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ABSTRACT
Social engineering attacks are one of the most well-known and
easiest to apply attacks in the cybersecurity domain. Research has
shown that the majority of attacks against computer systems was
based on the use of social engineering methods. Considering the
importance of emerging fields such as machine learning and
cybersecurity we have developed a method that detects social
engineering attacks that is based on natural language processing
and artificial neural networks. This method can be applied in
offline texts or online environments and flag a conversation as a
social engineering attack or not. Initially, the conversation text is
parsed and checked for grammatical errors using natural language
processing techniques and then an artificial neural network is
used to classify possible attacks. The proposed method has been
evaluated using a real dataset and a semi-synthetic dataset with
very high accuracy results. Furthermore, alternative classification
methods have been used for comparisons in both datasets.
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1. Introduction

There have been various research projects demonstrating the need for an automated
system to recognize Social Engineering (SE) attacks. Many of these projects show proof
of concept models using a variety of different techniques, most commonly Natural
Language Processing (NLP) and Machine Learning (ML) methods like Artificial Neural
Networks (ANN). Whilst these exist, there is a lack of evidence that the theory has been
implemented and proved working, with very little evidence of the rate of success
(Mouton et al., 2018; Peng et al., 2018; Sawa et al., 2016; Tsinganos et al., 2018).

Human Psychology plays a large part in the creation of NLP software as it is important to
understand how people socialize and behave with others. A common and well-regarded
psychologist, Dr. Robert Cialdini proposed the 6 principles of persuasion (Resnik, 1986):
Authority, Scarcity, Liking/Similarity, Reciprocation, Social Proof and Commitment/Consist-
ency. Further studies by psychologists also follow a similar consensus that these are the
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key factors in defining a persuasive person. Using these key features as a base, Computer
Scientists theorized and attempted to build systems that recognized these traits. The
research projects on this area can be loosely broken down into three stages, Data Pre-Pro-
cessing, Feature Extraction and Aggregation of Results as shown in Figure 1.

Most research approaches into this problem domain have some relevant data and
these data are usually pre-processed. The method of pre-processing differs per system,
but generally involves the same goal; preparing the data for classification. The contextual,
or meta data, such as time, date and IP addresses are captured in a relationship with the
original data. This can be used for correlating different dialogues with one another, one by
matching the IP as an internal or external agent and secondly by highlighting potential
reoccurring adversaries that may persist under different aliases. The dialogues are sani-
tized to remove any erroneous content such as HTML tags or corrupt texts. The data
can then be parsed using a Natural Language Processing (NLP) parser such as the Stanford
CoreNLP (Manning et al., 2014). NLP parsers provide a vast array of tools that are able to
dissect the human language into dependency trees, define grammatical relations and
their Parts of Speech (POS) to name a few common uses. Using these libraries, it allows
programmers to create algorithms which are able to classify conversations based on the
linguistic features the parser extracts.

This paper extends our previous conference version found in Lansley et al. (2019) and
is based on the concept that a dialogue is taking place in an online chat environment.
To determine if a dialog between two interlocutors is a Social Engineering attack, certain
criteria, or else known as features, need to be chosen, a process known as feature selec-
tion. The features are selected before the three stages and are commonly based on the
principles of persuasion, common phishing tactics like malicious links and the history of
the attacker. We can then classify the data based on these features and produce a
‘score’ of how strongly the selected dialog matches the criteria. Each implementation
designed to detect each feature will use a variety of classification techniques, such
as: Fuzzy Logic, Topic Blacklists, Decision Trees, Random Forest and Neural Networks
depending on what needs to be extracted. Furthermore, an automated system requires
the output of a clear decision, albeit a probabilistic decision, this can be done by

Figure 1. The data processing pipeline.
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aggregating the outputs from the Feature Extraction process. The results of each feature
are weighted by importance, and at basic level can be averaged to give a Fuzzy logic
prediction. By using more advanced techniques such as decision trees or neural net-
works, the weight of each feature can be calculated programmatically to determine
which features carry the most importance regarding whether or not a social engineering
attack is taking place.

The following contributions are delivered:

(1) A method for detecting social engineering attacks in online chat environments is
proposed.

(2) The proposed method has been evaluated using a real and a semi-synthetic dataset
with the results validating our approach.

The rest of the paper is organized as follows: Section 2 presents the related work,
Section 3 delivers the proposed method, Section 4 contains the experimental evaluation
and Section 6 is the conclusions part.

