3,190 research outputs found

    Developing our capability in cyber security: academic centres of excellence in cyber security research

    Get PDF

    Enhancing cyber assets visibility for effective attack surface management : Cyber Asset Attack Surface Management based on Knowledge Graph

    Get PDF
    The contemporary digital landscape is filled with challenges, chief among them being the management and security of cyber assets, including the ever-growing shadow IT. The evolving nature of the technology landscape has resulted in an expansive system of solutions, making it challenging to select and deploy compatible solutions in a structured manner. This thesis explores the critical role of Cyber Asset Attack Surface Management (CAASM) technologies in managing cyber attack surfaces, focusing on the open-source CAASM tool, Starbase, by JupiterOne. It starts by underlining the importance of comprehending the cyber assets that need defending. It acknowledges the Cyber Defense Matrix as a methodical and flexible approach to understanding and addressing cyber security challenges. A comprehensive analysis of market trends and business needs validated the necessity of asset security management tools as fundamental components in firms' security journeys. CAASM has been selected as a promising solution among various tools due to its capabilities, ease of use, and seamless integration with cloud environments using APIs, addressing shadow IT challenges. A practical use case involving the integration of Starbase with GitHub was developed to demonstrate the CAASM's usability and flexibility in managing cyber assets in organizations of varying sizes. The use case enhanced the knowledge graph's aesthetics and usability using Neo4j Desktop and Neo4j Bloom, making it accessible and insightful even for non-technical users. The thesis concludes with practical guidelines in the appendices and on GitHub for reproducing the use case

    The future of Cybersecurity in Italy: Strategic focus area

    Get PDF
    This volume has been created as a continuation of the previous one, with the aim of outlining a set of focus areas and actions that the Italian Nation research community considers essential. The book touches many aspects of cyber security, ranging from the definition of the infrastructure and controls needed to organize cyberdefence to the actions and technologies to be developed to be better protected, from the identification of the main technologies to be defended to the proposal of a set of horizontal actions for training, awareness raising, and risk management

    Vulnerabilities detection using attack recognition technique in multi-factor authentication

    Get PDF
    Authentication is one of the essentials components of information security. It has become one of the most basic security requirements for network communication. Today, there is a necessity for a strong level of authentication to guarantee a significant level of security is being conveyed to the application. As such, it expedites challenging issues on security and efficiency. Security issues such as privacy and data integrity emerge because of the absence of control and authority. In addition, the bigger issue for multi-factor authentication is on the high execution time that leads to overall performance degradation. Most of existing studies related to multi-factor authentication schemes does not detect weaknesses based on user behavior. Most recent research does not look at the efficiency of the system by focusing only on improving the security aspect of authentication. Hence, this research proposes a new multi-factor authentication scheme that can withstand attacks, based on user behavior and maintaining optimum efficiency. Experiments have been conducted to evaluate this scheme. The results of the experiment show that the processing time of the proposed scheme is lower than the processing time of other schemes. This is particularly important after additional security features have been added to the scheme

    Semantic Detection of Targeted Attacks Using DOC2VEC Embedding

    Get PDF
    The targeted attack is one of the social engineering attacks. The detection of this type of attack is considered a challenge as it depends on semantic extraction of the intent of the attacker. However, previous research has primarily relies on the Natural Language Processing or Word Embedding techniques that lack the context of the attacker\u27s text message. Based on Sentence Embedding and machine learning approaches, this paper introduces a model for semantic detection of targeted attacks. This model has the advantage of encoding relevant information, which helps to improve the performance of the multi-class classification process. Messages will be categorized based on the type of security rule that the attacker has violated. The suggested model was tested using a dialogue dataset taken from phone calls, which was manually categorized into four categories. The text is pre-processed using natural language processing techniques, and the semantic features are extracted as Sentence Embedding vectors that are augmented with security policy sentences. Machine Learning algorithms are applied to classify text messages. The experimental results show that sentence embeddings with doc2vec achieved high prediction accuracy 96.8%. So, it outperformed the method applied to the same dialog dataset

