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Abstract

A robot coexisting with humans must not only be able to
perform physical tasks, but must also be able to interact
with humans in a socially appropriate manner. In this
paper, we describe an extension of prior work on plan-
ning for task-based social interaction using a robot that
must interact with multiple human agents in a simple
bartending domain. We describe how the initial state rep-
resentation developed for this robot has been extended
to handle the full range of uncertainty resulting from the
input sensors, and outline how the planner will use the
resulting uncertainty in the state during plan generation.

Introduction
A crucial aspect in the design of an interactive system is state
management: transforming the noisy, continuous hypotheses
produced by the low-level input processing components into
a form that can be used as the basis for higher-level action
selection by a component such as a planner. Intuitively, states
represent a point of intersection between low-level sensor
data and the high-level structures used for action selection.
Since states are induced from the mapping of sensor ob-
servations to property values, the challenge of building an
effective state manager rests on defining appropriate map-
ping functions. A state representation that considers only the
highest-confidence inputs is straightforward to maintain and
reason with, but discards a great deal of potentially useful
information. On the other hand, a representation that takes
into account the full set of input possibilities—along with
their estimated confidence scores—can be more robust and
informative, but requires more sophisticated methods of main-
tenance and more complex forms of reasoning and planning.

The particular application we consider here is a robot
bartender called JAMES (Figure 1), which has the goal
of supporting socially appropriate multi-party interaction
in a bartending scenario.1 In particular, the robot’s sensors
monitor two primary input modalities: vision and speech.
Based on observations about the agents in the bar provided
by these sensors, the system maintains a model of the so-
cial context, and decides on effective and socially appro-
priate responses in that context. Key to our approach is
the use of a high-level planner for action selection in the

1See www.james-project.eu for more information.

Figure 1: The JAMES robot bartender

robot system, in the place of a traditional interaction man-
ager (Larsson and Traum 2000). Specifically, we use the
knowledge-level planner PKS (Petrick and Bacchus 2002;
2004), a choice that is motivated by PKS’s ability to work
with incomplete information and sensing actions, since the
robot will often have to gather information from its environ-
ment (e.g., by asking a customer for a drink order) in addition
to performing physical tasks such as handing over drinks.

In this paper, we describe how the initial, deterministic
state representation has been extended to incorporate the full
data from the robot’s input sensors, and how the planner is
using this enhanced representation during plan generation.

State Management with Uncertain Input
The task of the state manager in the robot bartender system is
to keep track of information about the agents in the scene: for
example, their locations, whether they are currently seeking
the bartender’s attention, and their drink orders. The state is
derived from the continuous stream of messages produced
by the low-level input and output components. In addition to
storing low-level sensor information, we also infer additional
relations not directly reported by the sensors; for example,
we fuse vision and speech to determine which user should
be assigned a recognised speech hypothesis, and use the
vision data to estimate each customer’s attention-seeking
state (Foster, Gaschler, and Giuliani 2013).

Since the input provided by the vision and speech process-
ing components is uncertain, there is an inherent uncertainty
about the state. However, for simplicity, the state represen-
tation used in the initial JAMES system (Petrick and Foster
2013) stored only the highest-probability hypotheses, with no



seeksAttention(A1) true 0.75
seeksAttention(A2) false 0.45
lastSpeaker() A1 1.0
lastEvent() userSpeech(A1) 1.0
drinkOrder(A1) green lemonade 0.677

blue lemonade 0.322
lastAct(A1) greet 0.25

Table 1: State excerpt, showing both the old discrete repre-
sentation (highlighted portion) and the new representation

action ask-drink(?a : agent)
preconds: K(inTrans = ?a) ∧ ¬K(ordered(?a)) ∧

¬K(otherAttnReq) ∧ ¬K(badASR(?a))
effects: add(Kf , ordered(?a)),

add(Kv, drinkOrder(?a))

Figure 2: Example PKS action in the bartender domain

confidence measures; a sample state using this representation
is shown in the highlighted portion of Table 1.

This initial representation simplified action selection con-
siderably, but also discarded potentially relevant information
from the input sensors. We have therefore extended the ini-
tial version of the state manager to associate each hypothesis
with a confidence score, and to include alternative hypotheses
about a customer’s drink order (Foster, Keizer, and Lemon
2014). Table 1 shows a full state using this expanded rep-
resentation: in addition to the old-style state information in
the highlighted portion, this state adds confidence scores to
all properties—meaning that low-confidence relations like
lastAct(A1) can now be included—and also includes multiple
values for relations like drinkOrder(A1). The resulting repre-
sentation is similar to the Discrete distribution used in RDDL
(Sanner 2011), the language for the recent probabilistic tracks
of the International Planning Competition.

Planning under Sensor Uncertainty
To generate plans for the robot, PKS uses a knowledge-level
domain model that includes a specification of the physical,
sensory, and linguistic (speech) actions available to it. The
current domain supports simple interactions with individual
agents for ordering drinks from the robot, as well as socially
motivated behaviour such as group ordering and multi-party
turn-taking. For example, Figure 2 shows the PKS representa-
tion for the ask-drink(?a) action (“ask an agent ?a for a drink
order”), which is modelled as a sensing action that returns
a placeholder (the function drinkOrder) for information that
will become known at execution time.

We are currently improving our ability to plan with sensor
uncertainty in the states described above. Since PKS does
not (currently) work directly with probabilistic representa-
tions, we are modelling disjunctive state information like
drinkOrder in Table 1 using PKS’s ability to use “exclusive
or” formula of the form (φ1|φ2| . . . |φn) (which is interpreted
as “one, and only one, of the φis is true”), ordered by decreas-
ing confidence values. To incorporate confidence information
for single-value relations, such as seeksAttention, we instead
employ empirically determined confidence thresholds to de-
termine whether to accept the current state information or to

make an effort to gather more information before continuing.
Updated state information is regularly sent to the planner
from the state manager after action execution, and used for
monitoring and replanning purposes.

Once the extended state information is available in the
planner’s knowledge state, it can be directly used during
plan construction. In practice, such knowledge often has the
effect of introducing additional sensing actions into a plan,
to disambiguate between disjunctive alternatives. To aid this
process, we are adding new actions which correspond to
information-gathering (clarification) questions that the robot
can ask to help clarify uncertain beliefs—without asking an
agent to simply repeat an utterance, which is often interpreted
by humans as a poor dialogue move (Skantze 2005).

Future Work
We will shortly carry out a user study to assess the impact of
the new state representation and updated planning approach
on user interactions with the system, comparing a version
of the bartender that deals with all of the above forms of
uncertainty to one that does not. Based on the behaviour of
previous versions of the system—which did not incorporate
state uncertainty but still performed reasonably well—we
expect to see a positive impact in task performance (i.e., the
number of drinks correctly served), since the bartender should
clarify lower-confidence or ambiguous state hypotheses in-
stead of simply serving what it believes to be the requested
drink. On the other hand, it may be that the subjective user
judgements will be negatively affected if the system clarifies
too frequently in contexts where the top hypothesis is correct.
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