2. Related work

An early implementation of SE detection in real-time telephone systems is SEDA (Social
Engineering Defense Architecture) (Hoeschele & Rogers, 2005). The researchers mainly
focused on identifying repeat callers using their voice signatures. Later a proof of
concept model of SEDA (Hoeschele & Rogers, 2005) was produced being able to correctly
identify all attacks in their dataset. A method of detection used by Sawa et al. (2016) is to
identify the questions requesting private information and commands requesting that the
user perform tasks they are not authorized to perform. This technique uses a manually
derived topic blacklist of verb-noun pairs for which they state should be built around
security policies associated with a system. This work is taken further in Peng et al.
(2018) by identifying 4 main attack vectors; the urgency of the dialog, negative commands
and questions, whether the message is likely automated identified by a generic greeting.
Finally, they use a reputable cyber security service, Netcraft, to check the safety of a URL.
Instead of manual blacklist creation, they use a large corpus of phishing emails to generate
a topic blacklist using a Naive Bayes classier. Some approaches like SEADMv2 (Mouton
et al., 2018) and MPMPA (Jamil et al., 2018) use complex state machines in order to
map out the pathways that can be followed as a checklist-type system to mitigate an
attack. This proposal is suited where there are multiple authorization layers that might
prevent a request from being carried out. These two separate machines provide some
overlap, but the explicit state definition required could be limiting to where these can
be applied. The nature of SE attacks is unpredictable meaning that new methods of
attacks are always being introduced. The SEADM versions state machines still rely on
the user input for changing state, which means the chance for user error and naivety is
still present. The works of Tsinganos et al. (2018) covers an extensive overview of the exist-
ing systems and provide a comprehensive recognition of subsystems for their detection
architecture; in influence, deception, personality, speech act and past experiences. The
work of Bhakta and Harris (2015) provides a semantic-based approach of dialogues to
detect social engineering attacks. In Heartfield and Loukas (2018) the authors show that
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the human factor is the weakest link in social engineering attacks and based on a human
study the prove that. In Bezuidenhout et al. (2010) and Mouton et al. (2015) the authors
provide a theoretical foundation that potentially could be used in real systems to detect
attacks. In the works of Nicholson et al. (2017) it is explained how social engineering
attacks can potentially be detected, whereas in Krombholz et al. (2015) and Mouton
et al. (2016) different examples of attacks with scenarios are presented. In addition to
the works mentioned, there are numerous other articles from relevant domains that can
be useful such as the one in Nguyen and Nguyen (2016) where the authors performed
an influence analysis of the number of members on the quality of knowledge in a collec-
tive, the work in Saadat Javad and Koofigar (2017) where a neural network is used along
with harmony for searching, the one in Precup and David (2019) where nature inspired
optimization algorithms for fuzzy control servo systems are discussed and the one
found in Abed-alguni (2019) where an Island-based cuckoo search algorithm with
highly disruptive polynomial mutation is proposed.

3. Proposed method

The proposed method consists of several steps to preprocess the dialogs into a dataset for
classification. The last steps are applying the classifier. All the steps explained below, have
been written in the Python programming language. The SymSpellpy library (a Python port
of SymSpell) was used for spelling, the Web of Trust (WOT) Application Programming Inter-
face (API) was used to check any links. In Section 3.1 the dataset pre-processing steps are
described, which are necessary to create a new dataset with numerical values that can be
used for classification purposes. In Section 3.2 an artificial neural network multi-layer per-
ceptron (MLP) classifier is applied to the dataset, whereas in Section 3.3 an ensemble learn-
ing machine learning method has been developed.

3.1. Data pre-processing and preparation

Steps 1 to 5 check for malicious links, steps 6 and 7 determine the spelling quality, and
steps 8 to 11 determine the intent of the text, using a pre-defined blacklist. The score
of each feature can be given by: Link score, SL, Spelling score, SSP , and Intent score, SI .
Each score is then scaled down to between 0 and 1. After the pre-processing of the dia-
logues (steps 1–11), the classification dataset has the following 4 labels: (1) Intent, (2) Spel-
ling, (3) Link and (4) attack or no attack.

