
 Eindhoven University of Technology

MASTER

A VLIW DSP data path with multiple controllers

Vrijnsen, J.H.G.M.

Award date:
2003

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/c3dbea84-dfd6-4bb6-b7fb-288527d61723

TuI e technische universiteit eindhaven

Section of Information and Communication Systems (I CS/ES)
Faculty of Electrical Engineering
ICS/ES 826

Master' s Thesis

Coach:
Supervisor:
Date:

A VLIW DSP Data Path
with

Multiple Controllers

J.H.G.M. Vrijnsen

dr.ir. B. Mesman
prof.dr.ir. J .L. van Meerbergen
17 March 2003 - 28 November 2003

The Faculty ofElectrical Engineering ofthe Eindhoven University ofTechnology does not
accept any responsibility regarding the contents ofMaster's Theses

Authors' address

i i

Vrijnsen, J.H.G.M. J.H.G.M.Vrijnsen@student.tue.nl

J eroen Vrijnsen@yahoo.com

Preface

This report is my Master's Thesis, resulting from my graduation project for my studies in
Electrical Engineering at the Eindhoven University of Technology. The graduation pro­
ject was performed within Philips Research, Eindhoven, in the department Embedded
Systems Architectures on Silicon (ESAS), which belongs to the Information and Soft­
ware Technology (IST) sector. Since many people have helped me in completing this
thesis, I would like to take this opportunity to thank those who helped me.

First, I would like to thank my supervisors, Bart Mesman and Jef van Meerbergen, for
providing me with the option to perform my graduation project within Philips Research.
Both have given me a lot offreerlom to do things "my way". Furthermore, I would like to
thank Albert van der Werf for allowing me to perform my graduation project within the
ESAS department

Nur Engin bas helped me a lot with understanding and imptementing the Viterbi algo­
rithm. I would like to thank her for the discussions we had on this subject.

From Silicon Hive I would like to thank Lex Augusteijn, Jeroen Leijten, Jos Huisken,
Wim Yedema, Antoine van Wel and Marc Quax. They have helped me a lot in under­
standing and (ah-) using the Silicon Hive tools.

In addition, I would like to thank Marco Bekooij for the discussions we had on schedul­
ing and on the differences between the AIRT Designer and Silicon Hive tools.

My colleagues from the ESAS department have made my stay a very pleasant one. All
ofTered me useful insight in both my work and theirs, and have helped me in completing
this project. Thank you all.

I am grateful to my parents, for always being there when I needed them. Their education
gave me the attitude and sense of responsibility that was needed to earn my master's
degree. In addition, I am grateful to my brother, who was kindly enough to support me in
writing my thesis, and pointing out the flaws in it -or at the least the parts he did not
understand.

Last but certainly not least, I would to thank my girl friend for supporting me, although
she did not understand much of my project. Matjan, thank you for being there and for
brighten me up when I needed it.

Of course are any flaws in this thesis the result of my own inexperience and the misinter­
pretation of good advice.

iii

Abstract

In order to exploit the large amount of instruction-level parallelism offered by a VLIW
data path, designers consider the inner loops in streaming digital signal processing algo­
rithms. In general, about eighty percent of the run-time in DSP algorithms is spent in
twenty percent of the application. Furthermore, many applications allow a certain degree
of loop overlapping. Exploiting this overlapping can reduce the total execution time and
the amount of intermediate data that has to be stored.

Several different implementations that allow the overlapping execution of loops are
possible. In this report, we study the effect of mapping DSP algorithms on a VLIW data
path with multiple controllers, each of them controlling a different loop. We will show
how to generate static schedules for the controllers, using currently available design
tools, since no commercial design tools are available yet with an instruction scheduling
scope spanning multiple controllers. Furthermore, we compare the results of mapping a
DSP algorithm (the Viterbi algorithm) on a VLIW data path with multiple controllers to
mapping the same algorithm on a regular, single threaded VLIW.

Keywords: VLIW, DSP, scheduling, mapping, multi-threading

V

Table of Contents

Preface ... iü

Abstract .. v

1. Introducüon .. ll

1.1. Problem statement .. 12

1.2. Thesis overview .. 16

2. Multi-Threaded Processor Architectures: an Overview 17

2.1. Origins ofmulti-threading .. 17

2.2. Multi-threading approaches .. 19

2.2.1. Interleaved multi-threading .. 22

2.2.2. Blocked multi-threading ... 22

2.2.3. Simultaneous multi-threading ... 23

2.3. Related work ... 24

3. Design Tools .. 29

3.1. AjRT Designer .. 29

3.1.1. Architecture overview .. 29

3.1.2. Design flow overview ... 31

3.2. Silicon Hive .. 32

3.2.1. Architecture overview .. 32

3.2.2. Design flow overview ... 33

3.3. AjRT Designer versus Silicon Hive: a user perspective 34

4. Scheduling for Multiple Controllers .. 37

4.1. Scheduling basics ... 3 7

4.2. Scheduling for multiple controllers .. 40

4.3. Simpte casestudy ... 43

4.4. Conclusions of the case study .. 48

4.5. Hardware implementation .. 49

vii

5. Multiple Controllers: a Case Study .. 51

5.1. Convolutional coding ... 51

5.2. Viterbi algorithm .. 52

5.3. lmplementation ofthe Viterbi algorithm .. 54

5.4. Results for the Viterbi algorithm .. 55

5.5. Conclusions .. 57

6. Coneinsion .. 59

6.1. Conclusions .. 59

6.2. Recommendations for future work ... 60

Bibliography .. 65

Glossary ... 69

Appendices ... 71

A Simple Case Study using Silicon Hive .. 73

A.l Algorithm description ... 73

A.2 Target architecture .. 74

B The Viterbi Algorithm ... 75

B.1 Pseudo-code description ofViterbi algorithm .. 75

B.2 Sequentia! execution of the Viterbi algorithm ... 77

viii

List of Figures

Figure 1-1: Oiobal overview ofVLIW architecture ... 12
Figure 1-2: An algorithm with two loops ... 12
Figure 1-3: Possible implementations for algorithm with two loops 13
Figure 1-4: A VLIW data path with multiple controllers ... 16
Figure 2-1: Sequentia! instruction processing ... 17
Figure 2-2: Superscalar execution of instructions .. 18
Figure 2-3: Explicit multi-threading approaches .. 20
Figure 2-4: Different multi-threading approaches .. 21
Figure 2-5: The SMT Multimedia Processor model ... 25
Figure 2-6: Schematic view of differences with SMT Multimedia Processor 25
Figure 2-7: The Phideo architecture ... 26
Figure 2-8: The clustered LO buffer organisation ... 27
Figure 3-1: Example of AIRT Designer's architectural model.. 30
Figure 3-2: Datapathof AIRT Designer's architecture in more detail.. 30
Figure 3-3: Internat design flow of AIRT Designer .. 31
Figure 3-4: Silicon Hive's architecture designspace overview .. 33
Figure 3-5: Silicon Hive's design flow ... 34
Figure 3-6: Modelling of state in functiona1 units .. 35
Figure 4-1: An example of a data flow graph (DFG) ... 38
Figure 4-2: Modelling a constraint on the latency and the initiation interval.. 39
Figure 4-3: Example oftwo parallelloops ... 41
Figure 4-4: Combined and updated DFG .. 42
Figure 4-5: Schedules for both loops on separate controllers .. .42
Figure 4-6: DFGs for the two basic blocks ... 43
Figure 4-7: Schedule for the combined loop kemels .. 44
Figure 4-8: Schedules for loop_i and loopj .. .45
Figure 4-9: Resourceusagein time .. 45
Figure 4-10: Conflict-free schedule .. 46
Figure 4-11: Schedules of a sequentia! and a loop-merged implementation4 7
Figure 4-12: Loop unrolling for reduction ofthe latency ofthe schedule 48
Figure 5-1: Example of a convolutional encoder .. 51
Figure 5-2: The state diagram ... 52
Figure 5-3: The trellis diagram corresponding to theencoder ofFigure 5-1.. 53
Figure 5-4: Paths teading to state s(t+ 1) ... 53
Figure 5-5: Sliding window approach ... 54
Figure 5-6: Pseudo-code representation ofthe used Viterbi algorithm 55
Figure 5-7: Folded schedules for the trellis construction and traceback phases 56
Figure 5-8: Execution ofthe Viterbi algorithm as a function ofthe time 57
Figure 6-1: Modes of operation illustrated ... 61
Figure 6-2: Schedule for case study of Section 4.3 extended with operation modes 62

ix

1.1. Problem statement

1. Introduetion

In recent years, very long instruction word (VLIW) approaches have become increas­
ingly prominent in the digital signai-processing (DSP) world. Digital signai-processing
refers to various techniques for improving the accuracy and the reliability of digital
communication applications, for example filter algorithms (e.g., FFT or DCT1

) or video
processing algorithms. The reasons to use VLIW architectures for such kind of applica­
tions are straightforward: VLIW architectures provide parallel execution of operations to
increase the performance significantly.

A global VLIW architecture template is shown in Figure 1-1. Such an architecture has
the following characteristics:

1. The most important characteristic of a VLIW architecture is the presence of
several.functional units (FUs) that can operate in parallel, under control of a
single controller. Often the units are all different, but also multiple instances of
the sametype may occur (e.g., multiple arithmetic-logic units). Each of those
(or a subset of the) functional units is controlled by a slot in the instruction
word, which results in the very long instruction words, as shown in the figure;

2. Each of the functional units works with operands that are available from regis­
ters fields in register files. Several register files are possible, which are all con­
trolled by a particular slot in the instruction word. All input- and output data
that is active during the same clock cycle is read from or written to a register
field in a register file. Every input of a functional unit can be supplied with a
register file of its own, or register files can be merged into one register file (and
of course any solution in between is also possible);

3. In principle, every functional unit can receive a new instruction on each clock
cycle. When the instruction word would become too wide, functional units can
be grouped into issue slots. Each ofthe issueslotsis controlled by a single par­
tirion of the instruction word. Therefore, multiple functional units are con­
trolled by the same partition of the instruction word, resulting in a smaller in­
struction word. The width of the instruction word and the corresponding pro­
gram code size form the principal disadvantages of VLIW architectures, espe­
cially for embedded applications. The reason for this is that for such applica­
tions only a limited amount of memory is available, due to power consumption
requirements and the costs of on-chip memory.

The VLIW architecture in a sense has the same capabilities as a superscalar processor:
issuing and completing multiple operations each clock cycle (superscalar means the
ability to fetch, issue to functional units and complete more than one instruction at a
time). However, a major difference with superscalar processors is that the VLIW hard­
ware is not responsible for discovering opportunities to execute multiple operations
concurrently. Instead of that, for a VLIW architecture, it is the task of the compiler to

1 FFT: Fast Fourier Transformation DCT: Discrete Cosine Transformation

11

1. Introduetion

Figure 1-1: Global overview of VLIW architecture

detect the instroction-level parallelism {ILP) -independent instructions from one block of
code that can be executed in parallel- available in the application and to generate a
schedule that is as short as possible. Therefore, in contrary to superscalar processors
where scheduling hardware is used to detect the parallelism at run-time, this is done at
compile-time in a VLIW architecture, which leads to a reduced hardware complexity
compared toa superscalar architecture.

Due to the presence of multiple functional units that can be active simultaneously and
due to the reduced hardware complexity with respecttoother architectural altematives,
VLIW architectures are well suited to exploit the instruction-level parallelism that is
present in many applications.

1.1. Problem statement

So, in order to exploit the large amount of instruction-level parallelism offered by a
VLIW data path, designers consider the inner loops in streaming digital signai-processing
algorithms. In general, about eighty percent of the run-time in DSP algorithms is spent on
twenty percent of the application.

Consider the algorithm presented in Figure 1-2, which shows a line-doubling algo­
rithm. An input line is shown that has only four samples, which arrive at the input with a
period oftwo clock cycles per sample. This input line is subjecttoa certain processing in

12

tLLL- input sample

time -

Figure 1-2: An algorithm with two loops

m

for i~O to 3 begin
o[i] =input();
o[i+4] = proc(o[i]);

end
for jaO to 7 begin

output(o[j]);
end

l.I. Problem statement

the proc node of which the internat details are of no importance for this discussion.
After that, the processed samples are sent to the output, where they follow a copy of the
original input samples. Hence, the output period is half of the input period (or, in other
words, the rate bas doubled). The same tigure also shows a possible specificatien in
textual format. This is only one of the possible alternatives. However, all alternatives
have one thing in common, namely, the use of loops.

With this specification, a number of implementations are possible. Two of them are
shown in Figure 1-3. A processor with a single controller can only imptement the sched­
ule as depicted in Figure 1-3a: a strictly sequentia! execution ofthe loops. However, this
has two main disádvantages. First, the total execution time is the sum of the two loop
executions, which implies a large program code. Next to that, the entire array o [i]

produced by the fust loop bas to be stored temporarily before being consumed in the
second loop.

An alternative schedule is given in Figure 1-3b. The loop executions partly overlap,
thereby reducing the total execution time. This total execution time is now determined
essentially by the individual loop executions and the data dependencies between the
loops. In the example of Figure 1-2, the data dependenee between o [3] and out­
put (o [3 J) restricts the earliest start time for the output loop, as the arrow in Figure
1-3b illustrates. Furthermore, in this case, only half of the array o [iJ has to be stored.
This schedule, however, can only be implemented with at least two threads of controL
That is, at least two controllers: one for centrolling the input and proc resources and
one for centrolling the output resource. In general, many applications allow a certain
degree of loop overlapping, making it worthwhile to find a solution to allow this.

The two implementations presented in Figure 1-3 differ in the way that loops are dealt
with. In Figure 1-3a, the loop hierarchy is preserved, i.e., the loops in the specificatien
are interpreted procedurally. There is no overlap between the various executions of the
same instance, or between executions of different instances. However, these loop

Time input proc outp_ut Time input proc output
0 o[O] 0 o[O]
1 o[4] 1 0[4]
2 o[1] 2 o[1]
3 o[5] 3 0[5]
4 o[2] 4 0[2] out[O]
5 o[6] 5 o[6] out[1]
6 o[3] 6 0[3] out[2]
7 om 7 of71 out[3]
8 out[O] 8 out[4]
9 out[1] 9 out[5]
10 out(2] 10 out[6]
11 out[3] 11 outr71
12 out[4] 12
13 out[5] 13
14 out[6]
15 out[7]

14
15

(a) (b)

Figure 1-3: Possible implementations: (a) regular, single threaded schedule; (b)
two-threaded schedule with overlapping loop executions

13

1. Introduetion

boundaries are artificial constraints. Figure 1-3b, therefore, does not consider them: only
the real constraints, which are imposed by the data dependencies, have been taken into
account. Although the difference may seem small, it is still important to note that the
latency is smaller in Figure l-3b. For high-throughput algorithms, the latency is often
related to the amount of internal data that has to be stored. In other words, if we would
repeat the same example for a complete video line consisting of, for example, 864 sam­
ples, we would have to store a complete line in the situation presented in Figure 1-3a, but
only half a line (432 samples) for the situation in Figure 1-3b. Obviously, a procedural
interpretation preserving the loop hierarchy is insuflicient for efficient implementations
of high-throughput algorithms.

There are multiple approaches to map the two-threaded schedule as presented in Figure
1-3b onto hardware. The most straightforward approach is using a multi-processor archi­
tecture, where each of the processors executes a single loop. In that way, the loop ex ecu­
tions can be overlapped in time (for exploiting the available ILP and reducing the data
buffering) and scalability in performance is enhanced. However, implementation on a
multi-processor architecture introduces the following problems:

• How to impose a static schedule for the processors;
• How to communicate efficiently between processors, with fixed timing delays;
• How to syncbronize between processors.

These problems are now discussed in more detail.

How to impose a static schedule for the processors.
Static scheduling is chosen since it allows simulation and verification of the derived
schedule at design-time. Furthennore, on an architectural level, it removes the need for
dynamic scheduling hardware with its corresponding overhead. In case of a multi­
processor architecture, the individual processors are designed and scheduled individually.
Program code is generated for each processor separately, since there are no commercial
tools available (yet) with an instruction-scheduling scope spanning multiple controllers.
The practical way to verify whether all timing constraints are met is to simulate the col­
lection of processors and their interactions. It would be much more convenient to derive a
combined schedule for the collection of processors in one tool. In that way, the timing
constraints can be imposed and guaranteed without extensive simulation efforts.

