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Abstract With the increasing use of autonomic computing
technologies, a Java Enterprise Edition (JEE) application
server is implemented with more and more adaptive com-
putations for self-managing the Middleware as well as its
hosted applications. However, these adaptive computations
consume resources such as CPU and memory, and can in-
terfere with the normal business processing of applications
at runtime due to resource competition, especially when
the whole system is under heavy load. Tuning these adap-
tive computations from the perspective of resource manage-
ment becomes necessary. In this article, we propose a tuning
model for adaptive computations. Based on the model, tun-
ing is carried out dynamically by upgrading or degrading the
autonomic level of an adaptive computation so as to con-
trol its resource consumption. We implement the RSpring
tuner and use it to optimize autonomic JEE servers such
as PkuAS and JOnAS. RSpring is evaluated on ECperf and
RUBiS benchmark applications. The results show that it can
effectively improve the application performance by 13.6 %
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in PkuAS and 19.2 % in JOnAS with the same amount of
resources.
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1 Introduction

Being a runtime infrastructure between operating systems
and JEE applications, today’s JEE servers increase their au-
tonomic management capabilities by implementing more
and more adaptive computations [1–4]. According to the
autonomic computing white paper [2], the term “adaptive
computation” (AC) is used to denote any computing ac-
tivity that implements either the complete autonomic con-
trol loop, or just one or more functions in the loop, i.e.,
monitor, analyze, plan, or execute. A JEE server could
have tens or hundreds of adaptive computations because
a lot of software/hardware objects need to be managed
automatically by the server [4]. For example, PkuAS [9]
has been equipped with tens adaptive computations, such
as automatically adjusting its thread-pool to guarantee the
predefined tradeoff between the throughputs and response
times [10], recovering from the correlated faults occurred in
its internal services [11], changing the execution flow of a
hosted application for trading off the performance and secu-
rity [12].

The adaptive computations increase the performance, de-
pendability, and flexibility of JEE servers. However, their
runtime resource cost cannot be ignored, especially as the
number of these computations keeps growing. An adaptive
computation can collect the states of the managed objects
(i.e., software components or hardware facilities); analyze
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the collected data to decide whether a system change is nec-
essary; plan when and how to change; and finally perform
the change on the fly. Obviously, each of the above four
activities and their combinations consume resources, e.g.,
CPU and memory. A JEE application can run only when be-
ing deployed in a JEE server. Thus, it brings challenges to
resource allocation for achieving the overall system perfor-
mance goals because of the always existed resource compe-
tition between the adaptive computations of the JEE server
and the business functions of the deployed applications.
When the whole system is under stress, such a competition
will cause negative effects on the applications and adaptive
computations, and finally decrease the performance of the
whole system.

There are generally two ways to mitigate the above prob-
lem. One is to increase the resources [6]. For instance, re-
deploying the JEE server as well as its applications to the
newly bought or rented machines. Such a solution is usually
accompanied by increased operating costs. The newly allo-
cated resources may become insufficient or excessive after a
while under the quickly fluctuated system workloads. There-
fore, there exists another solution to the problem by chang-
ing the quota of the current available resources between
business functions and adaptive computations [5]. This solu-
tion tries to exploit and reallocate the resources so as to make
a quick response to the changing workloads. The above two
solutions are complementary. However, when targeting a re-
source limited environment, we focus more on the latter in
this article due to the desire to make full and flexible use of
the resources that a JEE server currently has.

The runtime cost of adaptive computations leads to an
important resource management issue, i.e., how to allo-
cate the current available resources among adaptive com-
putations and business functions, as well as among multi-
ple adaptive computations. Compared with business func-
tions, adaptive computations have their own specific fea-
tures, such as the monitor-analyze-plan-execute autonomic
loop, and the objects to be managed, e.g., thread-pool. Such
features imply the rationales of resource management for
adaptive computations. For instance, an adaptive compu-
tation can be “natively” upgraded/degraded rather than be
roughly started/stopped, e.g., be degraded to run only the
monitor function or be upgraded to run through all the four
functions in the current execution of the autonomic loop. In
that sense, adaptive computations can be controlled to ex-
ecute flexibly to spare resources for processing more busi-
ness requests. On the other hand, the running of some adap-
tive computations should be guaranteed because they are
critical to the system. For example, the computations for
self-healing and self-protecting can prevent the damages
of abnormal and malicious conditions. Such computations
can bring more gains or the so called cost-effectiveness to
the system than the noncritical ones (Sect. 2.2). We cannot

reclaim the resources consumed by these critical adaptive
computations even if the resources are not enough for busi-
ness functions.

In general, the core of a tuning solution to the above re-
source management issue includes two parts, i.e., model and
implementation. The model answers the question of how to
allocate resources based on the abstraction of computing en-
tities; the implementation answers when and to what extent
the resources are allocated to and consumed by each com-
puting entity. Take the classic process scheduling as an ex-
ample, a process is scheduled to consume a certain amount
of resources, e.g., CPU. The resource management model
contains the following elements: the process life-cycle ab-
straction (e.g., start/stop), the process priority, etc. Based
on the model, the implementations decide how exactly each
specific process will be executed with a given amount of
resources, e.g., make a process stop/suspend to return the
possessed CPU cycles; or make a process run more often
than the others so as to consume more CPU cycles. For
achieving the best-of-the-breed effectiveness and efficiency,
the model and implementations always leverage the features
of the computing entities. Therefore, these two parts usu-
ally make the resource management solutions specific to
the target system. In an autonomic JEE server, we observe
that meeting the resource needs of business functions is in
most cases more important than that of the noncritical adap-
tive computations, and we accept the notion that business
requirements should be satisfied first when fierce resource
competition occurs. Therefore, to enable a flexible trade-
off between business functions and adaptive computations
when resources are limited and competed, what can be done
is: if necessary, executing adaptive computations at a right
time to a proper extent. We have demonstrated its possibil-
ity in the position paper [5]. In this article, we focus on the
tuning model specific to adaptive computations, implement
the RSpring tuner for autonomic JEE servers, and perform
a thorough evaluation on RSpring using industry standard
benchmarks.

The primary contributions of this article are:

• A tuning model for controlling the resource allocation be-
tween business functions and adaptive computations by
upgrading and degrading the autonomic levels of adap-
tive computations dynamically. The features and gains of
adaptive computations have been taken into considered in
the model.

• The RSpring tuner for autonomic JEE servers such as
PkuAS1 and JOnAS.2 A set of algorithms has been built
in the tuner for determining how exactly the autonomic
level of each adaptive computation is tuned.

1http://dev.sei.pku.edu.cn/trac/pkuas.
2http://jonas.ow2.org.
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• We evaluate RSpring across a range of experiments with
ECperf3 and RUBiS4 JEE benchmarks. The results show
that RSpring is effective and efficient to support the per-
formance of the whole JEE system, and in particular, our
considerations of the features and gains of adaptive com-
putations in model- and algorithm-design are valid.

The rest of this article is organized as follows: Section 2
gives an overview of adaptive computations and a real case
illustrating the resource competition problem. Section 3 de-
scribes the tuning model for adaptive computations. Sec-
tion 4 presents the RSpring tuner and its built-in tuning al-
gorithms. Section 5 reports the evaluation on RSpring. Sec-
tion 6 compares our work with related efforts. Section 7 ends
this article with conclusion and future work.

