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ABSTRACT

A lot of research can be seen in the field of social robotics that majorly concentrate on

various aspects of social robots including design of mechanical parts and their move-

ment, cognitive speech and face recognition capabilities. Several robots have been

developed with the intention of being social, like humans, without much emphasis

on how human-like they actually look, in terms of expressions and behavior. Fur-

thermore, a substantial disparity can be seen in the success of results of any research

involving ”humanizing” the robots’ behavior, or making it behave more human-like

as opposed to research into biped movement, movement of individual body parts like

arms, fingers, eyeballs, or human-like appearance itself. The research in this paper in-

volves understanding why the research on facial expressions of social humanoid robots

fails where it is not accepted completely in the current society owing to the uncanny

valley theory. This paper identifies the problem with the current facial expression

research as information retrieval problem. This paper identifies the current research

method in the design of facial expressions of social robots, followed by using deep

learning as similarity evaluation technique to measure the humanness of the facial ex-

pressions developed from the current technique and further suggests a novel solution

to the facial expression design of humanoids using deep learning.
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Chapter 1

INTRODUCTION

Robotics in the current world resonates with automation. Robotics has been making

an appearance everywhere, starting from simple robotic arms in factories, to intri-

cate medical instruments, to complex social robots. Automation not only helps with

efficiency but also serves as an alternative or sometimes the only option in situations

where other help is difficult. This would include scenarios of nuclear disasters where

self-maneuvering robots can be capable of controlling the situation from worsening or

in environments of care and companionship like elderly homes. “Humanoid” robots

haven’t been the most successful part of robotics research. Humanoids are robots

that have human like appearance and can perform cognitive actions and display of

emotions like humans. Since human behavior, expressions and actions are so diverse

and complicated, the lack of successful social robots that both look like humans and

display behavioral expressions and characteristics is obvious.

Even if there has been considerable research into facial design of humanoids most of

the research concentrates on the appearance of the face being as human-like as pos-

sible but not so much on how human-like the expressions displayed by the face look.

But even after these considerations about the design features and characteristics that

are most identified as human Sinha et al. (2006), their static expressions or behavior

with changing expressions add to uncanny valley theory, making these expressions

appear more scary and less human-like.

The research on facial features and behavior of humans has been going on since

decades. The research can be thought of as being pursued in three different time-

lines or generations. First being research on human faces and their expressions and
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understanding points of importance in the human expression that differentiate every

expression from the other, while also identifying different faces. This was followed

by a second generation of research, where the available results and analysis of its

outcomes were applied in movies and animation along with research into artificial

intelligence software such as face recognition and prediction. The last generation of

research, which can be thought of as the present era of research, is the research on

social robots, specifically humanoids.

Initially, during the “first generation” of research on human faces, emphasis was on

understanding facial features that uniquely make up the human expressions, along

with understanding human cognitive behavior which helps in the recognition of the

expressions by humans themselves. The results from these experiments were exten-

sively used in animation Animation (1998) as well as primarily in the introduction

and improvement of artificial facial recognition software and engines DiSalvo et al.

(2002), Hizem et al. (2006). One crucial requirement in animation is modeling the fa-

cial expressions accurately. The animation software require and study data obtained

from human facial expressions Hirose and Ogawa (2007). This era of initial research

can be thought of as being complete, since we can see relevant results from such ex-

periments that are being extensively used in movies and predictive and classification

photo applications.This kind of research has also been used in medical research for

cosmetic and healing studies. This can be thought of as another era of research that

was successfully conducted and concluded. This resulted in a large amount of data

to pertaining to human behavior and expression to be collected and important fea-

tures and labels analyzed leading to far more progression into artificial intelligence in

automatic emotion and face recognition Edsinger and O’Reilly (2000)

The research on social robots and humanoids makes the current era of research. Since

technology and artificial intelligence have proved to be immensely successful with so-

2



cial beings, humans, humanoids or robots that look like humans and combine the

appearance with human like behavior are the future of technology.

There are numerous successful research on social robots Hirose and Ogawa (2007),

Ogura et al. (2006), Jokinen and Wilcock (2014), which primarily achieved results on

biped movement analogous to the way human beings move. Face-to-face communica-

tion still forms the most important part of human communication or human-humanoid

interaction. Human faces can display and convey messages through a wide array of

not only dynamic facial expressions but static expressions as well. There has been

considerable research on making the humanoid head more human like. Robot SAYA

Hashimoto et al. (2006) that was developed for rich facial expressions is a very good

example of facial design research. The research in Hashimoto et al. (2006) also deals

with identifying and using action units that pertaining to human facial muscles that

contribute to facial expressions.
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Chapter 2

GOAL

The main aim of this thesis is to establish a quantitative framework for the objective

evaluation of mechanical social robots. This thesis provides a study on the current

generation of mechanical social robots that have been researched into and developed

successfully.

