
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

High performance network function virtualization for user-oriented services / Cerrato, Ivano. - (2016).
Original

High performance network function virtualization for user-oriented services

Publisher:

Published
DOI:10.6092/polito/porto/2643656

Terms of use:
Altro tipo di accesso

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2643656 since: 2016-06-09T14:06:20Z

Politecnico di Torino

POLITECNICO DI TORINO
SCUOLA DI DOTTORATO

PhD Course in Computer and Control Engineering – XXVIII cycle

PhD Dissertation

High Performance Network
Function Virtualization for

User-Oriented Services

Ivano Cerrato
student ID: 199847

Tutor Course Coordinator
dr. Fulvio Risso prof. Matteo Sonza Reorda

May 2016

Acknowledgements

I would like to thank my supervisor Fulvio Risso, who really helped me during all
the three years of my PhD and collaborated on the realization of the work presented
in this dissertation.

A special thank is also for my wife Sara, who always supported me, and for
all the other guys who worked with me in Politecnico, especially Matteo, Serena,
Roberto, Amedeo, Fabio and Francesco.

iii

Summary

The Network Function Virtualization (NFV) paradigm is changing the way in which
network services are delivered, as it allows them to experiment the same degree of
flexibility and agility already available in the cloud computing world. In fact, NFV
proposes to transform those network functions today running on dedicated and often
closed appliances (e.g., firewall, wan accelerator) into pure software images, called
Virtual Network Functions (VNFs), which can be consolidated and executed on
high-volume standard servers.

NFV is mainly seen as a technology targeting network operators, which can
exploit the power of IT virtualization to deliver network services with unprecedented
agility while achieving a reduction of OPEX and CAPEX. However, also the end
users (e.g., xDSL customers) can benefit from NFV, as this would enable them
to customize the set of services that are active on their Internet connection; in
other words, NFV would enable end users to personalize their Internet experience.
Furthermore, by instantiating applications (e.g., parental control) in the network
instead then on a specific device, end users can get exactly the same service regardless
of the terminal device they are currently using.

This dissertation focuses on the possibility to enable each single end user (and
not only network operators) to set up network services by means of NFV. This
goal requires to address flexibility and performance issues. Regarding to the former,
it is important: (i) to support services including both network (e.g., firewall) and
cloud (e.g., storage server) applications; (ii) to hide to the user defining the service
low level details that are not of interest of the user itself. Instead, with respect
to performance, services deployed as chains of VNFs should not significantly affect
throughput and latency of the Internet connection.

Flexibility aspects are considered in Part I of the dissertation. Particularly,
it defines a multilayer architecture that, leveraging different levels of abstraction,
deploys generic network services on the computing resources available in the operator
network, ranging from the home gateways installed in the customer premises to the
data center servers. This part also introduces new models used to describe the
service to be instantiated, each one modeling the service with a different level of
detail and exploited by a specific layer of the above mentioned architecture. Then,
we present three different software architectures of the infrastructure nodes (e.g.,

v

servers, customer premise equipments) that actually execute the VNFs required by
the service, originated by different design principles and exploited to validate the
idea in different contexts. Notably, one of such architectures aims at scaling when
a huge number (eight thousands) of end users run together their own VNFs on the
node; the prototype demonstrates that this objective is feasible and the resulting
architecture is scalable.

Part II of the dissertation addresses instead performance problems of NFV, by
focusing on new mechanisms to efficiently interconnect VNFs instantiated on the
same infrastructure node. Particularly, we consider the two following directions. In
the former, we focus on solutions to improve the efficiency of the packet exchange
between the virtual switch and each VNF, especially when a massive number of
(tiny) VNFs are executed on the same infrastructure node. In the latter, instead,
we directly connect VNFs among each other, leaving the virtual switch forwarding
plane out of the picture in case some specific conditions are satisfied on the service
to be implemented. To conclude, the proposed solutions aim at scaling with the
number of VNFs executed concurrently on the same infrastructure node; then, they
are well suited to be exploited in the use case presented above, in which several end
users deploys (many) VNFs just operating on their own traffic.

vi

Contents

Summary v

List of Tables xi

List of Figures xii

I Delivering user-oriented network services in an NFV
scenario 1

1 A scalable and massively multi-tenant platform for user-oriented
network services 5
1.1 Introduction . 5
1.2 Related Work . 7
1.3 Overview . 8
1.4 FROG design . 10

1.4.1 Network tiles . 10
1.4.2 Service order . 11
1.4.3 Private EXecution environment 14
1.4.4 Data plane, control plane and management server 15

1.5 Implementation . 16
1.5.1 Virtual switch . 16
1.5.2 Packet buffers . 18
1.5.3 Private execution environment 20
1.5.4 Packet metadata . 22
1.5.5 Distributed architecture . 22

1.6 FROG and the NFV model . 23
1.7 Experimental results . 24

1.7.1 Single server . 25
1.7.2 Multi server . 26
1.7.3 The DPI VNF . 27
1.7.4 VNFs and execution environments 28

vii

1.7.5 FROG vs NetVM and ClickOS 29
1.8 Conclusion . 30

2 Moving applications from the host to the network: experiences,
challenges and findings 31
2.1 Introduction . 31
2.2 Related Work . 32
2.3 The Flexible and pROGrammable edge device 33

2.3.1 Storage Service . 34
2.3.2 Remote Execution Environment 35
2.3.3 Communication and authentication 36

2.4 Programming the PEX . 37
2.4.1 Callbacks . 37
2.4.2 PEX Runtime . 37
2.4.3 Packet Dispatcher . 38
2.4.4 Storage Interface . 38
2.4.5 Remote Application Interface 38
2.4.6 Management Interface . 39

2.5 Parental control service . 39
2.6 Validation . 40

2.6.1 Starting the PEX . 40
2.6.2 Accessing the RESTO . 41
2.6.3 Exploiting the REX . 42

2.7 Conclusion . 42

3 Toward dynamic and virtualized network services in telecom oper-
ator networks 45
3.1 Introduction . 45
3.2 Related work . 47
3.3 General architecture . 48

3.3.1 Service layer . 48
3.3.2 Orchestration layer . 50
3.3.3 Infrastructure layer . 51

3.4 Data models . 51
3.4.1 Service graph . 52
3.4.2 Forwarding graph and lowering process 55
3.4.3 Infrastructure graph and reconciliation process 57
3.4.4 Network function template . 60

3.5 The validation use case: user-defined network services 62
3.6 Prototype implementation . 63

3.6.1 The service layer . 64
3.6.2 Global orchestrator . 66

viii

3.6.3 The Universal Node . 67
3.6.4 The OpenStack-based node 69
3.6.5 Discussion: Openstack-based Node vs. Universal Node 72

3.7 Prototype validation . 73
3.7.1 Service overview . 73
3.7.2 Performance evaluation . 74

3.8 Conclusion and future works . 77

II Optimizing packets movement between Virtual Net-
work Functions 79

4 Supporting fine-grained virtual network functions through Intel
DPDK 83
4.1 Introduction . 83
4.2 DPDK overview . 84
4.3 General architecture . 85
4.4 Implementations . 86

4.4.1 Double buffer . 86
4.4.2 Double buffer + semaphore 87
4.4.3 Single buffer towards the vSwitch + semaphore 87
4.4.4 Double buffer + FDIR . 88
4.4.5 Isolated buffers + semaphore 89

4.5 Performance evaluation . 89
4.5.1 Double buffer . 90
4.5.2 Double buffer + semaphore 92
4.5.3 Double buffer + FDIR . 93
4.5.4 Isolated buffers + semaphore 93

4.6 Related work . 93
4.7 Conclusion . 94

5 Efficient data exchange algorithm for chained virtual network func-
tions 97
5.1 Introduction . 97
5.2 Related Work . 99
5.3 The data exchange architecture . 101

5.3.1 Operating context . 101
5.3.2 Architecture Overview . 101
5.3.3 Execution model . 102
5.3.4 Basic algorithm: handling pass-through data 103
5.3.5 Extended algorithm: handling Worker-generated data 109

5.4 Formal verification . 112

ix

5.4.1 Properties specification . 113
5.4.2 Model details . 114
5.4.3 Verification results . 115

5.5 Implementation . 116
5.6 Experimental results . 118

5.6.1 Single chain - Throughput . 119
5.6.2 Single chain - Latency . 121
5.6.3 Single chain - Comparison with other approaches 121
5.6.4 Single chain - Other tests . 123
5.6.5 Multiple chains . 124
5.6.6 Network tests . 125

5.7 Conclusion . 126

6 Transparent optimization of inter-virtual network function commu-
nication in Open vSwitch 129
6.1 Introduction . 129
6.2 Background . 131
6.3 Architecture . 132

6.3.1 Detecting p-2-p links . 133
6.3.2 Handling the new ivshmem device 133
6.3.3 Remapping process . 134
6.3.4 Port statistics . 136

6.4 Experimental validation . 136
6.4.1 Throughput with internal traffic 137
6.4.2 Throughput with physical NICs 138
6.4.3 Latency . 138
6.4.4 Establishment time . 139

6.5 Related work . 140
6.6 Conclusion . 140

Conclusions 143

Bibliography 145

Appendix 153

x

List of Tables

1.1 NFV vs FROG . 23
1.2 Protocols and corresponding regex. 28
1.3 “One VNF per PEX” vs “Multiple VNFs per PEX”. 29
2.1 Latency in accessing the RESTO. 42
3.1 Challenges of the considered use case and related solutions. 62
3.2 Universal Node vs OpenStack-based Node. 72
5.1 Algorithm verification. 115

xi

List of Figures

1.1 The FROG operating context: a network edge node and its end users. 9
1.2 High level view of a FROG node. 10
1.3 Possible journey of a packet. 12
1.4 Possible journey of a broadcast/multicast packet. 14
1.5 Data and control plane. 16
1.6 FROG software architecture. 17
1.7 Packet exchange between the fvSwitch and PEX. 19
1.8 Single vs. multi-server architecture. 23
1.9 Throughput with a growing number of PEX. 26
1.10 Latency introduced by the node with a growing number of native PEX. 26
1.11 PEX memory consumption. 27
1.12 Single vs. multi server. 27
1.13 Latency in case of 5 VNFs running: (i) in the same PEX, (ii) in 5

different PEX. 29
2.1 Overview of the entire system. 33
2.2 Internal view of the Remote Storage Service. 35
2.3 Exploded view of a REX. 36
2.4 Exploded view of a PEX hosting two VNFs. 37
2.5 Starting a PEX with four VNFs. 41
3.1 Deployment of virtual network functions on the telecom operator net-

work. 46
3.2 Overall view of the system, including the two implementations of the

infrastructure layer. 49
3.3 Service graph: basic elements and example. 52
3.4 Cascading SGs. 55
3.5 From the SG to the FG: the lowering process. 58
3.6 Excerpt of a forwarding graph. 59
3.7 Example of the output of the reconciliation process when mapping a

L2 switch functionality in case of two different types of infrastructure
nodes. 60

3.8 Example of a VNF template. 61
3.9 Authentication SG and FG. 66

xii

3.10 Logical architecture of the Universal Node. 68
3.11 OpenStack-based Node. 70
3.12 Use case scenario. 74
3.13 Memory consumption. 75
3.14 Performance of the infrastructure layer: (a) ping; (b) file transfer. . . 76
4.1 High-level view of a server with a vSwitch and several VNFs. 86
4.2 Implementation based on a (different) pair of rings shared between

the vSwitch and each VNF. 87
4.3 Implementation that exploits the FDIR feature. 88
4.4 Throughput with a growing number of VNFs. 91
4.5 Latency introduced by the framework. 91
5.1 Function chains deployed in a server. 98
5.2 Deployment of the algorithm within a server. 102
5.3 Run-time behavior and indexes of the algorithm. 109
5.4 Binding primary buffer - auxiliary buffer. 112
5.5 Throughput of a single function chain with the algorithm presented

in this chapter. 120
5.6 Internal throughput of the function chain, with real Workers and a

1M packets in memory. 121
5.7 Latency introduced by the function chain with a growing number of

cascading Workers. 122
5.8 Throughput of a single function chain when other data exchange al-

gorithms are used. 122
5.9 Results with a growing number of function chains running in parallel,

each one spotting two Workers in cascade. 125
5.10 Results with a function chain of growing length, with the Master

accessing to the network. 126
6.1 Traffic crossing several VNFs: (a) the “abstract” service graph; (b)

its implementation on a server. 130
6.2 Sharing DPDK data structures between OvS and VMs. 132
6.3 Different implementations for the dpdkr port. 132
6.4 ivshmem device for port remapping. 134
6.5 Test setup. 137
6.6 Memory-only traffic. 137
6.7 Traffic using physical NICs. 137
6.8 # of cores required/assigned during the tests. 138
6.9 Latency when physical NICs are involved. 139
6.10 Time required to establish a direct connection. 139

xiii

Part I

Delivering user-oriented network
services in an NFV scenario

1

Overview

The way network services are delivered is going to dramatically change in the next
few years thanks to the Network Function Virtualization (NFV) [43] paradigm,
which allows the network services to experiment the same degree of flexibility and
agility already available in the cloud computing world. In fact, NFV proposes to
transform network functions that today run on dedicated appliances (e.g., firewall,
WAN accelerator) into a set of software images that can be consolidated into high-
volume standard servers, hence replacing dedicated middleboxes with virtual ma-
chines implementing those Virtual Network Functions (VNFs).

NFV is mainly seen as a technology targeting network operators, which can
exploit the power of the IT virtualization (e.g., cloud and datacenters) to deliver
network services with unprecedented agility and efficiency and at the same time
achieve a reduction of OPEX and CAPEX. However, also the end users (e.g., xDSL
customers) can benefit from NFV, as this would enable them to customize the set
of services that are active on their Internet connection; in other words, NFV would
enable end user to personalize their Internet experience.

The possibility to enable multiple players, including the end users, to deploy
network services by means of the NFV paradigm is explored in this part of the
dissertation.

Chapter 1 presents FROG, a software architecture allowing both the end users
and other players such as service providers to install and operate their own VNFs on
a network edge node. Particularly, end users connected to the node can create their
customized network services that are then applied to their own traffic independently
from the physical terminal in use (e.g., smarthphone, tablet, ect.). Numbers from
ISPs indicate that, on the same Broadband Remote Access Server (BRAS) (which
may be a deployment scenario for FROG), the termination of 20K ADSL lines is
not uncommon. Then, the proposed architecture needs to guarantee an adequate
level of performance even when a huge number of end users run together their own
VNFs on the node. The prototype demonstrates that this objective is feasible and
the resulting architecture is scalable; in addition, such an architecture guarantees
traffic isolation among VNFs deployed by different players.

Chapter 2 validates the FROG platform from the point of view of the service
developer; in particular, the chapter presents the API exported to the developers,
as well as a complex parental control service built on top of such an API.

Chapter 3 extends the FROG concept by proposing a multilayer architecture
that, leveraging different levels of abstraction, can orchestrate and deploy generic
network services on the whole network of a telecom operator, ranging from the home
gateway installed in the customer premises to the data center servers. This architec-
ture is then exploited to deliver generic services in presence of multiple concurrent
players (e.g., network operators, end users), leveraging a new simple data model.

3

Particularly, the chapter proposes a description-based approach allowing the deploy-
ment of agile, implementation-independent and high-level network services over a
distributed set of resources. The resulting data model can abstract generic services,
including both middlebox-based (e.g., firewalls, NATs, etc.) and traditional LAN-
based ones (e.g., a BitTorrent client). Finally, two distinct prototypes, originated by
different design principles, are implemented in order to validate the proposal with
the aim of demonstrating the adaptability of the approach in different contexts.

4

Chapter 1

A scalable and massively
multi-tenant platform for
user-oriented network services

1.1 Introduction
Thanks to the arising of Network Function Virtualization (NFV) [43] it is possible,
perhaps for the first time, to influence network operations through software appli-
cations developed by third parties; however, at the best of our knowledge, currently
a few players, namely network manufacturers and network operators seem to be
allowed to create, install and operate Virtual Network Functions (VNFs) on the
network nodes.

Going against this trend, this chapter1 presents FROG, a Flexible and pRO-
Grammable edge device that offers to different players, including end users, the
possibility to customize the behavior of the device itself through the deployment of
their own virtual network functions. In fact the end users, with their imagination,
are the ones that drove the innovation in the PC and smartphone markets with the
creation of many unexpected applications, and we expect them to be the ones that
will contribute most to network evolution. In this respect, we envision for Network
Service Providers (NSPs) the possibility to evolve in infrastructure providers (a sort
of new Network IaaS), offering to multiple players a pipe that transports bit (the
network) and a programmable platform where those bits can be processed and even
modified in transit.

FROG classifies the players enabled to deploy VNFs into two categories: (i)
end users, i.e., the ADSL customers who connect to the Internet through a FROG

1The work of this chapter is partially published in [79] and partially described in the master
thesis of Luca Capano, who collaborated in the development of the prototype.

5

1 – A scalable and massively multi-tenant platform for user-oriented network services

node and that can deploy VNFs only on this particular FROG instance; (ii) other
entities such as Internet Service Providers (ISPs) and content providers, which are
not directly connected to FROG, but that are anyway enabled to deploy VNFs on
the node itself. This partitioning represents one of the key points of our framework,
and it is exploited to decide the order in which a packet belonging to multiple players
is processed by the VNFs they have deployed on the FROG node.

It is worth noting that players such as ISPs may be interested to exploit FROG
to run, as software images, those applications traditionally executed in dedicated
appliances or proprietary boxes, such as NAT and WAN accelerators. Instead the
end users may be more interested in moving on FROG (and then into the network)
those applications today executed in their many devices (e.g., personal firewall,
parental control), in order to obtain exactly the same service regardless of the device
they are currently using.

The fact that several players are enabled to deploy their own VNFs on FROG may
result in a very huge number (even thousands) of VNFs executed simultaneously on
the node. The support of this massive number of VNFs is not trivial, and it requires
to address several issues.

First of all, VNFs cannot be executed in full fledged virtual machines, because
they would be too expensive in terms of hardware requirements, namely memory
and processing power. Then FROG defines a lightweight container, called Private
EXecution environment (PEX) (see Figure 1.2), which is in charge of executing
all the VNFs belonging to the same player ; in the remainder of this chapter we will
demonstrate that a single FROG node implemented on general purpose hardware
can execute thousands of VNFs at the same time (eight thousands in our setup).
Moreover, to support even more VNFs2, we designed a distributed version of the
framework, in which a single FROG deployment actually consists of a cluster of
servers. It is worth noting that the multi-tenancy of FROG imposes that the frame-
work guarantees isolation among VNFs, so that a malicious application installed
by user A cannot interfere with applications belonging to user B. Then, to guaran-
tee isolation among players, FROG (i) executes each PEX into a different Docker
container [3], and (ii) exploits a packet dispatching mechanism not based on zero-
copy techniques, which would improve performance but that would not ensure the
required level of isolation.

Obviously, a huge number of VNFs cannot come at the expense of performance; in
fact, our prototype demonstrates that this platform can support thousands of users,
each one running its own VNFs at reasonable speed, and that its overall performance,
when FROG is installed on commodity hardware, is excellent (several Gbps on a

2In fact, numbers from ISPs indicate that in a deployment scenario such as a Broadband Remote
Access Server (BRAS), the termination of 20K ADSL lines (and not users!) on the same network
box is not uncommon.

6

1.2 – Related Work

single machine). The achievement of this goal required a careful implementation of
the component that classifies packets and provides them to the proper VNFs (the
FROG vSwitch in Figure 1.2), while the multi-server version further increases the
performance in demanding environments.

This chapter is structured as follows. Section 1.2 analyses the related work,
while Section 1.3 provides an overall view of the FROG platform, which is then
detailed in Section 1.4. The implementation of the framework is instead described in
Section 1.5. Section 1.6 compares FROG with the NFV model; experimental results
are then shown in Section 1.7, while Section 1.8 finally concludes the chapter.

1.2 Related Work
Several works in literature address the possibility of consolidating many network
functions on the same physical hardware. However, FROG defines a service model
in which the end users connected to the node play a central role (Section 1.4); at
the best of our knowledge, no other platform gives such an importance to the end
users, although some of them (ClickOS [64] and NetVM [55]) do not prevent end
users to deploy VNFs.

Particularly, ClickOS [64] bases on XEN [23] to create a multi-tenant software
middlebox consisting of many ClickOS instances, i.e., virtual machines (VMs) with
Click [71] running on top of a minimal operating system. Unlike ClickOS, FROG
defines a service model in which the VNFs deployed by end users who are the source
and the destination of network traffic are respectively the first and the last VNFs to
operate on such a traffic; hence, FROG has been explicitly designed and optimized
for this type of service. Moreover, results provided in [64] do not show how ClickOS
scales with the number of VNFs, while the support of thousands of active players
(and then VNFs) at the same time is one of the goals of the FROG platform.

Similar differences exist also between FROG and NetVM [55], a platform built
on top of KVM and the DPDK [56] framework, designed to efficiently provide traffic
to VNFs deployed as different VMs. Notably, NetVM guarantees traffic isolation
among “untrusted” VMs, while packets are moved in a zero-copy fashion among
“trusted” VMs.

CoMb [86] is a software middlebox that optimizes the resource usage of VNFs
running on the same server. Particularly, a centralized controller selects the CoMb
node in which deploy a VNF, using information such as the resources required by this
VNF, the resources available on the nodes, and the traffic on which the VNF must
operate. However, aspects such as the multi-tenancy, the traffic isolation among
VNFs of different tenants, and the execution of thousands of VNFs on the same
server are not mentioned in [86].

SHG [95] proposes an home gateway that can host both data plane functions
(e.g., firewall) and cloud-based services (e.g., remote terminal, remote storage, etc.),

7

1 – A scalable and massively multi-tenant platform for user-oriented network services

but that does not consider the end user as players that can reprogram the box. The
home gateway is also the target of [96], which proposes to partition the node in
multiple slices, each one assigned to a different provider. Each slice is completely
orthogonal to the others and has its own reserved resources (i.e., bandwidth, entries
in the forwarding table, CPU) and control logic. However, in this case there is no
provision to customize the packet processing.

Another work that we can cite is Click [71], which is one of the first proposals of a
framework to customize the packet processing in the network. Compared to FROG,
it presents several limitations. For instance, its processing path is rather static
and cannot be changed at runtime; furthermore, it does not allows to dynamically
load/unload network services and the multitenancy.

xOMB [22] is a software architecture for building programmable middleboxes;
however, while FROG supports VNFs operating at any layer of the network stack,
xOMB is particularly oriented to application-layer functions (e.g., HTTP load bal-
ancer). APLOMB [87] proposes to outsource enterprise middlebox functions to
the cloud, which may be appropriate only in some cases as it could pose non trivial
problems of traffic tromboning and latency.

ServerSwitch [61] is a programmable platform for datacenters that integrates
an ASIC switching chip in a commodity server. It allows the implementation of new
forwarding algorithms executed in the switching chip, which can be programmed
by control plane applications running on the CPU. However, ServerSwitch seems to
support only some particular VNFs (e.g., bridging). PacketShader [49], instead,
is mainly a software router, although some other applications (e.g., IPSec gateway)
are possible, but only one at a time. Notably, it exploits Graphical Processing Units
(GPU) to accelerate some processing tasks.

As a final remark, it is worth pointing out that the work described in this chapter
has been done in 2013, when the literature on NFV was still quite poor. More recent
works on this research area are then discussed in Chapter 3, which describes a more
recent architecture to deploy generic network services in the whole network of the
telecom operator.

1.3 Overview
As shown in Figure 1.1, FROG operates in the context of a network edge node
directly connected to the final users. Its main idea is to offer to a massive number
of users the possibility to execute VNFs operating on (a portions of) the network
traffic flowing through the edge device, according to a service model that in principle
resembles to NFV. The FROG service model is based on two ingredients: (i) the
capability to associate a portion of traffic, identified by a set of rules operating
mostly on protocol field values, to a sort of network partition called network tile, and
(ii) an execution environment that hosts the VNFs that have to process the traffic

8

1.3 – Overview

corresponding to a specific tile, called Private EXecution environment (PEX).

VNFs Service
Provider 1 (e.g., Wan

Accelerator)

VNFs
User 1

VNFs
User 3

VNFs
User 5

VNFs Service
Provider 2 (e.g.,

Content Delivery)

VNFs
User 4

VNFs
User 2

VNFs Network Service Provider

L2 bridging L3 routing
FROG

Management
server

Internet

Figure 1.1: The FROG operating context: a network edge node and its end users.

According to Figure 1.2, each PEX is associated with a specific player (i.e., an
end user or other entities such as a content provider or a network operator), who
has full control over the applications running in it, being able to choose which VNFs
have to be executed and the order in which they are called. In addition, FROG
defines a set of permissions granted to the VNFs running in each PEX, such as the
possibility to modify and/or drop packets.

The capability to define tiles and permissions allows FROG to support multi-
tenancy. Depending on the rules used to define network tiles, we may have either
the possibility to partition the traffic into orthogonal or overlapped tiles. A packet
that matches multiple tiles has to be delivered to several PEX, and hence we need
to define a proper precedence level to determine in which order each PEX should
receive the traffic.

Traffic coming from a new end user is redirected to a captive portal, which
implements the user authentication. If the authentication is successful, a new PEX
is created that receives all the packets belonging to the user’s tile, defined by the
traffic generated by/directed to the new end user’s device. This PEX hosts a set of
staked VNFs, installed by the user himself, which will be called sequentially on each
user’s packet. Finally, other PEX are created ahead of time by customers such as
ISPs and content providers, and that can operate on traffic belonging to multiple
end users.

9

1 – A scalable and massively multi-tenant platform for user-oriented network services

PEX 1
(for network tile 1)

Virtual switch

Parental control

Personal firewall

PEX 2
(for network tile 2)

QoS

VPN client

PEX 3
(for network tile 3)

Web cache

PEX 4
(for network tile 4)

Network monitor

User 1

Tile and PEX
owner

User 2 Content provider Network operator

Network tile 3
Select web traffic

Network tile 1
Select traffic of user 1

Network tile 2
Select traffic of user 2

Network tile 4
Select all traffic

Network
traffic

Figure 1.2: High level view of a FROG node.

1.4 FROG design

This section presents the key aspects of FROG, which include the network tiles, the
PEX and the permissions that can be associated with it, and the order in which a
packet matching several tiles is provided to all the proper PEX. Moreover, it also
presents the FROG data and control planes, and the management server.

1.4.1 Network tiles

Traffic entering in FROG must be classified to determine the tile(s) it belongs to,
then packets need to be sent to the proper set of PEX for the processing. For the
classification, FROG supports a set of rules operating mainly on protocol fields,
and that are similar to the ones used in OpenFlow [68]. As tiles can be defined by
multiple rules as shown in Figure 1.3, a packet belongs to a tile if it matches at least
one of the rules defining the tile itself.

The capability to create partitions over the network and to allow different players
to operate on their traffic does not represent a novelty [88]. However, those partitions
were always oriented to guarantee network isolation, and then they do not overlap.
As our objective is not to provide network isolation, FROG defines two types of
partitions, or tiles in the FROG terminology, namely the vertical tiles and the
horizontal tiles.

A vertical tile includes all the unicast traffic of a specific end user connected to
FROG, and it is defined by two symmetrical rules expressed on the MAC address of

10

1.4 – FROG design

the user terminal3, namely {MACuser → ∗, ∗ → MACuser}; these rules respectively
represent all the packets sent by that end user, and all the unicast traffic destined to
the end user himself. It is worth pointing out that, taking into account the direction
of a packet (i.e., from the end user, or towards the end user), vertical tiles are not
overlapping, since a (unicast) packet will match at most one vertical tile in each
direction (the tile of the sender and the tile of the receiver)4. The Default vertical
tile is a particular tile that is in charge of all the unicast traffic coming from an
access port (i.e., from a port connected to the end users) and that does not match
any other vertical tile. In practice, it handles the traffic belonging to a new end
user connected to FROG, who still does not have his vertical tile configured (and
his PEX running).

Unlike vertical tiles, horizontal tiles are defined with an arbitrary set of rules,
not necessarily symmetric with respect to the network traffic, operating on any
supported field. In this case we may have network tiles with overlapping rules,
which means that a packet can belong to several horizontal tiles at the same time.

Figure 1.3 shows a possible configuration of FROG with rules defining both
vertical and horizontal tiles. As evident, a PEX under the control of an end user
is allowed to operate only on the traffic belonging to that user, i.e., on the packets
to/from the user himself. Vice versa, horizontal tiles are appropriate to implement
traditional network middlebox functions working on traffic aggregates (e.g., a web
cache); hence, they appear more appropriate for hosting VNFs of players such as
service providers or network operators.

1.4.2 Service order
A packet that enters in FROG through an access port is immediately checked against
the rules defining the vertical tiles, in order to identify the tile associated with the
end user who is sending the traffic. Given the structure of the rules defining vertical
tiles, at most one of them is matched, and the packet is then provided to the PEX
associated with that tile, so that it can be processed by the VNFs running in that
PEX. A packet sent by an unauthenticated user matches the Default vertical tile,
and hence it is processed in the Default vertical PEX. This way, the user can be
authenticated, and the vertical tile identifying his traffic, as well as the PEX running
his VNFs, are created.

After that the packet has been processed in the PEX associated with the sender
user, we move to horizontal tiles. The matching against horizontal tiles is more

3Note that this parameter may be different in other implementations (e.g., ATM VPI/VCI),
provided that it allows to select univocally the traffic of a single user.

4Packets coming from (directed to) the Internet match a single vertical tile, since their source
(destination) is not an end user connected to this FROG node.

11

1 – A scalable and massively multi-tenant platform for user-oriented network services

Network tuples PEX Permissions

MAC1 *

* MAC1
User 1

read/

write

MAC2 *

* MAC2
User 2

read/

write

* - {MAC1, MAC2) *

* * - {MAC1, MAC2)
Default

read/

write

Network tuples Priority PEX Permissions

* tcp port 80

tcp port 80 *
40 SP1 read

* net 8.8.8.0/24

net 8.8.8.0/24 *
30 SP2 read/write

* * 20
NET

OP

read/write/

forward

Vertical tiles

Horizontal tiles

PEX Network Operator
(network monitor)

PEX Service Provider 1
 (web cache)

PEX Service Provider 2
(WAN accelerator)

PEX
Default

PEX
User 2

to/from to/from

PEX
User 1

Figure 1.3: Possible journey of a packet.

complicated because their rules can overlap, hence a packet can match multiple
horizontal tiles. For this reason, they are associated with a priority, whose value is
unique within FROG. Hence, the packet will be checked against the horizontal tile
with the highest priority and delivered to the corresponding PEX in case of positive
matching, then the same operation is repeated with the tile with the second highest
priority, and so on.

Finally, before exiting, a unicast packet is checked again against the rules defining
the vertical tiles, and then delivered to the PEX running the VNFs deployed by the
destination end user.

Given the above rules for the service order, a PEX associated with a vertical
tile looks like a portion of the network stack of the user terminal that is moved
in the network. In fact, it is the first PEX that receives the traffic sent by the
device as soon as it enters in FROG, as well as it is the last PEX that processes the
packets before they leave FROG towards the user terminal. Hence, for example, a
personal firewall running in the user terminal is functionally equivalent to the same
application running in the PEX associated with that user5.

5For the sake of precision, some differences still exist. The most important refers to the visibility
over encrypted traffic, which can be obtained more easily by an application running in the user
terminal. This problem has not been addressed in work presented in this chapter, and it is left for
future work.

12

1.4 – FROG design

In the example shown in Figure 1.3, a packet enters in FROG and is first delivered
to the vertical tile that matches its source MAC address, then it hits a variable
number of horizontal tiles traversed in an order defined by their priority, and finally
it concludes its journey by hitting the vertical tile that matches its destination
MAC address. Note that this processing path is valid independently from the VNFs
running in each PEX.

The fact that VNFs can (almost) arbitrarily change the packet content may lead
to a situation in which a packet that, in the next processing step, should have been
delivered to tile T1, is modified so that the next matching tile becomes T2. This may
create a cyclic workflow, in which PEX A modifies the packet so that it matches the
tile of PEX B, which modifies the packet to match the tile of PEX A, endlessly. To
avoid this problem, a packet exiting from the vertical tile of the sender user will be
matched against horizontal tiles, no matter which modifications have been done to
the packet content. Similarly, if a packet matched an horizontal tile with priority
Φ, it will be checked against all the tiles having priority < Φ. Finally, after that
a packet has been processed in the PEX of the destination end user, it is sent out
of FROG. This way, the PEX calling order is always a direct acyclic graph, hence
guaranteeing that a packet cannot enter into a processing loop involving different
PEX.

Broadcast and multicast traffic

A broadcast/multicast packet entering in FROG is first delivered to the vertical PEX
of the end user who is sending that packet; then, it is checked against horizontal tiles
in an order defined by their priority, as happens in case of unicast traffic. Finally,
when the packet has to be delivered to the vertical PEX associated with the end
user who is the destination of the packet itself, the time has finally come to duplicate
this traffic.

In principle, FROG should duplicate the packet as many times as the number
of access ports on which the packet has to be sent, and then each copy should be
delivered to the vertical PEX of the end user who is connected to that port. Finally,
if not dropped by any VNF, the packet is delivered to the user terminal. This is the
case of User4 in Figure 1.4, where VNFs running in User4’s PEX receive the packet
and (if permissions allow) can even drop it; in this case, the above mentioned packet
will never reach User4.

Vice versa, if many user devices are connected through the same access port
(such as User1 and User2 that share the same WiFi interface in Figure 1.4), the
behavior is different. In this case, the packet is further duplicated N +1 times, where
N is the number of terminals sharing that interface. A first copy of the packet is
delivered directly to the interface, hence reaching immediately the user devices. The
other N copies will be sent, marked with a special flag, to the corresponding PEX
of those end users, giving to the VNFs the possibility to process the packet (e.g.,

13

1 – A scalable and massively multi-tenant platform for user-oriented network services

a network monitor can update its internal counters). However, this packet will be
dropped by FROG as soon as it exits from the PEX, hence losing any modification
that may have been occurred to the packet. The rational for this behavior is to offer
to the VNFs running in the PEX the possibility to receive exactly the same traffic
as they would be executed in the user terminal; however, in case of shared interfaces
we cannot give them the possibility to modify the packet, as a single copy of each
packet must be sent across the shared port and we are unable to handle possible
conflicts when the different PEX touch the packet (modify/drop) in an incoherent
way.

PEX Network Operator
(network monitor)

Virtual switch

User 3

eth0

Duplicate packets

User 1

User 2

User 4eth1

wlan0

PEX
User 1

PEX
User 2

PEX
User 3

PEX
User 4

to/from to/from to/from

to/from

Figure 1.4: Possible journey of a broadcast/multicast packet.

1.4.3 Private EXecution environment
As previously mentioned, the PEX is the execution environment running all the
VNFs installed by a single player. In particular, it receives (all) the traffic matching
the network tile to which it belongs to, and in turns it provides these packets to the
VNFs it is running. A packet entering in a PEX will traverse all the applications
executed in that PEX in an order decided by the PEX owner and that, in the current
prototype, has to be strictly sequential. In case a VNF creates a new packet, this
will traverse all the applications that follow, while the ones that appear earlier in
the sequence will have no visibility on that packet.

Some network privileges can be associated with the PEX. For instance, end users
are usually enabled to do whatever they want on their traffic, including generating
and/or modifying packets traversing their PEX. A PEX of an entity in charge of
network monitoring may have instead a “read mode” privilege. Further, other PEX
could have also access to network parameters, and influence the forwarding process
of the FROG node, such as determining the output interface of a given packet. Then

14

1.4 – FROG design

the PEX is also in charge of enforcing these permissions, and then of preventing that
VNFs perform illegal operations.

The possibility granted to VNFs running in a PEX with the packet modification
permission, to potentially change arbitrarily the packet content, including the pos-
sibility to create new packets, may lead to packets that do no longer belong to the
tile associated with the current PEX, which we feel may not be acceptable. For this
reason, the PEX allows modifications to the packet content as long as the modi-
fied/new packet still belongs to the tile associated with that PEX. For instance, a
packet that is under processing in the SP1 PEX in Figure 1.3 cannot be modified
to become tcp port 1000 → tcp port 8080, as in this case it would no longer
belong to that tile. However, the enforcement of these constraints introduces some
additional overhead in the FROG processing, as packets exiting from a PEX are
checked for tile conformance and, if the control fails, a shadow copy is sent to the
next processing component instead of the original packet6.