2 Background and a motivating example

2.1 Adaptive computation

We leverage the well-accepted autonomic control loop pro-
posed in IBM’s autonomic computing white paper [2] to
be the basic model of adaptive computation. As shown in
Fig. 1, a control loop includes four abstract autonomic func-
tions: (1) monitor, which collects data from managed ob-
jects, e.g., the thread-pool states of a JEE server; (2) analyze,
which processes and analyzes the collected data to deter-
mine whether a system change is necessary, e.g., all threads
are busy and there are still waiting business requests, thus
new threads should be created for processing the waiting
requests; (3) plan, which makes a proper plan of changing
based on the analysis results, e.g., create five new threads
into the thread-pool; (4) execute, which puts the plan into
practice. The data shared by these functions are stored as
knowledge that includes rules, history data, etc. An auto-
nomic manager manages the objects by actually executing
the adaptive computation in accordance with such a control
loop. The manager retrieves data from the managed object
through sensor interfaces, and changes the behavior of the
object through effector interfaces. A touchpoint helps the
autonomic manager map manageability interfaces to the ob-
ject’s implementations. An autonomic manager itself also
provides the sensor and effector interfaces that can be used
by a high level orchestrating autonomic manager to manage
its states and behaviors. Therefore, it is possible to use an
orchestrating autonomic manager to tune the execution of
multiple sub-level autonomic managers.

3http://java.sun.com/developer/earlyAccess/j2ee/ecperf/
download.html.
4http://rubis.ow2.org.

Fig. 1 The autonomic control loop

Adaptive computation (AC) is the abstract representation
of the autonomic control loop described above. While a so
called mature AC [2] should include all the four functions
in the loop, other ACs can include only parts of the four
functions. For instance, a JEE server such as PkuAS pro-
vides several JMX MBean services [29] that expose the in-
ternal states of the server and the hosted applications in its
management console. Such a service can be considered as
an AC with only the monitor function. Another case is LTA
(the “Log/Trace Analyzer,” a component in the IBM auto-
nomic computing toolkit: Tivoli), which can be considered
as an AC with monitor and analyze functions.

The autonomic level [2] of an AC refers to the maximum
allowed completion level in the current iteration of its con-
trol loop. For instance, if LTA is allowed to run only the
monitor function in an iteration of its control loop, and is
allowed to run through all the two functions (i.e., monitor
and analyze) in the next iteration, we say that the autonomic
level of LTA in the former case is lower than that in the lat-
ter case. The level-changing from the former to the latter
is called upgrade, otherwise, degrade. Upgrading the auto-
nomic level of an AC is usually accompanied by increased
resource consumption because more functions can be run,
while degrading the level is usually accompanied by de-
creased resource consumption.

2.2 A motivating example

PkuAS [9] is an open source JEE server. It has several ACs
in the form of JMX MBean services such as Response Time
Monitor (RTM), Log Processor (LP), and Thread Pool Ad-
juster (TPA) [5]. RTM monitors the response time of each
client request and presents the results in the management
console. LP handles the logs. It continuously filters and ag-
gregates the concerned data in each log file, and stores them
into a database for further processing. For instance, if a seri-
ous system error appears in a log repeatedly in a very short
time, LP will mark this error, put it into the database, and

http://java.sun.com/developer/earlyAccess/j2ee/ecperf/download.html
http://java.sun.com/developer/earlyAccess/j2ee/ecperf/download.html
http://rubis.ow2.org
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Fig. 2 The ECperf results of PkuAS running with and without ACs

then send an alarm to administrators. TPA dynamically ad-
justs the thread-pool size of PkuAS in accordance with re-
sponse time and throughput [10].

ECperf [33] is a JEE benchmark application. Its EJB
components perform the typical e-business transactions
(e.g., products-browsing and ordering). Its test driver sim-
ulates client requests to ECperf’s EJBs deployed in a
JEE server. The driver has an adjustable integer parame-
ter called txRate, which determines the requests generation
rate. 1 txRate can be considered as 1,000 transactions per
minute approximately. Thus, the workload increases with
the increase of txRate.

We setup the following tests to see that if ACs can really
interfere with the processing of business functions when the
available resources are limited and competed. The testing
environment is: the PkuAS hosting ECperf, the test driver,
and the Oracle 9i database used by ECperf are each running
on a machine with Ubuntu 8.04; Intel Core Duo 1.66 GHZ;
2 GB; and 100 Mb/s. We use the txRate from 1 to 10 to get
the “response time of 90 % NewOrder,” which is the most
important test index of ECperf. Figure 2 presents the test-
ing results. In this figure, “No AC Runs” denotes the “pure”
PkuAS running with no ACs. “ACs Run” denotes PkuAS
running with TPA, LP, and RTM. Each of the three ACs is
executed always at its highest autonomic level in this test.
That is to say, TPA and LP stick to run through all the four
functions in each iteration of the autonomic control loop,
and RTM runs with the single monitor function being exe-
cuted. “ACs Run (stop RTM at 6)” denotes that we manually
stop RTM when txRate ≥ 6.

When txRate is 1 and 2, the available resources are rel-
atively abundant with regard to the resource needs of ACs
and business functions at the given workloads. Thus, we get
the same “response time of 90 % NewOrder” results in the
“No AC Runs” and “ACs Run” tests. However, when txRate
is above 3, the resources become scarce at the given work-
loads. In such cases, the ACs indeed compete with business

functions for the limited resources, which will surely inter-
fere with the processing of the latter. For instance, when
txRate is 6, the tested result in “ACs Run” is 141 % of that
in “No AC Runs” test. ACs can incur performance penal-
ties, but being a full-fledged autonomic JEE server, PkuAS
needs to run together with them. For instance, LP manages
logs and RTM records response time for administration. As
to TPA, what should be noted is that it manages the thread-
pool of PkuAS, which can improve the system performance
if the management effects exceed the runtime costs. That
is why we see in Fig. 2 that when txRate is above 6, the
performance of PkuAS running with ACs is much better
than that of the “pure” PkuAS. The “ACs Run” curve also
illustrates the main use of ACs: self-handling unexpected
extreme cases such as a sudden surge of client requests or
runtime exceptions.

The test of “ACs Run (stop RTM at 6)” in Fig. 2 proves
the worth of degrading or stopping the noncritical ACs to
support system performance when necessary, that is, de-
grade or stop the ACs that contribute little to system per-
formance improvement, and meanwhile have little impact
on the correct execution of the system if being degraded
or stopped. The curve shows that the system performance
in this case is even better than that of the “ACs Run” test
when txRate ≥ 6. For instance, when txRate is 10, the re-
sponse time of “90 % NewOrder” is 10.8 % lower, which
is a great improvement when under such a heavy work-
load. However, the manual tuning way may be ineffective
to achieve timely response to varying workloads. Therefore,
an automatic tuner is necessary.

