109 research outputs found

    NFV Platforms: Taxonomy, Design Choices and Future Challenges

    Get PDF
    Due to the intrinsically inefficient service provisioning in traditional networks, Network Function Virtualization (NFV) keeps gaining attention from both industry and academia. By replacing the purpose-built, expensive, proprietary network equipment with software network functions consolidated on commodity hardware, NFV envisions a shift towards a more agile and open service provisioning paradigm. During the last few years, a large number of NFV platforms have been implemented in production environments that typically face critical challenges, including the development, deployment, and management of Virtual Network Functions (VNFs). Nonetheless, just like any complex system, such platforms commonly consist of abounding software and hardware components and usually incorporate disparate design choices based on distinct motivations or use cases. This broad collection of convoluted alternatives makes it extremely arduous for network operators to make proper choices. Although numerous efforts have been devoted to investigating different aspects of NFV, none of them specifically focused on NFV platforms or attempted to explore their design space. In this paper, we present a comprehensive survey on the NFV platform design. Our study solely targets existing NFV platform implementations. We begin with a top-down architectural view of the standard reference NFV platform and present our taxonomy of existing NFV platforms based on what features they provide in terms of a typical network function life cycle. Then we thoroughly explore the design space and elaborate on the implementation choices each platform opts for. We also envision future challenges for NFV platform design in the incoming 5G era. We believe that our study gives a detailed guideline for network operators or service providers to choose the most appropriate NFV platform based on their respective requirements. Our work also provides guidelines for implementing new NFV platforms

    On the Use of Kernel Bypass Mechanisms for High-Performance Inter-container Communications

    Get PDF
    In this paper, we perform a comparison among a number of different virtual bridging and switching technologies, each widely available and commonly used on Linux, to provide network connectivity to co-located LXC containers for high-performance application scenarios

    BPFabric: Data Plane Programmability for Software Defined Networks

    Get PDF
    In its current form, OpenFlow, the de facto implementation of SDN, separates the network’s control and data planes allowing a central controller to alter the matchaction pipeline using a limited set of fields and actions. To support new protocols, forwarding logic, telemetry, monitoring or even middlebox-like functions the currently available programmability in SDN is insufficient. In this paper, we introduce BPFabric, a platform, protocol, and language-independent architecture to centrally program and monitor the data plane. BPFabric leverages eBPF, a platform and protocol independent instruction set to define the packet processing and forwarding functionality of the data plane. We introduce a control plane API that allows data plane functions to be deployed onthe-fly, reporting events of interest and exposing network internal state. We present a raw socket and DPDK implementation of the design, the former for large-scale experimentation using environment such as Mininet and the latter for high-performance low-latency deployments. We show through examples that functions unrealisable in OpenFlow can leverage this flexibility while achieving similar or better performance to today’s static design

    Ultra-reliable Low-latency, Energy-efficient and Computing-centric Software Data Plane for Network Softwarization

    Get PDF
    Network softwarization plays a significantly important role in the development and deployment of the latest communication system for 5G and beyond. A more flexible and intelligent network architecture can be enabled to provide support for agile network management, rapid launch of innovative network services with much reduction in Capital Expense (CAPEX) and Operating Expense (OPEX). Despite these benefits, 5G system also raises unprecedented challenges as emerging machine-to-machine and human-to-machine communication use cases require Ultra-Reliable Low Latency Communication (URLLC). According to empirical measurements performed by the author of this dissertation on a practical testbed, State of the Art (STOA) technologies and systems are not able to achieve the one millisecond end-to-end latency requirement of the 5G standard on Commercial Off-The-Shelf (COTS) servers. This dissertation performs a comprehensive introduction to three innovative approaches that can be used to improve different aspects of the current software-driven network data plane. All three approaches are carefully designed, professionally implemented and rigorously evaluated. According to the measurement results, these novel approaches put forward the research in the design and implementation of ultra-reliable low-latency, energy-efficient and computing-first software data plane for 5G communication system and beyond

    High performance network function virtualization for user-oriented services

    Get PDF
    The Network Function Virtualization (NFV) paradigm proposes to transform those network functions today running on dedicated and often closed appliances (e.g., firewall, wan accelerator) into pure software images, called Virtual Network Functions (VNFs), which can be consolidated and executed on high-volume standard servers. In this context, this dissertation focuses on the possibility of enabling each single end user (and not only network operators) to set up network services by means of NFV, allowing him to custoimize the set of services that are active on his Internet connection. This goal mainly requires to address flexibility and performance issues. Regarding to the former, it is important: (i) to support services including both network (e.g., firewall) and cloud (e.g., storage server) applications; (ii) to allow the user to define the service with an intuitive and high-level abstraction, hiding infrastructure-layer details. Instead, with respect to performance, multiple software-based services operating on the user's traffic should not introduce penalties in the user’s Internet experience. This dissertation solves the above issues by proposing a number of improvements in the context of Network Function Virtualization, both in terms of high level models and architectures to define and instantiate network services, and in terms of mechanisms to efficiently interconnect VNFs. Experimental results demonstrate that the goal of allowing end users to deploy services operating on their own traffic is feasible without impacting the Internet experience

