ(𝑥𝑘, 𝑦

𝑘
, 𝑣𝑘) .

obtained by propagating 𝑣𝑘 through the measurement function. This
yields the pdf

p(𝑙𝑘 |𝑥𝑘) =
∫︁

p(𝑙𝑘 |𝑥𝑘, 𝑦
𝑘
, 𝑣𝑘) · p(𝑣𝑘) d𝑣𝑘

=
∫︁

𝛿(𝑙𝑘 − ℎ(𝑥𝑘, 𝑦
𝑘
, 𝑣𝑘)) · p(𝑣𝑘) d𝑣𝑘

:= 𝑓 𝑙
𝑘(𝑙𝑘) .

Finally, we rewrite (2.26) probabilistically in function of 𝑙𝑘 and 𝑓 𝑙
𝑘(𝑙𝑘),

leading to the term

p(𝑦
𝑘
|𝑥𝑘) =

∫︁
𝛿(𝑙𝑘 − 0) · p(𝑙𝑘 |𝑥𝑘) d𝑙𝑘

= 𝑓 𝑙
𝑘(0) ,

which can, as previously done, be interpreted as a likelihood function by
treating 𝑥𝑘 as the free variable.

In general, 𝑓 𝑙
𝑘(0) is still difficult to express when using non-linear shape

functions. For the circle example, propagating 𝑣𝑘 through an Euclidean
distance yields a translated, scaled Rice distribution[115]. In practice, a
closed-form solution of these expressions is generally either intractable or
not available. Instead, an approximation using a Gaussian pdf with the
same mean 𝑙̂𝑘 and covariance matrix C𝑙

𝑘, shown to yield accurate results
in [148], can be used instead. This leads to

p(𝑦
𝑘
|𝑥𝑘) ≈ 𝒩 (0; 𝑙̂𝑘, C𝑙

𝑘) . (2.27)
Appendix 9.3 shows an algorithm to calculate these moments. Note
that, being based on an exponential function, obtaining a log( · ) form
of (2.27) becomes trivial.

Being an extension of curve fitting approaches, GAMs carry two important
challenges from these techniques. On the one hand, the measurement
equations (2.25) and (2.26) add the noise term on the measurement,
instead of on a source on the shape, which in turns generates an estimation
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bias[150, 148]. This issue has been widely discussed in the field of
curve fitting, and a more detailed treatment to deal with this issue is
introduced in Chapter 3. On the other hand, GAMs and fitting have
both a problem when the shapes related to multiple states share the same
source points. In particular, this issue manifests itself egregiously in filled
shapes. For example, if the true target is a disk, then all larger disks
that contain the true target are also optimal, as the distances between
the measurements and those disks will also be 0. Without additional
probabilistic information on where the sources should come from, such as
with SDMs, the estimator cannot differentiate between different states,
and may end up diverging. This issue will be illustrated in more detail
in Section 4.1.

2.6 Conclusions

In this chapter we presented a brief overview of the relationship between
multiple target tracking and extended object tracking, which aim to
address the problem of associating measurements with sources, and
hence, relating measurements to the state. We saw two basic approaches
to shape modeling and how they deal with the association problem.
On the one hand, probabilistic methods such as Spatial Distribution
Models simply associate each measurement to all possible sources, using
a probability distribution to assign a weight to each hypothesis. On the
other hand, greedy techniques such as Greedy Association Models, which
aim to generalize curve fitting approaches using a Bayesian framework,
assume that the source was the point in the shape that minimizes some
sort of distance. Each model has their own strengths and weaknesses, as
SDMs can deal with high noise levels but their likelihoods tend to be
intractable and numerically unstable, while GAMs are easy to implement
but suffer from estimation bias.

30



CHAPTER
3

Partial Information Models

In this chapter, we will introduce Level-set Partial Information Models
(Level-set PIMs), which address the problem of estimation bias in GAMs
when tracking targets approximated as paths, as mentioned in Section 2.5.
This contribution, first proposed in [160], is an extension of previous work
from Partial Information Models (PIMs), presented by Florian Faion and
the author in [150, 148]. It will be shown how our contribution improves
on PIMs by increasing their accuracy and resilience to occlusions even in
scenarios with extremely high noise, where state-of-the-art approaches
may fail and diverge. This chapter is structured as follows. First, we
will present a short description of the issues present in curve fitting, and
sketch the key idea for a solution. Then, we will introduce PIMs as
a straightforward mechanism to address these challenges. After that,
we will describe the details of our contribution, Level-set PIMs, which
extend PIMs by employing level-sets to increase accuracy. Finally, we will
present the evaluation results in order to validate the presented models.

3.1 Key Idea

The bias issue for GAMs is a direct consequence of the assumptions
made in (2.25), in particular by naïvely applying the noise term on the
measurement. This means that GAMs are concerned with how the shape
function behaves around 𝑦

𝑘
, while according to the measurement equation
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Chapter 3. Partial Information Models

in (2.1), a more accurate formulation would consider the uncertainty
around the true source instead [56, 148]. We can sketch a correction for
this incorrect assumption by rewriting 𝜙𝑘(𝑦

𝑘
− 𝑣𝑘) as

0 = ℎ(𝑥𝑘, 𝑦
𝑘
, 𝜈𝑘) (3.1)

= 𝜙𝑘(𝑦
𝑘
)− 𝜈𝑘 ,

i.e., we introduce a new noise term 𝜈𝑘 that takes correctly into account
how the shape function 𝜙𝑘( · ) behaves around the true source . We
denote 𝜈𝑘 as the bias correction term. The challenge for this chapter is,
then, to find a formally appropriate formulation for 𝜈𝑘.

Works in literature have proposed different ways to model this bias
correction depending on the scenario. For example, for the circle from
(2.11), and assuming isotropic noise C𝑣

𝑘 = 𝜎2
𝑣,𝑘 · I, Okatani [43] proposes

the approximation

𝜈𝑘 ∼ 𝒩

⎛⎝𝜎2
𝑣,𝑘

2𝑟𝑘
, 𝜎2

𝑣,𝑘 ·
(︃

1−
𝜎2

𝑣,𝑘

4𝑟2
𝑘

)︃2
⎞⎠ . (3.2)

This approach can then be extended to other smooth shapes by approxi-
mating them locally as circles. Other works such as [36, 111, 79, 116, 38]
have presented correction terms for general conics, while [144] presented
a correction term for polygons, and [43] derived a bias correction for
shapes where the local curvature is known.

In the following, we will describe a systematic framework called Partial
Information Models [148, 56] to obtain bias correction terms for arbitrary
shapes. The basic outline of PIMs is to use as correction term the random
variable

𝜈𝑘 := 𝜙𝑘(𝑧𝑘 + 𝑣𝑘) , (3.3)

obtained by propagating 𝑣𝑘 through 𝜙𝑘( · ). This formulation follows
directly from (3.1), in that 𝜈𝑘 serves to compensate the effect of the actual
values that 𝜙𝑘(𝑦

𝑘
) can take for a source point 𝑧𝑘. However, this approach

is not straightforward, as we do not know the real source from which
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𝑦
𝑘

stems. While we can use some sort of approximation 𝑧𝑘 ≈ 𝜋𝑘(𝑦
𝑘
),

errors in this approximation would also serve to introduce further sources
of uncertainty, for which we would need even more correction terms.
Instead, the main contribution of PIMs is the derivation of a carefully
designed shape function 𝜙*

𝑘( · ) that is immune to the error in the source
approximation, or at least is only minimally affected by it. By deriving
a correction term 𝜈𝑘 based on this function, we can guarantee that the
bias reduction is the best possible even if the approximation of the true
source is not exact.

3.2 Deriving the Shape Function

An exhaustive and detailed treatment of PIMs can be found in [148, 56],
but for the sake of thoroughness we will provide in this section a brief
description. In principle, what we require is a transformation

𝑦
𝑘

= Φk (𝑠𝑦
𝑘, 𝑙𝑦

𝑘) , (3.4)

with inverse function [︂
𝑠𝑦

𝑘

𝑙𝑦
𝑘

]︂
= Φ−1

𝑘 (𝑦
𝑘
) (3.5)

=
[︂
𝜑−1

𝑘
(𝑦

𝑘
)

𝜙*
𝑘(𝑦

𝑘
)

]︂
,

which represents a reparametrization of the measurement 𝑦
𝑘

into a new
representation

[︀
𝑠𝑦

𝑘, 𝑙𝑦
𝑘

]︀
, where 𝑠𝑦

𝑘 describes where in the shape the true
source is, and 𝑙𝑦

𝑘 denotes how distant 𝑦
𝑘

is to the shape (Figure 3.1). The
objective is that, when this term is later rewritten in the probabilistic
model, the effect of 𝑠𝑦

𝑘 fades or becomes minimal, thus eliminating the
effect of any error in the source approximation. In turn, this yields the
following advantages. On the one hand, we only need to take into account
the shape function value 𝑙𝑦

𝑘 = 𝜙*
𝑘(𝑦

𝑘
) which is usually easy to obtain. On

the other hand, we can also avoid having to find a path parametrization
𝜑

𝑘
(𝑠𝑘), a task which for many shapes is not straightforward.
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From (3.3) and (3.5) we observe a conceptual link between 𝑙𝑦
𝑘 and 𝜈𝑘,

i.e., the measured 𝑙𝑦
𝑘 can be interpreted as a realization of the random

variable 𝜈𝑘. From this, it follows that p(𝑙𝑦
𝑘 |𝑥𝑘) = p(𝜈𝑘 |𝑥𝑘), and thus,

once Φ𝑘( · ) is obtained, we can obtain information about the distribution
of 𝜈𝑘 simply by analyzing how 𝑙𝑦

𝑘 behaves. By plugging (2.1) into (3.5),
we can describe the generative model of 𝑦

𝑘
in function of 𝑠𝑦

𝑘 and 𝑙𝑦
𝑘, i.e.,[︀

𝑠𝑦
𝑘, 𝑙𝑦

𝑘

]︀⊤ = Φ−1
𝑘 (𝑦

𝑘
) (3.6)

= Φ−1
𝑘 (𝑧𝑘 + 𝑣𝑘) .

By propagating 𝑣𝑘 through this term, we obtain the pdf p(𝑠𝑦
𝑘, 𝑙𝑦

𝑘 |𝑥𝑘),
which can be rewritten as

p(𝑠𝑦
𝑘, 𝑙𝑦

𝑘 |𝑥𝑘) = p(𝑠𝑦
𝑘 |𝑥𝑘) · p(𝑙𝑦

𝑘 | 𝑠
𝑦
𝑘, 𝑥𝑘) .

In order to minimize the importance of the unknown true source, we
need a reparametrization which causes the resulting 𝑠𝑦

𝑘 and 𝑙𝑦
𝑘 to be as

independent from each other as possible. If that were the case, we could
write

p(𝑙𝑦
𝑘 |𝑥𝑘) = p(𝑙𝑦

𝑘 | 𝑠
𝑦
𝑘, 𝑥𝑘) . (3.7)

This would mean that the probability of 𝑙𝑦
𝑘 behaves the same indepen-

dently of the assumed source, and thus, we could simply say for any
arbitrary 𝑝

𝑘
∈ 𝒮𝑥

𝑘 that

𝜈𝑘 = 𝜙*
𝑘(𝑝

𝑘
+ 𝑣𝑘) ,

and we would be finished. Unfortunately, as [148] showed, this inde-
pendence only holds for simple shapes such as lines or planes. It is
generally impossible to apply these ideas to arbitrary shapes, as no gen-
eral reparametrization exists that fulfills (3.7) for all 𝑠𝑦

𝑘 and 𝑙𝑦
𝑘 and any

covariance matrix C𝑣
𝑘, except in very limited cases.

In order to solve this issue, [148] proposed for the reparametrization
the following compromise. First, we need to find a source which closely
approximates the true source of 𝑦

𝑘
, for example, by finding the source

𝜋*
𝑘(𝑦

𝑘
) which most likely generated it according to the generative model,
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as explained in Section 3.3. Second, we use as shape function the signed
Mahalanobis distance from (2.16), i.e., 𝜙*

𝑘 = 𝜙𝑠𝑚
𝑘 , using as weight Σ = C𝑣

𝑘.
Finally, by applying the approximation 𝑧𝑘 ≈ 𝜋*

𝑘(𝑦
𝑘
) and plugging this

into (3.6), we obtain as bias correction term the random variable

𝜈𝑘 ≈ 𝜙*
𝑘
(𝜋*

𝑘(𝑦
𝑘
) + 𝑣𝑘) .

This leads to the bias-corrected measurement equation

0 = 𝜙*
𝑘(𝑦

𝑘
)− 𝜈𝑘 (3.8)

:= ℎ(𝑥𝑘, 𝑦
𝑘
, 𝜈𝑘) ,

Note that 𝜈𝑘 acts as a new scalar noise term, replacing the old term 𝑣𝑘. By
denoting the distribution of the correction term as 𝑓𝜈

𝑘 (𝜈𝑘) := p(𝜈𝑘 |𝑥𝑘),
we can obtain a likelihood function by interpreting (3.8) probabilistically,
i.e.,

p(𝑦
𝑘
|𝑥𝑘) ≈ 𝑓𝜈

𝑘 (𝜙*
𝑘(𝑦

𝑘
)) . (3.9)

and treating the state 𝑥𝑘, which contains the parameters of 𝜙*
𝑘( · ), as

the free variable. Note that this parametrization does not guarantee a
complete independence between 𝑠𝑦

𝑘 and 𝑙𝑦
𝑘 all around the shape, as this

is usually impossible. Instead, we can only say that both variables are
independent in an infinitesimally small neighborhood around the true
source. Thus, the quality of the bias reduction depends highly on the
ability of 𝜋*

𝑘(𝑦
𝑘
) to approximate 𝑧𝑘. Still, as [148] showed, the proposed

approach still provides very accurate results.

3.3 Finding an Appropriate Source

As we need to analyze how the shape function behaves around the real
source, we still have to deal with finding a meaningful approximation
of 𝑧𝑘. When dealing with this problem, literature usually assumes that
the source is the ‘closest point’, i.e., a point which minimizes some sort
of metric, such as the Euclidean distance[36, 104, 117]. For PIMs, it
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was proposed to use the most likely source by taking into account the
measurement noise characteristics [148], i.e.,

𝜋*
𝑘(𝑝

𝑘
) := arg max

𝑝̂
𝑘

∈𝒮𝑥
𝑘

𝒩 (𝑝
𝑘
− 𝑝̂

𝑘
; 0, C𝑣

𝑘) .

for 𝑝
𝑘
∈ R𝑑, by exploiting the definition of the additive noise term in

(2.4). This is equivalent to the formulation

𝜋*
𝑘(𝑝

𝑘
) = arg min

𝑝̂
𝑘

∈𝒮𝑥
𝑘

(︁
𝑝

𝑘
− 𝑝̂

𝑘

)︁⊤
(C𝑣

𝑘)−1
(︁

𝑝
𝑘
− 𝑝̂

𝑘

)︁
.

This is, in turn, the Mahalanobis projection from (2.14) with Σ = C𝑣
𝑘.

Note that, for non-isotropic measurement noise, a closed-form solution
is generally not available for arbitrary shapes. In these situations we
propose to approximate the path 𝒮𝑥

𝑘 as a polygon and use the closed-form
solution presented in Appendix 9.2.4.

Figure 3.1: Change of coordinates. A measurement 𝑦
𝑘

= [𝑦(0)
𝑘

, 𝑦
(1)
𝑘

] is
reparametrized as [𝑠𝑦

𝑘
, 𝑙𝑦

𝑘
]. The coordinate 𝑠𝑦

𝑘
describes where on the

shape the most likely source is, while 𝑙𝑦
𝑘

shows how ‘distant’ the
measurement is. The subindex 𝑘 is omitted for legibility.

3.4 Sample-based PIMs

Finding a closed-form solution for (3.9) is generally only possible for very
simple shapes. For example, a circular path of radius 𝑟𝑘 and isotropic
measurement noise C𝑣

𝑘 = 𝜎2
𝑣,𝑘 · I yields [115]

p(𝜈𝑘 |𝑥𝑘) = Rice (𝜈𝑘; 𝑟𝑘, 𝜎𝑣,𝑘) . (3.10)
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However, for the more general case, only approximations are tractable.
[148] proposed a a sample-based PIM approximation which can be imple-
mented as follows.

• First, we find the most likely source 𝜋*
𝑘(𝑦

𝑘
) as shown in Section 3.3.

• Second, assuming 𝑧𝑘 ≈ 𝜋*
𝑘(𝑦

𝑘
), we propagate 𝑣𝑘 through (3.3) using

representative samples, and calculate the mean 𝜈𝑘 and variance 𝜎2
𝜈,𝑘

of 𝜈𝑘. An example approach to calculate these values is presented
in Section 9.3.

• Finally, we use moment matching to say that 𝜈𝑘 ∼ 𝒩
(︁

𝜈𝑘, 𝜎2
𝜈,𝑘

)︁
.

In other words, we obtain the approximation

p(𝜈𝑘 |𝑥𝑘) ≈ 𝒩
(︀
𝜈𝑘; 𝜈𝑘, 𝜎2

𝜈,𝑘

)︀
. (3.11)

This is, in essence, the PIM analog of the Gaussian approximation for
GAMs proposed in (2.27). Nonetheless, it may happen that the Gaussian
approximation is too inaccurate for a given application, in particular as
the noise level increases. Figure 3.2a shows an example with the circle
shape, with the analytic solution and the Gaussian approximation for
different 𝜎2

𝑣,𝑘. It becomes evident that, for higher noise, a Gaussian pdf
ceases to be a good fit for p(𝜈𝑘 |𝑥𝑘). For these situations, a more accurate
approach using level-sets is proposed in Section 3.5.

3.5 Level-set PIMs

In this section, we will describe an alternative formulation for p(𝜈𝑘 |𝑥𝑘)
which allows for higher accuracy by using level-sets. This approach,
proposed in [160], is one of the contributions of this thesis. We will also
discuss a comparison between this new approach and the sample-based
technique presented in Section 3.4.
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(a) Gaussian approximation
𝜎𝑣,𝑘 = 1, 𝜎𝑣,𝑘 = 4.

(b) Level-set with regular
𝑚-polygons, 𝜎𝑣,𝑘 = 2.

Figure 3.2: Representations of the pdf p(𝑙𝑦
𝑘

| 𝑥𝑘) using sample-based Gaussian
moment matching and polygonal level-set approximations with 𝑚
vertices. The shape is a circle of radius 1, assuming isotropic noise
C𝑣

𝑘 = 𝜎2
𝑣,𝑘 · I. The ground truth is the analytic solution using the Rice

distribution from (3.10). The subindex 𝑘 is omitted for legibility.

The derivation is as follows. Let us assume that the measurement noise
covariance matrix is isotropic, i.e., C𝑣

𝑘 = 𝜎2
𝑣,𝑘 · I. In this case, the signed

Mahalanobis distance becomes simply a state-independent multiple of
the signed Euclidean distance. By ignoring the scaling factor we obtain

𝜙*
𝑘(𝑝

𝑘
) = 𝜙𝑠𝑚

𝑘 (𝑝
𝑘
) , with Σ = I .

Note that this change does not alter the closest source. Furthermore,
we assume that there exists a differentiable arc length parametrization
𝜑

𝑘
(𝑠𝑘) of the shape 𝒮𝑥

𝑘 . This function is only used as an auxiliary term
and does not need to be modeled explicitly. By rotating the tangent
vector 𝜑′

𝑘
(𝑠𝑘) by 𝜋

2 , we obtain the normal vector

𝑛𝑘(𝑠𝑘) :=
[︂
0 −1
1 0

]︂
⏟  ⏞  

R𝜋/2

𝜑′
𝑘
(𝑠𝑘) . (3.12)
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It holds that R⊤
𝜋/2R𝜋/2 = I. From (2.8) it follows for all 𝑠𝑘 that

‖𝑛𝑘(𝑠𝑘)‖ = 1. In addition, using (2.9) we observe that

𝑛′
𝑘(𝑠𝑘)⊤𝑛𝑘(𝑠𝑘) = 𝜑′′

𝑘
(𝑠𝑘)⊤ · R⊤

𝜋/2R𝜋/2 · 𝜑′
𝑘
(𝑠𝑘) (3.13)

= 0 ,

i.e., 𝑛𝑘(𝑠𝑘) is always normal to its derivative. We can now write an
explicit form of (3.4) as

Φk (𝑠𝑦
𝑘, 𝑙𝑦

𝑘) := 𝑧𝑘 + 𝑙𝑦
𝑘 · 𝑛𝑘(𝑠𝑦

𝑘)
= 𝜑

𝑘
(𝑠𝑦

𝑘) + 𝑙𝑦
𝑘 · 𝑛𝑘(𝑠𝑦

𝑘) .

(a) Path parametrization and normal
vector.

(b) Level-sets of a function 𝜙𝑘( · ) for 𝑙𝑦1
𝑘

and 𝑙𝑦2
𝑘

.

Figure 3.3: The left figure shows the parametrization functions for Level-set PIMs.
The right figure shows how level-sets work. For the given curve (black),
the level-set ℒ𝑘(𝑙𝑦1

𝑘
) (green) contains 𝑦

𝑘,1 and all other points with the
signed Euclidean distance 𝑙𝑦1

𝑘
to the shape. Similarly, ℒ𝑘(𝑙𝑦2

𝑘
) (blue)

contains all points with signed Euclidean distance 𝑙𝑦2
𝑘

. The subindex 𝑘
is omitted for legibility.

A motivation for this formulation can be found in Figure 3.1 and Fig-
ure 3.3a. For clarification, 𝑠𝑦

𝑘 is the path parameter that corresponds
to 𝑦

𝑘
, while 𝑠𝑘 is a generic argument. Based on this, the task now is to

obtain p(𝑙𝑦
𝑘 |𝑥𝑘) by marginalizing 𝑠𝑦

𝑘 out of p(𝑠𝑦
𝑘, 𝑙𝑦

𝑘 |𝑥𝑘). By applying a
change of variables, we obtain

p(𝑠𝑦
𝑘, 𝑙𝑦

𝑘 |𝑥𝑘) = p(𝑦
𝑘
|𝑥𝑘) ·

⃒⃒
det
(︀
JΦ

𝑘 (𝑠𝑦
𝑘, 𝑙𝑦

𝑘)
)︀⃒⃒

(3.14)
= 𝒩 (𝑦

𝑘
− 𝑧𝑚

𝑘 ; 0, C𝑣
𝑘) ·

⃒⃒
det
(︀
JΦ

𝑘 (𝑠𝑦
𝑘, 𝑙𝑦

𝑘)
)︀⃒⃒

,

39



Chapter 3. Partial Information Models

where 𝑧𝑚
𝑘 := 𝜋*

𝑘(𝑦
𝑘
), and |· | is the absolute value. In order to simplify

this term, we need the Jacobian matrix of Φk (𝑠𝑦
𝑘, 𝑙𝑦

𝑘), which takes the
form

J𝜑
𝑘(𝑠𝑦

𝑘, 𝑙𝑦
𝑘) :=

[︁
𝜕Φ𝑘

𝜕𝑠𝑦
𝑘

(𝑠𝑦
𝑘, 𝑙𝑦

𝑘) ,
𝜕Φ

𝑘

𝜕𝑙𝑦
𝑘

(𝑠𝑦
𝑘, 𝑙𝑦

𝑘)
]︁

=
[︀
𝜙′

𝑘
(𝑠𝑦

𝑘) + 𝑙𝑦
𝑘 · 𝑛′

𝑘(𝑠𝑦
𝑘), 𝑛𝑘(𝑠𝑦

𝑘)
]︀

.

The determinant of this matrix can be calculated easily by observing that
both columns are orthogonal to each other as a consequence of (3.13)
and (3.12), i.e., (︁

𝜙′
𝑘
(𝑠𝑦

𝑘) + 𝑙𝑦
𝑘 · 𝑛′

𝑘(𝑠𝑦
𝑘)
)︁⊤

· 𝑛𝑘(𝑠𝑦
𝑘) = 0 ,

which, in turn, this means that the determinant is simply the product of
the Euclidean norms of the columns,⃒⃒

det
(︀
JΦ

𝑘 (𝑠𝑦
𝑘, 𝑙𝑦

𝑘)
)︀⃒⃒

=
⃦⃦⃦⃦

𝜕Φ𝑘

𝜕𝑠𝑦
𝑘

(𝑠𝑦
𝑘, 𝑙𝑦

𝑘)
⃦⃦⃦⃦

· ‖𝑛𝑘(𝑠𝑦
𝑘)‖

=
⃦⃦⃦⃦

𝜕Φ𝑘

𝜕𝑠𝑦
𝑘

(𝑠𝑦
𝑘, 𝑙𝑦

𝑘)
⃦⃦⃦⃦

.

where the second factor vanishes as a consequence of (2.8). We now
further simplify (3.14), in the form of

p(𝑠𝑦
𝑘, 𝑙𝑦

𝑘 |𝑥𝑘) = 𝒩 (𝑦
𝑘
− 𝑧𝑚

𝑘 ; 0, C𝑣
𝑘) ·

⃒⃒
det
(︀
JΦ

𝑘 (𝑠𝑦
𝑘, 𝑙𝑦

𝑘)
)︀⃒⃒

= 𝒩 (Φ𝑘(𝑠𝑦
𝑘, 𝑙𝑦

𝑘)− 𝑧𝑚
𝑘 ; 0, C𝑣

𝑘) ·
⃒⃒
det
(︀
JΦ

𝑘 (𝑠𝑦
𝑘, 𝑙𝑦

𝑘)
)︀⃒⃒

= 𝒩 (Φ𝑘(𝑠𝑦
𝑘, 𝑙𝑦

𝑘)− 𝑧𝑚
𝑘 ; 0, C𝑣

𝑘) ·
⃦⃦⃦⃦

𝜕Φ𝑘

𝜕𝑠𝑦
𝑘

(𝑠𝑦
𝑘, 𝑙𝑦

𝑘)
⃦⃦⃦⃦

.