In addition, different ACs should be treated differently
when being tuned. Each AC has its own specific features
and usually produces different gains with regard to system
performance. For example, if PkuAS does not run with TPA,
its performance could be poorer most of the time than run-
ning with TPA together. TPA can produce greater gains and
is more cost-effective than the other two ACs with regard to
system performance. Thus, it should better be run or its au-
tonomic level should be upgraded first if resources are avail-
able to do so. On the other hand, when executed under an ex-
tremely heavy load, TPA may be less effective than in usual
cases. Because only adjusting the thread-pool cannot mit-
igate the increasingly fierce resource competition between
business functions and ACs, and cannot offset the deteri-
oration of system performance caused by the heavy work-
loads. In such a case, a better strategy can be to degrade
or stop TPA for devoting its resource-holdings to business
functions. Thus AC tuning should have a global view, and
should consider the specific features and gain of each AC.

3 Tuning model

We propose an autonomic control loop-based model to tune
the resource allocation between business functions and ACs



J Internet Serv Appl (2012) 3:143–158 147

Table 1 Tuning an AC

Abstract function Triggering Tuning method

Monitor Time driven; Tuner
driven

Start/Stop

Analyze Time/monitor
driven; Tuner driven

Start/Stop

Plan Analyzer driven;
Tuner driven

Start/Stop

Execute Planner/analyzer
driven; Tuner driven

Start/Stop, or
tune the
execution cost

by upgrading and degrading the autonomic levels of ACs dy-
namically. The model considers the features and gain of an
AC. Based on the model, the RSpring tuner is implemented
for tuning the ACs of an autonomic JEE server when re-
sources are limited and competed.

3.1 The features of an adaptive computation

An AC includes either the completed autonomic control
loop (see Fig. 1), or just one or more functions in the loop
(i.e., monitor, analyze, plan, or execute). Table 1 lists the
tuning methods used in our model for the four abstract au-
tonomic functions that can exist in an AC. In this table, trig-
gering denotes in what condition or by which driving-force
the functions can be trigged to run or stop, and this table
lists the general triggers of each function (e.g., time-driven
denotes the monitor function will be driven to run at a partic-
ular point in time or at regular intervals). Other triggers such
as event driver or message driver are much more application
and context specific (thus not be shown in the table), but they
still conform to the tuning methods described below.

We can see from Table 1 that the tuning methods for mon-
itor, analyze, and plan functions are start or stop, while for
execute function are start, stop, and tune the execution cost.
Of course, these methods can be refined to include more
types, e.g., the monitor function can have a tuning method
for changing its running cost, which is similar to the execute
function. However, adding more methods will not alter the
basic tuning mechanism: degrade or stop an AC for spar-
ing system resources, and upgrade or run it for making full
use of resources. Similarly, although the four functions in
Table 1 can also be refined, it will make the tuning model
too specific. The four-function autonomic control loop has
already been widely accepted and practiced in both indus-
try and academia [3, 4]. Thus, the functions and methods
in Table 1 are sufficient to illustrate the tuning mechanism
and suitable for modeling the different ACs that exist in JEE
servers. Take the RTM of PkuAS as an example (Sect. 2.2),
its provided ResponseMonitoring function is modeled as the
above monitor function. The startListening and stopListen-
ing methods of its RTMServiceMBean interface are modeled

Table 2 The valid states of an AC

State Definition

S0 All the four autonomic functions in the control loop
are stopped

S1 Only the monitor function is started

S2 S1 is true and the analyze function is started

S3(E0) S2 is true and if a change is necessary, the execute
function is started

as the start/stop methods for this function. What should be
noted is that, as a control loop, if the monitor function is
stopped, the tuning of other functions will have no effect.
When the monitor function is started and the analyze func-
tion is stopped, there is no need to tune the plan or the exe-
cute function. Thus, the valid states of the control loop that
an AC runs through can be defined in Table 2.

As mentioned in Sect. 2.1, not all the four functions must
exist in an AC, thus an AC may only have parts of the states
listed above. In addition, there are two issues to note in Ta-
ble 2: (1) it does not have a separate state to represent the
plan function. Because the separation of the four functions
in the autonomic control loop is only a logical one, and a
survey [4] shows that many ACs rarely implement a sepa-
rate plan function (due to the fact that it is too costly to im-
plement a fully automatic plan function, or the plan and the
analyze functions are usually implemented as a whole, that
is, a monolithic analyze function). Therefore, for simplic-
ity’s sake, we omit the plan-related states; (2) the S3 state in
Table 2 can be further divided into substates such as E1 to
En according to different execution costs, where n depends
on the concrete control loop.

The autonomic level of an AC is identified by the highest
state allowed to occupy in an iteration of its loop. In gen-
eral, being the abstract representation of a control loop, the
resource costs of an AC in different levels can be sorted in
ascending order as follows:

S0 < S1 < S2 < S3(E0) < E1 < · · · < En

If the level of an AC is changed in the left-to-right or-
der in accordance with the above inequality, we call it up-
grade, otherwise, degrade. Tuning (i.e., upgrading or de-
grading) the level of an AC is implemented as setting a
proper highest allowed state for the corresponding control
loop. To simplify the work of the RSpring tuner, we assume
that the execution-costs of an AC (i.e., the resource costs re-
lated to the states ranging from E1 to En) are adjusted by the
AC itself, thus RSpring only switches the states between Si

(i ∈ [0,3]).
We can see from the above description that, the features

of ACs are quite different to that of business functions. For
controlling resource allocation and consumption, a business
function can only be started/stopped at S0, while an AC can
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be “natively” tuned at the four different autonomic levels,
i.e., S0, S1, S2, and S3. Thus, dynamically upgrade/degrade
the levels of ACs can be leveraged to tradeoff business func-
tions and ACs for guaranteeing system performance when
resources are limited and competed. The following two facts
further ensure its possibility and feasibility. First, many ACs,
especially those for monitoring and analyzing purposes, can
be carried out without real-time constraints [2]. In other
words, it is unnecessary to perform these computations at
predetermined or fixed intervals, or complete them at a par-
ticular point in time. For the mature ACs, if the execute
function is stopped, its monitor and analyze function can
still work, and the data being collected or preprocessed by
these two functions can be further processed when the exe-
cute function is started [2–4]. That is to say, an AC currently
with a relatively lower autonomic level can be upgraded by
running more functions in the future iteration of the control
loop, and thus consumes more system resources. Therefore,
it is possible to bring about flexible resource costs with rel-
atively little negative impact on ACs by upgrading or de-
grading them dynamically. Second, the varying workloads,
usually experienced by a JEE system, support the dynamic
execution of ACs. When the workload is relatively low or
within an acceptable range, it is reasonable to start running
the ACs and upgrade them to make full use of resources. On
the contrary, when the workload stays very high, it is feasi-
ble to stop the noncritical ACs (e.g., the RTM in Sect. 2.2)
or degrade them to save resources for processing more busi-
ness requests. Of course, the running of those critical ACs
(e.g., the one for self-healing and self-protecting) should be
guaranteed even if the total available resources are limited.
We will describe how to deal with such a case in detail in
the next section.