How to communicate efficiently between processors.
One of the reasons why simulation is necessary for verifying reai-time constraints in a
multi-processor system is the uncertainty caused by communicating over a shared bus.
Since other processors can also access this shared bus, communication between processor
A and B may be delayed because another processor occupies the bus. In other words, the
communication delay is not fixed. Furthennore, an explicit communication protocol with
requests and acknowledgements for accesses on the bus is required. This is necessary to
cope with the uncertainty in the system, but takes time and energy. Moreover, communi­
cated data ·aften bas to be buffered when waiting for the bus. Therefore, inter-process
communication is not efficient in tenns of latency and buffer space.

14

1.1. Problem statement

How to synchronize.
Some processors may share certain data from a memory. This data may be updated peri­
odically. In order for a processor to fetch tbe most recent data, it bas to synchronize with
the processor that wrote tbe data in tbe memory. For this, explicit synchronization proto­
cols are used to enforce a certain order on tasks executed on different processors. Explicit
synchronization takes time and implies that processors have to wait, resulting in a loss of
performance.

The synchronization problem could be solved by using an (stripped down) operating
system. However, in case of using an operating system, tbere will still be a communiea­
tion problem, since the operating system will not be able to guarantee fixed timing delays
for communication over shared busses.

An alternative to the multi-processor architecture is a VLIW architecture, where multiple
controllers control tbe single data patb that is available, as presented in Figure 1-4. A
potential problem in this architecture is tbe sharing of data patb elements among different
controllers, since tbe situation may arise where the two controllers control a single re­
source simultaneously, resulting in a conflict. However, this can be avoided by generat­
ing a static combined schedule (and program code), without resources conflicts, for botb
controllers. In tbe hardware, tbe control signals from botb controllers for a certain data
path resource are combined using an "OR" gate, in order to have a single control signal
for that partienlar resource. Since the compile-time scheduler prevents tbe simultaneons
activity of botb control signals for a certain resource, the "OR" gates always generate a
valid control signal.

The presented architecture solves tbe previously mentioned problems for a multi­
processor architecture in tbe following way:

• How to impose a combined static schedule: tbe schedule is implemented as a
composition of multiple schedules;

• How to communicate efficiently between processors: communication takes
place via the register files tbat are shared among tbe controllers;

• How to synchronize between processors: the corresponding program counters
run in sync on tbe same hardware clock.

Furthermore, it is a solution that is scalabie in performance: there are no central resources
(like for example a central instruction memory), so the resources controlled by a certain
controller can be kept close to tbis controller. In addition, the controller itself can be kept
small. Finally, executing different loops on different controllers guarantees the overlap­
ping execution of loops.

The goal of this master's project is to find a metbod for the generation of a static sched­
ule for a VLIW DSP data patb witb multiple controllers. Since no design tools with an
instruction scheduling scope spanning multiple controllers are available yet, this metbod
bas to use currently available design tools. The generated static schedule will be a com­
position of multiple schedules, one for each controller, which allow multiple loops to be
executed in parallel on the single VLIW data patb. To allow this, the schedules should be
generated in such a way, tbat all available hardware resources are shared among tbe
controllers without any resource conflicts. Having found a metbod for generating such
schedules, the (dis-) advantages ofhaving multiple micro-coded hardware controllers in a
VLIW data path will be shown, by mapping an application on different architectural

15

1. Introduetion

approaches (e.g., single processor with or without loop transformation).

1.2. Thesis overview

The remainder of this report is organized as follows. Since the architecture proposed in
the previous section belongs to the class of multi-threaded processor architectures, we
present in Chapter 2 an overview of the research that has been performed in the past
concerning multi-threaded processor architectures. In addition, we show how these archi­
tectural approaches differ from the VLIW data path with multiple controllers that we
propose.

In Chapter 3, we present an overview ofthe main concepts oftwo design tools that are
used within Philips Research for the design of VLIW architectures, as well as a user
perspective on the similarities and ditierences between them.

Chapter 4 consists of the main part of this report: it presents a metbod for the use of
currently available design tools for single-controller VLIW architectures to generate
schedules for multiple controllers, which allow the overlapping execution of loops. Fur­
thermore, this chapter contains the results of a simple case study, which has been per­
formed to show the feasibility of the presented method. Based on this case study we
present some (dis-) advantages ofhaving multiple controllers in a single VLIW data path.

Chapter 5 presents the results of applying the metbod presented in Chapter 4 to a more
realistic case study: the mapping of the Viterbi decoding algorithm on a VLIW data path
with multiple controllers. Again, the (dis-) advantages of having multiple controllers for
this case study are shown.

Finally, Chapter 6 presents the main conclusions for the present method, as well as
some recommendations for future work with respect to the generation of schedules for a
VLIW data path with multiple controllers.

16

.
I ""• ••••-•• ••••-•••••• • l

Figure 1-4: A VLIW data path with multiple controllers

!
i
i

2.1. Origins of multi-threading

2. Multi-Threaded Processor Architectures: an Overview

The target architecture as described in the introduetion contains a data path that is con­
trolled by multiple controllers. Such an architecture belongs to the class of multi­
threading architectures: an architecture that is able to pursue two or more threads of
control in parallel. For that reason, we present in this chapter an overview of the research
that has been performed in the past concerning multi-threaded processor architectures.

We start this chapter with a short overview ofthe history of multi-threading architec­
tures. Next to that, inSection 2.2, we present the main architectmal approaches, which
are of interest for our work. Finally, in Section 2.3, we describe the projects that are
ciosest to our approach and mention the main ditierences with those projects.

2.1. Origins of multi-threading

The continuing effort to exploit the further advance of VLSI technology enables design­
ers to put more transistors on a chip and to increase the clock speed of on-chip operations
each year. Due to this increasing technology, we are now able to incorporate several
processors into complex microprocessor designs on a single chip. A major step in this
evolution has been the introduetion of the reduced instruction set computer (RISC) archi­
tecture. This RISC concept emerged from the desire for a simple architecture, which
enables a clear di vision of function between hardware and software.

The main goal of the RISC architecture has been to develop processor designs that
come close to initiating one instruction on each clock cycle of the machine. Several
products have met this goal, e.g., the MIPS and the Spare processors ([Hen96]). Two
architectural features have made that achievement possible: instruction pipelining and
cache memories. Pipelined instruction execution allows subsequent instructions to begin
execution before previously issued instructions have finished execution, as illustrated in
Figure 2-1. This tigure shows how instruction processing would proceed sequentially

time

(a}

(b}

time

(c}

Figure 2-1: (a) Sequentia/ instrucdon processing; (b) Steps requiredfor executing a
single instruction; (c) Execution with pipelining: the various executions of different
instructions overlap

17

2. Multi-Threaded Processor Architectures: an Overview

(Figure 2-la). As shown in Figure 2-1 b, processing a single instruction involves a num­
ber of micro-operations, for example fetch, decode and execute. In the case of instruction
pipelining, the micro-operations required to execute different instructions overlap, as
shown in Figure 2-lc. Instruction processing now proceeds in a number of steps, or
pipeline stages, in which the various micro-operations are executed, resulting in a shorter
instruction processing latency.

Cache memories allow instruction execution to continue, in most cases, without wait­
ing the full access time of the main memory. However, if certain data is not available in
the cache memory, a cache miss will occur. This cache miss causes the pipeline to stall,
waiting on the data to become available from the main memory, thereby decreasing the
performance of the processor. The latency becomes a problem if the processor spends a
large fraction of its time sitting idle and waiting for the access to the main memory to
complete, because it results in a loss of performance.

In order to increase the performance of a RISC processor and further decrease the
clock cycles per instruction (CPI) of the processor, the superscalar architecture has been
introduced. A processor based on a superscalar architecture model is capable of issuing
multiple instructions from a single instruction sequence during a single clock cycle
([MosOl]), exploiting the instruction-level parallelism (ILP) available in a program (see
Figure 2-2). In such an architecture, enough hardware resources are provided to allow
multiple, independent instructions to be in the samestage of processing simultaneously.

Nevertheless, instruction throughput in both RISC and superscalar architectures falls
well short of ideal ([Cha99]). Cache misses, partial issue cycles, branch mispredictions
and insufficient ILP in the program ([Wal91]) are among the factors preventing full
utilization of the available issue bandwidth. A solution for increasing the instruction
throughput is multi-threading: the processing of instructions from several different
threads in parallel. The co-existence of multiple active threads allows a multi-threading
processor to improve the overall instruction throughput by taking advantage of thread­
level parallelism {TLP): instructions from different threads are independent of one an­
other and thus can be executed in parallel, leading to greater functional unit utilization
and greater toleranee of execution latencies. According to [Den94], a multi-threaded
architecture differs from a single-threaded architecture in the sense that there may be
several enabled instructions from different threads, which are all candidates for execu­
tion. Similar to the single-threaded architecture, the state of a multi-threaded architecture
consists of a memory state (program memory, data memory and stack) and a processor

18

time

Figure 2-2: Superscalar execution of instructions (using the sequentia/ instruction
stream of Figure 2-1 a as example). /4 and /5 are executed in parallel. /4 has to wait
for /3, since it requires the value in r2. /6 has to wait for /5, as it needs the new
value ofrl produced by /5

2.2. Multi-threading approaches

state (program counter, stack pointer and register context). However, in case of a multi­
threaded architecture, the processor state consists of a collection of activity specifiers
(program counters and stack pointers) and a collection of register contexts, whereas for a
single-threaded architecture this state consists of a single activity specifier and a single
register context.

Another root of multi-threading comes from dataflow architectures. The dataflow ar­
chitecture originated from the concept of using dataflow program graphs as a machine­
level program representation ([Ian94]). Viewed from a dataflow perspective, a single­
threaded architecture is characterized by the computation conceptually moving forward
one step at a time through a sequence of states, each step corresponding to the execution
of one enabled instruction. However, direct implementation of processors based on a
dataflow model is a difficult task. For this reason, the conventional (RISC-like) control­
flow thread execution was incorporated into the dataflow approach, which resulted in a
multi-threaded architecture ([Ian94]).

After this short introduetion into the history of multi-threaded architectures, we dis­
cuss in the next section several common approaches for implementation of multi­
threading techniques.

2.2. Multi-threading approaches

According to [Ung02], multi-threading can be applied either to increase the performance
of a single program thread by implicitly utilizing parallelism, which is more coarse­
grained than ILP (so-called implicit multi-threading), or to increase the performance of a
multi-programming or multi-threaded workload (so-called explicit multi-threading),
depending on the architectural approach chosen.

The term implicit multi-threaded architecture refers to any architecture that is able to
execute several threads, which are dynamically generated from a single-threaded pro­
gram, concurrently. Examples of such architectmal approaches are the multi-scalar proc­
essor ([Fra93]), the trace processor ([Rot97]) and the speculative multi-threaded proces­
sor ([Mar98]). In these examples, a single processing unit with a single or multiple-issue
pipeline that is able to process instructions of different threads concurrently may charac­
terize the multi-threaded processor. As a result, some of these approaches may rather be
viewed as very closely coupled chip multi-processors (CMPs), which integrate two or
more complete processors on a single chip, because multiple groups of subordinate proc­
essing units each execute different threads under the control of a single sequencer unit.

An explicit multi-threaded architecture interleaves the instructions of different (user­
defined) threads of control in the same pipeline. Therefore, multiple program counters
are available in the instruction fetch unit and the multiple contexts are o:ften stored in
different register sets on the chip. The available execution units are multiplexed between
the thread contexts, which are loaded in the register sets. These types of architectmes
tolerate memory latencies that arise in the computation of a single instruction stream by
overlapping the long-latency operations of one thread with the execution of operations
from other threads.

Since we aim at an architecture with multiple program counters and multiple register
contexts, we restriet ourselves to the explicit multi-threaded approaches in the following
discussion.

19

2. Multi-Threaded Processor Architectures: an Overview

According to [Ung02], explicit multi-threaded processors fall into two categories, de­
pending on whether they issue in a given cycle instructions from a single thread only or
from multiple threads.

If in a given cycle instructions can be issued from a single thread only, the following
two principal tecbniques of explicit multi-threading are used (see Figure 2-3):

• Interleaved multi-threading: at each processor cycle, an instructien of a dif­
ferent thread is fetched and fed into the execution pipeline;

• Blocked multi-threading: the instructions of a thread are executed succes­
sively until an event occurs that (possibly) causes latency. This event in­
duces a context switch toanother thread.

When instructions can be issued from multiple threads in a given cycle, the following
tecbnique can be used:

• Simultaneous multi-threading: the superscalar instructien issue approach is
combined with the multiple-context approach. Instructiens are issued simul­
taneously from multiple threads to the execution units of a superscalar proc­
essor.

Before we present the different multi-threading tecbniques in more detail, we briefly
introduce the main principles of architectural approaches that exploit instructien-level
parallelism and thread-level parallelism.

Figure 2-4a until Figure 2-4c demonstrate the different approaches possible with sca­
lar processors (i.e., single-issue processors lik:e a RISC processor): single-threaded
(Figure 2-4a), with interleaved multi-threading (Figure 2-4b) and with blocked multi­
threading (Figure 2-4c).

Figure 2-4d until Figure 2-4i demonstrate the different approaches possible with four­
issue processors: single-threaded superscalar (Figure 2-4d), single-threaded VLIW
(Figure 2-4g), superscalar with interleaved multi-threading (Figure 2-4e), superscalar
with blocked multi-threading (Figure 2-4f), VLIW with interleaved multi-threading
(Figure 2-4h) and VLIW with blocked multi-threading (Figure 2-4i).

The number of instructions that might be processed while the pipeline is interlocked
(so-called opportunity cost ([Ung02])) can be easily determined in a single-threaded
superscalar processor as the number of empty issue slots (Figure 2-4d). It consists of
horizontal losses (the number of empty places in a partially tilled issue cycle) and the
even more harmful vertical losses (cycles where no instructions at all can be issued). In a
VLIW processor (Figure 2-4g), horizontallosses appear as NOPs (N; no operations). The
opportunity cost of a VLIW architecture is about the same as a single-threaded

20

Explicit Multi-Threading

/~
lssuing trom

a single thread
in a cycle

lnterleaved Blocked
Multi-Threading Multi-Threading

Figure 2-3: Explicit multi-threading approaches

lssuing trom
multiple threads

in a cycle

I
Simultaneous

Multi-Threading

2.2. Multi-threading approaches

A ABCD ABCD A ABCD ABCD

~ ~u~ ~u~ ~ ~u~ ~U~ - insüu~on stream

il ö
.,
CD
.t:: 1ll .!:!

CD ·~

~
.,
x

~ .l!!
c:
8

(a) (b) (c) (d) (e) ~
issue bandwidth (f)

ABCD ABCD ABCD ABCD

~u~ ~u~ ~u~ ~u~

(g) (h) (i) (k)

Figure 2-4: Different approaches possible with scalar processors: (a) single­
threaded scalar; (b) interleaved multi-threading scalar; (c) blocleed multi-threading
scalar. Different approaches possible with multiple-issue processors: (d)
superscalar; (e) interleaved multi-threading superscalar; (/) blocleed multi­
threading superscalar; (g) VLIW; (h) interleaved multi-threading VLIW; (i) blocleed
multi-threading VLIW; Other approaches: (j) simultaneous multi-threading; (k) chip
mul ti-processor. Each row represents the issue slots fora single execution cycle

superscalar processor. The interleaved multi-threaded superscalar (Figure 2-4e) and the
interleaved multi-threaded VLIW (Figure 2-4h) are able to fill the verticallosses of the
single-threaded models with instructions of other threads, but are not able to fill the
horizontallosses. Other design possibilities, like the blocked multi-threading superscalar
(Figure 2-4t) and the blocked multi-threading VLIW (Figure 2-4i) models, would fill
several succeeding cycles with instructions of the same thread before performing a con­
text switch. This switching event is more difficult to implement and as a result, a context­
switching overhead of one to several cycles might arise.

Figure 2-4j and Figure 2-4k demonstrate a four-threaded eight-issue simultaneously
multi-threading (SMn processor and a chip multi-processor (CMP) with four two-issue
processors, respectively. The processor model in Figure 2-4j exploits ILP by selecting
instructions from any thread (four in this case) that can potentially issue. If one thread
bas high ILP, it may fill all horizontal slots with instructions of this thread, depending on
the issue strategy of the SMT processor. If multiple threads each have low ILP, instruc­
tions of several threads can be issued and executed simultaneously. In the CMP with four
two-issue CPUs on a single chip that is represented in Figure 2-4k, each CPU is assigned
a thread from which it can issue up to two instructions each cycle. Thus, each CPU bas
the same opportunity costas in a two-issue superscalar model. The CMP is not able to
hide latencies by issuing instructions of other threads. However, a CMP of four two-issue
processor will reach a higher utilization than an eight-issue superscalar processor
([Egg97]), because the horizontal losses will be smaller for two-issue than for high-

21

2. Multi-Threaded Processor Architectures: an Overview

bandwidth superscalars.

