
978-1-7281-6799-2/20/$31.00 ©2020 IEEE

SEADer++ v2: Detecting Social Engineering Attacks
using Natural Language Processing and Machine

Learning

Merton Lansley
Department of Informatics

University of Sussex
Brighton, United Kindom
M.Lansley@Sussex.ac.uk

Stelios Kapetanakis
School of Computing,

Engineering and Mathematics
University of Brighton

Brighton, United Kingdom
S.Kapetanakis@Brighton.ac.uk

Nikolaos Polatidis
School of Computing,

Engineering and Mathematics
University of Brighton

Brighton, United Kingdom
N.Polatidis@Brighton.ac.uk

Abstract—Social engineering attacks are well known attacks in

the cyberspace and relatively easy to try and implement because
no technical knowledge is required. In various online
environments such as business domains where customers talk
through a chat service with employees or in social networks
potential hackers can try to manipulate other people by employing
social attacks against them to gain information that will benefit
them in future attacks. Thus, we have used a number of natural
language processing steps and a machine learning algorithm to
identify potential attacks. The proposed method has been tested
on a semi-synthetic dataset and it is shown to be both practical and
effective.

Keywords—Social Engineering, Attack detection, Cyber
security, Natural language processing, Machine Learning

I. INTRODUCTION
Social engineering attacks are based on human weaknesses or
the lack of knowledge about them, thus specific technical
knowledge is not required from the side of the attacker. That’s
the main reason why these types of attacks are highly employed
and are attractive to applied to others. In the past there were
various approaches arguing theoretically that social engineering
detection is important [1-4]. Apart from those there are some
practical works based on natural language processing (NLP) and
machine learning, including neural networks [5-6]. It is also
important to mention the important role that psychology plays
in social engineering attacks and the part that it plays in NLP
when software needs to be developed to detect attacks.

There are different online environments such as business
domains where customers talk to employees through online chat
and in social networking where people talk to each other which
are considered very attractive to apply social engineering
attacks. There are research approaches that consider attacks in
such domains and apply NLP and machine learning to detect

attack successfully to an extent [5-6]. To detect attacks written
in human language such as English pre-processing of the
dialogue is necessary using a parser such as the Stanford core
NLP [7]. By using such a library then a classification dataset can
be created, and a classifier applied. This paper builds on top of
the algorithm found in [6]. The proposed method is based on the
12 steps of the SEADer++ algorithm which are also explained
in section 3 and 2 more pre-processing steps are added to
improve the quality of the output as shown in the evaluation
section.

This paper delivers the following contributions:

1. A method for detecting social engineering attacks is
proposed.

2. The proposed method has been evaluated using a semi-
synthetic dataset and the results show that it is both
practical and effective.

The rest of the paper is organized as follows: Section 2 is the
related work, section 3 describes the proposed method, section
4 explains the experimental evaluation and section 5 contains
the conclusions.

II. RELATED WORK
One of the first works in social engineering attack detection is
the one in ref [8]. The research in this work is based on real time
telephone systems and focused on the identification on voice
signatures of repeated voice calls and a proof of concept was
developed to identify the attacks in the dialogues dataset. One
more recent work is the one in ref [4] where the authors
identified questions requesting private information manually
using a small database of verb-noun pairs. This work extended
by [2] where the authors identified 4 attack vectors: the urgency
of the dialog, negative commands and questions, whether the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Brighton Research Portal

https://core.ac.uk/display/334594875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

message is likely automated identified by a generic greeting and
then check the URL and generated a topic blacklist using the
Naïve Bayes classifier. Other proposed solutions such as [1]
and [9] use complex state machines to map pathways that can
be followed in order to mitigate an attack. The work in [3] is
good in terms of a small survey on social engineering attacks
by providing a relatively comprehensive background on them
and on potential solutions. In [10] the authors provide an
approach based on semantics of dialogues to detect social
engineering attacks. The authors in [11] shown that humans are
the weakest link in social engineering attacks and their study
shows results that proves that. In [12] and [13] the authors
provided theoretical work that can be potentially used to
implement real systems. The authors of [14] give a good
explanation of how social engineering attacks can be detected
whereas in [15] and [16] different attack scenarios are
delivered. More practical works include the ones in [5] and [6]
where the authors use NLP and machine learning to detect
attacks successfully.