3.2 The gain of an adaptive computation

To tune multiple ACs, the relative importance and cost-
effectiveness of them should first be identified. We define
the gain of an AC to be the positive impacts with regard
to system performance, which are brought by the execution
of an AC under a given amount of resources. We leverage
the gain values to compare different ACs. What should be
noted is that: The gain of an AC is not limited to system
performance, but may include other benefits such as secu-
rity enhancing or reliability improving. However, since the
basic goal of our work is to guarantee performance when
resources are limited and competed, we consider only the
gains regarding performance. The gain value of an AC is di-
rectly proportional to the positive impacts (e.g., throughput
increasing) brought by this AC for business function pro-
cessing, and is inversely proportional to the side effects for
the correct execution of the whole system (e.g., error in-
creasing). In our model, these values are only used to com-

pare different ACs for tuning the most suitable one, but not
for exactly evaluating an AC.

Generally speaking, an AC with a higher gain should
be degraded, in frequency and extent, less than that with a
lower gain. Of course, there is such a possibility that an AC
never wants its level to be tuned (e.g., the critical one for
fault tolerance) even if it already has a very high gain value.
In such cases, our tuning model allows an AC to specify a
pinnedLevel Si (i ∈ [0,3]). Once reaching the pinnedLevel,
any tuning operations on the AC will have no effect. Our
model also defines the minLevel Si (i ∈ [0,3]) due to that
some ACs can only be degraded to a specific lowest level.
Therefore, if such an AC is degraded, its level cannot be
lower than the minLevel. In addition, the importance of an
AC to the system performance often relies on the states
of the managed objects, and thus changes at runtime. For
instance, garbage collection [28] will become much more
important and produce greater gains when free memory is
unavailable, and fault tolerance should be applied immedi-
ately if a critical error happened. Therefore, to prevent bring-
ing unexpected negative effects to an AC being tuned, our
model introduces the concept of SafeRange. We assume that
each managed object has an associated SafeRange that can
be expressed as something like: “the ratio between the free
threads and the total threads in the thread-pool should be
higher than 5 %.” If an AC is found that the current state
of its managed object exceeds the SafeRange, RSpring will
stop tuning the AC for some time, and thus the AC can up-
grade or degrade by itself to get back to the SafeRange.

Our work supports two ways to obtain the gain values:
(1) Automatic. To be specific, the automatic ways to ob-
tain the gain values are many. One often used is profiling.
Online profiling can obtain dynamic gain values, but its run-
ning cost is very expensive. Offline profiling is more suitable
in the context our work targeted. However, it still requires
much preparatory work such as probe-like instrument. What
should be noted is that, RSpring leverages only the results of
profiling (i.e., a sequence of ACs with comparable gain val-
ues). Thus the profiling itself is not our focus. In addition,
our work has another way to assign the gain values based
on an AC’s maturity [2] (which implies the importance and
cost-effectiveness of the AC to the whole system). For in-
stance, if an AC has all the four functions of the autonomic
control loop, while another AC has only the monitor func-
tion, the former will be assigned a bigger gain value than
the latter. (2) Manual. It requires administrators to assign
the gain values, because they are the best candidate to know
which AC can contribute most to system performance and
to what extent. Such labor-based work is not much and not
difficult, because the gain values are used for comparison,
which can be assigned approximately.

When tuning multiple ACs, their relationships should
also be considered. There are generally two kinds of rela-
tionships among ACs. The first is that an AC p uses the
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managed object of AC q . If q is degraded, its managed ob-
ject may be cleaned or closed without notifying p, which
may cause exceptions in p. In such cases, pinnedLevel and
minLevel can be assigned to prevent q from being tuned. The
other relationship is that an AC p uses the autonomic func-
tions of AC q , e.g., monitor. If the monitor function of q is
stopped, p will be affected. Although in our previous work
[24], we find that there is no such function-sharing cases in
the investigated JEE servers, e.g., PkuAS and JOnAS, the
tuning model uses the following strategy to address this is-
sue. That is, when an AC is tuned and the tuning requires
stopping an autonomic function that is shared by another
AC, the level of the formal AC is just degraded without
stopping the shared function. In a JEE server, the above two
relationships among ACs are often well documented in sys-
tem manuals such as the JOnAS v5 configuration guide [32].
Therefore, they can be identified with relatively little effort
by referring the manuals.

4 The RSpring tuner

We present RSpring for autonomic JEE servers. It is short
for “Resource Spring,” which means the tuner is act as a
“spring” to control the resource quotas between business
functions and ACs. RSpring implements several tuning al-
gorithms to decide when and to what extent an AC can be
tuned. These algorithms are designed by referring to the OS
process scheduling [25] with emphasis on the following is-
sues:

• AC tuning is similar to process scheduling, but they have
something in difference. First, process scheduling is to se-
lect a process to consume resources (e.g., CPU), while AC
tuning is to degrade (i.e., return some of the possessed re-
sources) or upgrade an AC (i.e., consume relatively more
resources). Second, a process has only the states related
to stop/start, while an AC may have more states (i.e., S0,
S1, S2, and S3). Thus, the process scheduling algorithms
are not readily applicable in our work.

• Although some relatively complex AC tuning algorithms
may be available, e.g., using feedbacks or Markov predic-
tion, they usually cost much more runtime resources [26].
In a resource limited and competed environment, these
resource-hungry algorithms should not be used, other-
wise the whole system performance may become even
worse [25, 26]. We have had tested the Markov prediction
scheduling algorithm in a trial experiment. The results are
not good enough because the runtime overhead brought
about by prediction will offset the tuning effects. In addi-
tion, by referring to process scheduling, we find that all
the scheduling algorithms are simple and effective. Our
tuning algorithms are also inspired by them, which are
representative, effective, and have a low overhead.

• The mechanism behind these algorithms is the same: en-
able a flexible tradeoff between business functions and
ACs by executing the latter dynamically when resources
are limited and competed.

4.1 Two concerns in algorithm design

Priority The essence of AC-tuning is a scheduling prob-
lem. In such a problem, priority is always the primary
concern. For instance, the priority in the First-In-First-Out
(FIFO) scheduling is the time of object-arriving. Even in the
Round Robin scheduling, the priority of each scheduled ob-
ject is implicitly considered (i.e., the priority values are the
same). Therefore, the priority of each AC is also the primary
concern in our tuning algorithms, and we use the gain value
of each AC as its priority of tuning. Additionally, by consid-
ering the features of an AC (Sect. 3.1), the priority concern
can be manifested at two representative granularity levels:
the single state of AC (i.e., fine-grained) and the AC as a
whole (i.e., coarse-grained). For instance, there are two ma-
ture ACs: L and H, and the gain of L is lower than that of
H. “priority highlighted at AC state” means if L is degraded
from S3 to S2 (i.e., in fine-grained) before H, then it will be
upgraded from S2 to S3 after H; “priority highlighted at AC”
means if L is degraded from S3 to S0 (i.e., in coarse-grained)
before H, then it will be upgraded from S0 to S3 after H, al-
though it may be upgraded from S0 to S1 before H.

Fairness The second important concern is fairness. How
to manifest priority upon fairness is challenging. Also, use
L and H as an example, if considering only priority, L will be
degraded more and upgraded less than H. However, as de-
scribed in Sect. 3.2, the importance and cost-effectiveness of
L may change at runtime. Although, the pinned-Level, min-
Level, and SafeRange can be used to address the dynamic
gain issue, they cannot prevent the situation that: L will al-
ways be degraded while H will always be upgraded. If we
consider such a case is unfavorable, then how to apply fair-
ness to prevent it happening? Similarly, by considering the
features of an AC, our tuning algorithms apply fairness at
two representative granularity levels: the single state of AC
and the AC as a whole. Use L and H as an example again:
“fairness highlighted at AC state” means if L is degraded
from S3 to S2 (i.e., in fine-grained) before H, then it will be
upgraded from S2 to S3 before H; “fairness highlighted at
AC” means if L is degraded from S3 to S0 (i.e., in coarse-
grained) before H, then it will be upgraded from S0 to S3

before H, although it may be upgraded from S0 to S1 af-
ter H.