As a final remark, memory spaces among different PEX are disjoint, so that VNFs
installed by a user cannot intercept/corrupt the traffic belonging to another PEX.
Instead, this property is not guaranteed to the VNFs running in the same PEX,
which share the same address space for performance reasons. Therefore we can
expect that a misbehaving VNF could affect the execution of the other applications
running in the same PEX, although this may be considered reasonable since they
all belong to the same player.

1.4.4 Data plane, control plane and management server
As depicted in Figure 1.5, FROG includes both a data plane and a control plane
portion.

The data plane consists of the PEX and the VNFs deployed in these PEX, which
operate on a portion of the traffic flowing through the node, i.e., on a network tile.

The control plane portion, instead, is connected to the rest of FROG through
a virtual port, named tap0 in the picture. The tap0 interface is visible from the
TCP/IP stack of the operating system (while all the other ports of FROG are
hidden), hence all the traditional TCP/IP applications can be executed on that
interface (e.g., the captive portal to authenticate new users, a DHCP server, etc.).

Finally, the entire set of FROG nodes is coordinated by an external management
server, as shown in Figure 1.1. It contains the user database, the permissions, the
list of VNFs, and more. Furthermore, it stores the VNFs associated with each user,
which are in fact copied from this server to the proper FROG node each time a new

6In fact, this algorithm has been optimized and a complete shadow copy of the packet is created
only when PEX has read-only privileges over the packet content. In case of read-write privileges,
only the fields that concur to determine the network tile are copied.

15

1 – A scalable and massively multi-tenant platform for user-oriented network services

PEX Service Provider 1
(web cache)

PEX Network Operator (network monitor)

PEX Service Provider 2
(WAN accelerator)

User 3

Virtual switch

User 1 User 2

PEX
User 1

PEX
User 2

PEX
User N DHCP

Server

TCP/IP stack

Captive
portal

...

Control plane Data plane

eth0 eth1 eth2

tap0

…

Figure 1.5: Data and control plane.

PEX has to be activated, e.g., each time an end user logs in.

1.5 Implementation
This section presents the FROG software architecture that includes, in addition to
the several PEX associated with the users, the FROG virtual switch (which is the
component in charge of exchanging packets with the network and implementing the
network tiles) and the exchange buffers. The entire architecture, which has been
designed to efficiently scale with the number of VNFs, is depicted in Figure 1.6.

1.5.1 Virtual switch
The FROG virtual switch (fvSwitch) is the component in charge of implement-
ing the network tiles, then of providing the packets to the proper PEX according to
the service order defined in Section 1.4.2. Hence, this module cyclically repeats the
following main operations: (i) read packets from the physical network ports, clas-
sify the traffic (according to the network tiles) and deliver it to the PEX associated
with the first matched tile; (ii) read packets from each running PEX, classify and
forward them to the proper next PEX, or send the packets on the network through
the proper physical network port(s).

The fvSwitch relies extensively on batch processing; in fact, phase (i) is repeated
multiple times by reading several packets from each port before moving to phase (ii),
where several packets per PEX are processed in a row before going to the next PEX.
This allows the fvSwitch to execute code that has an high degree of locality and to
concentrate memory accesses to nearby locations (e.g., reading several packets in a

16

1.5 – Implementation

PEX 1

FROG virtual switch

VNF 1 VNF 2

PEX runtime + API (Java)

PEX runtime (native)

PEX 2

PEX runtime + API (C)

VNF 3

PEX runtime (native)

Java Virtual
Machine

Native
process

Southbound
interface
(control)

Per-PEX shared
secondary buffer
(down-only traffic)

Per-PEX shared
primary buffer

(up-down traffic)

Raw I/O access Raw I/O accessRaw I/O access

Web
server

Figure 1.6: FROG software architecture.

row), which have an important impact on the performance of the system because of
the capability to exploit cache (code and data) locality.

Since the fvSwitch is supposed to be traversed by a huge amount of traffic (all the
packets flowing through the node, each one multiple times), this module operates
in polling mode. In fact, if interrupts are used to notify the packets arrival, the
throughput can drop dramatically with high packet rates [70]. Moreover, to avoid
expensive context switches [60] and limit the L1/L2 cache pollution, a CPU core is
statically allocated to the fvSwitch. Note that this module has been designed to use
a single core, as we would like to allocate all the others to the PEX.

The fvSwitch has raw access to network ports through accelerated NIC drivers,
which enable “direct” I/O with the hardware without involving the operating system.
Currently we support DNA [44], although a fallback mode exploiting libpcap has
been implemented in order to allow FROG to operate on NICs that do not support
accelerated drivers.

Finally, the fvSwitch is also responsible to duplicate broadcast and multicast
packets according to the rules described in Section 1.4.2.

Why yet another virtual switch

In principle, existing virtual switches such as Open vSwitch (OvS) [76], whose for-
warding table can be configured by means of SDN protocols [80] (e.g., Openflow),
can be used in FROG to move packets among PEX and the physical network inter-
faces. However, we decided to implement the fvSwitch from scratch, for a number

17

1 – A scalable and massively multi-tenant platform for user-oriented network services

of reasons.
First, as described in Section 1.4.2, in FROG we have a well defined service

model (the packet is first matched against rules defining vertical tiles, then it is
sent to the PEX associated with the matched horizontal tiles, and finally it is again
matched against rules defining the vertical tiles), then the fvSwitch forwarding table
and matching logic have been designed and optimized to implement such a service
model. Second, as detailed in the next section, the fvSwitch exchanges packets with
a PEX using a couple of memory buffers shared with the PEX itself, and optimized
for the NFV case in which almost all the packets provided by the virtual switch to
a VNF will eventually come back to the vSwitch itself.

OvS, as any other Openflow-based virtual switch, is instead designed to be
generic, and then it does not do any assumption on the order in which rules have to
be matched, as well as it is not optimized for the case in which packets sent through
a port (e.g., toward a VNF) will likely come back through the same port.

1.5.2 Packet buffers
While designing the internal packet exchange mechanisms between the fvSwitch
and the PEX, we had to consider two opposite requirements: performance, which
suggests to use a single buffer shared among all the components in order to exploit
a zero-copy algorithm, and isolation, which requires each PEX to have its own
dedicated buffer in order to guarantee that a VNF can only have access to packets
that belong to its tile. The resulting mechanism is a mixture of those requirements:
each PEX has its own buffer shared with the fvSwitch, hence a packet traversing
N PEX has to be copied by the fvSwitch N times. However, each packet is copied
only once in each buffer, for both the up and down trips. In fact, even if this
communication channel can be modeled with two FIFO queues, one bringing packets
from the fvSwitch to the PEX and the other for the opposite direction, we exploit an
algorithm (extensively detailed in Chapter 5) that moves a packet from the fvSwitch
to the PEX, and then back to the fvSwitch without any copy of the packet within
the PEX itself.

As shown in Figure 1.6, each PEX shares two circular buffers with the fvSwitch:
the primary buffer is used by the fvSwitch to send packets to the PEX and to receive
them back once their processing has been completed, while the secondary buffer is
used only for the traffic that is generated by VNFs, as the primary buffer does not
accept insertions of new packets from the PEX.

The algorithm that manages the primary buffer, shown in Figure 1.7, uses four
indexes, which are respectively a pointer to the last packet written by the fvSwitch
in the buffer (fvSwitch.write()), a pointer to the last data that has actually been
read (and processed) by the PEX (PEX.read()), the oldest packet that has been
processed by all the VNFs in the PEX (PEX.write()) and hence is ready to be

18

1.5 – Implementation

fvSwitch.write() PEX.read()

PEX.write() fvSwitch.read()

Packet Metadata

Eth IP

Packet slot

Packet to be processed by the
PEX

Packet processed by the PEX
and to be sent to the fvSwitch

Packet ready to be processed
by the fvSwitch

PEX 1 PEX 2
Shared primary

buffer

Virtual switch

Figure 1.7: Packet exchange between the fvSwitch and PEX.

delivered to the next PEX in the chain, and finally the next packet that will be
drained by the fvSwitch (fvSwitch.read()) and sent to the next PEX. Note that
this buffer is lock-free, hence very efficient; moreover, in the implementation we took
care not to access too often to the shared indexes (we use shadow copies instead)
in order to minimize the cache synchronization cost among processes running in
different CPU cores.

In addition, the primary buffer is operated through a batching mechanism; in
fact, the fvSwitch writes several packets before signaling the PEX over a shared
semaphore, waking it up7. This allows the PEX to be scheduled (hence starting
its processing) only when a reasonable amount of packets is present in the buffer,
hence limiting the number of context switches in the system and exploiting at best
memory locality as in the fvSwitch. Obviously, a timeout has been implemented as
well in order to avoid packets starving in the buffer in case the PEX receives limited
amount of traffic over time. The PEX will suspend itself only when no packets
waiting to be processed are present in the buffer. To facilitate batch processing in
the fvSwitch, the PEX.write() pointer is updated only when the amount of packets
processed in the PEX exceeds a threshold, or when there are no more packets to be
processed.

The primary buffer is well suited for packets that enter in the PEX, traverse all
the local VNFs, and return back to the fvSwitch. However, it may happen that: (i)
a packet is dropped by a VNF, and then it cannot continue its journey; (ii) a VNF
modifies a packet so that it exceeds the MTU, hence requiring to be split in multiple
fragments; (iii) a VNF generates new packets.

The first point is addressed by setting a special flag in the packet metadata
(Section 1.5.4) that informs the fvSwitch to drop that packet as soon as it is received

7The fvSwitch is aware of the status of the PEX, i.e., running or waiting for packets, thanks to
a status variable shared with the PEX itself.

19

1 – A scalable and massively multi-tenant platform for user-oriented network services

back in the buffer. Instead, points (ii) and (iii) require the secondary buffer, which
is used by the PEX to send its own generated packets to the fvSwitch. This buffer
is a traditional (circular) FIFO queue: a special flag in the packet metadata of the
primary buffer informs the fvSwitch that, after that packet, the following N packets
have to be read from the secondary buffer, before returning to drain the traffic from
the primary buffer.

Currently, both buffers have slots with a fixed length, whose size is equal to
the maximum packet size of the network8. Moreover, they are allocated in memory
using huge pages, in order to reduce the pressure over the Translation Lookaside
Buffer (TLB).

1.5.3 Private execution environment
Each PEX is implemented as a different process running all the VNFs belonging to
a specific player. In particular, we defined (and implemented) two flavors of PEX:
one privileges the features offered to the users, while the other is more oriented to
the achievement of high performance.

The former type of PEX is a Java Virtual Machine (JVM) running Java VNFs
and that, as shown in Figure 1.6, is enriched with different components. First, a
native library written in C and based on the Java Native Interface (JNI) takes care
of the interface with the rest of the system (e.g., accessing to the shared buffers).
Second, a set of Java classes that handle the communication among the VNFs de-
ployed in the PEX, implement the dynamic loading/unloading of the VNFs9, and
export a rich set of API to VNFs developers (described in Chapter 2). Third, a
web server that is used for management (e.g., to handle the command to load/un-
load applications) and exported to VNFs for their own purposes (e.g., configuration,
visualization of internal data, etc.).

The second type of PEX is instead a pure native process that supports VNFs
written in C/C++, which have to be linked with another native library, written in
C, that implements the interface with the rest of the system. The number of features
are reduced in this case (no dynamic load/unload of VNFs, simpler API exposed to
VNFs developers, no web server) but it guarantees higher performance with reduced
requirements in terms of both CPU and memory. In fact, the JNI layer used in
the Java PEX is known to be rather inefficient, hence increasing considerably the
processing cost per packet; furthemore, the memory footprint of the JVM with the
required pieces (JNI, web server, etc.) reaches about 18MB, which may represent a

8In this respect we disabled the TCP Large Receive Offload on the NIC, as this function merges
multiple TCP segments creating packets up to several tens of kilobytes.

9In a first phase we used OSGi for this purpose, but we found its memory requirements incom-
patible with our targets.

20

1.5 – Implementation

limitation when a massive number of PEX have to be executed concurrently on the
same machine.

As mentioned in Section 1.5.2, PEX operate according to a blocking I/O model,
hence freeing CPU resources when no packets have to be processed. This allows to
execute a number of PEX that is far beyond the number of CPU cores available on
the machine, as we expect that, in average, each PEX stays idle most of the time
(it just processes the traffic of a single player). In fact, the implemented techniques
for efficiently exploiting CPU cycles (memory locality, a few context switches) allow
to potentially execute thousands of PEX on a single physical server.

To prevent that VNFs consume too many resources (and hence to increase the
number of users supported), a PEX is executed on a single CPU core; however, this
may limit the throughput of the system in case few of them are installed, as we are
unable to exploit all the available cores. An extension that allows a PEX to exploit
multiple cores is left to our future work.

Finally, it is worth nothing that the permissions, which are one of the peculiarities
of FROG , introduce a noticeable overhead in the PEX processing. In fact, they must
be enforced in each PEX in order to guarantee that VNFs do not perform forbidden
operations, such as the shadow copies mentioned in Section 1.4.1. Although we
took care of implementing the permission checking very efficiently, we found that
this part of the code could slow down the system throughput up to 10%.

Resource isolation

As the FROG owner does not have any control on the VNFs installed in the PEX,
the framework should limit the effects of malicious applications. Unfortunately, the
solution to run each PEX into a different virtual machine is not compatible with
our scenario in which a huge number of end users are connected to the same FROG,
due to the huge amount of resources required to execute each virtual machine.

Then, in order to guarantee that a VNF cannot access to resources belonging to
other PEX/users, as well as to guarantee that it does not consume all the hardware
resources available in the machine where FROG is running (i.e., RAM and CPU),
each PEX is executed in a different Docker container [3]. Containers are in fact a
lightweight virtualization mechanism that, unlike virtual machines, does not run a
complete operating system; particularly, all the containers share the same kernel.
Docker containers limit the resources visible by a user space process through the
cgroups [4] feature of the Linux kernel, while isolation is provided through the
Linux namespaces [10], which give to the process running in the container a limited
view of the process tree, networking, file system, and more.

As described in Section 1.5.2, the fvSwitch and each PEX share two buffers and a
semaphore. Unfortunately, Docker by default uses the Inter Process Communication
(IPC) namespace, forbidding shared memory and semaphores between a process
running in the container and the processes executed outside such a container (the

21

1 – A scalable and massively multi-tenant platform for user-oriented network services

fvSwitch in our case). Then, to bypass these limitations, we had to slightly modify
the Docker behavior, as well as to change the implementation of the sem_open
system call.

To conclude, traffic isolation is guaranteed with the creation of distinct exchange
buffers per each PEX, which makes impossible, to VNFs running in a PEX, to access
the buffers (and hence packets) of another PEX.

1.5.4 Packet metadata

As shown in Figure 1.7, each packet is associated with some metadata during its
journey within a FROG node, which are used by the fvSwitch to dispatch packets
among the PEX, and that can be exploited by the VNFs. In particular, metadata
can either be read or written by VNFs, depending on their permissions.

Among the information kept in the metadata we can cite a shadow copy of the
fields used to identify the network tiles, some flags (e.g., the one used to inform the
fvSwitch to drop a packet), the input/output ports. Particularly, the shadow copy
of the fields used to identify network tiles cannot be modified by VNFs, and it is used
by the PEX to restore the original value in the packet, in case the VNF modified
such a packet so that it no longer belongs to the current slice (Section 1.4.3).

1.5.5 Distributed architecture

Given the huge number of users (some thousands, as presented in Section 1.1),
hence PEX, that we may expect to be handled by FROG, the framework has been
engineered to support a distributed architecture.

The idea is to distribute the PEX across multiple servers and to transform the
fvSwitch into a distributed module, although, from an external view, the system
still appears as an unique network device, as shown in Figure 1.8(b) (for instance,
VNFs do not notice any difference with respect to the case in which a FROG node is
actually a single server). In particular, the system is made up of a cluster of servers
connected through an high speed network (currently a 10Gbps switched network)
with no external access, namely the FROG crossbar. Each physical port of the server
can then be marked either as external or crossbar. The former is a port visible from
the outside world, and can be either access (i.e., connected to the end users) or core
(i.e., connected to the Internet); the latter is instead a port used to connect the
server with the rest of the cluster.

Each PEX has a number that identifies univocally the server where it is executed,
hence each fvSwitch knows exactly the server responsible for the next processing
step. To facilitate the processing in the next server traversed by a packet, the
identifier of the next PEX is added to the metadata; then, both packet and metadata

22

1.6 – FROG and the NFV model

PEX1

fvSwitch

PEX2

Server 2

Crossbar

PEX2

fvSwitch

Server 1

PEX1

fvSwitch

External ports

Crossbar ports

(A) Single server configuration (B) Multi-server configuration

Packet Metadata

Eth IP

 Packet in a server

Packet Metadata

Eth IP

 Packet on the crossbar

Crossbar header

Figure 1.8: Single vs. multi-server architecture.

are encapsulated into an additional Ethernet header10 and sent on the crossbar,
which will deliver the packet to the server where the target PEX is running. A
packet that is received through a crossbar port is not classified again by the fvSwitch,
which simply copies it in the buffer associated with the target PEX, as written in
the metadata.

Furthermore, the output port selected for a given packet could be physically in-
stalled in another server. In this case the packet (enriched with the proper metadata
and encapsulated in the crossbar header) is sent to the target server, which will send
it on the network through the correct output port.

1.6 FROG and the NFV model

Table 1.1: NFV vs FROG

NFV FROG

Execution model One VNF per VM, multiple VMs per player Multiple VNF per PEX, one PEX per player
Virtualization environment Full fledged VM PEX executed inside Docker container

Network interfaces towards VNFs Virtualized or paravirtualized network interface cards Designed and optimized for the NFV environment
Service order No assumptions Src end user → Generic players → Dst end user

Although FROG looks like a possible instantiation of the NFV paradigm [43],
there are some important differences between the two proposals, which are summa-
rized in Table 1.1 and discussed in the remainder of this section.

First, NFV defines a different virtualization environment (i.e., virtual machine)
per VNF, while FROG runs all the VNFs belonging to the same player into a single

10The MTU on the crossbar interfaces has been configured appropriately to exceed the traditional
MTU of the Ethernet network.

23

1 – A scalable and massively multi-tenant platform for user-oriented network services

execution environment called PEX. This choice originates from performance reasons
and it is intended to reduce the pressure that the high number of expected PEX
(and hence players) poses to our system, which could increase even further in case
each VNF would require its own PEX. For instance, while the zero-copy mechanism
cannot be implemented to move packets between PEX, in order to guarantee traffic
isolation among players, it is considered reasonable within the same PEX, which
executes VNFs that belong to the same players.

Second, as discussed in Section 1.5.3, in order to support thousands of (active)
players at the same time, a PEX is not a full fledged virtual machine (as indicated by
NFV), whose requirements in terms of memory and CPU would be too onerous. It
is instead a process executed inside a Docker container, which is a lightweight form
of virtualization that exploits some features of the Linux kernel to provide resources
isolation and limitation.

Another important difference is the nature of the interface between the PEX
and the underlying virtual switch. In fact, PEX features a dedicated communica-
tion primitive toward the fvSwitch that defines a single (and very optimized) com-
munication channel to send/receive all the traffic, while VNFs executed in virtual
machines access to network packets through virtualized or paravirtualized network
interfaces cards.

Finally, NFV does not make any assumption on which is the next VNF that has
to process a packet. Instead FROG has a well defined service order, and then the
fvSwitch is optimized for this specific case; as shown in Section 1.7, this results in
reasonable performance of FROG even with a huge number of concurrent VNFs.

1.7 Experimental results
A prototype of FROG was installed on a workstation with 32 GiB of memory, CPU
Intel i7-3770 @ 3.40 GHz (four cores plus hyperthreading), Ubuntu 12.10, kernel
3.5.0-17-generic (64 bits), which was equipped with a Silicom dual port 10Gbps
Ethernet NIC, based on the the Intel X540 controller and managed by the DNA
driver. We also implemented a distributed version of FROG, made up of two of the
above machines. In all tests, an entire core was dedicated to the fvSwitch, while
PEX have been distributed among the remaining cores. Each test lasted 100 seconds
and was repeated 10 times, then results were averaged.

Graphs representing the maximum throughput are provided with a bars view
that reports the throughput in millions of packets per second, and a points-based
representation that reports the throughput in Gigabit per second. Instead, latency
measurements are based on the gettimeofday Unix system call and include only the
time spent by packets in the FROG node, without the time needed to send/receive
data on the network.

24

1.7 – Experimental results

1.7.1 Single server
In order to provide a concrete demonstration of the scalability of our framework ,
this section evaluates the maximum throughput that can be obtained with a single
FROG node executing a growing number of PEX, and the latency introduced by
the node itself in the same conditions.

During the tests, FROG has one physical port connected to a traffic generator
and another one to a traffic receiver, handling unidirectional traffic such as in Fig-
ure 1.8(a). Each packet traverses two PEX, each one running a simple VNF that
calculates a signature across the first 64B of the packets11. We repeated the test with
both our PEX implementations in order to compare the performance of the Java
PEX with that of the native PEX. Network tiles are defined by MAC addresses.
The traffic generator sends packets in a way so that the first one belongs to the
tiles associated with PEX 1 and PEX N, the second packet hits PEX 2 and PEX
(N-1), and so on. This pattern stresses the fvSwitch that never receives from the
network two consecutive packets to be delivered to the same PEX, with a dramatic
impact on memory access patterns. Finally, in each test condition, we selected the
minimum size of the shared buffers that allowed the system to work without losses
in the communications between the fvSwitch and PEX.

As expected (Figre 1.9), the throughput decreases when increasing the number
of PEX in the system. This is mainly due to the loosely localized memory access
patterns, as the fvSwitch has to handle packets located in different exchange buffers
(hence poor cache locality), which causes also an increase of the CPU TLB misses.
However, FROG reaches an impressive result of 6.8Gbps with 700 bytes packets
when 8000 PEX are executed. Furthermore, the available bandwidth (i.e., 10Gbps)
is saturated in many cases with packets of 700 and 1514 bytes. By comparing
Figure 1.9(a) with Figure 1.9(b), it is evident that the native PEX is more efficient
than the Java PEX; however, in our opinion the latter performed rather well and
its throughput never fell 20% below its competitor.

Figure 1.10 plots the latency introduced by FROG with a growing number of
native PEX. As evident, it tends to increase considerably with the number of PEX,
reaching an average value of 59.22ms in case of 8000 PEX. The latency introduced
by the Java PEX (not reported) is higher in each test case, reaching a worsening of
13% in average in case of 1000 PEX.

While the difference between native and Java PEX in terms of performance
and latency is limited, the main difference consists in the maximum number of
PEX instances concurrently running in our system. In fact, each native PEX uses
approximately 1.5MB of memory (the memory pages of the executable are shared

11This workload is rather realistic, as it emulates the fact that most network applications operate
only on the first few bytes (i.e., the headers) of the packet.

25

1 – A scalable and massively multi-tenant platform for user-oriented network services

 0

 1

 2

 3

 4

 5

 6

 7

 8

10 40 100 300 500 1000 2000 4000 8000
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

#PEX

64B
700B

1514B

(a) Native PEX.

 0

 1

 2

 3

 4

 5

 6

 7

10 40 100 300 500 1000
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

#PEX

64B
700B

1514B

(b) Java PEX.

Figure 1.9: Throughput with a growing number of PEX.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

1e+01 1e+02 1e+03 1e+04 1e+05

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Time [us]

10 PEX - avg: 0.49ms
40 PEX - avg: 1.78ms

100 PEX - avg: 4.82ms
300 PEX - avg: 14.38ms
500 PEX - avg: 16.99ms

1000 PEX - avg: 24.63ms
2000 PEX - avg: 32.36ms
4000 PEX - avg: 42.09ms
8000 PEX - avg: 59.22ms

Figure 1.10: Latency introduced by the node with a growing number of native PEX.

among the many instances of the program), while the Java version requires about
18MB, plus the memory allocated for the shared buffers, with little possibilities to
share the memory pages of the executable. This means that, while we were able to
squeeze 8000 native PEX in our machine, we were forced to stop at 1000 Java PEX.

1.7.2 Multi server
This test measures the throughput reachable with FROG in a dual server configu-
ration, as shown in Figure 1.8(b). During the test, half of the packets enters from
server1 and leaves from server2, while the others traverse FROG in the opposite
direction. Also in this test, two consecutive packets coming from the network never
belong to the same tile; moreover, each packet is first processed by a PEX running
on the first server, and then by a PEX executed on the second server, so that it
always crosses the crossbar once. Each server runs 4000 native PEX and results are
depicted in Figure 1.12.

26

1.7 – Experimental results

 0

 5000

 10000

 15000

 20000

 25000

 30000

10 (C)

10 (Java)

40 (C)

40 (Java)

100 (C)

100 (Java)

300 (C)

300 (Java)

500 (C)

500 (Java)

1000 (C)

1000 (Java)

2000 (C)

4000 (C)

8000 (C)

M
em

or
y

[M
B

]

#PEX

PEX + application
Shared buffer

Other

Figure 1.11: PEX memory consumption.

The graph shows that the throughput (with 64B packets) increases from 4Mpps
in case of 4000 PEX on a single server, to 5Mpps with twice the number (i.e., 8000) of
PEX partitioned between two servers. This means that the average throughput per
server is even higher in case of the multi-server setup because of the more efficient
memory access patterns, which looks promising for our future work focusing on
extending the system to support even more users.

 0

 1

 2

 3

 4

 5

4000
(single server)

4000 + 4000
(multi server)

8000
(single server)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

#PEX

64B
700B

1514B

Figure 1.12: Single vs. multi server.

1.7.3 The DPI VNF
To validate FROG in critical conditions, we wrote a DPI on the top of the na-
tive PEX API, which exploits the PCRE library to classify the four protocols listed
Table 1.2. Then, we measured the throughput with a growing number of PEX,

27

1 – A scalable and massively multi-tenant platform for user-oriented network services

each one running an instance of the DPI. Network tiles are again defined by MAC
addresses, and the packet generator sends traffic so that two consecutive packets
belong to different tiles.

Table 1.2: Protocols and corresponding regex.

Protocol Regular expression

HTTP

http/(0\.9|1\.0|1\.1) [1-5][0-9][0-9]|
(connect|post|get|head|propfind|mkcol|
delete|put|copy|move|lock|unlock)

[\x09-\x0d -~]* http/[01]\.[019]

FTP ^220.*ftp |^220.*(\x0d\x0a)$

TELNET
^\xff[\xfb-\xfe].\xff[\xfb-\xfe].

\xff[\xfb-\xfe]

SSH ^ssh-[12]\.[0-9]

The throughput measured with HTTP GET packets of 480B ranges between the
0.44Gbps in case of 10 PEX, and the 0.38Gbps achieved when running 4000 PEX.
During the test, all the 8 CPU cores were completely loaded, regardless of the
number of PEX executed.

In this test, the DPI becomes the bottleneck of the system, since it executes
complex tasks in order the check the regular expressions in each packet. This results
in a throughput that mainly depends on the amount of offered load, irrespective on
the number of PEX running, as evident from the small performance worsening when
moving from 10 to 4000 PEX. As a consequence, the effects of the fvSwitch memory
access patterns, which were the main cause of the performance reduction in tests
discussed in Section 1.7.1, are now limited.

1.7.4 VNFs and execution environments
To validate our choice of running all the VNFs deployed by the same player within a
single PEX, we measured the throughput and the latency in two different conditions:
(i) the traffic is processed in 5 VNFs, all deployed in the same PEX; (ii) the traffic
is processed in 5 VNFs, running in 5 different PEX (as suggested by the NFV
model). The throughput achieved is shown in Table 1.3; as evident, in the former
case performance are definitely better, regardless of the packets size. Figure 1.13
shows instead the latency introduced by FROG in case of 64B packets; also in this
case, it is evident the advantage of running several VNFs (i.e., those belonging to
the same player) within the same PEX.

28

1.7 – Experimental results

Table 1.3: “One VNF per PEX” vs “Multiple VNFs per PEX”.

64B 700B 1514B

1 PEX - 5 VNF 7.5Gbps 10Gbps 10Gbps
5 PEX - 5 VNF 2.6Gbps 4.6Gbps 4.9Gbps

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Time [us]

5 NFs in a PEX - avg: 0.61ms
5 NFs in different PEX - avg: 2.23ms

Figure 1.13: Latency in case of 5 VNFs running: (i) in the same PEX, (ii) in 5
different PEX.

1.7.5 FROG vs NetVM and ClickOS
This section tries to compare FROG with ClickOS and NetVM, which are all soft-
ware architectures that allow the deployment of generic VNFs on the same hard-
ware.

According to [55], NetVM achieves a throughput of about 7Gbps when moving (in
a zero-copy fashion) 64B packets through a chain of 5 VNFs. In similar conditions,
FROG provides a throughput of 7.5Gbps (first line of Table 1.3)12. Although these
numbers are similar, our framework definitely requires few hardware resources than
NetVM. For instance, NetVM exploits 2 cores to manage the network interfaces, 4
cores to move traffic between VNFs, while each VNF uses two cores. Instead, by
design the fvSwith and each PEX are single thread, in order to support thousands
of concurrent players. Moreover, NetVM deploys VNFs as full fledged VMs, while
PEX are just processes executed in lightweight Docker containers.

Unfortunately, results obtained with FROG cannot be compared with those
achieved with ClickOS. In fact, [64] only shows the throughput in case of many
packet generator/receiver VNFs, or with packets traversing a chain of VNFs that

12Remember that FROG moves packets with zero-copy among VNFs instantiated in the same
PEX.

29

1 – A scalable and massively multi-tenant platform for user-oriented network services

does not involve the network (in this case the traffic source and generator are VNFs
as well, executed on the same physical server together with the other VNFs of the
chain). We did not execute tests in these conditions because, in real deployments,
VNFs are passthrough applications operating on traffic coming from the network,
and that goes again on the network after its processing.

1.8 Conclusion
This chapter presents FROG, the software architecture of a network edge node that
gives to multiple players the possibility to execute their virtual network functions
on a portion of the network traffic (called tile). Particularly, end users connected to
FROG can create their customized network services that are then applied to their
own traffic independently from the physical terminal in use (e.g., smarthphone,
tablet, ect.).

On FROG, each player is provided with a lightweight execution environment
(the PEX), which runs all the VNFs installed by the player himself and that just
operates on the traffic matching a specific tile. Isolation among PEX is provided
through Docker containers; this way, malicious VNFs installed by a player cannot
“damage” the VNFs and traffic of other players. Furthermore, PEX can have differ-
ent permissions on the packets on which they operate. Notably, since the PEX of an
end user connected to the Internet through a FROG node is the first one processing
the traffic coming from the end user device, and the last one that handles the traffic
towards his terminal, such a PEX can be seen as an extension of the TCP/IP stack
of the user device moved in the network.

The chapter describes the general architecture of the node, a prototype imple-
mentation, and the experimental evaluation of the system. Based on our results, a
model that allocates a PEX to each player, and which supports until eight thousand
of active PEX on the same physical machine, proves to be feasible.

Among the possible future works, we can envision the following directions. First,
more efficient lightweight execution environments are advisable: in fact the Java
PEX, unless the many features exported, may not seem completely adequate, par-
ticularly with respect to the memory consumption. Second, the latency introduced
by both the PEX implementations should be reduced as well.

30

Chapter 2

Moving applications from the host
to the network: experiences,
challenges and findings

2.1 Introduction
Chapter 1 presented FROG, the software architecture of a network edge node that
enables several players (e.g., end users, network service providers) to install their own
virtual network functions (VNFs) operating on a portion of the packets traversing
the node itself. This chapter1 aims instead at validating the potentialities of FROG,
and in particular of the Private EXecution environment (PEX), from the point of
view of the VNF developer, and it presents our experience in developing a complex
application-layer service.

First, the chapter describes the programming architecture of FROG, showing
the main functions offered to programmers and a brief overview of the API. Second,
it presents our experience in implementing a complex service based on such an
API, namely a parental control, and shows a preliminary characterization of its
performance. The parental control was chosen because it is a service that can take
many advantages from the possibility to be executed in the network instead of in
user devices. In fact, by being executed in the network, the parental control is able
to inspect all the traffic to/from the users that need to be protected (e.g., kids),
regardless of the device their are using to connect to the Internet, as well as their
access network (e.g., domestic WLAN, 4G, etc.). Furthermore, our prototype allows
to safely share the same physical device (e.g., a tablet) among many users (e.g., kids,
parents), as the network is able to recognize the users and install the proper VNFs
operating on their traffic.

1The content of this chapter has already been published in [31].

31

2 – Moving applications from the host to the network: experiences, challenges and findings

This chapter is structured as follows. Section 2.2 presents the related work,
focusing on the existing parental control services and highlighting their limitations
with respect to our proposal, in which the parental control is deployed as a VNF
inside a box at the edge of the network. Section 2.3 summarizes the main concepts
of FROG and it presents the new extensions that were needed to implement the
service we had in mind. Section 2.4 presents the programming architecture and
an overview of the exported API, while Section 2.5 describes our parental control
service. Finally, Section 2.6 shows some numbers that come from the deployment
of the parental control service and Section 2.7 draws some conclusive remarks.

2.2 Related Work
To validate FROG from the point of view of the VNF developer, we chose to develop
a parental control service; even if many implementations of this application already
exist (installed on user terminals, but also deployed within the network, i.e., on
routers and proxy servers), they all suffer of several limitations. Solutions such
as Net Nanny [36], safeeyes [67] and Davide.it [2] are installed on the end users
terminals, and they may not be able to properly protect kids because of the many
different devices owned by each person. In fact, parental controls could operate in
different ways and/or offer different degrees of protection on different devices and,
in some cases, they may not even exist on some platforms. Among the router-based
solutions, we can cite manufacturers like Cisco [1] and Netgear [74], which offer
parental control services running on their devices. However, these applications are
poorly customizable and implement only the features decided by the manufacturers
themselves. Users cannot upgrade the service with new features and have to wait for
the manufacturer to implement them. Other solutions are based on a proxy server,
such as DansGuardian [24]. In this case the web browser on the user terminal
must be configured to send all requests to the proxy where the parental control
application is running, rather than directly to the destination web server. However,
the configuration on the client terminal can be easily bypassed by reconfiguring the
application in order to access the Internet directly. Furthermore, this solution is
limited to the protection from threats coming from web traffic. Finally, we can
cite services that filter DNS requests (e.g., OpenDNS [12]), which cannot block
applications that do not use the DNS such as instant messaging and others.

A parental control service installed as a VNF on a network edge node like FROG
has many advantages compared to the existing approaches. First, it is able to protect
kids regardless of the physical device they use to connect to the Internet, as well
as to recognize the user connected to the network and act differently according to
his profile. In fact, FROG requires the user to go through an authentication phase
before being able to connect to the network, which allows the system to detect the
user identity and to install exactly the VNFs associated with him. Second, it has

32

2.3 – The Flexible and pROGrammable edge device

the potential to protect kids independently from the location they connect to the
Internet. Third, it enables a fine tuning of the service by allowing end users to install
the applications they want, e.g., with additional or more advanced capabilities.
Finally, it is able to protect children independently from the applications they use,
as it operates on all the network traffic.

2.3 The Flexible and pROGrammable edge de-
vice

This section summarizes the main concepts of the Flexible and pROGrammable
edge device (FROG) (Chapter 1), and presents the new extensions related to the
remote execution environment and the storage service.

The logical architecture of FROG is depicted in Figure 2.1, and includes the
following main components. The Private EXecution environment (PEX) ex-
ecutes the VNFs belonging to a single user; in addition, it enforces the privileges
granted to the VNFs executed into the PEX itself, such as the possibility to mod-
ify and/or drop the traffic in transit. The FROG virtual switch (fvSwitch) is
instead the module in charge of partitioning the network in tiles, and then redirect
the incoming traffic to the PEX associated with all the tiles the packet belongs to.

Network
traffic

Network
traffic

Private Execution
Environment 1

Private Execution
Environment N

fvSwitch

...

Remote Storage Service

Internet

FROG

FROG

Remote Execution
Environment

Management
Server

Figure 2.1: Overview of the entire system.

Moreover, a Management Server exists that is in charge of keeping the user
database and handling a part of the authentication process. In general, this entity
coordinates the entire set of FROG nodes located at the edge of the network; in

33

2 – Moving applications from the host to the network: experiences, challenges and findings

fact, it contains also the list of VNFs to be installed, together with other information
needed to manage the system.