In addition to that there are other works that can be useful such
as the one in [17] where the authors performed influence
analysis on the quality of knowledge in a collective. The one in
[18] a neural network is used with harmony for searching and
the one in [19] where nature inspired optimization is discussed.
In [20] an Island-based cuckoo search algorithm with highly
disruptive polynomial mutation has been proposed.

III. PROPOSED METHOD
There are several steps that need to be completed in the
proposed method. Initially, the text is read using natural
language processing and then is being processed into a
classification dataset. At the last step a classifier such as
Random Forest, Multi-Layer perceptron or others can be
applied to see which entry is an attack or not. The python
programming language has been used for all step along with the
SymSpellpy library for spelling errors, the Web of Trust (WOT)
to check if a link is malicious or not

The proposed method consists of several steps to preprocess the
dialogs into a dataset for classification. The last steps are
applying the classifier. All the steps explained below, have
been written in the Python programming language. The
SymSpellpy library (a Python port of SymSpell) was used for
spelling, the Web of Trust (WOT) Application Programming
Interface (API) was used to check any links. the SciKit library
for the classifiers and the Gensim Latent Dirichlet Allocation
(LDA) model was used for the estimation of topics for the
dialogs.

Steps 1 to 5 are applied to check if links are malicious, steps 6
and 7 determine quality of the spelling, and steps 8 to 11
determine the intention and a pre-defined blacklist is used for
this. Feature scoring can be given by: Link score, 𝑆!, Spelling
score, 𝑆"#, and Intent score, 𝑆$. Each score is scaled down to a

value between 0 and 1. After the pre-processing of the
dialogues (steps 1 – 11), the classification dataset has the
following 4 labels: (1) Intent, (2) Spelling, (3) Link (4) XXX
(5) XXX (6) XXX and (7) attack or no attack. The final steps
use these as inputs for any classifier.

The steps of the proposed method are as follows:

1. URLs from a dialog are extracted text using a regex

pattern matcher.
2. If the text contains URLs, the link(s) is sent to the

WOT to check if it is malicious.
3. The WOT then returns a reputation value between 0

and 100 of the sites, the confidence of the given
reputation between 0-100 is also returned and the 1 out
of 17 identifying categories that identify the nature of
the website is also returned. The broad categories and
example subcategories are as follows:

• 1XX Negative (101 Malware, 103 Phishing,
104 Scam, 105 Potentially illegal etc.)

• 2XX Questionable (201 Misleading claims or
unethical, 205 spam, 207 ads / popups etc.)

• 3XX Neutral (301 Online tracking, 302
controversial, 303 political etc.)

• 5XX Positive (501 A good site)
4. If the returned category is of group 1XX or 2XX, then

𝑆! = 1.
5. Otherwise, divide the reputation by 100 and take it

away from 1 as shown in equation 1.

𝑆! = 1 −	
𝑟𝑒𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑣𝑎𝑙𝑢𝑒

100 (1)

6. At this step the SymSpellpy library is used to check
for spelling.

7. The number of misspelled words is determined and is
given by 𝑥. This number is then converted between 0
and 1 by utilizing Equation 2. The value of 𝑆%& is the
spelling quality, where values that are high represent
poorer spelling. An exponential function is used
instead of a linear one to rate a higher number of
spelling mistakes. To adjust the rate at which the score
tends towards 1, the constant 𝑎 can be varied to affect
how you want to punish spelling errors. After a series
of testing it was identified that 0.5 allowed the text to
contain a small number of mistakes without creating a
score of a high value. For example, if 𝑎 is set to 0.5
and 𝑥	 = 	1 then 𝑆%& = 0.39, if 𝑥	 = 	5 then 𝑆%& =
	0.92.