While the algorithms chosen in this thesis provide a quantitative measure of human-

ness of the mechanical social robots, there are a large number of factors that can

affect the results that are obtained in the future using the same algorithms and the

approach. This can be attributed to not only advancement in the design process of

the mechanical social robots but also advancements in the learning algorithms them-

selves. The effect can be positive or negative based on how advancements progress.

The approach however will remain the same where each of these robots can be mea-

sured for their humanness and the changes in their design aspects. This would not

only help assess the mechanical social robots being considered at that moment but

will continue in to help in modifying and improving the design process based on the

results obtained from the method outlined in this thesis.
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Chapter 3

LITERATURE SURVEY

3.1 Generation of Robots

In this review of the related literature, I propose that the advances in robotics

can be generally divided into five successive generations:

(1) Accurate and Dexterous Robots,

(2) Mobile Robots,

(3) Autonomous Robots,

(4) Socially Capable Robots, and

(5) Socially Autonomous Robots.

While there are relatively clear distinctions between the five generations, the follow-

ing observations hold:

1) There is some research that spans two generations together. For example, a single

research effort can focus on the accuracy of manipulator motion (generation 1) as

well as on some autonomous decision making to guide that motion (generation 2).

2) Each generation could use functionality of previous ones. For example, develop-

ment of autonomous actions (generation 2) requires as a prerequisite the ability of

accurate motion (generation 3). Thus, generations are apparently cumulative in na-

ture.
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3.1.1 First Generation: Accurate and Dexterous Robots

The field of robotics is often considered to have grown out of two earlier machines:

the CNC manufacturing machine Newman et al. (2008) in 1949 and the Teleopera-

tor Johnsen and Corliss (1971), or remote manipulator in 1945. Development of the

Teleoperator provided the context for the derivation of manipulator kinematics for

positioning and velocity and force control of an end effector via joint control. The

CNC machine contributed to the development of automation in motion control for

fast, accurate, and stable positioning of an end effector. The combination of the

knowledge gained through the remote manipulator and the CNC machine provided

the technical foundation for the first robots, capable of simple preprogrammed mo-

tions of a manipulator and end effector through complex paths. These accurate and

dexterous robots were limited to specified motions, and not yet capable of what would

be classified as movement autonomy.

3.1.2 Second and Third Generation: Mobile and Autonomous Robots

While first generation robots were progressing in their mostly arm movements and

dexterity, they were not capable of motion other than either specific preprogrammed

trajectories or directly human guided motions. Second generation robots focused on

mobility while the third generation robots focused on autonomous mobility, with the

development of path planning and collision avoidance algorithms. These algorithms

allow the robot to identify and follow paths and execute motions other than human

directed or preprogrammed motions according to algorithmic commands, rather than

point to point motions. These mobile and autonomous robots began to have the

capability to move around in increasing distances first on wheels, then on multiple

spider like legs, and eventually on two legs to simulate human walking. Walking
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stability and incident recovery improved with further research. These stabile robots

required an awareness of the surrounding environment in order to identify and avoid

obstacles and problematic areas, a significant problem not present in first generation

robots. Examples of these mobile and autonomous robots include the Mars rover, self

driving cars, and walking robots.

3.1.3 Fourth Generation: Socially Capable Robots

This generation of robots was designed with consideration of primitive social be-

havior of the robots in interactions with human operators. Robot social behavior was

addressed in two main categories:

1) Displaying humanlike output (talking, face impressions, gestures, gazing, paying

attention, emotions)

2) Perceiving and interpreting human social behavior as an input (voice, movements,

presence, attention, etc.)

Research in this generation mostly focused on implementing one or few social compo-

nents (either through an actual robot implementation Embgen et al. (2012), or by a

simulated lab experiment), and identifying the effect of a particular social behavior.

Most recent and current research in human robot interaction can be classified within

this generation. Some of these key studies are categorized and summarized here.

Comparison of Human Robot Communication With and Without Social

Cues

Vossen et al. (2010) argues that delivering the same information to humans via a

socially capable robot (using speech or physical appearance) works more effectively

than just presenting the information as plain factual feedback. The work by Jayagopi
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et al. (2013) is an early attempt to identify and build a dataset of social cues including

para-verbal and nonverbal cues and their meanings.

Investigation of Algorithms for Robot Perception of Human Behavior

Sheikhi and Odobez (2012) test the capability of a robot to identify the combination

of a human’s head pose direction and eye gaze direction to estimate what the human

subject is looking at. It is known that humans look at objects by the combined move-

ment of our heads as well as the movement of our eyes. Only the combined effect of

both movements determines the object we are looking at.

Investigation of Algorithms for Robot Imitation of Human Behavior

Mathur and Reichling (2009) evaluate the level of human trust of robots based on

robot appearance. The “”Uncanny Valley of Trust” is evaluated and confirmed, in

which it was found that up to a certain degree, humans prefer highly realistic robot

faces over mechanical faces. Castellano and McOwan (2009) provide a detailed anal-

ysis of how socially capable robots can affect human behavior. Finke et al. (2005)

show how a robot can perceive human presence and interest, and how to attract their

attention in a gentle, nonintrusive way, Nakagawa et al. (2013) measure how humans

believe in a whispering robot as they do with a whispering human.