The steps are as follows:

(1) Extract all URLs from the dialog text using a regex pattern matcher.
(2) If the text contains URLs, send the link/s to the WOT API to evaluate if the web link is

malicious.
(3) The WOT API returns the reputation of the site (value between 0 and 100), the confi-

dence of the given reputation (value between 0 and 100) and the identifying cat-
egories (17 in total) that identify the nature of the website. The broad categories
and example subcategories are as follows:

• 1XX Negative (101 Malware, 103 Phishing, 104 Scam, 105 Potentially illegal etc.)
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• 2XX Questionable (201 Misleading claims or unethical, 205 spam, 207 ads /
popups etc.)

• 3XX Neutral (301 Online tracking, 302 controversial, 303 political etc.)

• 5XX Positive (501 A good site)
(4) If the returned category is of group 1XX or 2XX, then SL = 1.
(5) Otherwise, divide the reputation by 100 and take it away from 1 as shown in

Equation (1).

SL = 1− reputation value
100

(1)

(6) Check for spelling using the SymSpellpy library.
(7) the best suggested spelling correction, determine the number of misspelled words,

given by x. This number is then scaled between 0 and 1 by applying Equation (2). The
value of represents the spelling quality, where higher values represents poorer spel-
ling. Rather than a linear function, an exponential function is used to rate a higher
number of spelling mistakes more severely. To adjust the rate at which the score
tends towards 1, the constant α can be varied to affect how harsh you want to be
on spelling errors. After extensive testing it was identified that 0.5 allowed the text
to contain a small number of mistakes without creating a high score. For example,
if α is set to 0.5 and x=1 then SSP = 0.39, if x=5 then SSP = 0.92.

SSP = 1− e−ax (2)

(8) The next step uses the corrected spelling of the dialog, and checks it against a black-
list, derived from 48 security policy style words. This can be easily populated with
company or environment-related words such as: credentials, passwords, database
etc. The number of blacklist matched words is given by MB.

(9) The algorithm at this step checks for intent verbs and adjectives such as need, must,
urgent etc. This value is given by MI

(10) To tune the results, values MB and MI are multiplied by the weights WB and WI ,
weighted at values of 2 and 1 retrospectively. This step has been added as an
equation in case someone wants to change the weight of this step, if it is considered
more important. The value x can hence be given by Equation (3).

x = (MB ×WB)+ (MI ×WI) (3)

(11) Then, the value of x is normalized in Equation (4), using the same exponential func-
tion as Equation (2). Where a = 0.4 to give the best output. A higher value of SI indi-
cates a higher concentration of blacklisted words in the text.

SI = 1− e−ax (4)

(12) At this step the original dialogue dataset is being checked to identify which dialogue
was indeed an attack and assign the true (1) or false (0) value to the new dataset used
for classification.

In summary, the above steps are used to read natural language and convert it into
numerical values with the labels (1) Intent, (2) Spelling, (3) Link and (4) attack or no
attack. Then the new dataset with these values is used with a machine learning
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classification algorithm to identify attacks. Sections 3.2 and 3.3 describe an MLP and an
ensemble learning classifier, respectively.

3.2. Classification of attacks using an artificial neural network

After the dataset is populated and the MLP classifier is applied. If the output is high, then it
is considered an attack otherwise it is not considered an attack. Initially, we define an acti-
vation function as: g(z) with x input values and w weights as input. The activation function
is shown in Equation (5).

z = w1x1 + w2x2 + · · · + wmxm (5)

If g(z) is greater than a given threshold u, the output is 1 or −1 otherwise, as shown in (6).

g(z) = 1, if z . u

−1, else

{

where z = w1x1 + w2x2 + · · · + wmxm =
∑m

j=1
xjwj = wTx

(6)

For the next step, we use Rosenblatt’s perceptron rule to update the weights as follows:
(a) Each weight was initialized with small random numbers and (b) for each iterative train-
ing step for each input x the output value was calculated, and the weights were updated.

The output update is defined in Equation (7), with Dwj = e(target(i)− output(i))xij and e
is the learning rate, target the actual (true) class label and output the predicted label.
Weight updates were iterative, and updates were performed simultaneously.

w+
j = wj + Dwj (7)

3.3. Classification of attacks using ensemble learning

For the ensemble learning approach a Gaussian Naïve Bayes classifier has been used along
with a Decision Tree classifier and a Random Forest classifier based on a soft voting
approach. Initially the three algorithms are explained and then a pseudocode of the
ensemble algorithm is shown. The Gaussian Naïve Bayes defined in Equation (9)
implements the Naïve Bayes algorithm and is defined in Equation (8), while it assumes
that the likelihood of features is Gaussian. Naïve Bayes gives a probability P for a class
y, belonging or not to X as shown in Equation (8). In Equation (9) where the Gaussian
Naïve Bayes is defined, and the parameters sy and my are estimated using the
maximum likelihood. μ is the mean and σ is the standard deviation.