    Performance Metrics for Network Intrusion Systems

    Get PDF
    Intrusion systems have been the subject of considerable research during the past 33 years, since the original work of Anderson. Much has been published attempting to improve their performance using advanced data processing techniques including neural nets, statistical pattern recognition and genetic algorithms. Whilst some significant improvements have been achieved they are often the result of assumptions that are difficult to justify and comparing performance between different research groups is difficult. The thesis develops a new approach to defining performance focussed on comparing intrusion systems and technologies. A new taxonomy is proposed in which the type of output and the data scale over which an intrusion system operates is used for classification. The inconsistencies and inadequacies of existing definitions of detection are examined and five new intrusion levels are proposed from analogy with other detection-based technologies. These levels are known as detection, recognition, identification, confirmation and prosecution, each representing an increase in the information output from, and functionality of, the intrusion system. These levels are contrasted over four physical data scales, from application/host through to enterprise networks, introducing and developing the concept of a footprint as a pictorial representation of the scope of an intrusion system. An intrusion is now defined as “an activity that leads to the violation of the security policy of a computer system”. Five different intrusion technologies are illustrated using the footprint with current challenges also shown to stimulate further research. Integrity in the presence of mixed trust data streams at the highest intrusion level is identified as particularly challenging. Two metrics new to intrusion systems are defined to quantify performance and further aid comparison. Sensitivity is introduced to define basic detectability of an attack in terms of a single parameter, rather than the usual four currently in use. Selectivity is used to describe the ability of an intrusion system to discriminate between attack types. These metrics are quantified experimentally for network intrusion using the DARPA 1999 dataset and SNORT. Only nine of the 58 attack types present were detected with sensitivities in excess of 12dB indicating that detection performance of the attack types present in this dataset remains a challenge. The measured selectivity was also poor indicting that only three of the attack types could be confidently distinguished. The highest value of selectivity was 3.52, significantly lower than the theoretical limit of 5.83 for the evaluated system. Options for improving selectivity and sensitivity through additional measurements are examined.Stochastic Systems Lt

    Tackling the Challenges of Information Security Incident Reporting: A Decentralized Approach

    Get PDF
    Information security incident under-reporting is unambiguously a business problem, as identified by a variety of sources, such as ENISA (2012), Symantec (2016), Newman (2018) and more. This research project identified the underlying issues that cause this problem and proposed a solution, in the form of an innovative artefact, which confronts a number of these issues. This research project was conducted according to the requirements of the Design Science Research Methodology (DSRM) by Peffers et al (2007). The research question set at the beginning of this research project, probed the feasible formation of an incident reporting solution, which would increase the motivational level of users towards the reporting of incidents, by utilizing the positive features offered by existing solutions, on one hand, but also by providing added value to the users, on the other. The comprehensive literature review chapter set the stage, and identified the reasons for incident underreporting, while also evaluating the existing solutions and determining their advantages and disadvantages. The objectives of the proposed artefact were then set, and the artefact was designed and developed. The output of this development endeavour is “IRDA”, the first decentralized incident reporting application (DApp), built on “Quorum”, a permissioned blockchain implementation of Ethereum. Its effectiveness was demonstrated, when six organizations accepted to use the developed artefact and performed a series of pre-defined actions, in order to confirm the platform’s intended functionality. The platform was also evaluated using Venable et al’s (2012) evaluation framework for DSR projects. This research project contributes to knowledge in various ways. It investigates blockchain and incident reporting, two domains which have not been extensively examined and the available literature is rather limited. Furthermore, it also identifies, compares, and evaluates the conventional, reporting platforms, available, up to date. In line with previous findings (e.g Humphrey, 2017), it also confirms the lack of standard taxonomies for information security incidents. This work also contributes by creating a functional, practical artefact in the blockchain domain, a domain where, according to Taylor et al (2019), most studies are either experimental proposals, or theoretical concepts, with limited practicality in solving real-world problems. Through the evaluation activity, and by conducting a series of non-parametric significance tests, it also suggests that IRDA can potentially increase the motivational level of users towards the reporting of incidents. This thesis describes an original attempt in utilizing the newly emergent blockchain technology, and its inherent characteristics, for addressing those concerns which actively contribute to the business problem. To the best of the researcher’s knowledge, there is currently no other solution offering similar benefits to users/organizations for incident reporting purposes. Through the accomplishment of this project’s pre-set objectives, the developed artefact provides a positive answer to the research question. The artefact, featuring increased anonymity, availability, immutability and transparency levels, as well as an overall lower cost, has the potential to increase the motivational level of organizations towards the reporting of incidents, thus improving the currently dismaying statistics of incident under-reporting. The structure of this document follows the flow of activities described in the DSRM by Peffers et al (2007), while also borrowing some elements out of the nominal structure of an empirical research process, including the literature review chapter, the description of the selected research methodology, as well as the “discussion and conclusion” chapter
    • …
    corecore