3.1.4 Fifth Generation: Socially Autonomous Robots

While 4th generation robots display important social action or response, they are

mostly limited to simple and limited social actions. In contrast, 5th generation robots

8



include three main improvements:

1) An integrated set of complex social behavior (for example a broad range of natural

social action and reaction)

2) Robot stability and reliability over extended period of time.

3) A continuous, intelligent dialog between human and robot rather than one action

and/or one retraction.

The 5th generation robots are capable of a continuous and prolonged interaction with

humans without deteriorating performance or breakdown.

The robot built for use in healthcare Kuo et al. (2012) can be considered an early 5th

generation robot with both advanced social capabilities as well as extended auton-

omy. The researchers integrate several complex social variables including environment

awareness, user presence awareness, user’s attentions, and user face impression detec-

tion. They focus on the system stability and uptime of the robot for up to 6 hours a

day for 2 weeks period with minimal technical maintenance. The robots operated in

two different environments: A private apartment and a public lobby.

Breazeal (2000) built an anthropomorphic robot with extended and continuous con-

versational capabilities with humans using turn taking dialog. Gaschler et al. (2012)

integrate many nonverbal cues (108 interaction movements) taken from natural hu-

man body language. The robot successfully worked as a bartender for extended

periods of time with high success rates (91.2% recognition rate.)

3.1.5 Current Research

Overall, most current HRI research is focused in the fourth generation. Only a few

studies extend into the fifth generation. An excellent example of this is the research

on establishing a platform for identifying and understanding nonverbal information
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of users of robotic technologies Burleson et al. (2004). I propose a study within the

fifth generation of HRI research by investigating the ability of an artificial agent to

generate trust in human artificial agent collaborative tasks in three dimensions:

1) The ability to display multiple social cues

2) The extended period of interaction

3) The adaptability of the robot social behavior depending on the progress of the

interaction

The work proposed here relies upon the concept that human trust in a machine does

not rely only upon the reliability of the machine for its task, but also upon human

perception of the machine. A few previous studies have supported this concept. In a

study by Merritt (2011), participants interacted with a fictitious automated system

after watching video clips to induce positive or negative moods. This study found

that participant perception of the automated machine varied depending upon the

video clip that was watched prior to interaction with the machine. A similar study

by Phillips and Madhavan (2013) showed that mood manipulations affected partici-

pant trust, confidence, and sensitivity to an automated decision making aid. Merritt

and Ilgen (2008) found that individual perceptions of a machine account for 52% of

variance in trust of the machine, when machine characteristics are held constant.

These previous works conclude that success of interaction is not simply a function of

the effectiveness and efficiency of the communication, but also a function of human

trust in an automated machine. The trust, in turn, is not only a function of the

machine reliability, but also upon human perception of the reliability of the machine.

In this study, we propose to extend previous work in two key aspects: to investigate

whether the robot social behavior has an effect on performance of a human-machine

team on a collaborative task.
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3.2 Face Recognition and Classification Algorithms

For accurate classification of facial images, it is important to first extract a face

from a given image. For this purpose, algorithms to detect faces in an image are useful.

In this work, face detection is performed using an implementation Haar Feature-based

Cascade Classifiers in OpenCV. Once a face is detected, classification is done by

encoding using three algorithms:

1. Eigenfaces

2. Fischerfaces

3. Local binary pattern histograms.

3.2.1 Face Detection

The feature based classifier that is used in this work was introduced by Viola and

Jones (2001) in 2001. This is an efficient machine learning based approach and full

details are available in Viola and Jones (2001). Use of Haar wavelet basis as a feature

set for image object recognition was introduced by Papageorgiou et al. (1998) and its

adaptation as Haar Features was part of the work by Viola and Jones (2001). With a

training data set of positive and negative images, Haar feature set is an efficient way

to create a classifier with a limited number of images in training data set.

In the Viola-Jones based approach, the Haar features used for object detection

are shown figure 3.1. Haar features are computed by the difference of the sum of

pixel intensities in the bright part of the rectangle from the sum of pixel intensities

in the dark part of the rectangles. For a base resolution of 24x24, the number of

Haar features is 180000. The key contribution by Viola and Jones (2001) is the use

of integral images for fast computation of Haar features recursively. This reduces the
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computation time of Haar features. An integral image at (x, y) is the sum of all the

pixels above and to the left of (x, y), inclusive as defined by

I∑(x, y) =
∑
x′≤x
y′≤y

i(x′, y′) (3.1)

where I∑(x, y) is the integral image of i(x, y). The computation of any rectangular

sum is then a look up of four array references

sum = I(C) + I(A) − I(B) − I(D), (3.2)

where A,B,C and D are four points in the integral image.The difference between two

rectangular sums is eight references.