    MACSAD: Sistema de Compilador Multi-Arquitetura para Planos de Dados Abstratos

    Get PDF
    Orientador: Christian Rodolfo Esteve RothenbergTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Redes Definidas por Software (Software-Defined Networking - SDN) almejam um plano de dados programável, além de planos de controle e aplicação flexíveis e escaláveis. Apesar de ter recebido menor atenção quando comparado aos aspectos dos planos de controle e aplicação, o plano de dados concerne uma peça chave nos enigmas de SDN. Nós contemplamos um plano de dados flexível apresentando as características, nomeadas, Programabilidade, Portabilidade, Desempenho e Escalabilidade (Programmability, Portability, Performance, and Scalability - 3PS) como diferentes aspectos de flexibilidade. Enquanto os aspectos de Programabilidade e Portabilidade focam na arquitetura e projeto do plano de dados, Desempenho e Escalabilidade aparecem durante a avaliação do mesmo. Estendemos o foco da evolução do plano de dados de Programabilidade da escola de pensamento SDN para incluir Portabilidade como aspecto de flexibilidade. O plano de dados programável confirma a natureza independente do protocolo, enquanto a Portabilidade atende aos requisitos de arquitetura múltipla do projeto do plano de dados. A linguagem P4, uma nova entrante, sendo uma linguagem de programação de alto nível independente do protocolo e independente do alvo, é capaz de levar a evolução do plano de dados ao próximo nível, desbloqueando as facetas desejadas da flexibilidade do plano de dados. Para trazer esse nível necessário de flexibilidade para um plano de dados, é necessário um sistema de compilador com várias arquiteturas que possa compilar um programa P4 em conformidade com o protocolo e a natureza de independência de destino de P4; No entanto, essa solução de sistema de compilador unificado é o que nos falta. A principal contribuição desta tese, a proposta do Sistema de Compiladores de Arquitetura Múltipla para Planos de Dados (Multi-Architecture Compiler System for Abstract Dataplanes - MACSAD), é um esforço para preencher a lacuna estendendo a abordagem Top-Down de P4 em direção à programabilidade com a abordagem Bottom-Up do OpenDataPlane (ODP) em direção à independência de destino com suas APIs de baixo nível, mas de plataforma cruzada (HW & SW). Reforçamos as contribuições desta tese incluindo aspectos de Desempenho e Escalabilidade da flexibilidade também como parte de nossa avaliação do MACSAD em múltiplos cenários realistasAbstract: Software-Defined Networking (SDN) strives for programmable data plane, yet flexible and scalable control and application planes. Despite having received less attention compared to control and application aspects of SDN, data planes are a critical piece of the SDN puzzle. We envision a flexible data plane showing characteristics, namely, Programmability, Portability, Performance, and Scalability (3PS) as different aspects of flexibility. While Programmability & Portability aspects focus on the architecture and design of the data plane, Performance & Scalability appears during the evaluation of it. We extend the focus of data plane evolution from Programmability from SDN school of thought to include Portability aspect of flexibility. Programmable data plane confirms to protocol-independent nature, whereas Portability addresses multi-architecture requirements of data plane design. P4 language, a new entrant, being a protocol-independent and target-independent high-level programming language is capable to take data plane evolution to the next level by unlocking the desired facets of data plane flexibility. To bring this required level of flexibility to a data plane, a multi-architecture compiler system is necessary which can compile P4 program conforming to protocol & target independence nature of P4; However, such a unified compiler system solution is what we lack of. The main contribution of this thesis, the MACSAD proposal, is an effort to fill the gap by extending the Top-Down approach of P4 towards programmability with Bottom-Up approach of OpenDataPlane (ODP) towards target-independence with its low-level but cross-platform (HW & SW) APIs. We strengthen the contributions of this thesis by including Performance, and Scalability aspects of flexibility too as part of our evaluation of MACSAD in multiple realistic scenariosDoutoradoEngenharia de ComputaçãoDoutor em Engenharia Elétric
    corecore