504 research outputs found

    Tuning adaptive computations for the performance improvement of applications in JEE server

    Get PDF
    With the increasing use of autonomic computing technologies, a Java Enterprise Edition (JEE) application server is implemented with more and more adaptive computations for self-managing the Middleware as well as its hosted applications. However, these adaptive computations consume resources such as CPU and memory, and can interfere with the normal business processing of applications at runtime due to resource competition, especially when the whole system is under heavy load. Tuning these adaptive computations from the perspective of resource management becomes necessary. In this article, we propose a tuning model for adaptive computations. Based on the model, tuning is carried out dynamically by upgrading or degrading the autonomic level of an adaptive computation so as to control its resource consumption. We implement the RSpring tuner and use it to optimize autonomic JEE servers such as PkuAS and JOnAS. RSpring is evaluated on ECperf and RUBiS benchmark applications. The results show that it can effectively improve the application performance by 13.6 % in PkuAS and 19.2 % in JOnAS with the same amount of resources. ? 2012 The Brazilian Computer Society.EI02143-158

    On Autonomic HPC Clouds

    Get PDF
    Proceedings of: Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015). Krakow (Poland), September 10-11, 2015.The long tail of science using HPC facilities is looking nowadays to instant available HPC Clouds as a viable alternative to the long waiting queues of supercomputing centers. While the name of HPC Cloud is suggesting a Cloud service, the current HPC-as-a-Service is mainly an offer of bar metal, better named cluster-on-demand. The elasticity and virtualization benefits of the Clouds are not exploited by HPC-as-a-Service. In this paper we discuss how the HPC Cloud offer can be improved from a particular point of view, of automation. After a reminder of the characteristics of the Autonomic Cloud, we project the requirements and expectations to what we name Autonomic HPC Clouds. Finally, we point towards the expected results of the latest research and development activities related to the topics that were identified.The work related to Autonomic HPC Clouds is supported by the European Commission under grant agreement H2020-6643946 (CloudLightning). The CLoudLightning project proposal was prepared by eight partner institutions, three of them as earlier partners in the COST Action IC1305 NESUS, benefiting from its inputs for the proposal. The section related to Autonomic Clouds is supported by the Romanian UEFISCDI under grant agreement PN-II-ID-PCE-2011- 3-0260 (AMICAS)

    Measuring and Managing Answer Quality for Online Data-Intensive Services

    Full text link
    Online data-intensive services parallelize query execution across distributed software components. Interactive response time is a priority, so online query executions return answers without waiting for slow running components to finish. However, data from these slow components could lead to better answers. We propose Ubora, an approach to measure the effect of slow running components on the quality of answers. Ubora randomly samples online queries and executes them twice. The first execution elides data from slow components and provides fast online answers; the second execution waits for all components to complete. Ubora uses memoization to speed up mature executions by replaying network messages exchanged between components. Our systems-level implementation works for a wide range of platforms, including Hadoop/Yarn, Apache Lucene, the EasyRec Recommendation Engine, and the OpenEphyra question answering system. Ubora computes answer quality much faster than competing approaches that do not use memoization. With Ubora, we show that answer quality can and should be used to guide online admission control. Our adaptive controller processed 37% more queries than a competing controller guided by the rate of timeouts.Comment: Technical Repor

    Performance characterization of black boxes with self-controlled load injection for simulation-based sizing

    Get PDF
    International audienceSizing and capacity planning are key issues that must be addressed by anyone wanting to ensure a distributed system will sustain an expected workload. Solutions typically consist in either benchmarking,or modeling and simulating the target system. However, full-scale benchmarking may be too costly and almost impossible, while the granularity of modeling is often limited by the huge complexity and the lack of information about the system. To extract a model for this kind of system, we propose a methodology that combines both solutions by first identifying a middle-grain model made of interconnected black boxes, and then to separately characterize the performance and resource consumption of these black boxes. Then, we present two important issues : saturation and stability, that are key to system capacity characterization. To experiment our methodology, we propose a component-based supporting architecture, introducing control theory issues in a general approach to autonomic computing infrastructures

    A Survey on Automatic Parameter Tuning for Big Data Processing Systems

    Get PDF
    Big data processing systems (e.g., Hadoop, Spark, Storm) contain a vast number of configuration parameters controlling parallelism, I/O behavior, memory settings, and compression. Improper parameter settings can cause significant performance degradation and stability issues. However, regular users and even expert administrators grapple with understanding and tuning them to achieve good performance. We investigate existing approaches on parameter tuning for both batch and stream data processing systems and classify them into six categories: rule-based, cost modeling, simulation-based, experiment-driven, machine learning, and adaptive tuning. We summarize the pros and cons of each approach and raise some open research problems for automatic parameter tuning.Peer reviewe
    corecore