Finally, we marginalize 𝑠𝑦
𝑘 out of this expression, yielding

p(𝑙𝑦
𝑘 |𝑥𝑘) =

𝐿∫︁
0

𝒩 (Φ𝑘(𝑠𝑘, 𝑙𝑦
𝑘)− 𝑧𝑚

𝑘 ; 0, C𝑣
𝑘)
⃦⃦⃦⃦

𝜕Φ𝑘

𝜕𝑠𝑦
𝑘

(𝑠𝑘, 𝑙𝑦
𝑘)
⃦⃦⃦⃦

d𝑠𝑘 (3.15)

where 𝐿 := ‖𝒮𝑥
𝑘 ‖. We observe that, by iterating through all 𝑠𝑘 in

𝜑
𝑘
(𝑠𝑘, 𝑙𝑦

𝑘), this integral traverses all points that fulfill the condition
𝜙𝑘(𝑝

𝑘
) = 𝑙𝑦

𝑘, as seen in Figure 3.3b. In other words, this is an integral
over a level-set.
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3.5. Level-set PIMs

Definition 3.1 (Level-set [118]). A level-set ℒ𝑘(𝑙𝑘) of a shape function
𝜙𝑘 is the set of points

ℒ𝑘(𝑙𝑘) =
{︁

𝑝
𝑘
∈ R𝑑 |𝜙𝑘(𝑝

𝑘
) = 𝑙𝑘

}︁
.

We note that the final two terms of (3.15) are the derivative of 𝜑
𝑘

and
d𝑠𝑘. This allows us, by applying a change of variables, to use any
parametrization 𝜑*

𝑘
(𝑠*

𝑘) of the level-set ℒ𝑘(𝑙𝑦
𝑘). In particular, we see that

𝜑*
𝑘

does not need to be an arc parametrization. We obtain then

p(𝑙𝑦
𝑘 |𝑥𝑘) =

𝑠*
𝑘,2∫︁

𝑠*
𝑘,1

𝒩 (𝜑*
𝑘
(𝑠*

𝑘)− 𝑧𝑚
𝑘 ; 0, C𝑣

𝑘) ·
⃦⃦⃦⃦
⃦d𝜑*

𝑘

d𝑠*
𝑘

(𝑠*
𝑘)
⃦⃦⃦⃦
⃦ d𝑠𝑘 , (3.16)

where 𝑠*
𝑘,1 and 𝑠*

𝑘,2 are the bounds of the path parametrization. Alterna-
tively, we can say that p(𝑙𝑦

𝑘 |𝑥𝑘) is simply the path integral of the pdf
𝒩 (𝑧𝑚

𝑘 , C𝑣
𝑘) over the curve ℒ𝑘(𝑙𝑦

𝑘). This term can also be used as the
distribution of the bias correction term 𝜈𝑘.

x

y

−4 −2 0 2 4
−4

−2

0

2

4

(a) Level-sets of a circle. (b) Level-sets of a rectangle.

Figure 3.4: Level-sets of a circle and a rectangle. In red, ℒ𝑘(1) indicates all the
points outside with a distance of 1. In blue, ℒ𝑘(−0.5) contains all the
points inside with a distance of 0.5.
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The strengths and weaknesses of level-set PIMs stand out when compared
to sample-based PIMs. On the one hand, for level-set PIMs it is necessary
to construct a level-set for every measured 𝑦

𝑘
. Techniques to construct

level-sets can be found in [119], and Figure 3.4 shows examples with a
circle and a rectangle. By approximating a level-set as a polygon, a closed-
form solution for (3.16) can be calculated using the algorithm described
in Section 9.2.5. Figure 3.2b shows how the level-set approach based on a
polygonal approximation with 𝑚 sides quickly converges to the analytic
solution, almost reaching the true distribution with a simple hexagon.
However, obtaining arbitrary level-sets for non-convex shapes is often
extremely difficult, in particular for negative distances. This issue does
not exist for sample-based PIMs which only require multiple evaluations
in the shape function. Nonetheless, on the other hand, level-set PIMs
provide a much more accurate representation of the true p(𝑙𝑦

𝑘 |𝑥𝑘), even
with a low-accuracy polygonal approximation. Thus, we see that level-set
PIMs are extremely suitable in scenarios with very high noise. Section 3.6
explores the difference in estimation quality more deeply.

3.6 Evaluation of Sample-based PIMs and
Level-Set PIMs

In this section we will estimate the shape parameters of a circle and
a rectangle based on point measurements with different noise levels.
Figure 3.5 shows an example setup. We will compare and contrast four
approaches,

• Naïve Least Squares (LeastSq) as described in (2.27),

• Okatani correction shown in (3.2),

• Sample-based PIMs (PIM-Gauss) as illustrated in (3.11), and

• Level-set PIMs (PIM-LSet) as proposed in (3.16).
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(a) Example measurements with 𝜎2
𝑣,𝑘 = 1.

x
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−10

−5

0

5

10

(b) Example measurements with 𝜎2
𝑣,𝑘 = 9.

Figure 3.5: Illustration of example measurements with the used noise levels. The
vertical dotted lines serve as guides to visualize the circle size.

A good mechanism to visualize the magnitude of the estimation bias
is by plotting the likelihood functions directly. Figure 3.6 shows the
four approaches for different noise levels when estimating the radius
𝑥𝑘 of a circle centered on the origin, with ground truth 𝑥𝑔

𝑘 = 1. The
function values are obtained as the product of the likelihoods of 106

sample measurements as explained in (2.3). The vertical dotted lines
denote the radius which yields the corresponding maximum likelihood, as
calculated with the MATLAB function fminsearch. For very low noise, as
seen in Figure 3.6a, all approaches behave similarly, with LeastSq showing
already moderate bias. Only at higher noise in Figure 3.6c do we start
seeing the differences between PIM-Gauss and PIM-LevelSet. Okatani
starts to become unreliable, as it is incapable of modeling shapes where
the radius of curvature is much lower than the noise level. By Figure 3.6d
the bias in LeastSq becomes so high that the shape becomes virtually
unrecognizable, while both PIMs remain very close to the ground truth.

Figure 3.7 shows the results of a similar evaluation using the same
scenario, where the state to be estimated consisted of the center position
and the radius. We analyze two cases, one without occlusion and another
where parts of the circular arc are not visible. For the scenarios without
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occlusion, all approaches had no trouble estimating the center. However,
the issue of bias is clearly present, so that by Figure 3.7d only the PIMs
are close to the ground truth. Then, occlusions were enabled, first by
hiding half (Figure 3.7e) and then by hiding three fourths (Figure 3.7f)
of the shape. In this case, all approaches show a consistent position bias
in the direction opposite to the occlusion. The bias is once more notable,
and even the PIMs have some trouble finding the center. Still, the PIMs
were again the best performers, with PIM-LSet on the lead.

Finally, in order to illustrate the applicability of PIMs for something
other than circles, Figure 3.8 shows the results of estimating the shape
of a rectangle with different noise levels. The state to be estimated
consisted of the center, the height, and the width, while the ground truth
was located on the origin with height 4 and width 2. This scenario is
different from the circle, as the curvature is undefined on the corners, and
thus, Okatani could not be used. Furthermore, the most likely source
for most of the points also coincides with the corners, far from the true
sources, rendering bias reduction approaches less effective. Nonetheless,
both PIM approaches still produced relatively good results, even if the
bias is moderate, but still less than LeastSq. In the left row there are
no occlusions, but in the right row the top right quarter is hidden. As
with the circle scenario, this occlusion produced a bias in the opposite
direction of the hidden parts. However, as with the other experiments,
PIM-LSet still outperformed PIM-Gauss, which in turn was still much
better than the LeastSq approach.

3.7 Conclusions

In this section we presented an approach to reduce bias when estimating
paths, called Level-set Partial Information Models. This contribution
was based on Partial Information Models, which aimed to compensate
for the failings of GAMs by centering the uncertainty on an appropriate
approximation of the true source, instead of on the measurement itself.
The key idea was to reparametrize a measurement into two components,
one which described where the source was, and another which denoted
its distance to the shape. This allows for the derivation of a ‘partial
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likelihood’ by ignoring the component related to the source, and focusing
only the distribution of distances. Our extension, Level-set PIMs, built
upon this idea by reinterpreting the distance distribution as an integral
over a level-set. The applicability of our contribution was then compared
with Sample-based PIMs from previous work. The evaluation showed that
both forms of PIMs were capable of highly reducing the estimation bias
even in the presence of very high noise. While Level-set PIMs were more
accurate, however, they were less performant and its implementation was
more complex than sample-based PIMs.

45



Chapter 3. Partial Information Models

(a) Likelihood function for
𝜎2

𝑣,𝑘 = 0.25.
(b) Likelihood function for 𝜎2

𝑣,𝑘 = 1.

(c) Likelihood function for 𝜎2
𝑣,𝑘 = 4. (d) Likelihood function for 𝜎2

𝑣,𝑘 = 9.

Figure 3.6: Log-likelihood functions for different noise levels. The vertical dotted
line denotes the radius that yields the maximum value. Ground truth is
𝑥𝑔

𝑘
= 1. The logarithm is used to make sure all curves can be compared

appropriately, and the results have been translated vertically so that
their maximum values coincide. The subindex 𝑘 is omitted for legibility.

46



x

y

−2 0 2 4
−2

0

2

(a) Results for 𝜎2
𝑣,𝑘 = 0.01.
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(b) Results for 𝜎2
𝑣,𝑘 = 0.25.

x

y

−5 0 5
−5

0

5

(c) Results for 𝜎2
𝑣,𝑘 = 9.
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(d) Results for 𝜎2
𝑣,𝑘 = 36.
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(e) Results for 𝜎2
𝑣,𝑘 = 9, half

occluded.
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(f) Results for 𝜎2
𝑣,𝑘 = 9, three fourths

occluded.

Figure 3.7: Results for circle evaluation with different noise levels and occlusions.

3.7. Conclusions
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(a) Results for 𝜎2
𝑣,𝑘 = 1.
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(b) Results for 𝜎2
𝑣,𝑘 = 1, occlusion.
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(c) Results for 𝜎2
𝑣,𝑘 = 4.
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(d) Results for 𝜎2
𝑣,𝑘 = 4, occlusion.
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(e) Results for 𝜎2
𝑣,𝑘 = 9.
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(f) Results for 𝜎2
𝑣,𝑘 = 9, occlusion.

Figure 3.8: Results for rectangle evaluation with different noise levels and occlusion.
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CHAPTER
4

In this chapter, we will briefly describe the theoretical background for
the extent problem (first mentioned in Section 2.5), which occurs when
estimating filled shapes using GAMs [148, 160]. We observe that, while
SDMs do not suffer from this issue, we want to avoid their use, as they
are generally difficult to evaluate and become numerically unstable for
complex shapes. Instead, we will explore different approaches that extend
GAM ideas for filled shapes while retaining their simplicity and efficiency,
and then compare the strengths and weaknesses of these ideas. This
chapter is intended as a discussion of state-of-the-art models, and serves
as a stepping stone for the contributions introduced in the next chapters.
It also introduces two of our innovations, namely i) active models and ii)
Active Random Hypersurface Models (ARHMs).

The structure is as follows. First, we provide a mathematical formulation
for the extent problem, and show why it makes the estimation of filled
shapes difficult. Then, we introduce the concept of Random Hypersurface
Models (RHMs), which solve the extent problem by describing parts of
the shape as simple SDMs and the remainder as GAMs. We also present
a regularization approach based on ideas from active contours, called
active models, which address the extent problem by applying some sort
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of corrective geometrical force on the shape. Finally, we show how the
strengths of both ideas can be combined in the form of Active Random
Hypersurface Models. For each presented model, we also show a brief
evaluation in order to validate the presented ideas.

4.1 The Extent Problem

The extent problem can easily be illustrated with the following experiment.
We consider a rectangle with width 𝑥𝑘, modeled as

𝒮𝑥
𝑘 =

{︂[︂
𝑥𝑘 · 𝑠𝑘,1

𝑠𝑘,2

]︂
; 𝑠𝑘,1 ∈

[︀
−1, 1

]︀
, 𝑠𝑘,2 ∈

[︀
−1, 1

]︀}︂
,

i.e., a filled rectangle centered on the origin that extends in the x-
coordinate in the range of

[︀
−𝑥𝑘, 𝑥𝑘

]︀
, and which in the y-coordinate

spans the fixed interval
[︀
−1, 1

]︀
(see Figure 4.1a). This shape is filled,

i.e., measurements also stem from the shape interior. Then, assuming a
ground truth width of 𝑥𝑔

𝑘 = 2, we generate 105 measurements uniformly
from the rectangle and perturb them with additive zero-mean Gaussian
noise with covariance matrix C𝑣

𝑘 = 𝜎2
𝑣,𝑘 · I, with four different noise levels

𝜎𝑣,𝑘 = 0.01, 0.1, 0.5, and 1. Then, we calculate the batch likelihoods for all
measurements combined, using SDMs with a uniform source distribution
(Section 2.4), and GAMs (Section 2.5) using the Euclidean difference.
Note that the GAM shape function takes into account the nearest source
on the entire shape, including the interior. The result of the likelihoods
for all measurements are shown in Figure 4.1.

On the one hand, from Figure 4.1b it becomes clear that SDMs have no
problem finding the ground truth, as the maximum is located there even
for high noise levels. Alternatively, for numerical stability and ease of
calculation, we could try to approximate the rectangle shape as a coarse
Gaussian pdf as in (2.23). This simplified SDM approach, even if it
ignores important shape information, can still estimate the target extent
(Figure 4.1c). GAMs, on the other hand (Figure 4.1d), have a maximum
that is slightly different than the ground truth of 2 as a consequence of
estimation bias. But far more importantly, after reaching their maximum
value, the likelihood functions become flat (i.e., constant).
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(a) Rectangle setup, example
measurements for 𝜎𝑣,𝑘 = 0.5.
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(b) SDM likelihoods.
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(c) Gauss-SDM likelihoods.
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(d) GAM likelihoods.

Figure 4.1: Likelihood functions for the rectangle using different types of SDMs and
GAMs. The vertical dashed line denotes the ground truth. The
logarithm is used in the lower row for legibility, in order to make sure
all curves can be compared appropriately.

This happens because GAMs only consider the distance to the nearest
source, and thus, once the rectangle becomes large enough, it will contain
every possible measurement. At this point, by definition, the shape
function will always be 0, making this rectangle, and every other rectangle
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Chapter 4. Active Random Hypersurface Models

larger than it, optimal. This is the essence of the extent problem, which
arises any time that multiple (large) shapes can contain the ground truth
shape. Note that this issue cannot be solved with PIMs (Chapter 3), as
they also work with some sort of nearest source.

This raises the need for an approach that combines the simplicity and
numerical stability of GAMs with the accuracy of SDMs, while addressing
the issue of the extent problem. The following two sections introduce
models that deal with this challenge.

4.2 Random Hypersurface Models

RHMs [83] aim to develop a generative model by describing arbitrary
shapes as being constructed from simpler shapes. This mechanism allows
for some parts of the shape to be described using GAMs and others as
SDMs, combining the strengths of both approaches. Thus, for the filled
rectangle example, we can say that only the width needs to be modeled
as an SDMs, while the rest can be represented using simple GAMs.

A short theoretical derivation follows. We proceed to define the concept of
random shapes, related to the ideas of random sets [120] and set-theoretic
EOT models[121].

Definition 4.1 (Random Shape1). A random shape is a set of shapes
{𝒮𝑥

𝑘 (𝑡𝑘) | 𝑡𝑘 ∈ T𝑘} parametrized by the random variable 𝑡𝑘, so that each
shape has a probability p(𝑡𝑘 |𝑥𝑘) of being randomly drawn. The term 𝑡𝑘

is denoted as the transformation parameter, and a realization 𝒮𝑥
𝑘 (𝑡𝑘) of

the random shape is called a slice.

Figure 4.2 shows slice examples for different shapes. In Figure 4.2a, the
example rectangle was constructed by translating a vertical line (gray)
horizontally. The other shapes include slices for a disk in Figure 4.2b, a
filled square in Figure 4.2c, and a non-convex shape in Figure 4.2d.

1For arbitrary higher-dimensional spaces, a more specific name for shapes would be
‘hypersurfaces’. Hence the name of Random Hypersurfaces.
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(a) Slices for a filled rectangle with
constant height.
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(b) Slices for a filled circle (a disk).
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(c) Slices for a filled square.
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(d) Slices for a filled non-convex shape.

Figure 4.2: Example slices and Euclidean projections for different shapes. The blue
dot is an example measurement, the red dots are the Euclidean
projections for each slice.

We can now define a generative model for RHMs. In the first step, we
draw a realization of the transformation parameter 𝑡𝑘, from which we
obtain the shape 𝒮𝑥

𝑘 (𝑡𝑘). From this shape, a source point 𝑧𝑘 is drawn by
the sensor, which in turn is corrupted by the additive zero-mean Gaussian
noise term 𝑣𝑘. As in (2.1), this yields the observed measurement 𝑦

𝑘
. This

model can be used to derive both a measurement equation and a likelihood
function. On the one hand, it is assumed that each shape 𝒮𝑥

𝑘 (𝑡𝑘) has
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Chapter 4. Active Random Hypersurface Models

an association model, for example a GAM or PIM, with measurement
equation

ℎ(𝑥𝑘, 𝑦
𝑘
, 𝑣𝑘, 𝑡𝑘) = 0 .

We can then simply use this same expression as a measurement equation
for the entire shape, by treating 𝑡𝑘 as an additional noise term. On the
other hand, we can also say that the association model for each slice can
be described with a conditional pdf p(𝑦

𝑘
|𝑥𝑘, 𝑡𝑘). By marginalizing out

𝑡𝑘, we obtain

p(𝑦
𝑘
|𝑥𝑘) =

∫︁
T𝑘

p(𝑦
𝑘
|𝑥𝑘, 𝑡𝑘) · p(𝑡𝑘 |𝑥𝑘) d𝑡𝑘 ,

which we can interpret as a likelihood function as we did with SDMs and
GAMs. Thus, this likelihood can describe a two-dimensional filled shape
using a one-dimensional integral, which can be contrasted to the more
complex two-dimensional integrals in SDMs from Section 2.4. Of course,
RHMs can also be extended to three-dimensions. For example, a filled
3D shape can be described by applying two transformations 𝑡𝑘 ∈ R2 on
a planar shape.

As an example, we will now show how to derive an RHM for a filled star-
convex shape in 2D. Assuming 𝒮𝑥

𝑘 is the shape boundary, and that the
shape is centered on the origin, i.e., 𝑐𝑘 = 0, an easy way to describe the
interior is by using homogeneous scaling as the transformation mechanism.
This yields the slices

𝒮𝑥
𝑘 (𝑡𝑘) = 𝑡𝑘 ·𝒮𝑥

𝑘 ,

which can be visualized in Figure 4.2b, Figure 4.2c, and Figure 4.2d. It
can be seen that, for 𝑡𝑘 = 1, we obtain the boundary itself, while for
𝑡𝑘 = 0 this yields the origin. The selection of the shape function is also
important. While Euclidean shape functions can be used, they require
the calculation of the Euclidean projection for each slice, and it can
be seen from Figure 4.2 that they are not straightforward to calculate
and may lie in unintuitive positions. However, when using radial shape
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4.2. Random Hypersurface Models

functions, it holds for each point that all of its projections lie on the same
line, i.e., for each 𝑝

𝑘
∈ R𝑑 the projection to the slice 𝑡𝑘 is simply

𝜋𝑟
𝑘(𝑝

𝑘
, 𝑡𝑘) = 𝑡𝑘 · 𝜋𝑟

𝑘(𝑝
𝑘
) .
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(a) Slices for a filled square.
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(b) Slices for a non-convex shape.

Figure 4.3: Example slices and radial projections for different shapes. The blue dot
is an example measurement, the red dots are the radial projections for
each slice. Note that all projections lie in a straight line from the center.

This can be visualized in Figure 4.3a and Figure 4.3b. This allows us
to obtain a GAM-like measurement equation by using the radial shape
functions from (2.17), i.e.,

ℎ(𝑥𝑘, 𝑦
𝑘
, 𝑣𝑘, 𝑡𝑘) =

⃦⃦⃦
𝑦

𝑘
− 𝑣𝑘 − 𝜋𝑟

𝑘(𝑦
𝑘
, 𝑡𝑘)

⃦⃦⃦
=
⃦⃦⃦
𝑦

𝑘
− 𝑣𝑘

⃦⃦⃦
−
⃦⃦⃦
𝜋𝑟

𝑘(𝑦
𝑘
, 𝑡𝑘)

⃦⃦⃦
=
⃦⃦⃦
𝑦

𝑘
− 𝑣𝑘

⃦⃦⃦
− 𝑡𝑘 ·

⃦⃦⃦
𝜋𝑟

𝑘(𝑦
𝑘
)
⃦⃦⃦

.

Thus, 𝑡𝑘 appears as a multiplicative noise term, and the term containing
𝑣𝑘 is independent from the slice. This means that the projection function
only needs to be calculated once and extensions using PIMs [56] only
need to consider the boundary and not the interior. Note that, similar
to SDMs, the distribution of 𝑡𝑘 should approximately correspond to how
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Chapter 4. Active Random Hypersurface Models

the sensor observes the target. [122] shows an easy way to calculate
the distribution of this term for star-convex RHMs when sources are
uniformly distributed. This generally allows for a derivation of the RHM
likelihood in closed form [108, 153] and even an analytic solution for the
update step of LRKFs[122, 27, 56]. For all of these reasons, RHMs with
radial shape functions and scaling transformations have proven to be
popular, as seen for example in [27, 122, 153, 162, 29, 28].
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(a) RHM likelihoods for rectangle.
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(b) RHM-Gauss likelihoods for rectangle.

Figure 4.4: Likelihood functions for the rectangle using different types of RHMs.
The vertical dashed line denotes the ground truth.

Beyond that, RHMs have been used in literature to described a variety of
shapes, for example line segments [147]. In [122], an RHM approach was
presented to track filled ellipses, which was evaluated in [123] against the
Random Matrices technique from [33]. Filled star-convex RHMs were
modeled in [27] and an explicit likelihood for this was presented in [153].
Works like [29, 28] also model the interior as a scaling transformation
of the boundary, even if they do not refer to themselves as RHMs. The
transformation can also include translations of the base shape in the
z-axis, in order to describe cylinders [57] and more general extrusions
[158].
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4.3. Active Models

4.3 Active Models

Another approach to deal with the extent problem is to use ideas from
the field of active contours [124] and snakes [76, 125]. Informally, a snake
is a closed path on which two competing geometrical forces are applied
(Figure 4.5a). One force attempts to minimize the internal energy, which
can be visualized by interpreting the snake (red) as a set of springs with
each point in the curve constantly pulling its neighbors (red arrows). The
resulting effect is to reduce the curvature by making the shape flatter
and smoother. The other force aims to minimize the external energy
by pushing the snake away (grey arrows) from the image (light grey).
The end result is that the snake path closely follows the shape boundary.
This section aims to transfer these ideas to the field of EOT, which
is not a straightforward task, as snakes are meant to work with dense
measurement sets, such as pixel grid images, where a large amount of
measurements are available simultaneously. In contrast, for this thesis
we are also concerned with relatively few point measurements, which
may arrive at different time steps. This makes finding a balance between
shrinking and pushing difficult, as the snake may easily fall through
sparsely observed regions, and thus, in the absence of external energy,
the path will inevitably collapse into a single point.

A more appropriate approach is, instead, to take the concepts from active
contours and apply them to the state parameter space. For recursive
Bayesian estimators, this idea can be implemented as a ‘shape dynamic
model’, which we denote as active models [154, 156]. The concept of
energies is reinterpreted as follows. The reduction of internal energy is
modeled as a prediction step which applies some sort of operation on
the state, such as making the corresponding shape smaller or applying a
force in a given direction. This effect is counteracted by the measurement
update step, which pushes the shape towards its correct form and acts
as the external energy. We denote the application of an active model
to the state as the regularization step. Note that active models do not
exclude other dynamic models, such as motion models, which can also be
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Chapter 4. Active Random Hypersurface Models

used as additional prediction steps. Furthermore, we want to emphasize
that regularization is an operation on the state 𝑥𝑘. This means that, for
recursive estimators, the entire state pdf needs to be transformed, not
just the mean or a representative value.

(a) Snake applied on an image. (b) Active forces on a rectangle.

Figure 4.5: An illustration of active models. We use an active force (red) as part of
a shape dynamic model, which pulls the shape towards a smaller,
smoother form. The update step acts as a counterforce (dark gray)
which pushes the estimate back towards the true shape (light gray).

For illustration, we will now implement an active model for the example
rectangle in Figure 4.1a and we will show how it solves the extent problem
for GAMs. The active model can be described with

𝑥𝑝
𝑘+1 = (1− c𝑘) · 𝑥𝑒

𝑘 ,

where 0 ≤ c𝑘 ≪ 1 is a coefficient that ensures that the predicted rectangle
width 𝑥𝑝

𝑘+1 shrinks a bit from the estimated width 𝑥𝑒
𝑘 at each time step

(Figure 4.5b). Thus, the regularization step takes the form of a linear
operation, allowing for the state pdf to be easily propagated. In order
to better demonstrate the results, we implemented an evaluation using
a Progressive Gaussian Filter[87]. The state is Gaussian distributed
and initialized with variance 𝜎2

𝑥,0 = 0.01, with three different means
𝑥̂0 = 2, 5, and 8. Furthermore, the measurement noise covariance matrix
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is C𝑣
𝑘 = 0.1 · I, and the regularization coefficient is c𝑘 = 0.015. There is

a single measurement for each timestep. Figure 4.6a shows the results
averaged over 100 runs. We can see that, effectively, the ground truth
was approximately found after 80 measurements for all initial states.

The advantage of this approach is that it does not require knowledge of
any probability distribution, and thus, does not suffer from numerical
instability or low robustness in cases of high uncertainty or occlusions.
Furthermore, a regularization approach tends to be helpful in case of
bad initialization, as it pushes the estimate away from a potential local
minimum. However, this mechanism raises several challenges. First, the
state will not converge to the ground truth as long as regularization is
applied, as it is constantly being pulled and pushed in different directions.
This can be seen in Figure 4.6a, where the final value is always slightly
below 2, even for the green line which was initialized with the correct value.
Second, it is difficult to obtain an appropriate value for the regularization
coefficient c𝑘, as its relationship to the shape characteristics, measurement
uncertainty, and process noise is not intuitive. This issue is made more
difficult by the fact that all of these factors may change over time.
Furthermore, in practice the specific mechanism for regularization and
the selection of the coefficients are generally ad-hoc, and thus, cannot be
generalized and may need to be reconfigured for each scenario.

In literature, the idea of ‘pulling’ and ‘shrinking’ a shape is, as mentioned
before, a staple in active contours[124]. In the context of shape repre-
sentation using Gaussian processes, it serves a similar function as the
‘forgetting factor’ in [29], which makes the shape flatter. The idea of a
shrinking coefficient has also been used in motion models, for example in
the Singer acceleration model [126]. Finally, in contrast to approaches
that ‘forget’ shape information either by increasing the state uncertainty
or artificially reducing the number of observed measurements, such as in
[16, 33], the idea presented here is meant to be interpreted as an intuitive
geometrical function applied on the state.
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(a) Length using GAM with an active
model, c𝑘 = 0.015.
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(b) Length using RHMs with and without
active models.