2.2.1. Interleaved multi-threading

In the interleaved multi-threading model (also called fine-grain multi-threading
([Ung02])), the processor switches to a different thread after each instruction fetch. In
principle, an instruction of a thread is fed into the pipeline after the retirement of the
previous instruction of that thread. This eliminates control and data dependencies be­
tween instructions in the pipeline. Therefore, pipeline hazards cannot arise and the proc­
essor pipeline can easily be built without the necessity of complex forwarding paths. This
leads to a fast pipeline: no hardware interlocicing or data-forwarding is necessary. As a
result, the context-switching overhead is zero cycles. Memory access latency is tolerated,
since a thread is not scheduled until the memory transaction has completed. This model
requires at least as many threads as pipeline stages in the processor, in order to prevent
the occurrence of verticallosses. Interteaving the instructions from many threads on a
cycle-by-cycle base limits the processing power accessible to a single thread, thereby
degrading the single-thread performance. There are two possibilities to overcome this:

• Dependenee look-ahead technique: this technique adds several bits to each
instruction format. The compiler uses the additional bits to state the number
of instructions that follow in program order and are not data- or control­
dependent on the instruction being executed. This allows the instruction
scheduler of the interleaved multi-threading processor to feed non-data- or
control-dependent instructions of the same thread into the pipeline succes­
sively;

• Interleaving technique: this technique adds caching and full pipeline inter­
locks to the interleaved multi-threading approach. Contexts are interleaved
on a cycle-by-cycle basis, yet a single-thread context is also efficiently sup­
ported.

The most well known example of interleaved multi-threaded processors is used in the
Heterogeneaus Element Processor (HEP, [Smi81]), the fust commercial computer system
employing a multi-threaded architecture.

2.2.2. Blocked multi-threading

The blocked multi-threading approach (also called coarse-grain multi-threading
([Ung02])) executes a single thread until it reaches a situation that triggers a context
switch. Usually, such a situation arises when the instruction processing reaches a long­
latency operation or a situation where latency may arise (e.g., a branch or an access to the
cache memory). Compared to the interleaved multi-threading technique, a smaller num­
ber of threads is needed and a single thread can execute at full speed until the next con­
text switch arises. The single-thread performance on a blocked multi-threading processor
is similar to the performance of a comparable processor without multi-threading: if a
single threads runs on a blocked multi-threading processor, no context switches occur
and the processor performs just like a processor without multi-threading.

According to [Ung02], the blocked multi-threading technique can be classified into
static and dynamic models, depending on the type of event that triggers the context
switch. In the static model, a context switch occurs each time the same instruction is
executed in the instruction stream. The compiler eneodes this context switch and there-

22

2.2. Multi-threading approaches

fore context-switching can be triggered already in the fetch stage of the pipeline, result­
ing in a lower context-switching overhead (close to zero cycles). On the other hand, in
the dynamic model, a dynamic event triggers the context switch. Examples of such dy­
namic events are cache misses, specitic signals (interrupts) or an attempt to use the still
missing value of a load operation. In genera!, all the executions between the fetch stage
and the stage that triggers the context switch are discarded, teading to a higher context­
switching overhead than for static context-switching models.

Examples of processors that use the blocked multi-threading approach are the MIT
Sparele ([Aga93]) and the MSparc ([Mik96]).

2.2.3. Simultaneons multi-threading

Interleaved multi-threading and blocked multi-threading are techniques, which are most
efficient when applied to scalar RISC or VLIW processors, since both types of processor
are able to issue instructions from a single thread only every clock cycle. Combining the
superscalar technique with multi-threading leads to a technique where several hardware
contexts can be active simultaneously, competing each clock cycle for all available re­
sources. This technique, called simultaneous multi-threading (SMT, see for example
[Egg97] or [Tul95]), inherits from superscatars the ability to issue multiple instructions
every clock cycle, and like multi-threaded processors it contains hardware resources for
multiple contexts. The result is a processor that can issue multiple instructions from
different threads each cycle, exploiting both ILP and TLP. In that way, instructions from
several threads can fill unused issue slots within one clock cycle, as well as unused clock
cycles that occur due to latencies. In principle, the full issue bandwidth of the processor
can be utilized every clock cycle. The SMT fetch unit can take advantage of the inter­
thread competition for instruction bandwidth in two ways: ftrst, it can partition this
bandwidth among the threads and fetch instructions from several threads each cycle. This
increases the probability of fetching non-speculative instructions only. Second, the fetch
unit can be selective about from which threads to fetch instructions. For example, it may
only fetch instructions from those threads that will provide the most immediate perform­
ance benefit

The SMT processor can be organized in two ways:
• Resource sharing: instructions of different threads share all resources like

the fetch buffer, the physical registers for renaming of different register sets,
the instruction window and the reorder buffer. Thus SMT adds minimal
hardware functionality to conventional superscalar architectures; it consists
of a fast single-threaded superscalar processor with multi-thread capability
added on top;

• Resource replication: all internat buffers of a superscalar processor are rep­
licated, such that each buffer is bound to a specific thread. Instruction fetch,
decode, rename and retire units may be multiplexed between the threads or
be duplicated themselves. The issue unit is able to issue instructions of dif­
ferent instruction windows to the execution units simultaneously. This form
of organization adds more changes to the organization of superscalar proces­
sors, but leads to a natural partitioning of the instruction window as well as a
simplification ofthe issue- and retire-stages.

Thread-level parallelism (TLP) can come from either multi-threaded, parallel pro-

23

2. Multi-Threaded Processor Architectures: an Overview

grams or from multiple, independent programs in a multi-programming workload, while
ILP is utilized from individual threads. Because an SMT processor simultaneously ex­
ploits both fine- and coarse-grained parallelism, it uses its resources more efficiently than
single-threaded superscalar processors for multi-threaded workloads and thus achieves a
better instructien throughput.

Chip multi-processors (CMP) represent a competing approach to SMT. A CMP inte­
grates two or more complete (super-) scalar processors on a single chip. In that way,
every unit of a processor is duplicated and used independently of its copies on the chip.
Because of that, a multi-processor is easier to implement and better scalabie to a large
number ofthreads. However, only the SMT approach has the ability to hide latencies.

2.3. Related work

The architectural approaches presented in the previous section all apply to general­
purpose processors. Obviously, this has consequences for the architectural design, since a
general-purpose architecture needs to be flexible. This flexibility reflects itself for exam­
ple in the presence of cache memories, which are used to speedup the access to variables
from the main (shared) memory. Another example of a typical general-purpose feature is
out-of-order execution, which relaxes the ordering eenstraint on the execution of instruc­
ti ons, thereby increasing the concurrency ([MosO 1]). However, the most important prop­
erty of a general-purpose architecture is the presence of a resource that is central to all
other resources present in the architecture: the instructien memory.

In an application domain specific processor (ADSP), which is the type of processor
we aim at in this project, it is possible to remove much of the overhead of general­
purpose architectures, since often the behaviour of the application is well known at com­
pile-time. Because of this, for example, there is a strong control over the memory archi­
tecture, which allows us to replace the caches and (part ot) the main shared memory with
small, distributed local memories. Furthermore, for the type of architecture we have in
mind, it is possible to remove the bottleneck of a central instructien memory, since in our
architecture each of the controllers will have its own independent instructien memory.

Looking at the architectural approaches presented in the previous section, the simulta­
neous multi-threading approach -more specifically, the SMT Multimedia Processor- is
ciosest to the type of architecture we aim at. The reason for this is the fact that we aim at
an architecture, which is able to pursue multiple threads in parallel. Furthermore, our
architecture contains application specific units (ASUs), just like the SMT Multimedia
Processor.

The SMT Multimedia Processor model (see Figure 2-5, [Oeh99]) features single or
multiple instruction fetch (IF) and -decode (ID) units, a single rename/issue (RI) unit,
multiple, deccupled reservation stations and multiple execution units. In particular, these
execution units consist of several combined integer/multi-media units, a complex inte­
ger/multi-media unit, a branch unit, separate local and global load/store units, a single
retirement (RT) and write-back (WB) unit, rename registers, a branch target address
cache (BTAC) and separate instruction- and data-caches (1-cache and D-cache, respec­
tively) that are shared by all active threads. Thread-specific instructien buffers (between
IF and ID), issue buffers (between ID and RI) andreorder buffers (in front of RT) are
employed in the pipeline. Each thread is executed in a separate register set.

24

I F : instructien fetch
ID: instructien decode
RI: rensmeiissue unit
LJS: laad/store
110: input/output

Figure 2-5: The SMT Multimedia Processor model

2.3. Related work

RT: ratirament unit
WB: write-back unit
BTAC: branch target address cache
1-Cache: instructien cache
D-Cache: data cache

However, there is no fixed allocation between threads and (execution) units. The pipeline
performs in-order instruction fetch, decode and rename/issue to reservation stations, out­
of-order dispatch from the reservation stations to the execution units, out-of-order execu­
tion and, fmally, in-order retirement and write-back.

The rename/issue stage simultaneously selects instructions from all issue buffers up to
its maximum issue bandwidth (which is a feature of the SMT approach). The integer
units are enhanced by multi-media processing capabilities. A thread control unit is em­
ployed for thread start, stop and synchronization operations, as well as for 110 operations.
Furthermore, a local RAM memory is included, which is accessed by the localload/store
unit.

The main difference with the architecture presented in Figure 2-5 and the architecture
presented in the introduetion is that our architecture contains multiple instruction memo­
ries (instead of one central instruction cache). Each of those instruction memories holds
the instructions for a single instruction stream and controts part of the execution units, as
illustrated in Figure 2-6. Because of these multiple instruction memories, the

IF : Instructien fetch
10: Instructien decode
I-Mem: Instructien memory

Figure 2-6: Schematic view of differences with SMT Multimedia Processor

25

2. Multi-Threaded Processor Architectures: an Overview

rename/issue unit (RI) of the SMT Multimedia Processor becomes superfluous. Among
the execution units are also ASUs, since we target at an ADSP architecture. Two other
differences are the absence of a data-cache and the presence of multiple (small) distrib­
uted local memories in our architecture (instead of one lärge shared memory).

The Phideo tools ([Ver95]) create another architecture, which has a close resemblance to
the target architecture as presented in the introduction. The Phideo architecture is pre­
sented in Figure 2-7. It consists of a number of processing units (PU), a number of
memories (M), address generators (AG) for those memories and a controller. The memo­
ries can be static or dynamic RAMs, register files, separate registers or flip-flops. The
role of the memories is to take care of the data transport between the processing units,
which produce and consume the data. Note, that the number of memories may differ
from the number of processing units.

Memory places can he reused between several streams to reach a more efficient im­
plementation when the schedule allows this. A routing network is needed for the data
transport between processing units and memories. A similar cooperation exists between
address generators and memories. It is the role of the address generators to generate the
right addresses for the memories at every point in time. Obviously, the number of address
generators may differ :from the number of memories. A second routing network takes
care ofthe transport ofthe generated addresses.

It is the task of the controller to generate the necessary control signals, such as the se­
lection of the correct function on a processing unit, the next address signals for the ad­
dress generators and the control for both routing networks.

The similarity between the architecture generated by the Phideo tools and the architec­
ture presented in Section 1.1 lies in the fact that they both consist of multiple application
specific function units and local, distributed memories, to enable multiple threads to he
executed in parallel. The main difference between the Phideo architecture and the one
described in the introduetion is the fact that the controller of the Phideo architecture is
implemented based on hardware counters instead of program counter addressed instruc­
tien words and that the Phideo architecture is not programmable. Furthermore, the

Figure 2-7: The Phideo architecture

26

AG: address generation
M:memory
PU: processing unit

2.3. Related work

Phideo architecture has one central controller (which is synthesized in a distributed man­
ner), whereas we aim at an architecture with multiple, independent controllers. Finally, in
the Phideo architecture, as shown in Figure 2-7, address generators genera te addresses
for all memories, even for the register files. This addressing can be useful, if, for exam­
ple, there is a need to access a register file in a cyclic manner. However, often this ad­
dress generation for register files adds extra and unnecessary hardware complexity to an
architecture, since it is for example also possible to address the register files using abso­
lute addresses in the machine code. The type of architecture we aim at is an architecture
without (hardware) address generation for the register files.

In [Jay02], a clustered LO or loop buffer organisation fora VLIW processor is proposed,
in order to reduce the energy consumption in the instruction memory. The essentials of
this clustered LO buffer organisation are illustrated in Figure 2-8. The loop buffers are
partitioned and functional units are logically grouped in the VLIW data path to form
instruction clusters. In each of the clusters, the buffers store only the operations of a
certain loop, destined to the functional units in that cluster. Typically, these buffers are
used to store those operations that are executed often (such as loop operations), in order
to reduce the energy consumption of the instruction memory.

By default, the LO buffers are not accessed during the normal phase of execution, and
a program executes via the normal (Ll) instruction memory. Parts of the program that are
to be fetched from LO buffers should be marked explicitly either by the programmer or
the compiler. For this, a special instruction is used. Once this instruction is encountered,
the necessary instructions are pre-fetched and distributed over the different LO partitions
by the instruction dispatcher. Since the distributed organisation allows the restrietion of
accesses to partitions that are not active in a certain instruction cycle, the local controller
(index and translation control, ITC) of each cluster is provided with an activation trace.
While the operations of each instruction in the loop are pre-fetched and distributed
among the partitions, a zero or one is stored in the activation trace register indicating that
a partition is inactive or active, respectively, for the corresponding instruction cycle.
During the execution of the operations in the loop buffers, the loop buffer control (LBC)

lnstructlons from
L 1 memory/cache

PC : Program Counter
LBC: LO Buffer Control
ITC : Index Translation and Control
FU : Functional Unit

lnstruction cluster

Figure 2-8: The clustered LO buffer organisation, according to [Jay02}

27

2. Multi- Threaded Processor Architectures: an Overview

unit controts the ITCs of each buffer and selects the appropriate inputs of each of the
multiplexers, such that the operations are indeed fetched from the LO buffers instead of
from the Ll instruction memory.

Currently, this clustered buffer organisation is being extended to support the execution
of multiple loops in parallel ([Jay03]). For this, each of the loops will be mapped and
executed on a certain LO cluster, which is possible since each cluster bas its own fetch
mechanism (program counter). If no data dependencies between the instructions of one
loop to another loop exist, then the execution of each loop can be independent of the
others and will be synchronised after the execution of the loops. However, if data de­
pendencies between loops are present, the compiler will have to take care of proper
synchronisation between the loops, as well as providing data moves from one cluster to
another. This is different from the architecture we propose, where shared data will be­
come available in shared register locations, without the need of explicit data moves or
explicit synchronisation. Another difference with the architecture proposed in the intro­
duetion is that in the clustered buffer organisation, no sharing of data path resources
between different loops is possible, since each of the loops is mapped onto a separate
cluster.

28

3.1. A IRT Designer

3. Design Tools

As stated in the introduction, the main goal of this project is to use the infrastructure of
design tools that are currently at the market to automatically generate schedules for mul­
tiple controllers. Within Philips Research, two design tools are available for the genera­
tion of VLIW architectures and schedules for them: AIRT Designer and Silicon Hive. In
this chapter, we provide a user perspective on the similarities and ditTerences between
those two tools. Therefore, in the frrst two sections, a short overview of the architecture
models and design flows used by both tools are presented. Finally, in Section 3.3, we
discuss the main ditTerences between the AIRT Designer and Silicon Hive tools.

3.1. AIRT Designer

Adelante Technologies ([Adelan]), which was founded in 2001 by Philips Semiconduc­
tors and Frontier Design, originally developed the AIRT Designer tooi. In June 2003,
Adelante sold its AIRT DSP coprocessor technology to ARM ([ARM]). The AIRT De­
signer tooi assists the designer in the development of a processor or a processor-like
architecture, customizing it for the algorithm that has to be executed on this architecture.
The generated architectures consist of a set of data path resources, controlled by a "Very
Long Instruction Word"-type (VLIW) controller. This results in a design that is contigur­
abie and scalabie for parallelism as well as performance.