P(y|X) = P(X|y)P(y)
P(X)

(8)

P(xi|y) = 1������
2ps2

y

√ exp − (xi − my)
2

2s2
y

( )
(9)

Then a Decision Tree classifier is defined with unlimited leaf nodes. A Decision Tree is a clas-
sifier where a tree is drawn upside down with its root at the top which is being a social
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engineering attack or not. Then the attributes or else known as features found in the dataset
are used to make decision by setting values and using IF/THEN/ELSE statements. For
example, in the dataset the first attribute is the intent. After the root is set as attack at
the final leaf a YES/NO decision needs to be made. Subsequently, the numerical values
found in this attribute are used to decide which number should be the cut-off point for a
yes or no decision. The same continues for all attributes until a final decision is made.

Following that a Random Forest classifier is defined, comprised of 10 Decision Tree clas-
sifiers with different cut-off points. The Random Forest returns a yes or no decision based
on majority of answers received by the decision trees.

Algorithm 2. Ensemble learning pseudocode

Input: Social engineering classication dataset
Output: Classification as an attack or not

1: LOAD data
2: positives � 0
3: negatives � 0
4: attack � 0
5: for entry of the dataset do
6: LOAD Gaussian NB classifier
7: result � GaussianNBclassification
8: if result is positive then
9: positives � positives+ 1
10: else
11: negatives � negatives+ 1
12: end if
13: LOAD Decision Tree classifier
14: result � Decision Tree Classifier
15: if result is positive then
16: positives � positives+ 1
17: else
18: negatives � negatives+ 1
19: end if
20: LOAD Random Forest classifier
21: result � Random Forest Classifier
22: if result is positive then
23: positives � positives+ 1
24: else
25: negatives � negatives+ 1
26: end if
27: end for
28: if positives . negatives then
29: return attack = 1
30: else
31: return attack = 0
32: end if
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4. Experimental evaluation

The experimental evaluation took place in an offline environment using a real dataset and a
semi-synthetic dataset, which we call the standard dataset and the compound dataset. Fol-
lowing from Section 3, we have built both datasets using a social engineering attack
dataset with 147 entries classified as an attack or not. After the preprocessing steps followed
in section three,wederived the following four classification labels: (a) intent (b) spelling (c) link
(d) is attack.1 Furthermore, the standard dataset contains 147 entries obtained from Bezui-
denhout et al. (2010), while the compound dataset is based on the 147 entries plus 600
entries from customer support-based tweets from Twitter, none of which are classified as
attacks. Both dataset text entries have been converted to numerical-based classification data-
setswith four entries each. Three labels for the respective data andonewith a yes or no (1or 0)
value of a conversation being a social engineering attack or not. To both datasets a small
number of links to websites have been added, with some being malicious. Furthermore, it
should be noted that the dataset is imbalanced with most entries not being an attack.

The accuracy metric has been used for the evaluating the classification models. The
metric calculates the fraction of the prediction that each model got right. Equation (10)
represents the accuracy where TP stands for true positives, TN for true negatives, FP for
false positives and FN for false negatives.

Accuracy = TP+ TN
TP+ TN+ FP+ FN

(10)

The MLP classification model described in Section 3.2 is evaluated initially using the accuracy
metric andcompared to theDecisionTreeandRandomForest classifiers. The results of theevalu-
ation as shown in Tables 1–7 are based on the standard and compound datasets, respectively,
and a 5-fold cross-validation approach has been used. In Tables 1–6 the MAX and MIN values
represent the maximum and minimum values of the 5-fold returned after each time the algor-
ithm ran and theMEAN is the average value. Each algorithmwas executed 10 times. Table 7 pre-
sents the average mean results for the standard and compound datasets, respectively.

Three algorithms from the SciKit machine learning library have been used for compari-
son purposes: Decision Tree, Random Forest and Neural Network multi-layer perceptron.
The settings used for the algorithms were the following:

Decision Tree: SciKit learn settings with default settings which included unlimited leaf
nodes.

