209 research outputs found

    Planning for Social Interaction with Sensor Uncertainty

    Get PDF
    A robot coexisting with humans must not only be able to perform physical tasks, but must also be able to interact with humans in a socially appropriate manner. In this paper, we describe an extension of prior work on planning for task-based social interaction using a robot that must interact with multiple human agents in a simple bartending domain. We describe how the initial state representation developed for this robot has been extended to handle the full range of uncertainty resulting from the input sensors, and outline how the planner will use the resulting uncertainty in the state during plan generation

    Automatically Classifying User Engagement for Dynamic Multi-party Human–Robot Interaction

    Get PDF
    © 2017, The Author(s). A robot agent designed to engage in real-world human–robot joint action must be able to understand the social states of the human users it interacts with in order to behave appropriately. In particular, in a dynamic public space, a crucial task for the robot is to determine the needs and intentions of all of the people in the scene, so that it only interacts with people who intend to interact with it. We address the task of estimating the engagement state of customers for a robot bartender based on the data from audiovisual sensors. We begin with an offline experiment using hidden Markov models, confirming that the sensor data contains the information necessary to estimate user state. We then present two strategies for online state estimation: a rule-based classifier based on observed human behaviour in real bars, and a set of supervised classifiers trained on a labelled corpus. These strategies are compared in offline cross-validation, in an online user study, and through validation against a separate test corpus. These studies show that while the trained classifiers are best in a cross-validation setting, the rule-based classifier performs best with novel data; however, all classifiers also change their estimate too frequently for practical use. To address this issue, we present a final classifier based on Conditional Random Fields: this model has comparable performance on the test data, with increased stability. In summary, though, the rule-based classifier shows competitive performance with the trained classifiers, suggesting that for this task, such a simple model could actually be a preferred option, providing useful online performance while avoiding the implementation and data-scarcity issues involved in using machine learning for this task

    Confidence in uncertainty: Error cost and commitment in early speech hypotheses

    Get PDF
    © 2018 Loth et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Interactions with artificial agents often lack immediacy because agents respond slower than their users expect. Automatic speech recognisers introduce this delay by analysing a user’s utterance only after it has been completed. Early, uncertain hypotheses of incremental speech recognisers can enable artificial agents to respond more timely. However, these hypotheses may change significantly with each update. Therefore, an already initiated action may turn into an error and invoke error cost. We investigated whether humans would use uncertain hypotheses for planning ahead and/or initiating their response. We designed a Ghost-in-the-Machine study in a bar scenario. A human participant controlled a bartending robot and perceived the scene only through its recognisers. The results showed that participants used uncertain hypotheses for selecting the best matching action. This is comparable to computing the utility of dialogue moves. Participants evaluated the available evidence and the error cost of their actions prior to initiating them. If the error cost was low, the participants initiated their response with only suggestive evidence. Otherwise, they waited for additional, more confident hypotheses if they still had time to do so. If there was time pressure but only little evidence, participants grounded their understanding with echo questions. These findings contribute to a psychologically plausible policy for human-robot interaction that enables artificial agents to respond more timely and socially appropriately under uncertainty

    Reinforcement Learning Approaches in Social Robotics

    Full text link
    This article surveys reinforcement learning approaches in social robotics. Reinforcement learning is a framework for decision-making problems in which an agent interacts through trial-and-error with its environment to discover an optimal behavior. Since interaction is a key component in both reinforcement learning and social robotics, it can be a well-suited approach for real-world interactions with physically embodied social robots. The scope of the paper is focused particularly on studies that include social physical robots and real-world human-robot interactions with users. We present a thorough analysis of reinforcement learning approaches in social robotics. In addition to a survey, we categorize existent reinforcement learning approaches based on the used method and the design of the reward mechanisms. Moreover, since communication capability is a prominent feature of social robots, we discuss and group the papers based on the communication medium used for reward formulation. Considering the importance of designing the reward function, we also provide a categorization of the papers based on the nature of the reward. This categorization includes three major themes: interactive reinforcement learning, intrinsically motivated methods, and task performance-driven methods. The benefits and challenges of reinforcement learning in social robotics, evaluation methods of the papers regarding whether or not they use subjective and algorithmic measures, a discussion in the view of real-world reinforcement learning challenges and proposed solutions, the points that remain to be explored, including the approaches that have thus far received less attention is also given in the paper. Thus, this paper aims to become a starting point for researchers interested in using and applying reinforcement learning methods in this particular research field