Using Adaptive Boosting or AdaBoost (Freund and Schapire (1997)), a machine

learning algorithm, the feature set can be reduced to few thousands. In the original

work by Viola and Jones, they reported 95% accuracy with 200 features. An example

of first and second features selected by AdaBoost is shown in 3.2, which can be

interpreted intuitively based on the intensity changes around the eye region in a face.

Further optimization was achieved by hierarchically applying the classifiers to

eliminate the regions that are least likely to contain a face first. This is the concept

of Cascade of Classifiers introduced by Viola and Jones (2001). In their original work,

the cascade of filters was split to 38 stages 1, 10, 25, 25 and 50 features in first five

stages.

The face recognition detector is then scanned across the image at multiple scales

and positions. The scaling is done by scaling the detector and not the image. This

can
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Figure 3.1: Examples of Haar Features Viola and Jones (2001)

Figure 3.2: First and Second Feature Selected by AdaBoost. The Features Selected
Correspond to Easily Interpreted Intensity Changes in a Face Viola and Jones (2001).

3.2.2 Face Classification

Eigen Faces

The basis of this algorithm is dimensionality reduction of images using Principal

Component Analysis (PCA) Pearson (1901). A given image of 100x100 pixels has a
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dimensionality of 104. Through the application of PCA, an image can be decomposed

to a linear combination of Eigen images such that the variance is maximized for these

images. The basic idea here is a representation of an image as a linear composition

of images which contain the most amount of information. If T is matrix of training

images with each column containing the mean subtracted image, then the eigen faces

are obtained by the solving the eigen value equation

Svi = TTTvi = λivi (3.3)

where S is the covariance matrix. For a typical image reconstruction, 300 eigen faces

are sufficient for a reasonable reconstruction. For face recognition, the euclidean

distance of the weights of the eigen faces for a given image is used as the basis for

classification.

Figure 3.3: Set of Eigen faces Generated from the AT&T Data Set Using OpenCV
Implementation of Eigen faces. Retrieved from Wagner (2017)

Fisher Faces

Although linear combination of Eigen faces is useful to encode data, PCA does not

use any information about the classes in the training data set to compute the Eigen

faces. This discriminatory information is lost when using PCA as splits the images

into features that maximize the variance in different images. In many cases, the
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variance can be due to sources that are external and not related to the classification

problem itself. An obvious example of this would be change in ambient lighting.

Fisher faces overcomes this limitation in encoding images as it uses a class spe-

cific decomposition. Fisher decomposition is based on Linear Discriminant Analysis,

where the images are split into features that maximize the inter-class variation while

minimizing the intra-class variation Belhumeur et al. (1997). Full details of algorithm

is given in Belhumeur et al. (1997). Within class variation is estimated by

Sw =
C∑

j=1

nj∑
i=1

(xij − µj)(xij − µj)
T , (3.4)

where xij is the ith sample of class j, µj is the mean nj the number of samples in

class j. The inter-class difference is computed by

Sb =
C∑

j=1

(µj − µ)(µj − µ)T , (3.5)

where µ is the mean of all classes. The problem of finding Fisher faces reduces to

finding basis vectors V for which Sw is minimized and Sb is maximized. This is

expressed as an Eigen value problem

SbV = SwVΛ, (3.6)

where Λ is a matrix of eigen values. An example of Fisher face decomposition is

shown in Fig.3.4
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Figure 3.4: The First 16 Fisher faces Shown for an Image from Yale Data Base. Set
of Eigen Faces Generated from the AT&T Data Set Using OpenCV Implementation
of Eigen Faces. Retrieved from Wagner (2017)

Local Binary Patterns Histograms

Both Fisher faces and Eigen faces look at the image as a whole and any extraneous

conditions that impact the image intensities can effect the classification. Even though

Fisher faces is more resistant than Eigen faces, drastic changes in light conditions can

impact classification. Especially in cases, where just one or two images are available

under ideal conditions, the covariance estimates are not very accurate and lead to

issues in classification. In such cases, an alternate approach of using local features

that are invariant to gray scale transformations. Local Binary Patterns (LBP)is an

example of such an encoding. LBP is formed by comparing a pixel intensity to its

neighborhood Ahonen et al. (2004) as given by the LBP operator

LBP (xc, yc) =
P−1∑
p=0

2ps(ip − ic), (3.7)
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where (xc, yc) is the pixel position with intensity ic and in is the neighboring pixel

intensity. s is the sign function defined as

s(x) =


1 if x ≥ 0

0 else

(3.8)

For a 3x3 window, LBP calculation is shown in Fig. 3.5. An example taken

from Wagner (2017) shows the invariance of LBP for images under different gray

scale image transformations. Ahonen et al. (2004) propose splitting the image into

m regions and concatenating histograms from each of these regions. Classification is

done on the basis of comparing LBP histograms.