3.1.1. Architecture overview

The AIRT Designer tooi maps a C algorithm into a register-transfer level (RTL) hard­
ware description of an architecture ([ART]). This architecture can be described as a
collection of register files, the paths between those register files and the resources along
these paths that pass, modify, or store the data. The set of hardware execution units and
busses together form the so-called data path. All the resources are managed by a control­
ling mechanism: the controller or the control path. The controller and the datapathare
the two main parts of the architecture. In Figure 3-1, an example of AIRT Designers'
architecture model is shown.

The data path can best be described in terms of the paths it uses to transfer data from
one register field to another and the resources used along those paths. The reason for this
is that any register transfer starts by reading data from one or more fields in different
register files and fmishes by writing derived data into one or more fields in different
register files. In between the reading and writing of data from and to register files are
busses and functional resources that perform data transformations. Examples of func­
tional resources are ALUs, ACUs, RAMs and ROMs.

Figure 3-2 shows the used data path model in more detail. This tigure shows that the
outputs of the register files feed the inputs of the resources directly. Furthermore, each of
the resource inputs is assigned its own register file. The outputs of the resources are put
on the busses either directly or via tri-state buffers, depending on whether multiple

29

3. Design Tools

--+ Con1rcl flow

- Dataftow

1!1111 Regi-file

Controller I '11 F.-unK(~)

Figure 3-1: Example of A IRT Designer's architectural model ([ART])

resources are able to access the bus (a tri-state buffer is used to control which resource is
allowed access to the bus). In turn, the busses will feed the register files. For that pur­
pose, a layer of multiplexers connects the busses with the register files (unless only one
bus has access to a certain register file).

Next to the data path of the architecture, is the control path with the controller. The
control path is completely orthogonal to the data path. The controller controls all re­
sources on the data path separately by a partition of the controller, as shown in Figure
3-1. This illustrates the VLIW aspect of the controller.

30

~
::I
E

• Funclional Unit

I1IÎI, Registar File

• Muttlplexer

Figure 3-2: Datapathof A IRT Designer's architecture in more detail ([ART])

3.1. AIRT Designer

3.1.2. Design flow overview

The main design steps within the AIR I Designer tooi are shown in Figure 3-3. The tooi is
built around a central data structure that represents the design. During each step, this data
structure is accessed and updated. At the end of all design phases, the complete design is
available as a register transfer level description.

The design steps are executed in the order as indicated by the numbers in Figure 3-3,
but the user can return to each of the previous steps at any time and influence each step
by altering options or specifying pragmas. In the following, a briefdescription of each of
the design steps is given, using the step numbers as present in the figure.

1. Edit/Compile Source. In this step, the algorithm to be implemented is specified
and compiled. The specification is done in a subset of the C language. During the
compile-step, the algorithm is converted into an internat representation. The
Edit/Compile step uses methods of analysis to identify and represent the parallel­
ism available in the souree algorithm (data flow analysis). The information de­
rived from this is exploited in the other design steps to achieve an optimal use of
the architecture.

2. Create architecture. The architecture is specified by means of pragmas that in­
stantiate core resources and a controller. Auxiliary resources, like register files,
busses, tri-state buffers and multiplexers are introduced automatically. More
pragmas can be inserted for fine-tuning the architecture to specific needs. Exam­
ples of such fine-tunings are merging register files, or restricting the bus network.

3. Map to Architecture. In this step, all operations in the C description are assigned
to the data path resources specified in the Create Architecture step and translated
into register transfers. Additionally, all variables used in the C description are as­
signed to the available memory types (register files, RAM, ROM). This yields a
yet unordered R T level representation of the C souree onto the target architecture.
If a resource bas multiple instances (e.g., two ALUs), the user can define which
operations should be mapped onto what resource, using a pragma.

3

Figure 3-3: Internal designflow of A IRT Designer ([ART])

31

3. Design Too/s

4. Scbedule Operations. During scheduling, the register transfers are ordered along
the time axis in as few clock cycles as possible, while taking into account clock­
cycle timing constraints and hardware constraints. In addition, all variables are
assigned to individual register fields in such a way that the register requirements
are minimized. Scheduling is done by means of a basic scheduler, a set of optimi­
sation techniques for improving the basic schedule and a set of pragmas to cus­
tomize the schedule (e.g., to assign operations to a fixed potential or for specify­
ing a fixed pipelining factor).

5. Build RT Level. This fmal step generates the complete design, datapathand con­
troller (including the program code), in a hardware description language (HDL,
such as VHDL or Verilog).

3.2. Silicon Hive

Silicon Hive is a business entity created within the Philips Technology Incubator, an
organization that creates new businesses based on technologies invented by Philips.
Silicon Hive develops embedded reconfigurable architectures. lts reconfigurable comput­
ing technology differentiates itself from those of other players in the field by the fact that
"it supports multiple styles of parallelism, allows for high-level programmability, allows
cost-effective domain-specific solutions and supports the computational demands of the
entire DSP spectrum, from very high and/or dynamic data-rates to relatively lower data­
rates" ([SiHive]).

As in the previous section, we first show an overview of the target architecture of the
Silicon Hive tooi, foliowed by an overview of the design flow used in these tools.

3.2.1. Architecture overview

The basic component of architecture of Silicon Hive's architecture is the Processing and
Starage Element (PSE), as shown in Figure 3-4 ([SiHive]). A PSE is a VLIW-like data
path consisting of several interconneet networks (IN), one or more issue slots (IS) with
associated function units (FU), distributed register files and, optionally, local memory
storage (MEM).

A matrix of one or more (possibly different) PS Es, together with a VLIW -like control­
ler (CTRL) and configuration memory (CONFIG MEM) make up a cell. A cellis a fully
operational processor capable of computing complete algorithms. PSEs within a cell can
communicate with each other via data communication /ines (CL). Typically, one applica­
tion function at a time is mapped onto the matrix of PSEs. The more PSEs are present,
the more the function can be spread over the available PSEs, in a data-flow manner.

An array of one or more cells, connected together via a data-driven communication
mechanism, forms a streaming array. The communication across cells takes place
through blocking FIFOs accessed from load/store (LD/ST) units within the cells. Multi­
ple functions can be concurrently mapped onto the streaming array, each one occupying a
non-overlapping sub-set of the cells.

32

Processing and Storage Element (PSE)

3.2. Silicon Hive

RF: Register File
IN : Interconneet Network
FU: Functional Unit
IS : Issue slot
CL: Communication Une

Figure 3-4: Silicon Hive's architecture design space overview ([SiHive])

3.2.2. Design flow overview

In Figure 3-5, an overview of the design flow used in the Silicon Hive tool is presented.
A high-level C program and a machine description serve as input to the tools. The C
program is, together with the architectural information present in the machine descrip­
tion, compiled into an intermediate representation (hierarchical data flow C (HDFC)
description), consisting of machine operations and explicit control flow (do/while loops
etc.). As presented in Section 4.1, this HDFC description consists of multiple basic
blocks. Each of those basic blocks is extracted, one by one, and temporarily stored in a
data flow C (DFC) description, starting with the deepest nested basic block. The Hive
scheduler schedules the basic block, after which the scheduled basic block is inserted
back into the original HDFC-description. This is repeated several times, until the com­
plete HDFC-description is scheduled.

The scheduled HDFC-description, finally, is input to the assembler/linker, which gen­
erates the program code for the scheduled algorithm. This program code, together with a
hardware description language (HDL) model of the machine description (generated by
the processor generator) can be used for hardware synthesis and verification. Simulation
is also possible during the other design steps, which allows for immediate verification of
the results obtained during different design steps.

33

3. Design Tools

Figure 3-5: Silicon Hive's design flow ([SiHive])

3.3. AIRT Designer versus Silicon Hive: a user perspective

Design tooi input

Design tooi
(lntermediate) output

Design phase

The main differences between AIRT Designer and the Silicon Hive tooi are in the archi­
tecture model that both tools apply. In the following, these differences are discussed in
more detail.

One ofthe major differences between the architectures ofthe AIRT Designer and Sili­
con Hive tools is in the way that both deal with immediate values for functional units.
Immediate values are constant values that are not produced by some operation (thus not
available in a register location) and are used in an operation directly (e.g., the addition of
the value in register location Rl with the constant 4). In the AIRT Designer architecture,
all immediate values are present in a so-called ROMCTRL memory. On the other hand,
in the Silicon Hive architecture, the immediate values are encoded in the instruction bits
that control a resource. The main advantage of the latter approach is that in every clock
cycle the immediate values for all functional units can be loaded at once. In the AIRT
approach, first all immediate values have to be loaded from the ROMCTRL memory, one
by one, taking as many clock cycles as immediate values have to be loaded. This intro­
duces quite an overhead when many immediate values are used in the application. On the
other hand, the immediate encoding in the instructions results in longer instruction
words, and thus in a larger program code size for the Silicon Hive architecture.

Opposite to the AIRT Designer tooi, the Silicon Hive tooi exposes all pipeline stages
that are present in functional units to the compiler. This allows the elimination of com­
plex bypass networks, forwarding and pipeline control logic. Furthermore, by splitting
pipelined operations into separate operations for each pipeline stage, those operations can
be handled as simpte single cycle operations during assignment and scheduling.

One of the main features of AIRT Designer is the possibility for the user to design its
own complex functional units (application specific units). With the Silicon Hive tooi,
such units can also be designed, with one major difference: the Silicon Hive tooi does not
allow functional units to have an internat state, as is the case for AIR T Designer. This is

34

3.3. A IRT Designer versus Silicon Hive: a user perspective

illustrated in Figure 3-6. That tigure shows a multiply-accumulate (MAC) unit, which
bas the two variables a and b as its inputs, multiplies these two variables and adds the
result to the accumulated result of previous multiplications. The accumulation register is
initialised to zero before use, and after a (fixed) number of iterations, the accumulation
result c is stored in a register. Figure 3-6a shows how the hardware of this functional unit
can be designed using the AIR T Designer tool: the accumulation register is ins i de the
unit, bidden from the user or compiler. In that way, the unit is in a certain state at any
point in time. This state is determined by the content of the accumulation register. Figure
3-6b shows how this unit is designed using the Silicon Hive tools: the accumulation
result is stored in a register field outside the functional unit, which is also an input to the
functional unit. Now the state is explicitly available to, and thus controllable by, the
compiler. Furthermore, using this approach the compiler can handle a lot ofthe complex­
ity of a functional unit, instead of leaving it to the designer to cope with this complexity.
On the other hand, this approach leads to a larger instruction width, since the MAC-unit
designed with the Silicon Hive tool bas three inputs and two outputs, which is one input
and one output more than in the case ofthe AIRT design.

The lack of intemal state for functional units also results in the absence of memories
in the Silicon Hive architecture model; these are modelled as memory mapped I/Os
(MMIO), using load/store units to access them. Using this approach, a cache for example
bas to be implemented as an application specific unit (ASU), with an MMIO-port to
access a (extemal) cache memory.

A final distinct difference in architecture is the use of issue slots (clusters or groups of
functional units) in the Silicon Hive architecture. In the AIRT architecture, this clustering
is not possible; each functional unit is controlled by a part of the controller, which results
in a larger amount of resources that can be used in parallel, but also in a larger total
instruction width.

If we look at the usage of the tools, there are also a few distinct differences between the
AIRT Designer tool and the Silicon Hive tool. The main difference is in the architecture
description: in the Silicon Hive tool, this description bas to be written completely by
hand, whereas the AIRT architecture is described in terms ofpragmas. Each ofthe

{a) {b)

•• register field

e oparation

Figure 3-6: Modelling of state in functiona/ units: (a) in A IRT Designer and (b) in
Silicon Hive

35

3. Design Tools

pragmas instantiates a functional resource from a resource library, e.g., a RAM, an ALU
or a controller. Depending on the application that has to be mapped onto the architecture,
AIRT Designer adds all registers, busses and multiplexers automaticallyin the "Map to
Architecture" phase (see Section 3.1.2). In case of the Silicon Hive tooi, the user has to
specify all the resources, busses and register files and their interconnections.

In termsof influencing the design flow, AIRT Designer is a winner: options are pro­
vided for all design steps, which offer a global handle on those steps. In addition, for
every step performed by the tooi, a set ofpragmas can be created (see Figure 3-3), which
provide a more fined-grained control on the way a certain step is performed. In case of
the Silicon Hive tooi, the user is only able to modify the architecture description to its
needs and to put some extra constraints in the algorithmic description (e.g., total schedule
latency, pipelining factor (initiation intervallength) or timing constraints).

Finally, looking at the output generated by both tools, there is also a difference: for the
Silicon Hive tooi, the schedule (both graphical and textual) and the resource-, register­
and bus-usage are all provided in one single file, whereas AIR T Designer generates a
separate file for each of them. Furthermore, in case of the Silicon Hive tooi, simulation of
the algorithm can be performed after every design phase. With the AIRT Designer tooi,
this simulation has to be done separately. However, only the algorithm on C-level or
HDL-level can be simulated, using an extra tooi in case of the HDL-level (HDL simula­
tor).

36

4.1. Scheduling basics

4. Scheduling for Multiple Controllers

As stated in Section 1.1, the main goal of this master' s project is to generate static sched­
ules for multiple controllers, in such a way that loop executions can be overlapped in
time. Since no tools with an instruction scheduling scope spanning multiple controllers
are available yet, this project aims at using currently available tools to generate such
schedules. In this chapter, we show how this can be achieved. Therefore, in Section 4.1,
we first show the main concepts of scheduling that are used in design tools like AIR T
Designer and Silicon Hive. Next to that, inSection 4.2, we present how these concepts
can be used to generate schedules for multiple controllers, taking into account the data
dependencies that are present in an application, as well as the resource conflicts that
occur during the parallel execution of loops. In Section 4.3, we present the results of a
simple case study that has been performed to show the feasibility of the method and the
(dis-) advantages of ha ving multiple controllers in a VLIW data path. We end this chap­
ter with some conclusions on the presented method and casestudy.

4.1. Scheduling basics

Any algorithmic description can be partitioned into basic blocks. A basic block is a se­
quence of consecutive statements of a program in which flow of control enters at the
beginning and leaves at the end without halt or the possibility of branching Gumping to
another basic block due toa conditionat statement), except at the end of the block. Ex­
amples ofbasic blocles are for-loops, if-then- and else-statements.

Each basic block can be modelled by a data flow graph (DFG), which describes the
primitive operations performed in that block, as well as the dependencies between those
operations. Formally, a DFG is defmed as follows ([Ku92]).

Definition 1 (Data Flow Graph) A data flow graph (DFG) is a triple (V, EsUEJJEl, w),
where

• V is the set of vertices (operations);
• Es c V x V is the set of sequence preeedenee edges;
• Ed c V x V is the set of data preeedenee edges;
• E1 c V x V is the set of loop-carried data preeedenee edges;
• w: EsuEJ..,JE1 -+ Z is a function descrihing the timing delay (in clock cycles)

associated with each preeedenee edge.

For reasons of simplicity, we assume that all operations have an execution delay of one
clock cycle. A data preeedenee edge with weight w(A, B) between node A and node B
represents the consumption in node B of data produced by node A w(A, B) clock cycles
after the production of this data. A sequence preeedenee edges between node A and B
represent that node A has to be executed w(A, B) clock cycles beforenode B. A loop­
carried data preeedenee edge with weight w(A, A), finally, represents that the value pro­
duced by node A in iteration i of a loop is consumed w(A, A) clock cycles later by the

37

4. Schedulingfor Multiple Controllers

samenode A in iteration i+ 1.
Two dummy nodes are always assumed to he present in the DFG: the souree and the

sink. The souree node represents operations :from outside the basic block, which produce
data that is consumed by operations inside the basic block. The sink node represents
operations :from outside the block, which consume data that is produced inside the basic
block. Both source- and sink nodes have no execution delay, and represent respectively
the fust and the last operation to he executed in the basic block. Usually, the ssource- and
sinknodes are not shown when depicting a DFG.

The taskof scheduling is to assign each operation v e Va start time s(v). These start
times are constraint by means ofthe preeedences present in the DFG. A preeedenee edge
(v;, Vj) e EsUEJJEi states that

s(vj) ~ s(v;) + w(v;, vj) (1)

An example of a DFG is shown in Figure 4-1. Each ofthe operations in the DFG bas a
type and can he executed on a data path resource that supports this particular type. Ex­
amples of data path resources are functional units. When an operation is executed it uses
a data path resource.