When we started writing some more complete applications for FROG, we recog-
nized that the architecture presented so far was missing some important features.
For instance, we felt we needed a remote storage service and a remote execution
environment, which are detailed in the following.

2.3.1 Storage Service
One of the modules we developed for our parental control service is “DNSFilter”
(detailed in Section 2.5), which basically filters DNS requests and rejects those that
refer to names included in a forbidden list. While at the beginning we included
the blacklist in the application itself, we recognized that it was much better to keep
that information on a remote storage. In general, VNFs may need to store persistent
data, such as state information or configuration parameters that must be preserved
across multiple execution of the same service. In the current system, VNFs running
on FROG have only the “volatile” storage provided by the variables that are defined
in the application itself.

As a consequence, we added a Remote Storage Service (RESTO), whose
internal architecture is depicted in Figure 2.2. The RESTO includes the Authen-
tication Manager, i.e., the component that authenticates the couple user/VNF
(more details in Section 2.3.3) and the Resource Manager, which is responsible
for reading/writing data upon requests from VNFs, as well as for deleting infor-
mation when such an application is uninstalled. The RESTO service organizes the
data in a tree based on the VNF that generated it and on the user who is executing
that application in his own PEX. Vice versa, multiple instances of the same VNF
running on different PEX associated with the same user (e.g., a user connected to
the network through a smartphone and a laptop) share the same data; the imple-
mentation of different storage areas for those instances are under the responsibility
of the programmer. The “remote” characteristic of the service enables VNFs to ac-
cess their persistent data independently from the FROG node they are running on,
and it enables that data to be accessed also from other parties (e.g., other services
residing in the cloud).

The RESTO module is deeply integrated with the rest of the platform and it
allows programmers to read/write data with simple primitives, while other issues
(such as the authentication process, which guarantees that a user can write/read
only his data) are under the responsibility of the system and are transparent to the
programmer. The system takes also care of cleaning up the data associated with a
given VNF/user when that VNF is removed from the user and hence does not longer
belong to the PEX associated with his slice. It is worth noting that we do not force
programmers to exploit the RESTO; in fact, they are still enabled to save their data

34

2.3 – The Flexible and pROGrammable edge device

Intra process
communication

Authentication Manager

HTTP traffic

RESTO

VNF 1 VNF N

User 1

…

VNF 1 VNF N

User N

……

Resource Manager

Persistent Data

Network

Figure 2.2: Internal view of the Remote Storage Service.

wherever they want. This way, however, they must address by themselves all the
issues already solved by our platform.

2.3.2 Remote Execution Environment

The DNSFilter module mentioned before showed another problem. As the list of
forbidden sites was rather large and was consuming a huge amount of memory on
the edge node, it would be better to split the application into a FROG part, with
a short list, and a server part, which keeps the full list and that is invoked upon
demand. This suggested us that there may be a class of VNFs that can be split in
multiple portions hosted on different locations, such as a part running on a FROG
node and another running on a remote server.

While, in line of principle, the programmer can implement this splitting by set-
ting up a remote service and modifying the VNF running on FROG in order to
access to that service, we decided to offer him another possibility that looks more
integrated with our solution. Then, we defined a Remote Execution Environ-
ment (REX), a module that can host the “server” part of VNFs and that can offer
some standard functions to programmers. This module, whose architecture is shown
in Figure 2.3, provides a Java-based execution environment very similar to the PEX,
and also the exported API has similarities with the one present in that module. For
instance, obviously no primitives are available for reading/modifying network pack-
ets, but others (e.g., the API for accessing the RESTO service) are the same in both
the REX and PEX environments.

35

2 – Moving applications from the host to the network: experiences, challenges and findings

Finally, the REX programming environment hides both the communication be-
tween the code executed in the PEX and the one running in the remote environment,
and all the authentication/authorization issues.

Intra process
communication

Authentication Manager

HTTP traffic
to/from
the servlets

…

Storage Manager

REX

HTTP traffic
generated by the
Storage Manager

Network

Service
VNF 1

Service
VNF N

Figure 2.3: Exploded view of a REX.

2.3.3 Communication and authentication
Programmers access the REX and the RESTO through an API that hides both the
details of the communication (which occurs through HTTP) and the authentication
process. With respect to the authentication, the Management Server randomly
generates a secret key when the user logs in, which is shared between the user’s
PEX, RESTO and REX services. This secret allows the remote components to
identify the user and the VNF when they receive a request from the PEX.

In fact, we insert in the HTTP requests information such as the username of the
user who is running the VNF that requested the service, the VNF name identifying
the VNF that makes the request, a PEX identifier that uniquely identifies the PEX
in which the application is running, the FROG identifier that uniquely identifies the
VNF as being executed on a given FROG node. Finally, part of those information
and the secret key mentioned before are given as input to the sha-256 algorithm
in order to generate an unique signature that will be used by the remote party as
authentication key.

It is worth noting that all these parameters are under the control of the PEX and
are not visible by the VNF. As we suppose that the PEX is trusted (while the user-
provided code running in it may not), we can safely assume that those parameters
are enough to guarantee the proper interaction with the remote services, at least
in our prototype. In fact, when an HTTP message reaches the remote service, the
authentication module is able to recognize the user / VNF / instance of VNF that
asked for the service. Then, it forwards the request to the proper service handler,
being it a storage module or a service in the REX.

36

2.4 – Programming the PEX

2.4 Programming the PEX
This section describes the programming architecture of the (Java) PEX, by detailing
the various components depicted in Figure 2.4 and by providing an overview of the
exported API.

Intra process
communication

Packets
generated by
the API

PEX

VNF1

PEX Runtime (Java)

Packets in transit
in the FROG node

Management
Interface

VNF2

Remote App.
Interface

Storage
Interface

Packet Dispatcher
Config.

Manager

vSwitch interface

Figure 2.4: Exploded view of a PEX hosting two VNFs.

2.4.1 Callbacks
As the PEX exports an event-driven programming model, a VNF is requested to
implement a set of callbacks that are called when specific events occur. In particular,
OnStartUp and OnShutDown must contain the code that has to be executed when the
VNF is started/stopped as a consequence of user’s commands. OnReceivedPacket
is instead called when a new packet is available in the system and needs to be
processed. In this case, the VNF receives the packet and a set of metadata such
as the physical port of the FROG node on which that packet was received. This
method must return DROP or CONTINUE, depending on whether the packet must be
discarded or it can be forwarded to the next recipient, which can be either the VNF
that follows in the same PEX or the fvSwitch, in case that the VNF was the last
one in that PEX.

2.4.2 PEX Runtime
The PEX runtime creates the (Java) environment on which VNFs are executed, and
it includes several modules that can be exploited by VNFs through the proper API
(e.g., the interface toward the REX/RESTO services), the packet dispatcher and the
interface toward the fvSwitch. Particularly, the latter exchanges packets with the
fvSwitch by means of highly optimized buffers, as described in Chapter 1. Finally,
the Configuration Manager implements a set of REST services that enable users

37

2 – Moving applications from the host to the network: experiences, challenges and findings

to (i) install/uninstall VNFs, (ii) change their calling order and (iii) start/stop
VNFs already installed.

2.4.3 Packet Dispatcher
The Packet Dispatcher is the component in charge of delivering packets to the
VNFs by calling their OnReceivePacket handler each time that a new packet reaches
the PEX. As PEX, and then VNFs, can be associated with different privileges (e.g.,
packets can be received in read-only mode), the GetPrivileges method allows
VNFs to know their privileges and act accordingly. Since a VNF may ignore this
information and perform illegal actions, this module also implements techniques to
ensure that privileges cannot be violated. Finally, the Packet Dispatcher exports the
RegisterFilter and UnregisterFilter methods, which enable VNFs to receive
only the packets matching a given filter (e.g., HTTP traffic); however, an efficient
implementation of this function is left to future work.

2.4.4 Storage Interface
The Storage Interface implements the communication towards the RESTO mainly
through the intuitive SaveData and ReadData methods. Data to be stored must be
Java objects implementing the interface Serializable, or also Java primitive data
types such as int and float; this way, the system is able to manage any kind of
data, even objects defined by programmers. Optionally, data can be stored with
some additional metadata such as the timestamp in which the data was modified,
and the responsible of that change (in terms of PEX identifier and FROG identifier).
In order to manage the concurrent access to data, the Storage Manager also exports
the LockResource and UnlockResource methods, which can be used to implement
atomic modification on that data even in presence of multiple running VNFs as-
sociated with that user, e.g., in case multiple terminals associated with the same
user are connected to the network. Finally, this interface implements all the mech-
anisms required for remotely authenticate the user on the RESTO, as explained in
Section 2.3.3.

2.4.5 Remote Application Interface
Similarly to the previous component, the Remote Application Interface handles
the interaction with services hosted in the REX. This module exports the simple
Get, Post, Put and Delete methods, which derive from the HTTP methods defined
in a REST interface. Those methods create the appropriate HTTP request for the
resource specified as a parameter and return to the application the HTTP response
coming from the remote service. The remote URL is partially created automatically
by the PEX (e.g., the application name), while other information are set by the VNF

38

2.5 – Parental control service

(e.g., the part identifying the resource and the additional parameters that may be
needed). Also in this case this component hides the entire authentication process to
the VNFs.

2.4.6 Management Interface
The Management Interface enables each VNF to implement the primitives that
can be used to configure or monitor the service from the external world. In fact,
each VNF can be reached by the PEX owner by typing the standard URL

http://config.ctrl/vnf_name/

The system will check the request for permissions, then redirects it to the REST
services exported by VNF. It is worth noting that both the semantic and the syntax
of the data exchange is completely application-dependent.

2.5 Parental control service
The parental control service developed on top of the FROG API consists of the
following modules.

GSafe exploits the Google safe search [47] feature of the Google search engine
to filter harmful contents. When active, GSafe enables the safe search by changing
the URL in all the HTTP GET messages towards Google and related to a search. In
particular, the URL is extended with safe=active or safe=strict, depending on
the selected level of protection specified in the configuration parameters. Currently,
the implementation can operate only on packets that (after the modification) do not
exceed the MTU. We plan to introduce a stream reassembly function in the API
in the future, in order to enable programmers to avoid this issue and then to allow
them to operate also on messages in addition to packets.

DNSFilter prevents children from reaching disturbing websites whose URLs are
included into a blacklist. As URLs are organized by topic (e.g., porn, drug, etc.),
a configuration parameter (visible to parents) can be used to enable/disable one or
more sections. We implement this application both in a monolithic version, entirely
running as a VNF in the PEX, and in a split version in which DNS packets are
received by the VNF on the FROG node, checked against a small cache, and in
case of miss the request is redirected to a remote service on the REX. Based on the
result of the check, the VNF can drop the DNS message, or let it go on its way. In
addition, DNSFilter gathers all the DNS names translated, in order to allow parents,
through the web interface, to inspect which sites were accessed by their children.

TimePeriod can block the access to the Internet during a given time slot, as
well as it can limit the amount of time for which kids can be logged in into the
system. For instance, a child could be enabled to navigate only from 2 pm to 9 pm;

39

2 – Moving applications from the host to the network: experiences, challenges and findings

in addition, he could be allowed to spend no more than two hours per day on the
Internet. Similarly to the previous VNFs, TimePeriod exports a web interface that
enables parents to configure the application itself.

Finally, SkypeBlocker is able to identify and discard the Skype traffic according
to the signature defined in nDPI [19].

All these components of the parental control service exploit the RESTO in order
to store the configuration parameters selected by the parents.

2.6 Validation

This section validates the FROG platform and the parental control service through
different categories of test. The test set up consists in a Fast Ethernet network that
includes a user laptop directly connected a FROG node; a set of servers implementing
the DNS server, RESTO, REX and the management server are directly connected
to FROG. All the servers are workstations with an Intel Core2 processor (Q8400
at 2.66MHz), FROG runs an Intel i5 3450S at 2.8GHz, while the laptop is a Intel
Core2 P8700 at 2.53 GHz. All the machines have 4GB RAM and a 7200rpm hard
disk in the range 250-320 GBytes; moreover, they were preloaded with the Linux
Debian 7 operating system running at 64 bits.

2.6.1 Starting the PEX

This test measures the time required to activate a PEX upon the receipt of a suc-
cessful login from a new user. When the system authenticates the user through the
captive portal, it starts a new PEX on that FROG node and it activates all the
VNFs associated to that user. This process includes several steps summarized in
the top part of Figure 2.5, such as the time required to check the user credential
in the management server, the time needed to configure the environment to host a
new PEX, the time needed to start a new PEX with all the requested VNFs, and
finally the time needed to create the tile for the user and map this to the newly cre-
ated PEX. Although we agree that our implementation can be improved, everything
completes in less than 5 seconds in our operating conditions. Particularly, the time
required to start each VNF (which requires downloading it from the management
server, injecting it in the existing PEX, and starting it) is negligible compared to
that needed to completely activate the execution environment. In fact, the worst
time we get refers to the DNSFilter application, which completes this process in
195 ms. Furthermore, many tasks such as installing VNFs are launched in parallel,
contributing to keep the overall duration low.

40

2.6 – Validation

Login request
from user

1910 ms

User is authenticated

User’s PEX is created
User’s tile is created and
mapped to the User’s PEX

User’s PEX and his VNFs are
running

TimePeriod

271 ms 1317 ms

5 ms
VNF downloaded
VNF installed
VNF started

184 ms

1443 ms

2 ms 4 ms

GSafe

3 ms 6 ms

DNSFilter

10 ms

1 ms

1 ms

SkypeBlocker

1 ms

9 ms 14 ms

Figure 2.5: Starting a PEX with four VNFs.

2.6.2 Accessing the RESTO

This test shows the latency introduced when a VNF uses the RESTO. In order
to obtain this time, we wrote a simple program that saves and reads resources of
different sizes to/from the storage service each time a packet is received. Gathered
numbers take into account the worst condition as we read resources that were not
in the cache of the RESTO.

The application was repeated thousand times and the numbers were averaged
in order to obtain the results shown in Table 2.1. As expected, readings are always
slower than writings, and the latency grows with the size of the managed resource.
Numbers confirm also that the RESTO service is most appropriate for VNFs that
need occasional access (e.g., to store/load configuration parameters), while it may
not be appropriate for a VNF that requires an access to this service each time a new
packet is received.

41

2 – Moving applications from the host to the network: experiences, challenges and findings

Table 2.1: Latency in accessing the RESTO.

10B 100B 1KB 10KB 100KB

write [ms] 3.49 4.27 6.15 17.25 129.61
read [ms] 2,29 3,24 4,29 14,24 115,59

2.6.3 Exploiting the REX
This test evaluates the impact of the REX in terms of memory saving on the FROG
node and of latency. For this purpose, we run both the monolithic and the split
flavors of the DNSFilter.

Since the split VNF does no longer use the blacklist within the PEX, the memory
consumption at the edge node decreases considerably: 141MB with the monolithic
version, against 24MB with the split VNF. On the other hand, time needed to serve
the DNS request increased from 1.4ms to 7.8ms, due to the additional steps (e.g.,
creating and sending the HTTP request, etc.) required to obtain the answer. These
results were obtained by averaging numbers coming from thousand queries toward
the local DNS server set up in our network, which was configured to answer to all
the queries without forwarding them to the Internet, hence avoiding any issue not
under our control.

2.7 Conclusion
This chapter presents our experience in developing a parental control service for the
FROG framework presented in Chapter 1. This work allowed to test, with the eyes
of the VNF developer, the validity of our platform. In fact, we felt the necessity
to extend the programmable environment in order to accommodate some additional
requirements of the selected parental control service, which have not been fore-
seen in our original prototype. In particular, we added the Remote Storage Service
(RESTO), which enables VNFs to save their persistent data, i.e., information that
must be maintained among different executions of the VNFs themselves. Experi-
mental results show that an occasional access to the RESTO (e.g., reading/writing
configuration parameters) does not significantly reduce the performance of VNFs.
We also defined the Remote Execution Environment (REX), which enables VNFs to
exploit a remote service (not executed in a PEX running on a FROG node) for their
purposes. Thanks to the REX, we were able to partition VNFs into an “edge” and
a “cloud” portion, hence reducing the hardware requirements on the FROG node
(e.g., in terms of memory consumption), although at the cost of introducing some
additional latency in the VNFs.

Currently the PEX, and then the VNFs, receive traffic packet by packet, resulting

42

2.7 – Conclusion

in a huge amount of work when the payload has to be modified (e.g., adding some
bytes to an HTTP request). In fact low level tasks such as TCP reassembly and
session tracking have to be implemented from scratch in each VNF. Then, we plan
to add these functionalities inside the PEX, and enrich the API it exports to VNFs
so that VNF developers can concentrate on the logic of theirs applications, without
taking care of these (annoying but needed) tasks.

43

44

Chapter 3

Toward dynamic and virtualized
network services in telecom
operator networks

3.1 Introduction
Network Function Virtualization (NFV) [43] is bringing a new breath of fresh air in
the networking field. In fact, thanks to their software-based nature, Virtual Network
Functions (VNFs) could be potentially deployed on any node with computing capa-
bilities located everywhere in the network, ranging from the home gateway installed
in the customer premises till to the data center servers [42].

Although NFV is mainly seen as a technology targeting network operators, which
can deliver network services with unprecedented agility and efficiency while reducing
OPEX and CAPEX, end users (e.g., xDSL customers) can benefit from NFV as well,
as this would enable them to customize the set of services that are active on their
Internet connection. But, while NFV currently focuses mostly on middlebox-based
applications (e.g., NAT, firewall), end users are probably more oriented to services
based on traditional network facilities (e.g., L2 broadcast domains), which receive
less consideration in the NFV world.

Motivated by the growing interest, e.g., of telecom operators, in extending the
functionalities of Customer Premise Equipments (CPEs) in order to deliver new
and improved services to the end users [25] [90] [85] [29], this chapter1 presents a
solution that is oriented to deliver generic network services that can be selected
by multiple players. Particularly, our proposal enables the dynamic instantiation

1The content of this chapter has already been published in [35] and partially in [33]. This
work is also partially described in the master thesis of Fabio Mignini and Matteo Tiengo, who
collaborated in the development of the prototype.

45

3 – Toward dynamic and virtualized network services in telecom operator networks

of per-user network services on the large infrastructure of the telecom operators,
possibly starting from the home gateway till the data center, as depicted in Fig-
ure 3.1. Our solution enables several players (e.g., telecom operator, end users,
etc.) to cooperatively define the network services; moreover, it is general enough
to support both traditional middlebox functions as well as traditional host-based
network services. For example, a customer can define its own network service by
asking for a transparent firewall and a Bittorrent client, while the network operator
complements those applications by instantiating a DHCP and a NAT service2.

In our solution, the entire network infrastructure is controlled by a service logic
that performs the identification of the user that is connecting to the network itself,
following the approach proposed in Chapter 1. Upon a successful identification, the
proper set of network functions chosen by the user is instantiated in one of the nodes
(possibly, even the home gateway) available on the telecom operator network, and
the physical infrastructure is configured to deliver the user traffic to the above set
of VNFs.

Home gateway
(Universal Node)

VNF VNF VNF

Global Orchestrator

Service Layer Application

Telecom
operator
network

Controller

VNF VNF

VNF VNF
VNF VNF VNF

Datacenter
(Openstack-based domain)

Controller

VNF VNF VNF

VNFVNF VNF

VNF

VNF

Figure 3.1: Deployment of virtual network functions on the telecom operator net-
work.

The chapter describes the service-oriented layered architecture to achieve those
objectives, modeled after the one proposed by the Unify project [89, 37], and a
possible set of data models that are used to describe and instantiate the requested
network services starting from an high-level and user-friendly view of the service.

2In this chapter we assume that end users are only enabled to select VNFs trusted by the
operator. The case in which they can deploy untrusted VNFs (e.g., implemented by the end users
themselves) would in fact open security issues that are beyond the scope of this work.

46

3.2 – Related work

The high-level description is then converted into a set of primitives (e.g., virtual ma-
chines, virtual links) that are actually used to instantiate the service on the physical
infrastructure. Moreover, it presents two possible implementations of the nodes of
the infrastructure layer on which the service is actually deployed. Particularly, we
explored two solutions that are based on different technologies, with different re-
quirements in terms of hardware resources. The first is based on the OpenStack
open-source framework and it is more appropriate to be integrated in (existing)
cloud environments; the second exploits mostly dedicated software and it is more
oriented to the domestic/embedded segment (e.g., resource-constrained CPEs).

The remainder of this chapter is structured as follows. Section 3.2 provides an
overview of the related works, while Section 3.3 introduces an architecture to deploy
generic network services across the whole network under the control of the telecom
operator (as shown in Figure 3.1). Section 3.4 details some formalisms expressing
the service to be deployed, which are then exploited to solve the challenges arising
from our use case, as discussed in Section 3.5. Section 3.6 details the preliminary
implementation of the architecture, which is then validated in Section 3.7, both in
terms of functionalities and performance. Finally, Section 3.8 concludes the chapter
and provides some plans for the future.

3.2 Related work
Three FP7 EU-funded projects focusing on the integration of the NFV and SDN [80]
concepts (UNIFY [18], T-NOVA [17] and SECURED [16]) started recently. Partic-
ularly, the first one aims at delivering an end-to-end service that can be deployed
everywhere in the telecom operator network, starting from the points of presence at
the edge of the network, till to the datacenter, by exploiting SDN and NFV technolo-
gies. Similarly, T-NOVA proposes an equivalent approach that puts more emphasis
on the target of providing a uniform platform for third-party VNF developers, while
SECURED aims at offloading personal security applications into a programmable
device at the edge of the network. An SDN-based service-oriented architecture has
been proposed also in [83, 27], which enables to deliver middlebox-based services to
user devices, leveraging Service Function Chaining and SDN concepts.

From the industry side, the IETF Service Function Chaining (SFC) [57] work-
ing group aims at defining a model to describe and instantiate network services,
which includes an abstract set of VNFs, their connections and ordering relations,
provided with a set of QoS constraints. Similarly, the European Telecommunications
Standards Institute (ETSI) started the Industry Specification Group for NFV [41],
which aims at developing the required standards and sharing their experiences of
NFV development and early implementation. Based on the ETSI proposal, the
Open Platform for NFV (OPNFV) project [75] aims at accelerating the evolution of
NFV by defining an open source reference platform for Virtual Network Functions.

47

3 – Toward dynamic and virtualized network services in telecom operator networks

The problem of CPE virtualization, which represents one of the possible use cases
of our architecture, is investigated in several papers (e.g., [25, 90, 85, 29]); however
they have a more limited scope as do not foresee the possibility to instantiate the
service across an highly distributed infrastructure and focus on more technological-
oriented aspects.

Finally, the OpenStack [13] community is aware of the possibility to use that
framework to deliver NFV services as well, as shown by the new requirements target-
ing traffic steering and SFC primitives [21, 20]; in fact, we rely on some preliminary
implementation of those functions [62] in order to build our prototype.

3.3 General architecture
Our reference architecture to deliver network services across the telecom opera-
tor network, which follows closely the one proposed by the ETSI NFV working
group [41], was defined in the FP7 UNIFY project [89, 37] and it is shown in Fig-
ure 3.2. As evident from the picture, it allows the deployment of network services
through three main portions, namely the service layer, the orchestration layer and
the infrastructure layer.

3.3.1 Service layer
The service layer represents the upper level component of our system and enables
different players to define their own network services. Although our service layer
includes some use-case specific functions such as user identification (detailed in Sec-
tion 3.6.1), we introduce here the general concept of a generic service description
expressed in an high level formalism called service graph (Section 3.4.1), which en-
ables the definition of generic services (expressed independently by each player) and
their potential interactions.

The service graph could be provided accompanied with several non-functional
parameters. Particularly, we envision a set of Key Quality Indicators (KQIs) that
specify requirements such as the maximum latency allowed between two VNFs, or
the maximum latency that can be introduced by the entire service. We also foresee
the definition of a list of high-level policies to be taken into account during the
deployment of the service. An example of such policies could be the requirement of
deploying the service in a specific country because of legal reasons.

Given the above inputs, possibly facilitated by some graphical tools that allow
different players to select and build the desired service, the service layer should
be able to translate the service graph specification into an orchestration-oriented
formalism, namely the forwarding graph (Section 3.4.2). This new representation
provides a more precise view of the service to be deployed, both in terms of comput-
ing and network resources, namely VNFs and interconnections among them, always

48

3.3 – General architecture

G
lo

b
al

 O
rc

h
es

tr
at

o
r

Orchestrator Northbound API
Orchestrator

(technology-independent)

Control Adapter Northbound API

Control adapter for
Universal Node

[FG]

Orchestration

Controller
adaptation

Infrastructure
controller

Local resource
manager (network,
compute, storage)

Service provider

Si-Or

Or-Ca

Ca-Col

Co-Rm

OpenStack Heat

OpenStack Neutron

Node resource manager

xDPd (DPDK)

DPDK process Docker

Service Layer Application
(SLApp)

[Service Graph]

Nova compute
agent

OpenvSwitch

VM Docker

OVS network
agent

[FG]

New user ‘Alice’
connected

[Heat JSON format]

[OpenStack REST interface]

[OS Nova on RabbitMQ]

OpenDayLight

[ODL REST interf.]

Control adapter for
OpenStack Node

Dashboard

Service layer

Orchestration layer

Infrastructure layer

OpenStack
Nova scheduler

Figure 3.2: Overall view of the system, including the two implementations of the
infrastructure layer.

conserving KQIs and policies imposed by the player that defined the service.
As depicted in Figure 3.2, the service layer includes a component that implements

the service logic, identified with the service layer application (SLApp) block in the
picture. The service layer could also export an API that enables other components
to notify the occurrence of some specific events in the lower layers of the architecture.
The SLApp module could react to these events in order to implement the service
logic required by the specific use case. An example of such events may be a new
user device (e.g., a smartphone) that connects to the network, which could trigger
the deployment of a new service graph or the update of an existing one.

Finally, the service layer northbound interface enables also cloud-like services,

49

3 – Toward dynamic and virtualized network services in telecom operator networks

as well as it offers to 3rd-party providers (e.g., content-providers) the possibility to
deploy services in the operator infrastructure, orchestrating resources on demand
and being billed for their utilization in a pay-per-use fashion.

3.3.2 Orchestration layer
The orchestration layer sits below the service layer and it is responsible of two
important phases in the deployment of a service.

First, it manipulates the forwarding graph in order to allow its deployment on the
infrastructure, adapting the service definition to the infrastructure-level capabilities,
which may require the deployment of new VNFs for specific purposes, as well as
the consolidation of several VNFs into a single one (Section 3.4.2). Second, the
orchestration layer implements the scheduler that is in charge of deciding where
to instantiate the requested service. The scheduling could be based on different
classes of parameters: (i) information describing the VNF, such as the CPU and
the memory required; (ii) high-level policies and KQIs provided with the forwarding
graph; (iii) resources available on the physical infrastructure, such as the presence
of a specific hardware accelerator on a certain node, as well as the current load of
the nodes themselves.

According to Figure 3.2, the orchestration layer is composed of three differ-
ent logical sub-layers. First, the orchestration sub-layer implements the forwarding
graph transformation and scheduling in a technology-independent approach, with-
out dealing with details related to the particular infrastructure, which is under
the responsibility of the infrastructure layer. The next component, called controller
adaptation sub-layer, implements the technology-dependent logic that is in charge of
translating the forwarding graph into the proper set of calls for the northbound API
of the different infrastructure controllers, which correspond to the bottom part of the
orchestration layer. Infrastructure controllers are in charge of applying the above
commands to the nodes operating on the physical network; the set of commands
needed to actually deploy a service is called infrastructure graph (Section 3.4.3)
and, being infrastructure-specific, changes according to the physical node/domain
that will host the service that is going to be instantiated. The infrastructure con-
troller should also be able to identify the occurrence of some events in that layer
(e.g., unknown traffic arrives at a given node), and to notify it to the upper layers of
the architecture. As shown in Figure 3.2, different nodes/domains require different
infrastructure controllers (in fact, each resource has its own controller), which in
turn require many control adapters in the controller adaptation sub-layer.

Having in mind the heterogeneity (e.g., core and edge technologies) and size of
the telecom operator network, it is evident how the global orchestrator, which sits
on top of many resources, is critical in terms of performance and scalability of the
entire system. For this reason, according to the picture, the global orchestrator has

50

3.4 – Data models

syntactically identical northbound and southbound interfaces (in fact, it receives a
forwarding graph from the service layer, and it is able to provide a forwarding graph
to the next component), which paves the way for a hierarchy of orchestrators in
our architecture. This would enable the deployment of a forwarding graph across
multiple administrative domains in which the lower level orchestrators expose only
some information to the upper level counterparts, which allows the architecture
to potentially support a huge number of physical resources in the infrastructure
layer. Although such a hierarchical orchestration layer is an important aspect of
our architecture, it is out of the scope of this chapter and it is not considered in the
implementation detailed in Section 3.6.2.

3.3.3 Infrastructure layer
The infrastructure layer sits below the orchestration layer and contains all the phys-
ical resources that will actually host the deployed service. It includes different nodes
(or domains), each one having its own infrastructure controller; the global orches-
trator can potentially schedule the forwarding graph on each one of these nodes.
Given the heterogeneity of modern networks, we envision the possibility of having
multiple nodes implemented with different technologies; in particular, we consider
two classes of infrastructure resources.

The first class consists in cloud-computing domains such as the OpenStack-based
domain in Figure 3.1, referencing one of most popular cloud management toolkits,
each one consisting of a cluster of physical machines managed by a single infras-
tructure controller. The second class of resources is instead completely detached
by traditional cloud-computing environments, representing nodes such as the future
generation of home-gateways hosted in the end users’ homes. One of such a node,
called Universal Node, is shown in the bottom-left part of Figure 3.1 and consists
of a single physical machine that is provided mostly with software written from
scratch. Moreover, the infrastructure controller is integrated in the same machine
hosting the required service.

The infrastructure layer does not implement any logic (e.g., packet forwarding,
packet processing) by itself; in fact, it is completely configurable, and each operation
must be defined with the deployment of the proper forwarding graph. This makes
our architecture extremely flexible, since it is able to implement whatever service
and use case defined in the service layer.

3.4 Data models
This section details the data abstractions that are used to model and then deploy
the network services on the physical infrastructure. Our data models are inspired

51

3 – Toward dynamic and virtualized network services in telecom operator networks

by the NFV ETSI standard [41], which proposes a service model composed of “func-
tional blocks” connected together to flexibly realize the desired service. In order to
meet the objectives described in the introduction, we instantiated the ETSI abstract
model in multiple flavors according to the details needed in the different layers. All
those flavors are inspired by the objective of integrating the functional component
description of network services and their topology, together with the possibility to
model also existing services provided by cloud computing.

3.4.1 Service graph
The service graph (SG) is a high level representation of the service that includes
both aspects related to the infrastructure (e.g., which network functions implement
the service, how they are interconnected among each other) and to the configuration
of these network functions (e.g., network layer information, policies, etc.). Our
SG is defined with the set of basic elements shown in Figure 3.3 and described in
the following of this section. These building blocks were selected among the most
common elements that we expect are needed to define network services.

Service graph elements

Network function

Link

Active PortLAN

Endpoint

Transparent Port

Traffic splitter/merger

DHCP
server

Bittorrent
client

Stealth
firewall

URL
filter

Network
monitor Router

Network segment 1

Network
segment 2

web traffic

non-web
traffic

all
traffic

Internet

Figure 3.3: Service graph: basic elements and example.

The network function (NF) is a functional block that may be later translated
into one or more VNF images or to a dedicated hardware component. Each network
function is associated with a template (Section 3.4.4) describing the function itself

52

3.4 – Data models

in terms of memory and processing requirements, required processor architecture
(e.g., x86-64), number and type of ports, etc.

The active port defines the attaching point of a NF that needs to be configured
with a network-level address (e.g., IPv4), either dynamic or static. Packets directed
to that port are forwarded by the infrastructure based on the link-layer address of
the port itself.

The transparent port defines the attaching point of a NF whose associated
(virtual) NIC does not require any network-level address. If traffic has to be deliv-
ered to that port, the network infrastructure has to “guide” packets to it through
traffic steering elements, since the natural forwarding of the data based on link-layer
addresses does not consider those ports.

The local area network (LAN) represents the (logical) broadcast communi-
cation medium. The availability of this primitive facilitates the creation of complex
services that include not only transparent VNFs, but also traditional host-based
services that are usually designed in terms of LANs and hosts.

The point-to-point link defines the logical wiring among different components
and can be used to connect two VNFs together, to connect a port to a LAN, and
more.

The traffic splitter/merger is a functional block that allows to split the traffic
based on a given set of rules, or to merge the traffic coming from different links. For
instance, it is used in Figure 3.3 to redirect only the outgoing web traffic toward an
URL filter, while the rest does not cross that NF.

Finally, the endpoint represents the external attaching point of the SG. It can
be either a logical entity or a specific port (e.g., a physical/virtual NIC, a network
tunnel endpoint), active on a given node of the physical infrastructure. An endpoint
can be used to attach the SG to the Internet, to an end user device, but also to the
endpoint of another service graph, if several of them have to be cascaded in order to
create a more complex service. Each endpoint is associated with an identifier and
an optional ingress matching rule, which are required for the SGs attaching rules to
operate (detailed in Section 3.4.1).

Figure 3.3 provides a SG example with three NFs connected to a LAN, featuring
both active (e.g., the DHCP server and the bittorrent machine, which need to be
configured with IP addresses) and transparent ports (the stealth firewall). The
outgoing traffic exiting from the stealth firewall is received by a splitter/merge block,
which redirects the web traffic to an URL filter and from here to a network monitor,
while the non-web traffic travels directly from the stealth firewall to the network
monitor. Finally, the entire traffic is sent to a router before exiting from the service
graph. In the opposite direction, the traffic splitter/merger on the right will send
all the traffic coming from Internet to the stealth firewall, without sending anything
to the URL filter as this block needs to operate only on the outbound traffic.

As cited above, the SG also includes aspects related to the configuration of

53

3 – Toward dynamic and virtualized network services in telecom operator networks

the NFs, which represent important service-layer parameters to be defined together
with the service topology, and that can be used by the control/management plane
of the network infrastructure to properly configure the service. In particular, this
information includes network aspects such as the IP addresses assigned to the active
ports of the VNFs, as well as VNF-specific configurations, such as the filtering rules
for a firewall.

The SG can be potentially inspected to assess formal properties on the above
configuration parameters; for example, the service may be analyzed to check if the
IP addresses assigned to the VNFs active ports are coherent among each other.
To facilitate this work, the SG defines the network segment, which is the set of
LANs, links and ports that are either directly connected or that can be reached
through a NF by traversing only its transparent ports. Hence, it corresponds to
an extension of the broadcast domain, as in our case data-link frames can traverse
also NFs (through their transparent ports), and it can be used to check that all the
addresses (assigned to the active ports) of the same network segment belong to the
same IP subnetwork. As shown in the picture, a network segment can be extended
outside of the SG; for instance, if no L3 device exists between an end user terminal
and the graph endpoint, the network segment also includes the user device.

Cascading service graphs

As introduced above, the SG endpoints are associated with some parameters that are
used to connect SGs together (cascading graphs). Particularly, the identifier is the
foundation of the SG attaching rules, as only the endpoints with the same identifier
(shown with the same color in Figure 3.4) can be attached together. Instead, the
optional ingress matching rule defines which traffic is allowed to enter into the graph
through that particular endpoint, e.g., only the packets with a specific source MAC
address.

The rules that define how to connect several graphs together change according to
both the number of graphs to be connected and the presence of an ingress matching
rule on their endpoints. While the case for two endpoints directly connected looks
straightforward, the problem with three or more endpoints is more complex. Fig-
ure 3.4 shows two examples in which three endpoints must be connected together.
In the first case, two egress endpoints are associated with an ingress matching rule
that specifies which traffic must enter into the graph through that endpoint. This
ingress matching rule must be used, in case of traffic going from the right to the
left, to deliver the desired packets to the correct graph, notably HTTP traffic to
the “HTTP-SG” and FTP traffic to the “FTP-SG”. This is achieved by transform-
ing the ingress endpoint of the “TCP-SG” into the set of components enclosed in
the green shape of Example 1(b), namely a traffic splitter/merger module attached
with many new endpoints, each one connected to a different graph. This way, the
common “TCP-SG” will be able to dispatch the packet answers to the proper graph.