Figure 3.5: LBP Operator With a 3x3 Window Ahonen et al. (2004)

Figure 3.6: LBP for the Same Image Under Different Gray Scale Transformations.
Retrieved from Wagner (2017)

17



Chapter 4

MOTIVATION

In the research that has been conducted in the field of digitization of the mechanical

expressions of human faces in the form of animations and movies, most of them in-

volve attaching actuators to human faces to understand key action units or muscles

that contribute to the expressions. The same approach has been seen in the field of

research where human expressions are converted into mechanical expressions on the

humanoid heads, specifically. The technique of understanding and identifying cer-

tain action points over other can be also be seen in Artificial Intelligence algorithms,

specifically face recognition algorithms, which can be used to replace some of the

survey activity required to analyze and understand humanness of a robot’s face and

its expressions.

There have been certain changes in the way facial expressions are being recognized

and categorized. As specified in Taheri et al. (2015), the paper tries to categorize

the action units or the facial muscles that move when certain expressions are being

displayed by the human face. But instead of 19 action units as mentioned earlier,

32 individual facial muscle action units are recognized. The paper also mentions au-

tomation of recognition of these action units from static expressions or profile of facial

expressions. This is the trend that is trying to be adopted in this paper.

The reason why automation is chosen over manual surveys is motivated by the amount

of human facial expression images that are available currently MIT (2003) Databases

(2003). Most of these databases are still constructed from photographs taken in very

controlled environments which add to the factor of how an image or an expressions

or the subject itself is recognized. But this is not always the case in reality where
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controlled action is highly difficult to achieve. A result of controlled environment

images is that the expressions between expressions, termed as dynamic expressions

which do not result in movement of a majority of action units but would still result

in some information being conveyed to the observer.

The idea here is to understand that the expressions in the human faces/ action units

in the human faces represent some of the highest frequency points. These points are

the ones that are common with most human faces that includes not only different

expressions from a particular subject but over an array of subjects that are being

considered to pick the muscles/ action units. This leads to selectively choosing points

that are occurring with highest frequency and regarding the rest with negligible fre-

quency as noise.

The research in this paper is motivated by three primary questions. The question

about whether the features that are difficult to quantify exist in facial expressions,

but are not selected due physical limitations, could actually add important informa-

tion to the design process of artificial facial expressions. This follows by questioning

why static expressions, the expressions that don’t convey any emotion but still exist

naturally between changing expressions in human faces, are not researched enough

but which form a major part of humanness since we see in human expressions that

human expressions are never robot like or artificially jumping from one expression

to another with no in-between state. Even when there is no expression, there is a

certain expression that is being exhibited. This can form a major part of making

the humanoid’s behavior more human like. Three, this again adds to the possibility

of important information being lost when it is being ignored due to lower weightage

or values given in the design consideration or “harmonics”. This can be termed as

“Design Harmonics”. The effect of understanding “Design Harmonics” on facial ex-

pression design forms the last question.
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So as to precisely state, the motivation for this thesis comes in the form of two major

questions which combines the concerns mentioned above

1) Where do the human cognitive system and artificial cognitive system differ? Un-

derstanding what makes the complex human cognitive system where it is capable of

realizing emotions as characterized by another human being by taking into account all

the features that come in different frequencies, not matter how small the frequencies

might be. It can be seen in a lot of research mentioned in chapter 2, about how face

recognition or artificial cognition is put into effect, that a lot of the recognition takes

into certain features while ignoring the other features spread throughout the spectrum

due to existing limitations. The question whether this information, no matter how

insignificant, might add to some important information in making the artificial cog-

nition more human like is a major priority. This, as previously mentioned, is termed

in this paper as “Design Harmonics”.

2) Since there is so much data available when it comes to human face images Martinez

and Benavente (2007) Solina et al. (2003) Huang et al. (2007)that has been collected

since more than a few decades now, understanding that automation, which uses these

databases to their full extent eliminates the need to conduct manual surveys or aides

in collecting any new face information, pushes to explore how it can help in the te-

dious process of making the humanoids behave and display emotions that are more

human-like.
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Chapter 5

RESEARCH CONTEXT

5.1 Need for Research

The research in this paper is intended to be used as part of a novel solution to

the design of facial expressions of humanoid robots. A new model can be established

based on this research that can form the basis of humanoid expressions and behav-

ioral design that constitute a different approach to design. The work reflected in this

thesis paper is important in today’s world where the world is moving towards automa-

tion and humanoids, robots that look and function like humans, would serve as the

best companions and assistive robots to the elderly and children, while also helping

with situations that would otherwise prove very difficult, while the major application

still remains education and healthcare. Health conditions such as schizophrenia and

autism with activities between humanoid robots and the subjects under treatment as

a remedial therapy is the latest era of research on the use of humanoid robots in the

healthcare domain. Although not enough results have been produced so far Taheri

et al. (2015), the area of humanoids in mental care is moving forward in the direction

of being explored more and more.