𝑆%& =	1 − 𝑒'() (2)

8. At this step the corrected spelling of the dialog is used,

and it is checked against a blacklist, derived from
security policy dictionary of 48 words. This can be
populated easily with environmental or company
related words such as: passwords, credentials,
database and others. The number of blacklist matched
words is given by 𝑀*.

9. At this step the algorithm checks for intent verbs and
adjectives such as must, need, urgent and others. This
value is given by 𝑀$

10. To tune the results, values 𝑀*	and 𝑀$ are multiplied
by the weights 𝑊* and 𝑊$, weighted at values of 2 and
1 retrospectively. This was added as an equation in
case it is necessary to change the weight of this step,
if it is considered important compared to others. The
value 𝑥 can be given by equation 3.

𝑥 = (𝑀* ×𝑊*) + (𝑀$ ×𝑊$)	 (3)

11. At this step, the value of 𝑥 is normalized using
equation 4, by applying the same exponential function
as step 7 (equation 2). Where 𝑎 = 0.4 to give the best
output. A higher value of 𝑆$ indicates a higher
concentration of blacklisted words in the text.

𝑆$ =	1 − 𝑒'()	 (4)

12. Then, the original dialogue dataset is checked to
identify which dialogue was indeed an attack and
assign the true (1) or false (0) value to the new
classification column in the dataset.

13. The LDA probabilistic generative model is used to
infer the topic structure, β. The number of topics are
represented by β1:K , where each βk is the distribution
over the vocabulary. The topic proportions for any
given document is given by θd. The assigned topics are
zd where zd,n is the topic assignment for the nth word in
the document, d. The observed words for document d
are given by wd . The generative model showing the
hidden and observed variables in the LDA can be seen
in Equation 5 [21].

Fig. 1. LDA generative process

14. The inference method to determine the distribution of
the topic structure given the observed documents
(posterior), is given in Equation 6.

𝑝(𝛽+:- , 𝜃+:., 𝑧+:., 𝑤+:.)(𝑝(𝑤+:.) (6)

IV. EXPERIMENTAL EVALUATION
For the experimental evaluation we have used a real dataset and
the accuracy, precision and area under the curve metrics.
The dataset consists of 1,051 entries and was originally derived
from social engineering dialogues as described in [8] and was
later extended and used in [6]. The extended dataset from [6]
was used which has 4 columns:
1. Intent
2. Spelling
3. Link
4. Attack or not

This dataset was based on the dialogues from [8] and then the
preprocessing steps 1 to 12 were applied to create it. Then, steps
13 and 14 were applied and 3 more columns were created in the
classification dataset which now has the following 7 columns:

1. Intent
2. Spelling
3. Link
4. Topic modeling
5. Topic modeling
6. Topic modeling
7. Attack or not

𝑝(𝐷|𝛼, 𝛽) =

	D𝑝(𝛽/)D𝑝(Ѳ0)
.

01+

-

/1+

D𝑝F𝑧0,3	GѲ0H𝑝F𝑤0,3	G𝛽+:- , 	𝑧0,3)
4

31+

 (5)

4, 5 and 6 represent 3 topics that the dialogue(s) is based on and
how close is to each topic (value between 0 and 1). The dataset
is available online1.

To evaluate the quality of the algorithm the accuracy, precision
and area under the roc curve (AUC) metrics have been used.
Accuracy is defined in equation 7 and Precision is defined in
equation 8. TP stands for true positives, TN for true negatives,
FP for false positives and FN for false negatives. All executions
are based on a 5-fold cross validation approach using the
Python programming language and the Scikit library.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (7)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (8)

The accuracy results of the proposed method are presented in
table 1 and it is shown the random forest classifier is better
when compared to the MLP and K nearest neighbor (KNN). In
table 2 the Precision results are presented which show again that
the random forest classifier is better. Each algorithm was
executed 5 times and at the end the average value of these 5
times is presented.