Figure 4.6: Length estimates at a given timestep, using a single measurement per
update, for GAMs and ARHMs. While RHMs can estimate the length
on their own, the additional application of active models reduce the time
until convergence. Horizontal dotted line denotes ground truth of 2.

4.4 Active Random Hypersurface Models

We define an ARHM as a random hypersurface model which also employs
an active model. In Section 4.2 we noted how RHMs solved the extent
problem, and in Section 4.3 we described many ways in which active
models may raise challenges which have to be addressed. This raises
the question of why would it be beneficial to combine both models. The
problem is that the scenarios previously considered only take into account
theoretical aspects and do not contemplate challenges present in real-
life environments such as bad initializations, outliers, incorrect models
for sensors and motions, or occlusions. These practical issues reduce
robustness and can easily cause the estimator to become stuck in a local
minimum or even diverge, in particular for the more complex shape
models presented in the following chapters. This serves as a motivation
to analyze the potential benefits of using active models, for example right
after initialization or in a low information situation.
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We will now present an example scenario where it helps to combine RHMs
with active models, using the same rectangle setup as in Section 4.3. The
main idea is to emulate a bad initialization far from the ground truth, i.e.,
with initial state means 𝑥̂0 = 5 and 8, and variance 𝜎2

𝑥,0 = 0.001, which
is 100 times more certain than in Figure 4.6a. The results are presented
in Figure 4.6b. The light blue and yellow lines denote RHMs without
an active model (i.e., c𝑘 = 0), and can be compared with the blue and
yellow lines from Figure 4.6a which employed GAMs. The slowness in
convergence at the beginning is evident, due to the very low uncertainty
of the initial state. However, it is also interesting to note that RHMs still
converged faster than GAMs with active models, which can be explained
by the transformation parameter using the correct distribution, which is
unfortunately often not known in real-life scenarios. Then, we proceeded
to enable active models with c𝑘 = 0.015, which in effect multiplied
the width by 0.985 after each measurement. In this case, we see that
convergence is much faster (dark blue and yellow lines), reducing the
number of required timesteps by about 25%. We also observe, as we
explained in Section 4.3, that a permanent active model does not permit
the estimator to converge to the true value, as it is constantly pushing
it towards a given direction. However, this artifact did not cause much
damage, as the final value is barely below the ground truth, ensuring
that RHMs will rapidly recover after regularization is deactivated.

4.5 Conclusions

In this brief chapter we explored the extent problem, which appears
when estimating filled shapes using GAMs. This issue arises whenever
multiple states produce the same sources, and thus, an estimator cannot
differentiate between multiple states if they all contain the ground truth.
This artifact will, in turn, usually cause the estimator to diverge. We
presented two main approaches to deal with this issue. On the one
hand, RHMs treat complex shapes as the transformations of simple
shapes, in effect dividing the representation of the target shape in two
parts, one to be described with GAMs, and the other to be modeled
as an SDM. This allows for the implementation of efficient and robust
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estimators, as the probabilistic component only affects the transformation
parameter. On the other hand, active models draw ideas from active
contours and snakes, and apply a geometric force on the shape as part of a
regularization step. The implementation is generally simple, usually as a
linear transformation, and can be applied independently from the update
step and other prediction steps. While both of these ideas address the
extent problem on their own, we also saw the advantage of combining them
in the form of ARHMs. We also showed simple synthetic evaluations in
order to validate the presented ideas. The following chapters will present
more practical applications where ARHMs are used as key components.
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CHAPTER
5

Level-set ARHMs

While the previous chapters explored the theoretical background of
extended object tracking, we will now present an implementation of
these ideas that can be used in practical scenarios. To achieve this,
we introduce Level-set Active Random Hypersurface Models (Level-set
ARHMs), a novel technique for shape and pose estimation that can deal
with arbitrary targets, improving on state-of-the-art approaches, which
usually deal exclusively with convex or star-convex shapes. Being an
implementation of ARHMs, it builds upon the concepts presented in
Chapter 4, and can be used both for filled shapes or path boundaries.
The content presented here is based on work published by the author
in [154, 156], and its ideas were further explored in [155]. This chapter
is structured as follows. First, we present a short discussion of the
problem we are trying to solve and explain the gaps in state-of-the-art
literature that our contribution is addressing. Then, we introduce our
novel technique for tracking arbitrary non-convex shapes, which builds
upon the ideas of RHMs and implements the transformation mechanism
using level-sets. We will also discuss the advantages and the pitfalls of
this formulation, in particular with relation to robustness and accuracy.
Finally, we refine these ideas by combining them with active models,
which leads to Level-set ARHMs.
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Chapter 5. Level-set ARHMs

5.1 Motivation

The field of EOT is generally concerned with sparse measurements and
low measurement quality, leading to a focus on parametric representations,
which approximate a target as simple shapes with a small amount of
parameters. This stands in contrast to approaches in computer vision,
which employ techniques such as occupancy grids [11] or voxel trees
[127], where the number of parameters is variable and usually several
orders of magnitude higher. However, these increased requirements
have the advantage of being able to describe and reconstruct target
shapes in arbitrary detail. As sensors become capable of capturing more
information about the target, it becomes necessary to bring some of this
flexibility in shape representation to the field of EOT, raising the need for
a probabilistic model capable of describing arbitrary, non-convex shapes,
while retaining the simplicity and ease of implementation of traditional
EOT estimators.

(a) Ellipse. (b) Z-shape. (c) M-shape. (d) H-shape.

Figure 5.1: Example shapes, which include convex, star-convex, and non-convex
shapes.

Figure 5.1 shows examples of the shapes that we will consider in this
chapter. EOT has traditionally focused on convex shapes, such as the
ellipse in Figure 5.1a, which are easy to parametrize and estimate [104,
122, 123]. For more complex shapes, a popular mechanism to describe
detailed forms is by using radial functions, explained in Definition 2.4.
This allows for a shape parametrization in the form of

𝜑
𝑘
(𝜃𝑘) = 𝑐𝑘 + 𝑟𝑘(𝜃𝑘) ·

[︂
cos(𝜃𝑘)
sin(𝜃𝑘)

]︂
, for 𝜃𝑘 ∈

[︀
0, 2𝜋

]︀
,

64



5.1. Motivation

with center point 𝑐𝑘 and radial function 𝑟𝑘(𝜃𝑘). While there are many
possible representations for 𝑟𝑘 in literature, such as Bézier curves in [41],
functions that are periodic in 2𝜋 tend to be preferred, as they guarantee
that the boundary remains continuous everywhere. The following three
types of radial functions stand out.

• Piecewise linear functions define the boundary at a set support
angles 𝜃1

𝑘, · · · , 𝜃𝑛
𝑘 , and approximate the remaining parts as a closed

polygonal chain joining the contiguous vertices 𝜑
𝑘
(𝜃𝑖

𝑘) and 𝜑
𝑘
(𝜃𝑖+1

𝑘 ).
An application can be found in [40].

• Fourier series use boundaries that are the result of a sum of trans-
lated and scaled trigonometric functions. This naturally ensures
that the boundary is both periodic and smooth. Implementation
details can be found in Appendix 9.5.2 and works that use this
parametrization include [27, 162, 153, 28].

• Radial Gaussian processes employ, as the name suggests, a radial
function based on ideas from Gaussian processes (GP). The pe-
riodicity of the boundary can be guaranteed by using a periodic
covariance function, such as a sin( · ) function [29]. An example
implementation can be found in Appendix 9.5.3.

However, these representations are only appropriate for star-convex
shapes, as for arbitrary shapes, such as the Z-shape in Figure 5.1b,
there is no guarantee that all points on the boundary can be traversed
by a radial function. Figure 5.2 shows estimates of a real-life cardboard
Z-shape captured with a Kinect sensor, using Random Matrices (Fig-
ure 5.2a), a GP RHM (Figure 5.2b), and a Fourier RHM (Figure 5.2c). It
can be seen that these shapes overestimate the extent in most directions,
and thus, they will yield inappropriate results in scenarios where accurate
rotations or translations are needed. Given that this sort of shapes appear
often in practical scenarios, such as the contour of an airplane or the
silhouette of a person, we observe that there is a need in state-of the art
for more flexible shape estimation techniques.
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The objective of this chapter is to implement an ARHM to estimate
arbitrary filled shapes, independent of whether they are convex or not
(as in Figure 5.2d). However, the major challenge is that we cannot use
radial functions, which, as we saw in Section 4.3, had the major advantage
of allowing for an extremely straightforward implementation of RHMs.
Therefore, if we are going to develop an alternative parametrization for
arbitrary shapes, it is indispensable to first propose a corresponding
transformation mechanism that is just as easy to implement, without
imposing any requirement of star-convexity. The next section explores a
solution to this challenge.

5.2 RHMs with Level-sets

In this section, we aim to derive a transformation mechanism for arbitrary
shapes that retains the same simplicity as the RHMs with radial functions
from Section 4.3. This will in turn lead to a measurement equation that is
easy to evaluate, from which a robust likelihood function can be obtained.
In order to achieve this, we propose as transformation mechanism the use
of level-sets (see Definition 3.1) of the signed Euclidean distance 𝜙𝑠𝑒

𝑘 ( · )
(see Definition 2.3). As a reminder, the signed Euclidean distance of
a point 𝑝

𝑘
∈ R𝑑 is the distance to the nearest point in the shape 𝒮𝑥

𝑘 ,
but if 𝑝

𝑘
is inside the shape, we set the sign to negative. Furthermore,

a level-set ℒ𝑘(𝑙𝑘) is the set of all the points where the shape function
returns the value 𝑙𝑘 (see Figure 5.3). Given that the target shape is
compact, i.e., closed and bounded, we know that when we evaluate the
points of 𝒮𝑥

𝑘 in the shape function, there exists somewhere a minimum
value of

𝜙𝑚𝑖𝑛
𝑘 := min

𝑝
𝑘

∈𝒮𝑥
𝑘

𝜙𝑠𝑒
𝑘 (𝑝

𝑘
) .
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(a) Ellipse RM.
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(b) GP RHM.
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(c) Fourier RHM.
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(d) Level-set ARHM.

Figure 5.2: A real Z-shape target made of cardboard as observed with a Kinect
depth camera (red points). Note the irregular edges and outliers.
Approximations using state-of-the-art techniques and our proposed
shape model are illustrated in black.

This value can be interpreted as the (negative) height of the peaks in
Figure 5.3. We can now define the slice shape corresponding to a given
𝑡𝑘 using level-sets, in the form of

𝒮𝑥
𝑘 (𝑡𝑘) = ℒ𝑘(𝑡𝑘 · 𝜙𝑚𝑖𝑛

𝑘 )

=
{︁

𝑝
𝑘
∈ R𝑑 |𝜙𝑠𝑒

𝑘 (𝑝
𝑘
) = 𝑡𝑘 · 𝜙𝑚𝑖𝑛

𝑘

}︁
.
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In order to visualize these slices, we can employ a technique used with
level-sets that consists of shifting a horizontal plane vertically and seeing
where it intersects the shape function. An example level-set (and the
shifted plane) can be seen in red in Figure 5.3. The resulting slices for the
Z-shape and the M-shape can be seen in Figure 5.4. This slice mechanism
is related in some ways to the one presented previously in Section 4.2 for
star-convex shapes, but there is a critical difference. Previously, 𝑡𝑘 = 0
represented a scale of 0, i.e., the center point, and 𝑡𝑘 = 1 yielded the
boundary itself. However, here the situation is flipped. Thus, on the one
hand, 𝑡𝑘 = 0 returns the level-set where the shape function is 0, which by
definition is the boundary itself. On the other hand, 𝑡𝑘 = 1 represents
the points where the shape function is minimal, which as Figure 5.3
shows are the innermost points. Nonetheless, we observe that we can
still describe the entire shape interior by using the range 𝑡𝑘 ∈

[︀
0, 1
]︀
. For

convenience, in the following we will use T𝑘 :=
[︀
0, 1
]︀
.
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(a) Shape function of Z-shape.
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(b) Shape function of M-shape.

Figure 5.3: Example plot of the signed Euclidean distances for the interior of a
Z-shape and an M-shape. The level-set ℒ𝑘(−0.3) is highlighted in red.
The peaks correspond to the points that yield 𝜙𝑚𝑖𝑛

𝑘 .
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In order to obtain a measurement equation, we first need to discuss an
appropriate shape function that is easy to extend to any individual slice.
As we are working with level-sets, the most straightforward approach
is to use signed Euclidean distances. However, using this mechanism
raises two issues. On the one hand, we would need to construct each
level-set explicitly, which is usually not straightforward as was mentioned
in Section 3.5. On the other hand, the projections do not necessarily lie
on the same line, as we saw in Figure 4.2c back in Chapter 4. This is
undesirable, as the collinearity allows for a strong simplification of the
measurement equation.

In order to address this problem, we will use the following approximations.
In essence, we will start with a simple GAM with the form

0 = 𝜙𝑠𝑒
𝑘 (𝑦

𝑘
− 𝑣𝑘, 𝑡𝑘) . (5.1)

For this derivation, we will at first ignore the sign of the shape function.
As we are working with Euclidean distances to the shape, it follows
for any 𝑝

𝑘
∈ R𝑑 that the shape function is equal to its distance to the

projection 𝜋𝑘(𝑝
𝑘
, 𝑡𝑘), i.e.,

𝜙𝑘(𝑝
𝑘
, 𝑡𝑘) =

⃦⃦⃦
𝑝

𝑘
− 𝜋𝑘(𝑝

𝑘
, 𝑡𝑘)

⃦⃦⃦
=
⃦⃦⃦
𝑝

𝑘
− 𝜋𝑘(𝑝

𝑘
) + 𝜋𝑘(𝑝

𝑘
)− 𝜋𝑘(𝑝

𝑘
, 𝑡𝑘)

⃦⃦⃦
,

where 𝜋𝑘(𝑝
𝑘
) represents the projection to the boundary, added and

subtracted in the second line as an auxiliary term. We will now introduce
the strong approximation that 𝑝

𝑘
and its projections 𝜋𝑘(𝑝

𝑘
) and 𝜋𝑘(𝑝

𝑘
, 𝑡𝑘)

are collinear. This is a useful assumption, as it allows us to say that

𝜙𝑘(𝑝
𝑘
, 𝑡𝑘) ≈

⃦⃦⃦
𝑝

𝑘
− 𝜋𝑘(𝑝

𝑘
)
⃦⃦⃦

+
⃦⃦⃦
𝜋𝑘(𝑝

𝑘
)− 𝜋𝑘(𝑝

𝑘
, 𝑡𝑘)

⃦⃦⃦
.

Then, we observe that this expression can be simplified even further. On
the one hand, the left term is simply the shape function of the boundary,
i.e., 𝜙𝑘(𝑝

𝑘
). On the other hand, the right term is the distance between

𝜋𝑘(𝑝
𝑘
, 𝑡𝑘) and the boundary, which can be easily obtained from the fact

that this point lies on the level-set ℒ𝑘(𝑡𝑘 · 𝜙𝑚𝑖𝑛
𝑘 ). Using the definition
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Chapter 5. Level-set ARHMs

of a level-set, it follows that

𝜙𝑘(𝑝
𝑘
, 𝑡𝑘) ≈ 𝜙𝑘(𝑝

𝑘
) + 𝑡𝑘 · 𝜙𝑚𝑖𝑛

𝑘 .

While these terms hold for Euclidean distances, we can easily extend
these same ideas for signed Euclidean distances too. This allows us
to plug these results into (5.1), and obtain the simplified measurement
equation

0 = 𝜙𝑠𝑒
𝑘 (𝑦

𝑘
− 𝑣𝑘, 𝑡𝑘) (5.2)

≈ 𝜙𝑠𝑒
𝑘 (𝑦

𝑘
− 𝑣𝑘) + 𝑡𝑘 · 𝜙𝑚𝑖𝑛

𝑘

= ℎ(𝑥𝑘, 𝑦
𝑘
, 𝑣𝑘, 𝑡𝑘) .

(a) Example slices of Z-shape. (b) Example slices of M-shape.

Figure 5.4: Example slices for the interior of a Z-shape and an M-shape,
constructed using level-sets. This can be contrasted with the slices
using scaling from Figure 4.2, and note that level-sets do not necessarily
shrink to a single point. In particular, they can consist of unconnected
paths, as can be seen in light gray for the M-shape. In blue, example
measurements. In red, the slice projections.

We can make three observations. First, note that this measurement
equation only requires us to evaluate the measurement on the shape
function once, as the term 𝑡𝑘 appears outside of it. Second, we can
apply the same refinement on (5.2) as we did with GAMs in (2.26),
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5.3. Shape Representation

in order to avoid applying the noise term 𝑣𝑘 twice [156]. Third, we
see that this formulation allows for a PIM bias correction term that is
independent of the slice [56, 156]. However, in practice, we cannot say
that this approximated model holds completely, as the three considered
points are often not collinear. This can be clearly seen in Figure 5.4,
which shows example measurements (in blue) and their slice projections
(in red). It becomes evident that the projections are only collinear
to the measurement in the outer parts of the shape. Nonetheless, as
the evaluation will show, even with these compromises the proposed
estimators still produce accurate results.
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(a) Shape function, darker means lower.
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(b) Angle bisectors.

Figure 5.5: Illustration of how the intersection of angle bisectors can be used to find
the minimum of the shape function. Shape function plotted only for the
interior.

5.3 Shape Representation

We are now interested in finding a flexible representation capable of
describing a variety of shapes such as those in Figure 5.1. As a key
requirement, this shape model must allow for a fast calculation of the
term 𝜙𝑚𝑖𝑛

𝑘 . To achieve this, we propose to use an 𝑛-polygonal chain, i.e.,
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a closed polygon of 𝑛 vertices. The state takes the form

𝑥𝑘 =
[︀
𝑏⊤

𝑘,1, · · · , 𝑏⊤
𝑘,𝑛

]︀⊤
, (5.3)

i.e., a list of vertices 𝑏𝑘,𝑖 ∈ R2 stacked vertically. A polygonal repre-
sentation has the advantage of allowing for an easy calculation of the
projection, which is equivalent to the most likely source as described in
Appendix 9.2.4. This algorithm works in 𝒪(𝑛). Finally, a polygon also
allows for an easy calculation of 𝜙𝑚𝑖𝑛

𝑘 . This can be seen by observing
Figure 5.5a, where it is clear that the shape function descends the fastest
along the bisectors, i.e., the lines at the middle angle between two edges.
Thus, by plotting the bisectors inside the shape (Figure 5.5b), we can
see that the point that yields 𝜙𝑚𝑖𝑛

𝑘 is always one of the intersections.
While this requires 𝒪(𝑛2) steps, the vertices whose bisectors generate
the minimum generally remain the same and can be cached, so that in
practice this calculation can be done in constant time.

5.4 Transformation Parameter

In order to use the derived measurement equations, it is first necessary
to find a proper distribution for the transformation parameter 𝑡𝑘. As in
SDMs, this is an important aspect, as an incorrect assumption can lead
to estimation bias or lack of robustness. Assuming no other information
is known, it is a reasonable assumption to say that measurement sources
are uniformly distributed on the shape, as was done in Section 2.4. Based
on this, we can simply model all possible sources as a random variable
𝑧𝑘 uniformly distributed in 𝒮𝑥

𝑘 . Then, by propagating it through

𝑡𝑘 = 𝜙𝑠𝑒
𝑘 (𝑧𝑘)
𝜙𝑚𝑖𝑛

𝑘

, (5.4)

we can obtain a distribution for 𝑡𝑘. However, this approach requires
knowing the ground truth shape, and even then, an exact solution is
unfortunately intractable for most shapes. Instead, we will explore
an alternative mechanism. We take as starting point the distribution
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5.4. Transformation Parameter

proposed by [122] for circular shapes, i.e.,

p(𝑡𝑘) = 2 · (1− 𝑡𝑘) . (5.5)
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(a) Empiric distributions.
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(b) Gaussian approximation.

Figure 5.6: Empiric distribution of the transformation parameter for a Z-shape,
H-shape, M-shape, and an ellipse based on a uniform source
distribution, together with a Gaussian approximation. The distribution
for a circle (dotted black line) is taken as reference. The subindex 𝑘 is
omitted for legibility.

This distribution can be seen in Figure 5.6a as the black dotted line.
We will now calculate the empiric distribution of 𝑡𝑘 for the shapes in
Figure 5.1, by drawing 106 sources uniformly from the corresponding
shapes and propagating them through (5.4). It can be seen that, while
they take different forms, all of them approximately follow the same
distribution as the circle. However, for the narrower shapes such as the
ellipse or the H-shape, it skews slightly towards a uniform distribution,
i.e., p(𝑡𝑘) = 1. Nonetheless, we can conclude that, in general, (5.5) is a
safe approximation for most shapes.

Note that, in many cases, the triangle distribution from (5.5) cannot be
used directly, for example when employing estimators based on LRKFs,
as they assume Gaussian distributions. In order to address this, we can
approximate 𝑡𝑘 as also being Gaussian distributed (Figure 5.6b). By
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moment matching, this takes the form of

p(𝑡𝑘) ≈ 𝒩
(︂

𝑡𝑘; 1
3 ,

1
18

)︂
. (5.6)

5.5 Active Models

(a) Estimate A. (b) Estimate B. (c) With active model.

Figure 5.7: Example showing how the ambiguous polygonal representation of a
shape raises the need for regularization. Ellipse ground truth in gray. If
there are few sources (red), then both the orange and the purple
polygons cover all sources. If the process noise is high, the state can
‘glide’ between different representations, causing instability. Active
models, however, yield a more regular and robust representation.

In Section 5.3, we modeled the state as consisting on the individual vertex
positions stacked together. While this allows for an extremely flexible
representation, in this section we want to discuss an egregious side effect
of this approach. As a reminder, when we discussed GAMs with filled
shapes in Section 2.5, we concluded that we should avoid situations where
multiple states produce shapes with the same sources, as this invariably
leads to ambiguities and other problems during estimation. Unfortunately,
this artifact can also appear with RHMs under certain circumstances,
as illustrated in Figure 5.7. In this scenario, we try to approximate the
ellipse (gray) by using a polygon with six sides, but we observe that
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both the Estimate A (Figure 5.7a) and the Estimate B (Figure 5.7b)
cover more or less the same area. If the number of measurements (red)
is particularly low, then for the estimator both shapes are approximately
equivalent. More egregiously, the vertices can slide around the ellipse and
still cover most sources, which in turn produces a destabilizing ambiguity
similar to that of filled shapes, especially when the process noise is high.
In the worst case scenario, the edges will cross or collapse into a point,
leading to a situation from which the estimator cannot recover. Of course,
a potential solution would be to introduce shape-specific constraints on
the vertex positions based on a priori knowledge, or switch to a more
appropriate representation without this ambiguity. However, this goes
against the basic idea of this thesis, which is that the proposed shape
and association models should be usable with any shape complexity and
level of uncertainty, as there is no guarantee of any a priori knowledge.

In essence, we observe that this artifact is similar to the extent problem,
which we addressed in Section 4.3 using ideas from active contours. We
can apply the same concepts here by introducing a shape dynamic model
where each vertex slowly pulls its neighbors towards itself. Using a
regularization coefficient 0 ≤ c𝑘 ≪ 1, we apply the following operation
for each vertex 1 ≤ 𝑗 ≤ 𝑛,

𝑏𝑟
𝑗,𝑘 = 𝑏𝑘,𝑗 + c𝑘 ·

(︀
𝑏𝑘,𝑗−1 − 𝑏𝑘,𝑗

)︀
+ c𝑘 ·

(︀
𝑏𝑘,𝑗+1 − 𝑏𝑘,𝑗

)︀
= c𝑘 · 𝑏𝑘,𝑗−1 + (1− 2c𝑘) · 𝑏𝑘,𝑗 + c𝑘 · 𝑏𝑘,𝑗+1 ,

where 𝑗 − 1 and 𝑗 + 1 wrap around the interval
[︀
1, 𝑛
]︀
, and 𝑏𝑟

𝑘,𝑗 is the
regularized vertex position. It can be seen that this operation is linear in
relation to each vertex 𝑏𝑘,𝑗 , and in consequence, in 𝑥𝑘 too. This means
that we can aggregate the vertex operations into a matrix

𝑥𝑟
𝑘 = A𝑟𝑒𝑔

𝑘 (c𝑘) · 𝑥𝑘 , (5.7)

where 𝑥𝑟
𝑘 is the regularized state. This allows for regularization to be

implemented easily in any kind of estimator as part of a prediction step,
as was done in Section 4.3. The end effect of this operation is to make
the shape flatter and smoother, which has the side effect of making
the edge lengths more uniform. Figure 5.7c shows the ellipse estimate
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after enabling the active model. We observe that this solution is more
regular and robust, as the regularization keeps the vertices from gliding
around the ellipse. We denote RHMs with level-sets and active models
as Level-set ARHMs.

Note that using Level-set ARHMs do not completely eliminate ambi-
guities, as there are still multiple states representing similar shapes.
However, by applying active models we can ensure that the modes in
the likelihood are relatively far apart, thus allowing estimators such as
LRKFs to simply stick to the closest mode, gaining a sufficient amount of
stability. Furthermore, it is also useful to remember that this approach
brings the same caveats as described in Section 4.3, such as the lack of
convergence as long as the active model is in use. We will now present an
evaluation to show how much of an effect these issues have in practice.

5.6 Evaluation

In this section we will present an evaluation of Level-set ARHMs. Two
scenarios will be explored, which estimate a static target and a dynamic
target using synthetic data. The shape being considered is a Z-shape, il-
lustrated for example in Figure 5.4a. The recursive estimator we used was
a S2KF [88] with 13 state samples, with the measurement equation from
(5.2). A sketch of how the estimator works is presented in Appendix 9.4.
It is assumed that measurement sources are uniformly distributed on the
shape, and thus, the transformation parameter was set as in (5.5). For
simplicity, the estimator used the Gaussian approximation presented in
(5.6).