Table 1. Decision Tree results for the standard dataset.
MEAN MAX MIN

0.736231884 0.826086957 0.583333333
0.692885375 0.782608696 0.625
0.68442029 0.833333333 0.458333333
0.650362319 0.695652174 0.583333333
0.656347826 0.76 0.608695652
0.659914361 0.826086957 0.5
0.694762846 0.826086957 0.416666667
0.647463768 0.791666667 0.5
0.65 0.695652174 0.583333333
0.741798419 0.833333333 0.652173913
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Table 2. Random forest results for the standard dataset.
MEAN MAX MIN

0.683333333 0.791666667 0.608695652
0.631521739 0.708333333 0.565217391
0.691304348 0.791666667 0.608695652
0.657608696 0.75 0.565217391
0.651811594 0.782608696 0.333333333
0.700724638 0.75 0.666666667
0.647826087 0.75 0.5
0.736067194 0.782608696 0.708333333
0.699130435 0.8 0.608695652
0.72826087 0.826086957 0.583333333

Table 3. Multi-layer perceptron results for the standard dataset.
MEAN MAX MIN

0.709057971 0.75 0.652173913
0.74384058 0.826086957 0.652173913
0.673043478 0.8 0.565217391
0.640217391 0.782608696 0.47826087
0.75273386 0.833333333 0.625
0.65085639 0.739130435 0.541666667
0.751449275 0.826086957 0.565217391
0.659826087 0.739130435 0.56
0.68173913 0.8 0.52173913
0.65 0.695652174 0.583333333

Table 4. Decision tree results for the compound dataset.
MEAN MAX MIN

0.908050847 0.916666667 0.9
0.921481816 0.957983193 0.900826446
0.921386555 0.941176471 0.890756303
0.923023127 0.95 0.890756303
0.921470588 0.957983193 0.9
0.923120703 0.941176471 0.909090909
0.909774011 0.93220339 0.891666667
0.919747899 0.932773109 0.908333333
0.913009121 0.925619835 0.899159664
0.914705882 0.933333333 0.890756303

Table 5. Random forest results for the compound dataset.
MEAN MAX MIN

0.902910619 0.95 0.857142857
0.919787138 0.941176471 0.900826446
0.909703336 0.924369748 0.899159664
0.92640056 0.941666667 0.915966387
0.921414566 0.95 0.883333333
0.919803922 0.941176471 0.891666667
0.916468927 0.940677966 0.883333333
0.911358543 0.933333333 0.883333333
0.931468273 0.941666667 0.917355372
0.911372549 0.916666667 0.907563025
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Random Forest: SciKit Random Forest classifier with 50 Estimators.
Neural Network: SciKit MLP classifier with lbfgs solver,a = 1e− 5 and hidden layer size =

(15,15,15).

The above results show that the MLP classifier is more accurate compared to the others.
However, this doesn’t mean that it is the best solution for the social engineering attack
detection problem due to the imbalanced dataset. Solutions which assume that most
entries are negative can produce high accuracy. Therefore, alternative metrics have
been used to show that despite of the high accuracy of the MLP classifier an ensemble
method is more appropriate when it comes to classification of attacks.

Moreover, an 80%/20% training/testing approach has been used for splitting the
dataset for this part of the evaluation since the size of the dataset is considered small
for 5 or 10 cross fold validation. To maximize the validation of the results each test has
been executed ten times with the results of each execution and the mean presented.
The metrics used are the accuracy as defined in Equation (10), the F1 measure defined
in Equation (13) which is based on the precision and recall defined in Equations (11)
and (12), respectively. F1 is the weighted average of precision and recall and takes into
consideration both false positives and false negative into account. It is a useful metrics
for imbalanced datasets. Finally, the Area Under the Curve (AUC) has been used. This is
a metric based on the True Positive rate (Sensitivity or recall) defined in Equation (14)
and on the False Positive Rate (Specificity) defined in Equation (15). It can be used for
binary classification problems and it returns the probability of when selecting a random
entry, this will be classified correctly. The AUC represents the area under the curve of a
graph plotted with the False Positive rate against the True Positive rate in a 0 to 1 scale
in different points between as shown in Figure 2, which however shows the plot only
and not any random or sample curve. Last but not least it should be mentioned that in
all metrics higher values are better. Especially in AUC it should be also noted that a
value of 0.5 in 1 means that half of the instances are classified correctly, therefore any
value ranging from 0.5 and below means that the classifier doesn’t work as expected.