    Natural language generation for social robotics: Opportunities and challenges

    Get PDF
    In the increasingly popular and diverse research area of social robotics, the primary goal is to develop robot agents that exhibit socially intelligent behaviour while interacting in a face-to-face context with human partners. An important aspect of face-to-face social conversation is fluent, flexible linguistic interaction: as Bavelas et al. [1] point out, face-to-face dialogue is both the basic form of human communication and the richest and most flexible, combining unrestricted verbal expression with meaningful non-verbal acts such as gestures and facial displays, along with instantaneous, continuous collaboration between the speaker and the listener. In practice, however, most developers of social robots tend not to use the full possibilities of the unrestricted verbal expression afforded by face-to-face conversation; instead, they generally tend to employ relatively simplistic processes for choosing the words for their robots to say. This contrasts with the work carried out Natural Language Generation (NLG), the field of computational linguistics devoted to the automated production of high-quality linguistic content: while this research area is also an active one, in general most effort in NLG is focussed on producing high-quality written text. This article summarises the state-of-the-art in the two individual research areas of social robotics and natural language generation. It then discusses the reasons why so few current social robots make use of more sophisticated generation techniques. Finally, an approach is proposed to bringing some aspects of NLG into social robotics, concentrating on techniques and tools that are most appropriate to the needs of socially interactive robots

    Rancang Bangun Robot Penyaji Minuman Menggunakan ATMega 8535 dan Mini Water Pump

    Get PDF
    The drinks serving robot is built to serves a drink or a drink mixture. This robot provides 8 types of basic drinks and 8 types of mixed drinks. Users choose the desired drink by pressing the keypad button then ATMega8535 will process user selection then activate stepper motors of x and y axes that carrying the glass. After glass on position of selected drink ingredients then stepper motors will stop, and next step microcontroller will activate mini pump to fill the drink ingredients to the glass. After all ingredients filled into glass then the stepper motors will bring the glass to stirring position. Then a single action cylinder will lower the mixer into the glass, the motor on the end of the cylinder will rotate the mixer so that the drink is mixed. From the testing that has been done, the robot can recognize drinks orders that have been made by users before and able to present the drink correctly with 100% success performance. The average time needed to serve drinks that only consist of one type of ingredientsis 33.28 seconds and for mixed drinks need 37.9 seconds. The robot is also able to do the stirring process for this type of mixed drink well with a performance of 100% successRancang bangun robot penyaji minuman ini berfungsi untuk menyajikan satu jenis ataupun campuran beberapa minuman. Minuman yang dapat disediakan adalah 8 jenis bahan minuman dan 8 jenis campuran bahan minuman tersebut. Cara kerja robot ini dimulai dari penekanan keypad sebagai input. Kemudian mikrokontroler ATMega 8535 mengaktifkan motor stepper 1 dan 2. Setelah gelas berada tepat di bawah wadah bahan minuman yang telah dipilih maka mikrokontroler mengaktifkan mini water pump untuk memompa minuman dari wadah ke gelas. Jika yang dipilih adalah minuman campuran maka setelah semua bahan minuman dimasukkan selanjutnya motor stepper akan aktif kembali dan membawa gelas menuju ke tempat pengadukan (mixer). Ketika gelas tepat berada dibawah mixer maka silinder aksi tunggal yang membawa mixer turun hingga beberapa saat kemudian mixer akan aktif. Keunggulan robot ini adalah dapat bergerak ke bahan minuman dengan pergerakan x dan y serta dapat mengaduk minuman. Dari pengujian yang sudah dilakukan robot ini dapat mengenali pesanan minuman yang sudah dibuat pengguna sebelumnya dan mampu menyajikan minuman tersebut dengan benar dengan unjuk kerja keberhasilan sebesar 100%. Rata-rata lamanya waktu yang dibutuhkan untuk menyajikan minuman yang hanya terdiri atas 1 jenis bahan saja adalah sebesar 33,28 detik dan untuk jenis minuman campuran 2 atau 3 bahan membutuhkan waktu rata-rata selama 37,9 detik. Robot juga mampu melakukan proses pengadukan untuk jenis minuman campuran dengan baik dengan unjuk kerja keberhasilan sebesar 100%

    A systematic literature review of decision-making and control systems for autonomous and social robots