An important aspect to take into consideration is the type of evaluation
metric being used. As the estimated shapes are usually approximations of
an unknown target that does not necessarily follow the assumed models,
comparing the state parameters directly is generally not meaningful.
Instead, approaches in EOT generally quantify the estimation error in
function of mismatched extents or areas. However, for this specific
application, commonly used metrics such as Intersection Over Union
(IOU) can be misleading, as a small movement of a vertex on a sharp
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corner can cause the mismatched area to increase dramatically, even if
the estimated shape is still visually very close. Instead, we introduce the
following measure for the area error,

𝐸(𝑘) = area (𝒮𝑥
𝑘 Δ𝒮𝐺)

area (𝒮𝐺) ,

where 𝒮𝑥
𝑘 is the estimated shape and 𝒮𝐺 is the ground truth shape. The

operator Δ is the symmetric difference, i.e., 𝒮𝑥
𝑘 Δ𝒮𝐺 returns the set of

points which are either only in 𝒮𝑥
𝑘 , or only in 𝒮𝐺, but not both. The result

of this operation is non-negative, but unlike the IOU, it is not bounded.
Thus, for example, 𝐸(𝑘) = 0 indicates a perfect match, and other values
indicate how large the mismatched area is in proportion to the ground
truth. Similarly, a value of 𝐸(𝑘) = 2 says that the incorrect regions, i.e.,
those who belong to either the ground truth or to the estimate but not
to both simultaneously, are twice as large as the real target.

The setup is as follows. At each timestep 𝑘, one single measurement
source is drawn uniformly from the ground truth target and corrupted
with zero-mean Gaussian noise. Three levels of measurement noise are
considered,

• low noise with C𝑣
𝑘 = 10−4 · I,

• medium noise with C𝑣
𝑘 = 10−3 · I, and

• high noise with C𝑣
𝑘 = 10−2 · I.

The ground truth shape is a Z-shape that fits in a square of 1 unit width,
in the same fashion as in Figure 5.4a. For the polygonal representation,
the number of vertices is assumed to be known a priori to be 6. As
usual with LRKFs, the state is assumed to be Gaussian distributed. The
shape parameters of the state mean 𝑥̂0 are initialized as an hexagon with
apothem 1

2 , as can be seen in Figure 5.8a. Other state parameters, such
as the velocities, are set to 0. The state covariance matrix is initialized
as P0 = 10−2 · I.
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5.6.1 Static Scenario

For the static scenario, we measure how the proposed Level-set ARHMs
can estimate a non-moving Z-shape. The state has the form presented in
(5.3). At each timestep, the estimation procedure consists of an update
step incorporating the generated measurement 𝑦

𝑘
and a prediction step

determined by the system equation

𝑥𝑘+1 = A𝑟𝑒𝑔
𝑘 (c𝑘) · 𝑥𝑘 + 𝑤𝑘 ,

using the regularization matrix from (5.7) with c𝑘 = 10−4 and with a
Gaussian distributed, zero-mean process noise term 𝑤𝑘 with covariance
matrix Q𝑘 = 10−5 · I. Figure 5.11a shows the area error results aver-
aged over 20 runs, while Figure 5.8 illustrates a representative run with
intermediate results as the shape is being estimated. Note that the figure
shows multiple measurements only as illustration, given that just a single
measurement was used per timestep.

From Figure 5.11a it can be seen that the estimator has converged at
about 1100 measurements. However, the area error never reached 0,
as a consequence of three factors. First, the regularization approach
was not disabled for the sake of evaluating its effects. Of course, it is
highly recommended to do so once it is known that the state is close to
converging. Second, the assumed distribution of 𝑡𝑘 does not match the
true pdf perfectly, as was shown in Figure 5.6a. Finally, the fact that we
used a simple GAM, instead of a more complex PIM, means that the
results are slightly biased. However, as can be seen for the low noise
scenario, the final results are very close (Figure 5.8f), with 𝐸 = 0.09.
Alternatively, Figure 5.12a shows the final estimate for medium noise
with 𝐸 = 0.14, and Figure 5.12b for high noise with 𝐸 = 0.40.

We also applied this evaluation setup on an M-shape and an H-shape.
Figure 5.12 shows the results after 2000 measurements, using polygons
with 5 and 14 sides respectively. As before, multiple measurements
are shown for illustration, as the estimator incorporated only one per
timestep. The area errors for the M-shape were 𝐸 = 0.09 for medium
noise, and 𝐸 = 0.23 for high noise. For the more complex H-shape, the
area errors were 𝐸 = 0.095 for medium noise, and 𝐸 = 0.18 for high noise.
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(b) 𝑘 = 200.
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(d) 𝑘 = 600.
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(f) 𝑘 = 1000.

Figure 5.8: Representative low noise run at different timesteps 𝑘 for the static
evaluation. Ground truth in light gray, estimate in black, example
measurements in dark red.
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One aspect that might stand out is the fact that this evaluation used
2000 measurements, which is unusually high especially compared with
fitting approaches. However, it should be taken into account that the
shapes are filled, and thus, most of the measurements did not contribute
much information. An illustration of this was presented in Figure 4.4a.
Thus, when the shape is small and most measurements are outside,
the slope of the likelihood function is very steep. However, when most
measurements are inside, the likelihood is relatively flat, meaning that
the estimate benefits little from those measurements. Requiring this
amount of measurements is also not unreasonable, given that sensors can
yield thousands of measurements per capture as shown in Figure 5.2.

Figure 5.9: Setup and representative results of the dynamic experiment. Ground
truth in gray, estimate in black, example measurements in red. The
starting position is to the right at 0 degrees. Path of estimated center
point is shown in blue.
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5.6.2 Dynamic Scenario

For this experiment, we wanted to evaluate how Level-set ARHMs work in
a dynamic scenario, where the target was not only moving but changing
its shape as well. The experiment setup is illustrated in Figure 5.9. For
the motion, the target rotated clockwise in a circular path describing
a radius of 6 units, starting at

[︀
6, 0
]︀⊤. In each timestep, the target

moved along a circular arc at a speed of 3000 timesteps for every 90𝑜

degrees. Simultaneously, it was also spinning around its midpoint at an
angular velocity of one turn at every 3600 timesteps. Furthermore, it was
also morphing its shape as shown in Figure 5.10, back and forth from
a Z-shape (Figure 5.10a) to an ellipse (Figure 5.10d), where each cycle
took 3000 timesteps.

In order to take into account this motion, we extended the state to include
a constant velocity model,

𝑥𝑘 =
[︁
𝑏⊤

𝑘,1, · · · , 𝑏⊤
𝑘,6, 𝑏̇

⊤
𝑘

]︁⊤
,

where 𝑏̇𝑘 ∈ R2 represents the velocity of all vertices. At each timestep, the
estimation consisted of an update step, which corrected the estimate by
incorporating one single measurement 𝑦

𝑘
, and a prediction step described

by the system equation

𝑥𝑘+1 = F𝑘 · A𝑟𝑒𝑔
𝑘 (c𝑘) · 𝑥𝑘 + 𝑤𝑘 ,

where A𝑟𝑒𝑔
𝑘 applied the regularization step from (5.7) with c𝑘 = 5 · 10−4.

The system matrix F𝑘 served to implement the constant velocity model
by adding the velocity parameter 𝑏̇𝑘 to every vertex position. More
specifically, the operation for each vertex had the form

𝑏𝑝
𝑘+1,𝑗 = 𝑏𝑟

𝑘,𝑗 + Δ𝑇𝑘 · 𝑏̇𝑘 ,

where 𝑏𝑟
𝑘,𝑗 was the corresponding vertex after regularization, and Δ𝑇𝑘 was

the elapsed time. Finally, the term 𝑤𝑘 represented a zero-mean Gaussian
distributed process noise term with covariance matrix Q𝑘 = 10−4 · I.
Note that there was no explicit dynamic model for the rotation or the
shape morphing.
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(a) 𝛼 = 0𝑜. (b) 𝛼 = 15𝑜. (c) 𝛼 = 30𝑜. (d) 𝛼 = 45𝑜.

Figure 5.10: Morphing stages, ranging from Z-shape to ellipse.

A representative result of the dynamic evaluation is seen in Figure 5.9,
depicting the target shape and the estimates. The area errors averaged
over 30 runs are shown in Figure 5.11b. One striking aspect is that
the morphing stages are evident. On the one hand, the ellipses at[︀
45𝑜, 135𝑜, . . .

]︀
have a convex shape, and thus, the level-set ARHM had

no problem describing it. In consequence, the area error is minimal at
these points. On the other hand, the Z-shape at

[︀
90𝑜, 180𝑜, . . .

]︀
was more

complex, as it was difficult for the estimated polygon to bend inwards
to describe the non-convex regions. The area error can be seen to be
maximal for these positions. It can also be seen, by comparing the area
errors between cycles, that the area error tends to increase, but stabilizes
after two or three cycles. Note, however, that the errors are not much
higher than the static scenario, even considering that the rotation and
morphing were not explicitly modeled. The path of the center point,
defined as the mean of the vertex positions, can also be seen in blue in
Figure 5.9. Even at high noise levels, it never deviated more than 0.2
units, and for low noise levels, it always remained within 0.1 units. Once
more, it stands out that a high number of measurements are required for
estimation, explained by the fact that the shapes are filled.
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Figure 5.11: Area errors of the static and the dynamic scenarios.

5.7 Conclusions

In this chapter, we introduced a new shape modeling approach, called
Level-set ARHMs, which allows for tracking targets with arbitrary non-
convex filled shapes that cannot be described using a radial function.
The key idea was to describe the shape interior by using level-sets as
the RHM transformation mechanism. This allowed for a straightforward
derivation of a measurement equation and a likelihood function. For
representation we chose a polygonal chain, for which a distance function
can easily be implemented. This flexible approach, however, results in an
ambiguous state representation, where different parametrizations could
cover the same sources. In order to correct this issue, we introduced
an active model that slowly pulls each vertex towards its neighbors,
ensuring that the side lengths are more regular and the shape becomes
smoother. The evaluation shows that a static Z-shape target could be
accurately estimated even when using a single measurement per time
step. Furthermore, a rotating, morphing shape could also be precisely
tracked as it moved, even when the shape changes were not explicitly
modeled.
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(b) Z-shape, high noise.
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(d) M-shape, high noise.
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(f) H-shape, high noise.

Figure 5.12: Representative run at 𝑘 = 2000 for middle and high noise scenarios.
Ground truth shape in light gray, estimate in black, example
measurements in red.
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CHAPTER
6

Negative Information Models

This chapter introduces Negative Information Models (NIM), a proba-
bilistic association model that can incorporate negative measurements
carrying information about where the target cannot be, in addition to tra-
ditional positive measurements, which tell us where the target is located.
This is, to our knowledge, the first approach in literature that estimates
the pose of a target by explicitly incorporating point measurements that
do not belong to it. The contributions described in this section were
proposed by the author in [159, 161, 162]. This chapter is structured as
follows. First, we describe a motivation of the benefits of incorporating
negative measurements in addition to positive observations. Then, we
develop a mathematical formulation for both types of measurements, and
discuss an implementation for SDMs. Later, we extend these ideas to
PIMs, and show the advantages of doing so. We conclude the chapter
with an evaluation of the proposed ideas.

6.1 Motivation

For this chapter, let us consider a scenario such as Figure 6.1, where a
room is being observed with a Microsoft Kinect depth camera. The idea
of depth cameras is to capture an image where the intensity of each pixel
represents the distance at that point between the camera and the observed
scene (Figure 6.1a). This allows for the reconstruction of entire scenes
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in three dimensions and also raises new possibilities for target tracking,
as they provide numerous and relatively accurate 3D measurements
instead of reconstructing the depth from sparse two-dimensional features.
In this case, the objective is to track the person in the middle of the
room. However, in order to estimate the target we first need to classify
which points in the captured image belong to it. This process is called
segmentation, and can be implemented using information such as color
or spatial data. The result of this process is shown in Figure 6.1b, and
can be seen to yield three kinds of measurements,

• positive measurements, assumed to belong to the target (red),

• negative measurements, known not to stem from the target (blue),
and

• indefinite measurements, which represent missing or incomplete
information (white gaps).

In this case, negative measurements belong to the floor or to a wall
behind the target, but in any case, we can be sure that the target is not
there. Note that we differentiate between negative measurements, which
were generated from a different source, and indefinite measurements, of
which we know nothing. This does not mean that the target is not at
that position, simply that we cannot decide one way or the other.

At this point, traditional tracking approaches generally discard negative
measurements and exploit only positive measurements. However, knowing
where the target cannot be also brings valuable information about the
target state, which becomes particularly helpful in two circumstances. On
the one hand, if the shape estimate is too large, a negative measurement
can quickly bring the estimate back to its correct size. This can be used
to solve the extent problem of GAMs and PIMs, without requiring any
assumption about the source distribution or the introduction of active
models. On the other hand, if a motion model causes the estimate to
overshoot due to missing information, negative measurements can be used
to correct the position. Both issues are extremely critical in scenarios
with occlusions, where positive information about the target can be scarce
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or of low quality. Because of this, it makes sense to develop a mechanism
that can incorporate both positive and negative measurements into the
estimation procedure. This chapter proposes an approach to achieve
that.
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(a) Depth image, color encodes depth in
meters.

u/pixel

v
/p
ix
el

100 200 300 400

0

100

200

300

(b) Segmented image.

Figure 6.1: Measurements from the target, obtained from a Kinect depth camera.
In the right picture, pixels in red belong to the target, pixels in blue are
known not to stem to the target, and white pixels (encoded with a
depth value of 0) denote regions without information.

The concept of using negative measurements is related to negative infor-
mation, generally defined as the event of not receiving a measurement of
the target, i.e., missing a detection [128, 129]. Works treating this aspect
for EOT include [128, 129, 81], with some also focusing on localization
[82] and multiple object tracking [80, 130]. Note that, in this thesis,
we define negative measurements as the result of actively measuring
something that does not belong to the target. The explored techniques
are also related to estimation and modeling with silhouettes [73, 131, 74].
However, these works deal with interval ranges and regions, while this
thesis is only concerned with point measurements.

87



Chapter 6. Negative Information Models

6.2 Negative Information Models

In order to incorporate both positive and negative measurements, first we
need to extend the generative model in order to take into account both
types of information. We assume that observed measurements consist of
two components: a position and a type, and are the result of the following
process. First, a source position 𝑧𝑘 is drawn from an arbitrary part of the
sensor field of view (FOV), denoted as the set ℱ𝑘 ⊂ R𝑑, in most cases
for 𝑑 = 2. Then, the source type 𝑧𝜏

𝑘 is determined as either ⊙+ or ⊙−

according to

𝑧𝜏
𝑘 = inside (𝑥𝑘, 𝑧𝑘) :=

{︂
⊙+ if 𝑧𝑘 ∈ 𝒮𝑥

𝑘

⊙− if 𝑧𝑘 ̸∈ 𝒮𝑥
𝑘

.

Finally, the position is corrupted with an additive zero-mean Gaussian
noise term 𝑣𝑘, leading to the measured position 𝑦

𝑘
. The type can also

be corrupted with a noise 𝑣𝜏
𝑘 causing it to flip to the opposite type,

yielding the measured type 𝑦𝜏
𝑘 . It is important to note that, in contrast

to traditional generative models, we assume here that source positions
are drawn from the entire FOV, not just the target.

Assuming that there is no corruption on the measurement type, we can
describe this process using the measurement equation[︂

𝑦
𝑘

𝑦𝜏
𝑘

]︂
=
[︂
𝑧𝑘 + 𝑣𝑘

𝑧𝜏
𝑘

]︂
. (6.1)

In probabilistic terms, we can rewrite this as the likelihood

p(𝑦
𝑘
, 𝑦𝜏

𝑘 |𝑥𝑘) = p(𝑦𝜏
𝑘 |𝑥𝑘) · p(𝑦

𝑘
|𝑥𝑘, 𝑦𝜏

𝑘). (6.2)

In the following, we will assume that measurement positions are drawn
uniformly from the FOV. This assumption is reasonable, given that,
except in cases of artifacts or similar issues, a sensor usually receives
some sort of data from its entire measured range (e.g., pixels, cells, or
angles). With this in mind, let us consider first the case in (6.2) when
it holds that 𝑦𝜏

𝑘 = ⊙+. On the one hand, we see that the probability of
receiving a positive measurement is proportional to the size of the target
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as seen by the sensor, which can be described as a function of the FOV
as

p(⊙+ |𝑥𝑘) = ‖𝒮
𝑥
𝑘 ‖

‖ℱ𝑘‖
. (6.3)

On the other hand, we can simply reinterpret p(𝑦
𝑘
|𝑥𝑘,⊙+) as the prob-

ability of observing a position 𝑦
𝑘

for a scenario that only yields positive
measurements. This is equivalent to the traditional SDMs from Sec-
tion 2.4. This allows us to reuse (2.19), which yields

p(𝑦
𝑘
|𝑥𝑘,⊙+) = 1

‖𝒮𝑥
𝑘 ‖

∫︁
𝒮𝑥

𝑘

𝒩 (𝑦
𝑘
− 𝑝

𝑘
; 0, C𝑣

𝑘) d𝑝
𝑘⏟  ⏞  

:=𝑃𝑘(𝑦
𝑘

)

, (6.4)

where we introduce the auxiliary term 𝑃𝑘(𝑦
𝑘
) for convenience. Plugging

(6.3) and (6.4) into (6.2) we obtain

p(𝑦
𝑘
,⊙+ |𝑥𝑘) = ‖𝒮

𝑥
𝑘 ‖

‖ℱ𝑘‖
· 1
‖𝒮𝑥

𝑘 ‖
· 𝑃𝑘(𝑦

𝑘
)

= 1
‖ℱ𝑘‖

· 𝑃𝑘(𝑦
𝑘
) .

In order to obtain the terms for ⊙−, we can use the following identity

p(𝑦
𝑘
|𝑥𝑘) = p(𝑦

𝑘
,⊙+ |𝑥𝑘) + p(𝑦

𝑘
,⊙− |𝑥𝑘) ,

which follows directly from marginalizing 𝑦𝜏
𝑘 out of p(𝑦

𝑘
, 𝑦𝜏

𝑘 |𝑥𝑘). By
exploiting the previous assumption that measurement positions are drawn
uniformly from the sensor, we obtain

p(𝑦
𝑘
|𝑥𝑘) = 1

‖ℱ𝑘‖
.

This leads to

p(𝑦
𝑘
,⊙− |𝑥𝑘) = p(𝑦

𝑘
|𝑥𝑘)− p(𝑦

𝑘
,⊙+ |𝑥𝑘)

= 1
‖ℱ𝑘‖

·
(︁

1− 𝑃𝑘(𝑦
𝑘
)
)︁

.
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Finally, we can simplify the resulting terms and group them together,
yielding

p(𝑦
𝑘
, 𝑦𝜏

𝑘 |𝑥𝑘) = 1
‖ℱ𝑘‖

·

⎧⎨⎩
0 if 𝑦

𝑘
̸∈ ℱ𝑘

𝑃𝑘(𝑦
𝑘
) if 𝑦𝜏

𝑘 = ⊙+

1− 𝑃𝑘(𝑦
𝑘
) if 𝑦𝜏

𝑘 = ⊙−
(6.5)

which can be used directly as a likelihood function. As in (2.3), this
expression can be extended to incorporate multiple measurements simply
by multiplying their individual likelihoods. Furthermore, as the measure
of ℱ𝑘 acts as a state-independent constant coefficient in the likelihood,
it can generally be ignored during estimation. In consequence, the
FOV does not need to be explicitly modeled in most cases. In the
following, we denote approaches that incorporate both positive and
negative measurements as Negative Information Models (NIMs) [159].

6.3 Discussion

NIMs, as proposed in Section 6.2, are conceptually very similar to SDMs,
and in this section we want to show a preliminary evaluation to compare
both ideas. The findings will, in turn, allow us to discuss the strengths
and weaknesses of our NIM formulation, which serve as a motivation for
the extensions presented later in this chapter. For this, we implemented
an experiment where the filled rectangle in Figure 6.2a was to be tracked,
in the same way as the motivational example in Section 4.1. The center
was locked on the origin, the height of the rectangle was constant and
known a priori, while its width on both sides was denoted by the scalar
state 𝑥𝑘. We generated 105 measurements according to the generative
model described in Section 6.2, using three noise covariance matrices
C𝑣

𝑘 taken from {0.2 · I, 0.3 · I, 0.5 · I}. For reference, the field of view
was ℱ𝑘 =

[︀
−4, 4

]︀
×
[︀
−1.5, 1.5

]︀
. The likelihood was evaluated based on

a rectangle SDM implemented according to Section 9.2.1. Figure 6.2d
shows the result of combining the corresponding likelihoods in batch.

90



6.3. Discussion

x

y

−4 −2 0 2 4
−3

−2

−1

0

1

2

3

(a) Example setup.
x

p
(Y

|x
)

0 1 2 3 4

(b) Likelihood for positive measurements.

x

p
(Y

|x
)

0 1 2 3 4

(c) Likelihood for negative measurements.
x

p
(Y

|x
)

0 1 2 3 4

(d) Combined likelihood.

Figure 6.2: Results of the NIM likelihood function for 105 samples. Example
positive measurements in red, negative in blue, ground truth is 𝑥𝑔

𝑘
= 2.

When comparing the NIM likelihood in (6.5) with the SDM likelihood
from (2.19), we see that the key difference is that SDMs use the measure
of the shape as normalization factor, while NIMs use the size of the FOV.
The consequence of this becomes clear in the likelihood function when
considering only positive measurements (Figure 6.2b), where we see that
the width can become arbitrarily large in a similar fashion as GAMs, as
there is no mechanism that penalizes oversized estimates. When consid-
ering only negative measurements, the problem is the exact opposite, as
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the state can become arbitrarily small (Figure 6.2c). Only after com-
bining both measurement types (Figure 6.2d) we can find the correct
estimate. For reference, the SDM likelihood for an equivalent scenario
was illustrated in Figure 4.1b. This serves to show an important contrast
between both models. While SDMs only exploit positive measurements,
NIMs can incorporate both positive and negative observations, but they
also require both types to be available for correct estimation.

In this context, it makes sense to also explore how much the result
changes when the proportion of positive and negative measurements
changes. Figure 6.3a shows a modified setup (Setup A) where half
of the positive measurements are occluded. From Figure 6.3b we can
observe that the likelihood function is not substantially different, and the
maximum likelihood is still on 𝑥𝑔

𝑘 = 2. Thus, we can conclude that NIMs
can work with a skewed proportion of positive and negative measurements,
and an ‘extent problem’ artifact only appears if the unbalance is extremely
high.

Taking this line of discussion further, we want to explore the issue of how
different occlusions can affect the estimate of NIMs. As a reminder, a
challenge when working with SDMs is that they require an appropriate
source distribution p(𝑧𝑘 |𝑥𝑘), which is usually difficult to model as it
depends on multiple factors such as occlusions, artifacts, and sensor
characteristics. NIMs present a similar challenge, as we implicitly assume
that sources are uniformly distributed on the target. Thus, we extended
our evaluation to explore how both models behave when different parts
of the target are occluded. Figure 6.3 and Figure 6.4 show the results.
In Setup B (Figure 6.3c), all points in x ∈ [−1.5, 1.5] were removed. As
SDMs and NIMs expect sources to be uniformly distributed in the target,
it is not surprising that the SDM was biased in Figure 6.3d. However,
NIMs remained unbiased and unaffected, as any oversized estimate was
quickly corrected by the negative measurements, as evidenced by the
steep gradient on the right side of the likelihood.
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(a) Setup A with y ∈ [−1, −0.5]
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(b) Likelihoods for Setup A.
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(c) Setup B with x ∈ [−2, −1.5]
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(d) Likelihoods for Setup B.

Figure 6.3: Comparison of NIM and SDM likelihood functions with 105 samples,
showing Setups A and B. Different occlusions (white boxes with gray
borders) remove the corresponding sources from view. Positive
measurements in red, negative measurements in blue, ground truth is
𝑥𝑔

𝑘
= 2. On the right, the dotted lines represent the value that yields

the maximum likelihood.

An even more challenging situation is presented in Setup C (Figure 6.4a),
where all sources in

[︀
−1.5,−0.5

]︀
and

[︀
0.5, 1.5

]︀
were removed. On the one

hand, SDMs, which only employ positive measurements, had no option
but to assume that the target had a width of 0.5 (Figure 6.4b). NIMs, on
the other hand, could differentiate between positive, negative, and missing
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measurements. Thus, detecting that there is a gap between 0.5 and 1.5,
the likelihood became maximal but constant in that region, showing
that any of these values are equally likely. This is extremely critical in
Bayesian recursive estimators, as any previously correct estimate will
remain unaffected in the case of occlusions, unlike SDMs which will
immediately begin to shrink. This proves the robustness of NIMs against
general occlusions.
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(a) Setup C with x ∈ [−0.5, 0.5].
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(b) Likelihoods for Setup C.

Figure 6.4: Comparison of NIM and SDM for Setup C with the same conditions as
Figure 6.3.

There is one missing issue left undiscussed, which affects both SDMs
and NIMs. As also mentioned in Section 2.4, it can be very difficult
to evaluate (6.5) for arbitrary targets, especially in log( · ) form as
required by numerically stable implementations. And even for situations
where such an expression is (relatively) tractable or robust for positive
measurements, such as Section 9.2.1 for rectangles, there is no guarantee
this also holds for negative observations in arbitrary shapes. For instance,
this issue was already present in scenarios like Figure 6.2 and Figure 6.3,
where the calculated likelihood is incorrectly calculated as 0 if the state
is too far from the ground truth, making it impossible to obtain its
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logarithm. In practice, this means that a NIM-based estimator cannot
work if the initial state is moderately incorrect, which strongly limits its
usability. This raises the need to use the same key ideas from Section 6.2,
but extend them for use with the more robust PIMs instead.

6.4 Extensions for PIMs

While SDMs can describe targets either as filled shapes or paths, until
now PIMs have only been applied for shape boundaries, due to the
extent problem explained in Section 4.1. However, the fact that negative
measurements can be used to correct oversized estimates can be used to
compensate for this weakness. This would allow for the simplicity and
robustness of these models to be used with filled shapes, as an alternative
to RHMs. In order to achieve this, we can extend the projection and
shape functions we previously used for boundaries. However, they need
to take into account that measurements now have a corresponding type,
and that the shapes are now filled.

Informally, we are looking for an extended projection function 𝜋𝑛
𝑘 (𝑝

𝑘
, 𝑝𝜏

𝑘)
which fulfills that

• if 𝑝𝜏
𝑘 = ⊙+, we are looking for the nearest point to 𝑝

𝑘
inside 𝒮𝑥

𝑘 ,
and

• if 𝑝𝜏
𝑘 = ⊙−, we require the nearest point to 𝑝

𝑘
outside 𝒮𝑥

𝑘 .

With this in mind, we can extend any given boundary projection 𝜋𝑘,
such as those given in Section 2.5, by using

𝜋𝑛
𝑘 (𝑝

𝑘
, 𝑝𝜏

𝑘) :=
{︃

𝑝
𝑘

if 𝑝𝜏
𝑘 = inside

(︁
𝑥𝑘, 𝑝

𝑘

)︁
𝜋𝑘(𝑝

𝑘
) otherwise.