Table 7. Comparison of algorithms for the standard and the compound datasets.
(a) (b)

ALGORITHM RESULT ALGORITHM RESULT

Decision tree 0.681 Decision tree 0.918
Random forest 0.683 Random forest 0.917
Multi-layer perceptron 0.691 Multi-layer perceptron 0.925

Table 6. Multi-layer perceptron results for the compound dataset.
MEAN MAX MIN

0.929803922 0.949579832 0.908333333
0.921442577 0.932773109 0.908333333
0.926414566 0.941666667 0.915966387
0.923107345 0.933333333 0.908333333
0.936442577 0.949579832 0.915966387
0.919789916 0.949579832 0.891666667
0.923120934 0.949579832 0.899159664
0.924733894 0.941176471 0.899159664
0.924747899 0.941666667 0.907563025
0.921398477 0.949579832 0.907563025
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Lastly, all the results that follow in Tables 8–10 represent the accuracy, F1 and AUC
based on the compound dataset for the MLP and Ensemble classifiers.

precision = TP
TP+ FP

(11)

recall = TP
TP+ FN

(12)

2 · precision · recall
precision+ recall

(13)

True Positive Rate (Sensitivity) = TP
FN+ TP

(14)

False Positive Rate (Specificity) = TP
FP+ TN

(15)

Table 11 provides a comparison between the mean values of the MLP and Ensemble
classifiers for the Accuracy, F1 and AUC metrics respectively.

Tables 12–14 that follow provide a comparison for the Accuracy, F1 and AUC metrics,
respectively, between the soft voting ensemble method used and a hard-voting
method based on the same approach. The difference between soft voting and hard
voting is that in the first 2 out of 3 need to be classified as attack or not but in hard
voting all 3 need to be classified as attack or not.

Table 15 provides a comparison between the mean values of the Soft and Hard Ensem-
ble classifiers for the Accuracy, F1 and AUC metrics, respectively.

Figure 2. Area under the curve (AUC).
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5. Discussion

Initially, it is shown that a straightforward solution such as an MLP classifier provides high
accuracy. Following that, a slightly more complicated method that involves the use of

Table 9. F1 results for the MLP and Ensemble learning classifiers.
Execution MLP Ensemble

1 0.705 0.735
2 0.789 0.776
3 0.803 0.705
4 0.754 0.81
5 0.599 0.716
6 0.705 0.777
7 0.694 0.747
8 0.755 0.824
9 0.754 0.735
10 0.763 0.773
Mean 0.732 0.759

Table 8. Accuracy results for the MLP and ensemble learning classifiers.
Execution MLP Ensemble

1 0.906 0.913
2 0.933 0.926
3 0.953 0.92
4 0.953 0.92
5 0.886 0.913
6 0.906 0.92
7 0.9 0.92
8 0.906 0.966
9 0.933 0.913
10 0.946 0.933
Mean 0.922 0.924

Table 10. AUC results for the MLP and ensemble learning classifiers.
Execution MLP Ensemble

1 0.659 0.687
2 0.732 0.718
3 0.766 0.678
4 0.682 0.774
5 0.579 0.676
6 0.665 0.739
7 0.655 0.708
8 0.713 0.805
9 0.707 0.715
10 0.705 0.726
Mean 0.686 0.722

Table 11. Comparisons between the MLP and ensemble classifiers.
(a) Accuracy comparison (b) F1 comparison (c) AUC comparison

ALGORITHM RESULT ALGORITHM RESULT ALGORITHM RESULT

MLP 0.922 MLP 0.732 MLP 0.686
Ensemble 0.924 Random Forest 0.759 Random Forest 0.722
Difference in terms of % +0.25 Difference in terms of % +3.7 Difference in terms of % +5.3
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Table 12. Accuracy results for the soft and hard voting
ensemble learning classifiers.
Execution Soft Hard

1 0.913 0.913
2 0.926 0.933
3 0.92 0.94
4 0.92 0.913
5 0.913 0.946
6 0.92 0.926
7 0.92 0.893
8 0.966 0.926
9 0.913 0.946
10 0.933 0.926
Mean 0.924 0.926

Table 13. F1 results for the soft and hard voting
Ensemble learning classifiers.
Execution Soft Hard