    Get PDF
    In the last years, considerable research has been carried out to develop robots that can improve our quality of life during tedious and challenging tasks. In these contexts, robots operating without human supervision open many possibilities to assist people in their daily activities. When autonomous robots collaborate with humans, social skills are necessary for adequate communication and cooperation. Considering these facts, endowing autonomous and social robots with decision-making and control models is critical for appropriately fulfiling their initial goals. This manuscript presents a systematic review of the evolution of decision-making systems and control architectures for autonomous and social robots in the last three decades. These architectures have been incorporating new methods based on biologically inspired models and Machine Learning to enhance these systems’ possibilities to developed societies. The review explores the most novel advances in each application area, comparing their most essential features. Additionally, we describe the current challenges of software architecture devoted to action selection, an analysis not provided in similar reviews of behavioural models for autonomous and social robots. Finally, we present the future directions that these systems can take in the future.The research leading to these results has received funding from the projects: Robots Sociales para Estimulación Física, Cognitiva y Afectiva de Mayores (ROSES), RTI2018-096338-B-I00, funded by the Ministerio de Ciencia, Innovación y Universidades; Robots sociales para mitigar la soledad y el aislamiento en mayores (SOROLI), PID2021-123941OA-I00, funded by Agencia Estatal de Investigación (AEI), Spanish Ministerio de Ciencia e Innovación. This publication is part of the R&D&I project PLEC2021-007819 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR

    Modeling and Design Analysis of Facial Expressions of Humanoid Social Robots Using Deep Learning Techniques

    Get PDF
    abstract: A lot of research can be seen in the field of social robotics that majorly concentrate on various aspects of social robots including design of mechanical parts and their move- ment, cognitive speech and face recognition capabilities. Several robots have been developed with the intention of being social, like humans, without much emphasis on how human-like they actually look, in terms of expressions and behavior. Fur- thermore, a substantial disparity can be seen in the success of results of any research involving ”humanizing” the robots’ behavior, or making it behave more human-like as opposed to research into biped movement, movement of individual body parts like arms, fingers, eyeballs, or human-like appearance itself. The research in this paper in- volves understanding why the research on facial expressions of social humanoid robots fails where it is not accepted completely in the current society owing to the uncanny valley theory. This paper identifies the problem with the current facial expression research as information retrieval problem. This paper identifies the current research method in the design of facial expressions of social robots, followed by using deep learning as similarity evaluation technique to measure the humanness of the facial ex- pressions developed from the current technique and further suggests a novel solution to the facial expression design of humanoids using deep learning.Dissertation/ThesisMasters Thesis Computer Science 201

    A cognitive ego-vision system for interactive assistance

    Get PDF
    With increasing computational power and decreasing size, computers nowadays are already wearable and mobile. They become attendant of peoples' everyday life. Personal digital assistants and mobile phones equipped with adequate software gain a lot of interest in public, although the functionality they provide in terms of assistance is little more than a mobile databases for appointments, addresses, to-do lists and photos. Compared to the assistance a human can provide, such systems are hardly to call real assistants. The motivation to construct more human-like assistance systems that develop a certain level of cognitive capabilities leads to the exploration of two central paradigms in this work. The first paradigm is termed cognitive vision systems. Such systems take human cognition as a design principle of underlying concepts and develop learning and adaptation capabilities to be more flexible in their application. They are embodied, active, and situated. Second, the ego-vision paradigm is introduced as a very tight interaction scheme between a user and a computer system that especially eases close collaboration and assistance between these two. Ego-vision systems (EVS) take a user's (visual) perspective and integrate the human in the system's processing loop by means of a shared perception and augmented reality. EVSs adopt techniques of cognitive vision to identify objects, interpret actions, and understand the user's visual perception. And they articulate their knowledge and interpretation by means of augmentations of the user's own view. These two paradigms are studied as rather general concepts, but always with the goal in mind to realize more flexible assistance systems that closely collaborate with its users. This work provides three major contributions. First, a definition and explanation of ego-vision as a novel paradigm is given. Benefits and challenges of this paradigm are discussed as well. Second, a configuration of different approaches that permit an ego-vision system to perceive its environment and its user is presented in terms of object and action recognition, head gesture recognition, and mosaicing. These account for the specific challenges identified for ego-vision systems, whose perception capabilities are based on wearable sensors only. Finally, a visual active memory (VAM) is introduced as a flexible conceptual architecture for cognitive vision systems in general, and for assistance systems in particular. It adopts principles of human cognition to develop a representation for information stored in this memory. So-called memory processes continuously analyze, modify, and extend the content of this VAM. The functionality of the integrated system emerges from their coordinated interplay of these memory processes. An integrated assistance system applying the approaches and concepts outlined before is implemented on the basis of the visual active memory. The system architecture is discussed and some exemplary processing paths in this system are presented and discussed. It assists users in object manipulation tasks and has reached a maturity level that allows to conduct user studies. Quantitative results of different integrated memory processes are as well presented as an assessment of the interactive system by means of these user studies

    Grounding as a collaborative process

    Get PDF
    corecore