54

3.4 – Data models

b

“TCP - SG”

a b

TCP
splitter

“TCP - SG”

“Telecom operator -
SG”

“green – SG”

“red– SG”

egress

ingress

Example 1

ingress

ingress

Monitor

“FTP – SG”

“HTTP - SG”

Monitor

Monitor

“FTP – SG”

“HTTP - SG”

FTP FTP

Monitor

TCP
splitter

NAT

NAT

WAN
accelerator

WAN
accelerator

“Telecom operator
- SG”

egress

a

“green – SG”

Example 2

NAT

“red– SG”

NAT

HTTP HTTP

FTP FTP

HTTP HTTP

mac_src = green mac_src = green

mac_src = red mac_src = red

ingress

Figure 3.4: Cascading SGs.

The second example in Figure 3.4 shows the case in which the egress endpoints
are not associated with any ingress matching rule, which makes it impossible to
determine the right destination for the packets on the return path, as a traffic
splitter/merger module cannot be used in the “telecom operator-SG” to properly
dispatch the traffic among them. In this case, the ingress endpoint of the com-
mon “telecom operator-SG” is transformed into a LAN connected to several new
endpoints, each one dedicated to the connection with a single other graph. This
way, thanks to the MAC-based forwarding guaranteed by the LAN, the “telecom
operator-SG” can dispatch the return packets to the proper graph, based on the
destination MAC address of the packets themselves.

3.4.2 Forwarding graph and lowering process
The SG provides an high level formalism to define network services, but it is not
adequate to be deployed on the physical infrastructure of the network because it does
not include all the details that are needed by the service to operate. Hence, it must
be translated into a more resource-oriented representation, namely the forwarding
graph (FG), through a lowering process that resembles to the intermediate steps

55

3 – Toward dynamic and virtualized network services in telecom operator networks

implemented in software compilers. The FG can be seen as a generalization of the
Openflow data model that specifies also the functions that have to process the traffic
into the node, in addition to define the (virtual) ports the traffic has to be sent to.

The different steps of the lowering process are shown in Figure 3.5 and discussed
in the following.

The control and management network expansion enriches the service with
the “control and management network”, which may be used to properly configure
the VNFs of the graph. In fact, most NFs require a specific vNIC dedicated to
control/management operations; although this may be an unnecessary detail for the
player requiring the service, those network connections have to be present in order
to allow the service to operate. In this step, the control network is created as a
LAN and all the VNFs that actually have vNICs identified as control interfaces in
their template (Section 3.4.4) are attached to it automatically. An example of this
step is evident by a comparison between Figure 3.5(a) and Figure 3.5(b), in which a
control/management network consisting of a L2 switch VNF has been added to the
graph, although more complex forms for the control network (e.g., including also
other VNFs such as a firewall) can be defined as well.

The LAN expansion translates the abstract LAN element defined in the SG
into a proper (set of) VNFs that emulate the broadcast communication medium, e.g.,
a software bridge or an Openflow switch with an associated controller implementing
the L2 learning mechanism. This step is shown in Figure 3.5(b) where the LAN is
replaced with a software bridge.

The service enrichment requires that the graph is analyzed and enriched with
those functions that have not been inserted in the SG, but that are required for the
correct implementation of the service. An example is shown in Figure 3.5(c), where
the graph analysis determines that the network segment connected to the user does
not include any DHCP server, nor routing and NAT functionalities; in this case the
proper set of VNFs is added automatically.

The VNFs expansion can replace a VNF with other equivalent VNFs, properly
connected in a way to implement the required service. As an example, the firewall
in Figure 3.5(b) is replaced in Figure 3.5(c) by a subgraph composed of a URL filter
only operating on the web traffic, while the non-web traffic is delivered to a stateless
firewall. As evident, the ports of the “original” VNF are now the endpoints of the
new subgraph, which also has a control network dedicated to the new VNFs. More-
over, these new VNFs are in turn associated with a template, and can be recursively
expanded in further subgraphs; this is equivalent to the “recursive functional blocks”
concept provided in the ETSI standard [41], which may trigger further optimization
passes.

The VNFs consolidation analyzes the FG looking for redundant functions,
possibly optimizing the graph. For instance, Figure 3.5(d) shows an example in
which two software bridges connected together are replaced with a single software

56

3.4 – Data models

bridge instance with the proper set of ports, hence limiting the resources required
to implement the LANs on the physical infrastructure.

The endpoints translation converts the graph endpoints in either physical
ports of the node on which the graph will be deployed, virtual ports (e.g., GRE
tunnels) that connect to another graph running in a different physical server, or
endpoints of another FG, if many graphs running on the same server must be con-
nected together.

Finally, the flow-rules definition concludes the lowering process. In particular,
(i) the connections among the VNFs, (ii) the traffic steering rules defined by the
SG traffic splitter/merger, and (iii) the ingress matching rules associated with the
endpoints, are translated into a sequence of “flow-space/action” pairs (Figure 3.6).
The flow space includes all the fields defined by Openflow 1.3 [68] (although new
fields can be defined), while the action can be a forwarding rule either to a physical
or a virtual port.

As a final remark, the FG does not specify all low level details such as the
physical node on which the service will be deployed, as well as the reference to the
precise physical/virtual NICs needed by the VNF to operate, which are replaced by
generic VNF entry/exit points, as shown in Figure 3.6. The final translation from
abstract to actual VNF ports will be carried out in the next step.

3.4.3 Infrastructure graph and reconciliation process

The infrastructure graph (IG) is the final representation of the service to be
deployed, which is semantically, but not syntactically, equivalent to the FG. The
IG is obtained through the reconciliation process, which maps the FG on the
resources available in the infrastructure layer, and it consists of the sequence of
commands to be executed on the physical infrastructure in order to properly deploy
and connect together all the required VNFs.

57

3 – Toward dynamic and virtualized network services in telecom operator networks

Firewall
Network
monitor

Bittorrent
client/server

Service graph (user “green”)

Forwarding Graph (user “green”)

Internet

a

b

Firewall
Network
monitor

L2 switch (ctrl & mgnt network)

L2 switch

Internet
Bittorrent

client/server

• Control and management network expansion
• LAN expansion

c
Forwarding Graph (user “green”)

URL filter
Stateless
firewall

No web traffic

L2 switch (ctrl and mgmt network)

L2 switch

NAT
+Router

DHCP
server

L2
switch

L2
switch

Internet

Bittorrent
client/server

L2
switch

Network
monitor

L2 switch (ctrl & mgnt network)

• Service enrichment
• VNFs expansion

Forwarding Graph (user “green”)

No web traffic

L2 switch

L2 switch (control and management network)

d

Internet

Bittorrent
client/server

NAT
+Router

Network
monitor

DHCP
server

URL filter
Stateless
firewall

• VNFs consolidation

Figure 3.5: From the SG to the FG: the lowering process.

58

3.4 – Data models

"forwarding-graph" : {
"id" : "abcd123",
"flow-rules" : [

{
"flow-space" : {

"port" : "endpoint:1",
},
"action" : {

"type" : "forward",
"function" : "stateless_firewall:1"

}
},
{

"flow-space" : {
"port" : "stateless_firewall:2",
"tcp_src" : "80"

},
"action" : {

"type" : "forward",
"function" : "URLfilter:1"

}
},
.......

]
}

Figure 3.6: Excerpt of a forwarding graph.

This process takes into account that some of the VNFs in the FG can be imple-
mented through some modules (both software and hardware) already available on
the node on which the graph is going to be deployed, instead of being implemented
with the image specified in the template. For example, if the node is equipped with
a virtual switch (vSwitch) that supports also the backward learning algorithm such
as Open vSwitch [76], all the L2 switch VNFs in the FG are removed and those
functions are carried out through the vSwitch itself, as shown in the right portion
of Figure 3.7. Instead, as depicted in the left of Figure 3.7, if the node features a
pure Openflow vSwitch (such as xDPd [26]), all the VNFs specified in the FG will
be implemented by instantiating the proper image(s) (e.g., a VMs implementing
the L2 bridging process). Obviously, other mappings between the VNFs and the
resources available on the node are possible, according to the specific capabilities of
the infrastructure layer; for instance we can obtain a different IG (hence a different
number of deployed VNFs) starting from the same FG. The mapping of a VNF on a
specific resource is possible thanks to the definition of a set of standard VNF names
that uniquely identify a precise network function, such as the name “L2 switch”
that identifies a LAN emulation component; this allows the reconciliation module
to recognize the function needed, and possibly replace it with a more appropriate

59

3 – Toward dynamic and virtualized network services in telecom operator networks

implementation.

URL filter

DHCP
server

Stateless
firewall

W
eb

 t
ra

ff
ic

N
o

 w
eb

tr

af
fi

c

Openflow switch

Infrastructure graph

Openflow + L2 learning switch

Infrastructure graph

L2 bridge

Case (a): the infrastructure switch is
a pure Openflow switch

Case (b): the infrastructure has both
Openflow and learning switch capabilities

DHCP
server

URL filter
Stateless
firewall

DHCP
server

L2 software
bridge

URL filter

L2 switch

Stateless
firewall

Figure 3.7: Example of the output of the reconciliation process when mapping a L2
switch functionality in case of two different types of infrastructure nodes.

After the reconciliation process, the final IG is converted into the commands
(e.g., shell script, protocol messages) required to actually instantiate the graph,
such as retrieve the VM image and start it up, create Openflow rules, and more.
Particularly, the flow rules defining the links of the FG, i.e., the connections among
the VNFs, are properly translated according to the technology used by the physical
node to implement the graph. For example, if the physical node interconnects the
VNFs through an Openflow vSwitch, each flow rule is converted in a number of
Openflow flowmod messages, hence combining together SDN and NFV concepts.
However, other flavors of the infrastructure layer could implement these connections
through other technologies, such as GRE tunnels or VLAN tags. A similar process
is applied to VNFs, as their images are retrieved and started using commands that
depend on the technology implementing the VNFs (e.g., virtual machine, Docker
container, etc.).

3.4.4 Network function template
Each VNF is associated with a template that describes the VNF itself in terms of
both physical characteristics (e.g., CPU and memory requirements) and possible

60

3.4 – Data models

"network-function" : {
"name" : "firewall",
"expandable": false,
"uri": "http://myvnfs.com/images/7701f",
"vnf-type" : "kvm-virtual-machine",
"memory-requirements": 4096,
"cpu-requirements": {

"platform-type": "x86-64",
"cores-number": 1

},
"ports": [

{
"label": "control",
"cardinality" : "1",
"ipv4-config": "DHCP"

}
{

"label": "external",
"cardinality": "1",
"ipv4-config": "none"

},
{

"label": "internal",
"cardinality": "1-N",
"ipv4-config": "none"

}
]

}

Figure 3.8: Example of a VNF template.

infrastructure-level configurations (e.g., how many vNICs can be configured); an
example of such a template is provided in Figure 3.8.

The template contains some information related to the hardware required to
execute the VNF, such as the amount of memory and CPU as well as the CPU
instruction set. Moreover, the boolean element expandable indicates if the VNF
consists of a single image, or if it is actually a subgraph composed of several VNFs
connected together. In the former case, the uri element refers to the image of the
VNF, while in the latter it refers to a graph description that must replace the original
VNF in the FG. In the case of non-expandable VNF, the template also specifies the
image type such as KVM-compatible VM, Docker container, and more; for instance,
the firewall described in Figure 3.8 is implemented as a single KVM-based virtual
machine.

Moreover, the template provides a description of the ports of the VNF, each one
associated with several parameters. In particular, the label specifies the purpose

61

3 – Toward dynamic and virtualized network services in telecom operator networks

Table 3.1: Challenges of the considered use case and related solutions.
Challenge Solution

#1 The SLApp recognizes when a new user is connected API exported by the service layer to be notified of the occurrence of
some events

#2 New user’s authentication (the infrastructure layer does not The SG formalism and the VNF template used to define a graph
implement any processing and forwarding logic by itself) that includes VNFs implementing the user authentication

#3 Interconnection of several user SGs to a common telecom operator graph Graph endpoints defined in the SG formalism
#4 A user SG only operates on the traffic belonging Graph endpoint associated with ingress matching rules identifying the

to that particular user traffic allowed to flow through the endpoint itself
#5 Each service is implemented on the physical infrastructure The lowering process and the formalisms (SG, FG, IG) are generic

enough to support all the possible services required by the users

of that port, and it is useful in the definition of the SG, since it helps to properly
connect the VNF with the other components of the service (e.g., the external port
of the firewall should be connected towards the Internet, while the internal ones
should be connected towards the users). The label could assume any value, which is
meaningful only in the context of the VNF. The parameter ipv4-config, instead,
indicates if the port cannot be associated with an IPv4 address (none), or if it
can be statically (static) or dynamically (DHCP) configured. Finally, cardinality
specifies the number of ports of a certain type; for instance, the VNF of the example
has one control port, one external port, and at least one internal port (in fact, it
has a variable number of internal ports, which can be selected during the definition
of the SG).

3.5 The validation use case: user-defined network
services

Section 3.3 and Section 3.4 respectively provide a general overview of the architec-
ture and a description of the associated data-models; those concepts could be used
in different use cases involving multiple players in defining completely virtualized
services.

In order to provide a concrete use case to validate our data models, we selected
a challenging scenario in which end users, such as xDSL customers, can define
their own service graphs to be deployed on the telecom operator infrastructure.
Particularly, an end user’s SG can only operate on the traffic of that particular
end user, i.e., on the packets he sends/receives through his terminal device. Vice
versa, the telecom operator can define a SG that includes some VNFs that should
operate on all the packets flowing through the network; hence, this SG must be
shared among all the end users connected to the telecom operator infrastructure.

Our use case presents some interesting challenges that can be solved through
the multi-layer architecture and the data-models presented so far. These challenges,
together with their solutions, are summarized in Table 3.1.

First, the service layer must be able to recognize when a new end user attaches

62

3.6 – Prototype implementation

to the network, and then to authenticate the user himself. The API exported by
the service layer to the orchestration layer (Section 3.3.1) could be exploited in our
use case just for this purpose.

Note that, since the infrastructure layer does not implement any (processing and
forwarding) logic by itself, the authentication mechanism requires the deployment
of a specific graph that only receives traffic belonging to unauthenticated users, and
which includes some VNFs implementing the user authentication. This could be
implemented by means of the SG formalism detailed in Section 3.4.1, together with
the VNF template (Section 3.4.4).

Second, after the user is authenticated, the service layer must retrieve his SG
and then connect it to the telecom operator graph in a way so that the user traffic,
in addition of being processed by the service defined by the user himself, is also
processed by the VNFs selected by the telecom operator. Notably, the telecom
operator graph should be shared among different users, in order to reduce the amount
of resources required by the service. The interconnection of two graphs in cascade
can be realized by exploiting the graph endpoints elements provided by the SG
formalism, as detailed in Section 3.4.1.

Third, the user SG must be completed with some rules to inject, in the graph
itself, all the traffic coming from/going towards the end user terminal, so that the
service defined by an end user (only) operates on the packet belonging to the user
himself. Also this challenge has been solved thanks to the graph endpoints (Sec-
tion 3.4.1), which can be associated with rules identifying the traffic that should
enter into the graph through a particular endpoint.

Finally, the service layer must require (at the lower layers of the architecture) to
deploy the user graph; this operation may require the creation of some tunnels on
the network infrastructure so that the user traffic is brought from the network entry
point to the graph entry point, which could have been deployed everywhere on the
physical infrastructure. The multi-layer architecture proposed in Section 3.3 ensures
the deployment of all the SGs defined at the service layer, regardless of the particular
services described by the graphs themselves. In fact, both the lowering process that
transforms the SG in FG (Section 3.4.2), as well as the instructions provided to the
infrastructure components through the IG (Section 3.4.3), are generic enough and
can model all the possible services defined at the service layer.

3.6 Prototype implementation

This section presents the preliminary implementation of the architecture introduced
in Section 3.3, detailing its components and the engineering choices that have been
made in order to create the prototype.

63

3 – Toward dynamic and virtualized network services in telecom operator networks

3.6.1 The service layer
Our service layer logic is strictly related to our use case, in which the end users
can define generic services to be applied to their own traffic, while the operator can
define a service operating on all the packets flowing through the network. Our im-
plementation of the SLApp delegates specific tasks to different OpenStack modules,
some of which have been properly extended. In particular, Horizon, the OpenStack
dashboard, is now able to provide to the end users a graphical interface allowing
them to express (out of band) the service they expect from the network, using the
building blocks depicted in Figure 3.3. Keystone, the token-based authentication
mechanism for users and permissions management, is now able to store the user
profile, which contains user’s specific information such as the description of his own
SG. Finally, Swift, the OpenStack object storage, has been used to store the VNF
templates. Notably, these modules are present also in case of the Universal Node
implementation (Section 3.6.3), as the service layer is independent from the actual
infrastructure layer.

At boot time, the SLApp asks the orchestration layer to instantiate two graphs,
the telecom operator graph and the authentication graphs (Section 3.6.1), which
are deployed on one of the available infrastructure nodes. In addition, it configures
the network nodes with the proper rules to detect when a new flow is created on
the network (e.g., a new user terminal attaches to an edge node), which in turns
triggers a call of the proper event handler in the SLAapp that forces an update
of the authentication graph, so that it can properly handle the traffic generated
from the new connected device. In fact, the SLApp has been notified about the
source MAC address of the new packets, which can be used to uniquely identify
all the traffic belonging to the new device. This enables the SLApp to update
the authentication graph with a new endpoint representing the entry point of the
user traffic in the network, and which is associated with an ingress matching rule
expressed on the specific MAC address; this way, the new packets can be provided
to the authentication graph, wherever the graph itself has been deployed. Finally,
the updated graph is passed to the orchestration layer, which takes care of applying
the modifications on the physical infrastructure.

A successful user authentication through the authentication graph triggers the
instantiation of the SG associated with the user himself. This is achieved by the
SLApp, which retrieves the proper SG description from the user profile repository,
connects it to the telecom operator-defined SG such as in the example shown in the
bottom right part of Figure 3.4, and starts the lowering process aimed at creating
the FG. In particular, the SLApp executes the “control and management network
expansion” and the “LAN expansion” as shown in Figure 3.5(b), and the “service
enrichment” step. In our case, the latter consists in adding a DHCP server and a
VNF implementing the NAT and router functionalities, in case these VNFs have not
been included by the end user during the definition of his own service.

64

3.6 – Prototype implementation

Before being provided to the orchestration layer, the user-side endpoint of the
user SG is associated with (i) an ingress matching rule expressed on the MAC address
of the user device, so that only the packets belonging to that user are delivered to
his graph, and (ii) the entry point of such a traffic in the telecom operator network
(i.e., the actual port on the physical edge node where the user connects to). This
way, the orchestration layer will be able to configure the network in order to bring
the user traffic from its entry point into the network to the node on which the graph
is deployed.

Finally, the SLApp also keeps track of user sessions in order to allow a user
to connect multiple concurrent devices to his own SG. In particular, when a user
already logged in attaches to the network with a new device, the SLApp: (i) retrieves
the FG already created from the orchestration layer; (ii) extends it by adding a new
endpoint associated with an ingress matching rule operating on all the traffic coming
from the new device, and representing the entry point of such packets in the network;
(iii) sends the new FG to the orchestration layer.

Authentication graph

The authentication graph is used to authenticate an end user when he connects to
the telecom operator network with a new device, and it is automatically deployed
by the service layer when the infrastructure starts, hence turning a service-agnostic
infrastructure into a network that implements our use case.

The authentication SG (shown at the top of Figure 3.9) consists of a LAN con-
nected to a VNF that takes care of authenticating the users, a DNS server and a
DHCP server. However, the VNF implementing the users authentication is in fact
another SG made up of three VNFs: an Openflow switch, an Openflow controller
and a web captive portal. The resulting FG, completed with the control and man-
agement network, is shown at the bottom of Figure 3.9; as evident, only the control
network is connected to the Internet while all the user traffic is kept local.

When an unauthenticated user connects to the network, his traffic is brought
to the authentication graph. In particular, the DHCP server returns an initial IP
address to the user, which is able to generate traffic. All DNS queries are resolved by
the DNS server into the proper IP addresses, but all the web requests are redirected
to the captive portal; in fact, the HTTP traffic entering into the Openflow switch is
sent to the Openflow controller, which modifies the original MAC and IP destination
addresses with those of the web captive portal and then sends back the packet to
the Openflow switch, which will deliver it to the captive portal. This VNF provides
a HTTP 302 temporary redirect message to the user in order to notify the client
of the redirection and avoiding wrong caching, then a login page is shown. After the
(successful) user authentication, the web captive portal contacts the SLApp through
the control network and triggers the deployment of the SG associated with that user
on the infrastructure.

65

3 – Toward dynamic and virtualized network services in telecom operator networks

Forwarding graph (Authentication Graph)

User
authentication

DHCP DNS

Service graph (Authentication Graph)

L2 switch (ctrl & mgnt network)

OpenFlow
controller

Internet

DHCP DNS
Web captive

portal

L2 switch with OpenFlow capabilities

Figure 3.9: Authentication SG and FG.

3.6.2 Global orchestrator

The global orchestrator implements the first two levels of the orchestration layer
depicted in Figure 3.2, and consists of a technology-dependent and a technology-
independent part.

The technology-independent part receives the FG from the service layer (through
its northbound interface) and it executes the following operations as defined in the
lowering process (Section 3.4.2). First, for each VNF specified in the graph, it
retrieves the corresponding VNF template from the OpenStack Swift service. In
case the template is actually a subgraph composed by other VNFs (Section 3.4.4),
it executes the “VNFs expansion” step (Figure 3.5(c)) and retrieves the description
of the new VNFs that, in turn, could be recursively expanded in further subgraphs.
The “VNFs consolidation” step follows, possibly consolidating multiple function
instances as shown in Figure 3.5(d). Finally, the “flow-rules definition” step creates
a sequence of “flow-space/action” pairs describing how to steer the traffic within the
graph.

At this point, the global orchestrator schedules the FG on the proper node(s) of
the physical infrastructure. Although the general model presented in Section 3.3.2
supports a scheduling based on parameters such as CPU and memory requirements
of the VNFs, KQIs (e.g., maximum latency, expected throughput) and high level

66

3.6 – Prototype implementation

policies, the current implementation simply instantiates the entire FG on the same
node used as a network entry point for the traffic to be injected into the graph
itself. The resulting FG is then provided to the proper control adapter, chosen
based on the type of infrastructure node that has been selected by the scheduler
and that has to execute the FG (i.e., OpenStack-based Node or Universal Node).
These adapters take care of translating the FG into the formalism accepted by the
proper infrastructure controller, which is in charge of sending the commands to the
infrastructure layer. Moreover, they convert the abstract endpoints of the graph
(i.e., the ones that have not yet been translated into physical ports e.g., by the
service layer) into physical ports of the node; finally, if needed, they instruct the
infrastructure controller to create the required GRE tunnels. Tunnels can be used to
connect together graphs that have been instantiated on two different nodes (graph
cascading), or to connect two portions of the same graph that have been deployed on
different nodes (graph splitting). For instance, in our use case a tunnel is required to
bring the traffic generated by unknown user terminals to the authentication graph.

As a final remark, the global orchestrator supports the update of existing graphs.
In fact, when it receives a FG from the service layer, it checks if this graph has al-
ready been deployed; in this case, both FGs (the one deployed and the new one)
are provided to the proper control adapter, which sends to the infrastructure con-
troller either the difference between the two graphs in case of Universal Node, or
both FGs in case of OpenStack-based Node, as that implementation will be able to
automatically identify the differences thanks to the OpenStack Heat module.

3.6.3 The Universal Node
The Universal Node [92] is the first flavor of our infrastructure layer and it consists
of a single physical machine running mostly ad hoc software, whose overall architec-
ture is shown in Figure 3.10. In this implementation, the infrastructure controller
is integrated on the same server running the VNFs. Multiple Universal Nodes are
possible on the infrastructure and must be coordinated by the global orchestrator.

The Universal Node receives the FG through the northbound (REST) interface
of the node resource manager, which is the component that takes care of in-
stantiating the graph on the node itself; this requires to execute the reconciliation
process in order to obtain the IG, to start the proper VNF images (downloaded from
a VNFs repository) and to configure the proper traffic steering among the VNFs.
Particularly, the last two operations are executed through two specific modules of
the node resource manager, namely the compute controller and the network
controller.

Traffic steering is implemented with a (pure) Openflow DPDK-enabled datap-
ath, based on the extensible Data-Path deamon (xDPd) [26]. xDPd supports
the dynamic creation of several Openflow switches, called Logical Switch Instances

67

3 – Toward dynamic and virtualized network services in telecom operator networks

Universal Node

LSI - 0

Node resource manager

VNF1

...

Virtual link among
LSIs

Openflow connection

Network function port
(between an LSI and a VNF)

xDPd

OF controller
LSI graph N

OF controller
LSI graph 1

OF controller
LSI 0

LSI – graph 1

VNF repository

Management connection

VNF5

[FG]

Network controllerCompute controller

DPDK
driver

Docker
driver

VM
driver
libvirt

VNF4
VNF3

Compute control

LSI - graph NVNF2

Figure 3.10: Logical architecture of the Universal Node.

(LSIs); each LSI can be connected to physical interfaces of the node, to VNFs, and
to other LSIs. A different LSI (called graph-LSI) is dedicated to steer the traffic
among the VNFs of a specific graph, while the LSI-0 is in charge of classifying the
traffic coming from the network (or from other graphs) and of delivering it to the
proper graph-LSI. The LSI-0 is in fact the only one allowed to access the physi-
cal interfaces, and the traffic flowing from one graph-LSI to another has to transit
through the LSI-0 as well. Since LSIs are pure Openflow switches, the reconcilia-
tion process described in Section 3.4.3 cannot remove the L2Switch VNFs, which are
then implemented using the proper software images because of the unavailability of
the backward learning algorithm in xDPd.

When a FG description (either a new one or an update of an existing FG) is
received by the node resource manager, this module: (i) retrieves a software image
for each VNF required and installs it; (ii) instantiates a graph-LSI on xDPd and
connects it to the LSI-0 and to the proper VNFs; (iii) creates a new Openflow
controller associated with the graph-LSI, which is in charge of inserting the required
forwarding rules (i.e., traffic steering) in the graph-LSI itself. In other words, this
controller sets up the proper connections among VNFs as required by the FG. In
particular, the FG rules that define the paths among VNFs (and physical ports)
originate two sequences of Openflow flowmod messages: one to be sent to the LSI-0,
so that it knows how to steer traffic among the graphs deployed on the node and
the physical ports; the other used to drive the graph-LSI, so that it can properly
steer the packets among the VNFs of a specific graph.

When a packet enters into the LSI-0 and cannot be forwarded to any graph-LSI,

68

3.6 – Prototype implementation

it is delivered to the LSI-0 controller using the Openflow packet in message; at
this point the Openflow controller notifies the service layer of the presence of a new
user terminal, which will react by creating the proper network setup (e.g., tunnels)
to redirect that traffic to the authentication graph.

The Universal Node supports three flavors of VNFs: DPDK processes [56],
Docker containers [3], and VMs (executed in the KVM [6] hypervisor). While the
former type provides better performance (in fact, an LSI exchanges packets with
DPDK VNFs with a zero-copy mechanism), Docker containers and VMs guarantee
better isolation among VNFs, as well as they allow to limit CPU and memory usage.
Data exchange between LSIs and Docker containers/VMs takes place through the
KNI virtual interface available with the DPDK framework.

Finally, the architecture of the Universal Node can support a network-aware
scheduling algorithm, which has the potential to optimize the location of each VNF
based on the I/O connections of the VNF itself. This allows for example to start
two cascaded VNFs on two cores of the same physical CPU in order to keep the
traffic within the same NUMA node, or to allocate a VNF on the CPU that is
connected to the NIC used to send the packet out to the network. This is possible
because the node resource manager, which takes care of both deploying the VNFs
and configuring the vSwitch to properly steer the traffic among them, receives the
entire FG from the upper layer, which describes both the VNFs to be executed and
the connections among them.

3.6.4 The OpenStack-based node
The OpenStack-based Node is the second flavor of our infrastructure layer and
it consists of a cluster of servers within the same OpenStack domain. As shown in
Figure 3.11, all the physical machines of the cluster are managed by a single infras-
tructure controller, which is composed of a number of OpenStack modules and an
SDN controller. Multiple OpenStack-based Nodes are possible on the infrastructure
and must be coordinated by the global orchestrator.

OpenStack [13] is a widespread cloud toolkit used for managing cloud resources
(network, storage, compute) in data-centers; hence, its support in our architecture
represents an interesting choice because of the possibility to deploy our services
in an existing (and widely deployed) environment. However, since OpenStack was
designed to support the deployment of cloud services, several modifications have
been made to support FGs (hence network services) as well.

As depicted in Figure 3.11, our OpenStack-based Node exploits the following
components: (i) Nova, the compute service; (ii) Neutron, the network service;
(iii) Heat, the orchestration layer and (iv) Glance, the VM images repository.
Openstack is able to start VMs by interacting with a wide range of different hy-
pervisors (e.g. KVM, Xen [23], VMware); moreover, in order to properly steer

69

3 – Toward dynamic and virtualized network services in telecom operator networks

In
fr

as
tr

u
ct

u
re

co
n

tr
o

lle
r

Generic network device
(router, switch, …)

Nova compute
agent

Docker

libvirt

Nova
Compute

node

OpenStack Neutron
Network API

Modular layer 2 (ML2)

*…+ [OVS] ODL

OpenStack
Nova Compute

API

Nova
scheduler

OpenDayLight
Network controller

OpenStack Heat

[FG (Heat JSON format)]

VNFs repository
(OpenStack

Glance)

[Openflow / OVSDB]

[OS Nova on RabbitMQ]

[ODL REST interface]

VM

KVM

OpenvSwitch

OpenStack compute domain

Figure 3.11: OpenStack-based Node.

the traffic between the several servers under its control our prototype integrates also
the OpenDaylight (ODL) [11] SDN controller. As evident from the picture, Heat,
Nova scheduler, Nova API, Neutron and ODL compose the infrastructure controller,
while each physical machine executing the VNFs is a Nova compute node, which runs
a Nova compute agent, the Open vSwitch (OvS) [76] softswitch and the KVM
hypervisor.

When the global orchestrator decides to deploy a FG in an OpenStack-based
Node, the proper control adapter translates the FG description into the format
supported by Heat. To be used in our prototype, Heat has been extended in order to
support the flow-rule primitive, which describes how to steer the traffic between
the ports of the VNFs composing a graph. This primitive provides an interface

70

3.6 – Prototype implementation

similar to the OpenFlow 1.3 flowmod; however, it allows the traffic steering between
virtual ports without knowing in advance the physical server on which the respective
VNFs will be scheduled. As soon as Heat receives the FG, it performs a reconciliation
step that removes, from the graph itself, all the VNFs implementing the L2 switch,
since this functionality will be mapped on the OVS instances running on the physical
servers. In fact, OVS is able both to forward traffic based on traffic steering rules,
as well as to execute the MAC learning algorithm. After this translation, the FG is
decomposed into a set of calls to Nova and Neutron.

For the compute part, Nova receives a sequence of commands for each VNF of the
graph in order to deploy and start the VNF itself; at this point, the Nova scheduler
(i) selects the physical server on which the VNF must be deployed using the standard
OpenStack “filter & weight” algorithm3, (ii) sends the proper command to the Nova
compute instance on the selected node, which in turn (iii) retrieves the VNF image
from Glance and finally (iv) starts the VM4. It is worth noting that Nova scheduler
has two limitations: (i) it schedules a VNF as soon as it receives the command
from Heat; (ii) it does not have any information on the paths among the VNFs
in the graph. As a consequence, the FG could be split on the available compute
nodes without taking into account the paths among the VNFs, clearly resulting in
suboptimal performance.

For the networking part, when Heat detects that all the VNFs (i.e., VMs) are
started, it sends a flow-rule at a time to Neutron, which takes care of creating the
proper connections among these VNFs. Similarly to Heat, also Neutron has been ex-
tended to support the flow-rule primitive5. When Neutron receives a flow-rule, it
retrieves the network topology (i.e., the interconnections among the servers forming
the OpenStack domain) from ODL and then creates the proper Openflow flowmod
messages required to steer the traffic on the physical infrastructure. At this point,
the flowmods are provided to ODL, which sends them to the proper switches; note
that these switches could be either inside a Nova compute node, or physical switches
used to interconnect several servers, in case the VNFs have been instantiated by the
Nova scheduler on many compute nodes.

In addition to the components described so far, each OpenStack deployment also

3 This algorithm acts as follows: first, all the Nova compute nodes that are not able to run a
VM are filtered (e.g., because the VM requires an hypervisor that is not available on the node).
Then, a weight is associated with each one of the remaining servers, and the one with higher weight
is selected to run the VM. The weights are calculated by considering the resources available on the
machine.

4Note that no modification has been required by Nova compute in order to support the deploy-
ment of the FGs.

5 The flow-rule is functional equivalent to the Neutron official traffic steering extension [21].
However, it has not been used in our prototype because: (i) it was not available when this prototype
was created (July 2014); (ii) it does not support ports that do not belong to a VM.

71

3 – Toward dynamic and virtualized network services in telecom operator networks

Table 3.2: Universal Node vs OpenStack-based Node.

Universal Node OpenStack-based Node

Compatible with existing No Yes

cloud environments

Complete control of the FG Yes No (due to the network node)

Support to smart scheduling of the FG Possible Requires many changes to the OpenStack internals

Type of VNFs Docker containers, DPDK processes, VMs VMs, Docker containers (not completely supported)

includes the network node, which is a particular server running some services such
as a NAT, a DHCP server, a load balancer and a router; moreover, by default it is
crossed by all the traffic entering/leaving the cluster of servers.

Similarly to the Universal Node, also the OpenStack-based Node notifies the
service layer when a new user terminal connects to the node itself in order to allow
the system to redirect that traffic to the authentication graph.

3.6.5 Discussion: Openstack-based Node vs. Universal Node
Table 3.2 summarizes the main differences between the Universal Node and the
OpenStack-based Node. As shown, the main advantage of the latter is its capability
to deploy SGs in an existing cloud environment (albeit with some modifications),
which facilitates the introduction of those services in telecom operator networks; in
fact, operators often already have OpenStack instances active in their data centers.
However, this very important advantage is balanced by severe limitations compared
to the Universal Node.

First, OpenStack does not allow the service layer to have the complete control of
the service chain, as each OpenStack domain is connected to the Internet through
the network node (Section 3.6.4) and all the packets towards/from the Internet are
forced to traverse the network services running in this component (e.g., NAT and
router), even if the SG does not include those functions.

Second, the OpenStack-based Node cannot optimize the placement of the VNFs
based on their layout in the FG, e.g., possibly instantiating two consecutive VNFs
within the same graph on the same physical server. This is due to the fact that the
OpenStack scheduler, implemented in Nova, is unaware of the overall layout of the
FG: this information is only received by Heat and it is not passed down to the Nova
scheduler. To make things worse, the Nova scheduler is invoked individually per
each VNF that has to be scheduled, and therefore it is unable to implement even a
simple optimization such as scheduling all the VNFs of the same FG on the same
server. This problem is not present in the Universal Node, as it receives the entire
FG at the same time, hence it has all the information related to the required VNFs
and the paths among them. Then, the Universal Node can potentially schedule the
VNFs on the available CPUs by considering their position in the graph, with the

72

3.7 – Prototype validation

obvious advantages in terms of overall performance.
Third, the Universal Node shows better memory consumption compared to the

OpenStack-based Node, whose components have not been created for resource-
constrained environments as this is unlikely to occur in (almost resource-unlimited)
data centers.

Finally, the OpenStack-based Node supports only VM-based VNFs, as the ini-
tial support for Docker containers appears still rather primitive (in July 2014).
Vice versa, the Universal Node supports VNFs implemented as Docker containers,
VMs and DPDK processes, which seems to suggest the possibility to write more
lightweight and efficient VNFs, particularly with respect to the potentially better
I/O capabilities, which represent a fundamental difference from VNF and traditional
VM-based services.

3.7 Prototype validation
To validate the architecture described in this chapter, we carried out several tests
aimed at both testing the functionalities implemented, and to measure the perfor-
mance of the infrastructure layer in terms of throughput, latency introduced and
resource required. The tests were repeated both with an infrastructure layer consist-
ing of a single Universal Node, as well as in case of an OpenStack cluster composed
of two compute nodes. Note that, in the latter case the graphs are split so that the
VNFs are distributed between the two physical servers.