5.1.1 Humanoid Robots and Pediatric Healthcare

When it comes to pediatrics, humanoid robots can be seen as one of the most valu-

able companions. Humanoid robots are extensively being used in pediatrics health-

care as keenly seen in Jokinen and Wilcock (2014). A lot of the applications of the
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humanoid robots in this area comes with creating for the patient a calming effect

or distraction from the procedures that are being performed at that moment. An

important factor to be considered here is that the humanoids are expected to be

human-like in such a way that it does not add to the discomfort of the subject in

concern. This implies that the humanoid’s body and face, including the humanoid’s

behavior and expressions, are completely human-like without adding any justification

to the Uncanny valley theory Kozima et al. (2004). It can be seen from figure 5.1

how uncanny valley theory is proposed. The degree of acceptability depends on how

close to looking human-like the humanoid under construction is and the more close it

is, the more likable it gets, until a certain threshold, beyond which the resemblance

enters an uncanny valley. This is the current state of most humanoids that have been

developed. This acts as a major hurdle when it comes to acceptability of humanoids

in every day world, thus making it the most important concern when it comes to

humanoid facial design, since face is the first window of interaction between humans

and humanoids.
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Figure 5.1: Mori’s “Uncanny Valley” Kozima et al. (2004)

Not only do these robots help in reducing pains but also put children at a higher

chance of being vaccinated since the subjects already expect a distraction that can

reduce or eliminate the pain caused during vaccination. As mentioned in Jokinen and

Wilcock (2014), the humanoid robots help act as coaches for pain, motivation not

just before the procedure is performed on the subject, but also during and after the

procedure has been performed. While the humanoid can perform a number of tasks

to ease the pain, the primary objective of acceptance by the subject still relies on

how familiar/human-like it can look and behave.
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5.1.2 Humanoids for Physical Therapy

Figure 5.2: NAO Robot’s Features Jokinen and Wilcock (2014)

Humanoids are shown to be trained to demonstrate certain sets of exercises that

are suitable to the particular subject that under therapy. For example, the robot NAO

Jokinen and Wilcock (2014) has a solution called Zora Solution installed with it. This

solution not only ensures the set of exercises are particularly suited for the patient, but

its also important to note that, unlike human help, the robot that is trained to help

the patient perform these exercises is capable of repeating the exercises accompanied

with repeated verbal instructions as well which could or could not be supported by

sound and music. This would not only serve as a solution with unlimited patience to

provide the same set of services repeatedly with the same zeal every time, but also

leads to major motivation to the children and seniors using these kinds of services.
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Cerebral Palsy and Parkinson’s are examples of a few applications of the humanoid

robot with respect to therapy. Figure 5.2 shows how the NAO robot is built with its

features highlighted.

5.1.3 Humanoids and Mental Health

Studies like Jokinen and Wilcock (2014) Taheri et al. (2015) show that the com-

bination of humanoids and mental health can serve as a novel and successful com-

bination in remedial services and psychological health. Autism is a condition where

the subjects face difficulty in initiating and expressing speech. Humanoid robots can

be trained to function in a certain way in a variety of scenarios that are medically

suitable to help subjects with special conditions. As mentioned in Conti-Ramsden

et al. (2006) , autism can be characterized by (1) poor communication skills, (2) ab-

normal play patterns, (3) difficult social interaction. Studies like these have shown

that children with autism interact and react more positively with social robots than

while interacting with their peers or parents. While some subjects concentrate exten-

sively on a certain subject exhausting it completely, there are other subjects suffering

with autism that fail to show any creativity or interest in any particular subject.

There can also be subjects that can be obviously impaired with language abilities,

failing to communicate at all, while there are other subjects that can constantly

and continuously talk about their interests with letting their peers to be involved in

the conversation. With humanoids, the structure and expressions that matter the

most when it comes to holding an engaging conversation with subjects suffering with

autism, can be tweaked and programmed in a way that suits the need of the situation.

The expressions, again, is the most important factor to be considered when designing

humanoids for autistic subjects.

When it comes to autism special education, research such as Jokinen and Wilcock
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(2014) Taheri et al. (2015) have shown that humanoid robots can be designed so

that they can interact and educate subjects with autism with applications designed

specifically for such subjects. As mentioned in Jokinen and Wilcock (2014), the NAO

robot was designed to be especially suitable for interaction with autistic subjects since

the NAO robot is not only interactive, engaging, captivating and interesting but also

adapt to the exact requirements of the classroom that the NAO robot is meant to

deal with. The applications that can work with such robots can be designed to in-

crease the level of comfort of such subjects while also making them confident thereby

functioning as motivators based on the individual subject’s personality.

5.1.4 Humanoids in Education

A major use of humanoid robots come from the field of education. There can be

several different advantages of getting a humanoid involved in the daily classroom/

laboratory activities. As mentioned in Knoll (2002), the humanoid robots general

usefulness in the field of education could come from two applications. One, the con-

struction and programming of humanoids along with humanoid specific application

development, can lead to high educational gains and understanding in how the hu-

manoids work and how they can be improved. This kind of knowledge not only serves

useful to the students themselves, but it also provides a possibility of useful advance-

ments being contributed back by the students to the world of robotics which comes

from thorough understanding of how the humanoids are built from scratch.
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Figure 5.3: Example of Nonverbal Behavior of Humanoid in Educative Environ-
ments Brown and Howard (2013)

Figure 5.4: Example of Verbal Responses of Humanoid in Educative Environments
Brown and Howard (2013)
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Figure 5.5: Example of Engagement Model Brown and Howard (2013)

As seen in figure 5.3, the humanoids that are deployed in environments for edu-

cationPantic and Rothkrantz (2004) can be used as entities to provide feedback in

different forms. As it can be seen from the figure 5.3, the non-verbal responses form

an important feedback mechanism to the students under training. This requires care-

ful modeling and design of such features that make the robot more acceptable in an

educational setting.