In general, the priority and fairness represent the “unity
of opposites.” For instance, in the CLAT algorithm described
below and shown in Fig. 3, priority is highlighted at the
granularity of AC state. Fairness is also manifested in the
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Fig. 3 The autonomic-level changing diagram of ACs (“H” with a high gain and “L” with a low gain) by using different tuning algorithms

Fig. 4 The CLAT algorithm (the default tuning algorithm of RSpring)

same algorithm: if an AC is being degraded, it will never be
degraded again until the other ACs with higher gains are de-
graded. For another instance, in the NLAT algorithm where
fairness is highlighted at the granularity of AC state, prior-
ity is also manifested: an AC with a high gain value will be
degraded after the AC with a low gain value (please see the
next section).

4.2 Algorithms in detail

4.2.1 Covered load-amortizing tune (CLAT): the default
algorithm of RSpring

CLAT is an algorithm in which “priority” is highlighted at
the granularity of “AC State.” It is presented in Fig. 4. The
algorithm supports the following tuning features:

1. Controlled by RSpring, an AC with a high gain value is
upgraded before and degraded after those ACs with rela-
tively low gain values.

2. If an AC is upgraded by RSpring, the new level of this
AC must be lower than or at most equal to the lowest
level of those ACs with higher gain values; and if an AC

is degraded by RSpring, the new level of this AC must be
higher than or at least equal to the highest level of those
ACs with lower gain values.

3. RSpring must not upgrade/degrade the same AC again
until it upgrades/degrades all the other ACs. This feature
will not work when the SafeRange constraint of an AC is
violated (Sect. 3.2) and meanwhile the results of the self
level-changing conflict with the above two features.

The details of the CLAT Algorithm are as follows

Data structure: Two double-ended queues (abbreviated to
deque) that are used to contain ACs:

• remainDeque: contains the ACs that have not been
tuned since the last time the algorithm is executed.

• changedDeque: contains the ACs that have been
tuned since the last time the algorithm is executed.

Input:

• A list of ACs with their current levels are all in S0

(see Sect. 3.1). These ACs have been sorted in de-
scending order according to each AC’s gain value.
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All these ACs are copied to the remainDeque in se-
quence when initializing RSpring.

• A system load metric (e.g., CPU utilization) and
the corresponding thresholds: lowerBound and up-
perBound (e.g., CPU utilization between 75 % and
85 %).

Helper methods:

• getCurLoad (metric): get the current system
load measured by the given metric.

• calibrateACPos (tuningOperation): ad-
just the position of each AC in between the remain-
Deque and the changedDeque according to an AC’s
current level, gain value, and the tuning operation to
be performed. This method is used to guarantee the
tree tuning features of the algorithm. As described
in Sect. 3.2, an AC can upgrade or degrade by it-
self without the control of RSpring when the state
of the managed object exceeds its SafeRange, and
thus may interfere with the three features. There-
fore, calibration is necessary.

• inSafeRange (AC): given an AC, check if the
state of the managed object is in its SafeRange.

• initialized (AC): check if an AC has been set
to its initial level.

• tuning (AC, tuningOp): upgrade, degrade, or
initialize an AC.

• swap (Deque a, Deque b): swap the given two
deques.

The CLAT algorithm is briefly explained as follows:
Line 1: get the current system load (curLoad) according to a
given load metric (e.g., CPU utilization). Line 2∼21: if the
curLoad is lower than the predefined lowerBound, the algo-
rithm will upgrade ACs in accordance with the three tun-
ing features described above. Line 22∼38: if the curLoad is
higher than the predefined upperBound, the algorithm will
degrade ACs in accordance with the three tuning features.
The complexity of the CLAT algorithm is O(n), where n is
the number of ACs being tuned. Thus, it is affordable to run
in a resource limited and competed environment (the run-
time cost of CLAT will be shown in Sect. 5).

The autonomic-level changing diagram of CLAT is
shown in Fig. 3(a). In this figure, H and L are both the so-
called mature ACs. H’s gain value is higher than L’s. We
can see that the curve-changing patterns reflect the three
tuning features of CLAT described above. In CLAT, “prior-
ity” is highlighted at the granularity of “AC state.” Because

the curve of H covers the curve of L in every change (i.e.,
upgrade/degrade) of AC state. In addition, fairness is also
manifested in CLAT due to H has to be degraded before L
being degraded once again. That is why CLAT is named as:
Covered Load-Amortizing Tune.

4.2.2 Covered carry-through tune (CCTT)

CCTT is an algorithm in which “priority” is highlighted at
the granularity of “AC.” It is presented in Fig. 5. The algo-
rithm supports the following two tuning features:

• Controlled by the tuner, an AC with a high gain value is
upgraded before and degraded after those ACs with rela-
tively low gain values.

• Before an AC being upgraded by the tuner, each of the
other ACs with higher gain values must have been up-
graded to its highest level (e.g., S3), and all the other ACs
with lower or equal gain values must not be tuned until
the upgrading of the current AC to its highest level is fin-
ished; before an AC being degraded by the tuner, each of
the other ACs with lower gain values must have been de-
graded to its lowest level (e.g., S0), and all the other ACs
with higher or equal gain values must not be tuned un-
til the degrading of the current AC to its lowest level is
finished. This feature will not work when the SafeRange
constraint of an AC is violated and meanwhile the results
of the self level-changing conflict with the first feature.

The details of the CCTT Algorithm are as follows The data
structure, input, helper methods of CCTT are the same as
that of CLAT in Sect. 4.2.1. However, the calibrateACPos
method has a different internal implementation, which is
used to guarantee the two specific tuning features of CCTT.
There are two additional helper methods in CCTT:

• isAtHighestLevel (AC): check if an AC has been
set to its highest autonomic level.

• isAtLowestLevel (AC): check if an AC has been set
to its lowest autonomic level.

The differences between CCTT and CLAT are: when up-
grading, CCTT will explicitly check if the current AC being
tuned is at its highest adaptive level (Line 12). If the check
returns false, the current AC will prepare for the next round
tuning by being pushed back to remainDeque rather than
always being added to changedDeque as in CLAT. Similar
characteristics can be found in Line 28 when degrading is
performed.

Fig. 5 The differences of the
CCTT algorithm compared with
CLAT in Fig. 4



152 J Internet Serv Appl (2012) 3:143–158

The autonomic-level changing diagram of CCTT is
shown in Fig. 3(b). We can see that the curve-changing pat-
terns of H and L in this figure reflect the two tuning features
of CCTT described above. We can also see that in CCTT,
“priority” is highlighted at the granularity of “AC.” Because
the curve of H remains at its highest level S3 when the curve
of L degrading from S3 to S0, and because L can only be
upgraded until H has been upgraded to its highest level (i.e.,
carry through). That is why CCTT is named as: Covered
Carry-Through Tune.