TABLE I. ACCURACY RESULTS

EXECUTION RANDOM
FOREST

MLP KNN

1 0.796 0.777 0.791

2 0.787 0.779 0.763

3 0.784 0.782 0.781

4 0.794 0.773 0.779

5 0.795 0.764 0.759

AVERAGE 0.791 0.775 0.774

TABLE II. PRECISION RESULTS

EXECUTION RANDOM
FOREST

MLP KNN

1 https://github.com/npolatidis/SEADer-v2

1 0.783 0.781 0.775

2 0.807 0.764 0.773

3 0.781 0.772 0.774

4 0.796 0.778 0.751

5 0.783 0.777 0.805

AVERAGE 0.790 0.774 0.775

Having seen now that the random forest classifier behaves
better for this dataset, figure 2 presents an accuracy comparison
between 10 and 100 estimators for the random forest classifier
and figure 3 similarly presents a precision comparison. The
results show that having 100 estimators is slightly better
compared to having 10. The average accuracy for 10 is 79.2%
and for 100 is 80.1 while the average precision for 10 if 79.4%
and for 100 is 79.7%.

Fig. 2. Accuracy comparison results for random forest

Fig. 3. Precision comparison results for random forest

0.75

0.8

0.85

1 2 3 4 5

Random forest accuracy
comparison

10 estimators 100 estimators

0.76

0.78

0.8

0.82

1 2 3 4 5

Random forest precision
comparison

10 estimators 100 estimators

Figure 4 presents an accuracy comparison between the
proposed method and SEADer++ [6] both for the same dataset
and using a random forest classifier, while a precision
comparison is shown in figure 5. The proposed method
achieves 80.1% accuracy while SEADer++ achieves 78.4% and
in terms of precision the proposed method achieves 79.7%
compared to 80.1%.

Fig. 4. Accuracy comparison

Fig. 5. Percision comparison

Figure 6 shows the area under the curve results for which the
average of the proposed method is 89.2% and for SEADer++ is
81.6%.

Fig. 6. AUC comparison

V. CONCLUSIONS
In this paper we presented a social engineering attack detection
method that is based on NLP and machine learning. The
proposed method has been evaluated using a semi-synthetic
dataset and well-known metrics along with a comparison to a
state-of-the-art alternative method. It has been shown that it
performs well and outperforms the alternative methodology.

In the future we aim to explore how the use of fuzzy logic
techniques with machine learning algorithms can improve
detection quality.

REFERENCES
[1] Mouton, F., Nottingham, A., Leenen, L., & Venter, H.

S. (2018). Finite state machine for the social engineering attack
detection model: Seadm. SAIEE Africa Research
Journal, 109(2), 133–
148. https://doi.org/10.23919/SAIEE.2018.8531953

[2] Peng, T., Harris, I., & Sawa, Y. (2018). Detecting phishing attacks using
natural language processing and machine learning. In 2018 IEEE 12th
International Conference on Semantic Computing (ICSC) (pp 300–301).

[3] Tsinganos, N., Sakellariou, G., Fouliras, P., & Mavridis, I. (2018).
Towards an automated recognition system for chat-based social
engineering attacks in enterprise environments. In Proceedings of the
13th International Conference on Availability, Reliability and Security,
ARES 2018, (pp. 53:1–53:10). ACM.

[4] Sawa, Y., Bhakta, R., Harris, I. G., & Hadnagy, C. (2016). Detection of
social engineering attacks through natural language processing of
conversations. In 2016 IEEE Tenth International Conference on Semantic
Computing (ICSC) (pp. 262–265).

[5] Lansley, M., Polatidis, N., & Kapetanakis, S. (2019). Seader: A social
engineering attack detection method based on natural language
processing and artificial neural networks. In N. T. Nguyen, R. Chbeir, E.
Exposito, P. Aniorté, and B. Trawiński (Eds.), Computational collective
intelligence (pp. 686–696). Springer International Publishing.