Along with nonverbal responses, the figure 5.4 shows verbal responses that can be

used as feedback. The response can be programmed in various different ways as

shown. It can be used for gentle motivation to aggressive celebratory tones. This

kind of education helps the students in interacting with the humanoid more easy and

more informative with the higher chances of students understanding in depth the

topics discussed.
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5.2 Research Questions

The research on humanoid robots and making them not only appear more human-

like, that involves design of mechanical aspects of the humanoid and the material that

is used to build the robot, but also making its behavior including expressions more

human-like gives raise to a number of research questions.

Understanding that face expressions form one of the most important aspects of com-

munication as the research in Schmidt and Cohn (2001) shows, it is of utmost interest

to direct research towards facial expressions. Facial expressions are shown to form

the most important part of human cognitive abilities Calder and Young (2005). Even

so, a lot of the current research is concentrated and directed towards other aspects

of humanoid design such as design of the mechanical body parts, like the research in

Jokinen and Wilcock (2014) where the robot NAO is mentioned to be a robot capable

of biped movement, but as seen from figure 5.2, the robot does not appear very human

like, while still being able to communicate and show behavioral characteristics like

humans. There’s also a lot of research into just the biped movement of the humanoid

like Miyakoshi et al. (1998) which shows that a lot of advancements have been go-

ing on when it comes to researching the biped movement of the humanoid robots.

As shown in Yamaguchi et al. (1999) the two robots WABIAN and WABIAN-R Ya-

maguchi et al. (1999) are both developed to imitate human biped walking. While

WABIAN is mentioned to be shorter with lesser degree of freedom, WABIAN-R is

shown as a humanoid that is comparable to average human height while consisting of

more degree of freedom. The question that is being raised in this paper is when such

advancements have happened in the research of other aspects of humanoid robots,

why is research on humanoid facial expressions so far behind? This boils down to to

the question how the human cognition and artificially induced cognition/facial emo-
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tions function.

Another important question that is considered in this thesis is the extent to which

the number of expressions exhibited by human beings are replicated in the artifi-

cial world. Darwin is known to have written about facial expressions, although the

meaning of his research is not agreed upon by everyone. His greatest scientist sta-

tus makes a frank assessment of his claims and its effects on what is now known of

phylogenetic evolution is difficult. His 1872/1965 book has been read differently by

different researchers owing to the vagueness in his conceptualization of emotion and

expressions. His status has led to terming a lot of research on facial expressions as

Darwinian, even when most of that work was not by Darwin himself. This time dur-

ing which Darwin proposed his research was when facial expressions were thought of

as being universal. Darwin not only recognized basic human emotions as “States of

mind” that were mentioned in terms of those emotions but also as an effect of moti-

vational, behavioral or personality traits, sensations and cognitive processes. A lot of

research has been influenced from Darwin’s “”States of mind” research Russell and

Fernández-Dols (1997) and scientists have recognized 6 basic emotions Ekman (1992)

and 21 total expressions. How many of these have been replicated and understood

well is an important question identified here.

Even when we see a lot of research being put into the aspect of behavior of humanoids

and advancing it towards making it more human like, as in the research of the social

robot SAYA Hashimoto et al. (2006) it can be seen from figure 5.6 that the expressions

are still very robot like.
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Figure 5.6: Social Robot SAYA Making an Angry Face from Hashimoto et al. (2006)

The disparity in the successful results of biped movements,movement of other

body parts and the unsuccessful/ creepy results from facial expression design that

qualify the robots as less human and more towards justification of uncanny valley

5.1 Kozima et al. (2004) is the next question raised in this paper. This thesis tries

to determine the causes and any possible solutions to improve the facial expression

design of the humanoid social robots.