3.7.1 Service overview
The FGs deployed in the tests are shown in Figure 3.12; according to our use case,
these graphs include the authentication graph used to authenticate new end users
connected to the network, and the telecom operator graph, which provides connec-
tivity to the Internet and that is crossed by the traffic generated from/going towards
all the end users. The control network of this telecom operator graph also includes
a firewall, so that only the authorized entities (e.g., the telecom operator itself) can
control and configure the deployed VNFs.

The end user graph provides an example of traffic steering, since it requires that
the web traffic is delivered to a traffic monitor and then to a firewall that blocks
the HTTP GET towards specific URLs, while the other packets simply traverse a
second traffic monitor VNF. Thanks to the control interface of the traffic monitors
we are able to observe the packets flowing through the specific VNF, and hence to
validate the correct behavior of the traffic steering mechanism.

During the tests carried out on the OpenStack-based Node, the VNFs are imple-
mented as VMs running on the KVM hypervisor. In contrast, in the tests with the

73

3 – Toward dynamic and virtualized network services in telecom operator networks

Authentication Graph

User Blue FG

Service provider FG

Traffic
monitor

Traffic
monitor

DHCP

L2 switch (ctrl & mgnt network)

L2 switch

no web

web
NAT

DHCP NAT

L2 switch with OpenFlow capabilities

L2 switch (ctrl & mgnt network)

Flow rule:
MAC blue

Flow rule:
* - { MAC blue}

L2 switch

Firewall
L2 switch

(ctrl & mngt)

Firewall

DHCP DNS OpenFlow
controller

Web captive
portal

Figure 3.12: Use case scenario.

Universal Node, the firewall is implemented as a DPDK process6, while all the others
VNFs are implemented as Docker containers. In particular, both the VMs and the
Docker containers run an Ubuntu operating system, and the VNFs are implemented
through standard Linux tools (e.g., iptables).

As a final remark, according to our use case and the current implementation of
the architecture, the end users are directly connected to the node on which their
graphs are deployed.

3.7.2 Performance evaluation
This section shows the tests executed in order to measure the performance of the
preliminary implementation of our architecture.

During the tests, a machine is dedicated to the execution of the service layer (i.e.,
SLApp, Keystone and Horizon) and the global orchestrator; it is equipped with 16
GB RAM, 500GB HD, Intel i7-2620M @ 2.7 GHz (one core plus hyperthreading)
and OSX 10.9.5, Darwin Kernel Version 13.4.0, 64 bit, which is the same for both
the infrastructure nodes.

The infrastructure layer is implemented on a set of servers with 32 GB RAM,
500GB HD, Intel i7-3770 @ 3.40 GHz CPU (four cores plus hyperthreading) and
Ubuntu 12.04 server OS, kernel 3.11.0-26-generic, 64 bits. In case of the Universal
Node, one of those machines executes all the software. In case of OpenStack-based
Node, a first machine hosts the infrastructure controller (Heat, Nova scheduler,

6This firewall is a quite simple single thread process based on the libpcre regular expression
engine, which drops all the packets matching specific regular expressions.

74

3.7 – Prototype validation

 0

 250

 500

 750

 1000

 1250

 1500

 1750

 2000

 2250

 2500

 2750

 3000

 3250

 3500

M
em

or
y

[M
B

]

Service layer + global orchestrator
OpenStack - Infrastructure controller

OpenStack - Nova compute node
Universal Node

Figure 3.13: Memory consumption.

Nova API, Neutron and ODL) and the network node, while two other machines are
dedicated to the implementation of two Nova compute nodes.

The memory required by the different components of the system is reported in
Figure 3.13, in which the consumption related to the Nova compute node and to
the Universal Node has been measured without any VNF deployed. As shown, the
infrastructure controller for the OpenStack-based Node is the heaviest component,
while the requirements of the Universal Node, which is almost based on ad hoc
modules, is quite reduced.

According to Figure 3.14, we repeated the performance tests in the following
conditions: (i) user device and server directly connected using a gigabit Ethernet
link; (ii) user devices connected, through a gigabit Ethernet network, to the node
on which the graphs are deployed, which is in turn connected to the server through
a second gigabit Ethernet link. Moreover, as node running the VNFs, we used: the
Universal Node, an OpenStack-based Node with a single server, and an OpenStack-
based Node consisting of two servers connected with a gigabit Ethernet link.

The first test carried out aims at measuring the latency introduced by the de-
ployed services (Figure 3.12); in particular, the user device(s) sends 100 ping to-
wards the server, and the results were averaged and reported in Figure 3.14(a).
Figure 3.14(b) shows instead the results of the second test executed, aimed at mea-
suring the throughput obtained during the download of a file of 512 MB from the
server; the download has been done using the Linux tool wget, which uses the HTTP
protocol. Hence, according to the user graph, while the ping is not handled by the
firewall, this VNF is instead involved during the file transfer.

As expected, the deployment of a SG on the network does not come for free,
since the numbers obtained are reduced with respect to the case in which no service
is instantiated between the user device and the server. However, as evident from the
figure, this penalty is limited when the graph is deployed on an OpenStack-based

75

3 – Toward dynamic and virtualized network services in telecom operator networks

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

Direct connection

Universal Node

OS - one com
pute node

OS - two com
pute nodes

La
te

nc
y

(a
vg

)
[m

s]

One user
Two users (avg)

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

Direct connection

Universal Node

OS - one com
pute node

OS - two com
pute nodes

T
hr

ou
gh

pu
t [

M
bp

s]

One user
Two users (avg)

(b)

Figure 3.14: Performance of the infrastructure layer: (a) ping; (b) file transfer.

Node consisting of a single server, both in case a single user graph is instantiated
(in addition to the authentication and the telecom operator graphs) and in case of
two (identical) user graphs. In this last condition, the test has been executed with
both the users pinging/transferring the file at the same time, and the results have
been averaged in the graphs.

Instead, when the graphs are scheduled in an OpenStack cluster of two nodes,
performance are worse in both the types of test; for this reason, the measurements
have not been repeated with two users connected to the node. The low performance
are a consequence of the fact that the standard scheduling algorithm implemented
in OpenStack scheduled the user VNFs in a way so that each packet crosses four
times the link between the two compute nodes. This confirms the necessity of the
introduction, in the Nova scheduler, of an algorithm that schedules the VNFs on the
physical servers according to their interconnections in the graph7.

Surprisingly, results obtained with the Universal Node are extremely low, unless
the entire graph is deployed on a single server. We are currently investigating the
reason for this poor performance, although we suspect they are related to the packet
exchange mechanism between the vSwitch and the Docker containers (currently
based on the DPDK KNI ports), which should be carefully optimized.

7Note that the same algorithm should also be implemented in the global orchestrator, which
schedules the VNFs on the proper nodes of the infrastructure layer.

76

3.8 – Conclusion and future works

3.8 Conclusion and future works

This chapter presents a network orchestration architecture that, starting from the
service required by multiple players (e.g., end users, telecom operator), takes care
of instantiating it on the physical infrastructure of the network, by exploiting the
opportunities offered by the Network Functions Virtualization (NFV) and Software
Defined Networking (SDN) paradigms.

The contribution of this chapter is twofold. First, we propose a new formalism,
called service graph (SG), to flexibly model end-to-end network services. The SG
data-model describes how to deliver flexible network services, leveraging existing
elements and the traffic steering primitives introduced by NFV/SFC. It is worth
noting that this SG definition is completely compliant with NFV principles of ab-
stract description of a service, but enriches its traditional expressiveness to model
legacy networks and services.

The second contribution is made by the introduction of the forwarding graph
(FG) and the “lowering process” that leads to the deployment of an optimized ser-
vice. This translation process is capable to adapt the service delivering to available
resources of the underlying infrastructure; moreover, it is also able to detect specific
capabilities of selected nodes adapting the infrastructure graph obtained as output.

In order to validate our model, we implemented two prototypes of nodes for the
physical infrastructure: the Universal Node and the OpenStack-based Node. While
the former consists of a single server mainly based on ad hoc components, the latter
is implemented as a cluster of servers orchestrated by the an extended version of
the OpenStack framework. Experimental results showed that, while the Universal
Node has lower requirements in terms of memory, its performance are overcome by
the OpenStack-based Node in almost all the tests carried out.

It is worth pointing out that the modifications proposed to the “vanilla” Open-
Stack were designed by avoiding to change existing API or disrupt former primitive
behavior provided by the platform. Therefore, those add-ons can be silently inte-
grated in a previous installation, transparently enriching the network capabilities of
an OpenStack domain.

As a plan for the future, we foresee two different challenges to be pursued in order
to let this architecture to properly scale to the telecom operator network size. First,
the proposal of an algorithm to implement a network-aware scheduling, capable of
deploying VNFs on the physical infrastructure by considering the paths expressed
into the graph.

Second, the definition of a hierarchical orchestration layer through the whole
telecom operator network. This would allow the deployment of a FG across multiple
administrative domains, in which the lower level orchestrators expose only some
information to the upper level counterparts. This scenario is perfectly compatible
with our architecture and will be the object of further analysis; in fact, the global

77

3 – Toward dynamic and virtualized network services in telecom operator networks

orchestrator presented in this chapter has syntactically identical northbound and
southbound interfaces, and hence a hierarchy of orchestrators is possible.

As a final remark, the configuration parameters for the network functions, as
well as the possibility of assessing formal properties on them, are out of the scope
of this chapter and will be investigated in our future work.

78

Part II

Optimizing packets movement
between Virtual Network

Functions

79

Overview

As shown in Part I of this dissertation, Network Function Virtualization (NFV) [43]
is a recent network paradigm with the goal of transforming in software images, those
network functions that for decades have been implemented in proprietary hardware
and/or dedicated appliances, such as NAT, firewall, and so on. These software
implementations of network functions, called Virtual Network Functions (VNFs)
in the NFV terminology, can be executed on high-volume standard servers, such
as Intel-based blades. Moreover, many VNFs can be consolidated together on the
same server, with a consequent reduction of both fixed (CAPEX) and operational
(OPEX) costs for network operators.

Recently, the European Telecommunication Standard Institute (ETSI) started
the Industry Specification Group for NFV [41], with the aim of standardizing the
components of the NFV architecture. Instead, the IETF Service Function Chain [57]
working group takes into account the creation of paths among VNFs; in particular,
they introduce the concept of Service Function Chain (SFC), defined as the sequence
of VNFs processing the same traffic in order to implement a specific service (e.g., a
comprehensive security suite). Hence, a packet entering in a server executing VNFs
may need to be processed in several VNFs (of the same chain) before leaving such
a server. Moreover, several chains are allowed on a single server, which process
different packet flows in parallel.

According to [28]: “NFV is heavily based on cloud computing technologies;
in fact, VNFs are typically executed inside Virtual Machines (VMs) or in more
lightweight virtualized environments (e.g., Linux containers [8]), while the paths
among VNFs deployed on a server are created through virtual switches (vSwitches).
However, cloud computing and NFV differ both in the amount and in the type of
traffic that has to be handled by applications and vSwitches. This difference is
due to the following reasons. First, traditional virtualization has to deal most with
compute-bounded tasks, while network I/O is the dominant factor in NFV (the
main operation of a VNF is in fact to process passing traffic). Second, a packet
may need to be handled by several VNFs before leaving the server; this adds further
load to the vSwitch, which has to process the same packet multiple times. Finally,
common techniques to improve network I/O such as Generic Receive Offload (GRO)
and TCP Segmentation Offload (TSO) may not be appropriate for NFV, since some
VNFs (e.g., L2 bridge, NAT) need to work on each single Ethernet frame, and not
on TCP/UDP segments.”

Then, this part of the dissertation explores new mechanisms to interconnect
VNFs chained on the same physical server, which are different with respect to those
used in traditional cloud computing environments and that take into account the
differences (in terms of network traffic) between NFV and the cloud computing
world.

81

More in detail, both Chapter 4 and Chapter 5 focus on solutions to improve the
efficiency of the packet exchange between the virtual switch and the VNFs, especially
when a massive number of (tiny) VNF instances are executed on the same server,
as in the case in which each end user is enabled to deploy his own VNFs. Both the
chapters provide an extensive performance evaluation of the proposed mechanisms in
order to prove their goodness in the NFV scenario; in addition, Chapter 5 validates
the presented algorithm also through a formal verification of its main safety and
security properties.

Chapter 6 proposes instead an architecture that transparently optimizes the
data transfer between virtual machines, by letting the virtual switch forwarding
plane out of the picture in case the service to be implemented requires that all
the traffic coming from a first VNF has to be processed into a second one. The
prototype demonstrates the huge advantages of this architecture and the possibility
to implement it with localized modifications, mainly inside the virtual switch.

82

Chapter 4

Supporting fine-grained virtual
network functions through Intel
DPDK

4.1 Introduction
Network Functions Virtualization (NFV) proposes to implement in software the
many network functions (e.g., NAT, firewall, etc.) that today run on proprietary
hardware or dedicated appliances, by exploiting IT virtualization; this approach
allows to consolidate several Virtual Network Functions (VNFs) on the same high-
volume standard server (e.g., Intel-based blade).

The most notable difference between classical IT virtualization and NFV is the
degree of network traffic that has to be handled within a single server, as traditional
virtualization has to deal mostly with compute-bounded tasks, while network I/O
represents the dominant factor in the NFV case. This poses non trivial challenges
when writing both VNFs and the system framework (e.g., the virtual switch), as
many low-level details such as memory access patterns, cache locality, task alloca-
tion across different CPU cores, synchronization primitives and more, may have a
dramatic impact on the overall performance.

To facilitate the development of network I/O-intensive applications, Intel has
proposed the Data Plane Development Kit (DPDK) [56], a framework that offers
efficient implementations for a wide set of common functions such as NIC packet
input/output, easy access to hardware features (e.g., SR-IOV, FDIR, etc.), memory
allocation and queuing.

In the work presented in this chapter1, we exploit the primitives offered by DPDK

1The content of this chapter has already been published in [32]. This work is also partially
described in the master thesis of Mauro Annarumma, who collaborated in the development of the

83

4 – Supporting fine-grained virtual network functions through Intel DPDK

to investigate the case in which a huge number of VNFs are executed simultaneously
on the same server, e.g., when the network is partitioned among several players
(potentially individual users), each one having a set of VNFs that operate only
on the traffic of the player itself. This requires the system to execute many VNF
instances, leading to a situation in which thousands of VNFs may be running on the
same server, although each instance will be characterized by a minuscule workload.

This chapter focuses on the design of the components that deliver (and receive
back) the traffic to the VNFs. Particularly, it proposes several possible architectures,
each one targeting a specific working condition, for transferring data between the
virtual switch (shown in Figure 4.1) and VNFs, exploiting (whenever possible) the
primitives offered by the Intel DPDK framework. Our goals include the necessity to
scale with the number of VNFs running on the server, which means that we should
ensure high throughput and low latency even in case of a massive number of VNFs
operating concurrently, each one potentially traversed by a limited amount of traffic.

This chapter is structured as follows. Section 4.2 provides an overview of DPDK,
while Section 4.3 describes the general architecture of the framework to (efficiently)
provide traffic to a massive number of VNFs. Several implementations of this frame-
work are then provided in Section 4.4, while their performance are evaluated and
compared in Section 4.5. Section 4.6 discusses related works, and finally Section 4.7
concludes the chapter and proposes some future extensions to this work.

4.2 DPDK overview
Intel DPDK is a software framework that offers to programmers a set of primitives
that help to create efficient (high speed) VNFs on x86 platforms.

DPDK assumes that processes operate in polling mode in order to be more
efficient [70] and reduce the time spent by a packet traveling in the server. This
would require each process to occupy one full CPU core (in fact, DPDK processes
are pinned to a specific CPU core for optimization reasons), hence the number of
processes running concurrently is limited by the CPU architecture. Although this
scheduling model is not mandatory, DPDK primitives are definitely more appropri-
ate when applications are designed in that way; for example, DPDK does not offer
any interrupt-like mechanism to notify a VNF for the arrival of a packet on the NIC.

DPDK supports multi-process applications, consisting of a primary process en-
abled to allocate resources such as rte_ring and rte_mempools, which are then
shared among all the secondary processes. A DPDK process, in turn, consists of
at least one logical core (lcore), which is an application instance running on a CPU
core.

prototype.

84

4.3 – General architecture

To manage memory, DPDK offers the rte_malloc and the rte_mempool. The
former looks similar to the standard libc malloc, and can be used to allocate objects
(i) on huge pages (in order to reduce IOTLB misses), (ii) aligned with the cache
line and (iii) on a particular NUMA socket in order to improve the performance
of the applications. The rte_mempool, instead, is a set of pre-allocated objects
that can be acquired, and later possibly released, by lcores according to their
needs. Since the same rte_mempool can be shared across lcores, a per-core cache
of free objects is available to improve performance. In addition to the performance
techniques already mentioned with respect to the rte_malloc, all objects within
the rte_mempool are aligned in order to balance the load across different memory
channels. This is particularly useful if we always access the same portion of the
object, such as the first 64B of packets.

To exchange data among each others, lcores can use the rte_ring, a lockless
FIFO queue that allows burst/bulk-single/multi-enqueue/dequeue operations. Each
slot of the rte_ring contains a pointer to an allocated object, hence allowing data
to be moved across lcores in a zero-copy fashion. If the rte_ring is used to
exchange network packets, each slot of the buffer points to an rte_mbuf, which
is an object in the rte_mempool that contains a pointer to the packet plus some
additional metadata (e.g., packet length).

Finally, the Poll Mode Driver (PMD) is the part of DPDK used by applica-
tions to access the network interface cards (NICs) without the intermediation (and
the overhead) of the operating system. In addition, it also allows applications to
exploit features offered by the Intel NIC controllers, such as RSS, FDIR, SR-IOV and
VMDq. The PMD does not generate any interrupt when packets are available in the
NIC, hence the lcores that receives packets from the network should implement a
polling model. As a final remark, packets received from the network are stored into
a specific rte_mempool.

4.3 General architecture

The general architecture of our system is shown in Figure 4.1. The virtual switch
(vSwitch) (i) receives packets from both NICs and VNFs, (ii) classifies and (iii)
delivers them to the proper VNF according to the service chain each packet belongs
to. Finally, when a packet has been processed by all the VNFs associated with its
service chain, (iv) the vSwitch sends it back to the network.

Following the DPDK recommendations, the vSwitch considered in this work
operates in polling mode as it is supposed to process a huge amount of traffic (each
packet traverses the vSwitch multiple times), while VNFs may follow either the
polling or interrupt-based model, depending on considerations that will be detailed
in the following section.

85

4 – Supporting fine-grained virtual network functions through Intel DPDK

Journey of a specific
packet within a server

vSwitch

VNF 28

VNF 11 VNF 25

Network

VNF traversed by the
considered packet

Other VNF deployed in
the node and not
traversed by the
considered packet

Figure 4.1: High-level view of a server with a vSwitch and several VNFs.

4.4 Implementations
This section details five possible implementations of the architecture described in
Section 4.3, which mainly exploit features offered by DPDK to (i) access to the
network interface cards, and to (ii) move packets among the vSwitch and VNFs.
Each implementation is a multi-process DPDK application, where the vSwitch is the
primary process (single lcore) and each VNF is a different (single lcore) secondary
process (except for those described in Section 4.4.5).

Unfortunately, vanilla DPDK does not support the execution of two different
secondary processes on the same CPU core, which is a fundamental requirement in
our use case, since we envision thousands of VNFs deployed on the same physical
server. To overcome this limitation, we modify the lcore_id internal DPDK vari-
able in the initialization phase of each secondary process, so that each VNF has its
own DPDK internal data structures (and then no conflict can arise among VNFs).

4.4.1 Double buffer
In this implementation (Figure 4.2) each physical network interface is configured
with a single input and a single output queue; all the packets entering in the node are
first processed by the vSwitch, which accesses to the NICs through the PMD library.
Each VNF exchanges packets with the vSwitch through a couple of rte_rings: one
used for the communication vSwitch → VNF, the other used for sending back to
the vSwitch those packets already processed by the function itself. Finally, all
the elements of the rte_rings point to rte_membufs in the same rte_mempool,
allocated by the vSwitch at startup.

In this case VNFs operate in polling mode, hence they never suspend sponta-
neously. Hence, this implementation is appropriate for those cases in which a limited
number of VNFs is active, even not higher than the number of CPU cores available
on the server.

86

4.4 – Implementations

VNF 1 VNF M

Network

PMD

vSwitch

…

NIC 0 NIC N

mempool rte_rin
g

mbuf

Figure 4.2: Implementation based on a (different) pair of rings shared between the
vSwitch and each VNF.

4.4.2 Double buffer + semaphore
In this second implementation, VNFs operate in blocking mode: the vSwitch uses
in fact a POSIX named semaphore to wake up a VNF when a given number of
packets is available for the VNF itself. When all the packets in the buffer have been
processed, the VNF suspends itself and waits for the next signal from the vSwitch.
Obviously, this mechanism is complemented by a packet aging timeout that wakes
up the VNF if there are packets waiting for too long, hence avoiding data starvation.

This implementation is appropriate when VNFs need to process a limited amount
of traffic. In this case, the polling model would unnecessarily waste a huge amount
of CPU resources, while a blocking model allows to increase the density of the VNFs
active on the same server. In fact, in this case a VNF suspends itself when no packets
are available, freeing the CPU that can be used by another VNF that actually has
packets to be processed.

4.4.3 Single buffer towards the vSwitch + semaphore
In the implementations described so far, the vSwitch may have to handle a huge
number of “downstream” buffers coming from VNFs, which may require a consider-
able amount of time while working in polling mode.

In this third implementation all VNFs share a single “downstream” rte_ring
toward the vSwitch, which exploits the lock-free multi-access capability of that
structure. This would result in a saving of CPU cycles when iterating on a fewer
rte_rings, as well as an improved cache effectiveness thanks to the better locality
in memory access patterns.

This implementation may be appropriate when a large number of VNFs are

87

4 – Supporting fine-grained virtual network functions through Intel DPDK

active on the same server, as we expect that in each one of its running rounds
the vSwitch would find a few applications with packets ready to be consumed.
Unfortunately, according to [56], the multi-producer enqueue function implemented
in DPDK does not allow two or more VNFs executed on the same CPU core to use
the same rte_ring. Hence, although very appealing, this architecture has not been
implemented because it would support only a limited number of VNFs (less than
the number of CPU cores).

4.4.4 Double buffer + FDIR
This fourth implementation aims at reducing the load on the vSwitch, which is
undoubtedly the most critical component of the system, by allowing some VNFs to
receive directly the traffic coming from the NICs.

To this purpose, we use the FDIR (Flow Director) facility, which allows each
NIC to be initialized with several input queues (incoming traffic is distributed based
on the value of specified packet fields) and a single output queue. Each input queue
is then associated with a different VNF, while the output queue is just accessed by
the vSwitch, as shown in Figure 4.3. When a VNF is started, the vSwitch adds a
new FDIR perfect filter on all the NICs, and binds this filter with a specific input
queue of each port. This way, the first classification of packets is offloaded to the
NIC, hence the vSwitch has just to move packets between VNFs and send on the
network those packets already processed by the entire service chain. However, this
higher efficiency is paid with more complex VNFs, which have to handle multiple
input queues, namely those created by the NIC (accessed through the PMD) and
the rte_ring shared with the vSwitch.

Network

PMD

vSwitch

…

NIC 0 NIC N

mempool rte_rin
g

mbuf

PMD PMD
VNF 1 VNF M

……
M hardware

input
queues

1 hardware
output
queue

Figure 4.3: Implementation that exploits the FDIR feature.

Since the number of hardware queues available on the NICs is limited, this

88

4.5 – Performance evaluation

architecture is appropriate when the number of VNFs is reduced. Alternatively, if
the number of VNFs is huge, an hybrid architecture may be used: some VNFs only
receives traffic from the vSwitch, while others (which are at the beginning of the
service chains) are directly connected to a queue of the NIC.

4.4.5 Isolated buffers + semaphore
The last implementation targets the case in which VNFs are not trusted, and hence
we cannot allow them to share a portion of the memory space with the rest of
system, as in the architectures presented so far2.

Then, in this implementation only the vSwitch is a DPDK process, while each
VNF is a separated (non-DPDK) process. This way, the rte_mempool containing
traffic coming from the NICs can only be accessed by the vSwitch, which will provide
each packet only to the proper VNF. To this purpose, the vSwitch shares with each
VNF a distinct set of three buffers: two are similar to the DPDK rte_rings, and
contain a reference to a slot in the third one, which is actually a simple memory
pool containing only the packets exchanged between the vSwitch and the VNF. This
requires one additional copy each time a packet has to be delivered to the next VNF
in the chain, i.e., from the rte_mempool to the per-VNF buffer when the packet has
just be received from the NIC, and between those per-VNF buffers in the next steps
of the service chain.

Since in this implementation we cannot exploit DPDK features neither in the
VNF, nor in the per-VNF buffers, we had to implement (manually) all the techniques
provided by the DPDK for efficient packet handling; among the others, buffers
starting at a memory address that is multiple of the cache line size and storing each
packet to an offset that is multiple of the cache line size.

This implementation aims at providing the adequate traffic isolation among
VNFs and is appropriate when an operator does not have the control on the VNFs
deployed on its network nodes, e.g., when tenants are allowed to install “opaque”
VNFs on the network, which are not trusted by the operator itself.

4.5 Performance evaluation
This section evaluates the performance of the implementations described in Sec-
tion 4.4. Tests are executed on dual E5-2660 Xeon (eight cores plus hyperthread-
ing) running at 2.20GHz, 32GB RAM and one Intel X540-based dual port 10Gbps

2In fact, all the processes belonging to the same DPDK application (i.e., the vSwitch and all
the VNFs, in our use case) share all the data structures created by the primary process, such as
the rte_mempool, the rte_rings, and more.

89

4 – Supporting fine-grained virtual network functions through Intel DPDK

Ethernet NIC. Two other machines are used respectively as a traffic generator and
traffic receiver, connected through dedicated 10Gbps Ethernet links.

Each test lasted 100 seconds and was repeated 10 times, then results are averaged.
Each graph representing the maximum throughput is provided with a bars view that
reports the throughput in millions of packets per second on the left-Y axis, and a
points-based representation that reports the throughput in Gigabit per second on
the right-Y axis. Instead, latency measurements are based on the gettimeofday
Unix system call and include only the time spent by the packets in our system,
without the time needed to actually send/receive data on the network.

Tests are repeated with packets of different sizes and with a growing number
of running VNFs; moreover, each packet traverses two of these VNFs. Traffic is
generated so that two consecutive packets coming from the network must be provided
to two different VNFs in order to stress more the system. The size of the buffers
has been chosen in order to maximize the throughput of the system.

Our VNFs are simple UNIX processes that simply calculate a signature across
the first 64 bytes of each packet, which represents a realistic workload as it emulates
the fact that most network applications operate only on the first few bytes (i.e.,
the headers) of the packet in read-only mode. Moreover, the fact that our VNFs
are not full-fledged virtual machines as suggested in the NFV paradigm does not
represent a limitation, because we focus on the communication mechanism between
the different components, which is orthogonal to the architecture of the components
themselves.

Similarly, the vSwitch is a simple virtual switch that supports only forwarding
rules based on MAC addresses; while this looks limiting compared to other equivalent
components such as Open vSwitch [76], it allows us to focus on the transmit/receive
portions of the switch, limiting the overhead due to the presence of other features.

Finally, unless otherwise specified, we used only the CPU whose socket is directly
connected to the NIC.

4.5.1 Double buffer
Figure 4.4(a) shows the throughput achieved with a growing number of VNFs de-
ployed on the “double buffer” architecture. In particular, from the figure it is evident
that the throughput is maximized when no more than one VNF is executed on a
physical core3. In fact, it drops of about 20% (with 64B packets) when the number
of VNFs changes from 7 to 8, due to the fact that we start allocating VNFs on
the logical cores of CPU0 as well, hence having multiple VNFs that share the same

3It is worth noting that, for performance reasons, one physical core is always dedicated to the
vSwitch; hence, the machine used in the tests has still 7 physical cores (on CPU0) that can be
assigned to VNFs.

90

4.5 – Performance evaluation

physical core.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4 6 7 8 9 10 14 15 16 17 40 100
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
h
ro

u
g
h
p
u
t
[M

p
p
s
]

T
h
ro

u
g
h
p
u
t
[G

b
p
s
]

#NFs

64B
700B

1514B

(a) “Double buffer" architecture.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4 10 40 100 400 1000 2000
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
h
ro

u
g
h
p
u
t
[M

p
p
s
]

T
h
ro

u
g
h
p
u
t
[G

b
p
s
]

#NFs

64B
700B

1514B

(b) “Double buffer + semaphore" architecture.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4 10 30
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
h
ro

u
g
h
p
u
t
[M

p
p
s
]

T
h
ro

u
g
h
p
u
t
[G

b
p
s
]

#NFs

64B
700B

1514B

(c) “Double buffer + FDIR” architecture.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

4 10 40 100 400 1000
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

T
h
ro

u
g
h
p
u
t
[M

p
p
s
]

T
h
ro

u
g
h
p
u
t
[G

b
p
s
]

#NFs

64B
700B

1514B

(d) “Isolated buffers + semaphore” architecture.

Figure 4.4: Throughput with a growing number of VNFs.

Figure 4.5(a) plots the latency experienced by packets in our system and shows
that its value tends to increase considerably with the number of VNFs, as shown by
an average value of 24.44ms with 100 VNFs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 8000 160000

C
u
m

u
la

ti
v
e
 f
re

q
u
e
n
c
y

Time [us]

4 NFs
10 NFs
40 NFs

100 NFs

(a) “Double buffer” architecture.

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 8000 160000

C
u
m

u
la

ti
v
e
 f
re

q
u
e
n
c
y

Time [us]

4 NFs
10 NFs
40 NFs

100 NFs
400 NFs

1000 NFs
2000 NFs

(b) “Double buffer + semaphore” architecture.

Figure 4.5: Latency introduced by the framework.

This degradation of performance (both throughput and latency) when increasing
the number of VNFs is a consequence of the execution model implemented in VNFs,

91

4 – Supporting fine-grained virtual network functions through Intel DPDK

which perform a busy waiting on the input rte_ring in order to receive packets from
the vSwitch, and never suspend themselves. Hence, when there are more VNFs than
the number of CPU cores, the CPU could be allocated (by the operating system)
to a VNF with no packets to be processed, while a VNF that actually has available
packets, may be waiting for a CPU core.

Then, this model looks appropriate only if the number of VNFs is smaller than
the number of CPU cores available; after that point the throughput drops and the
latency becomes barely acceptable.

4.5.2 Double buffer + semaphore

Figure 4.4(b) depicts the throughput obtained with a growing number of VNFs with
the architecture described in Section 4.4.2. In particular, it shows that the VNFs
implemented in blocking mode achieve higher throughput than in the previous case,
in which they operated in polling mode. This allows the system not only to go
faster in any working condition (even when a few VNFs are active), but to support
an higher number of VNFs without any significant drop in terms of performance,
achieving just over 8Gbps with 700B packets even with 2000 VNFs.

Interesting, the better throughput is not achieved at the expense of the latency,
as shown in Figure 4.5(b). In fact, if with a few VNFs we can assist to a negligible
worsening (with 4 and 10 VNFs, the average latency is less than 100µs higher com-
pared to Figure 4.5(a)), things become rapidly far better with an higher number
of VNFs, achieving an average of 1,89ms and 4,83ms respectively with 40 and 100
VNFs. In fact, a busy waiting model is expected to provide a lower latency as it
avoids the overhead of waking up a VNF, and the necessity to queue several packets
before waking up a VNF, which obviously impact on the latency. However, all those
properties disappear when the number of VNFs exceeds the number of CPU cores,
as the operating system has to schedule in/out different processes anyway, hence
obtaining a result that looks similar to the blocking model. Moreover, the operating
system scheduler is not aware if a VNF has packets to be processed or not, and
consequently it could allocate the CPU to a VNF uselessly. Instead, the semaphore
enables this implementation to schedule a VNFs only when it actually has packets
to be processed.

Finally, it is remarkable the fact that, with 2000 VNFs, the 7 CPU cores al-
located to them (the last is dedicated to the vSwitch) are loaded only at 18% in
average, which shows the efficiency of the system. However, as evident, the latency
is definitely not acceptable (an average of 160ms with 2000 VNFs), that is the reason
why we did not try to squeeze even more VNFs on the system, although, from the
point of view of the throughput, there was still room for more of them.

92

4.6 – Related work

4.5.3 Double buffer + FDIR
Figure 4.4(c) shows the throughput achieved with the “double buffer + FDIR”
implementation.

In this case we experienced a limitation of the DPDK framework: although the
NIC controller exports 64 hardware queues (hence it can distribute the traffic to 64
different consumer processes), the DPDK forces each one of those processes (as part
of a multi-process DPDK application) to be allocated on a different CPU core. As
a consequence, we were only able to execute 30 VNFs using both the Xeon CPUs
available in our server, while the remaining two logical cores were allocated to the
operating system and to the vSwitch.

With this limitation, our tests confirm that FDIR could provide a considerable
speedup to the system, allowing our server to reach a throughput that is up to 41%
better compared to the best of the previous implementations (e.g., 6.05Gbps with
64B packets and 4 VNFs). However, this gain tends to decrease when adding more
VNFs (particularly when we start to allocate VNFs on the second CPU, which forces
the traffic to traverse the QPI bus), reaching a point, with 30 VNFs, in which this
solution does no longer provide advantages at all.

The latency measured in this test case is slightly better than the one provided
in Figure 4.5(a), as packets coming from the NIC are immediately delivered to the
VNFs without passing in the vSwitch.

4.5.4 Isolated buffers + semaphore
Figure 4.4(d) shows the throughput achieved with the implementation that provides
isolation among VNFs. Comparing this graph with that depicted in Figure 4.4(b),
it is evident a deterioration in performance, as a consequence of the additional
copies needed to guarantee traffic isolation among VNFs. Instead, latency looks
very similar to that presented in Figure 4.5(b).

4.6 Related work
This section provides a brief overview of the main proposals that are related to
the work presented in this chapter. Particularly, it focuses on other architectures
targeted at efficiently steering traffic among VNFs deployed on the same server.

NetVM [55] is a platform built on top of KVM and DPDK, designed to efficiently
provide network traffic to VNFs deployed as different virtual machines (VMs). Simi-
larly to our proposals, VNFs and the vSwitch exchange packets through rte_rings;
however, while the NetVM vSwitch exploits several threads to provide packets to
VNFs, our proposals use a single CPU core as we would like to allocate all the others
to the (many) VNFs.

93

4 – Supporting fine-grained virtual network functions through Intel DPDK

ClickOS [64] defines instead an efficient packet exchange mechanism between
a vSwitch based on VALE [82], and VNFs implemented as tiny VMs based on
Click [71]. Then, the data exchange mechanism proposed is designed to work with
VMs (executed by the Xen [23] hypervisor), while the packets exchange architectures
introduced in this chapter are agnostic with respect of the technology used to run
VNFs (e.g., VMs, Docker containers). Moreover, we propose different solutions to
be used according to the number of VNFs actually deployed (and hence, executed
concurrently).

Also Xen [23] and Hyper-Switch [78] address the problem of efficiently exchanging
packets between VMs running on the same server. However, their architecture is
designed for packets that originate or terminate their journey in a VM, not for
pass-through VNFs.

Although used to implement interconnections among VNFs, virtual switches such
as OpenvSwitch [76] and the eXtensible Datapath daemon (xDPd) [26] are orthogo-
nal to our proposal. In fact, while they implement the classification and forwarding
mechanism, such vSwitches do not focus on data exchange mechanisms optimized
for the NFV scenario. Then, the packet exchange mechanisms introduced in this
chapter can be built on top of those existing solutions to improve their data transfer
capabilities, hence the overall performance of the system.

4.7 Conclusion
This chapter focuses on the case in which a massive number of (tiny) virtual network
function instances are executed simultaneously on the same server and presents
five possible implementations, each one with specific operating characteristics, of a
system that moves efficiently packets across the many VNFs running on the server
itself. All the proposed implementations are based, as much as possible, on the
features offered by the Data Plane Development Kit, a framework recently proposed
by Intel to efficiently implement data plane applications.