Obviously, two operations that are to he mapped onto the same functional unit cannot
execute in parallel. Another example of why two operations cannot execute in parallel is
the transport of the result of their computations over the same bus simultaneously, i.e., at
the same moment. These constraints preventing the parallel execution of operations are
called resource constraints, and are given as the function rsc(v;, vj): VxV ~ {0, 1}. This
function is defmed as follows:

{
1 if V; and v j use the same resource

rsc(v;.vj)=
0 otherwise

A resource constraint rsc(v;, vj) expresses that

Obviously, a valid schedule bas to satisfy the resource constraints.

a = 1;
for (i=O; i<N; i++)
{

a += a;
b = a*2;

i
i

. i
I .

Oparation

+, • Oparation type

- Data preeedenee edge
-----• Sequenee preeedenee edge

(2)

(3)

~ · -·- · - · ..J -·-·-+ Loop-carried data preeedenee edge

38

~ w(A,S)=1

(a) (b)

Figure 4-1: An example of a data flow graph (DFG): (a) algorithmic description
and (b) DFG representation ofthe algorithmic description

4.1. Scheduling basics

Timing constraints are specified as the latency and the initiation intetval of the sched­
ule ([MesOl]). The latency Lof a schedule is the number of clock cycles after which all
operations in the DFG (and all iterations of the DFG) are executed2

• A constraint on the
latency can be expressed in the DFG as a sequence preeedenee edge from the sink to the
souree with weight -L, as shown in Figure 4-2a. According to equation (1), this is inter­
preted as

s(source) ~ s(sink)- L (4)

Because the souree is always scheduled in cycle 0, and all other operations preeede the
sink, this implies that all operati.ons have to finish execution within the fust L clock
cycles.

For loops, an initiation intetval can be specified. The initiation interval (1/) of a
schedule is the number of clock cycles after which the next execution of the same DFG is
started. If 1/ < L then the loop is folded, which means that operations from iteration i can
be executed in parallel with (or even after) operations from iteration i+ 1 ([Bac94]). In
general, this leads to faster schedules. In order to allow the fotding of a loop, this loop is
broken down into a preamble, a loop body or loop kemel, and a post amble. The loop
kemel consists of operations that are executed repeatedly; the pre- and post amble consist
of the remaining operations, which are necessary to allow the repeated execution of the
loop kemel.

Just like the latency constraint, a translation to the preeedenee model is possible for
the initiation intetval: if loop iterations overlap, we have to ensure that data betonging to
the current iteration is consumed before it is overwritten by the production of data in the
next iteration. Thus, the operation that consumes the data produced by P should execute
within 1/ clock cycles after the operation P. Therefore, for each data preeedenee edge (P,
C) e Ed, an edge C ~ P with weight -1/ is added to the DFG, as illustrated in Figure
4-2b.

/_,-----------

(
!
I

!
-L\

\
\

\
\\

\,
'• '•.

(a) (b)

' . .
\
! -//
i

,/

Figure 4-2: Modelling a constraint on (a) the latency and (b) the initiation interval

2 Notice that the Iatency is a constant since the DFG describes a basic bloclc.

39

4. Schedulingfor Multiple Controllers

After the introduetion of these concepts we are now able to give a definition of schedul­
ing.

Definition 2 (Scheduling) Given a DFG, a function rsc(vi, Vj), an initiation interval IJ, a
constraint on the latency L (completion time) and an abstract description of the target
architecture. Find a valid schedule s that satisfies the preeedenee constraints, the resource
constraints and the timing constraints IJ and L.

Reeall from the beginning of this chapter, that an algorithmic description can be parti­
tioned into basic blocks. The composition ofthose basic blocks is in general modelled by
means of a hierarchical data flow graph ([Lam88]). In such a graph, control-flow primi­
tives such as branching and iteration are modelled by means of hierarchy. The edges in
such graphs represent data preeedenee or sequence preeedenee constraints, whereas the
nodes represent different basic blocks. Obviously, a hierarchical data flow graph can only
be scheduled for architectures with a single flow of controL

In general, scheduling a hierarchical data flow graph consists of first scheduling the
operations in the deepest nested basic block. Then this scheduled basic block is sched­
uled with the other operations of the surrounding block operation. This is repeated until
all blocks are scheduled.

In order to come toa valid schedule and its corresponding program code, the sched­
uler takes as input a DFG of a basic block, an abstract description of the target processor
and the timing constraints. The so-called code generation task of the scheduler consists
of a number of phases, which can be distinguished: operation assignment, value lifetime
serialization, scheduling and register binding. During the operation assignment phase,
operations are assigned to functional units and the resource constraints are analysed. This
results in extra sequence preeedenee edges in the DFG. During the lifetime serialization
phase, operations are ordered in time in such a way that a valid register binding exists
after the scheduling phase. Register binding determines how variables in the algorithm
subject to scheduling can share common register files in an implementation. Finally,
during the scheduling phase, the start times of operations are determined and the register
binding is performed, in order to select a register location for every intermediate value in
such a way that a minimum number of register locations is needed. These steps are re­
peated for every basic block that is present in the application, until a complete and valid
schedule is found.

The presented phases are mutually dependent, that is, decisions in one phase can af­
fect decisions made or still to make in other phases. Furthermore, during all code genera­
tion phases the preeedenee edges in the DFG are analysed and optimised in such a way
that at the end a valid and as good as possible schedule exists. For this, analytica! tech­
niques (e.g., constraint analysis ([MesOl])) are used.

4.2. Scheduling for multiple controllers

So, how can we use the knowledge of how a single controller scheduler performs its job
to generate folded schedules for multiple controllers in such a way that resource sharing
during the parallel execution of loops is guaranteed to be without conflicts?

Consider an algorithm that consists oftwo loops, loop_ i and loop _j, ofwhich we

40

4.2. Schedulingfor multiple controllers

-·
loop_i: for i • 0 to X begin

e • a(f);

end
loop_j: for j • 0 to Y begin

g = b(h);

...
end

(a)

loop_i: loop_j:
,w -~ -- - • •• • • -- ~ ~ .-- • •••• • •• • •n •

'• '• '• .,

~ l
' • . , . , .,
' • ' • ' • ' • ' • ., . , ., . ,
::
:: . . . ,
' • '• ' • '•

~--- -- ---- __ ___ :! ------------ ..
(b)

11!111 Load-unit:
lili6il ld

•
Arithmetic-logic unit:
a,b

•
(c)

Store-unit:
st

Figure 4-3: Example of two parallel loops: (a) algorithmic description; (b) data
flow graphs for the basic bloc/es; (c) functional units available in the target
architecture and the operations which they are able to perform

assume that they can be executed in parallel, see Figure 4-3a. The algorithm is broken
down into two basic blocks, which can be represented as data flow graphs (Figure 4-3b).
The available functional units and the operations they are able to perfonn are shown in
Figure 4-3c. Only one instanee of each of the functional units is available in the target
architecture, therefore all functional units will have to be shared among the basic blocks.

On an architecture with a single controller, these two basic blocks are scheduled se­
quentially (remember that the flow of control enters a basicblockat the beginning ofthe
block, and leaves at the end; thus multiple basic blocks cannot be scheduled in parallel
with a single flow of control). Therefore, no overlapping of the operations in the basic
blocks is possible. Because of this, we will have to schedule the two loops separately, if
we want to be able to execute them in parallel. However, how can we than guarantee that
no resource conflicts occur during the parallel execution?

The solution we propose is the following: combine the two loops, as if they were a
single loop, and schedule this combined loop. During scheduling, the timing and resource
constraints of the two loops are taken into account, and therefore the generated schedule
will be conflict-free (provided of course that the target architecture and the imposed
timing constraints allow a feasible schedule). The generated schedule will not be a valid
schedule, in the sense that the execution of the schedule on a processor would not pro­
duce valid results, since inter-loop data dependencies are ignored. However, it allows us
to detennine which operations of the two loops have to be executed in what clock cycle
(relative to the beginning of their corresponding basic blocks), in order to prevent re­
source conflicts from happening during the parallel execution of the two loops. This
knowledge can than be used for the generation of the individual schedules for the loops.

By writing the two loops as one loop, their corresponding DFGs are also combined.
During the different scheduling phases, extra sequence preeedenee edges are added to the
DFG as aresult of resource conflicts and inter-loop data dependencies, which represent
data that is produced in one loop and consumed in another loop. In the example of Figure
4-3, sequence preeedenee edges as a result of resource conflicts will be added, as is
illustrated in Figure 4-4a: the two loops both use the three available resources (LDU,
ALU and STU), and therefore each ofthose operations has to be scheduled (at least) one
clock cycle apart from the other. Applying normal scheduling techniques on the DFG
with an initiation interval of two results in the folded schedule for the operations in the
loop kemel that is shown in Figure 4-4b (the reader can easily verify that this is the mini­
mum initiation interval possible for this example).

41

4. Schedulingfor Multiple Controllers

·--~-~~~::~::~=--- - - - -·--- -- --- !!.=:.. .~-- ;

. . . . ·------- ------ -·---·---------------------

(a)

-+ Data preeedsnee adga
1

----~ Saquence praeedenee edge with waight 1

Operatien - Functional Un~

@) @ Cyden

------------------------® Cyclen+1

(b)

Figure 4-4: (a) Combined and updated DFG; (b) Folded schedule for the loop
kemel of the two loops that are combined into one basic block

lf we have been able to generate a schedule, which guarantees that the kernels of loops
can run in parallel, without any resource conflicts, than, in general, the pre- and post
amble of the two loops can also be executed in parallel. The reason for this is that in
general the pre- and post amble of a loop are nothing more than an unrolling of the loop
kemel. This is illustrated in Figure 4-5. That tigure shows the executions ofthe two loops
on two separate controllers, where each of the loops is executed with the same schedule
for the loop kemel as was determined in Figure 4-4. The operations of every loop itera­
tion in the pre- and post amble are still IJ cycles apart from each other, and are under
constraint of the same data- and sequence preeedenee edges as the operations in the loop
kemel. Because of that, no resource conflicts occur in the pre- and post amble, if the loop
kemels are without any conflicts.

42

loop kemel:
(X-1)times
on ctr11

1 oop _i on controller 1 : loop _j on controller 2 :

Figure 4-5: Schedules for both loops on separate controllers

preamble

loop kemel:
rr -1) times
on ctrl2

postambie

l-

' '

4.3. Simple casestudy

Once the clock cycles in which the operations inside the loop kemels have to be exe­
cuted are determined, scheduling each of the loops separately generates their individual
schedules. Therefore, based on these observations, we come to the following steps for
generating schedules for multiple controllers, which allow the overlapping of loop execu­
tions in time:

1. Determine which loops in the algorithm can be executed in parallel (based on
knowledge ofthe algorithm);

2. Combine the operations of those loops into one loop, which the design tool
will translate into one basic block;

3. Schedule this combined basic block;
4. Extract from the generated schedule "scheduling pragmas" for the loop kemels

of the individual loops, which constrain the operations of the loops in fixed
clock cycles;

5. Re-schedule the operations of each of the loops separately, with the corre­
sponding scheduling pragmas, to generate the correct pre- and post ambles of
the loops.

In the following section, these steps are illustrated by means of a simple case study.

4.3. Simple case study

For this simple case study, we have implemented the algorithm as presented in Figure
1-2 with the Silicon Hive tools. In Appendix A, the interested reader can find the HDFC­
descriptiön ofthe algorithm that is used for the Silicon Hive tools, as wellas the architec­
ture onto which the algorithm is mapped. We restriet ourselves bere to the data flow
graphs for the two basic blocks ofthe algorithm as presented in Figure 1-2. These DFGs
are shown in Figure 4-6. The labels inside the nodes correspond to the labels in the code
presented in Appendix A.1; the sequence preeedenee edge from node LD to node STl
represents the data preeedenee between the two loops, as was illustrated in Figure 1-3.

--.-.------ -------- ---:. :--.. -.-. ----- .----- -------------------------------------:
' ' .

//---~=-:-----n---------- , ~ --·00
, - • t

,' : : data preeedenee

' ;,: ;:,[' - edge
---• sequenee

preeedenee edge

'
i loop_i , !. !~~::Ï _________ __ ___ ___________ _____________________ _
!,_ •• -------------------.-----.----------.------------ - - - - --·--- - -------- _,

(a} {b}

Figure 4-6: DFGs for the two basic blocks: (a) DFG for the loop with i as loop
counter and (b) DFGfor the loop withj as loop counter (see Figure 1-2)

43

4. Schedulingfor Multiple Controllers

In order to find a (folded) schedule that allows the overlapping execution of both
loops, we combine the two loops into one basic block (in other words, in one loop with
one loop counter) and schedule this combined basic block. Figure 4-7 shows the result of
scheduling this combined basic block using the Silicon Hive tools. As illustrated in the
figure, the initiation interval of the combined loop equals three, which means that every
three clock cycles a new iteration of the corresponding data flow graph is started.

The schedules for executing each of the loops on a separate controller need to obey
the timing constraints as imposed by scheduling the two loops as one combined loop. For
that reason, we derive from the schedule shown in Figure 4-7 scheduling pragmas, which
fix every operation in the DFG to a certain clock cycle. Using the Silicon Hive tools,
annotating an operation v with an IN_CYCLE (x) pragma fixes the operation toa certain
clock cycle x (in other words, s(v) =x), relative to the beginning of the basic block. For
example, in order to let operation RCV be scheduled in the first cycle of a loop iteration,
an IN_ CYCLE (0) pragma is added in the algorithmic description for this operation. In
that way, operations in the loop kemels (and thus also the operations in the pre- and post
ambles ofthe loops) can be fixed to the clock cycles that allow parallel execution ofboth
loops, as determined by scheduling the two loops as one.

Figure 4-8 shows the individual schedules for both loops, when mapped on the archi­
tecture presentedinAppendix A.2. Note that the schedules contain operations, which are
not present in Figure 4-6; that figure only shows the operations that are present inside the
basic blocks (so in the loops). The extra operations in Figure 4-8 belong to the operations
that are performed before the basic blocks, e.g., initialisation of loop counters, base- and
offset addresses for memories, etc. These operations are not taken into account by the
presented method. Because of these initialisation operations, still resource conflicts can
occur, as is illustrated next.

Figure 4-7: Schedule for the combined loop kemels

44

~ operatien

data preeedenee
- edge

__ + sequence
preeedenee edge

- · + loop-carried data
preeedenee edge

t!QIE.: loop-carrled data preeedenee
edges for /NC1, INC2 and INC3
notshown.

4.3. Simple casestudy

• loop kernels

B
PC: program counter

Figure 4-8: Schedulesfor (a) loop_i and (b) loop_), derivedfrom the combined loop
schedule

If the schedules were executed as presented in Figure 4-8, resource contiiets during
the parallel execution of the loops would still occur, when both controllers start at clock
cycle 0 with the execution of program counter (PC) 0: both controllers try to perform an
operation on the LSU for PC= 3. Therefore, assuming that a controller is able tostart at a
program counter equal to zero for a clock cycle not equal to zero3

, the designer bas to
define a mapping of the program counters on the time, such that all resource contiiets due
to initialisation operations are solved. For the presented example, a shift of one clock
cycle for the second schedule, corresponding to satisfying the sequence preeedenee edge
present between the node STl and LD as shown in Figure 4-6, is sufficient. In general,
this mapping consists of shifting the program counters in such a way, that the kemels of
the loops that have to be executed in parallel on different controllers start in the same
clock cycle (which wasaresult ofthe combined schedule).

In Figure 4-9, the execution ofboth schedules ofthe previous figure on a single VLIW
data path with multiple controllers is shown as a function of the time. The two bars above
the diagram show during which clock cycles the operations of the two basic blocks are
executed. Furthermore, they demonstrate that both loops run in parallel, without any
resource contiiets during the parallel execution of the loops.

However, during the fust four clock cycles in Figure 4-9, resource conflicts occur on
the PSU unit. The operations executed during these clock cycles are initialisations ofthe

B resource conflict 1 loop_i .loopj

Figure 4-9: Resource usage in time

3 In a "nonna)" processor the program counter is reset to zero at clock cycle 0, so the controller will start executing
the instruction word at PC equals zero after the reset.

45

4. Schedulingfor Multiple Controllers

11
loop kernels

fJ
PC: program counter

(a)

(b)

Figure 4-10: Conjlict-free schedule: (a) individual schedulesfor both loops and (b)
resource usage in time

base- and offset addresses for the different memories, and the initialisation of the loop
counters. In order to prevent such resource conflicts from happening, two options are
possible: either the designer bas to shift the schedules by hand in such a way, that the
conflicts during initialisation are solved, or all initialisation operations have to be per­
formed on one controller. We have chosen to perform the initialisation operations on a
single controller, since in that way the compiler, instead of the designer, can solve the
conflicts. Figure 4-10 shows the updated, conflict-free schedule.