1 0.735 0.735
2 0.776 0.754
3 0.705 0.769
4 0.81 0.716
5 0.716 0.831
6 0.777 0.76
7 0.747 0.72
8 0.824 0.802
9 0.735 0.818
10 0.773 0.79
Mean 0.759 0.769

Table 14. AUC results for the soft and hard voting
ensemble learning classifiers.
Execution Soft Hard

1 0.687 0.687
2 0.718 0.688
3 0.678 0.782
4 0.774 0.663
5 0.676 0.765
6 0.739 0.702
7 0.708 0.674
8 0.805 0.738
9 0.715 0.763
10 0.726 0.742
Mean 0.722 0.72

Table 15. Comparisons comparison between the soft and hard ensemble classifiers.
(a) Accuracy comparison (b) F1 comparison (c) AUC comparison

ALGORITHM RESULT ALGORITHM RESULT ALGORITHM RESULT

Soft 0.924 Soft 0.759 Soft 0.722
Hard 0.926 Hard 0.769 Hard 0.720
Difference in terms of % −0.25 Difference in terms of % −1.35 Difference in terms of % +0.4
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three classifiers, but not an MLP classifier within, using soft voting can provide similar accu-
racy. However, accuracy is not always the best method to evaluate classifier especially in
cases where there is no balance between a yes or no classification label. Subsequently, this
can lead to very accurate classifiers because most of the labels are either yes or no, despite
of their complexity.

In terms of comparison of the results it is shown that both the MLP and the Ensemble
Learning classifier provide similar accuracy, which can lead to a conclusion that any of the
two can be used. Following that the F1 and AUC metrics have been used to further evaluate
the classifiers which take into account the true positive and false positive rates. Moreover, we
consider the AUC being slightly more important in this scenario because it is the possibility
of correctly classifying correctly a randomly chosen entry. Thus, due to the result of the AUC
being higher the soft voting approach has been selected against the hard voting approach,
although one can argue that any of the two can be used due to the very similar results but
both of these approaches are more accurate compared to the MLP classifier.

In terms of F1 and AUC however there are differences when the MLP is compared with
the proposed Ensemble Learning classifier. In term of F1 there is a 3.7% difference and in
terms of AUC there is a 5.3% difference. Moreover, the soft-voting method performs
slightly better when compared to the hard-voting method in terms of AUC with 0.722
and 0.720, respectively, which is a 0.4% difference and the reason that it was selected
against the hard voting.

Taking into consideration that the AUC is an important metric for classifying a dialogue
as a potential social engineering attack or not we conclude to the fact the in online chat
environments where a chat takes place between a random individual and a company
employee it is vital to be as accurate as possible when it comes to social engineering. Com-
panies nowadays provide education about such matters to employees, but it never harms
to be extra cautious with a supporting online tool which can help identifying social engin-
eering attacks.

The AUC of the proposed soft-voting Ensemble Learning method is better from both the
MLP classifier and the alternative hard-voting method. Thus, making it the best solution for
real environments where social engineering attack identification is essential.

Additionally, this research can also contribute to the currently existing models for social
engineering attack detection, which were discussed in the related work section. Both the
SEADM and MPMPA utilize state machine logic, that relies on human intervention for
detection. This research can plug into these models by supplementing the human reason-
ing component with additional information that can be utilized as additional inputs. This
allows the already existing models to improve, by incorporating this research, and ulti-
mately this leads to improved social engineering attack detection models within the
domain. This research can also be used as a baseline to determine whether the existing
models can be even further automated utilizing natural language processing and artificial
neural networks. Adding this research onto the existing models will aid to eliminate user
error or naivety which can be introduced due to the user input into the models.

6. Conclusions

In this paper we presented a novel method for social engineering attack detection based
on natural language processing and artificial neural networks. The method initially
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processes a dialogue and then creates a dataset that can be used for classification
purposes. The proposed method has been evaluated using a real and a semi-synthetic
dataset and can detect social engineering attacks with very high accuracy. Furthermore,
alternative classification methods have been used for comparison in order to show the
effectiveness of our method. In the future we plan to collect more data and both in
terms of entries and by expanding the number of attributes necessary. Furthermore,
we aim to develop a more balanced dataset and execute the algorithm in a real environ-
ment. The results will indicate if any new algorithms might be necessary to improve
detection.

Note

1. The datasets can be found at https://github.com/npolatidis/seader
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