Results obtained, particularly in terms of throughput, are quite satisfying for
almost all the implementations proposed, confirming the goodness of the primitives
exported by the DPDK; only in few cases we spotted some limitations which are
specific of our target domain. From the point of view of the latency, we experienced
huge packet traveling times when the server was packed with many VNFs active
at the same time. In general, when the number of VNF exceeded 100, the average
latency introduced by the system may become unacceptable in real implementations.

To our view, this suggests that our particular use case, with a massive number
of (tiny) VNFs, may not be satisfied with the current generation of the hardware,
in which CPUs are dimensioned for a few, fat, jobs, while we have here many, tiny
tasks. This suggests that our future investigations should take into consideration
different hardware platforms, such as the ones with a massive number of (tiny) cores,

94

4.7 – Conclusion

which may be more appropriate for our case.
As a future activity, we plan to implement the proposed packet exchange archi-

tectures in an existing virtual switch, in order to validate them in real environments.

95

96

Chapter 5

Efficient data exchange algorithm
for chained virtual network
functions

5.1 Introduction
New paradigms have recently emerged that aim at transforming the network into a
more flexible and programmable platform. In particular, Network Function Virtu-
alization (NFV) [43] proposes to replace dedicated middleboxes, used to deliver a
multitude of network services by means of a growing number of (cascading) dedi-
cated appliances [53], with software images that run on general-purpose servers. This
results in a more flexible deployment of network applications (e.g., NAT, firewall)
and in lower capital and operating costs for the hardware, thanks to the possibility
to deploy many different (small) Virtual Network Functions (VNF) on the same
(standard) computer. In addition, while appliances are often dedicated to a single
tenant, servers can be multitenant, hence being able to host services belonging to
different players, such as a traffic monitor belonging to the operator and a firewall
belonging to a given company, with even more advantages in terms of consolidation.

When several VNFs are executed in the same server, an incoming packet can
traverse an arbitrary number of VNFs before leaving the middlebox (i.e., a func-
tion chain, as shown in Figure 5.1). The exact sequence of functions traversed by
a packet can be determined only at run-time, by inspecting the packet. In fact,
(i) packets belonging to different tenants can traverse different functions, and (ii)
packets belonging to the same tenant can experience different paths (e.g., when only
a portion of traffic needs to undergo a deep packet inspection). Packets can also be
modified in transit (e.g., a NAT changes the source IP address), hence requiring that
a packet is re-analized when it leaves a VNF, to determine what is next. As depicted
in Figure 5.1, this requires that each server includes a virtual switch (vSwitch) that

97

5 – Efficient data exchange algorithm for chained virtual network functions

classifies each packet to determine which is the next function to traverse and then
delivers the packet to it.

Journey of a specific
packet within the server

Virtual switch

VNF4

VNF1

VNF5

VNF2 VNF3

Network

Virtual network functions

Figure 5.1: Function chains deployed in a server.

Based on the experience gained in the work described in Chapter 4, this chap-
ter1 proposes and evaluates a new architecture for moving network packets between
different functions, by means of a vSwitch. This solution, which is based on cir-
cular lock-free First-In-First-Out (FIFO) buffers managed by ad-hoc algorithms, is
designed to: (i) guarantee traffic isolation between VNFs, so that a VNF can only
access the portion of traffic that is expected to flow through it, hence limiting the
potential hazards due to malicious applications and provide an effective support
to multitenancy; (ii) provide excellent scalability by allowing to consolidate a huge
number of VNFs on the same server; (iii) achieve high performance in terms of data
movement speed among different VNFs, similarly to what is required in physical
servers among different hardware modules [98]. Scalability and performance are ob-
tained also by taking care of implementation details such as exploiting cache locality
as much as possible and limiting the number of context switches. The correctness
of the data exchange algorithm (e.g. absence of concurrency hazards) is guaranteed
by means of formal verification.

This chapter focuses on VNFs that (i) implement a pass-through behavior (each
packet received is sent again to the network), (ii) may drop packets or (iii) may

1This chapter (partially published in [30]) is also part of the PhD thesis of Matteo Virgilio
(“Study and analysis of innovative network protocols and architectures”), who collaborated in this
work.

98

5.2 – Related Work

generate new packets as a consequence of a packet just received (e.g., an ARP reply
as a consequence of an ARP request). This allows us to cover the vast majority of
network middleboxes, including for example NATs, firewalls, traffic monitors, and
intrusion detection systems. Instead, applications that may need to generate new
packets asynchronously, e.g., in order to open a connection with some remote service
or to retransmit a TCP packet, are out of the scope of the work described in this
chapter and left as a future work.

The rest of the chapter is organized as follows. Section 5.2 explores related ex-
isting solutions able to exchange data among different software components. Given
the nature of our solution, we are particularly interested in covering FIFO queue
designs and producer/consumer paradigms, in order to emphasize the differences
between our work and the existing mechanisms. Section 5.3 details the operating
principles of the proposed architecture and the way the data exchange is managed
by the different modules. Section 5.4 presents a formal verification of the data ex-
change algorithm, which rigorously proves its correctness from a safety and security
perspective. Section 5.5 proposes some implementation guidelines that can be used
to further improve the performance of the data exchange. Section 5.6 presents a
wide range of experiments that validate our architecture both in ideal conditions
and in real scenarios. Finally, Section 5.7 concludes the chapter.

5.2 Related Work

The efficient lock-free implementation of FIFO queues has been largely investigated
in the past. For instance, [69] and [46] propose lock-free algorithms that operate
on FIFO queues managed as non-circular linked-lists. Similar proposals can be
found in [77] and [50], which also require to manage a pool of pre-allocated memory
slots. However, all the solutions proposed so far are usually based on uni-directional
flows of data according to the producer-consumer paradigm, which is not an opti-
mal solution for managing the bi-directional data flows occurring in the virtualized
environments we are considering. In fact, in these environments, a packet always
goes from the virtual switch to the VNF and then back to the virtual switch. Using
classical uni-directional producer-consumer solutions requires the VNF to remove
data just received from a first queue and to write them into a second queue used for
sending the data back. This implies that data are always copied once in this trip,
which may limit the throughput of the system particularly when several VNFs have
to be traversed (hence several copies have to be carried out).

Another possible way to efficiently exchange data between applications can be
seen in the context of a lock-free operating system, in which [65] and [66] present a
single producer/consumer and a multi-producer/multi-consumer algorithm to man-
age circular FIFO queues. A similar idea has been proposed by Intel in the DPDK

99

5 – Efficient data exchange algorithm for chained virtual network functions

library [56] and in [91], whose algorithms have been designed to operate in con-
texts where many processes can concurrently insert items into a shared buffer or
remove them. However, those proposals are not applicable in our case because they
cannot guarantee isolation between VNFs due to the presence of a unique shared
buffer. Similar considerations can be made for ClickOS [64] (based on the VALE
virtual switch [82]) and NetVM [55], which instead targets network function chains.
ClickOS uses two unidirectional queues with the necessity to copy packets once;
NetVM uses two unidirectional queues between “untrusted” functions, while switch-
ing to a unique shared buffer (handled in zero-copy) among “trusted” functions,
hence impairing traffic isolation requirement. MCRingBuffer [59], instead, defines
an algorithm to exchange data between one producer and one consumer running on
different CPU cores, which is particularly interesting for its efficient implementa-
tion of memory access patterns; in fact, part of those techniques are reused in our
implementation as well (Section 5.5).

Solutions such as Xen [23], and Hyper-Switch [78] address the problem of effi-
ciently exchanging packets between different entities such as virtual machines (VM)
running on the same server, which looks similar to our problem of chaining net-
work functions. However, their architecture is designed for packets that originate
or terminate their journey in a VM, not for pass-through functions. This implies
different architectural choices such as different buffers for packets flowing in differ-
ent directions, albeit integrated with a complex data exchange mechanism based on
swapping memory pages rather than copying packets between the hypervisor and
the VM [23]. It is also worth mentioning that network-aware CPU management
techniques have been proposed in the context of Xen for improving the performance
of virtual servers hosting these network applications [48].

Virtual switches such as Open vSwitch (OvS) [76] and the eXtensible Datapath
daemon (xDPd) [26] are used to implement network function chains (as shown in
Chapter 3 and in [27]), although they appear in some way orthogonal to our proposal.
In fact, they implement the classification and forwarding mechanism (either based on
the traditional L2 forwarding or on the more powerful Openflow protocol [68]), but
do not focus on the data exchange mechanism which is often based on bi-directional
FIFO queues (in some case a shared memory can be configured). In this respect,
our mechanism can be built on top of those existing solutions to improve their data
transfer capabilities, hence the overall performance of the system.

As a final remark, it is worth pointing out that this chapter focuses on the
problem of efficiently moving packets between different VNFs within a server, while
it does not consider the problem of efficiently receiving/sending packets from/to the
network. This aspect, orthogonal to our proposal, is instead considered in [44], [81]
and [56].

100

5.3 – The data exchange architecture

5.3 The data exchange architecture
This section describes the proposed architecture, designed to efficiently implement
function chaining within a single server. In particular, the section first provides an
overview of the architecture and then dives into the details of the packet exchange
algorithm.

In our architecture, we define the Master as the module that plays the role of
the vSwitch, while VNFs are represented by modules called Workers. Moreover, a
token is a generic data unit exchanged between the Master and the Workers. The
token represents a packet in the NFV use case, but our mechanism could be used
to exchange any kind of data, according to the specific use case implemented.

5.3.1 Operating context
VNFs are pieces of software operating on the data plane of the network that, in
the vast majority of cases, forward their packets with minimal (or no) changes,
allowing packets to continue their journey toward the final destination. However,
some functions (e.g., firewall) may need to drop packets, which should not be sent
back to the network after their processing. Other functions, instead, may need to
send new packets as a consequence of a previously received packet. For example, a
bridging module may need to duplicate a broadcast packet several times (e.g., once
for each interface of the middlebox) and then provide all these copies to the next
functions in the chain. Similarly, another VNF may extend a packet (e.g., by adding
a new header) so that it exceeds the MTU of the network; this packet must then be
fragmented, and all the fragments must be sent out.

Hence, our architecture must take all these requirements into account and must
be able to efficiently move all the above traffic within the middlebox in order to
allow flexible function chains. As introduced in Section 5.1, this requires a fast
and efficient mechanism to move data between the vSwitch and the VNFs, which
translates into the necessity of a dedicated data dispatching mechanism, being this
component one of those that has the biggest impact on the system performance.

5.3.2 Architecture Overview
As shown in Figure 5.2, our architecture is based on a set of lock-free ring buffers;
in particular, the Master shares two buffers with each Worker, which are managed
through different (but not independent) parts of the same exchange algorithm.

The primary buffer is used to exchange pass-through tokens, i.e., data that
go from the Master to the Worker, and back from the Worker to the Master. In
particular, the proposed solution has the peculiarity of allowing the Worker to return
data back without any copy. Instead, the auxiliary buffer is used to support another
kind of traffic we envision in our use case scenario, namely Workers that can possibly

101

5 – Efficient data exchange algorithm for chained virtual network functions

VNF 1
(Worker) … VNF N

(Worker)

Consume/send
packets

Produce/receive
packets

Virtual switch (Master)

Network

Traffic flowing through a
function chain within a
serverPrimary buffer

Auxiliary buffer

Figure 5.2: Deployment of the algorithm within a server.

generate new tokens as a consequence of the data received from the Master, such as
an ARP reply packet generated in response to an ARP request, or when a packet has
to be modified but it results in an excess of the MTU, hence requiring the creation
of another packet. This second buffer is unidirectional and it is only used by the
Worker to provide “new” data to the Master.

Each buffer slot (both primary and auxiliary) includes some flags in addition to
the real data, which are used to identify the content of each slot; more details will be
presented in the next sections. Finally, buffer slots are currently of fixed length and
equal to the network MTU size; however the extension of the algorithm to handle
variable slot sizes, tailored to the length of the packet actually received, is trivial.

5.3.3 Execution model
The Master operates in polling mode, i.e., it continuously checks for new tokens and
inserts them into the primary buffer shared with the target Worker. This operating
mode has been chosen because the network node (and then the Master itself) is
supposed to be traversed by a huge amount of traffic; hence, a blocking model
would be too penalizing because it would require an interrupt-like mechanism to
start the Master whenever new data are available. This could significantly drop the
performance with high packet rates [70]. In fact, interrupt handling is expensive in
modern superscalar processors because they have long pipelines and support out of
order and speculative execution [40], which tends to increase the penalty paid by an
interrupt.

Vice versa, since the traffic entering into a specific Worker is potentially a small
portion compared to the one handled by the Master, a blocking model looks more

102

5.3 – The data exchange architecture

appropriate for this module. This ensures the possibility to share CPU resources
more effectively, which is important in multi-tenant systems where potentially a
large number of Workers are active. Hence, when a Worker has no more data to
be processed, it suspends itself until the Master wakes it up by means of a shared
semaphore.

5.3.4 Basic algorithm: handling pass-through data
The algorithm used to move data from the Master to the Workers (and back) requires
the sharing of some variables (underlined in the pseudocode shown in the following),
a semaphore, and the primary buffer between the Master and each Worker. In
particular, in this section we assume the presence of the Master and a single Worker,
while its extension to several Workers is trivial.

The shared buffer is operated through four indexes. M.prodIndex and W.prodIndex
are shared between the Master and the Worker. The former index points to the next
empty slot in the buffer, ready to be filled by the Master, while the latter points to
the next slot in the buffer that the Worker will make available to the Master again
after its processing. M.prodIndex is incremented by the Master when it enqueues
new tokens, while W.prodIndex is incremented by the Worker when it makes new
tokens available to the Master again. M.consIndex is a private index of the Master,
which points to the next token that the Master itself will remove from the buffer.
Finally, W.consIndex is a private index of the Worker, which points to the next to-
ken to be processed by the Worker itself. In addition to these indexes, the algorithm
exploits the shared variable workerStatus, which indicates whether the Worker is
suspended or it is running.

Algorithm 1 provides the overall behavior of the Master and shows how it cycli-
cally repeats the following three main operations: (i) in lines 14-21 it produces new
data (line 19), which corresponds to the reception of packets from the network inter-
face card (NIC) in our case, and immediately provides them to the Worker through
the primary buffer (line 20); (ii) it reads the tokens already processed by the Worker
from the primary buffer (line 22), and finally (iii) it wakes up the Worker if there
are data waiting for service for a long time in order to avoid starvation (line 23).
From lines 14-21, it is evident that the Master produces several tokens consecutively,
in order to better exploit cache locality. Furthermore, if the buffer is full (line 15),
it stops data production and starts removing the tokens already processed by the
Worker from the buffer.

Algorithm 2 details the mechanism implemented in the Master to send data
to the Worker. As shown by line 8, a token is inserted into the slot pointed by
the shared index M.prodIndex as soon as it is produced; however, the Worker is
awakened only if at least a given number of tokens (i.e., MASTER_PKT_THRESHOLD)
are waiting for service in the primary buffer (lines 10-13). Thanks to this threshold,

103

5 – Efficient data exchange algorithm for chained virtual network functions

Algorithm 1 Executing the Master
1: Procedure master.do()
2:
3: {Initialize shared variables}
4: M.prodIndex ← 0
5: W.prodIndex ← 0
6: workerStatus ← WAIT_FOR_SIGNAL
7:
8: {Initialize private variables of the Master}
9: M.consIndex ← 0

10: timeStamp ← 0
11:
12: {Execute the algorithm}
13: while true do
14: for i = 0 to (i < N or timeout()) do
15: if M.prodIndex == (M.consIndex−1) then
16: {The buffer is full}
17: break
18: end if
19: data ← master.produceData()
20: master.writeDataIntoBuffer(data)
21: end for
22: master.readDataFromBuffer()
23: master.checkForOldData()
24: end while

we avoid to wake up the Worker for each single token that needs to be processed,
hence improving performance because (i) it reduces the number of context switches
and (ii) it increases cache locality, for both data and code. Since a token is inserted
into the buffer as soon as it is produced regardless of the fact that the Worker is
running or not, and since the Worker will suspend itself only when the buffer is
empty (as detailed in Algorithm 5), the Worker is able to process a huge amount of
data consecutively, thus improving system performance.

Our algorithm avoids the starvation of tokens sent to a Worker, especially when
the system is in underload conditions. This is done by means of a timeout event,
which wakes up the worker even if the abovementioned threshold is not reached yet.
In particular, the Master acquires and stores the current time whenever it inserts a
new token and the buffer is empty (lines 3-6 of Algorithm 2). This way, the Master
knows the age of the oldest token and it is able to possibly wake up the Worker also
depending on the value of a given time threshold, as shown in Algorithm 3.

The functions described in Algorithm 2 and Algorithm 3 need to know whether
the Worker is already running or not in order to avoid useless Worker awakenings.

104

5.3 – The data exchange architecture

Algorithm 2 The Master writing data into the primary buffer
1: Procedure master.writeDataIntoBuffer(Data d)
2:
3: if M.prodIndex == M.consIndex then
4: {The buffer is empty}
5: timeStamp ← now()
6: end if
7:
8: buffer.write(M.prodIndex,d)
9: M.prodIndex++

10: if buffer.size() > MASTER_PKT_THRESHOLD and
(workerStatus /= SIGNALED) then

11: workerStatus ← SIGNALED
12: wakeUpWorker()
13: end if

Algorithm 3 The Master waking up the Worker due to a timeout
1: Procedure master.checkForOldData()
2:
3: if buffer.size() > 0 and (workerStatus /= SIGNALED) and

((now() − timeStamp) > TS_THRESHOLD) then
4: workerStatus ← SIGNALED
5: wakeUpWorker()
6: end if

This information is carried by the shared variable workerStatus, which is set to
SIGNALED by the Master just before waking up the Worker (line 11 of Algorithm 2
and line 4 of Algorithm 3), and changed to WAIT_FOR_SIGNAL by the Worker just
before suspending itself (line 22 of Algorithm 5). This way, the Master can test this
shared variable to have an indication about the Worker status, and then wake it up
only when necessary.

Algorithm 4 shows how the Master removes the data that have already been
processed by the Worker. In particular, it consumes all the tokens until the index
M.consIndex does not reach the index W.prodIndex, incremented by the Worker
each time it has handled a batch of tokens, as detailed in Algorithm 5. In this way,
also the Master reads several consecutive data from the primary buffer in order to
better exploit cache locality.

Notice that Algorithm 4 also considers those tokens provided by the Master to
the Worker, and dropped by the Worker itself. In case of dropped data, the Master
receives back an empty slot, identified through the flag dropped. The content of a
slot is only consumed if this flag is zero, otherwise the Master just increments the
M.consIndex and moves on to the next slot of the buffer, as shown in lines 7-10.

105

5 – Efficient data exchange algorithm for chained virtual network functions

Algorithm 4 The Master reading data from the primary buffer
1: Procedure master.readDataFromBuffer()
2:
3: if buffer.size() then
4: if M.consIndex /= W.prodIndex then
5: timeStamp ← now()
6: while M.consIndex /= W.prodIndex do
7: if not buffer.dropped(M.consIndex) then
8: master.consumeData(buffer.read(M.consIndex))
9: end if

10: M.consIndex++
11: end while
12: end if
13: end if

This prevents the Master from reading a slot with a meaningless content.
Algorithm 5 details the operations of the Worker. As evident from lines 12-23,

whenever a Worker wakes up, it processes all the tokens available in the primary
buffer (i.e., all the slots of the buffer with indexes less than M.prodIndex). Only at
this point (line 24), as well as after it has processed a given amount of data (lines
13-16), the Worker updates the shared index W.prodIndex, so that the Master can
consume all the tokens already processed by the Worker itself. This way, the Master
will be notified for data availability only when a given amount of tokens are ready
to be consumed, with a positive impact on performance. It is worth noting that
this batching mechanism is different from the one implemented when the Master
sends data to the Worker. In fact, in that case, the Worker is woken up when the
amount of data into the buffer is higher than a threshold, while the M.prodIndex,
used by the Worker to understand when it has to suspend itself, is incremented
each time a new data is inserted. Here, instead, the W.prodIndex (i.e., the index
used by the Master to know when the consuming of tokens must be stopped) is not
updated each time the Worker processes a data. As a consequence, it is possible
that some tokens have already been processed by the Worker, but it has still to
update the W.prodIndex and then the Master cannot consume them in the current
execution of Algorithm 4. This results in a slightly higher latency for these tokens,
but in better performance for the system thanks to this batching processing enabled
into the Master. As a final remark, lines 18-20 show that the Worker can drop the
token under processing by setting the dropped flag in the current slot of the primary
buffer.

Figure 5.3 depicts the status of the primary buffer2 and the indexes used by

2For the sake of clarity, the figure represents the shared buffer as an array instead of a circular

106

5.3 – The data exchange architecture

Algorithm 5 Executing the Worker
1: Procedure worker.do()
2:
3: {Initialize private variables of the Worker}
4: W.consIndex ← 0
5: pkts_processed ← 0
6:
7: {Execute the algorithm}
8: while true do
9: waitForWakeUp()

10: W.consIndex ← W.prodIndex
11: pkts_processed ← 0
12: while W.consIndex /= M.prodIndex do
13: if pkts_processed == WORKER_PKT_THRESHOLD then
14: pkts_processed ← 0
15: W.prodIndex ← W.consIndex
16: end if
17: toBeDropped ← buffer.process(W.consIndex)
18: if toBeDropped then
19: buffer.setDropped(W.consIndex)
20: end if
21: W.consIndex++
22: pkts_processed++
23: end while
24: W.prodIndex ← W.consIndex
25: workerStatus ← WAIT_FOR_SIGNAL
26: end while

107

5 – Efficient data exchange algorithm for chained virtual network functions

the algorithm in four different time instants. In Figure 5.3(a) the buffer is empty,
and then all the indexes point to the same position. Instead, in Figure 5.3(b) the
Master has already inserted some data into the buffer, but the Worker is still waiting
since the MASTER_PKT_THRESHOLD has not been reached yet. Figure 5.3(c) depicts
the situation in which the Master has woken up the Worker, which has already
processed two items. Notice that, since the WORKER_PKT_THRESHOLD has not been
reached yet, the W.prodIndex still points to the oldest token in the buffer. Instead,
in Figure 5.3(d) this threshold is passed and the Master has already consumed some
data.

FIFO queue.

108

5.3 – The data exchange architecture

M.prodIndex

W.prodIndex W.consIndex

M.consIndex

M.prodIndex

W.prodIndex W.consIndex

M.consIndex

M.prodIndex

W.prodIndex W.consIndex

M.consIndex

W.consIndex

M.consIndex M.prodIndex

W.prodIndex

MASTER_PKT_THRESHOLD

WORKER_PKT_THRESHOLD

Token to be handled by
the Worker

Token already processed
by the Worker

a)

b)

c)

d)

Token to be removed by
the Master

Figure 5.3: Run-time behavior and indexes of the algorithm.

5.3.5 Extended algorithm: handling Worker-generated data
Our architecture handles also Workers that may need to generate new data as a
consequence of the token just received from the Master but, as evident, this cannot
be done with the primary buffer alone as Workers cannot inject new data into the
primary buffer. In fact, the Worker can just modify (potentially completely) pass-
through tokens, i.e., data received from the Master that must be sent back to the

109

5 – Efficient data exchange algorithm for chained virtual network functions

Master itself or, at most, it can drop these tokens.
Since network applications forward most of the packets without performing any

manipulation on it, we decided to keep the primary buffer as simple as possible for
the sake of speed, while adding a new lock-free ring buffer, i.e., the auxiliary buffer,
to handle the case in which new data have to be provided to the Master. This
buffer, in which the Worker acts as the producer while the Master plays the role of
the consumer, is managed through two indexes; moreover, it requires a further flag
in each slot of the primary buffer, which indicates whether the next token should be
read from the primary or the auxiliary buffer.

Algorithm 6 details how the Worker sends new data to the Master, as a conse-
quence of the processing of the token at position W.consIndex in the primary buffer.
As shown in lines 3-11, several data can be generated for a single token received from
the Master, which are all linked to the same slot of the primary buffer. A first flag,
called aux, is set in the slot of the primary buffer to signal that the next slot to read
is the one on top of the auxiliary buffer (line 13). Instead, the next flag set in a
slot of the auxiliary buffer tells that the next packet has still to be read from the
auxiliary buffer, instead of returning to the next slot of the primary buffer.

Algorithm 6 The Worker writing new data into the auxiliary buffer
1: Procedure worker.writeDataIntoAuxBuffer(Data[] newData, Index W.consIndex)
2:
3: while data ← newData.next() do
4: if auxProdIndex == (auxConsIndex-1) then
5: {The auxiliary buffer is full}
6: break
7: end if
8: auxBuffer.write(auxProdIndex,data)
9: auxBuffer.setNext(auxProdIndex)

10: auxProdIndex++
11: end while
12: auxBuffer.resetNext(auxProdIndex-1)
13: buffer.setAux(W.consIndex)

The reading procedure is described in Algorithm 7. When the Master encounters
a slot with the aux flag set in the primary buffer, it processes a number of tokens in
the auxiliary buffer, starting from the slot pointed by auxConsIndex until the next
flag is set. Moreover, according to lines 4-7 of Algorithm 6, if the auxBuffer is full,
new tokens that the Worker may want to send to the Master are dropped.

Figure 5.4 depicts the primary buffer with some slots linked to the auxiliary
buffer. In particular, the slot pointed by M.consIndex is associated with two data
of the auxiliary buffer, i.e., the one pointed by auxConsIndex and the following one,
which has the next flag reset to indicate that the next slot is not linked with the

110

5.3 – The data exchange architecture

Algorithm 7 The Master reading data from the auxiliary buffer
1: Procedure master.readDataFromAuxBuffer()
2:
3: while true do
4: master.consumeData(auxBuffer.read(auxConsIndex))
5: if not auxBuffer.next(auxConsIndex) then
6: auxConsIndex++
7: break
8: end if
9: auxConsIndex++

10: end while

111

5 – Efficient data exchange algorithm for chained virtual network functions

current slot in the primary buffer. Instead, the next token in the primary buffer is
not associated with the secondary buffer (the aux flag is reset), while the third slot
contains data dropped by the Worker; despite this, the slot is linked to three data
in the auxiliary buffer. In other words, the configuration in which aux == 1 and
dropped == 1 is valid and it enables to completely replace a packet with a new one.

M.consIndex

0

1

0

0

1

1

slot
W.prodIndex

Primary
buffer

1 0 1 1 0

auxConsIndex auxProdIndex

Auxiliary
buffer

Dropped flag

Aux flag Next flag

Data to be handled by
the Master

Figure 5.4: Binding primary buffer - auxiliary buffer.

5.4 Formal verification
Assessing the correctness of an algorithm is often not straightforward, hence we built
an abstract model of the Master with a single Worker in order to formally check
some fundamental properties. We do not consider a plurality of Workers because the
interaction between the Master and a Worker is independent of the interaction with
any other Worker, hence this approach is sufficient to demonstrate the correctness of
the whole system. In particular, we only focus on the primary buffer as its operation
is one of the main contributions of our work and hence it needs a proof of correctness.
The auxiliary buffer, instead, is not explicitly verified as it is managed as a standard
producer/consumer system, which has been already studied and validated in the
existing literature [39].

The model of our algorithm has been developed in Promela [51], a well known
modeling language that, in conjunction with the SPIN [52] model checker generator,
can be used to formally verify distributed and concurrent software against certain
desired properties. The main purpose of the model checking technique is to explore
all the possible states of a system and verify whether the specified properties hold
in each execution path. Whenever the model checker finds an execution path that

112

5.4 – Formal verification

leads to a property violation, it provides the full counter-example with all the steps
needed to reach the undesired behavior.

When creating an accurate model of the system, it is very important to keep
the nature of the problem tractable, as model checking verification tools tend to
exploit a massive amount of memory (state-space explosion problem). Therefore,
the actual model of the data exchange mechanism has been built by omitting some
implementation details that are not relevant for the analyzed properties in order to
reduce the overall number of states. This is possible because many system states (or
runs) are mapped to the same abstract state (or run). A more detailed description
of our model will be provided in Section 5.4.2.

5.4.1 Properties specification
Given the structure of our algorithm, we can identify six properties that must be
always satisfied. The first two properties refer to conditions on some key variables
that must be verified to guarantee that no slot will be erroneously overwritten,
formally defining regions of the buffer that are “owned” by one of the two modules
(the Master and the Worker) at a given time.
Property 1. W.prodIndex must never exceed M.prodIndex.

M.prodIndex indicates the first empty position in the primary buffer that must
be fulfilled by the Master. Hence, it represents a boundary that the Worker must
never pass.
Property 2. M.consIndex must never exceed W.prodIndex.

M.consIndex represents the position of the token being processed by the Worker,
while W.prodIndex identifies the position of the last “processable” token (for the
Worker).

We also consider two additional safety properties, which must be satisfied by the
system. Specifically we require that:
Property 3. The number of pending tokens delivered by the Master to the Worker
and not yet processed by the Worker itself is, at any time, a non negative integer not
exceeding the maximum number of elements that the buffer can store, namely (N -
1), where N is the total buffer size:

0 <= tokens_master_to_worker <= (N − 1)

Property 4. The number of pending tokens delivered by the Worker to the Master
and not yet processed by the Master itself is, at any time, a non negative integer not
exceeding the maximum number of elements that the buffer can store, namely (N -
1), where N is the total buffer size:

0 <= tokens_worker_to_master <= (N − 1)

113

5 – Efficient data exchange algorithm for chained virtual network functions

Our circular buffer implementation always leaves at least one empty position, in
order to distinguish the cases in which the buffer is completely full or completely
empty. This is why the actual buffer capacity is N-1.

Finally, we consider two more properties related to the overall system behavior.
Property 5. Deadlock absence.

This property is automatically checked by SPIN, and in our case it means that
neither the Master nor the Worker ever enter an infinite waiting situation.
Property 6. Livelock absence.

This last property ensures that some useful work is eventually done by the Mas-
ter. Here the notion of “useful work” is intended as the Master capability to pro-
duce, sooner or later, new tokens for the Worker, e.g., by inserting new data into the
buffer. This is an important property verified under the assumption that a fairness
constraint exists during the verification phase, i.e., we assume the process scheduler
gives the possibility to both the Master and the Worker to execute, sooner or later,
some instructions. This is a reasonable hypothesis since most modern execution
environments implement scheduling algorithms to avoid process starvation.

5.4.2 Model details
The primary buffer

Our abstract model does not require the modeling of realistic data into the buffer
but only the buffer status; hence, only indexes are modeled. Another parameter
that is crucial for the model is the buffer size, meaning the actual number of tokens
that can be stored into the buffer.

The semaphore and the functions implementation

The model of the semaphore consists in an asynchronous channel shared between the
master and the worker. Basically, the blocking wait operation corresponds to reading
a packet from the channel, while the signaling operation is modeled by writing a
packet into the channel. This is a very common pattern, useful to implement various
kinds of communication/synchronization primitives between two or more entities.

The functions presented in the pseudocode in Section 5.3 are modeled as Promela
processes since the language does not provide an explicit way to represent functions
and their returned value. We exploit the following pattern: the caller sends a token
through a synchronous channel shared with the callee in order to pass the control to
the invoked process. Then, it performs a receive operation on the same channel in
order to be awakened from the other end-point when the processing has terminated.
Notice that the channel can also be used to pass arguments to and from the called
process/function.

114

5.4 – Formal verification

The Master and the Worker

The two main entities, the Master and the Worker, are modeled as two independent,
concurrently running processes. They share the M.prodIndex and W.prodIndex
variables, and the channel/semaphore (as stated in our pseudo-code in Section 5.3.4).
In order to decrease the amount of states to be verified by the model checker,
and hence reduce the overall verification time to a reasonable value, we use the
following abstractions: (i) the if-statement of Algorithm 3 excludes the check on
the timestamp value as the whole model does not contain any explicit information
about the elapsing time; (ii) the timeout() function that is present in the loop
guard (Algorithm 1) is replaced by a non-deterministic choice (i.e., rather than
modeling a realistic mechanism to implement a timeout event, we instructed the
model checker to extract a random value to decide if a timeout has occurred or not).
Both these abstractions provide a significant performance enhancement without any
loss in terms of exhaustiveness of the verification.

Parameters

BUFFER

SIZE

MASTER

THRESHOLD

WORKER

THRESHOLD

VERIFICATION

RESULT

Property 1 [1,8] [1,8] [1,8] SUCCESS

Property 2 [1,8] [1,8] [1,8] SUCCESS

Property 3 [1,8] [1,8] [1,8] SUCCESS

Property 4 [1,8] [1,8] [1,8] SUCCESS

Property 5 [1,8] [1,8] [1,8] SUCCESS

Property 6 [2,8] [1,8] [1,8] SUCCESS

Table 5.1: Algorithm verification.

5.4.3 Verification results
The model explained above can be exhaustively verified for different values of the
main model parameters, as shown in Table 5.1. For each property, the table specifies
the considered range of values for the buffer size, the MASTER_PKT_THRESHOLD and
the WORKER_PKT_THRESHOLD. For the sake of scalability of the verification process
and without losing in generality, we used rather small values compared to a realistic
buffer, which could contain millions of tokens. In fact, possible structural bugs
would be detected also in a small size system deployment.

Some inconsistent parameters settings in the considered ranges, such as a thresh-
old greater than the buffer size, are skipped in our verification work. Notice also
that, with a buffer size equal to one token, Property 6 is not considered as the buffer
cannot contain any token and therefore the master is not able to perform any useful
work, according to our definition. Properties 1-5 are verified even without forcing

115

5 – Efficient data exchange algorithm for chained virtual network functions

any fairness criterion between the execution of the Worker and the Master, since
their satisfaction does not necessarily depend on a particular sequence of processes
scheduling.

In conclusion, the results of our verification process completely demonstrate the
correctness of the algorithm from different points of view (absence of indexes mis-
behavior or accidental packets overwriting, and absence of deadlocks and livelocks).

The complete Promela code is publicly available at [34].

5.5 Implementation
Since the achievable performance depends not only on design but also on implemen-
tation issues, this section presents some implementation choices that can improve
performance and scalability and that have been adopted in our ptototype imple-
mentation.

Private copies of shared variables. As in many algorithms derived from the
producer-consumer problem, also in our case we need to keep two processes in sync
by means of a pair of shared variables, one written only by the first process, the other
one written only by the second process. Although in this case concurrency issues
are limited (no contention can occur because the two processes never try to write
the same variable at the same time), the actual implementation on real hardware
can introduce additional issues, as shown in MCRingBuffer [59]. In fact, when a
first CPU core modifies the content of a variable that is shared with a different
CPU core, the entire cache line (64 bytes long on the modern Intel architectures)
of the second core containing that variable is invalidated. If the second core needs
to read that variable, the hardware has to retrieve this value either from the shared
cache (e.g., the L3 in many recent Intel architectures) or from the main memory,
with a consequent performance penalty. In our algorithm, this problem occurs for
M.prodIndex, incremented by the Master whenever a new token is inserted into
the primary buffer and read by the Worker, and for W.prodIndex, incremented by
the Worker and read by the Master. However, our algorithm is robust enough to
operate correctly even if those variables are not perfectly aligned. As a consequence,
the Worker creates a private copy of M.prodIndex just after waking up, while the
Master copies in a private variable the content of W.prodIndex before reading data
from the shared buffer. The Master and the Worker can perform their operations
according to the value of their local copies, which are re-aligned with the actual
values only periodically; this does not preclude the correct system operation while
ensuring a significant reduction of cache misses.

Shared variables on different cache lines. Because of the same problem
mentioned in the previous paragraph (a CPU core can invalidate an entire line of
cache in the other cores), our code implements a cache line separation mechanism

116

5.5 – Implementation

(similar to MCRingBuffer [59]), which consists in storing each shared variable (pos-
sibly extended with padding bytes) on a different cache line. This way, when the
Master changes, for instance, the value of prodIndex, the cache line containing
workerIndex is not invalidated in the private cache of the core where the Worker is
executed.

Alignment with cache lines. In case of a cache miss, the hardware introduces
a noticeable latency because of the necessity to transfer the data from the memory
to the cache, which happens in blocks of fixed size (the cache line). From that
moment, all the memory accesses within that block of addresses are very fast, as
data are served from the L1 cache. In order to minimize the number of cache misses
(and the associated performance penalty), our prototype was engineered to align the
most frequently accessed data so that they span across the minimum set of cache
lines. In particular, the starting memory address of the packet buffers and their slot
sizes are multiple of the cache line size; the same technique is used for minimizing
the time for accessing the most important data used in the prototype.

