146 research outputs found

    Reconfigurable architectures for beyond 3G wireless communication systems

    Get PDF

    Reconfigurable Enhanced Path Metric Updater Unit for Space Time Trellis Code Viterbi Decoder

    Get PDF
    Space Time Trellis Code (STTC) encoding and decoding techniques are effective for delivery of a reliable information because of the signal to noise ratio is very small. Even though the Viterbi algorithm is complicated to be designed, these methods typically used large memory space to store the information that have been processed mainly at the Path Metric Updater (PMU). Therefore, an effective memory management technique is one of the key factors in designing the STTC Viterbi decoder for low power consumption applications. This paper proposed the PMU memory reduction technique especially on Traceback activities that usually required a lot of memories for storing the data that has been processed in the past part by using Altera Quartus 2 and 0.18 µm Altera CPLD 5M570ZF256C5 as targeted hardware. Through this method, the reduction achieved at least 66% of memory requirements and 75% improvements in processing time without a significanct effects on the outputs results of the STTC Viterbi Decoder for 4-PSK modulation technique by using 50MHz clocks

    A composable approach to design of newer techniques for large-scale denial-of-service attack attribution

    Get PDF
    Since its early days, the Internet has witnessed not only a phenomenal growth, but also a large number of security attacks, and in recent years, denial-of-service (DoS) attacks have emerged as one of the top threats. The stateless and destination-oriented Internet routing combined with the ability to harness a large number of compromised machines and the relative ease and low costs of launching such attacks has made this a hard problem to address. Additionally, the myriad requirements of scalability, incremental deployment, adequate user privacy protections, and appropriate economic incentives has further complicated the design of DDoS defense mechanisms. While the many research proposals to date have focussed differently on prevention, mitigation, or traceback of DDoS attacks, the lack of a comprehensive approach satisfying the different design criteria for successful attack attribution is indeed disturbing. Our first contribution here has been the design of a composable data model that has helped us represent the various dimensions of the attack attribution problem, particularly the performance attributes of accuracy, effectiveness, speed and overhead, as orthogonal and mutually independent design considerations. We have then designed custom optimizations along each of these dimensions, and have further integrated them into a single composite model, to provide strong performance guarantees. Thus, the proposed model has given us a single framework that can not only address the individual shortcomings of the various known attack attribution techniques, but also provide a more wholesome counter-measure against DDoS attacks. Our second contribution here has been a concrete implementation based on the proposed composable data model, having adopted a graph-theoretic approach to identify and subsequently stitch together individual edge fragments in the Internet graph to reveal the true routing path of any network data packet. The proposed approach has been analyzed through theoretical and experimental evaluation across multiple metrics, including scalability, incremental deployment, speed and efficiency of the distributed algorithm, and finally the total overhead associated with its deployment. We have thereby shown that it is realistically feasible to provide strong performance and scalability guarantees for Internet-wide attack attribution. Our third contribution here has further advanced the state of the art by directly identifying individual path fragments in the Internet graph, having adopted a distributed divide-and-conquer approach employing simple recurrence relations as individual building blocks. A detailed analysis of the proposed approach on real-life Internet topologies with respect to network storage and traffic overhead, has provided a more realistic characterization. Thus, not only does the proposed approach lend well for simplified operations at scale but can also provide robust network-wide performance and security guarantees for Internet-wide attack attribution. Our final contribution here has introduced the notion of anonymity in the overall attack attribution process to significantly broaden its scope. The highly invasive nature of wide-spread data gathering for network traceback continues to violate one of the key principles of Internet use today - the ability to stay anonymous and operate freely without retribution. In this regard, we have successfully reconciled these mutually divergent requirements to make it not only economically feasible and politically viable but also socially acceptable. This work opens up several directions for future research - analysis of existing attack attribution techniques to identify further scope for improvements, incorporation of newer attributes into the design framework of the composable data model abstraction, and finally design of newer attack attribution techniques that comprehensively integrate the various attack prevention, mitigation and traceback techniques in an efficient manner

    A Hardware Implementation of a Coherent SOQPSK-TG Demodulator for FEC Applications

    Get PDF
    This thesis presents a hardware design of a coherent demodulator for shaped offset quadrature phase shift keying, telemetry group version (SOQPSK-TG) for use in forward error correction (FEC) applications. Implementation details for data sequence detection, symbol timing synchronization, carrier phase synchronization, and block recovery are described. This decision-directed demodulator is based on maximum likelihood principles, and is efficiently implemented by the soft output Viterbi algorithm (SOVA). The design is intended for use in a field-programmable gate array (FPGA). Simulation results of the demodulator's performance in the additive white Gaussian noise channel are compared with a Matlab reference model that is known to be correct. In addition, hardware-specific parameters are presented. Finally, suggestions for future work and improvements are discussed

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    Temporal Segmentation of Human Actions in Videos

    Get PDF
    Understanding human actions in videos is of great interest in various scenarios ranging from surveillance over quality control in production processes to content-based video search. Algorithms for automatic temporal action segmentation need to overcome severe difficulties in order to be reliable and provide sufficiently good quality. Not only can human actions occur in different scenes and surroundings, the definition on an action itself is also inherently fuzzy, leading to a significant amount of inter-class variations. Moreover, besides finding the correct action label for a pre-defined temporal segment in a video, localizing an action in the first place is anything but trivial. Different actions not only vary in their appearance and duration but also can have long-range temporal dependencies that span over the complete video. Further, getting reliable annotations of large amounts of video data is time consuming and expensive. The goal of this thesis is to advance current approaches to temporal action segmentation. We therefore propose a generic framework that models the three components of the task explicitly, ie long-range temporal dependencies are handled by a context model, variations in segment durations are represented by a length model, and short-term appearance and motion of actions are addressed with a visual model. While the inspiration for the context model mainly comes from word sequence models in natural language processing, the visual model builds upon recent advances in the classification of pre-segmented action clips. Considering that long-range temporal context is crucial, we avoid local segmentation decisions and find the globally optimal temporal segmentation of a video under the explicit models. Throughout the thesis, we provide explicit formulations and training strategies for the proposed generic action segmentation framework under different supervision conditions. First, we address the task of fully supervised temporal action segmentation, where frame-level annotations are available during training. We show that our approach can outperform early sliding window baselines and recent deep architectures and that explicit length and context modeling leads to substantial improvements. Considering that full frame-level annotation is expensive to obtain, we then formulate a weakly supervised training algorithm that uses ordered sequences of actions occurring in the video as only supervision. While a first approach reduces the weakly supervised setup to a fully supervised setup by generating a pseudo ground-truth during training, we propose a second approach that avoids this intermediate step and allows to directly optimize a loss based on the weak supervision. Closing the gap between the fully and the weakly supervised setup, we moreover evaluate semi-supervised learning, where video frames are sparsely annotated. With the motivation that the vast amount of video data on the Internet only comes with meta-tags or content keywords that do not provide any temporal ordering information, we finally propose a method for action segmentation that learns from unordered sets of actions only. All approaches are evaluated on several commonly used benchmark datasets. With the proposed methods, we reach state-of-the-art performance for both, fully and weakly supervised action segmentation
    corecore