As mentioned in Section 1.1, one of the goals of this project was to show the (dis-)
advantages of having multiple controllers executing loops in parallel on a single VLIW
data path. In order to show these (dis-) advantages, we have compared the total execution
time, the memory requirements and the program code size of our solution to the results of
a sequentia! and a loop-merged implementation of the algorithm on a VLIW with a single
controller. In the loop-merged implementation, the presented algorithm is divided into
three loops: one loop for the fust few iterations of loop i, one loop in which loop i - -
and loop j are executed in parallel, and one loop for the final iterations of loop j, as - -
can be derived from Figure 1-3 ([Bac94]). This implementation allows the overlapping
execution of the two loops using a single controller.

We expect our solution to have a shorter latency ofthe schedule (in termsof clock cy­
cles) with respecttoa sequentia! implementation (recall Figure 1-3b). From this figure,
we also conclude that the memory requirements for a multiple controller implementation
are expected to be smaller than for a sequentia! implementation. Furthermore, due to this
shorter schedule, we expect a smaller program code size for our implementation.

46

4.3. Simple casestudy

Since a loop-merged implementation allows the overlapping execution of loops, we
expect such an implementation to have the same latency and memory requirements as our
approach, but a larger program code size: the algorithmic description bas become more
complex (three instead oftwo loops).

The results of the comparison are summarized in Table 4-1. The generated schedules
for the sequentia! and loop-merged implementations are shown in Figure 4-11.

Sequentia! Loop-Merged Multiple Controllers

Clock Cycles 24 cycles 23 cycles 30 cycles

15 words x 50 bits 22 words x 54 bits
Ctrll: 12 x 48 bits

Program Code Size
(750 bits) (1188 bits)

Ctrl2: 7 x 46 bits
(total: 898 bits)

Registers: Registers: Registers:

Memory Requirements
15 fields (86 bits) 16 fields (94 bits) 16 fields (91 bits)

RAM: RAM: RAM:
8 fields (64 bits) 4 fields (32 bits) 4 fields (32 bits)

Table 4-1: Results of the casestudy summarized

(a)

(b)

loop _i

• loopj

PC program counter

1 loop_i

B loopj

• loop_k

Figure 4-11: Schedules of (a) sequentia! implementation and (b) loop-merged
implementation on a VUW data path with a single controller

47

4. Schedulingfor Multiple Controllers

4.4. Conclusions of the case study

From Table 4-1, we conclude that the total number of clock cycles for a multiple control­
ler implementation is larger than the number of clock cycles for both a sequentia! and a
loop-merged implementation. This longer schedule is due to the overlapping execution of
the two loops: in order to be able to generate conflict-free schedules for the loops, they
have to be executed with an initiation interval ofthree, as shown in Figure 4-8. However,
as soon as one of the loops is finished, the other loop continues its execution with an
initiation interval of three, as shown in Figure 4-1 Ob. If we compare this for example
with the schedule of a sequentia! implementation (Figure 4-lla), we see that the loops
can be executed with initiation interval smaller than three. In other words, if one of the
loops fmishes execution in our approach, the other loop continues execution with an
initiation interval that is not minima!, resulting in the longer schedule.

In some cases, unrolling one of the loops generates a shorter schedule. Consider for
example the sequentia! loop kemel schedules oftwo loops, as presented in Figure 4-12a,
where the initiation intervals are a multiple of each other (4 and 2). Ifthe second loop is
unrolled one time -unrolling is the process of expanding a loop in such a way that every
new iteration contains several ofwhat used to be an iteration ([Bac94]}- the schedule for
parallel execution presented in Figure 4-12b is possible (assuming the dependencies
between the loops allow this). Now, as soon as the fust loop finishes execution in a
multiple-controller implementation, the other loop continues to execute with an initiation
interval of four for two iterations instead of only one. This results in a faster execution of
the second loop and therefore in a shorter total schedule than for a sequentia! implemen­
tation. However, this is only possible if the loop kemels allow such overlapping.

48

loop 1

• loop2

loop 1 & 2
(not a conflict: executed on
different controllers)

Figure 4-12: Loop unrolling for reduction of the latency of the schedule: (a) loop
kemel schedulesfor two loops; (b) schedulefor execution on two controllers

4.5. Hardware imp/ementation

Comparing the program code sizes in Table 4-1, we see that the program code size of
the loop-merged implementation is larger than for a multiple controller implementation,
as was expected. However, the program code size fora multiple controller implementa­
tion is larger than for a sequentia! implementation. We expected it to be smaller, since
each of the controllers controls only a part of the VLIW data path, which results in
smaller instruction words per controller. However, since each of the loops is executed
with a non-optima! initiation interval, the total number of instruction words for the multi­
ple controller implementation is larger than the number of instruction words necessary
for the sequentia! implementation, which results in the larger total program code size for
our approach.

With respect to the memory requirements, Table 4-1 shows that the total number of
register locations is almost the same for each implementation. Furthermore, the loop­
merged and multiple controller implementations both reduce the RAM requirements by a
factor of two, due to the overlapping execution of the two loops (as was expected).

From these observations, we can conetude that for this case study a single controller
approach achieves the best results. In genera!, if an application is to be mapped onto a
single VLIW data path, a single controller implementation will probably achieve better
results than a multiple controller implementation. This can be observed inSection 4.3: in
order to be able to execute multiple loops in parallel, their corresponding schedules have
to use an initiation interval, which is larger than could be achieved with a single control­
ler implementation, in . order to allow the overlapping execution of operations in the
loops. The reason for this is the fact that the resources available in the single VLIW data
path have to be shared among the different controllers. Only in those cases where loops
have a strong control-dependency between successive loop iterations, a multiple­
controller implementation will achieve better results. That is because the strong control­
dependency results in a not too tight initiation interval, allowing unused resources to be
used by other controllers instead of other loop iterations (in case of a tight initiation
interval, most of the resources will be active, teaving no room for sharing them with
other controllers).

In brief, the choice for mapping an application on an architecture with a single- or
with multiple controllers heavily depends on several parameters of the application that is
to be mapped (e.g., the initiation interval or the loop-boundaries).

4.5. Hardware implementation

As mentioned in Chapter 3, design tools like AIRT Designer and Silicon Hive can be
used to generate an HDL description of a design. This HDL description can than be used
to generate a net list, and to perform hardware synthesis and verification. However, the
HDL descriptions generated by those tools contain a single controller, whereas for a
hardware description of our implementation, multiple controllers have to be present.
Therefore, in order to be able to perform hardware synthesis and verification on the
design of a VLIW data path with multiple controllers, fust an HDL description of the
data path with a single controller has to be generated using a design toollike AIRT De­
signer or Silicon Hive. The designer than bas to add the extra controllers and the corre­
sponding control lines, as well as the program codes, to this design by hand. Finally,

49

4. Schedulingfor Multiple Controllers

"OR" gates have to be added to the control-input for those resources that are controlled
by multiple controllers. In that way, the control input for a certain resource is always a
valid control signal, as already mentioned in Section 1.1: the generated static schedules
prevent the simultaneons activity of multiple control signals for a certain resource, and
therefore the "OR" gate always produces a valid control signal.

50

5.1. Convolutional coding

5. Multiple Controllers: a Case Study

The main goal ofthe casestudy presented in the previous chapter was to show the appli­
cability of the metbod presented in the same chapter. In order to show the results of
mapping a "real-life" application on a VLIW data path with multiple controllers, we
present in this chapter another case study: the mapping of the Viterbi algorithm on a
VLIW data path with multiple controllers.

Since the Viterbi decoding algorithm is an efficient metbod (in terms of search com­
plexity) for decoding a convolutional code, we first present the principles of convolu­
tional encoding (Section 5.1) and decoding (Section 5.2). In Section 5.3 we show how
the Viterbi algorithm is implemented in general, and why it can be mapped on an archi­
tecture with multiple controllers. Finally, Section 5.4 presents the results of the case
study, whereas Section 5.5 presents the conclusions ofthe casestudy.

5.1. Convolutional coding

Convolutional encoding is based on generating linear combinations of delayed input
samples, as illustrated in Figure 5-1. This encoder consists of three connected delay
elements, and three modulo-2 adders. The output of a delay element at timet equals the
input at timet- 1, where the timet is integer. Fortheinput u(t) ofthe encoder we assume
that

u(t) e {0,1}, fort= 1,2, ... ,T

u(T + 1) = u(T + 2) = u(T + 3) = 0
(5)

In this formula, T is the number of binary symbols that is to be encoded. The codewords
are now created as follows:

inputword =u(l),u(2), ... ,u(T)

codeword =v1 (1), v2 (1), v3 (1), v1 (2), v2 (2), v3 (2), ... , v1 (T + 3), v2 (T + 3), v3 (T + 3)
(6)

s,(t)=li..t-x)

v1 (t) = u(t)+ u(t- 2)+ u(t- 3)

= :Lu(t-t')g1(r)=u*g1(t) ,for g1 =[1011]
T•O,I ••••

v2 (t) = u(t)+ u(t -1) + u(t- 3)

= :Lu(t-r)g2(r)=u*g2(t) ,forg2 = [1I01]
r•O,I,_

v3 (t) = u(t)+ u(t -1) + u(t- 2)

= :Lu(t-r)g3(r) =u • g 3(t) ,for g3 = [II 10]
1'..0,1 ,-.

Figure 5-1: Example of a convolutional encoder

51

5. Multiple Controllers: a Case Study

The key parameters for a convolutional encoder are the constraint length K and the
rate R. The constraint length is equal to the number of delay elements plus one (the in­
put), and determines the total number ofvalues the state ofthe encoder can assume at any
time (2K-1

). The rate denotes the number of encoder input bits per encoder output bit. For
the encoder of Figure 5-1, K equals four and R equals 113.

Note, that a finite-state machine description characterizes a convolutional encoder.
Figure 5-2 shows the state diagram corresponding to the encoder of Figure 5-1. In this
figure, the states are denoted by s1s2s3(t); along the branches that lead from the current
state s1s2s3(t) to the next state s1s2s3(t+ 1) we fmd the input that triggers the corresponding
state transition, as wellas the output generated by this transition (u(t)/ v1v2v3(t)).

5.2. Viterbi algorithm

To see what states can be reached as a function of the time t, we can take a look at the
trellis diagram. The trellis diagram is a state diagram extended in time, such that for each
possible input sequence the values of the states constitute a valid path through the dia­
gram. A part ofthe trellis diagram corresponding to theencoder ofFigure 5-1 is shown in
Figure 5-3. Each codeword corresponds toa path in the trellis diagram. This pathstarts at
time t = 0 in state s1s2s3(0) = 000, and wanders along T+3 branches. The steps taken
along the time axis of the diagram are called trellis steps.

Since the convolutional encoding is based on the last K inputs affecting the output of
the encoder, the decoding of these codes includes extracting the most likely encoder
input making use ofthe received sequence. For this purpose, the trellis diagram is used.

Representing the encoding history in a trellis diagram makes it possible to define the
decoding of convolutional codes as the problem of fmding the most likely path taken
during the encoding steps, given the input received at the decoder (which is called maxi­
mum likelibood decoding). This problem has been solved using a dynamic programming
approach: the Viterbi algorithm ([Vit67]).

0/000

0/000

Figure 5-2: The state diagram

52

5.2. Viterbi algorithm

000

j
001

,; 010
.l!! .,

011

100

101

110

111
s,s,s,(t)

u(t) I v1 v1 v, (t)

0/000

Input 1

Output: 111

0

011

1

010

0

101

time

1 1 0

010 010 110

0

011

Figure 5-3: The trellis diagram corresponding to theencoder ofFigure 5-1.

The main principle of the Viterbi algorithm is illustrated in Figure 5-4. Assume that a
certain state s(t+ 1} at time t+ 1 can he reached from two states s '(t) and s ''(t) at time t via
the branches v '(t) and v "(t), respectively. Then, according to [Vit67], the following
holds:

a best path to s(t + 1) =a best of (all paths to s'(t) extended by v'(t),

all paths to s"(t) extended by v"(t))

=a best of (a best path to s'(t) extended by v'(t),

a best path to s"(t) extended by v"(t))

(7)

Therefore, if we have already determined a best path leading from the start state s(O) to
state s '(t) and a best path leading form the same start state tos' '(t), it is easy to find a best
path leading to state s(t+ 1): extend these paths with v '(t) and v "(t) respectively and
chose the best one out these two alternatives. This best path to state s(t+ 1) is called the
survivor of state s(t+ 1).

Figure 5-4: Paths leading to state s(t+ 1)

53

5. Multiple Controllers: a CaseStudy

Following this principle, the Viterbi algorithm consists of tracing the trellis diagram
forward in time (so-called trellis construction), and determining for every state at the
corresponding time stepthebest path teading to that state, according to equation (7). For
this, the decoder input is used to calculate the Hamming distance between the received
codeword and the idealencoder output forthebranches (called branch metrics) teading
to the current state, after which the one that has the minimum distance is chosen as survi­
vor (the Hamming distance is the number of symbols that disagree between two codes).
At the end of the decoder input data, the end state is determined by selecting the state
with the smallestpath metric (the sum ofthe branch metrics along the path teading to the
selected state). Starting from this end state, the trellis diagram is traeed back to reeover
the most likely encoder input sequence, until the fust trellis step is reached. For this, the
survivor information stored for each trellis step is used. When this best path is com­
pletely calculated, generating the inputs corresponding to the selected path generates the
decoder output. This is called the traceback phase ofthe Viterbi algorithm.

5.3. Implementation of the Viterbi algorithm

Although the theoretica! Viterbi decoding approach assumes performing the trellis con­
struction and traceback for the whole decoder input all at once, this approach has a large
latency and requires a large amount of memory. For that reason, in practice, the traceback
step is started earlier and kept shorter. This is not in contradiction with getting a good
error-correction performance, since the paths arriving at the various stages tend to con­
verge already at a depth, which is far smaller than the length of the complete decoder
input ([For73]). This approach is called the sliding window approach, and is illustrated in
Figure 5-5. Each execution window (one vertical slice in the diagram) consistsof Dupdate

forward- and Drrace backward steps, which can he performed in parallel. At the end of

Figure 5-5: Sliding window approach

54

5.4. Results for the Viterbi algorithm

each traceback phase, Dupdate decoded symbols are produced.
As seen in Figure 5-5, for each ofthe Dupdate steps oftrellis construction, Dtrace steps of

the traceback phase have to be completed. As the trellis construction is the most compu­
tation intensive part ofthe Viterbi decoding algorithm, it is not desired that the traceback
phase costs more clock cycles than the trellis construction phase. Let Ttrellis be the number
of clock cycles required for the calculations of one trellis step, and T trace the number of
clock cycles required for the calculations of one traceback step (which does not include
the clock cycles needed for producing the decoded bits). Then the previous observation
results in the following requirement for the sliding window implementation of the Viterbi
algorithm:

(8)

From Figure 5-5 it follows that the sliding window approach for the Viterbi algorithm
is a good candidate for the implementation on a VLIW data path with multiple control­
lers, since the trellis construction and traceback phases can be executed in parallel on
different controllers. For that reason, we present in the following section the results of
mapping the Viterbi algorithm on a VLIW data path with two controllers.

5.4. Results for the Viterbi algorithm

For this case study, we have implemented the Viterbi algorithm using the sliding window
approach. A pseudo-code representation of the implemented algorithm is presented in
Appendix B.l; Figure 5-6 provides an overview of the main structure of this algorithm.
Both algorithmic descriptions only present the part of the Viterbi algorithm where the
trellis construction and traceback phases are executed in parallel (see Figure 5-5), since
this is the most interesting part for our work.

In the algorithmic description of Figure 5-6, the in i t _tb and in i t _te functions
represent the initialisation operations necessary for the traceback and trellis construction
phases, respectively. Dtrace traceback steps have to be performed in the loop tb _1 oop _ t
in parallel with Dupdate trellis construction steps in te _loop_ t. Each trellis construction
step consists of the calculation of the best paths to every state according to equation (7)
(performed in te_loop_s). Finally, after the Dtrace traceback steps have been performed,
Dupdate decoded output bits are produced in tb _loop_ out.