[6] Merton Lansley, Francois Mouton, Stelios Kapetanakis & Nikolaos
Polatidis (2020) SEADer++: social engineering attack detection in
online environments using machine learning, Journal of
Information and
Telecommunication,DOI: 10.1080/24751839.2020.1747001

[7] Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J.,
& McClosky, D. (2014). The Stanford CoreNLP natural language
processing toolkit. In Association for Computational Linguistics (ACL)
System Demonstrations (pp. 55–60).

0.74
0.76
0.78

0.8
0.82
0.84

1 2 3 4 5

Accuracy comparison

Proposed method SEADer++

0.74
0.76
0.78

0.8
0.82
0.84

1 2 3 4 5

Precision comparison

Proposed method SEADer++

0.7
0.75

0.8
0.85

0.9
0.95

1 2 3 4 5

AUC comparison

Proposed method SEADer++

[8] Hoeschele, M., & Rogers, M. (2005). Detecting social engineering. In
Pollitt, M. and Shenoi, S. (Eds.), Advances in digital forensics (pp. 67–
77). Springer US.

[9] Jamil, A., Asif, K., Ghulam, Z., Nazir, M. K., Mudassar Alam, S.,
& Ashraf, R. (2018). Mpmpa: A mitigation and prevention model for
social engineering based phishing attacks on facebook. In 2018 IEEE
International Conference on Big Data (Big Data) (pp. 5040–5048).

[10] Bhakta, R., & Harris, I. G. (2015). Semantic analysis of dialogs to detect
social engineering attacks. In Proceedings of the 2015 IEEE 9th
International Conference on Semantic Computing (IEEE ICSC 2015)(pp.
424–427).

[11] Heartfield, R., & Loukas, G. (2018). Detecting semantic social
engineering attacks with the weakest link: Implementation and
empirical evaluation of a human-as-a-security-sensor
framework. Computers and Security, 76, 101–
127. https://doi.org/10.1016/j.cose.2018.02.020

[12] Bezuidenhout, M., Mouton, F., & Venter, H. S. (2010). Social
engineering attack detection model: Seadm. In 2010 Information Security
for South Africa (pp. 1–8).

[13] Mouton, F., Leenen, L., & Venter, H. S. (2015). Social engineering
attack detection model: Seadmv2. In 2015 International Conference on
Cyberworlds (CW) (pp. 216–223).

[14] Nicholson, J., Coventry, L., & Briggs, P. (2017). Can we fight social
engineering attacks by social means? Assessing social salience as a means

to improve phish detection. In Thirteenth Symposium on Usable Privacy
and Security (SOUPS 2017) (pp. 285–298). USENIX Association.

[15] Krombholz, K., Hobel, H., Huber, M.,& Weippl, E. (2015). Advanc
ed social engineering attacks. Journal of Information Security and
Applications, 22, 113–122. Special Issue on Security of Information
and Networks. https://doi.org/10.1016/j.jisa.2014.09.005

[16] Mouton, F., Leenen, L., & Venter, H. S. (2016). Social engineering
attack examples, templates and scenarios. Computers and
Security, 59, 186–209. https://doi.org/10.1016/j.cose.2016.03.004

[17] Nguyen, N. T. (2016). An influence analysis of the inconsistency
degree on the quality of collective knowledge for objective case.
In Asian conference on intelligent information and database
systems(pp. 23–32). Berlin: Springer.https://doi.org/10.1007/978-3-
662-.

[18] Saadat Javad, P. M., & Koofigar, H. (2017). Training echo state neural
network using harmony search algorithm International Journal of
Artificial Intelligence, 15(1), 163–179.

[19] Precup, R.-E., & David, R. C. (2019). Nature-inspired optimization
algorithms for fuzzy controlled servo systems. Butterworth-Heinemann.

[20] Abed-alguni, B. H. (2019). Island-based cuckoo search with highly
disruptive polynomial mutation. International Journal of Artificial
Intelligence, 17(1), 57–82.

[21] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet
allocation. Journal of machine Learning research, 3(Jan), 993-1022.