4.2.3 Other algorithms

RSpring has implemented several other algorithms. For
instance, the NLAT (Noncovered Load-Amortizing Tune)
shown in Fig. 3(c) is similar to the CLAT algorithm in
Fig. 3(a). However, we can see that in NLAT, “fairness” is
more highlighted than that in CLAT. Because the curve of
L can be upgraded before the curve of H (i.e., the curve of
H does not always cover that of L). That is why NLAT is
named as: Noncovered Load-Amortizing Tune. For another
instance, the NCTT (Noncovered Carry-Through Tune) in
Fig. 3(d) is similar to CCTT in Fig. 3(b). Their main differ-
ence is that in NCTT, “fairness” is highlighted at the gran-
ularity of “AC.” Because in NCTT the curve of L can be
upgraded before the curve of H, and because L will be up-
graded all the way to its highest level before H can be up-
graded.

The algorithms in Fig. 3 are all representative ones to de-
cide when and to what extent an AC can be tuned. However,
it is difficult to tell which algorithm is always better than
others (see the experiments in Sect. 5). For instance, when
the upper bound of the system load is exceeded, whether
RSpring should stop an AC immediately and completely
(similar to CCTT and NCTT), or degrade two or more ACs
in sequence (similar to CLAT and NLAT). This is an open
issue. The reason behind is that the runtime effects of a tun-
ing algorithm is affected by many factors, e.g., the system
workload and the current autonomic-level of each AC. The
detailed comparison of these algorithms is not the focus of
this article and will be addressed in the future work.

4.3 The implementation of RSpring

PkuAS is built upon the JMX specification [29]. Its ACs
are a set of MBean services. Thus, we implement RSpring
also as an MBean service of PkuAS, so that it can get the
states of the ACs and control their behaviors through MBean
interfaces. JOnAS v5 is built upon JMX and OSGi [30].
Similarly, RSpring is implemented as a service of JOnAS.
The other built-in services of JOnAS take the form of OSGi
service bundles, which can be regarded as the ACs in our
work. The stop/start states of a service bundle can be viewed

as the S0 and the Si (i ∈ [1,3]) level of an AC, respec-
tively. For instance, RSpring uses the stop/start methods of
the “org.ow2.jonas.discovery.base.DiscoveryServiceImplM
Bean” interface to tune the discovery service of JOnAS
at the level of S0. The activation and deactivation of the
OSGi/JMX methods supplied in such a bundle help to re-
fine the autonomic levels into the specific S1, S2, or S3. For
instance, the “disableEJBLogger” and “enableEJBLogger”
methods of “org.ow2.jonas.audit.logger.AuditLogCompo
nentMBean” can be used to tune the audit service of JOnAS
from S0 to S1 and back forth.

In practice, we find that CPU/memory are the most criti-
cal resources in competition between business functions and
ACs in most cases [6, 18, 20, 23]. The utilization of these
resources can be used as indicators of system loads. There-
fore, at present, RSpring supports CPU/memory utilization
as a system load metric.

RSpring has its configuration file for PkuAS and JOnAS
respectively. To make it work, several parameters should be
assigned such as the controlled classes of the AC-compliant
JMX/OSGi services identified by administrators, the spe-
cific methods in these classes to tune the corresponding
ACs at different autonomic levels, and the lower and upper
bounds for system load metric. The upper bound should take
into account the unpredictable burst of business requests.
The gap between the lower and the upper bound should not
be too large. Otherwise, very few ACs could be carried out
simultaneously. On the other hand, to avoid CPU or memory
thrashing, the gap should not be too small either. Therefore,
to assign appropriate thresholds, the experience of a system
administrator plays an important role, and should take into
account the resources hold by the whole JEE system. Some
trials are also necessary before assigning these parameters.
The newest version of RSpring can be downloaded at the
website of PkuAS.

5 Evaluation

We setup two experiments to evaluate the effectiveness of
RSpring by using industry standard JEE benchmark appli-
cations and autonomic JEE servers. The first experiment
runs ECperf in PkuAS, and uses RSpring to tune the ACs
of PkuAS described in the motivating example. The second
runs RUBiS in JOnAS, and uses RSpring to improve the sys-
tem performance by tuning the AC-compliant OSGi services
of JOnAS.

5.1 ECperf + PkuAS

5.1.1 Experimental setup

The ACs of PkuAS used in this experiment are RTM, LP,
and TPA, which have been described in Sect. 2. Their as-
signed gain values are 10, 20, and 30, respectively. RTM
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Fig. 6 The response time results of ECperf when PkuAS running with and without RSpring

is assigned the lowest gain value, because it produces the
lowest gains with regard to system performance comparing
with the other two. RTM has only a monitor function, so its
possible autonomic levels are S0 and S1. LP’s possible lev-
els are S0, S1, S2, and S3. TPA is assigned with the highest
gain value. Thus, it is guaranteed to run or upgrade first if
resources are available to do so. The levels of TPA are also
S0, S1, S2, and S3. TPA has defined its SafeRange as be-
low: the current busy threads should not exceed 95 % of all
the threads in the thread-pool. If this constraint is violated,
RSpring will stop tuning TPA for some time. Thus, TPA can
upgrade or degrade by itself to get back to the SafeRange via
adjusting the thread-pool size.

The experiment setup remains unchanged as described in
Sect. 2. The tested txRate of ECperf is from 3 to 10 and
with the sequence 3, 5, 7, 9, 10, 8, 6, 4 to simulate heavy
and varying workloads. Such a sequence (with the “normal
distribution” pattern) can best simulate the most-appeared
workloads in enterprise environment [27]. The testing time
lasts 80 minutes. Every 10 minutes, the driver issues a new
test with a new txRate. We use CPU utilization as the system
load metric, because CPU is the most critical resource in
the scenario of ECperf. The corresponding thresholds are
set to 75 % (lower bound) and 85 % (upper bound) of CPU
utilization, respectively.

5.1.2 Performance of ECperf

We compare the “response time of 90 % NewOrder” results
of ECperf in the following three cases: (1) PkuAS runs with-
out ACs, i.e., “pure” PkuAS; (2) it runs with all the three
ACs described above; (3) and it runs with the ACs and also
with RSpring. Figure 6 shows the results. In this figure, the
tested txRate sequence is arranged in ascending order, so
that we can compare it with Fig. 2, and show the effects
of RSpring clearly. From Fig. 6, we can see that the re-
sults of “RSpring” are generally much better than that of

the “ACs Run (no RSpring)” test. Additionally, the perfor-
mance penalty of RSpring is quite small. For instance, when
txRate is 6, the response time of “RSpring (using CLAT al-
gorithm)” is 2.4, which is just 0.2 seconds higher than that of
the “pure” PkuAS. We can get the same conclusion from the
tests of RSpring using other algorithms. Being a full-fledged
autonomic JEE server, PkuAS needs to run with ACs, and
thus RSpring is also necessary to guarantee the performance
of the whole system.

The frequency distribution of the NewOrder response
times is as follows (see the figure inside Fig. 6). If RSpring
uses the default CLAT algorithm and when txRate is 6, there
are 412 NewOrder transactions with their response times at
0.2 seconds. However, if PkuAS runs with ACs but with-
out RSpring, the number of this kind of transactions is only
167. The average response time with and without RSpring
are 0.983 and 1.572, respectively, and the “response time of
90 % NewOrder” are 2.4 and 3.1, respectively. These values
indicate that RSpring indeed improves the system perfor-
mance by tuning ACs.