VITERBI
0 while ()
1 init_tb (); /* traceback initialisation operations *I

2 for t ~ 0 ... Dtrace-1 tb_loop_t
3 /* traceback operations */ }

4 for i ~ 0 ... Dupdate-1 tb_loop_out
5 /* decoder output operations */ }

6 init_tc(); /* trellis construction initialisation operations */

7 for t ~ 0 ... Dupdate-1 tc_loop_ t
8 for s ~ 0 ... S-1 tc_loop_s
9 { /* trellis construction operations */ }

Figure 5-6: Pseudo-code representation of the used Viterbi algorithm

55

5. Multiple Controllers: a CaseStudy

An efficient implementation of the Viterbi algorithm bas to meet the requirement
mentioned in equation (8). Ttrellis in this equation equals the number of clock cycles
needed for the execution of the complete loop te _loop_ s. This number of clock cycles
grows exponentially as a function of the constraint length K, since S = zK-I. On the other
hand, T trace equals the number of clock cycles necessary for one traceback step (one
iteration of tb _1 oop _ t) and is independent of the constraint length. We take Dupdate = 8
and Dtrace = 64 (16*K); Ttrace equals 4 and Ttrellis equals S*6 in our implementation. There­
fore, in order to make sure that the traceback and trellis construction phases consume
approximately the same amount of clock cycles and to prevent an explosion in the num­
ber of clock cycles necessary for the execution of the trellis construction phase for our
current implementation of the Viterbi algorithm, we take K = 4. With this value for K we
still meet the requirement mentioned in equation (8):

(9)

In order to execute the Viterbi algorithm as presented in Figure 5-6 on a VLIW data
path with multiple controllers, we frrst generate a combined static schedule for
tb_loop_t and te_loop_s. Basedon this combined schedule we generate scheduling
pragmas, which are used as constraints for the generation of the schedules for the trace­
back and trellis construction phases. Due to overlapping loop-boundaries, we also have to
ensure that te _loop_ t and tb _loop_ t can be executed in parallel on separate control­
lers. Figure 5-7 shows the final, conflict free folded schedules for each controller. Again,
as already mentioned in the previous chapter, we have chosen to perform all initialisation
operations (in i t _tb and in i t _te) on one controller (in our case the controller for the
trellis construction phase, since this phase starts executing before the traceback phase).

In Figure 5-8, the execution of the schedules on a VLIW data path with multiple con­
trollers is shown as a function of the time. The bars below the diagram show, which
(iterations) of the loops present in Figure 5-6 are executed during which clock cycles.
Furthermore, they demonstrate that both trellis construction and traceback phases are
indeed executed in parallel, without any resource conflicts.

Again, we have compared the total execution time of the generated schedules, the
memory requirements and the program code sizes of our multiple controller implementa­
tion to the results of a sequentia! and a loop-merged implementation of the algorithm.
The results ofthis comparison are presented in Table 5-1; in Appendix B.2 the schedules

111 tc_loop_t m tc_loop_s Eli tb_loop_t fl tb_loop_out

1 cb11 init for both ctr1 init for ctrl 2 • ctrl 2

Figure 5-7: Folded schedulesfor the trellis construction and tracebackphases

56

5.5. Conc/usions

Bx 1x
7x

ctr11 • ctrl 2 • both C1ll

Figure 5-8: Execution ofthe Viterbi algorithm as ajunetion ofthe time

Sequentia/ Loop-Merged Multiple Controllers

Clock Cycles 678 cycles 423 cycles 360 cycles

25 words x 180 bits 18 words x 197 bits Ctrll: 17 x 180 bits
Program Code Size Ctrl2: 13 x 177 bits (4500 bits) (3546 bits) (Total: 5335 bits)

Memory Requirements
Registers: 30 fields Registers: 38 fields Registers: 39 fields

RAM: 656 fields RAM: 656 fields RAM: 656 fields

Table 5-1: Results ofthe Viterbi casestudy

for both sequentia! and loop-merged implementations of the Viterbi algorithm are pre­
sented for the interested reader.

5.5. Conclusions

From Table 5-1 we conclude that executing the Viterbi algorithm as presented in the
previous section on a VLIW data path with multiple controllers acbieves a better per­
formance in terms of clock cycles than a pure sequentia! or loop-merged implementation
on a VLIW data path with a single controller. The reason for this is the fact that both
trellis construction and traceback pbases are executed simultaneously. This parallel exe­
cution is possible, since te _loop_ s bas a strong control-dependency, resulting in an
initiation interval that leaves "room" for the opera ti ons of tb _1 oop _ t to be executed in
parallel.

Comparing the program code sizes, we see that the multiple controller implementation
bas the largest program code size, despite the fact that it needs the least amount of clock
cycles for execution. The reason for this is the fact that both controllers still control a
large part of the available data path, resulting in long instruction words per controller.
Furthermore, both tb _loop_ t and te _loop_ t run with an initiation interval tbat is
larger than their minimum possible initiation interval (see Appendix B.2), wbicb results
in a lot of extra NOPs in the program code. These larger initiation intervals are necessary

57

5. Multiple Controllers: a Case Study

to allow the overlapping execution of the trellis construction and traceback phases, and
result in a larger total sum of instruction words. Together with the large instruction
width, this results in a larger total program code size than for a sequentia! or loop-merged
implementation.

With respect to the requirements for the register files, the total num.her of register lo­
cations is almost the same for both multiple controller and loop-merged implementation,
whereas those implementations both require more register locations than a sequentia!
implementation. The reason for this is straightforward: in both loop-merged and multiple
controller implementations, more variables are alive at the same time due to the parallel
execution of multiple loops, which results in the larger amount of register locations.

With respect to the memory requirements for the RAM, all implementations are equal.
This is a result of the way the Viterbi algorithm has been implemented in the sequentia!
case: during the trellis construction steps, survivor information is stored for each state.
This information is used during the traceback phase. To minimize the total amount of
survivor information that needs to be stored in the memory, this information is stored in a
circular manner, since only the information for the last Drrace+Dupdate steps has to be
stored (illustrated by Figure 5-5): at any point in time, the survivor information of Dtrace

steps is necessary for performing the traceback phase, and, in parallel, the survivor in­
formation for the next Dupdate steps has to be stored in the trellis construction phase. After
the traceback phase, Dupdate bits are decoded, and the survivor information for the first
Dupdate steps that were stored in memory are not needed anymore. This results in only
having to store the survivor information forthelast Drrace+Dupdate steps in the RAM. In
case of the multiple controller information, this does not change, and thus still the survi­
vor information for Drrace + Dupdate steps has to be stored, and therefore no gain in memory
storage is achieved.

58

6.1. Conclusions

6. Coneinsion

In this final chapter, we summarize the results of the two case studies that have been
presented in the previous chapters, and provide some recommendations for future work.

6.1. Conclusions

In Chapter 4, we have presented a method for the generation of schedules for a VLIW
data path with multiple controllers, based on design tools that generate schedules for a
VLIW data path with a single controller. This method has been applied to two case stud­
ies, in order to show the feasibility of the method and the (dis-) advantages of having a
VLIW data path with multiple controllers. From the case studies we can conclude that the
presented method for the generation of schedules for multiple controllers, using design
tools that are not meant for that, works. Furthermore, from those case studies we can
conclude that it depends on the type of application whether a multiple-controller solution
achieves the best results. More specifically, it depends on the amount of control­
dependency between successive loop iterations, and on the loop boundaries.

In the case study of Section 4.3, both loops have to he executed with an initiation in­
terval that is larger than the initiation intervals possible in case of a sequentia! (single­
controller) implementation. In other words, both loops have a weak control-dependency,
which results in a small initiation interval for a sequentia! implementation. However, due
to this small initiation interval, insufficiently unused resources are available to allow the
execution of multiple loops in parallel. This results in the larger initiation intervals for the
parallel execution of both loops on separate controllers. Furthermore, one of the loops
continues execution with a large initiation interval after the other loop has finished
execution (see Figure 4-lOb). This is the main reason why for many applications the
implementation on a VLIW data path with multiple controllers will result in a larger
number of clock cycles than an implementation on a VLIW with a single controller.

On the other hand, in case of the Viterbi algorithm (Section 5.4), one of the loops
(tc_loop_s) has astrong control-dependency, resulting inthefact that the resources,
which are unused during the execution of one iteration of that particular loop, can he
used to execute operations of other loops in certain clock cycles in parallel (tb _loop_ t
in this case). Furthermore, the loop boundaries of the two main loops that have to he
executed in parallel for the Viterbi case study "match": during the iterations of
te loop t, all iterations of tb loop t can he completed, which results in a reduction - - - -
of the total execution time with respect to a single-controller implementation by almost
fifty percent.

In general, the total program code size for a multiple-controller implementation will
he larger than the program code size for a sequentia! implementation. The reason for this
is the fact that each controller in most cases still controts a large part of the available data
path, resulting in instruction words that have almost the same width as in a sequentia!
implementation. Furthermore, since in a multiple-controller implementation the loops are
often executed with an initiation interval that is not the minimum possible initiation

59

6. Condusion

interval, the total number of instruction words is larger and contains more NOPs than the
total number of instruction words for a sequentia! implementation. Obviously, these two
factors result in a larger program code size. However, in some specific cases it is possible
that the program code size for a multiple-controller implementation is smaller than for a
single-controller implementation, e.g., if the controllers each control a separate part of
the available data path (no resource sharing).

With respect to the total number of register locations, the multiple-controller imple­
mentation performs more or less the same as a loop-merged implementation, and worse
than a sequentia! implementation. The reason for this is straightforward: due to the paral­
lel execution of multiple loops, more variables are alive at the same moment, which need
to be stored in register fields.

Finally, a multiple-controller implementation does not guarantee that the total amount
of RAM necessary for a certain application is smaller than for a sequentia! implementa­
tion, as is shown by the case study of Chapter 5. It depends on the implementation of the
algorithm whether any savings are possible for a multiple-controller implementation.

6.2. Recommendations for future work

From the previous section it follows that the two main issues that still have to be solved
are the large amount ofNOPs in the program code and the "initiation interval problem".
The initiation interval problem refers to the continuation of the execution of a loop with a
non-optima! initiation interval after other controllers have finished execution. This prob­
lem is illustrated in Figure 4-1 Ob: after the fust controller has finished execution, the
second controller continues executing loop _j with an initiation interval of three,
whereas an initiation interval of one is the minimum possible initiation interval. Obvi­
ously, if we were able to switch to a different initiation interval, the total execution time
would decrease.

A solution to this problem is to use an instruction encoding approach similar to the
one used in the Texas Instruments C6xx family ([Dil99]). In this approach, the program
code consists of a stream of operations. Each of those operations has to be executed on a
certain issue slot. Instead of extending every operation with an extra bit that indicates
whether the next operation should be executed in the same clock cycle or in the next one
(C6xx approach), we propose to extend every operation with one or more bits, which
correspond to a certain mode of operation (MOO). These MOO-bits indicate for all
possible operation modes whether the next operation should be executed in the same or
in the next clock cycle as the current operation. However, the main ditTerenee with the
C6xx approach is that multiple MOO-bits are possible, depending on the number of
possible operation modes. In order to use the different operation modes efficiently, the
controllers have to be able to switch operation mode during execution.

The concept of operation modes is illustrated in Figure 6-1 a. This tigure takes the
schedule for 1 oop _j as presented in Figure 4-1 Oa as an example (Figure 6-1 c for
MOO = 0 shows this schedule). From the resource usage as a function of the time, pre­
sented in Figure 4-10b, we conclude that we have two operation modes, since we want to
execute the schedule of loop _j with an initiation interval of one once the frrst controller
(for 1 oop i) has finished execution. Therefore, the operations are extended with two
MOO-bits. Depending on the current operation mode ofthe controller, the schedules as

60

6.2. Recommendationsfor future work

-

(a)

n=NOP

mode d opel'llll/on (MOO) bl1s:

- 1" bl1: mode 0, both dJ1 actlve ~
- 2"" bit model, dJ1 2 al resources

=>=>=>::>t--5u::>
u o::cnq~~>irn.oo::o::

PC C/l n. ~ ~ n. m
o ~ ~n' A IJS, :n lire 'ri :n "r:
1 1l'i · ;nt JÖ I :tn1 ·l'i' C ,n, ,J), :0:,1}
2 e ·n ori 'l'ff1 ii' · ct~ ·· n · n ilo
3 !Q., l,o·. fi !G' <~lt . In ri ,r:t oo:
4 n "'à nm .. :.i tltn ' I óó
5 .J n r;1 ,o n n n K ·O.O.

(b)

MOO=O:

(c)

Figure 6-1: Modes of operation illustrated: (a) proposed instruction encoding in
case of data-stationary instruction encoding; (b) proposed instruction encoding in
case of time-stationary instruction encoding; (c) resulting schedules for different
modes of operation

presented in Figure 6-1 c are possible.
Note, that an interesting side effect of this approach is a more compact program code

than in the case of Figure 6-1 c, since all NOPs are removed from the program code to
form the stream of operations, as illustrated in Figure 6-1 a. However, this metbod is only
applicab1e if the controller supports data-stationary instruction encoding, meaning that
the instruction words consist of clusters, which each specify an operation for one issue
slot, as wellas the source- and destination register locations ([Lap94]). Thus, the instruc­
tion word contains as many clusters as there are issue slots in the architecture. In case of
the stream of operations, every instruction word consists of exactly one cluster.

An important disadvantage of data-stationary instruction encoding is that no efficient
encoding scheme is known that supports multi-casting, since multi-casting requires the
option to specify a variabie number of destination addresses per operation on a certain
issue slot. If the length of the instruction words is fixed, then the worst-case number of
destinations must be specified for every operation. This increases the instruction word
size dramatically. Therefore, if multi-casting is desired, an alternative encoding scheme
bas to be used: time-stationary instruction encoding ([Lap94]). In such an encoding
scheme, the instruction words typically consist of an opcode cluster, a souree address
cluster and a destination address cluster. The opcode cluster determines the operations
that have to be executed on each of the functional units present in the data path. The
source- and destination address clusters specify per register file the register locations
where data is read from or written to, respectively, for all issue slots at once, as well as
the busses that have to be used for the data-transport. In that way, all register files are
present in the instruction word only twice, instead of for every operation: once to address
the souree registers for all functional units, and once to address the destination registers
for all functional units.

In case of time-stationary instruction encoding, the previously mentioned approach of
extending operations with MOO-bits does not work, since the instruction bits are not
grouped per issue slot anymore. However, a similar approach is possible: extend every
instruction word with MOO-bits. Each of those MOO-bits then indicates whether it is

61

6. Condusion

possible to execute the next instruction word in the same or in the next clock cycle as the
current instruction word. If multiple instruction words can be issued in the same clock
cycle, the bit-wise "AND" of those instruction words is executed. To allow this, the
controller fetches the instruction wordsin an instruction fetch buffer {FIFO), which has a
size equal to the maximum number of instruction words that can be executed in one clock
cycle. Due to this instruction fetch window, the controller doesnothave to wait for fetch­
ing more instructions if multiple instructions have to be executed in the same clock cycle:
these are than already present in the buffer.

The concept of extending instruction words with MOO-bits is illustrated in Figure
6-1 b. Contrary to the proposed solution for data-stationary instruction encoding, this
approach does not result in a compacter program code, so still a solution for NOP­
encoding has to be found when time-stationary instruction encoding is applied in order to
decrease the total program code size.

The (expected) result of ex tending operations or instruction words (depending on the
instruction encoding approach chosen) with MOO-bits is shown in Figure 6-2 for the
casestudy as presented inSection 4.3. From this tigure we can conclude, that extending
the controller to support different modes of execution can result in an impravement of
performance, and therefore we recommend further research into this approach.

In order to prove the practical feasibility of a VLIW data path with multiple controllers, a
demonstration processor down to RT-level can be designed. This demonstration proces­
sor can also be used to determine the cost, e.g., in terros of area and power consumption,
ofhaving multiple controllers cantrolling a VLIW data path.

Since no (commercial) design tools with an instruction scope spanning multiple control­
lers exist yet, the development of such tools remains an interesting research topic. This
type of tooi could not only be used for the generation of schedules for a VLIW data path
with multiple controllers, but also for the generation of schedules for multi-processor
architectures.

With the current method, loops are supposed not to contain conditional statements. This
however is not realistic, and therefore it is recommended that support for conditional
statements is added to the method.

62

Figure 6-2: Schedule for case study of Section 4.3 when the instruction words are
extended with mode of operation bits (the switch in operation mode is performed
when the first controller finished execution)

6.2. Recommendations for foture work

Finally, since the proposed VLIW architecture bas a close resemblance to a multi­
processor architecture, it might be interesting to provide the designer with suggestions
about when to chose for a VLIW data path with multiple controllers, and when to choose
a multi-processor architecture.