Use of huge memory pages. Huge pages are convenient when a large amount
of memory is needed because they decrease the pressure on the Translation Lookaside
Buffer (TLB) for two reasons. First, the load of virtual-to-real address translation
is split across two TLBs (one for huge pages and the other for normal memory),
preventing normal applications (based on normal pages) from interfering with the
packet exchange mechanism (which uses huge pages). Second, they reduce the num-
ber of entries in the TLB when a large amount of memory is needed. We use the
huge pages for the shared (primary and auxiliary) buffers; the drawback is the po-
tential increase of the total memory required by the algorithm because the minimum
size of each buffer increases from 4KB to 2MB.

Preallocated memory. Dynamic memory allocation should be avoided during
the actual packet processing, as this would heavily decrease the performance of the
whole system. In our case, all the buffers used by the packet exchange mechanisms
are allocated at the startup of each Worker, allowing the system to add/remove
workers at run-time while at the same time avoiding dynamic memory allocation.

Emulated timestamp. Getting the current time is usually rather expensive
on standard workstations as it requires the intervention of the operating system
and, often, an I/O operation involving the hardware clock. In our case we emulate
the timestamp that is needed to wake up a Worker when packets are waiting for
service for too long time, by introducing the concept of current round, that is the
number of loops executed by the Master in Algorithm 1. As a consequence, our
implementation schedules a Worker for service when there are packets waiting for
more than N rounds; this number can be tuned at run-time based on the expected
load on the Master.

Batch processing. Batch processing is convenient because it keeps a high
degree of code locality, with a positive impact on cache misses. Our prototype

117

5 – Efficient data exchange algorithm for chained virtual network functions

implements batch processing whenever possible, e.g., the Master reads all waiting
packets from a worker before serving the next, and Workers process all the packets
in their queue before suspending themselves; the drawback is the potential increase
of the latency in the data transfer.

Semaphores. A simple POSIX semaphore is used to wake up a Worker that
has data waiting to be processed (i.e., at least MASTER_PACKET_THRESHOLD packets
are queued, or some packets are waiting for long time and the timeout expires).
Although POSIX semaphores are implemented in kernel space, their impact is ac-
ceptable as they are rarely accessed by algorithm design. Instead, no explicit signal
is used in the other direction: the shared variables M.consIndex and W.prodIndex
are used by the Master to detect the presence of packets that need to be read from
the buffer.

Threading model. Context switching should be avoided whenever possible
because of its cost, particularly when this event happens frequently (such as in
packet processing applications, which are usually rather simple and often handle a
few packets in a row). For this reason, the Master is a single thread process, cycling
on a busy-waiting loop and consuming an entire CPU core, while Workers (which
are single-thread processes as well) work in interrupt mode and share the remaining
CPU cores. While the Master can be simply parallelized over multiple cores as long
as the function chains are not interleaved3, by design our implementation keeps it
locked to a single core as we would like to allocate the most part of the processing
power to the (huge number of) Workers, which will host the network functions that
are in charge of the actual (useful, from the perspective of the end users) processing.

5.6 Experimental results
In order to evaluate performance and scalability (using the implementation choices
described in the previous section), we carried out several tests on our prototype
implementation running on a workstation equipped with an Intel i7-3770 @ 3.40
GHz (four CPU cores plus hyperthreading), 16 GB RAM, 16x PCIe bus, a couple
of Silicom dual port 10 Gigabit Ethernet NICs based on the Intel x540 chipset (8x
PCIe), and Ubuntu 12.10 OS, kernel 3.5.0-17-generic, 64 bits. An entire CPU core
is dedicated to the Master; instead, Workers have been allocated on the remaining
CPU cores in a way that maximizes the throughput of the system. All the following
graphs are obtained by averaging results of 100s tests repeated 10 times.

The data exchanged among the Master and the Workers consists of synthetic
network packets of three sizes, 64 bytes to stress the forwarding capabilities of the

3Interleaved chains may introduce additional complexity because multiple masters may collide
when feeding a single Worker; this would require an extension of our algorithm (no longer lock-free)
that is left to a future work.

118

5.6 – Experimental results

chain, 700 bytes that matches the average packet size in current networks, and 1514
bytes to stress the data transfer capabilities of the system. We present first a set
of experiments where packets exchanged between the Master and the Workers are
directly read/written from/to the memory, without involving the network; those
tests aim at validating the performance of the algorithm in isolation, without any
disturbance such as the cost introduced by the driver used to access to the NIC
or the overhead of the PCIe bus. Later, Section 5.6.6 will present some results
involving a real network, where the workstation under test is connected with a
second workstation acting as both traffic generator and receiver, with two 10Gbps
dedicated NICs. This setup allows to derive the precise latency experienced by
packets in our middlebox. In this case we use the PF_RING/DNA drivers [44]
to exchange packets with the NIC, which allows the Master to send/receive packets
without requiring the intervention of the operating system. In addition, data coming
from the network is read in polling mode in order to limit additional overheads due
to NIC interrupts, and in batches of several packets in order to maximize code
locality. Similar techniques are used also when sending data to the network after all
the processing took place.

5.6.1 Single chain - Throughput

This section reports the performance of our algorithm in a scenario where all packets
traverse the same chain, which is statically defined. Tests are repeated with chains of
different lengths and the measured throughput is provided in graphs that include (i)
a bars view corresponding to the left Y axis that reports the throughput in millions
of packets per second and (ii) a point-based representation referring to the right Y
axis, that reports the throughput in Gigabits per second.

Figure 5.5 shows the throughput offered by the function chain in different con-
ditions. As expected, the overall throughput of the chain (i.e., the packets/bits that
exit from the chain) decreases with the number of Workers because of our choice to
reserve the most part of the CPU power to the Workers, hence limiting the Master
to a single CPU core.

Figure 5.5(a) shows the throughput that could be achieved in ideal conditions,
that is: (i) with dummy Workers, i.e., that do not touch the packet data, and (ii)
with the Master always reading the same input packet from memory and copying
it into the buffer of the first Worker of the chain, which reduces the overall number
of CPU cache misses experienced at the beginning of the chain. This provides an
ideal view of the system, where the penalties due to memory accesses are kept
to a minimum. Results reported in Figure 5.5(b) are instead gathered in a more
realistic scenario, i.e., with Workers that access to the packet content and calculate
a simple signature across the first 64 bytes of packets. This may represent a realistic
workload, as it emulates the fact that most network applications operate on the first

119

5 – Efficient data exchange algorithm for chained virtual network functions

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110

1 2 4 6 8 10
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(a) Dummy Workers and a single packet in mem-
ory.

 0

 10

 20

 30

 40

1 2 4 6 8 10
 0
 20
 40
 60
 80
 100
 120
 140
 160
 180

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(b) Real Workers and a single packet in memory.

 0

 10

 20

 30

 40

 50

1 2 4 6 8 10
 0

 10

 20

 30

 40

 50

 60

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(c) Dummy Workers and 1M packets in memory.

 0

 10

 20

 30

 40

1 2 4 6 8 10
 0

 10

 20

 30

 40

 50

 60

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(d) Real Workers and 1M packets in memory.

Figure 5.5: Throughput of a single function chain with the algorithm presented in
this chapter.

bytes (i.e., the headers) of the packet. This test shows that performance is reduced
compared to Figure 5.5(a) for two reasons: (i) because of the higher number of cache
misses generated by the cores assigned to the Workers and caused by the Workers
accessing to the packet content, and (ii) because of the additional processing time
spent by the Workers for completing their job.

Next tests consider a scenario where the input data for the chain is stored in a
buffer containing 1M packets, thus emulating a real middlebox that receives traffic
from the network. In particular, Figure 5.5(c) refers to a scenario with dummy
Workers such as in Figure 5.5(a) and shows how an apparently insignificant different
memory access pattern can dramatically change the throughput. In fact, the Master
experiences frequent cache misses when reading packets at the beginning of the
chain. This modification alone halves the throughput compared to Figure 5.5(a),
particularly when packets have to traverse chains of limited length, while in case of
longer chains this additional overhead at the beginning is amortized by the cost of
the rest of the chain.

Finally, Figure 5.5(d) depicts a realistic scenario where Workers access the packet
content (such as in Figure 5.5(b)), and the Master feeds the chain by reading data
from a large initial buffer (1M packets). Even in this case our algorithm is able to
guarantee an impressive throughput, such as about 38 Mpps with 64B packets.

In order to confirm that, with the current workload, the Master represents the
bottleneck of the system, Figure 5.6 shows the internal throughput of the chain,
namely the total number of packets moved by the Master, with an increasing number

120

5.6 – Experimental results

of Workers, in the same test conditions of Figure 5.5(d). This figure gives an insight
of the processing capabilities of the Master, which slightly increases with a growing
number of Workers and proves the effectiveness of our algorithm as the number of
packets it processes essentially does not depend on the number of Workers.

 0

 10

 20

 30

 40

 50

1 2 4 6 8 10
 0

 20

 40

 60

 80

 100

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

Figure 5.6: Internal throughput of the function chain, with real Workers and a 1M
packets in memory.

5.6.2 Single chain - Latency
Some architectural and implementation choices, such as working with batches of
packets, aim at improving the throughput but may badly affect the latency. For
this reason, this section gives an insight about the latency experienced by packets
traversing our chains. Measurements are based on the gettimeofday Unix system
call and, in order to reduce its impact on the system, only sampled packets (one
packet out of thousand) have been measured.

Figure 5.7(a) shows the latency of 64B packets when traversing a function chain
consisting of a growing number of Workers, in case of real Workers and 1M packets
in memory. As expected, the latency increases with the length of the chain; however
its value is definitely reasonable for most of networking applications, reaching an
average value of about 2.2ms in case of 10 cascading Workers, being far less with
shorter (and more realistic) chains.

5.6.3 Single chain - Comparison with other approaches
This section aims at demonstrating the advantages of our data exchange algorithm
by comparing our proposal with two other approaches that could be used to exchange
packets between the Master and the Workers.

In this respect, we cannot directly compare our algorithm with existing solutions
such as VALE [82], OvS [76] and xDPd [26], because they include the overhead of
packet classification (e.g., L2 forwarding, Openflow matching), which would affect
the performance of the data exchange algorithm. As a consequence, we distilled
the fundamental design choices of the most important alternative approaches and

121

5 – Efficient data exchange algorithm for chained virtual network functions

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 100 1000 10000

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Time [us]

1 Worker (avg: 37us)
2 Workers (avg: 104us)
4 Workers (avg: 335us)
6 Workers (avg: 784us)

8 Workers (avg: 1394us)
10 Workers (avg: 2211us)

(a) Our algorithm.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Time [us]

1 Worker (avg: 23us)
2 Workers (avg: 71us)

4 Workers (avg: 224us)
6 Workers (avg: 358us)

8 Workers (avg: 421624us)
10 Workers (avg: 419100us)

(b) Zero-copy buffers among the Master and the
(polling) Workers.

Figure 5.7: Latency introduced by the function chain with a growing number of
cascading Workers.

we carefully implemented them in a way that they could be compared with our
algorithm, implemented by using, whenever applicable, the guidelines listed in Sec-
tion 5.3. Particularly, the comparison aims at validating the advantages of two
important aspects of our algorithm: the absence of a data copy in the Worker, and
the blocking mode operating model of the Worker.

The first alternative approach we compare with is based on the traditional pro-
ducer/consumer paradigm, in which the Master shares two buffers with each Worker:
the first is used by the Master to provide packets to the Worker, while the second
operates in the opposite direction. The second approach closely follows the process-
ing model suggested by Intel in the DPDK library [56]: two buffers (based on the
traditional producer/consumer paradigm) are shared between the Master and each
Worker. However, these buffers contain pointers, which means that the actual data
is stored in a shared mempool and never moved between the components of the func-
tion chain (zero-copy). Moreover, both the Master and Workers operate in polling
mode. Although this solution neither provides isolation among the Workers, nor
limits the CPU consumption, it is compared with our proposal because nowadays it
represents the “standard” way to implement network function chains.

 0

 10

 20

 30

 40

1 2 4 6 8 10
 0

 10

 20

 30

 40

 50

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(a) Unidirectional buffers shared between the Mas-
ter and the Workers.

 0

 10

 20

 30

 40

 50

1 2 4 6 8 10
 0
 50
 100
 150
 200
 250
 300
 350
 400
 450

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(b) Zero-copy buffers among the Master and the
(polling) Workers.

Figure 5.8: Throughput of a single function chain when other data exchange algo-
rithms are used.

122

5.6 – Experimental results

Tests are executed in realistic conditions, namely with Workers accessing packets
and 1M packets in memory, and therefore the above results should be compared with
the performance obtained in Figure 5.5(d).

As expected, the throughput of the chain drops of about 30% when unidirectional
buffers are used, as shown by comparing Figure 5.5(d) and Figure 5.8(a). This is
mainly due to the operating principles of our primary buffer, which allows the Worker
to send back a packet to the Master without moving the packet itself, while in this
alternative approach one additional data copy in the Worker has to be performed.

Instead, the second alternative approach slightly outperforms our algorithm un-
til the number of jobs (one Master plus N Workers) is lower than the number of
available CPU cores, as evident by comparing Figure 5.8(b) with Figure 5.5(d).
This is due to the absence of data copies and to the polling-based operating mode
implemented in the Workers. However, a stronger performance degradation with
respect to our solution (it offers less than 1 Mpps throughput) is noticeable when 8
(or more) Workers are active because at least two of them have to share the same
CPU core.

The second alternative approach has also been evaluated in terms of latency
introduced on the flowing packets. Similarly to what happens for the throughput, it
outperforms our proposal when the number of jobs running is less than the number
of CPU cores, as evident by comparing Figure 5.7(a) and Figure 5.7(b). For instance,
six chained Workers introduce an average latency of 358µs, agains the 784µs obtained
with our algorithm. Instead, in case of more Workers, the average latency of the
second alternative approach reaches 420ms, which is a consequence of the fact that
many polling processes share the same CPU core, and is definitely not acceptable.
Hence, this solution neither provides isolation among Workers (due to the zero-
copy), nor acceptable performance when the number of Workers exceeds the number
of available cores, being inappropriate for our objectives.

5.6.4 Single chain - Other tests
Additional tests have been performed in order to evaluate some other aspects of the
system.

Threads vs. Processes

Threads appear more convenient than processes because they share the same virtual
memory space, while processes, instead, have distinct virtual memory spaces. In our
system, where the data exchange mechanism requires a shared memory between the
Master and a Worker, this could have an impact on both the caching efficiency
and the TLB behavior and, consequently, on the overall performance of the system.
With respect to the former, two processes sharing the same physical memory address

123

5 – Efficient data exchange algorithm for chained virtual network functions

have two virtual addresses, which requires two entries in the L1/L2 caches4; threads,
instead, have the same virtual address, hence potentially allowing the same cache
line to be used by different threads. With respect to the latter, having multiple
threads that share the same memory space facilitates the work of the TLB as the
same (virtual) address space is present in many threads, and then the number of
entries in the TLB is reduced. Instead, processes are expected to generate an higher
number of TLB misses.

In order to guarantee memory isolation among Workers, which is a key point
in a multi-tenant network node, the Master and all the Workers are implemented
as different processes, which suggests a possible performance penalty compared to
the thread-based implementation. However, our experiments dismantle this belief
as the overall performance is definitely similar in both cases. The reason is that the
L1/L2 caches are private per each physical core, but the Master and the Workers
are usually executed in different cores. Hence, an address already cached by the core
executing the Master cannot be already found in the cache of the core executing the
Worker, forcing the latter to retrieve that data from the (physically addressed) L3
cache, no matter whether it is a thread or a process. As a consequence, as far as
performance is concerned, our system shows no differences between a thread-based
and a process-based implementation.

Normal memory vs. huge pages

We also evaluated the impact of our choice of using huge pages (each one consisting
of 2MB of memory in our testbed) instead of normal pages (4KB) for the shared
buffers. Although it may sound strange, results of the two approaches do not differ
significantly in the test scenarios considered so far. This is a consequence of our
specific test conditions, where the Master and the Workers use a very little amount
of memory in addition to the shared buffers. Hence, we repeated the test with
Workers executing a deep packet inspection algorithm based on a Deterministic
Finite Automata (DFA), which requires a huge amount of memory to keep the DFA
used to recognize the given patterns into the packets. In this case, the adoption of
the huge pages for the shared buffer results in roughly a 10% improvement in terms
of throughput.

5.6.5 Multiple chains
While previous tests focused on packets traversing a growing number of VNFs all
belonging to the same chain, this section evaluates the case in which multiple func-
tion chains are executed in parallel and each packet traverses only one of them. This

4The L3 cache operates with physical addresses.

124

5.6 – Experimental results

significantly stresses the CPU cache, as (i) the Master has to receive packets from
an high number of buffers, and (ii) the packets read by the Master are likely to be
copied in different buffers for the next processing step.

Data read from the initial memory buffer (containing 1M packets) is provided, in
a round robin fashion, to a growing number of function chains, each one composed of
two Workers. During the tests, each Worker is involved in two chains meaning that,
when 1000 Workers are deployed, packets are spread across 1000 different function
chains. Workers are allocated among six CPU cores in a way that minimizes the
number of times a packet has to be moved from one core to another, in order to
limit CPU cache synchronization operations among cores (Section 5.5).

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

10 50 100 500 1000
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

#Chains

64B
700B

1514B

(a) Throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000
C

um
ul

at
iv

e
fr

eq
ue

nc
y

Time [us]

10 Chains (avg: 80us)
50 Chains (avg: 249us)

100 Chains (avg: 362us)
500 Chains (avg: 1675us)

1000 Chains (avg: 3.853us)

(b) Latency.

Figure 5.9: Results with a growing number of function chains running in parallel,
each one spotting two Workers in cascade.

Figure 5.9(a) provides the overall throughput measured at the end of all the
chains, which smoothly decreases with the increment of the number of chains; par-
ticularly, it is equal to several Gbps also with 1000 chains in the system, thus confirm-
ing the effectiveness of our algorithm. Figure 5.9(b) shows instead the cumulative
distribution of the latency experienced by 64B packets traversing the chains, which
ranges from an average value of 80µs in case of 10 function chains, to an average
value of 3.8ms when 1000 chains are active.

5.6.6 Network tests
This section evaluates our algorithm in a real deployment scenario, i.e., a workstation
that receives/sends traffic from the network. In this case the overall performance of
the system depends on the algorithm as well as additional aspects such as the driver
used for accessing the NIC; anyway, these results provide an insight of the behavior
of the algorithm when used in the context it was designed for.

The throughput obtained in this scenario, whose testing conditions are the same
as those of Figure 5.5(d), is depicted in Figure 5.10(a). Results are limited by the
speed of the input NIC in several cases, particularly with large packets and (rela-
tively) short chains. With longer chains (i.e., 10 cascading workers) the throughput

125

5 – Efficient data exchange algorithm for chained virtual network functions

 0

 2

 4

 6

 8

 10

 12

 14

1 2 4 6 8 10
 0

 2

 4

 6

 8

 10

T
hr

ou
gh

pu
t [

M
pp

s]

T
hr

ou
gh

pu
t [

G
bp

s]

cascading workers

64B
700B

1514B

(a) Throughput.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Time [us]

1 Worker (avg: 135us)
2 Workers (avg: 340us)
4 Workers (avg: 721us)

6 Workers (avg: 2880us)
8 Workers (avg: 6635us)

10 Workers (avg: 9705us)

(b) Latency.

Figure 5.10: Results with a function chain of growing length, with the Master ac-
cessing to the network.

is even slightly better than what was obtained in Figure 5.5(d) without the network.
This can be due to the fact that real NICs create an input buffer that is much smaller
than the 1M packets buffer used in the previous test, hence potentially improving
the data locality.

With respect to latency, Figure 5.10(b) shows the cumulative distribution func-
tion of the latency introduced by network function chains of different length when
traversed by 64B packets. Those numbers measure all the time between the instant
at which the packet is scheduled for transmission in the traffic generator, and the
time it is received by our testing software in the traffic receiver. In this case we
consider all the time spent by the packet in our middlebox, plus the network la-
tency and the time spent in the traffic generator/receiver after/before hitting our
timestamping code. Our measurements demonstrate that the latency, albeit still
acceptable, is about 4-5 times higher than in Figure 5.7(a); in addition to the addi-
tional sources of delay already mentioned, we need to consider also that the packet
has to spend an additional time in the input buffer before being picked up and sent
through the chain by the Master, because of its batch-based reading mode.

5.7 Conclusion
This chapter proposes an efficient way to move data between virtual network func-
tions (the Workers) and a virtual switch module (the Master), in order to implement
virtual network function chains. The architecture is based on a different pair of cir-
cular buffers shared between the Master and each Worker and aims at achieving a
scalable and high performance system while guaranteeing traffic isolation among the
different (huge number of) Workers.

One of the peculiarities of this approach is that, through the primary buffer, data
are sent to a Worker and then returned back to the Master for further processing
with zero-copy. A form of batching has also been introduced in order to amortize the
cost of context switches, while introducing a safeguard mechanism to avoid packet

126

5.7 – Conclusion

starvation in case of Workers traversed by a limited amount of traffic. The auxiliary
buffer, instead, is used by the Worker to send new data to the Master.

Formal verification techniques have been applied, in order to rigorously prove
the absence of deadlocks and livelocks, and also to guarantee that no packet can
be accidentally overwritten due to concurrency issues, such as race conditions or
incorrect use of shared indexes.

Finally, performance and scalability of the proposed solution have been evaluated
by means of a wide range of experiments made on a real implementation.

127

128

Chapter 6

Transparent optimization of
inter-virtual network function
communication in Open vSwitch

6.1 Introduction
Network Function Virtualization (NFV) [43] transforms many network functions in
software images executed on standard high-volume servers. Complex services can
be delivered by rearranging multiple Virtual Network Functions (VNFs) in arbi-
trary chains (or graphs, Figure 6.1(a)), with multiple VNFs often executed on a
single physical server. Usually, VNFs are instantiated as virtual machines (VMs)1,
while the traffic steering is carried out by a virtual switch (vSwitch) that classifies
and forwards the packets according to specific rules sent through OpenFlow [68]
messages, as shown in Figure 6.1(b).

Figure 6.1(a) shows a generic graph and contains both point-to-point (p-2-p in
this chapter) and point-to-multipoint links. While point-to-multipoint links require
a vSwitch to classify and send each packet to the proper VNF, p-2-p links, which
are definitely more common in current service graphs, could be implemented by a
direct communication path, hence taking the vSwitch out of that portion of the data
plane. This, in turn, may result in higher throughput and lower latency, as well as
in lower resource consumption thanks to the CPU saved by avoiding a further pass
in the vSwitch.

Starting from this consideration, this chapter2 proposes an architecture, called

1Although also lightweight containers such as Docker [3] can be used to run VNFs, they are
not considered in this chapter. Then, in the following, the terms VNF and VM will be used
interchangeably.

2The work of this chapter is partially described in the master thesis of Mauricio Vasquez Bernal,

129

6 – Transparent optimization of inter-virtual network function communication in Open vSwitch

Firewall
Network
monitor

Web cache

Non-web traffic

vSwitch

Network
monitor

VM

Firewall Web cache

VM VM

Web traffic

Non-web traffic

a)

b)

Commands to manage the
vSwitch (e.g.,OVSDB)

Compute
agent

Orchestrator
Network commandsCompute commands

Commands to manage VMs
(e.g., libvirt calls)

Graph to be deployed

Openflow
controller

Openflow
messages

Network
agent

All traffic

Figure 6.1: Traffic crossing several VNFs: (a) the “abstract” service graph; (b) its
implementation on a server.

“direct VM2VM”, that optimizes inter-VNF communications by creating a direct
connection between two VMs, hence bypassing the vSwitch in case of p-2-p links.
This architecture has capability to accelerate transparenty and dynamically the pack-
ets exchange between the VMs, and it is integrated in a widespread vSwitch.

Transparency refers to the possibility for an application to exploit the advantages
of the Direct VM2VM technology without even knowing it is there, and an OpenFlow
controller to attach to a vSwitch without noticing it has been modified. In fact, most
of the extensions needed by this technology are kept in the vSwitch, with minimal
modifications in few other components.

Dynamicity refers to the capability to either optimize a path or return to a
traditional VM-to-vSwitch-to-VM implementation on the fly, based on the run-time
analysis of the graph that is being instantiated or modified. In fact, new service
requests may change the graph, either transforming a direct connection into a branch
or vice versa, hence requiring the vSwitch to adapt the actual paths between VMs
to the best possible implementation.

Finally, the direct VM2VM technology has been implemented in a widespread

who collaborated in the development of the prototype

130

6.2 – Background

vSwitch, namely Open vSwitch (OvS) [76]; particularly, it extends the version of OvS
based on the Intel Data Plane Development Kit (DPDK) [56], which exploits the
optimized packet processing capabilities of that library to achieve high throughput
on standard high-volume hardware. For the same reason, this chapter focuses on
VMs that execute DPDK-based network applications; in fact, we expect that in a
near future NFV applications will leverage the power of optimized libraries such as
DPDK for most of the low-level packet processing tasks.

This chapter is structured as follows. Section 6.2 provides an overview of the
technologies exploited in our work, while Section 6.3 presents the architecture of the
prototype. Experimental results are shown in Section 6.4, while Section 6.5 analyzes
the related works. Finally, Section 6.6 concludes the chapter and draws our future
plans.

6.2 Background

Among the several types of ports supported by OvS, dpdkr is considered the fastest
one. It consists of a pair of DPDK queues (rte_rings) that contain pointers to
packets; packets are in fact stored in a piece of memory (rte_mempool) allocated in
huge pages, shared between OvS and the entities that exploit dpdkr ports. Conse-
quently, dpdkr ports exchange packets in a zero-copy fashion. Moreover, this port
does not have any notification mechanism, and hence both ends of the port (i.e.,
VNF and OvS) operate in polling mode.

A dpdkr port can connect the vSwitch to DPDK applications executed inside
VMs. Notably, OvS exports to applications the dpdkr port as two rte_rings (RX
and TX); hence applications have to explicitly write/read packets to/from such rings,
and do not have any concept of network interface. rte_rings are provided to the
VM through the Inter-VM Shared Memory (ivshmem) technology [63], a standard
interface for the KVM hypervisor [6] that is used to share memory between the host
and the guest operating systems (OS). The memory region to be shared is exposed
to the guest as a PCI Base Address Registers (BAR); then, applications can mmap [9]
it into their own virtual address space.

DPDK includes a library [5] that enables the creation of ivshmem devices, which
include also some information about the data structures mapped in the device itself,
such as their virtual address in the virtual memory of OvS (Figure 6.2). This is used
by DPDK in the guest OS to mmap the shared structures at the same virtual address
used by OvS, which allows the application and OvS to exchange pointers to packets
and de-reference them without any additional translation, which is a crucial factor
in high performance environments.

131

6 – Transparent optimization of inter-virtual network function communication in Open vSwitch

rte_ring_txrte_mempool
DPDK

application

Guest

mmap mmap

rte_ring_tx Metadata file

IVSHMEM

Host

rte_mempool
OvS

rte_mempool:
*Virtual addr: 0x700
......
rte_ring_tx:
*Virtual addr: 0x1400
rte_ring_rx:
*Virtual addr: 0x1800
…Vaddr: 0x700

Vaddr: 0x1400Vaddr: 0x700

rte_ring_rxrte_mempool

mmap

rte_ring_rx

Vaddr: 0x1800

rte_ring_tx rte_ring_rx
dpdkr port

Vaddr: 0x1400 Vaddr: 0x1800

Figure 6.2: Sharing DPDK data structures between OvS and VMs.

6.3 Architecture

K
V

M
/Q

EM
U

K
V

M
/Q

EM
U

point to point link detector

VM1

DPDK*

DPDK Application

ivshmem

VM2

DPDK*

DPDK Application

ivshmem ivshmem ivshmem

Open vSwitch*

forwarding engine

Network
agent

Compute
agent*

dpdkr2 dpdkr3dpdkr1 dpdkr4

Openflow
controller

* Modified to support transparent inter-VNF communication

Figure 6.3: Different implementations for the dpdkr port.

The DPDK-based applications we consider run inside VMs that are connected
to OvS through dpdkr ports terminated in the forwarding engine of the vSwitch.
This module handles packets according to the content of its forwarding table, which
can be configured with Openflow flowmods [68]. All the connections among VMs
are implemented in this way, regardless of the nature of the connection itself, i.e.,
p-2-p or point to multipoint.

In our proposal, shown in Figure 6.3, p-2-p links are implemented using two
modified dpdkr ports connected directly to each other and detached from the OvS
forwarding engine. Although OvS is no longer involved in moving packets exchanged
by VMs, the two modified ports are still exported by OvS as standard dpdkr ports.
This keeps the compatibility with external entities (applications, compute/network

132

6.3 – Architecture

agents, Openflow controller), as they can continue to issue commands involving
those ports as they usually do (e.g., get statistics, turn them on/off, etc.), without
noticing any change in their actual implementation.

6.3.1 Detecting p-2-p links
We extended OvS with a new p-2-p link detector module (Figure 6.3), which analyses
each rule (e.g., flowmod) received by the vSwitch in order to dynamically detect the
creation or destruction of a p-2-p link between two dpdkr ports. In the current
implementation, this operation requires a time O(N) where N is the number of
forwarding rules installed, but this algorithm could be replaced with a more efficient
version in the future.

We implemented the p-2-p link detector in OvS because, while OvS is the defacto
vSwitch in the current NFV architectures, no standard emerged yet in case of, e.g.,
the orchestrator. Working in the standard component makes the integration of
the direct VM2VM technology into the other components easier, and it allows to
possibly reduce the number of elements to be modified.

When a new p-2-p link is detected, OvS creates two dpdkr ports mapped on the
same piece of memory, which contains a pair of rte_rings and that will be shared
by both the communicating VMs (the rte_ring used as TX in one VM, has to be
used as RX in the other VM, and vice versa). This way they are directly connected,
and then packets can be exchanged without the intervention of the OvS forwarding
engine.

6.3.2 Handling the new ivshmem device
The rte_rings forming a dpdkr port are provided to the VM as part as an ivshmem
device, together with a metadata file indicating, for each data structure, its address
in the virtual memory of OvS (Section 6.2).

As shown by comparing Figure 6.2 and Figure 6.4, the metadata file included
in the new ivshmem device has been modified to specify the virtual addresses of
the old rte_rings used by OvS, and not those used for the new rings contained
in the device itself. This allows DPDK to mmap the new rte_rings at the same
virtual address of the old ones, so that the application can continue to work without
realizing that the rte_rings are changed (more details in Section 6.3.3). For the
same reason, we had to extend DPDK to allow applications to bind to rte_rings
with “default” names (e.g., dpdkr0_tx) and dynamically remap them to the actual
name used by the rings, hence avoiding the problem that those names are generated
dynamically.

Now, the new ivshmem device has to be connected to the proper VM. Since
OvS does not know which VM is attached to a specific port (it just knows ports
and the rules used to forward packets among them), for this operation OvS has

133

6 – Transparent optimization of inter-virtual network function communication in Open vSwitch

rte_ring_tx
DPDK

application

Guest

mmap

rte_ring_tx Metadata file

Old IVSHMEM

Host

OvS

rte_ring_rx:
*Virtual addr: 0x1800
rte_ring_tx:
*Virtual addr: 0x1400
…

Vaddr: 0x1400

rte_ring_rx

mmap

rte_ring_rx

Vaddr: 0x1800

rte_ring_tx rte_ring_rx

Old dpdkr port
Vaddr: 0x1400 Vaddr: 0x1800

rte_ring_tx rte_ring_rx

New dpdkr port
Vaddr: 0x3000 Vaddr: 0x3400

rte_ring_tx Metadata filerte_ring_rx

New IVSHMEM

Figure 6.4: ivshmem device for port remapping.

to rely on an external component. In our prototype we adopted two strategies:
(i) a meaningful message is printed on the console with an example of the proper
command that can be issued (manually) to attach the new ivshmem device to a
VM, and (ii) we modified the compute agent of our Universal Node orchestrator
(Chapter 3) to issue this command automatically to QEMU/KVM; other solutions
such as the OpenStack Nova [14] agent can be exploited as well. In our case, we
modified the REST API of our compute agent with a new function that triggers the
attachment of an ivshmem device to a VM. The compute agent is able to recognize
the specific VM involved and, through the proper API (e.g., libvirt [7]), hotplugs
the ivshmem device in it.

6.3.3 Remapping process
The remapping process consists in recognizing, then changing, dynamically and
transparently, the pair of rte_rings an application is using. Then, it allows existing
DPDK-based applications using dpdkr ports to support our technology without any
modification, except for the necessity to be recompiled with our modified DPDK.

Vanilla DPDK does not recognize when a new ivshmem device is hotplugged in
the VM. Hence, our prototype extends DPDK in order to register a handler (through
the lib_udev library) that is executed each time a new ivshmem device is connected
to the PCI bus. In this handler, DPDK identifies the old rte_rings to be removed
(thanks to the virtual addresses specified in the metadata file), and marks them as
“to be remapped”. The remapping process is in fact not actually done in this handler,
since its execution is asynchronous with respect to the application, which may be
accessing the rte_rings to send/receive packets during the execution of the handler
itself. The remapping of the rte_rings used by an application is done by DPDK
when such an application transmits or receives packets, as shown in Algorithm 8.

134

6.3 – Architecture

Algorithm 8 Remapping process in the VM.
1: procedure sendPackets (rte_ring *ring, list *pkts) {receivePackets is equivalent}
2: if ring ∈ toBeRemapped then
3: for all ring ∈ toBeRemapped do
4: munmap(ring.virtualAddress)
5: mmap(ring.virtualAddress,ring.device)
6: ring.mapped ← true
7: toBeRemapped.remove(ring)
8: end for
9: while not ring.usable do

10: {do nothing}
11: end while
12: end if
13: {send/receive packets as usual}
14: end procedure

135

6 – Transparent optimization of inter-virtual network function communication in Open vSwitch

For this reason, we extended DPDK so that, before transmitting/receiving pack-
ets on an rte_ring, it checks whether such a ring has to be remapped or not (line
2). If so, according to lines 3-8, the remapping of all the rte_rings contained into
the new ivshmem device is done. This requires to unmap the old rte_rings and to
mmap the corresponding new ones at the same virtual addresses just released (lines
4-5).

In order to avoid packet loss and reordering in this transient, we defined a syn-
chronization mechanism between DPDK in the guest and OvS, based on two flags
inserted in the rte_ring structure: mapped and usable. As shown in line 6, DPDK
sets the former as soon as an rte_ring has been remapped. At this point OvS,
which was blocked on such a shared flag: (i) copies the (pointers to) packets present
in the old RX rte_ring into the new one; (ii) handles the packets already inserted
by the application in the old TX rte_ring; (iii) notifies DPDK in the guest that
the new rte_ring can be used, by means of the usable flag. At this point (line
9-11) the application can finally transmit/receive the packets.

6.3.4 Port statistics
For compatibility reasons, OvS should allow to get statistics on all the dpdkr ports,
regardless of their actual implementation. While OvS counts the number of bytes/-
packets flowing through standard dpdkr ports while forwarding them, this is not
possible in case of p-2-p link, since the vSwitch no longer accesses to packets trans-
mitted on such a connection. Then, we extended (i) DPDK so that, each time a
packet is sent, the code automatically updates the counters stored into the used
rte_ring, and (ii) the rte_ring structure so that it contains statistics related to
the ring itself. Then, when OvS needs to export statistic of a dpdkr port forming a
direct connection, it just reads them from the proper rte_ring structure.

6.4 Experimental validation
We characterized our prototype [93] on an Intel Xeon E5-2690 v2 @ 3 GHz (ten
physical cores plus hyperthreading), 64 GB RAM, two 10G Intel 82599ES NICs,
Ubuntu 15.04, kernel 3.19.0-15-generic, 64 bits. Our code is based on OvS 2.4.9 and
DPDK 2.1.0. We compare our solution with traditional connections implemented
through the forwarding engine of (vanilla) OvS, both from the point of view of
the maximum throughput achieved and the latency introduced by service chains
traversed by 64B packets. Finally, we report the time required by our prototype to
detect a p-2-p link and create the direct path between the two VMs involved.

In all the tests, we consider chains of VMs connected only through p-2-p links.
We generate bidirectional traffic at the maximum speed, 64B packets, with a max-
imum theoretical throughput of 20Gbps when the traffic is sent through physical

136

6.4 – Experimental validation

NICs. Unless otherwise specified, each VM uses a single CPU core, has two ports
and runs a DPDK application that simply moves packets from one port to another.
Thanks to the transparency of the direct VM2VM technology, the same forwarding
VM has been used unchanged in all tests.