In analogy, an extended shape function 𝜙𝑛
𝑘 (𝑝

𝑘
, 𝑝𝜏

𝑘) must fulfill that

• if 𝑝𝜏
𝑘 = ⊙+, we consider the distance between 𝑝

𝑘
and the nearest

point within the shape, and

• if 𝑝𝜏
𝑘 = ⊙−, we request the distance to the shape exterior.
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In a similar fashion, we can extend any shape function 𝜙𝑘 by using

𝜙𝑛
𝑘 (𝑝

𝑘
, 𝑝𝜏

𝑘) :=
{︃

0 if 𝑝𝜏
𝑘 = inside

(︁
𝑥𝑘, 𝑝

𝑘

)︁
𝜙𝑘(𝑝

𝑘
) otherwise.

Based on these ideas, we can now derive a PIM for NIMs based on the
ideas presented in Chapter 3. Given a measurement 𝑦

𝑘
of type 𝑦𝜏

𝑘 , we
can rewrite (6.1) into [︂

0
𝑦𝜏

𝑘

]︂
=
[︂
𝜙𝑛

𝑘 (𝑦
𝑘
, 𝑦𝜏

𝑘)− 𝜈𝑘

𝜈𝜏
𝑘

]︂
, (6.6)

where 𝜈𝑘 is the PIM correction term obtained by propagating 𝑣𝑘 through

𝜈𝑘 := 𝜙𝑛
𝑘

(︁
𝜋𝑛

𝑘 (𝑦
𝑘
) + 𝑣𝑘, 𝑦𝜏

𝑘

)︁
, (6.7)

and similarly, 𝜈𝜏
𝑘 is a new random variable derived by propagating 𝑣𝑘

through

𝜈𝜏
𝑘 := inside

(︁
𝑥𝑘, 𝜋𝑛

𝑘 (𝑦
𝑘
) + 𝑣𝑘

)︁
. (6.8)

We assume that 𝜈𝑘 has the continuous distribution 𝑓𝜈
𝑘 (𝜈𝑘), and 𝜈𝜏

𝑘 has
the discrete distribution 𝑓𝜏

𝑘 (𝜈𝜏
𝑘 ). Finally, in the same way as PIMs, we

can rewrite (6.6) probabilistically as

p(𝑦
𝑘
, 𝑦𝜏

𝑘 |𝑥𝑘) = p(𝑦𝜏
𝑘 |𝑥𝑘) · p(𝑦

𝑘
|𝑥𝑘, 𝑦𝜏

𝑘) (6.9)
= 𝑓𝜏

𝑘 (𝑦𝜏
𝑘) · 𝑓𝜈

𝑘 (𝜙𝑛
𝑘 (𝑦

𝑘
, 𝑦𝜏

𝑘)) .

We denote this model as NIM-PIM [162]. The distributions of (6.7) and
(6.8) can be implemented by propagating 𝑣𝑘 in a similar way as explained
in Appendix 9.3. In particular, when using a Gaussian approximation
proposed in Section 3.4, it also becomes straightforward to obtain the NIM-
PIM likelihood function in log( · ) form, solving the issues of numerical
stability raised by the previous approach.
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𝑦𝜏
𝑘

𝑧𝜏
𝑘 ⊙+ ⊙−

⊙+ pTP,𝑘 pFP,𝑘

⊙− pFN,𝑘 pTN,𝑘

Table 6.1: List of terms used to describe p(𝑦𝜏
𝑘 | 𝑧𝜏

𝑘 ). A positive source can be
detected either as positive (true positive), or as negative (false negative).
A negative source can be observed as positive (false positive) or negative
(true negative).

6.5 Modeling Clutter

In the previous sections, we modeled the measurement type as being
undisturbed by noise. However, issues such as errors in segmentation,
sensor artifacts, and other factors can cause the source type to switch
during observation, leading to so-called clutter measurements. We model
this process as being independent of the state and the position, and thus,
we can describe the perturbation by means of the probability distribution
p(𝑦𝜏

𝑘 | 𝑝𝜏
𝑘). This term can be described using the four parameters described

in Table 6.1, which fulfill the condition that they need to be non-negative
and

pTP,𝑘 + pFN,𝑘 = 1 ,

pFP,𝑘 + pTN,𝑘 = 1 .

Incorporating these terms is straightforward, and can be implemented
with the following steps. As with (2.18), we can extend the likelihoods
(6.5) and (6.9) by marginalizing 𝑧𝜏

𝑘 out, i.e.,

p(𝑦
𝑘
, 𝑦𝜏

𝑘 |𝑥𝑘) =
∑︁

𝑝𝜏
𝑘

∈{⊙+,⊙−}

p(𝑦𝜏
𝑘 | 𝑝𝜏

𝑘) · p(𝑦
𝑘
, 𝑝𝜏

𝑘 |𝑥𝑘) .
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Then, as there are only four terms, we can unroll this sum and rewrite it
as

p(𝑦
𝑘
,⊙+ |𝑥𝑘) = pTP,𝑘 · p(𝑦

𝑘
,⊙+ |𝑥𝑘) + pFP,𝑘 · p(𝑦

𝑘
,⊙− |𝑥𝑘) , and

p(𝑦
𝑘
,⊙− |𝑥𝑘) = pFN,𝑘 · p(𝑦

𝑘
,⊙+ |𝑥𝑘) + pTN,𝑘 · p(𝑦

𝑘
,⊙− |𝑥𝑘) .

6.6 Evaluation

In this section, we will evaluate the proposed NIM-PIM approach, and
contrast it with other state-of-the-art techniques. Two scenarios were
considered. In the first, the shape of a static target was estimated with
varying degrees of occlusion. In the second, a moving target was tracked
while in the presence of clutter. For the sake of brevity, as NIM-PIMs
will be referred simply as ‘PIMs’. The results of these experiments were
as follows.

6.6.1 Static Target with Occlusions

For this experiment, we wanted to evaluate how NIMs work for shape
estimation. As a reminder, NIMs are association models, in the same
way as RHMs or PIMs, and do not prescribe any specific shape model.
Thus, NIMs can be used with any arbitrary shape parametrization, such
as Fourier series, representations based on Gaussian processes (GP), or
polygons (see Section 5.1). With this in mind, we will track the star shape
in Figure 6.5 using two association models, NIMs and RHMs. In order to
represent this shape, we will employ star-convex approximations in the
form of Fourier series and GPs. Furthermore, we will contrast how these
association and shape models behave in the presence of occlusions.

The evaluation consisted of the following procedure. First, we generated
1.5 · 105 source positions from the field of view ℱ𝑘 = [−0.5, 0.5] ×
[−0.5, 0.5]. Then, we determined the position type and corrupted the
position according to the generative model explained in Section 6.2. The
covariance matrix of the noise term was C𝑣

𝑘 = 10−3 · I, and we disabled
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the corruption of the noise type, i.e., pFN,𝑘 = pFP,𝑘 = 0. Using these
measurements, we calculated the likelihood functions for the combinations
of the two shape and the two association models, yielding four results:
Fourier with RHMs, Fourier with NIMs, GP with RHMs, and GP with
NIMs. Example implementations for the Fourier and GP shape functions
can be found in Appendix 9.5.2 and Appendix 9.5.3. For the RHMs, the
transformation parameter was assumed to be

p(𝑡𝑘) ≈ 𝒩
(︂

𝑡𝑘; 2
3 ,

1
18

)︂
, (6.10)

which approximates through moment matching the triangle distribution
proposed in [122]. The state 𝑥𝑘 consisted of

𝑥𝑘 =
[︁
𝑐⊤

𝑘 , 𝛼𝑘, (𝑥𝑠
𝑘)⊤
]︁⊤

,

where 𝑐𝑘 was the center position, 𝛼𝑘 the rotation, and 𝑥𝑠
𝑘 the shape pa-

rameters. For the Fourier series, 𝑥𝑠
𝑘 consisted of 9 coefficients as required

by a 4th degree Fourier series, while the GP employed 8 coefficients which
sampled the circle in regular intervals of 𝜋/4. For this evaluation, we
are interested in the ‘best possible’ results for each approach, and thus,
we processed all measurements simultaneously and calculated the state
that yielded the maximum likelihood (ML). To achieve this, we employed
as optimizer the MATLAB function fminsearch with default parameters.
The starting value 𝑥0 corresponded to a circle of radius 0.5, with the
remaining values set to 0.

Figure 6.5 shows the results, from which we can observe two points.
On the one hand, even though neither Fourier nor GP could reproduce
the star shape exactly, NIMs showed consistently a ‘tighter’ fit than
RHMs for both shape models. This can be explained from the fact
that negative measurements provided more information about the shape
in narrow corners than could be obtained from positive observations
alone. On the other hand, we can see that the responses for occlusions
depend on both the shape models and the association models. As a
reminder, NIMs exploited both positive and negative measurements,
while RHMs used only positive observations but made an assumption
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on how they were distributed. This assumption, of course, becomes
incorrect when the occlusion is enabled. As neither NIM variant needs
information about the source distribution, they were highly tolerant
against the occlusion. RHMs, however, failed to approximate the shape
appropriately, providing different types of errors for Fourier and GP
representations. This difference can be explained by taking into account
the following. On the one hand, in Fourier shape functions (Figure 6.5b),
all coefficients have influences on all parts of the shape, and thus, an
occlusion in one region causes a change in the entire estimate. Thus, the
RHM failed to approximate the shape not only in the occluded region, but
on the opposite side as well. On the other hand, for GP representations
(Figure 6.5d), each coefficient is related to a specific angle, and thus, only
the right-hand side was affected.

6.6.2 Dealing with Clutter

The next experiment consisted on evaluating how NIMs work for esti-
mating targets in the presence of clutter, divided in two parts: one with
a static target, and another where the target was moving. The shape
to be tracked was the airplane shown in Figure 6.6, with size 100× 100
units2. The setup was similar to the one presented in Section 6.6.1. At
each timestep, 200 source positions were generated from a field of view
ℱ𝑘 = [−50, 50] × [−50, 50] centered on the target. The measurement
position was corrupted with additive Gaussian noise with covariance
matrix C𝑣

𝑘 = 4 · I. In relation to the measurement type, two scenarios
were considered, one without clutter, i.e., pFN,𝑘 = pFP,𝑘 = 0, and another
with clutter where pFN,𝑘 = pFP,𝑘 = 0.1.

The state 𝑥𝑘 had the form

𝑥𝑘 =
[︁
𝑐⊤

𝑘 , 𝛼𝑘, 𝑐̇𝑘, 𝛼̇𝑘, (𝑥𝑠
𝑘)⊤
]︁⊤

,
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where 𝑐𝑘 was the center position, 𝛼𝑘 the rotation, and 𝛼̇𝑘 the angular
velocity. It was assumed that the target was moving with constant
velocity, with speed 𝑐̇𝑘 and direction 𝛼𝑘. The component 𝑥𝑠

𝑘 represented
the shape parameters of a 7th degree Fourier series, encompassing 15
parameters.
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(a) Fourier, no occlusion.
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(b) Fourier, with occlusion.
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(c) GP, no occlusion.
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(d) GP, with occlusion.

Figure 6.5: Comparison between RHM and NIM for different radial functions and
occlusions. Target in light gray, Fourier star-convex approximations in
red and blue.
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At each timestep, we applied a prediction step based on the system
equation

𝑥𝑘+1 = F𝑘 · 𝑥𝑘 + 𝑤𝑘 ,

where F𝑘 served to apply the velocities scaled by the elapsed time, and
𝑤𝑘 was a Gaussian zero-mean process noise term with covariance matrix
Q𝑘 = diag(1, 1, 10−4, 1, 115) . For estimation, an S2KF was used with 304
state samples. Two association models were compared, NIM and RHM.
For the latter, the transformation parameter was approximated as shown
in (6.10). For the scenario with clutter, a gating approach was employed
as explained in Algorithm 9, allowing 99% of valid measurements. This
implies a gating parameter of 𝛾𝑘 = chi2inv (0.99, 1) ≈ 6.6349.

x

y

−50 0 50

−50

0

50

(a) No clutter.
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(b) With clutter.

Figure 6.6: Experiment with a static target. For the scenario with clutter, example
clutter measurements are shown in dark red.

In order to validate the setup, the first part of the experiment considered
a static target, i.e., we applied the constraint that 𝑐̇𝑘 = 𝛼̇𝑘 = 0. Figure 6.6
shows the result, averaged over 50 runs. It can be seen that, while both
models are capable of reasonably approximating the target, the NIM
estimate tends to be tighter, i.e., closer to the target (Figure 6.6a). This is
consistent with the observation made in Section 6.6.1, where we saw that
negative measurements allow for a more accurate description of sharp
corners. However, when clutter is enabled (Figure 6.6b), the assumption
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of the source distribution for the RHM fails to be appropriate, even
considering that gating removes most of the false positives. Still, the
NIM estimate is nonetheless capable of obtaining a reasonable shape
estimate, even if it is considerable less tight than the previous scenario.

For the second part of the experiment (Figure 6.7), we considered a sce-
nario where the target was moving along a path in the following way. First,
the plane moved in a straight line starting at

[︀
0, 0
]︀⊤. Then, it turned

in a circular arc spanning from
[︀
500, 0

]︀⊤ at 𝑘 = 150 to
[︀
500,−2000

]︀⊤ at
𝑘 = 750. Finally, it moved once more in a straight line until

[︀
0,−2000

]︀⊤
at 𝑘 = 900. From the left column (Figure 6.7a, Figure 6.7c, and Fig-
ure 6.7e) we observe that both models had little trouble following the
target, even considering that the constant velocity model could predict
the change in rotation, but not the circular motion. However, once clut-
ter was enabled (Figure 6.7b, Figure 6.7d, and Figure 6.7f), the source
distribution for the RHM fails once more to be valid. In consequence,
by 𝑘 = 800 the RHM shape estimate (blue) had mostly diverged, with
only the centroid being near the target. The NIM estimate, however, still
could provide a reasonable estimate.

6.7 Conclusions

The key objective of this chapter was to find a mechanism to incorporate
not only positive measurements, which tell us where the target is, but
also negative observations, which let us know where the target cannot
possibly be. Note that we differentiate between negative and absent
measurements, i.e., we do not assume that not receiving data provides
information about the target. We developed a likelihood function similar
to SDMs capable of exploiting positive and negative observations, and
by analyzing its behavior we showed that it was highly robust against
occlusions. However, this first formulation lacked numerical stability,
raising the need for alternative formulations which took ideas from the
simplicity of PIMs. This led to the derivation of NIM-PIMs, a robust
mechanism that was simple to evaluate, easy to implement, and could
address the extent problem from traditional PIMs. The proposed ideas
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were evaluated with two experiments, which tested the reliability of NIM-
PIMs in the presence of occlusions and clutter. In the first scenario, we
showed that, unlike RHMs, NIM-PIMss made no assumptions about a
source distribution, and thus, could compensate for missing measurements
easily. In the second scenario, we illustrated how NIMs could make up for
clutter, i.e., incorrectly segmented positive and negative measurements,
while RHMs diverged even after enabling a gating mechanism. All of these
results proved that incorporating negative measurements can improve
the reliability, robustness, and performance of shape estimation.
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(a) 𝑘 = 300, no clutter.
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(b) 𝑘 = 300, with clutter.
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(c) 𝑘 = 500, no clutter.
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(d) 𝑘 = 500, with clutter.
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(e) 𝑘 = 800, no clutter.
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(f) 𝑘 = 800, with clutter.

Figure 6.7: Snapshots of the experiment with a moving target. For the scenarios
with clutter, example clutter measurements are shown in dark red.
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CHAPTER
7

Modeling Extrusions

While previous chapters focused on two-dimensional shapes, we are now
interested in extending our contributions into the three-dimensional world.
This will allow the deployment of the proposed models in a wide variety
of fields such as robotics, autonomous navigation, indoor localization and
SLAM. In order to achieve this, we propose the use of Extrusion Models,
a robust and straightforward construction mechanism which allows for
the description of complex 3D shapes based on simple planar curves. As
the emphasis on this chapter is on practical applications, when deriving
mathematical formulations for these models, we will focus on how they
respond to data from real-life, captured by off-the-shelf sensors such
as Microsoft Kinect depth cameras. This chapter, which presents and
extends ideas that the author published in [158], is structured as follows.
First, we explain our motivation for this chapter in more detail. Then, we
introduce a mathematical formulation for extrusions. After this, we derive
extensions of the previously presented association models, in particular
PIMs, RHMs, and NIMs, for work with extrusions. Finally, we present
an evaluation of these concepts using real-life sensor data captured from
daily life objects such as pencil cases, teapots and bottles.
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7.1 Motivation

In previous chapters, we focused on EOT approaches that estimate
targets as flat, two-dimensional shapes. Staying in two dimensions,
even if the target being observed is three-dimensional, happens very
commonly in practical scenarios and traditional literature. Historically,
the main reason for this was the sensors being used. On the one hand,
fields like aeronautics or maritime surveillance deal mostly with radar
measurements, which yield a noisy silhouette of a target but are incapable
of resolving more granular details [33]. Given that prior information on
potentially available targets can be used to fill the missing information
[109, 132, 133], three-dimensional data has usually not been deemed
too important. On the other hand, complex shape estimation based on
distance minimization has been generally related to cameras and other
grid-based sensors, in fields such as robotics and autonomous driving.
For these scenarios, a three-dimensional target is observed as a two-
dimensional projection on a screen with relatively high resolution. Thus,
computer vision techniques generally use contour curves [124] to describe
the tracked object and then extrapolate three-dimensional data based
on this information. The increasing ubiquity of depth sensors with low
or moderate noise, however, allows for the direct incorporation of three-
dimensional measurements into the estimation procedure, which in turn
can provide much more accurate and robust results. This motivates the
exploration of new techniques capable of exploiting all of this available
information directly, while avoiding the usual pitfalls of unmanageably
complex or inefficient estimation procedures.

While relatively uncommon when compared to their 2D counterparts,
there are still a multitude of techniques in literature that deal with 3D
targets. On the one hand, we observe that SDMs for simple shapes, such as
ellipses [33], line segments [20], or rectangles (such as in Appendix 9.2.1),
can be easily extended to three dimensions, but the usual problems of
low robustness and numerical stability are also correspondingly increased.
On the other hand, approaches based on GAMs or PIMs, such as those
dealing with conics [38, 79], can also incorporate 3D measurements by
adapting the distance function accordingly. For more complex targets,
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robust shape models need to take into account that, in most situations,
individual sensors can only observe incomplete parts of the target. A
common way to alleviate this issue is by exploting symmetries known
a priori [149]. Otherwise, a different mechanism consists of trying to
reconstruct the target non-parametrically [11, 131, 134] using captures
from different angles. A critical weakness of reconstruction approaches,
though, is that they assume that the target does not move, only the sensor.
Furthermore, as their representation of the state is not parametric, the
required memory to hold the acquired information can increase without
bounds. Otherwise, for scenarios where the shape is known and only the
pose needs to be found, the Iterative Closest Point [44, 135] method can
be used.

(a) A: Paper roll. (b) B: Pencil case. (c) C: Teapot. (d) D: Wine bottle.

Figure 7.1: Four three-dimensional shapes observed in everyday life, which can be
closely approximated as extrusions or general extrusions.

Nonetheless, approaches to estimate both the shape and pose of a moving
three-dimensional target are scarce. In order to close this gap, we propose
a mechanism called Extrusion Models, introduced in [158] and expanded
in [56]. As previously mentioned, the key idea is to interpret complex 3D
shapes as being constructed by shifting a simple, planar shape vertically,
as can be illustrated in Figure 7.1. In this case, we observe that by
displacing a circle (Figure 7.2a) along the z-axis, we can obtain a cylinder
(Figure 7.2b). We denote objects constructed this way as extrusions.
Furthermore, by applying additional transformations on the base shape
as it is shifting, we can describe a larger variety of targets while retaining
simple parametrizations. The end result is an estimator that retains
the efficiency and robustness of two-dimensional shapes, while increasing
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accuracy by incorporating three-dimensional information. We will also
show how the previously proposed association models, such as PIMs,
RHMs and NIMs, can be easily extended to work with these shape
models.
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(a) Circular base shape. (b) Cylinder.

Figure 7.2: A circular base shape in the xy-plane is extruded into a cylinder by
shifting it upwards.

7.2 General Extrusions

When deriving a formulation for extrusion models, it is useful to take
into account the shapes that practical applications are likely to employ.
Keeping in mind potential use in robotics and computer vision, we propose
to focus on the figures illustrated in Figure 7.1. The shape in Figure 7.1a
(denoted as Shape A) can be described as a cylinder, in a similar fashion
as Figure 7.2b. An example parametrization for Figure 7.2b would be

𝜑
𝑘
(𝑠𝑘, 𝑡𝑘) =

⎡⎣cos(𝑠𝑘)
sin(𝑠𝑘)
h𝑘 · 𝑡𝑘

⎤⎦ , for 𝑠𝑘 ∈
[︀
0, 2𝜋

]︀
, 𝑡𝑘 ∈

[︀
0, 1
]︀

, (7.1)
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where the parameter 𝑡𝑘 describes the shifting transformation along the
axis z-axis, and h𝑘 represents the height, which in the example case
equals 4. From this example, two points stand out. First, we see that
(7.1) describes only the lateral surface of the extrusion. We will focus on
this part of the shape, as the bottom and top caps can be simply treated
as two additional disks, as seen in [56]. Second, we note that the axis is
a straight line orthogonal to the planar shape. This is an example of a
straight extrusion, and for simplicity, in this chapter we will only consider
this type of extrusions. Alternatives using a curved axis were explored in
[161].
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(a) Lateral function. (b) General extrusion.

Figure 7.3: Construction of a three-dimensional shape as a general extrusion using
a lateral function (light blue). By rotating it 90𝑜, this shape can also be
interpreted as a solid of revolution of the lateral function. The subindex
𝑘 is omitted for legibility.

Shapes constructed this way can be used to approximate a variety of
objects such as paper rolls or pens, or when using rectangles as the base
shape, boxes or books, and many others. However, we can tweak this idea
slightly to describe a wider range of objects more closely, in particular
the remaining shapes in Figure 7.1. Looking at Figure 7.1b (Shape B),
we can see that it can be constructed by taking a circular base shape
and enlarging it horizontally as it moves upwards. In a similar way,
Figure 7.1c (Shape C) and Figure 7.1d (Shape D) can be expressed as
maintaining the original scale of the base shape until a certain point,
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then shrinking it. We denote this construction, based on shifting a planar
shape in the z-axis while enlarging or shrinking it in the xy-plane, as
general extrusions [158]. In order to derive a mathematical formulation
of this idea, we will first introduce the concept of a lateral function
ℓ𝑘(𝑡𝑘) :

[︀
0, 1
]︀
→ R+, such as Figure 7.3a. This function determines the

scaling applied on the base shape as it shifts. Thus, ℓ𝑘(0) tells us the
coefficient used for scaling at the bottom, and ℓ𝑘(1) at the top. We can
now describe a parametrization for the general extrusion in Figure 7.3b,
in the form of

𝜑
𝑘
(𝑠𝑘, 𝑡𝑘) =

⎡⎣ℓ𝑘(𝑡𝑘) · cos(𝑠𝑘)
ℓ𝑘(𝑡𝑘) · sin(𝑠𝑘)

h𝑘 · 𝑡𝑘

⎤⎦ , for 𝑠𝑘 ∈
[︀
0, 2𝜋

]︀
, 𝑡𝑘 ∈

[︀
0, 1
]︀

. (7.2)

Note that, when the base shape is a circle, the result of a general extrusion
is equivalent to the surface of a solid of revolution. For the sake of
completeness, we will now describe a general parametrization for any base
shape in an arbitrary pose. Let 𝜑𝑏

𝑘
(𝑠𝑘) : R→ R2 be a parametrization of

the two-dimensional base shape on the xy-plane, not necessarily a circle.
Then, we obtain

𝜑
𝑘
(𝑠𝑘, 𝑡𝑘) = R𝑘

[︂
ℓ𝑘(𝑡𝑘) · 𝜑𝑏

𝑘
(𝑠𝑘)

h𝑘 · 𝑡𝑘

]︂
+ 𝑐𝑘 , for 𝑠𝑘 ∈ S𝑘, 𝑡𝑘 ∈ T𝑘 , (7.3)

where S𝑘 is the set of possible values for 𝑠𝑘, and T𝑘 is the domain of 𝑡𝑘,
defined as [0, 1]. Furthermore, the rotation matrix R𝑘 and the translation
vector 𝑐𝑘 serve to determine the pose. As usual, all of these parameters
are assumed to be encoded in the state vector 𝑥𝑘.

7.3

In the following subsections, we will extend the previously explored as-
sociation models for use with general extrusions. These include Spatial
Distribution Models (Extrusion SDMs), Partial Information Models (Ex-
trusion PIMs), Random Hypersurface Models (Extrusion RHMs), and
Negative Information Models (Extrusion NIMs).

112

Extending the Association Models

to 3D



7.3. Extending the Association Models to 3D

7.3.1 Extrusion SDMs

The likelihood function for SDMs can be derived by extending (2.20) into
three-dimensions, yielding

p(𝑦
𝑘
|𝑥𝑘)

=
∫︁

T𝑘

∫︁
S𝑘

𝒩 (𝑦
𝑘
− 𝜑

𝑘
(𝑠𝑘, 𝑡𝑘); 0, C𝑣

𝑘) p(𝑠𝑘, 𝑡𝑘 |𝑥𝑘)
⃦⃦⃦
n𝜑

𝑘(𝑠𝑘, 𝑡𝑘)
⃦⃦⃦

d𝑠𝑘 d𝑡𝑘 ,

where n𝜑
𝑘(𝑠𝑘, 𝑡𝑘) represents the normal vector at the given point, defined

in function of the partial derivatives as

n𝜑
𝑘(𝑠𝑘, 𝑡𝑘) :=

𝜕𝜑
𝑘
(𝑠𝑘, 𝑡𝑘)
𝜕𝑠𝑘

×
𝜕𝜑

𝑘
(𝑠𝑘, 𝑡𝑘)
𝜕𝑡𝑘

.

It can be seen that, in most cases, this expression is too complex to
evaluate. An option, as mentioned in Section 2.4, is to assume that the
source probability p(𝑠𝑘, 𝑡𝑘 |𝑥𝑘) is uniform on the shape. However, a more
practical assumption for real-life experiments is to take into account
the observation mechanisms of the most widely used sensors, i.e., laser
scanners or depth cameras. For these devices, p(𝑠𝑘, 𝑡𝑘 |𝑥𝑘) is assumed to
be uniform on the projected shape, i.e., the shape as it is visible on the
sensor screen.