63

6. Condusion

64

Bibliography

Bibliography

[Adelan] Adelante Technologies, http://www.adelantetech.com.

[Aga93]

[ARM]

[ART]

[Bac94]

[Cha99]

[Den94]

[Dil99]

[Egg97]

[For73]

[Fra93]

[Hen96]

[Ian94]

Agarwal. A. et al., "Sparcle: an evolutionary processor design for large-scale
multi-processors", IEEE Micro, Vol. 13(3), May 1993, pp. 48-61.

ARM, http://www.arm.com.

AIRT Designer Reference Manual.

Bacon. D.F. et al., "Compiler Transformations for High-Performance
Computing", ACM Computing Surveys (CSUR), Vol. 26(4), Dec. 1994,
pp. 345-420.

Chappell. R. et al., "Simultaneous Subordinate Microthreading (SSMT)",
Proc. 26th Int. Symp. Computer Architecture, May 1999, pp. 186-195. IEEE
Computer Society Press, Los Alamitos, CA, USA, 1999.

Dennis. J.B. and G.R. Gao, "Multithreaded Architectures: Principles, Projects
and Issues". In: [Ian94].

Dillon. T.J. and P.B. Lopes, "TMS320C6x: a VLIW (very long instruction
word) architecture for DSP applications", Proc. ofiCMP'99 Int. Conf. on
Microelectronics and Packaging, Vol. 2, Curitiba, Brazil, 10-14 Aug. 1999,
pp. 437-444.

Eggers. S.J. et al., "Simultaneous Multithreading: a Platform for Next­
Generation Processors", IEEE Micro, Vol. 17(5), Sept./Oct. 1997, pp. 12-19.

Fomey, G.D., "The Viterbi Algorithm", Proc. IEEE, Vol. 61, March 1973,
pp. 268-278.

Franklin. M., "The Multiscalar Architecture", Computer Science Technica/
Report No. 1196, University ofWisconsin-Madison, WI, USA, 1993.

Hennessy. J.L. and D.A. Patterson, Computer Architecture: a Quantitative
Approach, Morgan Kaufm.ann Publishers Inc., San Francisco, USA, 1996.

Iannucci. R.A. et al. (eds.), Multithreaded Computer Architecture: a
Summary of the State of the Art, Kluwer Int. Series in Engineering and
Computer Science, Vol. 281, Kluwer Academie Publishers, Norwell,
Massachusetts, USA, 1994.

65

Bibliography

[Jay02] Jayapala. M. et al., "Clustered LO Buffer Organization for Low Energy
Embedded Processors", Proc.]st Workshop on Application Specific
Processors (WASP), held in conjunction with MICR0-35, Istanbul, Turkey,
18-22 Nov. 2002.

[Jay03] Jayapala, M. et al., "Methods to Execute Multiple Loops in Parallel",
unfinished document. More information available from
http://lesbos.esat.kuleuven.ac.be/-mjayapaV.

[Ku92] Ku. D.C. and G. De Micheli, High-Level Synthesis of ASICs under Timing
and Synchronization Constraints, Kluwer Academie Publishers, 1992.

[Lam88] Lam, M., "Software Pipelining: an Effective Scheduling Approach for VLIW
Machines", Proc. ofthe SIGPLAN Conf on Programming Language Design
and Implementation, Atlanta, Georgia, USA, 22-24 June 1988, pp. 318-328.

[Lap94] Lapsey. P. et al., DSP Processor Fundamentals, Berkeley Design
Technology Inc. (BDTD, 1994. http://www.bdti.com/.

[Mar98] Marcuello. P. et al., "Speculative Multithreaded Processors", Proc. Int. Conf
Supercomputers, Melbourne, Australia, 13-17 July 1998, pp. 77-84. ACM
Press, New York, USA, 1998.

[MesOl] Mesman, B., Constraint Analysisfor DSP Code Generation, Ph.D. Thesis,
Eindhoven University ofTechnology, Electrical Engineering Department,
2001.

[Mik96] Mikschl, A. and W. Damm, "MSparc: a multi-threaded Spare", Lecture Notes
in Computer Science, Vol. 1123, pp. 461-468. Springer-Verlag, Heidelberg,
Germany, 1996.

[MosOl] Moshovos. A. and G.S. Sohi, "Microarchitectural Innovations: Boosting
Micro-processor Performance Beyond Semiconductor Technology Sealing",
Proc. IEEE, Vol. 89(11), Nov. 2001, pp. 1560-1575.

[Oeh99] Oehring. H. et al., "Simultaneous Multithreading and Multimedia",
Workshop on Multithreaded Execution, Architecture and Compilation 1999
(MTEAC99), Orlando, USA, 9 Jan. 1999.

[Rot97] Rotenberg. E. et al., "Trace Processors", Proc. 30th Int. Symp. MICRO,
Research Triangle Pare, NC, USA, 1-3 Dec. 1997, pp. 138-148.
IEEE Computer Society Press, Los Alamitos, CA, USA, 1997.

[SiHive] Silicon Hive Technology Primer. Available from http://www.siliconhive.com

66

[Smi81]

[Tul95]

[Ung02]

[Ver95]

[Vit67]

[Wal91]

Bibliography

Smith. B.J., "Architecture and App1ications ofthe HEP Multiprocessor
Computer System", Proc. SPIE Reai-Time Signa/ Processing IV, Vol. 298,
San Diego, CA, USA, 25-28 Aug. 1981, pp. 241-248.

Tullsen. D.M. et al., "Simultaneous Mu1tithreading: Maximizing on-chip
Paralle1ism", Proc. 22nd Annu. Int. Symp. Computer Architecture (ISCA22),
Santa Margherita Ligure, Ita1y, 22-24 June 1995, pp. 392-403.

Ungerer. T. et al., "Mu1tithreaded Processors", Computer Joumal (UK), Vol.
45(3), 2002, pp. 320-348. Oxford University Press for British Computer
Society, UK, 2002.

Verhaegh. W.F.J., Multidimensional Periadie Scheduling, Ph.D. Thesis,
Eindhoven University ofTechno1ogy, Department of Matbematics and
Computer Science, 1995.

Viterbi. A.J., "Error bounds for convo1ution codes and an asymptotically
optimum decoding a1gorithm", IEEE Trans. Information Technology, Vol.
IT-13, Apri11967, pp. 260-269.

Wa11. D.W., "Limits in Instruction-Leve1 Paralle1ism", Proc. Int. Conf 41
h

Architectural Support for Programming Languages and Operating Systems
(ASPLOS-IV), Santa C1ara, CA, USA, 8-11 Apri11991, pp. 176-188. ACM
Press, NY, USA, 1991.

67

Bibliography

68

Glossary

Glossary

ADSP : Application Domain Specific Processor - microprocessor consisting of appli­
cation specific units (ASUs), designed fora specific application domain.

ASU : Application Specific Unit - functional unit designed to perform operations
for a specific type of application.

Basic block: sequence of consecutive statements of a program in which flow of control
enters at the beginning and leaves at the end without halt or the possibility of
branching (jumping to another basic block due to a conditional statement),
except at the end ofthe block.

CMP : Chip Multi-Processor - architectural design that integrates two or more com­
plete processors onto a single chip to serve a multi-programming or multi­
threaded workload.

CPI : Cyc/es Per Instruction - the number of clock cycles that the execution of an
instruction consumes.

DFG : Data Flow Graph - representation of a basic block in the form of a graph.

DSP : Digital Signa/ Processing - refers to various techniques for improving the
accuracy and reliability of digital communications.

FU : Functiona/ Unit - part of a microprocessor that performs a specific function
(e.g., add, multiply, add-compare-select). Also called processing unit (PU).

HDL : Hardware Description Language - kind of language used for the conceptual
design of integrated circuits. Examples of such languages are VHDLand
Verilog.

ILP : lnstruction-Level Parallelism - independent instructions from one block of
code.

11 : lnitiation Interval - the number of clock cycles after which the next iteration
of the operations in a loop are started.

Latency: the number of clock cycles after which all operations in the DFG (and all
iterations ofthe DFG) are finished.

PU : Processing Unit - part of a microprocessor that performs a specific function
(e.g., add, multiply, add-compare-select). Also called functional unit (FU).

69

Glossary

RTL : Register-Transfer Level- design level on which complex hardware is speci-
fied in terms of clocked elements, called registers, with operations in be­
tween. An operation on this level consists of fetching the necessary operands
from a register, executing an operation on a FU and storing the result in
registers.

RISC : Reduced Instruction Set Processor - a microprocessor that is designed to
perform a smaller number of types of instructions so that it can operate at a
higher speed (perform more millions of instructions per second, or MIPS).
Since each instruction type that a processor must perform requires additional
transistors and circuitry, a larger list or set of instructions tends to make the
microprocessor more complicated and slower in operation.

Superscalar: the ability to fetch, issue and execute multiple operations from a single
instruction stream during one clock cycle.

SMT : Simultaneous Multi-Threading - the superscalar instruction-issue combined
with a multiple-context approach.

TLP : Thread-Level Parallelism - independent instructions from multiple blocks of
code.

VLIW : Very Long Instruction Word - a microprocessor design technology. A
processor based on the VLIW paradigm is capable of executing many opera­
tions within one clock cycle. Essentially, a compiler reduces program
instructions into basic operations which the processor can perform simultane­
ously. The operations are put into a very long instruction word which the
processor tb en takes apart and passes the operations off to the appropriate
devices.

VLSI : Very Large Sca/e Inlegration - the current level of microcomputer
miniaturization, which refers to microchips containing in the hundreds of
thousands of transistors.

70

Appendices

71

72

A Simple Case Study using Silicon Hive

In this appendix, the algorithm description (A. I) and the architecture (A.2) used for the
simpte casestudy as discussed inSection 4.3 are presented.

A.l Algorithm description

The following piece of code is the HDFC-description (intermediate description format of
the Silicon Hive tools) for the C-code fragment that was presented in Figure 1-2.

int case_study (Cel! me)
(

START FUNCTION
BLOCK (body)
(

imm (psu, 1, ipg);
imm (psu, 0, SPLIT(base in, offs_in_1));
imm (psu, 4, offs in 2-);
imm (psu, 0, SPLIT(base_out, offs_out));

loop_i: for (loop_cnt_i = 3; loop_cnt_i != -1; --loop_cnt_i)
(

RCV: rcv
INP: inp
STl: st8o
PCS: pcs
ST2: st8o

INCl: inc
INC2: inc

(sru ,
(iput,
(lsu ,
(pre ,
(lsu ,
(acu ,
(acu ,

PIPELINING(O)
)

ipg, 6, tmp in);
tmp in, SPLIT (in 1, in 2)) ;
ipg~ base in, offs in Ï, in_1);
in 2, tmpÏ - -);
ipg, base in, offs in 2, tmp1);
offs in 1~ offs in-1-);
offs:in:2, offs:in=2);

loop j: for (loop_cnt_j = 7; loop_cnt_j != -1; --loop_cnt_j)
I
LD: ld8o (lsu, ipg, base_out, offs_out, tmp out); AFTER(ST1,1);

OUT: outp (oput, tmp out, out -);
SND: snd (sru, ipg~ 2, out);

INC3: inc (acu, offs_out, offs_out);

PIPELINING(O)
)

END FUNCTION

Legend for the HDFC-description:

7' y~· ~"·~~·;~
label instructien target functional input output

unit operand operand

The statement PIPELINING (0) instructs the scheduler to find the minimum possible
initiatien interval for the corresponding loop.

The statement AFT ER (sT 1 , 1) inserts a sequence preeedenee edge with weight one
betweentheLD and STl operations.

73

~

bus sru (8)

bus_psu (5)

bus acu (5)

bus_oput 8)

IR GRO ,x1 I R,r~-d I R_~.rdx I

\/ T

& d!b db
SRU_alot PS U_slot A U_slot L L-- :-----

bus lsu 8)

bus_iput (8)

~us_prc (f

IRisubal R lsu of
-sx.lf" ox.r IRisudal -8x.lf"

R inp
.lrx4

~ /
&6

LSU_slot

'i(

ooen
~ ~·
a a
en.-

=r a (I)

~CD
CTCC ;:::;: oo· en.-

CD
:::!!
ëD

i put

IPL T_slot
. ----:--.

R outp I llx4

op ut

OP T_slot
.____,

Rsf4rc

pre

PR slot -
.'----

I
I
I

I
I
I
I
I

~
CD
cc

~
:::!!
ëD

bu~bru_ja ()

b ~ _dlc(5
b(!l_ ~u u ~sw(4)

~~~ 
SR 

5x1 4 

I 
I 
I 
I 

I dbS I 
I 

I 
I I 

I I 
1 

IF '-'-slot I 
I 

I t us_bru_ja I 
I 

I 
I 
I 
' 

I 
bus_bru_dlc f 

bus_su!f-usw 
I 
I 
I 
I 
I 
I 

t' 
2' 
:::1 
Sl ö. 
:::1 
~ 
c 
:::1 
;:::;: 

I 
I 
I 
I 
I 
I 
I 
I 

I 
I • oo· 

en 
c 
(I) 

en 
$l 

> 
N 

~ 
~ .., 

(J'Q 
~ .... 
~ 

ri e: .... 
~ 
r') 

9" .., 
~ 



B The Viterbi Algorithm 

In this appendix, a pseudo-code representation of the Viterbi algorithm based on the 
sliding window execution is shown, as well as the schedules for a sequentia! and a loop­
merged implementation. 

B.l Pseudo-code description of Viterbi algorithm 

The following is the pseudo-code for the part of the algorithm in which the trellis con­
struction and traceback phases are executed in parallel: 

t 0 = 0; 
while () 

tc_loop_t: for t = ta+l...ta+Dupdate-1 
tc_loop_s: for s = O ... S-1 

if (s < S/2) 
broO hamm(inp[t], bc[prev(s,O)]); 
brol hamm(inp[t], bc[prev(s,l)]); Branch metric calculation 

el se 
broO 
brol 

hamm(inp[t], 7-bc[prev(s,O)]); 
hamm(inp[t], 7-bc[prev(s,l)]); 

end 
proO = pro[prev(s,O)] 
prol= pro[prev(s,l)] 
if (proO < prol) 

pro_next[s] 
surv[t,s] 

el se 
pro_next[s] 
surv[t,s] 

end 

proO; 
0; 

prol; 
1; 

end 
for s = O ... S-1 

pro[s] = pro_next[s]; 
end 

end 

s = 0; 

+ broO; 
+ brol; 

tb_loop_t: for t = ta ... ta-Dtrace+l 
if (s < S/2) 

push(O); 
el se 

push(l); 
end 
s = prev(s, surv[t,s]); 

end 
tb_loop_out: for t = ta ... ta+Dupdate-1 

pop(); 
end 
to = ta+Dupdate; 

end 

Path metric calculation (ADD) 

Path metric selection 
(CO MP ARE-SELECT) 

Traceback 

} Output generation 

75 



In this code, S is the total number of states, Dupdate is the number of forward trellis con­
struction steps and Drrace the number of traceback steps. 

The function hamm(x,y) determines the Hamming di stance between x and y: the num­
ber of bits in which x and y are different, assuming that x and y are binary variables. 

The functions push(x) and popQ perform pushand pop operations on the stack. 
The function prev(x,y) is used to determine from what state the current state can be 

reached. Defmition ofthis function is as follows: 

2x, if x< S and y=O 
2 

2x+l, if x< S and y=l 
prev(x,y) = 2 

if x~ S and y=O 2x-S, 
2 

2x-S +1, if x~ S and y=l 
2 

The following is a graphical representation ofthis function: 

76 

prev(m,O) = k 
prev(m, 1) = I 

prev(n,O) = k 
prev(n, 1) = I 

(10) 



B.2 Sequentia} execution of the Viterbi algorithm 

The following diagram shows the schedule for the sequentia! execution of the Viterbi 
algorithm on a VLIW data path with a single controller. The labels below the diagram 
correspond with the labels in the pseudo-code. 

'-----..-v,-----' 
tc_loop_s J 

v----" 
11 11 loop kemels tc_loop_t 

The following diagram shows the schedule for the loop-merged execution of the 
Viterbi algorithm on a VLIW data path with a single controller. Again, the labels below 
the diagram correspond with the labels in the pseudo-code. 

'""------.-v,..----'J 
\... tc_loop_s & tb_loop_t 

V 
tc_loop_t 

11 
11 

loop kemels 

77 