6.4.1 Throughput with internal traffic
This test exploits a variable number of VMs running the DPDK packet forwarder
connected with two VMs acting as traffic source and sink, as depicted in Figure 6.5.
This test validates our approach in isolation, without the overhead introduced by
accessing to the physical NIC and by the PCIe bus.

VM

DPDK*

Traffic generator

ivshmem

Open vSwitch*

dpdkr

VM

DPDK*

Traffic sink

ivshmem

VM

DPDK*

Forwarder

ivshmemv ivshmemv

0 ... 6

dpdkr dpdkr dpdkr

Figure 6.5: Test setup.

Figure 6.6 shows that the performance of our prototype is more than one or-
der of magnitude higher compared to the traditional approach. Furthermore, the
throughput remains almost constant when new intermediate VMs are added, unless
we exhaust the number of available CPU cores. However, this test was biased by a
bug in OvS that caused an impressive drop of the throughput [15] when providing
more than one CPU core to OvS; therefore, OvS was executed on a single CPU core.

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

M
pp

s]

VMs

Traditional approach
Direct VM2VM

Figure 6.6: Memory-only traffic.

 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 1 2 3 4 5 6 7 8

T
hr

ou
gh

pu
t [

M
pp

s]

VMs

Traditional approach
Direct VM2VM

Figure 6.7: Traffic using physical NICs.

137

6 – Transparent optimization of inter-virtual network function communication in Open vSwitch

6.4.2 Throughput with physical NICs
In this test we kept only the forwarding VMs on the server running OvS, while the
traffic to the source/sink VMs is delivered through a couple of 10Gps links. This
scenario validates our approach when packets are received from the network, as well
as it shows how the throughput changes according to the number of cores assigned
to OvS without the impact of the bug mentioned above.

Since DPDK-based OvS operates in polling mode, some CPU cores are dedicated
to the vSwitch itself. Particularly, OvS works at best when each port (either physical
or virtual) is associated with a specific core, as each receiving queue can be associated
with a dedicated thread that takes care of handling the packet until transmission. In
our test we assigned to OvS all the cores it needs until we run into cores exhaustion.
Core allocation is shown in Figure 6.8, together with the number of cores actually
used to get the results depicted in Figure 6.7.

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30

1 2 3 4 5 6 7 8

C

or
es

 u
se

d

VMs

Traditional - Required
Traditional - Used

Direct VM2VM - Required
Direct VM2VM - Used

Figure 6.8: # of cores required/assigned during the tests.

Tests show that a chain of VMs exploiting our direct VM2VM provides better
throughput and require less CPU cores than the same chain implemented using
the traditional approach. Moreover, the throughput is almost constant when direct
VM2VM is used, while it presents mostly a decreasing trend when all the connections
are implemented through the forwarding engine of OvS3.

6.4.3 Latency
Results in Figure 6.9 show that the latency of a chain of VMs (using the same
testbed of Section 6.4.2, but tuning the TX speed in order not to have losses in
the chain) is almost constant until three chained VMs, in both the traditional and

3In case of single VM, direct VM2VM cannot be exploited, then the throughput is the same
obtained with the traditional approach.

138

6.4 – Experimental validation

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60

C
um

ul
at

iv
e

fr
eq

ue
nc

y

Time [us]

1 VM traditional
1 VM direct

2 VMs traditional
2 VMs direct

3 VMs traditional
3 VMs direct

4 VMs traditional
4 VMs direct

5 VMs traditional
5 VMs direct

6 VMs traditional
6 VMs direct

7 VMs traditional
7 VMs direct

8 VMs traditional
8 VMs direct

Figure 6.9: Latency when physical NICs are involved.

VM2VM case. Instead, vanilla OvS presents higher latency with longer chains. This
confirms that our approach is always better in terms of latency and it scales also
better with the number of chained VMs.

6.4.4 Establishment time
Figure 6.10 reports the time needed to establish a direct channel between two VMs,
from the moment in which OvS receives a new rule (flowmod) that triggers the
creation of a p-2-p link, to the moment in which the forwarding application starts to
use the new direct dpdkr port. This time depends on different components such as
DPDK, OvS, compute agent, guest OS and the QEMU/KVM hypervisor. Results
show that the (by far) dominant contributors are OS-level components, namely the
time needed by QEMU/KVM to plug the ivshmem device and the guest OS to
recognize it. Instead, the weight of the p-2-p link detector module is negligible,
questioning the necessity of a more optimized algorithm.

Total time: 122.50 ms

p-2-p link
detector:
0.06 ms

Port creation and remapping: 61.22 ms

x2

rte_rings and ivshmem
device creations

(OvS + DPDK in the host):
21.10 ms

Compute
agent:

0.47 ms

Hotplug of ivshmem device
(QEMU/KVM + guest OS):

34.53 ms

Remapping of
rte_rings (DPDK in

the guest OS):
5.11 ms

Figure 6.10: Time required to establish a direct connection.

139

6 – Transparent optimization of inter-virtual network function communication in Open vSwitch

6.5 Related work
Several works aim at optimizing the communication between VMs executed on the
same server, often through the creation of a direct channel between such VMs.

Intel [73, 72] is working on a traffic bypass mechanism based on Virtio [84] that
targets mainly non-DPDK applications handling packets through (virtual) NICs.

ptnetmap [45] allows netmap-based applications [81] (running in VMs) to trans-
parently use different type of ports; hence they can be connected to physical NICs,
to the VALE [82] vSwitch or to a netmap pipe, which is a direct channel between
two netmap-based applications.

XenSocket [97] defines a new socket that exploits a shared memory to bypass the
network stack, but requires applications to be modified; XWay [58] gets the same
result by modifying the internals of the TCP stack and hence supports unmodified
applications. This applies also to XenLoop [94], which intercepts packets at the
network layer and can send them via shared memory.

Other works [54, 38] focus on High Performance Computing and propose libraries
that implement a message-passing paradigm based on memory shared between VMs
residing on the same server. Finally, ClickOS [64] (based on VALE and Click [71]),
NetVM [55] (based on DPDK) and the shared buffer presented in Chapter 5 optimize
the communication between the VMs and the vSwitch.

Although these proposals present similarities with the work presented in this
chapter (e.g., most of them create a direct channel between VMs; some are also
transparent to applications), important differences exist. Most notably, only our di-
rect VM2VM takes an holistic approach that transparently accelerates DPDK appli-
cations using the most common technologies currently used in the NFV world, while
retaining the compatibility with the entire ecosystem including SDN controllers.

6.6 Conclusion
This chapter proposes an architecture that is able to optimize inter-VNF communi-
cations by bypassing the vSwitch in case of p-2-p connections between VMs. Our
architecture can accelerate the packets exchange between the VMs transparently, i.e.,
without modifying the applications and by keeping the compatibility with all the
services (e.g., SDN controller) deployed in an NFV environment, and dynamically,
i.e., it can optimize direct paths when those are detected and revert back to the
traditional VM-to-switch-to-VM communication when the optimization is no longer
possible. Our extensions have been integrated in a widespread vSwitch, bringing the
advantages of this technology to a broad set of use cases.

Our tests confirm the goodness of the approach and the possibility to implement
this idea by touching a limited number of components, namely OvS, DPDK and
(optionally) the compute agent. Future work will explore the possibility to extend

140

6.6 – Conclusion

the usage of direct paths also when accessing to physical NICs, e.g., through SR-
IOV.

141

142

Conclusions

This dissertation introduces a number of improvements in the context of Network
Functions Virtualization (NFV), both in terms of models and software architectures
that enable a multitude of different players (e.g., end users, network operators,
etc.) to instantiate their own network services, and in terms of mechanisms used
to efficiently exchange packets among the many VNFs instantiated on the same
physical server.

The first contribution of the dissertation is FROG, a programmable edge node
that gives to the end users directly connected to it (and to other players such as con-
tent providers as well), the possibility to deploy their VNFs operating on a portion
of the network traffic flowing through the node. In order to scale with the number of
end users that may be connected to it, FROG provides to each player a lightweight
execution environment (the PEX) running all the VNFs installed by the player him-
self, and which just operates on the traffic belonging to such a player. In the FROG
service model, the PEX of an end user is the first one processing the traffic coming
from the end user device, and the last one that handles packets towards the end
user terminal; hence, the PEX can be seen as an extension of the TCP/IP stack of
the user device moved into the network. Experimental results show that a model
that allocates a PEX per user, and which supports until 8000 of active users (each
one running their VNFs) at the same time on the same physical machine is feasible.

The dissertation then presents the service graph, a new formalism to model
generic network services; notably, the service graph definition is completely com-
pliant with the NFV principles of abstract description of a service, but enriches
its traditional expressiveness to model legacy networks and services as well (e.g., a
DHCP server connected to a LAN). The service graph is transformed in the for-
warding graph by means of the “lowering process”, which leads to the deployment
of an optimized service on the operator network. This translation process is in fact
capable to adapt the service delivering to available resources of the underlying in-
frastructure. In order to validate the formalisms, a multilayer network orchestration
architecture is then introduced. Such an architecture, starting from a service graph
that can be defined by multiple players (e.g., end users, telecom operator), takes
care of instantiating it on the physical infrastructure of the network, by exploiting
the opportunities offered by both the NFV and Software Defined Networking (SDN)

143

6 – Transparent optimization of inter-virtual network function communication in Open vSwitch

paradigms. Two prototypes of nodes representing the physical infrastructure have
then been defined. The first one is the Universal Node, which consists of a sin-
gle server mainly based on ad hoc components; the latter, called OpenStack-based
Node, is instead implemented as a cluster of servers orchestrated by an extended
version of the OpenStack framework. Experimental results show that, while the
Universal Node has low requirements in terms of memory, its performance are worse
than the OpenStack-based Node in almost all the tests carried out.

Moving to the problem of improving performance of virtualized services, this dis-
sertation proposes a number of communication architectures to be used to exchange
packets between the virtual switch and the VNFs instantiated on the same physical
server. Such communication architectures are designed by considering the typical
traffic pattern in NFV, and then they are optimized to work in this context. Among
the others, the most relevant proposal is based on a different pair of (lock-free) ring
buffers shared between the virtual switch and each VNF, and aims at achieving
high performance while at the same time guaranteeing traffic isolation among the
(huge number) of VNFs. One of the peculiarity of such an approach is that, through
the primary buffer, packets are sent to the VNF and then returned back to the
virtual switch for further processing with zero-copy. A form of batching has also
been introduced in order to amortize the cost of context switches, while a safeguard
mechanism avoids packet starvation in case of VNFs traversed by a limited amount
of traffic. Formal verification techniques have been applied, in order to rigorously
prove properties such as the absence of deadlocks, livelocks and more. A wide range
of experimental tests executed on a prototype designed to characterize the behavior
of the algorithm in different conditions provides promising results.

The last contribution of this dissertation is the definition of an architecture that
optimizes the inter-VNF communication by bypassing the virtual switch in case of
point to point connections between virtual machines (executing applications based
on the Intel DPDK framework). In particular, the proposed approach does not re-
quire any modification to the VNFs, and keeps compatibility with all the services
deployed in an NFV environment, such as the SDN controller. Tests confirm the
validity of the idea and the possibility of implementing it by modifying a limited
number of components, namely the virtual switch, the DPDK framework, and op-
tionally the compute agent.

144

Bibliography

[1] Cisco systems. http://homesupport.cisco.com/en-us/support/ccc/
PARENTALCONTROLS.

[2] Davide.it. http://www.davide.it/.
[3] Docker. https://www.docker.com/.
[4] Introduction to control groups. https://access.redhat.com/

documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_
Management_Guide/ch01.html.

[5] Ivshmem library. http://dpdk.org/doc/guides/prog_guide/ivshmem_lib.
html.

[6] Kvm. http://www.linux-kvm.org.
[7] Libvirt. http://libvirt.org/.
[8] Linux containers. https://linuxcontainers.org/.
[9] mmap. http://man7.org/linux/man-pages/man2/mmap.2.html.

[10] Namespaces overwiew. http://lwn.net/Articles/531114/.
[11] Opendaylight. http://www.opendaylight.org/.
[12] Opendns. http://www.opendns.com/parental-controls.
[13] Openstack. http://www.openstack.org/.
[14] Openstack nova. http://docs.openstack.org/developer/nova/.
[15] Performance issue when using netdev-dpdk and multiple pmd threads. http:

//openvswitch.org/pipermail/dev/2015-December/063885.html.
[16] The SECURED project (SECURity at the network EDge)). http://www.

secured-fp7.eu/.
[17] T-nova: Network functions as a service over virtualised infrastructure. http:

//www.t-nova.eu/.
[18] Unify: unifying cloud and carrier network. http://www.fp7-unify.eu/.
[19] ndpi. http://www.ntop.org/products/ndpi/, Apr 2012.
[20] Openstack blueprints: Neutron service chaining specification. https://

review.openstack.org/#/c/93524/, 2014.
[21] Openstack blueprints: Neutron services insertion, chaining, and steering.

https://blueprints.launchpad.net/neutron/, 2014.
[22] James W. Anderson, Ryan Braud, Rishi Kapoor, George Porter, and Amin

145

http://homesupport.cisco.com/en-us/support/ccc/PARENTALCONTROLS
http://homesupport.cisco.com/en-us/support/ccc/PARENTALCONTROLS
http://www.davide.it/
https://www.docker.com/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
http://dpdk.org/doc/guides/prog_guide/ivshmem_lib.html
http://dpdk.org/doc/guides/prog_guide/ivshmem_lib.html
http://www.linux-kvm.org
http://libvirt.org/
https://linuxcontainers.org/
http://man7.org/linux/man-pages/man2/mmap.2.html
http://lwn.net/Articles/531114/
http://www.opendaylight.org/
http://www.opendns.com/parental-controls
http://www.openstack.org/
http://docs.openstack.org/developer/nova/
http://openvswitch.org/pipermail/dev/2015-December/063885.html
http://openvswitch.org/pipermail/dev/2015-December/063885.html
http://www.secured-fp7.eu/
http://www.secured-fp7.eu/
http://www.t-nova.eu/
http://www.t-nova.eu/
http://www.fp7-unify.eu/
http://www.ntop.org/products/ndpi/
https://review.openstack.org/#/c/93524/
https://review.openstack.org/#/c/93524/
https://blueprints.launchpad.net/neutron/

Bibliography

Vahdat. xomb: extensible open middleboxes with commodity servers. In Pro-
ceedings of the eighth ACM/IEEE symposium on Architectures for networking
and communications systems, ANCS ’12, pages 49–60, New York, NY, USA,
2012. ACM.

[23] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177, October 2003.

[24] Daniel Barron. Dansguardian. http://dansguardian.org, Aug 2011. Stable
release 2.12.0.0.

[25] Berlin Institute for Software Defined Network and Deutsche Telekom Innova-
tion Labs. Your home in your pocket. https://www.opennetworking.org/
images/stories/sdn-solution-showcase/BISDN-demo.pdf.

[26] BISDN. The extensible openflow datapath daemon. http://www.xdpd.org.
[27] Jeremias Blendin, Julius Rückert, Nicolai Leymann, Georg Schyguda, and

David Hausheer. Position paper: Software-defined network service chaining.
In Proceedings of the Third European Workshop on Software Defined Network-
ing (EWSDN 2014), 2014.

[28] R. Bonafiglia, I. Cerrato, F. Ciaccia, M. Nemirovsky, and F. Risso. Assessing
the performance of virtualization technologies for nfv: A preliminary bench-
marking. In 2015 Fourth European Workshop on Software Defined Networks,
pages 67–72, Sept 2015.

[29] Zvika Bronstein and Eyal Shraga. Nfv virtualisation of the home environ-
ment. In Consumer Communications and Networking Conference (CCNC),
2014 IEEE 11th, pages 899–904. IEEE, 2014.

[30] I. Cerrato, G. Marchetto, F. Risso, R. Sisto, and M. Virgilio. An efficient
data exchange algorithm for chained network functions. In 2014 IEEE 15th
International Conference on High Performance Switching and Routing (HPSR),
pages 98–105, July 2014.

[31] I. Cerrato, M. Pramotton, and F. Risso. Moving applications from the host to
the network: Experiences, challenges and findings. In 2013 IEEE International
Conference on Communications Workshops (ICC), pages 744–749, June 2013.

[32] Ivano Cerrato, Mauro Annarumma, and Fulvio Risso. Supporting fine-grained
network functions through intel dpdk. In EWSDN, pages 1–6. IEEE Computer
Society, 2014.

[33] Ivano Cerrato, Tobias Jungel, Alex Palesandro, Fulvio Risso, Marc Suñé, and
Hagen Woesner. User-specific network service functions in an sdn-enabled net-
work node. In Software Defined Networks (EWSDN), 2014 Third European
Workshop on, pages 135–136. IEEE, 2014.

[34] Ivano Cerrato, Guido Marchetto, Fulvio Risso, Riccardo Sisto, and Mat-
teo Virgilio. Shared buffer model. https://github.com/netgroup-polito/
shared-buffer.

146

http://dansguardian.org
https://www.opennetworking.org/images/stories/sdn-solution-showcase/BISDN-demo.pdf
https://www.opennetworking.org/images/stories/sdn-solution-showcase/BISDN-demo.pdf
http://www.xdpd.org
https://github.com/netgroup-polito/shared-buffer
https://github.com/netgroup-polito/shared-buffer

Bibliography

[35] Ivano Cerrato, Alex Palesandro, Fulvio Risso, Marc Suñé, Vinicio Vercellone,
and Hagen Woesner. Toward dynamic virtualized network services in telecom
operator networks. Computer Networks, 92, Part 2:380 – 395, 2015. Software
Defined Networks and Virtualization.

[36] ContentWatch. Net nanny. http://www.netnanny.com.
[37] András Császár, Wolfgang John, Mario Kind, Catalin Meirosu, Gergely Pon-

grácz, Dimitri Staessens, Attila Takács, and Fritz-Joachim Westphal. Unify-
ing cloud and carrier network: Eu fp7 project unify. In Proceedings of the
2013 IEEE/ACM 6th International Conference on Utility and Cloud Comput-
ing (UCC ’13), UCC ’13, pages 452–457, Washington, DC, USA, 2013. IEEE
Computer Society.

[38] François Diakhaté, Marc Perache, Raymond Namyst, and Herve Jourdren. Ef-
ficient shared memory message passing for inter-vm communications. In Euro-
Par 2008 Workshops-Parallel Processing, pages 53–62. Springer, 2008.

[39] Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Formal
verification of a practical lock-free queue algorithm. In Formal Techniques for
Networked and Distributed Systems - FORTE 2004, volume 3235 of Lecture
Notes in Computer Science, pages 97–114. Springer Berlin Heidelberg, 2004.

[40] Constantinos Dovrolis, Brad Thayer, and Parameswaran Ramanathan. Hip:
Hybrid interrupt-polling for the network interface. SIGOPS Oper. Syst. Rev.,
35(4):50–60, October 2001.

[41] European Telecommunication Standards Institute (ETSI). Network Functions
Virtualization Industry Specification Group. http://portal.etsi.org/NFV.

[42] European Telecommunication Standards Institute (ETSI). Network Functions
Virtualization; use cases. http://www.etsi.org/deliver/etsi_gs/NFV/001_
099/001/01.01.01_60/gs_NFV001v010101p.pdf.

[43] European Telecommunications Standards Institute. Network Functions Vir-
tualisation. White paper, SDN and OpenFlow World Congress, Darmstadt,
Germany, Oct. 2012.

[44] Francesco Fusco and Luca Deri. High speed network traffic analysis with com-
modity multi-core systems. In Proceedings of the 10th ACM SIGCOMM Con-
ference on Internet Measurement, IMC ’10, pages 218–224, New York, NY,
USA, 2010. ACM.

[45] Stefano Garzarella, Giuseppe Lettieri, and Luigi Rizzo. Virtual device
passthrough for high speed vm networking. In Architectures for Networking
and Communications Systems (ANCS), 2015 ACM/IEEE Symposium on, pages
99–110. IEEE, 2015.

[46] Anders Gidenstam, Håkan Sundell, and Philippas Tsigas. Cache-aware lock-
free queues for multiple producers/consumers and weak memory consistency.
In Proceedings of the 14th international conference on Principles of distributed
systems, OPODIS’10, pages 302–317, Berlin, Heidelberg, 2010. Springer-Verlag.

147

http://www.netnanny.com
http://portal.etsi.org/NFV
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/NFV/001_099/001/01.01.01_60/gs_NFV001v010101p.pdf

Bibliography

[47] Google. Google safe search. http://support.google.com/websearch/bin/
answer.py?hl=en&answer=510.

[48] Sriram Govindan, Jeonghwan Choi, Arjun R Nath, Amitayu Das, Bhuvan Ur-
gaonkar, and Anand Sivasubramaniam. Xen and co.: Communication-aware
cpu management in consolidated xen-based hosting platforms. Computers,
IEEE Transactions on, 58(8):1111–1125, Aug 2009.

[49] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packetshader:
a gpu-accelerated software router. SIGCOMM Comput. Commun. Rev.,
40(4):195–206, August 2010.

[50] Moshe Hoffman, Ori Shalev, and Nir Shavit. The baskets queue. In Eduardo
Tovar, Philippas Tsigas, and Hacene Fouchal, editors, OPODIS, volume 4878
of Lecture Notes in Computer Science, pages 401–414. Springer, 2007.

[51] Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual.
Addison-Wesley Professional, first edition, 2003.

[52] Gerard J. Holzmann. The model checker spin. IEEE Transactions on Software
Engineering, May 1997.

[53] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam Greenhalgh, Mark
Handley, and Hideyuki Tokuda. Is it still possible to extend tcp? In Proceedings
of the 2011 ACM SIGCOMM conference on Internet measurement conference,
IMC ’11, pages 181–194, New York, NY, USA, 2011. ACM.

[54] Wei Huang, Matthew J Koop, Qi Gao, and Dhabaleswar K Panda. Virtual
machine aware communication libraries for high performance computing. In
Proceedings of the ACM/IEEE Conference on High Performance Networking
and Computing, SC 2007, November 10-16, 2007, Reno, Nevada, USA, page 9,
2007.

[55] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. Netvm: High perfor-
mance and flexible networking using virtualization on commodity platforms. In
11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pages 445–458, Seattle, WA, 2014. USENIX Association.

[56] Intel. Intel dpdk - programmer’s guide. http://dpdk.org/doc/guides/prog_
guide/, 2014.

[57] Internet Engineering Task Force (IETF). Service Functions Chaining (SFC)
working group. https://datatracker.ietf.org/wg/sfc/documents/, 2014.

[58] Kangho Kim, Cheiyol Kim, Sung-In Jung, Hyun-Sup Shin, and Jin-Soo
Kim. Inter-domain socket communications supporting high performance and
full binary compatibility on xen. In Proceedings of the Fourth ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments,
VEE ’08, pages 11–20, New York, NY, USA, 2008. ACM.

[59] Patrick P. C. Lee, Tian Bu, and Girish P. Chandranmenon. A lock-free, cache-
efficient multi-core synchronization mechanism for line-rate network traffic mon-
itoring. In IPDPS, pages 1–12, 2010.

148

http://support.google.com/websearch/bin/answer.py?hl=en&answer=510
http://support.google.com/websearch/bin/answer.py?hl=en&answer=510
http://dpdk.org/doc/guides/prog_guide/
http://dpdk.org/doc/guides/prog_guide/
https://datatracker.ietf.org/wg/sfc/documents/

Bibliography

[60] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context
switch. In Proceedings of the 2007 workshop on Experimental computer science,
ExpCS ’07, New York, NY, USA, 2007. ACM.

[61] Guohan Lu, Chuanxiong Guo, Yulong Li, Zhiqiang Zhou, Tong Yuan, Haitao
Wu, Yongqiang Xiong, Rui Gao, and Yongguang Zhang. Serverswitch: a pro-
grammable and high performance platform for data center networks. In Pro-
ceedings of the 8th USENIX conference on Networked systems design and im-
plementation, NSDI’11, pages 2–2, Berkeley, CA, USA, 2011. USENIX Associ-
ation.

[62] Francesco Lucrezia, Guido Marchetto, Fulvio Risso, and Vinicio Vercellone.
Introducing network-aware scheduling capabilities in openstack. In Proceedings
of the First IEEE Conference on Network Softwarization (Netsoft 2015), Apr
2015.

[63] Cam Macdonell. Nahanni, a shared memory interface for kvm. http://www.
linux-kvm.org/images/e/e8/0.11.Nahanni-CamMacdonell.pdf.

[64] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio
Honda, Roberto Bifulco, and Felipe Huici. Clickos and the art of network
function virtualization. In Proceedings of the 11th USENIX Conference on Net-
worked Systems Design and Implementation (NSDI 14), pages 459–473, Seattle,
WA, 2014. USENIX Association.

[65] H. Massalin and C. Pu. Threads and input/output in the synthesis kernal. In
Proceedings of the twelfth ACM symposium on Operating systems principles,
SOSP ’89, pages 191–201, New York, NY, USA, 1989. ACM.

[66] Henry Massalin and Calton Pu. A lock-free multiprocessor os kernel. SIGOPS
Oper. Syst. Rev., 26(2):108–, April 1992.

[67] McAfee. safeeyes. http://www.internetsafety.com/
safe-eyes-parental-control-software-affiliate.php.

[68] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: en-
abling innovation in campus networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, March 2008.

[69] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In Proceedings of the fif-
teenth annual ACM symposium on Principles of distributed computing, PODC
’96, pages 267–275, New York, NY, USA, 1996. ACM.

[70] Jeffrey C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an
interrupt-driven kernel. ACM Trans. Comput. Syst., 15(3):217–252, August
1997.

[71] Robert Morris, Eddie Kohler, John Jannotti, and M. Frans Kaashoek. The
click modular router. In Proceedings of the seventeenth ACM symposium on
Operating systems principles, SOSP ’99, pages 217–231, New York, NY, USA,

149

http://www.linux-kvm.org/images/e/e8/0.11.Nahanni-CamMacdonell.pdf
http://www.linux-kvm.org/images/e/e8/0.11.Nahanni-CamMacdonell.pdf
http://www.internetsafety.com/safe-eyes-parental-control-software-affiliate.php
http://www.internetsafety.com/safe-eyes-parental-control-software-affiliate.php

Bibliography

1999. ACM.
[72] Jun Nakajima, Mesut Ergin, Yunhong Jiang, Krishna Murthy, James Tsai, Wei

Wang, Huawei Xie, and Yang Zhang. KVM as the NFV hypervisor, kvm forum
2015. http://events.linuxfoundation.org/sites/events/files/slides/
Jun_Nakajima_NFV_KVM%202015_final.pdf.

[73] Jun Nakajima, James Tsai, Mesut Ergin, Yang Zhang, and Wei Wang. Ex-
tending KVM models towards high-performance NFV, kvm forum 2014. http:
//www.linux-kvm.org/images/1/1d/01x05-NFV.pdf.

[74] Netgear. Live parental controls. http://www.netgear.com/lpc.
[75] OPNFV. OPNFV - an open platform to accelerate nfv. http://www.opnfv.

org, 2015.
[76] Ben Pfaff, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and

Scott Shenker. Extending networking into the virtualization layer. In Pro-
ceedings of the 8th ACM Workshop on Hot Topics in Networks (HotNets-VIII),
October 2009.

[77] S. Prakash, Yann Hang Lee, and T. Johnson. A nonblocking algorithm for
shared queues using compare-and-swap. IEEE Trans. Comput., 43(5):548–559,
May 1994.

[78] Kaushik Kumar Ram, Alan L. Cox, Mehul Chadha, and Scott Rixner. Hyper-
switch: A scalable software virtual switching architecture. In Proceedings of the
2013 USENIX Conference on Annual Technical Conference, USENIX ATC’13,
pages 13–24, Berkeley, CA, USA, 2013. USENIX Association.

[79] F. Risso and I. Cerrato. Customizing data-plane processing in edge routers. In
2012 European Workshop on Software Defined Networking, pages 114–120, Oct
2012.

[80] F. Risso, A. Manzalini, and M. Nemirovsky. Some controversial opinions
on software-defined data plane services. In Proceedings of the First Work-
shop on Software Defined Networks for Future Network Services (SDN4FNS),
SDN4FNS13, pages 1–7. IEEE, November 2013.

[81] Luigi Rizzo. Netmap: a novel framework for fast packet i/o. In Proceedings
of the 2012 USENIX conference on Annual Technical Conference, USENIX
ATC’12, pages 9–9, Berkeley, CA, USA, 2012. USENIX Association.

[82] Luigi Rizzo and Giuseppe Lettieri. Vale, a switched ethernet for virtual ma-
chines. In Proceedings of the 8th international conference on Emerging net-
working experiments and technologies, CoNEXT ’12, pages 61–72, New York,
NY, USA, 2012. ACM.

[83] Julius Rückert, Jeremias Blendin, Nicolai Leymann, Georg Schyguda, and
David Hausheer. Software-defined network service chaining. In Proceedings
of the Third European Workshop on Software Defined Networking (EWSDN
2014), 2014.

[84] Rusty Russell. Virtio: Towards a de-facto standard for virtual i/o devices.

150

http://events.linuxfoundation.org/sites/events/files/slides/Jun_Nakajima_NFV_KVM%202015_final.pdf
http://events.linuxfoundation.org/sites/events/files/slides/Jun_Nakajima_NFV_KVM%202015_final.pdf
http://www.linux-kvm.org/images/1/1d/01x05-NFV.pdf
http://www.linux-kvm.org/images/1/1d/01x05-NFV.pdf
http://www.netgear.com/lpc
http://www.opnfv.org
http://www.opnfv.org

Bibliography

SIGOPS Oper. Syst. Rev., 42(5):95–103, July 2008.
[85] Fernando Sanchez and David Brazewell. Tethered linux cpe for ip service de-

livery. In Proceedings of the First IEEE Conference on Network Softwarization
(NetSoft 2015), 2015.

[86] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and Guangyu
Shi. Design and implementation of a consolidated middlebox architecture. In
Presented as part of the 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 323–336, 2012.

[87] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. Making middleboxes someone else’s problem: Network
processing as a cloud service. SIGCOMM Comput. Commun. Rev., 42(4):13–
24, August 2012.

[88] Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado,
Nick McKeown, and Guru Parulkar. Can the production network be the
testbed? In Proceedings of the 9th USENIX conference on Operating systems
design and implementation, OSDI’10, pages 1–6, Berkeley, CA, USA, 2010.
USENIX Association.

[89] Pontus Sköldström, Balázs Sonkoly, Andrś Gulyás, Felicián Németh, Mario
Kind, Fritz-Joachim Westphal, Wolfgang John, Jokin Garay, Eduardo Jacob,
Dávid Jocha, János Elek, Róbert Szabó, Wouter Tavernier, George Agapiou,
Antonio Manzalini, Matthias Rost, Nadi Sarrar, and Stefan Schmid. Towards
unified programmability of cloud and carrier infrastructure. In Proceedings
of the Third European Workshop on Software Defined Networking (EWSDN),
pages 55–60, 2014.

[90] Joao Soares, Miguel Dias, Jorge Carapinha, Bruno Parreira, and Susana Sar-
gento. Cloud4nfv: A platform for virtual network functions. In Cloud Network-
ing (CloudNet), 2014 IEEE 3rd International Conference on, pages 288–293.
IEEE, 2014.

[91] Philippas Tsigas and Yi Zhang. A simple, fast and scalable non-blocking con-
current fifo queue for shared memory multiprocessor systems. In Proceedings of
the thirteenth annual ACM symposium on Parallel algorithms and architectures,
SPAA ’01, pages 134–143, New York, NY, USA, 2001. ACM.

[92] Unify Consortium. D5.2 universal node interfaces and software architec-
ture. https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/
Deliverables/UNIFY-WP5-D5.2-Universal%20node%20interfaces%20and%
20software%20architecture.pdf, 2014.

[93] Mauricio Vasquez, Ivano Cerrato, and Fulvio Risso. Direct VM2VM op-
timzation in OvS for DPDK enabled applications. https://github.com/
netgroup-polito/directvm2vm.

[94] Jian Wang, Kwame-Lante Wright, and Kartik Gopalan. Xenloop: A transpar-
ent high performance inter-vm network loopback. In Proceedings of the 17th

151

https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY-WP5-D5.2- Universal%20node%20interfaces%20and%20software%20architecture.pdf
https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY-WP5-D5.2- Universal%20node%20interfaces%20and%20software%20architecture.pdf
https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY-WP5-D5.2- Universal%20node%20interfaces%20and%20software%20architecture.pdf
https://github.com/netgroup-polito/directvm2vm
https://github.com/netgroup-polito/directvm2vm

Bibliography

International Symposium on High Performance Distributed Computing, HPDC
’08, pages 109–118, New York, NY, USA, 2008. ACM.

[95] Jon Whiteaker, Fabian Schneider, Renata Teixeira, Christophe Diot, Augustin
Soule, Fabio Picconi, and Martin May. Expanding home services with advanced
gateways. SIGCOMM Comput. Commun. Rev., 42(5):37–43, September 2012.

[96] Yiannis Yiakoumis, Kok-Kiong Yap, Sachin Katti, Guru Parulkar, and Nick
McKeown. Slicing home networks. In Proceedings of the 2Nd ACM SIGCOMM
Workshop on Home Networks, HomeNets ’11, pages 1–6, New York, NY, USA,
2011. ACM.

[97] Xiaolan Zhang, Suzanne McIntosh, Pankaj Rohatgi, and John Linwood Griffin.
Xensocket: A high-throughput interdomain transport for virtual machines. In
Proceedings of the ACM/IFIP/USENIX 2007 International Conference on Mid-
dleware, Middleware ’07, pages 184–203, New York, NY, USA, 2007. Springer-
Verlag New York, Inc.

[98] Li Zhao, L.N. Bhuyan, R. Iyer, S. Makineni, and D. Newell. Hardware support
for accelerating data movement in server platform. Computers, IEEE Transac-
tions on, 56(6):740–753, June 2007.

152

Appendix
Author publications

Part of the research presented in this dissertation has been previously published in
the following papers:

• I. Cerrato, A. Palesandro, F. Risso, M. Sune, V. Vercellone, H. Woesner, “To-
wards Dynamic Virtualized Network Services in Telecom Operator Networks”,
in Elsevier Computer Networks Vol. 92, Part 2, 9 December 2015. pp. 380-395

• R. Bonafiglia, I. Cerrato, F. Ciaccia, M. Nemirovsky, F. Risso, “Assessing the
Performance of Virtualization Technologies for NFV: A Preliminary Bench-
marking”, in Proceedings of Fourth European Workshop on Software Defined
Networks (EWSDN 2015), Bilbao, Spain, 30 Sept. - 2 Oct. 2015. pp. 67-72

• I. Cerrato, A. Palesandro, F. Risso, T. Jungel, M. Sune, H. Woesner, “User-
specific Network Service Functions in an SDN-enabled Network Node”, in Pro-
ceedings of Third European Workshop on Software Defined Networks (EWSDN
2014), Budapest, Hungary, September 2014. pp. 135-136

• I. Cerrato, M. Annarumma, F. Risso, “Supporting Fine-Grained Network
Functions through Intel DPDK”, in Proceedings of Third European Workshop
on Software Defined Networks (EWSDN 2014), Budapest, Hungary, Septem-
ber 2014. pp. 1-6

• I. Cerrato, G. Marchetto, F. Risso, R. Sisto, M. Virgilio M, “An Efficient Data
Exchange Algorithm for Chained Network Functions”, in Proceedings of IEEE
15th International Conference on High Performance Switching and Routing
(HPSR 2014), Vancouver, BC, Canada, July 2014. pp. 98-105

• I. Cerrato, M. Pramotton, F. Risso, “Moving Applications from the Host to
the Network: Experiences, Challenges and Findings”, in Proceedings of IEEE
International Conference on Communications 2013 (IEEE ICC’13) - 1st In-
ternational Workshop on Mobile Cloud Networking and Services (MCN), Bu-
dapest, Hungary, June 2013, pp. 744-749

153

Bibliography

• F. Risso, I. Cerrato, “Customizing Data-plane Processing in Edge Routers”, in
Proceedings of the European Workshop on Software Defined Networks (EWSDN
2012), Darmstadt, Germany, October 25-26, 2012, pp. 114-120

154