Note that, while it is possible to derive an accurate formulation for
SDMs for a given sensor model, it is often the case that certain issues,
such as artifacts or occlusions, cannot be reliably modeled at all. The
problem is that these factors depend on properties such as the target
material, ambient illumination, interference, and others, and many of
these characteristics may change with time. As an example, we can
consider Shape D from Figure 7.1d, and a corresponding capture from
a depth camera in Figure 7.4. Based on the screen view, i.e., the two-
dimensional image observed by the camera in Figure 7.4a, we can see
that due to the glass material we cannot tell a priori which sources will
produce a measurement. This effect can be confirmed in the world view
showing the three-dimensional point cloud in Figure 7.4b. Because of
this, as a general rule, the use of Extrusion SDMs is discouraged.
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Figure 7.4: Example capture of Shape D using a Kinect 2 depth camera: screen
view (left) and world view (right). Measurements from the background
are shown in blue, measurements in red belong to the target, while
white gaps represent no measurements. Note that it is common to see
unexpected gaps and incorrect segmentations, which means that the
source distribution cannot be modeled a priori.

7.3.2 Extrusion GAMs and PIMs

GAMs and PIMs for extrusions do not differ substantially from the
two-dimensional case (Section 2.5), as the usual shape functions such as
the Euclidean or Mahalanobis distances can be easily extended to three
dimensions. However, it should be taken into account that 3D objects
generally require more information, and thus, they are more susceptible
to noise or missing information. An egregious instance of this happens
when a priori information about the shape is not available, and the lateral
function is more detailed than necessary. An example can be seen in
Figure 7.5a, where a cylinder (gray) was estimated using a polygonal
lateral function (black), and where the shape function was the Euclidean
distance. As only one or two support points are necessary, the remaining
points should be more or less in a straight line, but they instead move
inwards and outwards depending on the sensor noise.
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(a) Overfitting causing zigzag patterns. (b) Projection
types.

Figure 7.5: Overfitting can happen when the complexity of the lateral function is
higher than necessary (estimate in black, ground truth in gray). This
issue can be alleviated by avoiding Euclidean projections (red lines) and
using cylindrical projections (orange lines).

The origin of this artifact can be traced back to the Euclidean projection,
sketched in Figure 7.5b. It can be seen that a zigzagging pattern can
cover the red measurements better, as the corresponding Euclidean
projections 𝜋𝑒

𝑘( · ) (red lines) are closer to the noisy observations. This
is an example of overfitting, where the estimated shape attempts to
cover the received noisy measurements instead of filtering out the noise.
Two approaches can be used to address this issue. On the one hand,
a less complex lateral function can be used, but this requires a priori
information that is not always available. While regularization could be
employed, this introduces the issue of selecting an appropriate coefficient,
which is not straightforward as mentioned previously. On the other hand,
a better solution is to use cylindrical projections 𝜋𝑐

𝑘( · ), seen in orange
in Figure 7.5b, which are an extension of radial projections suitable
for extrusions. The key idea of this approach is that the projection is
assumed to be the point in the shape that intersects the line connecting
the measurement with the extrusion axis (orange line). This discourages
parts of the estimate from getting to close or too far from the extrusion
axis, yielding flatter and smoother shapes. Furthermore, as this projection
always happens ‘horizontally’, this also greatly reduces the search space
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for the projection, allowing the shape function to be evaluated in constant
time independent of the complexity of the lateral function. Note that, in
case that the measurement is above or below the shape (bottom orange
circle or top red circle), the cylindrical projection becomes identical to
the Euclidean projection. In addition, the use of cylindrical projections
assumes that the shape being extruded is star-convex.

A measurement equation for Extrusion GAMs can be obtained by us-
ing the cylindrical distance, derived as the Euclidean distance to the
cylindrical projection, i.e.,

𝜙𝑐
𝑘(𝑝

𝑘
) :=

⃦⃦⃦
𝑝

𝑘
− 𝜋𝑐

𝑘(𝑝
𝑘
)
⃦⃦⃦

.

for 𝑝
𝑘
∈ R3. In turn, this yields

0 = 𝜙𝑐
𝑘(𝑦

𝑘
− 𝑣𝑘)

≈
⃦⃦⃦
𝑦

𝑘
− 𝑣𝑘 − 𝜋𝑐

𝑘(𝑦
𝑘
)
⃦⃦⃦

= ℎ(𝑥𝑘, 𝑦
𝑘
, 𝑣𝑘) .

A signed cylindrical distance function can then be derived by checking
whether the argument is inside the shape. Based on these ideas, a PIM can
also be obtained in a straightforward way. Note that constructing level-
sets for PIM-LSet (Section 3.5) is not a difficult task, but evaluating the
three-dimensional Gaussian integral generally lacks numerical stability.
For this reason, we recommend employing PIM-Gauss (Section 3.4)
instead, which has been shown to yield good results even for non-Gaussian
sensor noise. The topic of PIMs with extrusions is explored in more
detail in [56]. Furthermore, a likelihood function can be derived from this
measurement equation using the same approaches explained in Chapter 3.
Finally, if the estimation scenario requires the extent problem to be
addressed, mechanisms such as active models from Section 4.3 can be
implemented with minimal effort.
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7.3.3 Extrusion RHMs

While Extrusion PIMs are simpler and more efficient than Extrusion
SDMs, they suffer from the same issue as filled shapes: the extent problem
(see Chapter 4). The difficulty stems from the fact that, unless additional
information is available from the top or bottom caps, a PIM-based
estimator cannot know where the lateral surface ends or begins vertically.
As was the case with two dimensions, a straightforward solution is the
application of active models, which can be easily extended to work
with Extrusion PIMs. In this section, however, we explore the idea of
extending RHMs to work with extrusions, which can be easily achieved by
interpreting the extrusion itself as the transformation mechanism[158, 57].
Based on (7.3), we obtain the slices

𝒮𝑥
𝑘 (𝑡𝑘) =

{︁
𝜑

𝑘
(𝑠𝑘, 𝑡𝑘); 𝑠𝑘 ∈ S𝑘

}︁
,

where the shift parameter 𝑡𝑘 ∈ T𝑘 becomes the transformation parameter.
However, if we want to deploy Extrusion RHMs in a practical setting, first
we need to address two challenges: finding an appropriate measurement
equation and deriving a probability for 𝑡𝑘 suitable for depth sensors.

Without loss of generality, we will make the following assumptions. First,
we assume that the target pose is the identity, i.e., R𝑘 = I and 𝑐𝑘 = 0.
If this is not the case, we can remove the transformation by using the
pseudo-measurement

𝑦*
𝑘

= (R𝑘)−1 · (𝑦
𝑘
− 𝑐𝑘)

instead. Second, we also assume that the xy and the z components of 𝑦
𝑘

are independent from each other. This means we can rewrite 𝑦
𝑘

and C𝑣
𝑘

as

𝑦
𝑘

=

⎡⎣𝑦x
𝑘

𝑦
y
𝑘

𝑦z
𝑘

⎤⎦ , and C𝑣
𝑘 =

⎡⎣𝑐xx
𝑘 𝑐xy

𝑘 0
𝑐yx

𝑘 𝑐yy
𝑘 0

0 0 𝑐zz
𝑘

⎤⎦ .
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As shorthand, we introduce the three following terms

𝑦xy
𝑘

=
[︂
𝑦x

𝑘

𝑦y
𝑘

]︂
𝑣

xy
𝑘 ∼ 𝒩

(︂
0,

[︂
𝑐xx

𝑘 𝑐xy
𝑘

𝑐yx
𝑘 𝑐yy

𝑘

]︂)︂
, and

𝑣z
𝑘 ∼ 𝒩 (0, 𝑐zz

𝑘 ) .

Third, for simplicity, we will assume that the base shape is a circle of
radius 1, but the same ideas can be used for arbitrary base shapes. Based
on these three assumptions, we obtain the measurement equation[︂

0
𝑦z

𝑘

]︂
=
[︃⃦⃦⃦

𝑦xy
𝑘
− 𝑣xy

𝑘

⃦⃦⃦
− ℓ𝑘(𝑡𝑘)

h𝑘 · 𝑡𝑘 + 𝑣z
𝑘

]︃
= ℎ(𝑥𝑘, 𝑦

𝑘
, 𝑣𝑘, 𝑡𝑘) ,

where, as usual in RHMs, 𝑡𝑘 is treated as a new noise term. Notice that
the first line is simply a GAM measurement equation for a circle of radius
ℓ𝑘(𝑡𝑘), while the second line is an extension of the z component in (7.2).
Of course, a PIM can also be used for the xy component. Note that the z
component may be inobservable in LRKFs, an issue previously mentioned
by [122, 57], requiring the introduction of a quadratic extension[122]. Fi-
nally, as a consequence of the assumption of independence, the likelihood
function for Extrusion RHMs can be obtained simply by multiplying the
individual likelihoods corresponding to xy and z.

The remaining task is to find the distribution of the transformation
parameter p(𝑡𝑘 |𝑥𝑘). Once more, we can simply assume that 𝑡𝑘 is dis-
tributed uniformly in T𝑘, but as mentioned in Section 7.3.1, it is much
more interesting to consider how the shape is observed by a sensor such as
a camera. If we assume that the target is being observed almost laterally
as in Figure 7.1, then the resulting terms are very easy to derive and
calculate. In particular, the area of the projected shape in the screen
view can be described as

𝐴𝑘 = h𝑘 ·
∫︁

T𝑘

2ℓ𝑘(𝑡𝑘) d𝑡𝑘 ,
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or in other words, twice the area under the curve in Figure 7.3a scaled
by the height. By only taking a subset of the available 𝑡𝑘 ∈ T𝑘, we can
extend this expression into a cdf

P(𝑡*
𝑘 < 𝑡𝑘 |𝑥𝑘) = 1

𝐴𝑘
· h𝑘 ·

𝑡𝑘∫︁
0

2ℓ𝑘(𝑡*
𝑘) d𝑡*

𝑘 ,

where 𝐴𝑘 acts as a normalization factor. Finally, by calculating the
derivative of this cdf, we obtain the pdf for 𝑡𝑘 as

p(𝑡𝑘 |𝑥𝑘) = 2h𝑘

𝐴𝑘
· ℓ𝑘(𝑡𝑘) (7.4)

= ℓ𝑘(𝑡𝑘)∫︀
T𝑘

ℓ𝑘(𝑡*
𝑘) d𝑡*

𝑘

,

or in other words, p(𝑡𝑘 |𝑥𝑘) is simply a normalized form of the lateral
function. As in Section 5.4, a Gaussian approximation of this distribution
can be obtained using moment matching.

7.3.4 Extrusion NIMs

NIMs, as proposed in Chapter 6, can be easily extended to three-
dimensional shapes simply by adjusting the distance functions. However,
as with the previous models, it is once again critical to take into account
how commonly used sensors, such as depth cameras, observe the target.
As we saw before, Figure 7.4 shows how Shape A from Figure 7.1a is
measured. Thus, it can be said that measurements come in two variants:
a 3D form 𝑦

𝑘
∈ R3 with type 𝑦𝜏

𝑘 which stems from the world in front
of the camera (Figure 7.4b), and a 2D form 𝑦𝑠

𝑘
∈ R2 with type 𝑦𝜏,𝑠

𝑘 as
observed on the sensor screen (Figure 7.4a). However, we need to take
into account two issues. First, three-dimensional negative measurements
are generally of little use. The problem is that, while they may appear
next to the target in the screen view, in most cases they belong to the
background, and thus, they are usually very far from the target in the
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world view. Thus, they give us very little information about where the
target cannot be. Second, while we gain positive measurements both in
the screen and the world view, this does not mean that we have twice
the amount of information. This stems from the fact that positive mea-
surements in the world view were calculated from their counterparts in
the screen view. Due to the strong correlations involved, the use of both
versions of the positive observations is not advisable. Thus, the use of
negative measurements in 3D and positive measurements in 2D should
be avoided.

Conversely, this means that we need to find a way to combine positive
observations in 3D and negative observations in 2D. A possible course of
action would be to try to bring both of them into the same space. This,
however, is not necessarily a good idea. On the one hand, projecting the
3D measurements into 2D would mean we lose valuable depth information.
On the other hand, we can interpret the negative observations in the screen
space as 3D ‘negative lines’, but this would present more difficulties, as all
of our proposed models only deal with point measurements. Furthermore,
even if we optimally chose a point from this line, we would still employ
only a fraction of the information available. Instead, we propose to use a
hybrid association model which deals with the 3D and 2D measurements
without any transformation. More concretely, we extend the NIM-PIMs
presented in Section 6.4 by using the Extrusion PIMs from Section 7.3.2 for
the 3D positive measurements, and the traditional PIMs from Chapter 3
for 2D negative measurements. The obtained results can be fused during
estimation in the usual way, either by multiplying the likelihoods or by
stacking the measurement equations vertically.

We are now left with the task of obtaining measurement equations for the
3D positive and 2D negative measurements. For the positive observations,
we proceed in the same way as in Section 6.4, and extend the cylindrical
distance function 𝜙𝑐

𝑘(𝑦
𝑘
) into a form 𝜙𝑛

𝑘 (𝑦
𝑘
, 𝑦𝜏

𝑘) that incorporates the
measurement type. By plugging this result into (6.6), we obtain[︂

0
𝑦𝜏

𝑘

]︂
=
[︂
𝜙𝑛

𝑘 (𝑦
𝑘
, 𝑦𝜏

𝑘)− 𝜈𝑘

𝜈𝜏
𝑘

]︂
(7.5)

= ℎ(𝑥𝑘, 𝑦
𝑘
, 𝑦𝜏

𝑘 , 𝜈𝑘, 𝜈𝜏
𝑘 ) ,
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where 𝜈𝑘 is the bias correction term, and 𝜈𝜏
𝑘 describes the possible types

the measurement could have taken for a given source.

A similar approach can be applied for the negative measurements in
two dimensions, but first we must address the following two challenges.
The first one is to find an efficient mechanism to project the shape
corresponding to a given state 𝑥𝑘 (such as Figure 7.6a) on the camera
screen. Given that finding an exact formulation can be extremely time
consuming, for this section we are interested in obtaining a simplified
silhouette in the form of a polygonal chain (as in Figure 7.6b) that allows
us to calculate the distance function very quickly. We will describe an
abridged sketch of the algorithm we used. First, we define the term

𝛼𝑘 = max
(︀
−𝜅⊤

𝑘 · 𝑒z, 0
)︀

,

where 𝜅𝑘 is the camera direction, and 𝑒z := [0, 0, 1]⊤ is the extrusion
axis. This term, based on ideas from the field of graphical projection[136],
tells us how ‘squashed’ a flat surface with normal 𝑒z becomes due to
perspective projection for a given camera direction. Thus, if we are
looking at the surface from above, it holds that 𝛼𝑘 = 1, i.e., it has a
maximal size. However, if we are looking at it from the side, we obtain
𝛼𝑘 = 0, meaning that we only see a single line. The max operator serves
to cull surfaces looking away from the camera. Based on this concept,
we can construct a silhouette such as in Figure 7.6, by

1. first, constructing a semi-circle of radius ℓ𝑘(1) as the upper cap,
scaled vertically by 𝛼𝑘,

2. then, placing two vertical instances of the lateral function, scaled
vertically by

√︀
1− 𝛼2

𝑘,

3. and finally, placing a semi-circle of radius ℓ𝑘(0) as the lower cap,
scaled vertically by 𝛼𝑘.

The resulting shape is then translated, rotated, and scaled depending on
the estimated pose and the camera calibration. Two points stand out.
On the one hand, we observe that in step 2 the squashing of the lateral
function is different, given that the extrusion axis is oriented at a 90𝑜
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angle to the caps. On the other hand, note that this simplification only
gives appropriate results as long as the extrusion is being seen more or less
‘from the side’. If higher accuracy is needed, the exact silhouette edges
can be obtained using techniques of computer vision such as [137].

(a) 3D visualization of target.
u
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(b) Simplified view from camera.

Figure 7.6: Example simplification of shape projection based on the lateral function
and two semicircles, based on a camera with a resolution of 1000 × 800
pixels. Note that while this projection is easy to calculate, it is not
exact, as can be seen by the lower part of the upper cap being described
incorrectly.

The second challenge is to find an appropriate distance function for the
negative measurements on the screen. We propose to use the same idea
as with the cylindrical projection, i.e., the projection of a given point
will always be on the line that connects it to the extrusion axis. As
with 3D, this ensures an efficient evaluation of the shape function while
removing zigzagging artifacts. This leads to a measurement equation
which is functionally identical to (7.5), except that it uses the values
corresponding to the screen instead, in the form of[︂

0
𝑦𝜏,𝑠

𝑘

]︂
=
[︂
𝜙𝑛,𝑠

𝑘 (𝑦𝑠
𝑘
, 𝑦𝜏,𝑠

𝑘 )− 𝜈𝑠
𝑘

𝜈𝜏,𝑠
𝑘

]︂
= ℎ(𝑥𝑘, 𝑦𝑠

𝑘
, 𝑦𝜏,𝑠

𝑘 , 𝜈𝑠
𝑘, 𝜈𝜏,𝑠

𝑘 ) .
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(a) Overfitting causing height artifact. (b) Example
measurements.

Figure 7.7: In cases of bad initialization, overfitting can cause a height artifact with
parts of the estimate (black) ‘dangling’ above or below the target (gray).
Negative measurements such as 𝑞 generally solve these errors, but in
case they are missing, observations like 𝑝 may pull the height upwards.

At this point, we would like to discuss an uncommon artifact due to
overfitting that arises in situations when the height has been vastly
overestimated. In this case, we may end up in a situation such as
Figure 7.7a, with a ‘dangling’ part of the shape that does not correspond
to any part of the true target. This issue is problematic, as the estimator
cannot correct this problem on its own, as can be explained based on the
sketch in Figure 7.7b. In this scenario, we have six negative measurements
around the ground truth (gray), which are projected onto the incorrect
estimate (black). Unlike the four measurements in the bottom part, which
pull the estimate towards the ground truth as expected, measurements
such as 𝑞 serve two tasks simultaneously: shrinking the radius horizontally,
and correcting the height downwards. However, observations such as 𝑝
serve the same purpose but in the opposite way, attempting instead to
correct the estimate by pulling it upwards, making them particularly
damaging. In consequence, after several timesteps, we end up with a thin
‘tube’ that cannot be corrected (see top of Figure 7.7a), as no negative or
positive measurements end up being associated with these degenerated
parts. Fortunately, this artifact is extremely rare and only happens in
pathological situations, such as vastly incorrect initializations or jerky
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motions. Nonetheless, if it can be reasonably expected for this issue
to appear, a straightforward solution is to temporarily apply a weak
active model (Section 4.3) that slightly pushes the height down at each
timestep.

7.4 Evaluation

The evaluation of the proposed extrusion models was based on real data
captured using a Microsoft Kinect 2 device. The targets considered were
those presented in Figure 7.1, as they are representative of shapes observed
in daily life, which in turn can show the applicability of these concepts
in tasks such as indoor navigation or autonomous systems. However, we
omitted Shape A, as it can be approximated as a simple cylinder, for
which several solutions already exist in literature [56, 57, 135, 43]. A
detailed description of the treated shapes, also visualized in Figure 7.8,
is as follows.

• Shape B, a pencil case, could be seen as an inverted truncated cone
of height 13.5 cm, with upper radius 6.8 cm, and lower radius 4.3 cm
(Figure 7.8a). The material was opaque and had good visibility.

• Shape C, a teapot, was approximately a cylinder with a truncated
cone on top. Its total height was 18.5 cm, with upper radius 5.2 cm
and lower radius 7.7 cm (Figure 7.8b). The material was moderately
reflective, but had relatively good visibility.

• Shape D, a bottle, could be approximated as a sequence of a
cylinder, a truncated cone, and another cylinder. Its height was
31 cm, its upper radius was 1.5 cm, and its lower radius was 3.6 cm
(Figure 7.8c). The glass material was highly reflective. Furthermore,
the shape was opaque in the lower parts and transparent in the
upper parts, due to the liquid inside. Because of this, the visibility
was unreliable and could not be modeled appropriately, as some
parts of the shape were visible in some frames and invisible in
others.
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• Shape D* was the same bottle as Shape D, but covered in card-
board. For this reason, the dimensions of this shape were increased
by 0.1 cm in all directions (Figure 7.8d). The visibility of the
modified bottle was similar to the first two objects.

For the shape representation, we used a circle of radius 1 m as the base
shape. The lateral function was represented as a polygonal function,
i.e., ℓ𝑘(𝑡𝑘) was continuous and piecewise linear. This type of function
works as follows. We assume that there are 𝑁 equidistant support points,
where each support point 1 ≤ 𝑖 ≤ 𝑁 consists of a position 𝑡𝑖

𝑘 := 𝑖−1
𝑁−1 ,

and an associated radius r𝑖
𝑘. Thus, it holds for every 𝑖 that ℓ𝑘(𝑡𝑖

𝑘) = r𝑖
𝑘,

and the remaining values for 𝑡𝑘 ∈
[︀
0, 1
]︀

are linearly interpolated from
the nearest support points. Figure 7.7a shows an example with 𝑁 = 6
(i.e., 6 ‘layers’). However, for this evaluation, we chose a more complex
lateral function with 𝑁 = 8, as can be seen for example in Figure 7.9.
This leads to a state in the form of

𝑥𝑘 =
[︀
𝑐⊤

𝑘 , 𝑟⊤
𝑘 , h𝑘, r1

𝑘, · · · , r8
𝑘

]︀⊤
,

where 𝑐𝑘 ∈ R3 is the translation component, 𝑟𝑘 ∈ R3 is the rotation
encoded with a Rodrigues transformation (as explained in Appendix 9.1),
and h𝑘 is the height.

In the following, we will describe two evaluation scenarios. On the one
hand, the static evaluation considered multiple objects and then measured
how closely the estimated dimensions were to the real shape. On the
other hand, the dynamic evaluation dealt with a moving target, and
determined how much the dimension errors changed depending on the
motion of the observed object.

7.4.1 Static Evaluation

For the static evaluation, the setup was as follows. The considered
objects were positioned on a table about 1 m from the camera, in order
to maximize the number of measurements and minimize the amount of
sensor artifacts. Being a depth camera, a Microsoft Kinect 2 device yields
measurements based on two types of captures: a 2D image that can be
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segmented into positive and negative measurements, and a 3D point cloud
that consists of only positive measurements. The transformation between
2D and 3D coordinates was taken from [145, 156, 56], which also indicate
how to obtain the uncertainty C𝑣

𝑘 associated to each measurement 𝑦
𝑘
. In

order to determine which measurements belonged to the target, spatial
gating and hue segmentation were used. We note that each frame can
yield up to 10000 measurements, which is far more than what is needed
for a good estimate. Because of this, we only used 1000 positive and
2000 negative measurements, spread along 100 timesteps (i.e., 10 positive
and 20 negative measurements per timestep), selected at random. Given
that this introduces a degree of non-determinism into the estimation, we
compared the results of 30 runs. Note that this nonstandard approach
is only for the sake of evaluation, and a practical application aiming to
obtain the best possible results should employ all available information
at any given time.

(a) Shape B. (b) Shape C. (c) Shape D. (d) Shape D*.

Figure 7.8: Example capture of Shape B, Shape C, and Shape D introduced in
Figure 7.1, as observed by a Microsoft Kinect 2 device. Sizes are to
scale relative to each other. We omit Shape A due to its simplicity.
Furthermore, we introduce Shape D*, which is the same glass bottle
used for Shape D but covered in cardboard, in order to improve its
sensor visibility. Note that, no matter the material, every shape
contains gaps and outliers.

The following association models were evaluated,

• Extrusion PIMs with active models (PIM+A) from Section 7.3.2,
with a small regularization coefficient of c𝑘 = 10−3,

• Extrusion RHMs (RHM) from Section 7.3.3, employing a Gaussian
approximation of (7.4), and
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• Extrusion NIMs (NIM) from Section 7.3.4.

Note that all models used 3D positive measurements, but only NIM
employed 2D negative observations in addition to that. The estimator we
chose was the S2KF [88], with a total of 150 state samples. The initial
state for the estimator, specifically its mean 𝑥̂0 and its covariance matrix
P0, were set as follows. The mean 𝑥̂0 was selected to represent a very
small cylinder of height 3 cm and with all radii set to 1 cm, which can be
seen to be much smaller than any of the considered shapes. This means
that the active model proposed for NIM was not necessary. The initial
rotation was set to the identity, and the translation was set as the mean
of the measurements received in the first frame. The initial covariance
matrix was set to P0 = 10−6 · I. As no motion was assumed, the system
equation was

𝑥𝑘+1 = A𝑟𝑒𝑔
𝑘 (c𝑘) · 𝑥𝑘 + 𝑤𝑘 .

For PIM+A, the system matrix A𝑟𝑒𝑔
𝑘 incorporated the effect of the

regularization coefficient, while for RHM and NIM, it was simply the
identity. Furthermore, the process noise 𝑤𝑘 was assumed to be Gaussian
distributed with zero-mean and covariance matrix Q𝑘 = 10−8 · I.

We start with Shape D, as it is the most difficult target from the proposed
shapes. The results from PIM+A and NIM can be seen in Figure 7.9. The
left column shows the screen view of the target after segmentation, with
negative measurements in blue, positive in red, and missing measurements
in white. It can be seen that the segmentation is extremely unreliable,
with many sections inside the shape being detected as negative, and a
significant contour of missing measurements around the target. It is also
noteworthy that the region below the neck of the bottle mostly lacks
positive measurements. This can be confirmed on the right column, which
shows the 3D positive measurements in the world view. Nonetheless, the
estimates are moderately correct. In the first row we observe the PIM+A
estimates, which underestimate the true size due to the regularization
coefficient. Still, the resulting shape is still approximately that of a
bottle. Note that the projection of PIM+A on the segmented image in
Figure 7.9a is only for visualization, as this association model does not
use any 2D information.
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(d) World view - NIM.

Figure 7.9: Estimates for Shape D using Extrusion PIMs with active models and
Extrusion NIMs. The left column shows the screen view, including
positive (red) and negative (blue) measurements. A projection of the
shape estimate is displayed in black. The right column illustrates the
same estimates in the world view. Example measurements in dark red.

The results of NIM can be seen in the second row, where it is obvious
that the result is less bottle-shaped. This can be explained based on
the negative measurements from Figure 7.9b, especially around the
neck, which incorrectly push the estimate towards the inside. However,
the height was still estimated almost correctly, averaging around 30 cm
(ground truth was 31 cm). Note that, based on Figure 7.9b, we can see
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that this is the best height estimate that can be achieved, as the resulting
shape completely covers the observed target vertically. The incorrect
height can be explained instead as an artifact of the spatial segmentation
procedure, given that the lower parts of the shape needed to be clamped
away in order to avoid spurious measurements from the table.
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(b) World view of RHM estimate.