From Fig. 6, we can also draw the following three con-
clusions: (1) PkuAS running with ACs can get a better sys-
tem performance than the “pure” PkuAS when under heavy
workloads (e.g., when txRate is above 6). This is because
ACs such as TPA take effects to enable PkuAS do self-
management for handling extreme cases. (2) PkuAS running
with ACs and RSpring together can get an even better sys-
tem performance when under heavy workloads. Using the
“txRate = 10” test for example, the response time of PkuAS
running with RSpring is 6.9 (corresponding to the “RSpring
(using CLAT)” curve). This value is about 47 % of the re-
sponse time measured in the “pure” PkuAS test, and is 83 %
of the time measured in the “ACs Run (no RSpring)” test.
Such a performance improvement is due to the dynamic de-
grading and upgrading of the autonomic levels of the ACs,
which is done automatically by RSpring. (3) The test results
of RSpring with different tuning algorithms are close to each
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other. We cannot tell which one is always better than others,
but we can tell that they all bring better results than the tests
of “ACs Run (no RSpring).” The reason behind is that all
the algorithms reflect the same tuning mechanism: enable
a flexible tradeoff between business functions and ACs by
executing the latter dynamically when resources are limited
and competed.

The autonomic-level changes of the three ACs in the case
of PkuAS running with RSpring (using the default CLAT al-
gorithm) are shown in Fig. 7. We can see from this figure
that with RSpring, the levels of the ACs change up or down
continuously with the varying workloads, which bring about
flexible resource costs. Without RSpring, however, the auto-
nomic levels will stick to their original states all the time,
thus incur an approximately fixed resource costs regard-
less of the ever-changing workloads. In addition, Figs. 7(a)
and (b) show the two different changing patterns of the
autonomic-level curves: no AC violates its SafeRange con-
straint and an AC violates its SafeRange constraint.

• The curves in Fig. 7(a) belong to the no-violation pattern.
They have the following characteristics: (1) the TPA curve
always decreases after and increases before the LP and
RTM curves, while the RTM curve always behaves in the
opposite way; (2) the TPA curve covers both the LP and

RTM curves all the time, and the LP curve always covers
the RTM curve; (3) in a round of tuning, the TPA curve
will not increase/decrease to a new level once more until
the other two curves have both increased/decreased. Thus,
we see that these characteristics reveal and conform to the
three tuning features of the CLAT algorithm in Sect. 4.2.

• The TPA curve in Fig. 7(b) shows that TPA has expe-
rienced the violation of its SafeRange constraint when
txRate is 7 (during the timeline of the 25 ∼ 27 and 28 ∼
29 minutes). In such a case, RSpring will stop tuning TPA
for a fixed time interval (e.g., 30 seconds). TPA will auto-
matically adjust the size of the thread-pool (i.e., its man-
aged object) for getting back to its SafeRange, and thus
it changes the autonomic level directly to S3 by itself as
shown in this figure.

As throughput is also an important indicator of system
performance, we present the throughputs comparison be-
tween PkuAS running with/without RSpring and without the
three ACs (i.e., the “pure” PkuAS) respectively in Fig. 8. We
can see from this figure that the throughputs with RSpring
are close to the ones without RSpring, and are also close
to that of the “pure” PkuAS when txRate is relatively low
(e.g., 3, 4, and 5). However, when txRate increases (e.g.,
6, 7, 8, 9, and 10), the former becomes much higher than

Fig. 7 The autonomic-level changes of the three ACs when RSpring using the default algorithm

Fig. 8 The total numbers of successful requests to ECperf when PkuAS running with and without RSpring
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Table 3 The experimented AC-compliant OSGi/JMX services of JOnAS v5.2

Name Description AC level Controlled classes

wm It models a work manager, which is
similar to the TPA of PkuAS. It
allows efficient pooling of thread
resources and controls over thread
usage

S0, S1, S2, S3
minLevel: S1

JWorkManager
JWorkManagerMBean

audit It is used to audit the ejb and web
transactions

S0, S1 AuditService
AuditLogComponentMBean

wc It periodically cleans up the work
directory

S0, S1, S2, S3 JOnASWorkCleanerService
WorkCleanerServiceMBean

discovery It periodically discoveries the JOnAS
domain

S0, S1, S2 DiscoveryService
DiscoveryServiceMBean

resourcemonitor It periodically checks and reloads
resources

S0, S1, S2, S3 JOnASResourceMonitorService
ResourceMonitorServiceMBean

depmonitor It monitors the application’s
deployment process

S0, S1 DeployableMonitorService

versioning It checks and redeploys applications S0, S1, S2, S3 VersioningServiceImpl
VersioningServiceImplMBean

the latter two. For instance, when txRate is 6, the success-
fully processed requests with RSpring (using CLAT) are 523
higher than that of “without RSpring” and 217 higher than
that of the “pure” PkuAS. The differences increase to 1208
and 2210, respectively, when txRate is 10. That is to say,
compared with PkuAS running with ACs, RSpring improves
the system performance by 13.6 % with the same amount
of resources. That is because the system resources such as
CPU spared by degrading the ACs are used for processing
more business requests, and thus brings higher throughputs.

5.2 RUBiS + JOnAS

5.2.1 Experimental setup

JOnAS [31] is an autonomic JEE server. It performs sev-
eral AC-compliant OSGi/JMX services. In a JOnAS v5.2
instance, such services include wm, audit, wc, etc. For in-
stance, the wm service of JOnAS is just like the TPA of
PkuAS. It provides a facility to submit work instances for
execution. The submitted work is carried out by a free work-
thread in the thread-pool managed by wm. When there are
waiting works and the current pool size does not exceed the
max pool size, wm will automatically create a new work-
thread to execute the waiting work. Always creating new
threads in a resource limited and competed environment will
intensify resource competition, and can sometimes make the
system performance be even worse. Therefore, in such a
case, wm should be tuned to degrade its autonomic level
for sparing resources for business functions. However, wm
has to be activated in most cases for the normal execution
of the system. Thus, in our experiment, wm has the high-
est gain value and defines its SafeRange that “maxPoolSize-
curPoolSize ≥ 3 and maxWaitingTime(work) < 60 s”, so

that it can be guaranteed to work if resources are avail-
able and if its SafeRange is violated. Different to the TPA
of PkuAS, the wm service has defined its minlevel to be S1

(see Sect. 3.2), because it cannot be stopped due to the spe-
cific requirement of the ejb3 service of JOnAS v5 [32]. For
another instance, the audit service logs the information of
ejb transactions, which contains method name, process time,
and method stack trace, etc. This service is like the RTM of
PkuAS. RSpring for JOnAS will tune it by the start/stop,
enableEJBLogger/disableeEJBLogger methods of the cor-
responding AuditLogComponentMBean interface. The other
services participated in our experiment are shown in Ta-
ble 3.