Figure 7.10: Empiric and expected distributions of the shifting parameter 𝑡𝑘 for
Shape D, and an estimate using an Extrusion RHM. Due to the
difficulty of obtaining a proper distribution of 𝑡𝑘, and the high amount
of outliers, both Extrusion RHMs and ARHMs generally produce
unreliable results when the shape complexity is high.

However, there were several problems with obtaining a robust RHM
estimate for Shape D. The main difficulty with this task was obtaining
a reasonable distribution for 𝑡𝑘 when using Kinect sensors, given the
high amount of gaps and outliers. As a reminder, a lack of a source
distribution was the main reason not to employ Extrusion SDMs. It
appears that, unfortunately, this issue is also present in RHMs, as can
be evidenced in Figure 7.10a. Here, we show the empiric distribution
of observed 𝑡𝑘 values (in blue), based on the point cloud shown in red
in Figure 7.10b. We can see how this pdf vaguely follows the same
contour as the theoretical distribution we expected from (7.4) (in red),
but nonetheless differs considerably from it. During estimation, we can
see the negative effects of this disparity (Figure 7.10b). The observed
shape (in black) is not only incorrect in the height, but also diverges
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dramatically in the radii, leaving the translation as the only correctly
estimated parameter. Thus, it cannot be said that Extrusion RHMs were
a success for this evaluation, not even after extending it into an ARHM
by applying a considerable regularization force.
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Figure 7.11: World view of the results for Shape B and Shape C, using PIM+A and
NIM. Estimates in black, example measurements in dark red.

In this context, it must be taken into account that RHMs that employ
similar ideas to extrusions have worked correctly in the past [56, 57, 158],
and thus, we feel obligated to give an explanation for why RHMs do not
work correctly here. While [57] also worked with Kinect point clouds, it
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dealt only with a cylinder, i.e., a height and a radius, and the simplicity
of that model is also the source of its robustness. In [158], a very similar
form of Extrusion RHMs were considered, but the used synthetic data
had little noise and no gaps or outliers. Finally, in [56], the ground shape
of the extrusion was estimated as a star-convex approximation, while also
using Kinect data. However, the parameters of the lateral function were
not being estimated, and thus, the effect of an incorrect distribution of
𝑡𝑘 were not as egregious. This comparison also illustrates the conditions
under which Extrusion RHMs can work, i.e., when the measurement
quality is proportional to the shape complexity. Nonetheless, it should be
pointed out that PIM+A and NIM can both survive these low information
scenarios without much trouble.

As the final part of the static evaluation, we present the results for Shape
B and C using PIM+A and NIM as shown in Figure 7.11. We observe
that, by virtue of the lateral function employing 8 support points, the
shape model is too complex for the rather simple shapes. Nonetheless, the
negative effects of overfitting are almost completely absent, even across
different runs. The lateral function for Shape B is virtually straight in
both association models, with few indentations, and even for Shape C
the lower part of the shape can be approximately seen to be cylindrical.
Still, it can be seen that the resistance to overfitting for PIM+A is higher.
Where NIM succeeds is in the height estimation, where we can observe
that PIM+A is consistently smaller than it should as a result of the active
model. Of course, it could be argued that this is the result of using an
incorrect regularization coefficient. However, addressing this issue would
require the manual work of finding an appropriate c𝑘 for each scenario
and each shape, which is a difficult task if no prior information is known.
It is also an adjustment that NIM does not demand.

7.4.2 Dynamic Evaluation

For the dynamic evaluation, we wanted to show a scenario that happens
quite frequently in daily life, which is a bottle serving a glass. The
capture, using the modified bottle from Shape D*, lasted approximately
240 frames (corresponding to 8 seconds), and consisted of three parts
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(see setup in Figure 7.12). First, for frames 1 until about 80, the bottle
was still. Then, for frames 80− 120, the bottle was moved forward 20 cm
and rotated so that it points vertically. For frames 120− 160, the bottle
was moved backwards and rotated to its original pose. Finally, for frames
160 − 240, the target remained still once more. In order to separate
positive and negative measurements, hue segmentation and spatial gating
was used, but due to the moving target the results were not as reliable
as in the static evaluation. Because of this, outliers that belonged to
other parts of the scene were sometimes misinterpreted as being part
of the shape. In order to address this, the same gating mechanism
based on the state uncertainty from Section 6.6.2 was applied here. An
important question in this context was how to categorize the hand as
seen for example in Figure 7.12c. Usually, measurements from nearby
objects are treated as negative, but the problem here is that each 2D
measurement actually represents a line in 3D, and thus, stating that an
observation is negative implies that the object cannot be at any point
of the unprojected line. However, as can be seen in the setup images,
it is often the case that the target is located behind a part of the hand,
and thus, marking those regions as negative would case the estimate to
break in that part of the shape. For this reason, those measurements
were marked as indeterminate instead.

For the dynamic evaluation, most of the parameters were set in the
same way as the static evaluation. However, the state was modified to
incorporate a constant velocity motion model in the form of

𝑥𝑘 =
[︀
𝑐⊤

𝑘 , 𝑟⊤
𝑘 , h𝑘, r1

𝑘, · · · , r8
𝑘, 𝑐̇⊤

𝑘 , 𝑟̇⊤
𝑘

]︀⊤
,

where the new parameter 𝑐̇𝑘 represents the translational velocity, and 𝑟̇𝑘

the rotational velocity. The measurement equation is extended to

𝑥𝑘+1 = F𝑘 · A𝑟𝑒𝑔
𝑘 (c𝑘) · 𝑥𝑘 + 𝑤𝑘 ,

where F𝑘 is a system matrix that scales the velocities by the elapsed
time and adds them to the translation and the rotation. The evaluated
association models being evaluated were PIM+A and NIM.
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Figure 7.12: Setup and screen view for the dynamic evaluation, where Shape D*

was taken from the table, rotated and translated, and then put back in
its original position. The segmentation shows positive measurements in
red, negative in blue, indeterminate (incl. hand) in white. Estimates
in black represent the mean of 30 runs. Note that PIM+A did not use
two-dimensional information, and is presented only for comparison.
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The results of the evaluation can be seen in Figure 7.12, Figure 7.13,
and Figure 7.14. In Figure 7.12 we can see the screen projections of
the estimates for selected timesteps. In a similar way as with the static
evaluation, it becomes clear that PIM+A underestimates the height,
again as a consequence of the active model. It also occasionally lags
behind the NIM, which can explained from the fact that the latter works
with more information given the additional incorporation of negative
observations.
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Figure 7.13: Results of the dynamic evaluation for the bottom radius, the middle
radius, the top radius, and the height. NIM in blue, PIM+A in red,
ground truth in dashed black line. Values represent the mean of 30
runs.
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However, a very interesting artifact happens due to the lack of mea-
surements around the shape, in particular as the hand measurements
were marked as indeterminate. It can be seen in Figure 7.12c that the
NIM, instead of yielding a tight fit around the positive measurements,
becomes actually slightly inflated, appearing to incorporate the white
gap. This makes sense when taking into account that it is the task of
negative measurements to shrink an incorrect radius, and in the regions
where no measurements are present, the estimator cannot know whether
the shape is there or not. While this effect is usually harmless, it can
damage otherwise accurate estimates, as can be seen in Figure 7.12b
and Figure 7.12e, where part of the bottle is inflated around the hand
region.

A better assessment of the estimation accuracy can be found in Figure 7.14.
The height, shown in Figure 7.13a, distinctly portrays the three stages of
the experiment. PIM+A, due to the regularization, is constantly smaller
than the ground truth, i.e., 31.1 cm. (dashed black line). Of interest
is the fact that NIM, usually unbiased in relation to the height, was
below the ground truth most of the time, but became correct when the
bottle was being held in the air. This result makes sense when taking
into account the spatial gating artifact previously mentioned in the static
evaluation, where the lower part of the bottle was clamped away in
order to avoid noisy measurements from the table below it. Thus, we
can see that the moment the bottle is lifted from the table, the height
estimate immediately becomes correct. The stages can also be more or
less recognized in the bottom radius (Figure 7.13b), where the estimate
becomes disturbed the moment the hand appears in 𝑘 = 60, and remains
so until the bottle is released at about 𝑘 = 180. As in the static evaluation,
PIM+A was more reliable in the radius estimation, and NIM was slightly
biased due to the contour of invalid measurements. A similar result can
be seen in the middle radius in Figure 7.13c. The top radius, however,
was considerably more noisy, due to its smaller size and to being the point
in the shape that moved the most. The highest disturbances appeared
when the bottle started moving and when it stopped, as the motion
model could not take into account this change. Nonetheless, it can be
seen that both models were capable of approximating the moving bottle
in an appropriate way at every moment.
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(f) NIM, 𝑘 = 140.

Figure 7.14: World view of the results of the dynamic evaluation for selected
timesteps, showing the moment when the bottle was being grabbed
(first row), the moment when it was being pointed down (second row),
and when it was being pulled back (third row). Estimates represent
the mean of 30 runs. Sample measurements in red, estimates in black.
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Finally, we can see the estimation results for selected timesteps in Fig-
ure 7.14. In the first row we can see the bottle as it is being lifted, showing
how the NIM estimate was slightly distorted due to the presence of the
hand. Furthermore, neither model was particularly disturbed by the
outlier to the right of the shape. In the second row we observe that both
models were able to follow the rotation without much trouble. Finally,
in the third row the high measurement noise becomes evident, but even
then, both estimates can be seen to be extremely close.

7.5 Conclusions

The objective of this chapter was to extend the previously presented
association models in order to estimate three-dimensional targets. A
simple mechanism for this extension was in the form of extrusions, where a
flat base shape is shifted vertically to construct a 3D object. For example,
a rectangle can be shifted to construct a cuboid, or a circle to produce
a cylinder. We further elaborated on this idea and proposed general
extrusions, which apply a scaling transformation on the base shape as it is
being shifted. This allowed the description of shapes like truncated cones,
or in a more general sense, solids of rotation. We explored four association
models for extrusions, with a particular focus on adapting them for use
in depth sensors to ensure their applicability in the real world. We
derived a likelihood function for SDMs, but observed that the necessity
for an accurate model for the sensor distribution made such an approach
unreliable. Extrusion GAMs and PIMs, on the other hand, were much
simpler to implement, but we proposed the use of cylindrical projections
instead of Euclidean distances in order to avoid artifacts of overfitting.
Extrusion RHMs were also straightforward to extend, but we pointed
out the importance of finding an appropriate distribution for the shifting
parameter. For Extrusion NIMs, we faced the challenge that the sensors
did not directly provide negative measurements in three dimensions. In
order to address this, we exploited the fact that depth sensors provide
two types of captures: a two-dimensional image (screen view), and a
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three-dimensional point cloud (world view). Thus, we presented a hybrid
mechanism that simultaneously incorporated 2D negative measurements
from the screen view and 3D positive measurements from the world
view.

For the evaluation, we explored three shapes: a pencil case, a teapot,
and a bottle. When estimating the target shapes in a static scenario
without motions, we observed that the results for Extrusion RHMs were
disappointing, even when applying active models with appropriate regular-
ization coefficients. This proved the weakness of probabilistic techniques
such as SDMs and RHMs, which can tolerate incorrect distributions only
if the measurement quality is proportional to the shape complexity, which
was not the case in these scenarios. It should be pointed out, however,
that Extrusion PIMs with active models and Extrusion NIMs produced
very accurate results for all shapes under the same circumstances. For the
dynamic evaluation, we moved a bottle as if serving a cup. Both the PIM
with active model and the NIM could follow the shape without problem.
However, issues with the segmentation produced a small bias in the NIM,
occasionally causing the width of the bottle to be overestimated. Based
on these results, we can say that Extrusion PIMs and NIMs can be used
in practical applications with minimum implementation and deployment
effort.

138



CHAPTER
8

Conclusions

The main topic of this thesis was extended object tracking. Tradition-
ally, literature in this topic has treated targets as a single point without
extent or orientation, as a result of the low sensor resolution that track-
ing applications have historically dealt with. However, as technology
advanced and sensor resolution increased, multiple measurements per
scan became available, which could be used to estimate the pose and
shape of the target more accurately. This shape information could, in
turn, be employed in many applications ranging from localization and
classification to navigation and mapping, in a variety of disciplines such as
autonomous driving, entertainment, robotics, and many others. However,
incorporating this information is not straightforward, especially for the
following reasons. First, the observed measurements are noisy, and thus,
it is difficult to know where on the shape they originated. This task is
also made difficult by the fact that we may be missing observations from
parts of the shape, due to occlusions or because the sensor can only see
one side of the target. Second, lack of a priori information means that
flexible shape models are needed, which must be capable of describing a
variety of shapes even with an inappropriate initialization. Third, there
are many situations where only few measurements with low quality can
be obtained, and thus, we need to find the optimal way to exploit all
the information available from the sensor. In this thesis, we proposed
several mechanisms to address these three challenges, and examined their
strengths and weaknesses with multiple experiments. Furthermore, as
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a way to prove their applicability in practical scenarios, we developed
extensions to allow them to incorporate three-dimensional information,
and evaluated them using real-world data. In the following, we present a
brief summary of our contributions, and an outline for future work.

8.1 Summary

Dealing with noisy data, in particular for shape fitting, can be problem-
atic, given that the measurement noise makes it difficult to associate a
measurement to the source that generated it. In consequence, as the
noise level increases, so do errors in the association, which in turn leads
to estimation bias. Partial Information Models aims to address this
issue, proving a mechanism to derive a probabilistic bias correction term
by analyzing how the distance function behaves around a source. Still,
previous work on this topic has focused on describing the correction term
using a Gaussian approximation, which becomes unreliable in cases of
high noise, or when occlusions are present In this thesis, we proposed the
use of Level-set Partial Information Models, which can calculate
the correction term with arbitrary accuracy independent of the noise
term. This improved reliability, however, required the construction of
level-sets, which may be difficult to obtain for arbitrary non-convex
shapes. The evaluations using circles and rectangles proved how the
proposed approach could yield improved results over similar techniques
in literature, in particular for situations with extremely high noise and
occlusions, addressing conclusively the first challenge.

The next contribution focused on flexible modeling techniques for filled
shapes able to deal with little a priori information and high measurement
noise. An important difficulty was how to describe the shape interior, as
the usual approach used in literature was based on scaling the boundary
inwards, which only worked appropriately for star-convex shapes. Our
solution was in the form of Level-set Active Random Hypersurface
Models, which employed level-sets of the distance function as the trans-
formation mechanism. In order to parameterize the shape boundary, we
chose a polygonal representation, as it allowed for an easy calculation of
the distance function. However, the increased flexibility caused a lack of
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robustness when the target shape was less complex than the polygonal
boundary, which could in extreme cases lead to overfitting and diver-
gence. We solved this issue with a regularization mechanism inspired
by ideas from active contours, which consisted of softly correcting the
shape each timestep by making each vertex act like a spring that pulled
its neighbors. The advantages of this approach, which demonstrated
how our contribution addressed the second challenge, were illustrated in
a two-part evaluation. On the one hand, the static evaluation proved
that our contribution had no trouble describing a variety of non-convex
shapes even when initialized as a circle. On the other hand, the dynamic
evaluation highlighted the robustness of our approach when estimating a
constantly changing target with a dynamic model that included transla-
tions, rotations, and shape morphing. The results proved that our models
remained accurate even when little a priori information was available.

Next, we wanted to study a mechanism to maximize the amount of
information incorporated from sensor data. In particular, we focused on
the fact that devices such as RGB and depth cameras observe not only
the target, but also other objects in its surroundings. These ‘negative’
measurements, usually discarded as clutter, are also valuable, as they give
us information about where the object cannot be. Furthermore, given
that they are generally more numerous than ‘positive’ measurements
that stem from the target, they can be extremely beneficial in scenarios
with low information or occlusions. We proposed a probabilistic model
capable of incorporating both negative and positive measurements called
Negative Information Models, and extended it using ideas of shape
fitting in order to increase its robustness. We also explored a mechanism
to take into account the possibility of measurement clutter. A preliminary
experiment with a static target demonstrated the ability of the proposed
model to overcome high measurement noise and occlusions, conclusively
addressing the third challenge. Then, an evaluation with a non-convex
moving target and high clutter showed how NIM estimates could yield
accurate results even in situations where RHMs easily diverged.
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While the previously explored ideas focused on two-dimensional shapes,
there are several applications in fields such as robotics or indoor nav-
igation that need to incorporate information about three-dimensional
shapes. Doing so required us to extend our proposed models into 3D,
while retaining their robustness and without increasing their complexity.
In order to achieve this, we proposed Extrusion Models, a straight-
forward mechanism to describe complex shapes by interpreting them
as the result of vertically ‘shifting’ a planar shape. We studied several
formulations of these models in order to see how they dealt with sensor
data from depth cameras, where issues such as artifacts, outliers, and
missing information are common. Association models based on proba-
bilistic assumptions, such as RHMs, proved to be unreliable due to the
difficulty in approximating how sources were distributed on the target.
Furthermore, Negative Information Models required a slight reformula-
tion due to the fact that there were no direct three-dimensional negative
measurements available. Instead, a hybrid approach was taken, combin-
ing 2D negative measurements from the depth image with 3D positive
observations drawn from the point cloud. An extensive evaluation was
implemented, estimating the shape and pose of objects commonly seen
in daily life, such as bottles, teapots, and a pencil case. We saw how our
proposed contributions, even with the presence of numerous outliers and
occlusions, could effortlessly yield accurate pose estimates of a moving
target.

8.2 Outlook

While we believe that our contributions represent substantial advances in
the field of extended object tracking, we cannot say in any meaningful way
that the topic is closed, and there are several open questions remaining
which yield opportunities for further research. We will now enumerate
potential topics which deserve further consideration.
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• Sensors such as depth cameras produce measurements with ex-
tremely high noise when the observed target is very far away. There
is, however, no reliable mechanism in literature to model the distri-
bution of this noise. This is an ideal scenario to test how Level-set
PIMs behave in a real-world experiment.

• When dealing with Level-set ARHMs, we assumed that the amount
of polygon vertices was known a priori. There is no intrinsic need
for this assumption, and a different formulation can be explored
which slowly increases the shape complexity until an optimum is
found.

• In the many formulations of ARHMs, the regularization coefficient
was selected manually depending on the scenario. It may be useful
to develop a generic algorithm to calculate a coefficient depending
on factors such as shape complexity, measurement uncertainty and
process noise.

• Our discussion of Extrusion Models focused on circular base shapes.
However, a more advanced approach would be to estimate the base
shape in addition to the lateral function using Level-set ARHMs.
This would drastically increase the amount of required information,
which may need a more careful consideration of the measurement
quality provided by the depth sensors.

• The evaluation of Extrusion Models dealt exclusively with Microsoft
Kinect sensors. A larger variety of devices could be employed to
conclusively prove the suitability of these models for arbitrary data.

• It would be useful to explore mechanisms to incorporate our contri-
butions into a multiple target tracking framework.
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CHAPTER
9

In order to preserve legibility in the previous chapters, we found it
necessary to remove some of the less relevant expressions and formulas.
Many of them are common knowledge in literature, while others may
be too technical and detract from the reading flow. For the sake of
completeness, we present them in this appendix instead.

9.1 Expressions for Rotations

When working with pose estimation, for example in Chapter 5, Chapter 6,
and Chapter 7, it is necessary to describe the target rotation in a concise
way. When dealing with two dimensions, only a scalar angle 𝛼𝑘 ∈ R is
necessary. A rotation matrix can be obtained using

R (𝛼𝑘) :=
[︂
cos(𝛼𝑘) − sin(𝛼𝑘)
sin(𝛼𝑘) cos(𝛼𝑘)

]︂
.

For three dimensions, however, there are multiple mechanisms to represent
a rotation. Of interest for this thesis is the Rodrigues representation,
which exploits the fact that any rotation can be described in function
of an angle 𝜃𝑘 and an axis k𝑘 =

[︀
kx

𝑘, ky
𝑘, kz

𝑘

]︀⊤ with ‖k𝑘‖ = 1. We
can then encode the rotation uniquely using the vector 𝑟𝑘 = 𝜃𝑘 · k𝑘.
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Mathematically, the rotation matrix corresponding to 𝑟𝑘 can be obtained
from

R(𝑟𝑘) = I + sin(𝜃𝑘) · K(k𝑘) + (1− cos(𝜃𝑘)) · K(k𝑘) · K(k𝑘) ,

where the auxiliary matrix K is defined as

K(k𝑘) :=

⎡⎣ 0 −kz
𝑘 ky

𝑘

kz
𝑘 0 −kx

𝑘

−ky
𝑘 kx

𝑘 0

⎤⎦ .

Note that this auxiliary matrix is simply an alternative representa-
tion of the cross product, i.e., for any vector 𝑏 ∈ R3 it holds that
K(k𝑘) · 𝑏 = k𝑘 × 𝑏. For both cases, it always holds that

R(𝑟𝑘)−1 = R(𝑟𝑘)⊤ = R(−𝑟𝑘) .

9.2 Expressions for Association Models

In this section, we will show the derivation of an assortment of algorithms
and functions required for estimation using SDMs and GAMs, as explained
in Chapter 2. These approaches are part of the contribution of this
thesis, and were originally proposed as auxiliary functions for Level-set
PIMs[160], Level-set ARHMs[156], and NIMs [159, 161].

9.2.1 Likelihood for SDMs based on Filled Rectangles

In this subsection, we will derive the expression p(𝑦
𝑘
|𝑥𝑘) for an SDM

that describes a filled rectangle with uniform source distribution, first
proposed in [159, 161]. Let the target related to 𝑥𝑘 be the a rectangle
with center 𝑐𝑘, rotated by angle 𝛼𝑘, with dimensions w𝑘 and h𝑘. An
example parametrization using the argument 𝑠𝑘 =

[︀
𝑠𝑘,1, 𝑠𝑘,2

]︀⊤ would
be

𝜑
𝑘
(𝑠𝑘) = 𝑐𝑘 + R (𝛼𝑘) ·

[︂
w𝑘 · 𝑠𝑘,1
h𝑘 · 𝑠𝑘,2

]︂
; 𝑠𝑘,1 ∈

[︀
− 1

2 , 1
2
]︀

, 𝑠𝑘,2 ∈
[︀
− 1

2 , 1
2
]︀

.
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Furthermore, let 𝑦
𝑘

be a measurement with isotropic noise covariance
matrix C𝑣

𝑘 = 𝜎2
𝑣 · I. Then, by transforming the coordinate system to

make the rectangle axis-aligned and centered on the origin, we obtain
the pseudo-measurement 𝑦*

𝑘
as

𝑦*
𝑘

=
[︂
𝑦x

𝑘

𝑦
y
𝑘

]︂
:= R (−𝛼𝑘) ·

(︁
𝑦

𝑘
− 𝑐𝑘

)︁
.

As it holds that 𝑠1, 𝑠2 ∼ 𝒰(− 1
2 , 1

2 ), it follows that

p(𝑦
𝑘
|𝑥𝑘) = 1

w𝑘 · h𝑘
· G

(︁
𝑦x

𝑘,
w𝑘

2 , 𝜎2
𝑣

)︁
· G

(︂
𝑦y

𝑘,
h𝑘

2 , 𝜎2
𝑣

)︂
,

with

G
(︀
𝑧, 𝑎, 𝜎2

𝑣

)︀
:= 1

2

(︂
erf
(︂

𝑎− 𝑧√
2𝜎𝑣

)︂
− erf

(︂
−𝑎− 𝑧√

2𝜎𝑣

)︂)︂
.

The proof for this follows from the fact that 𝑠1 and 𝑠2 are independent,
and the noise covariance matrix is isotropic and invariant under the
transformations. Thus, we see that

p(𝑦
𝑘
|𝑥𝑘)

= 1
‖𝒮𝑥

𝑘 ‖

∫︁
𝒮𝑥

𝑘

𝒩 (𝑦
𝑘
− 𝑧𝑘; 0, 𝜎2

𝑣 · I) d𝑧𝑘

= 1
w𝑘 · h𝑘

w𝑘
2∫︁

− w𝑘
2

h𝑘
2∫︁

− h𝑘
2

𝒩 (𝑦*
𝑘
−
[︂
𝑠1
𝑠2

]︂
; 0, 𝜎2

𝑣 · I) d𝑠2 d𝑠1

= 1
w𝑘 · h𝑘

⎛⎜⎜⎝
h𝑘
2∫︁

− h𝑘
2

𝒩 (𝑦x
𝑘 − 𝑠1; 0, 𝜎2

𝑣) d𝑠1

⎞⎟⎟⎠
⎛⎜⎝

w𝑘
2∫︁

− w𝑘
2

𝒩 (𝑦y
𝑘 − 𝑠2; 0, 𝜎2

𝑣) d𝑠2

⎞⎟⎠
= 1

w𝑘 · h𝑘
· G

(︁
𝑦x

𝑘,
w𝑘

2 , 𝜎2
𝑣

)︁
· G

(︂
𝑦y

𝑘,
h𝑘

2 , 𝜎2
𝑣

)︂
.
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9.2.2 Likelihood for SDMs based on a Line Segment

In this subsection, we will derive the expression p(𝑦
𝑘
|𝑥𝑘) for an SDM

that describes a line segment with uniform source distribution, used in
[160]. Let the target related to 𝑥𝑘 be the line segment with endpoints 𝑎𝑘

and 𝑏𝑘, with parametrization

𝜑
𝑘
(𝑠) = 𝑎𝑘 + 𝑠𝑘 · (𝑏𝑘 − 𝑎𝑘) for 𝑠𝑘 ∼ 𝒰(0, 1)

Furthermore, let 𝑦
𝑘

be a measurement with isotropic noise covariance
matrix C𝑣

𝑘, not necessarily isotropic. It follows that

p(𝑦
𝑘
|𝑥𝑘) = 1

‖𝑏𝑘 − 𝑎𝑘‖
· L

(︁
𝑦

𝑘
, 𝑎𝑘, 𝑏𝑘, C𝑣

𝑘

)︁
,

where L
(︁

𝑦
𝑘
, 𝑎𝑘, 𝑏𝑘, C𝑣

𝑘

)︁
is the integral of the distribution 𝒩

(︁
𝑦

𝑘
, C𝑣

𝑘

)︁
over the path

[︀
𝑎𝑘, 𝑏𝑘

]︀
, i.e.,

L
(︁

𝑦
𝑘
, 𝑎𝑘, 𝑏𝑘, C𝑣

𝑘

)︁
:=

1∫︁
0

𝒩 (𝑎𝑘 + 𝑠𝑘 (𝑏𝑘 − 𝑎𝑘)− 𝑦
𝑘
; 0, C𝑣

𝑘) ‖𝑏𝑘 − 𝑎𝑘‖ d𝑠𝑘 .