In this experiment, we run the RUBiS [34] benchmark
application in JOnAS and use RSpring to tune the ACs
shown in Table 3. RUBiS simulates an online auction web-
site. Workload injection in RUBiS is configured mainly by
three parameters: request transition table, client number, and
session run time. There are two types of transition table:
read-only and read-write, which indicate the transitions of
client requests such as from product browsing to bidding.
The client numbers used for read-only transition are from
100 to 1500, and for read-write transition are from 100 to
700. The session run time is set to 10 minutes for each client
number. Three machines are used in the experiment. Their
configurations are: Ubuntu 8.04; Intel Core Duo 1.66 GHZ;
1 GB; and 100 Mb/s. One machine runs the test driver, one
runs JOnAS v5.2 hosting the EJB3.0 implementation of RU-
BiS v1.4.3, and the third machine runs the MySQL v5.5
database used by RUBiS. In the experiment, the database
contains more than forty thousand items and one hundred
thousand customer records. Due to space limitation, the test-
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Fig. 9 The performance results of RUBiS using the read-only request transition type. Error bars show the standard deviation from the mean

Fig. 10 The performance results of RUBiS using the read-write request transition type. Error bars show the standard deviation from the mean

ing results in this section just show RSpring using the de-
fault CLAT tuning algorithm. The tests of the other algo-
rithms can be found on the RSpring website, which can get
the same conclusions as below.

5.2.2 Performance of RUBiS

Figure 9(a) shows the throughputs of RUBiS tested by the
read-only type of request transitions. From this figure, we
can see that when the workload is relatively low, e.g., 100
clients, the system performances with and without RSpring
are almost the same. However, when the workloads become
very heavy, the system performance with RSpring is much
better. For instance, when there are 1400 clients, the range of
the error bar for the throughput value in the “with RSpring”
test does not overlap with that of the “without RSpring” test,
and the average throughput with RSpring is 19.23 % higher
than that without RSpring. The autonomic-level change pat-
terns of the ACs in JOnAS are similar to that shown in Fig. 7,
which can get the same conclusions as in the PkuAS ex-
periment. The average response times of client requests are

shown in Fig. 9(b). We can see that with RSpring, the re-
sponse time is shorter than that without RSpring when the
system load is heavy, and the error bar for the test with
RSpring rarely overlap with that of the without RSpring test,
which indicates the truly performance improvement of the
system.

Figure 10 shows the performance of RUBiS when the
clients performing the read-write type of request transitions.
Similarly, we can find that with RSpring, RUBiS performs
much better than that without RSpring; the throughputs im-
provement can be as high as 11.7 % when there are 500
testing clients.

From both Figs. 9 and 10, we can also see that although
the system performance becomes poorer when under ex-
tremely heavy workloads (e.g., when the clients number
greater than 1400 in Fig. 9 and greater than 500 in Fig. 10),
RSpring can mitigate the effects of deterioration. Therefore,
it is effective to run RSpring with JOnAS-like JEE servers
when the whole system is executed in a resource limited en-
vironment.
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6 Related work

Our work, premised on the assumption that resources are
limited and competed, supports a flexible tradeoff between
ACs and business functions via the dynamic tuning of ACs.
It belongs to the self-optimization category of system per-
formance guaranteeing.

IBM WebSphere provides a mechanism to adjust the ap-
plication execution environment according to a preferred
usage profile [19]. Diao et al. [20] furnishes the Apache
server with self-optimizing ability to keep CPU and mem-
ory at a desire level by tuning two parameters of the server.
Yang et al. [21] propose a profile-based approach to devel-
oping just-in-time scalability for JEE applications. In this
approach, expert’s knowledge of application scaling is cap-
tured as profiles. Guided by profiles, an AC-like profiling
driver automates the scaling of applications to ensure per-
formance and improve resource utilization, e.g., increases or
decreases the EJB instances constituting a JEE application.
Although these works use ACs to satisfy end user’s needs or
achieve a desired system state, they ignore the costs of ACs.
Our work can be referred to as a self-optimization mecha-
nism by considering the costs of ACs together.

Several studies on AC have considered performance
penalty [22, 28]. For instance, the JVM garbage collector
takes performance cost of garbage collection into account
by delaying collection or collecting only parts of the un-
reachable objects at a time. Such kinds of self-optimization
are at a low level and inside ACs, while our approach con-
siders self-optimization at a relatively high level and among
ACs. These two approaches are complementary and can be
combined into the design of JEE servers.

In the research of runtime verification, probes are instru-
mented into the programs being verified. Such a probe can
capture and send back the interested events occurred dur-
ing the execution of the program. To reduce the cost of dy-
namic analysis, studies such as [13] exploit the results of
static typestate analyses to reduce the number of probes and
the amount of information to be recorded. Thus, we can view
the probes as the monitor-level ACs, which can be tuned by
RSpring.

A utility based approach has been used for allocating
resources among different computations [8, 14]. The main
idea is to first use a utility function to express the rela-
tionship between high level business goals and system per-
formance, then use an empirical model to correlate system
performance with resources allocation, and finally combine
these two functions for representing a utility model that
guides the allocation of resources. The main difficulty of ap-
plying such an approach is to obtain the empirical model that
exactly represents the relationship of resource allocation and
performance. In addition, the runtime resource costs of the
utility functions are usually high [14]. Therefore, our work

does not use utility functions for tuning ACs at present, es-
pecially when targeting a resource limited environment.

Several studies such as [7, 15, 16] try to guarantee the
overall system performance by upgrading and degrading the
service levels of business functions. When the system load
is heavy, these functions will degrade their service levels for
achieving a steady and high throughput, e.g., return the top
100 search results to a client instead of all the results, return
the results without sorting, or just decrease the search qual-
ity. Studies such as [17] leverage admission control to guar-
antee high system performance. The application will refuse
to serve any new incoming client requests when the system
is under heavy stress. Other studies such as [18] schedule
incoming requests to the order in which concurrent requests
can be served. For instance, the application will distinguish
the type of client requests and will first serve the ones with
the shortest remaining processing time. In this way, more re-
quests can be served. All the above approaches require the
applications to be modified or built from the start to have
the capability of dynamic service-level negotiation. Our ap-
proach changes the levels of ACs instead of business func-
tions, and thus leaves the business logic intact.

7 Conclusion and future work

With the increasing use of autonomic computing technolo-
gies, JEE servers are implemented with more and more
adaptive computations. It brings challenges to resource al-
location for achieving the performance goals because of re-
source competition between business functions and adap-
tive computations, especially when the whole system is un-
der heavy load. In this article, we have presented a tuning
model for the performance improvement of applications in
JEE servers. This model is built on the autonomic control
loop, and the features and gain of an adaptive computation
have been considered in the model. Based on the model, the
autonomic level of an adaptive computation is upgraded or
degraded dynamically so as to control its resource cost. We
have implemented the RSpring tuner for JEE servers such
as PkuAS and JOnAS, which has been evaluated by ECperf
and RUBiS benchmark applications respectively. The results
show that RSpring can effectively improve the application
performance by 13.6 % in PkuAS and 19.2 % in JOnAS
with the same amount of resources.

In the future, we plan to build the RSpring tuner for other
JEE servers such as JBoss and Glassfish; investigate other
suitable tuning algorithms; and try to integrate this work
with the work of allocating extra resources, especially in
a virtualized environment such as a cloud computing plat-
form.
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