This expression can be solved in closed-form. First, we define

𝑛0 := (𝑏𝑘 − 𝑎𝑘)⊤ (C𝑣
𝑘)−1 (𝑏𝑘 − 𝑎𝑘)

𝑛1 := 2 (𝑏𝑘 − 𝑎𝑘)⊤ (C𝑣
𝑘)−1

(︁
𝑦

𝑘
− 𝑎𝑘

)︁
𝑛2 :=

(︁
𝑦

𝑘
− 𝑎𝑘

)︁⊤
(C𝑣

𝑘)−1
(︁

𝑦
𝑘
− 𝑎𝑘

)︁
.

This allows us to obtain the parameters

𝜎* := 1
√

𝑛0

𝜇* := − 𝑛1

2𝑛0

𝜅 := ‖𝑏𝑘 − 𝑎𝑘‖
2
√︀

2𝜋 det (C𝑣
𝑘)

· 𝜎* · exp
(︂
−1

2

(︂
𝑛2 −

𝑛2
1

4𝑛0

)︂)︂
.
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The final result is

L
(︁

𝑦
𝑘
, 𝑎𝑘, 𝑏𝑘, C𝑣

𝑘

)︁
= 𝜅 ·

(︂
erf
(︂

1 + 𝜇*
√

2𝜎*

)︂
− erf

(︂
𝜇*
√

2𝜎*

)︂)︂
.

9.2.3 Logarithm of a Difference of Error Functions

When working with estimators based on SDMs, it is often the case
that we require the log( · ) form of the corresponding likelihood for
numerical stability. We observe that the difference of erf ( · ) terms
appears frequently in these expressions. Because of this, it makes sense
to explore a robust implementation of the function

ℓ(𝑎, 𝑏) = log (erf (𝑎)− erf (𝑏)) .

This can be achieved using the scaled error complementary function
erfcx ( · ), available in modern statistics libraries and frameworks such
as MATLAB. An implementation is shown in Algorithm 1.

Algorithm 1: Calculate logDiffErf.
input : 𝑎, 𝑏, where 𝑎 > 𝑏
if 𝑎 · 𝑏 ≥ 0 then

ℓ ← log (erf (𝑎)− erf (𝑏));
else

if 𝑎 < 0 then
𝛼 ← −𝑏;
𝛽 ← −𝑎;

else
𝛼 ← 𝑎;
𝛽 ← 𝑏;

ℓ ← log
(︀
erfcx (𝛽)− erfcx (𝛼) · exp

(︀
𝛽2 − 𝛼2)︀)︀− 𝛽2;

output : ℓ
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9.2.4 Most Likely Source in a Line Segment and a Polygon

In many applications, such as PIMs from Chapter 3, it is necessary
to obtain the source 𝑧𝑚

𝑘 in a given shape that most likely generated a
measurement 𝑦

𝑘
. In the following, we present an analytic solution for

a line segment connecting two points 𝑎𝑘 and 𝑏𝑘, first presented in [156].
This segment is parametrized as

𝜑
𝑘
(𝑠𝑘) = 𝑎𝑘 + 𝑠𝑘 · (𝑏𝑘 − 𝑎𝑘) for 𝑠𝑘 ∈

[︀
0, 1
]︀

.

It follows that the most likely source for this segment is 𝑧𝑚
𝑘 = 𝑎𝑘 +

𝑠𝑚
𝑘 · (𝑏𝑘 − 𝑎𝑘), for

𝑠𝑚
𝑘 := arg min

0≤𝑠≤1

(︁
𝑦

𝑘
− 𝜑

𝑘
(𝑠)
)︁⊤

(C𝑣
𝑘)−1

(︁
𝑦

𝑘
− 𝜑

𝑘
(𝑠)
)︁

.

This is a convex function whose minimum can be found using standard
calculus techniques. The closed-form solution is

𝑠𝑚
𝑘 = clamp

⎛⎜⎝
(︁

𝑦
𝑘
− 𝑎𝑘

)︁⊤
(C𝑣

𝑘)−1 (𝑏𝑘 − 𝑎𝑘)

(𝑏𝑘 − 𝑎𝑘)⊤ (C𝑣
𝑘)−1 (𝑏𝑘 − 𝑎𝑘)

⎞⎟⎠ ,

where clamp(𝑡) := max(min(𝑡, 1), 0). Similarly, the most likely source in
a polygon path can be obtained by iterating through all polygon segments
and finding the most likely source among the results of Section 9.2.4.
Based on this, an algorithm to calculate the most likely source in a
polygon is given in Algorithm 2.

9.2.5 Gaussian Integral over a Polygon Path

We will now discuss an approach to calculate the integral of a Gaussian
pdf centered on the measurement source 𝑧𝑘 with covariance matrix C𝑣

𝑘

over the given polygon. We observe that the derivation of this integral is
very easy, as it is extremely similar to the one introduced in Section 9.2.2.
By simply using the function L ( · , · , · , · ) , we obtain a concise
closed-form solution as shown in Algorithm 3.
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Algorithm 2: Calculate the most likely source in a polygon.
input : Polygon {𝑝1

𝑘
, · · · , 𝑝𝑛

𝑘
}, measurement 𝑦

𝑘
with noise covariance

matrix C𝑣
𝑘

output : 𝑧𝑚
𝑘

𝑑𝑚
𝑘 ←∞;

for 𝑗 = 1 to 𝑛 do
𝑧𝑗

𝑘 ← Calculate most likely source from segment 𝑝𝑗
𝑘

and 𝑝𝑗+1
𝑘

;

𝑑𝑗
𝑘 ←

(︁
𝑦

𝑘
− 𝑧𝑗

𝑘

)︁⊤
(C𝑣

𝑘)−1
(︁

𝑦
𝑘
− 𝑧𝑗

𝑘

)︁
;

if 𝑑𝑗
𝑘 < 𝑑𝑚

𝑘 then
𝑧𝑚

𝑘 ← 𝑧𝑗
𝑘;

𝑑𝑚
𝑘 ← 𝑑𝑗

𝑘;

Algorithm 3: Calculate the Gaussian integral over a polygon.
input : Polygon {𝑝1

𝑘
, · · · , 𝑝𝑛

𝑘
}, measurement source 𝑧𝑘 with noise

covariance matrix C𝑣
𝑘

output : ℓ𝑘

ℓ𝑘 ← 0;
for 𝑗 = 1 to 𝑛 do

ℓ𝑘 ← ℓ𝑘 + L
(︁

𝑧𝑘, 𝑝𝑗
𝑘
, 𝑝𝑗+1

𝑘
, C𝑣

𝑘

)︁
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9.3 Propagation of a Pdf over a Function

We will now briefly review two mechanisms to propagate uncertainties
over nonlinear functions, necessary in particular for models based on
PIMs from Chapter 3.

First, we consider the function

𝜑
𝑘

= Φ𝑘(𝜈𝑘) ,

where 𝜈𝑘 is a random variable whose probability function is described by
p(𝜈𝑘). Assuming Φ𝑘 is bijective, the resulting pdf of 𝜑

𝑘
can be written

as

p(𝜑
𝑘
) = p(𝜈𝑘) ·

⃒⃒
det
(︀
JΦ

𝑘 (𝜈𝑘)
)︀⃒⃒−1

,

where JΦ
𝑘 (𝜈𝑘) represents the Jacobian matrix of the function Φ𝑘(𝜈𝑘).

Otherwise, if Φ𝑘 is not bijective, obtaining a closed-form solution for
p(𝜑

𝑘
) may be difficult. Assuming that p(𝜈𝑘) is Gaussian, solutions for

basic operations such as affine transformations or quadratic forms are
available. Otherwise, only approximations are possible. Algorithm 4
briefly describes an approach presented in [148] to calculate the first and
second moments of p(𝜑

𝑘
), i.e., the mean 𝜑

𝑘
and covariance matrix C𝜑

𝑘 ,
given a set of samples that approximates the distribution of p(𝜈𝑘). The
resulting distribution can be written as p(𝜑

𝑘
) ≈ 𝒩 (𝜑

𝑘
; 𝜑

𝑘
, C𝜑

𝑘) .

9.4 Recursive Estimation using LRKFs

This section briefly describes the update step of Linear Regression Kalman
Filters (LRKFs), which are extensions of the well-known Kalman filters
for nonlinear measurement equations, and were widely employed in this
thesis, for example in Chapter 5, Chapter 6, and Chapter 7. We assume
that we are given a state 𝑥𝑘 with mean 𝑥̂𝑘 and covariance matrix P𝑘. As
a review, a Kalman filter considers a linear measurement equation and a
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Algorithm 4: Calculate propagated moments.
input : Function Φ𝑘, samples with weights {𝜈𝑗

𝑘, 𝑊 𝑗
𝑘}

𝑛𝑣
𝑗=1

for 𝑗 = 1 to 𝑛𝑣 do
𝜑𝑗

𝑘
← Φ𝑘(𝜈𝑗

𝑘) ;

𝜑
𝑘
←

𝑛𝑣∑︀
𝑗=1

𝑊 𝑗
𝑘 · 𝜑𝑗

𝑘
;

C𝜑
𝑘 ←

𝑛𝑣∑︀
𝑗=1

𝑊 𝑗
𝑘 ·

[︁
𝜑𝑗

𝑘
− 𝜑

𝑘

]︁ [︁
𝜑𝑗

𝑘
− 𝜑

𝑘

]︁⊤
;

output : 𝜑
𝑘
, C𝜑

𝑘

linear system equation

𝑦
𝑘

= H𝑘 · 𝑥𝑘 + 𝑣𝑘 ,

𝑥𝑘+1 = F𝑘 · 𝑥𝑘 + 𝑤𝑘 .

The update step for Kalman Filters can be found in Algorithm 5, and
their prediction step can be seen in Algorithm 6. Both steps can be
extended to consider an implicit nonlinear measurement equation and a
nonlinear system equation, i.e.,

0 = ℎ𝑘(𝑥𝑘, 𝑦
𝑘
, 𝑣𝑘, 𝑡𝑘) ,

𝑥𝑘+1 = 𝑎𝑘(𝑥𝑘, 𝑤𝑘) .

The general update step can be found in Algorithm 7, and the analogous
prediction step can be seen in Algorithm 8. A gating mechanism for
LRKFs is presented in Algorithm 9.

9.5 Related Work

In order to validate the approaches presented in this thesis, for example
Chapter 5 and Chapter 6, it is necessary to compare them to existing
techniques in literature. In this section, we will describe a brief im-
plementation of shape estimation using Random Matrices, and shape
representations using Fourier series and Gaussian processes.
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Algorithm 5: Direct measurement update step for LRKFs.
input : predicted state mean 𝑥̂𝑝

𝑘 and covariance matrix P𝑝
𝑘 ,

measurement 𝑦
𝑘

with noise covariance matrix C𝑣
𝑘 and

measurement matrix H𝑘 .
S𝑘 ← C𝑣

𝑘 + H𝑘 · P𝑝
𝑘 · H𝑘

⊤ ;
K𝑘 ← P𝑝

𝑘 · H𝑘
⊤ · (S𝑘)−1 ;

𝑥̂𝑒
𝑘 ← 𝑥̂𝑝

𝑘 + K𝑘 ·
(︁

𝑦
𝑘
−H𝑘 · 𝑥̂𝑝

𝑘

)︁
;

P𝑒
𝑘 ← P𝑝

𝑘 −K𝑘 · S𝑘 · K𝑘
⊤ ;

output : 𝑥̂𝑒
𝑘, P𝑒

𝑘

Algorithm 6: Direct prediction step for LRKFs.
input : estimated state mean 𝑥̂𝑒

𝑘 and covariance matrix P𝑒
𝑘 ,

system noise covariance matrix C𝑤
𝑘 , system matrix F𝑘 .

𝑥̂𝑝
𝑘+1 ← F𝑘 · 𝑥̂𝑒

𝑘 ;
P𝑝

𝑘+1 ← F𝑘 · P𝑒
𝑘 · F𝑘

⊤ + C𝑤
𝑘 ;

output : 𝑥̂𝑝
𝑘+1, P𝑝

𝑘+1
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Algorithm 7: Sample-based measurement update step for LRKFs.
input : predicted state mean 𝑥̂𝑝

𝑘 and covariance matrix P𝑝
𝑘 ,

measurement 𝑦
𝑘
,

prior state samples with weights {𝜒𝑗
𝑘
, 𝑊 𝑗

𝑘}
𝑛𝑥
𝑗=1 ,

measurement noise samples with weights {𝑣𝑗
𝑘, 𝑊 𝑗

𝑘}
𝑛𝑥
𝑗=1 ,

shape noise samples with weights {𝑡𝑗
𝑘, 𝑊 𝑗

𝑘}
𝑛𝑥
𝑗=1 .

for 𝑗 = 1 to 𝑛𝑥 do
𝜙𝑗

𝑘
← ℎ𝑘(𝜒𝑗

𝑘
, 𝑦

𝑘
, 𝑣𝑗

𝑘, 𝑡𝑗
𝑘) ;

𝜙̂
𝑘
←

𝑛𝑥∑︀
𝑗=1

𝑊 𝑗
𝑘 · 𝜙𝑗

𝑘
;

C𝜙
𝑘 ←

𝑛𝑥∑︀
𝑗=1

𝑊 𝑗
𝑘 ·

[︁
𝜙𝑗

𝑘
− 𝜙̂

𝑘

]︁ [︁
𝜙𝑗

𝑘
− 𝜙̂

𝑘

]︁⊤
;

C𝑥𝜙
𝑘 ←

𝑛𝑥∑︀
𝑗=1

𝑊 𝑗
𝑘

[︁
𝜒𝑗

𝑘
− 𝑥̂𝑝

𝑘

]︁ [︁
𝜙𝑗

𝑘
− 𝜙̂

𝑘

]︁⊤
;

K𝑘 ← C𝑥𝜙
𝑘 · (C𝜙

𝑘 )−1 ;
𝑥̂𝑒

𝑘 ← 𝑥̂𝑝
𝑘 + K𝑘 · 𝜙̂

𝑘
;

P𝑒
𝑘 ← P𝑝

𝑘 −K𝑘 · C𝜙
𝑘 · K𝑘

⊤ ;
output : 𝑥̂𝑒

𝑘, P𝑒
𝑘

Algorithm 8: Sample-based prediction step for LRKFs.
input : estimated state samples with weights {𝜒𝑗

𝑘
, 𝑊 𝑗

𝑘}
𝑛𝑥
𝑗=1,

system noise samples with weights {𝑤𝑗
𝑘, 𝑊 𝑗

𝑘}
𝑛𝑥
𝑗=1 .

for 𝑗 = 1 to 𝑛𝑥 do
x𝑗

𝑘 ← 𝑎𝑘(𝜒𝑗
𝑘
, 𝑤𝑗

𝑘) ;

𝑥̂𝑝
𝑘+1 ←

𝑛𝑥∑︀
𝑗=1

𝑊 𝑗
𝑘 · x𝑗

𝑘 ;

P𝑝
𝑘+1 ←

𝑛𝑥∑︀
𝑗=1

𝑊 𝑗
𝑘 ·

(︁
x𝑗

𝑘 − 𝑥̂𝑝
𝑘+1

)︁(︁
x𝑗

𝑘 − 𝑥̂𝑝
𝑘+1

)︁⊤
;

output : 𝑥̂𝑝
𝑘+1, P𝑝

𝑘+1
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Algorithm 9: Gating step for LRKFs.
input : measurement mean 𝜙̂

𝑘
with covariance matrix C𝜙

𝑘 ,
gating parameter 𝛾𝑘 .

𝐶 ←
(︁

𝜙̂
𝑘

⊤ (C𝜙
𝑘 )−1

𝜙̂
𝑘

)︁
< 𝛾𝑘 ;

output : Boolean value 𝐶

9.5.1 Tracking Extended Objects using Random Matrices

In this subsection, we will present an implementation of the approach
introduced by [33] to track elliptic approximations of extended targets
with random matrices. The state consists of the pair

[︀
𝑥𝑐

𝑘, X𝑘

]︀
, where 𝑥𝑐

𝑘

determines the position of the target’s centroid, and X𝑘 is a 𝑑× 𝑑 matrix
which models the elliptic target extent, described as

𝒮𝑒
𝑘 = {𝑝

𝑘
∈ R𝑑 | 𝑝⊤

𝑘
· X−1

𝑘 · 𝑝
𝑘
≤ 𝑠𝑘} ,

where 𝑠𝑘 ∈ R is an arbitrary scaling factor, usually 1, and 𝑑 is the
dimension of the measurement space. The state uncertainty is described
by the pair

[︀
P𝑘, 𝜈𝑘

]︀
, where P𝑘 is the covariance matrix of 𝑥𝑐

𝑘, and 𝜈𝑘

represents both the number of observed measurements and the extent
uncertainty. The update step can be found in Algorithm 10. The
prediction step, which assumes a linear system equation 𝑥𝑐,𝑝

𝑘 = F𝑘 · 𝑥𝑐,𝑒
𝑘 +

𝑤𝑘, a change in time Δ𝑇𝑘, and a ‘forgetting’ factor 𝜏𝑘, can be found in
Algorithm 11.

9.5.2 Representing a Boundary with Fourier Series

We will now derive a radial function 𝑟𝑓
𝑘 (𝜃𝑘) to describe the bound-

ary of a target using Fourier series, as presented in [27, 162, 153, 28].
A Fourier series of degree 𝑛 is defined using a series of coefficients[︀
𝑎0

𝑘, 𝑎1
𝑘, 𝑏1

𝑘, · · · , 𝑎𝑛
𝑘 , 𝑏𝑛

𝑘

]︀⊤, generally estimated as part of the state. The
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Algorithm 10: Update step.
input : 𝑥𝑝

𝑘,P𝑝
𝑘,𝜈𝑝

𝑘 ,X𝑝
𝑘, H𝑘

Measurements 𝒴𝑘 = {𝑦
𝑘,1, . . . , 𝑦

𝑘,𝑛
} with noise covariance

matrix C𝑣
𝑘

output : 𝑥𝑒
𝑘,P𝑒

𝑘,𝜈𝑒
𝑘,X𝑒

𝑘

𝑦
𝑘
← 1

𝑛

𝑛∑︀
𝑖=1

𝑦
𝑘,𝑖

;

C𝑦
𝑘 ←

𝑛∑︀
𝑖=1

(︁
𝑦

𝑘,𝑖
− 𝑦

𝑘

)︁(︁
𝑦

𝑘,𝑖
− 𝑦

𝑘

)︁⊤
;

Y𝑘 ← X𝑝
𝑘 + C𝑣

𝑘;
S𝑘 ← H𝑘 · P𝑒

𝑘 · H𝑘
⊤ + 1

𝑛 Y𝑘;
K𝑥

𝑘 ← P𝑒
𝑘 · H𝑘

⊤ · S𝑘
−1;

X𝑝,𝑠
𝑘 ← chol (X𝑝

𝑘);
S𝑠

𝑘 ← chol (S𝑘);
Y𝑠

𝑘 ← chol (Y𝑘);
N𝑠

𝑘 ← X𝑝,𝑠
𝑘 · (S𝑠

𝑘)−1 ·
(︁

𝑦
𝑘
−H𝑘 · 𝑥𝑝

𝑘

)︁
;

N𝑘 ← N𝑠
𝑘 · N𝑠

𝑘
⊤;

K𝑋
𝑘 ← X𝑝,𝑠

𝑘 · (Y𝑠
𝑘)−1;

𝑥𝑒
𝑘 ← 𝑥𝑝

𝑘 + K𝑥
𝑘 ·

(︁
𝑦

𝑘
−H𝑘 · 𝑥𝑝

𝑘

)︁
;

P𝑒
𝑘 ← P𝑝

𝑘 −K𝑥
𝑘 · S𝑘 · K𝑥

𝑘
⊤;

𝜈𝑒
𝑘 ← 𝜈𝑝

𝑘 + 𝑛;
X𝑒

𝑘 ←
(︀
𝜈𝑝

𝑘 · X𝑝
𝑘 + N𝑘 + K𝑋

𝑘 · C𝑦
𝑘 · K𝑋

𝑘
⊤)︀ /𝜈𝑒

𝑘;

Algorithm 11: Prediction step.
input : 𝑥𝑒

𝑘,P𝑒
𝑘,𝜈𝑒

𝑘,X𝑒
𝑘, F𝑘, 𝜏𝑘, Δ𝑇𝑘

output : 𝑥𝑝
𝑘,P𝑝

𝑘,𝜈𝑝
𝑘 ,X𝑝

𝑘

𝑥𝑝
𝑘 ← F𝑘 · 𝑥𝑒

𝑘;
P𝑝

𝑘 ← F𝑘 · P𝑒
𝑘 · F𝑘

⊤ + C𝑤
𝑘 ;

𝜈𝑒
𝑘 ← 𝑑 + exp (−Δ𝑇𝑘/𝜏𝑘) (𝜈𝑝

𝑘 − 𝑑);
X𝑒

𝑘 ← X𝑝
𝑘;
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radial function takes the form

𝑟𝑓
𝑘 (𝜃𝑘) := 𝑎0

𝑘

2 +
𝑛∑︁

𝑗=1
𝑎𝑗

𝑘 · cos(𝑗𝜃𝑘) + 𝑏𝑗
𝑘 · sin(𝑗𝜃𝑘) .

Note that, equivalently, this expression can be written as

𝑟𝑓
𝑘 (𝜃𝑘) = 𝑎0

𝑘

2 +
𝑛∑︁

𝑗=1

√︁
(𝑎𝑗

𝑘)2 + (𝑏𝑗
𝑘)2 · sin(𝑗𝜃𝑘 + atan2(𝑎𝑗

𝑘, 𝑏𝑗
𝑘)) .

Thus, the radial function is simply a series of translated and scaled
sin( · ) curves superimposed on top of each other. This also serves to
demonstrate that an explicit shape rotation parameter is, in principle,
unobservable, as any rotation can be expressed as a different shape by
adjusting the Fourier coefficients.

9.5.3 Representing a Boundary with a Gaussian Process

In this section we will derive a radial function 𝑟𝑓
𝑘 (𝜃) to describe the

boundary of a target using ideas from Gaussian processes, as presented
in [29]. First, we need to define the covariance function

𝑘(𝜃1, 𝜃2) = 𝜎2
𝑓 · exp

(︃
− 2

𝑙2 sin
(︂

𝜃1 − 𝜃2

2

)︂2
)︃

+ 𝜎2
𝑟 ,

where 𝜎2
𝑓 represents the variance of the prior signal amplitude, 𝜎2

𝑟 is the
variance of the mean function, and 𝑙 is the standard deviation hyperpa-
rameter of the Gaussian process. We will now proceed to extend this
function to accept multiple values simultaneously. Let

𝜃1 =
[︀
𝜃1

1, · · · , 𝜃𝑛
1
]︀⊤ , and

𝜃2 =
[︀
𝜃1

2, · · · , 𝜃𝑚
2
]︀⊤
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be two arbitrary input vectors. We now define

𝐾(𝜃1, 𝜃2) =

⎡⎢⎣𝑘
(︀
𝜃1

1, 𝜃1
2
)︀
· · · 𝑘

(︀
𝜃1

1, 𝜃𝑚
2
)︀

... . . . ...
𝑘
(︀
𝜃𝑛

1 , 𝜃1
2
)︀
· · · 𝑘 (𝜃𝑛

1 , 𝜃𝑚
2 )

⎤⎥⎦ .

For this function, [29] proposes the default parameters 𝜎2
𝑟 = 4, 𝜎2

𝑓 = 4,
and 𝑙 = 𝜋

4 .

Given a covariance function, a Gaussian process boundary of degree
𝑛 is defined using a series of coefficients 𝑎𝑘 =

[︀
𝑎1

𝑘, · · · , 𝑎𝑛
𝑘

]︀⊤, generally
estimated as part of the state, and a series of support angles 𝑢𝑘 =[︀
𝑢1

𝑘, · · · , 𝑢𝑛
𝑘

]︀⊤ for 𝑢𝑗
𝑘 ∈

[︀
0, 2𝜋

]︀
. The radial function takes the form

𝑟𝑔
𝑘(𝜃𝑘) := 𝐾(𝜃𝑘, 𝑢𝑘) · 𝐾(𝑢𝑘, 𝑢𝑘)−1 · 𝑎𝑘 .

Note that it holds that 𝑟𝑓
𝑘 (𝑢𝑗

𝑘) = 𝑎𝑗
𝑘 for 1 ≤ 𝑗 ≤ 𝑛. As part of the

Gaussian process, each angle also has an associated radial uncertainty

Σ𝑢
𝑘(𝜃𝑘) := 𝜎2

𝑟 + 𝜎2
𝑓 −𝐾(𝜃𝑘, 𝑢𝑘) · 𝐾(𝑢𝑘, 𝑢𝑘)−1 · 𝐾(𝜃𝑘, 𝑢𝑘)⊤ ,

which should be taken into account as part of the measurement noise.
For the support angles, [29] proposes a uniform distribution in the range[︀
0, 2𝜋

]︀
, i.e., 𝑢𝑗

𝑘 = 2𝜋 · 𝑗
𝑛 .
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Extended object tracking deals with estimating the shape and pose of 
an object based on noisy point measurements. In contrast to traditional 
tracking approaches that assume that the target is a single point, we 
model the target as a shape whose parameters also need to be estimated. 
However, this task is not straightforward. For instance, measurements 
may be noisy and parts of the target may not be visible. Furthermore, 
we may have little a priori information, in particular about the motion of 
the target or the complexity of its shape. Finally, in many circumstances 
the sensor is only able to provide a small amount of low-quality meas-
urements, especially when sensor and target are far from each other. In 
order to address these challenges, this work presents four contributions. 
First, we introduce Level-set Partial Information Models, a probabilistic 
mechanism for unbiased shape fitting that can handle situations with 
occlusions and high measurement noise. Second, Level-set Active Ran-
dom Hypersurface Models provide a flexible shape representation for 
convex and non-convex shapes, capable of dealing with scenarios with 
little a priori knowledge by drawing ideas from computer vision. Third, 
Negative Information Models aim to increase the amount of available 
information by incorporating knowledge about where the target cannot 
be. Finally, we develop a straightforward extension of these contributions, 
called Extrusion Models, that allows them to estimate three-dimensional 
targets in real-world scenarios. 
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