As seen from chapter 2, the face recognition algorithms and classification algorithms

especially the Eigenfaces recognition algorithm, use principal component analysis that

identifies local and global features that are significant but may not be directly related

to intuitive notion of face features such as the eyes, nose, lips and hair. This technique

as opposed to the current design technique of identifying action units and muscles

that contribute to a particular expression would serve as a good insight into how

the design process of facial expressions. The identification of the implications of this

change on this design process is the next question identified in this thesis.
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5.3 Research Methods So Far

The design of humanoid robots’ facial expressions is constituted with researching

on identifying the muscles involved while certain expressions are displayed. Taheri

et al. (2015) selects 32 action units or active muscles used in displayed different basic

emotions. This method of using actuators to imitate the action units or active muscles

on the humanoid robots’ head along with appropriate material for skin is the current

widespread research method involved. Survey has been the most important form

of research used so far in understanding and analyzing whether the design of the

humanoid constructed which is under evaluation qualifies the humanoid as human

in the eyes of humans. DiSalvo et al. (2002) shows how surveys on 48 robots were

used to understand how humans perceive them and the degree to which humans are

comfortable with engaging in a conversation with a humanoid. The research and

survey in DiSalvo et al. (2002) is used to understand crucial effects of facial features

on humanoid robot’s head as shown in figure 5.7.
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Figure 5.7: Presence and Influence of Facial Features on Robot Heads from DiSalvo
et al. (2002)

While this technique helps in understanding and extracting important behavioral

information about humans including how they perceive different kinds of robots which

also adds to the design process, it is obvious that a survey like this requires enough

time and resources. Not only is the factor of time and resources a major influence on

the results from a survey but the whole concept of survey requires that the subjects

undertaking the survey will take it in a good spirit and fully-aware of the consequences

of their responses. While some of the participants might take the surveys seriously,

thereby contributing positively to the process of understanding the effects of the

results from such surveys, there might be a larger population of the participants who

do not take the survey without any exterior influences and factors. This will impact

the results of the survey so that the conclusions obtained from such a survey may
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not be reliable. Fong et al. (2003) shows another research where survey is used to

understand human preferences in the acceptance of humanoid robots. For example,

Fong et al. (2003) mentions how the face of the humanoid head and degree of verbal

communication incorporated into the humanoids make a difference in the acceptance

of the robots by the participants in the survey. While research like this can add

to important conclusions, Tourangeau and Yan (2007) mentions the issues in survey

pertaining to sensitive questions in surveys, Cho and LaRose (1999) talks about

privacy issues in surveys, these add to the other issues involved in correctness of the

results from surveys.

Fong et al. (2003) also mentions how animation is used to generate 3D rendered

images to model humanoid head with appropriate expressions. This is again used to

conduct surveys and collect results about humanness of the humanoid 3D image.

So as to sum up, the research method currently used is designing and developing

a social humanoid robot along with the features of its head and behavior that can

qualify it as more human-like, following up with surveys that analyze how

5.4 Proposed Research Method

The research method proposed in this paper tries to take a new approach of incor-

porating deep learning into humanoid facial expression design. As mentioned in liter-

ature survey, under Facial recognition and classification algorithms, the EigenFaces,

FisherFaces and Local Binary Pattern Histogram algorithms(references to which can

be found in chapter 2 all work with the same idea in focus. The idea is of information

retrieval. This idea of information retrieval is not only about retrieving important

information but also making the information retrieval more efficient. The current

approach that is used in facial expression design that involves actuators, is only

somewhat efficient. This comes from the observation that it looks different to human
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eyes than what it is being represented as. Along with this experiments mentioned in

later chapters also show that these images of social robots’ facial expressions are not

classified in par with the human facial expression images.

The observation picked up in this research is that while information leading to facial

expression is identified, it is possible that some of the crucial information is being lost

either due to implementation complexities or incorrect identification of important in-

formation as noise.

The research in this paper aims to bridge the gap in information retrieval by suggest-

ing use of deep learning techniques for crucial and better information retrieval which

is also efficient which can then lead to better design process.

This deep learning technique is again used for the aspect of automating survey, where

only images or information that pass of as being more human like through the soft-

ware, which is more reliable and gives accurate results, are judged for acceptance by

humans in the real world. This not only saves time but also is more efficient in the

design process as well as understanding its humanness and acceptance.
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Chapter 6

FACIAL DESIGN

The human face has a varied array of functions. Not only does it display an individ-

ual’s motivation, that makes a human’s behavior more predictable, understandable

to another observing human being, but also replaces/supplements it with signaling

the speaker’s attitude towards the information being spoken. As mentioned in earlier

chapters, along with body language, facial expressions and face-to-face communica-

tion form a crucial part of human communication system. Human expressions can be

classified into 6 basic expressions- happiness, sadness, fear, disgust, contempt, sur-

prise. This has been identified in a number of works mentioned in earlier chapters

and most of these works aim into incorporating these basic expressions into their

humanoid head design. There have been a total of 21 expressions that have been

identified as exhibited by human beings. While the aforementioned 6 emotions/ex-

pressions form the basis of face-to-face communication, with the action units/ keys

points of movement identified in these 6 expressions, these action units are shown to

be twitched to model different expressions. Facial gestures along with facial expres-

sions form a major part of communication, such as a shrug to convey ”I don’t know”

Breazeal (2004).
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Figure 6.1: Physical Measures Taken for Humanoid Head Design DiSalvo et al.
(2002)

The figure 6.1 shows the measures of human head that is applied in the research

of humanoid head design. These measures are again obtained from surveys involving

a considerable number of human subjects. As mentioned in chapter 3, the research

method of survey is used extensively for the humanoid head design. This forms as a

basis to understand the key action points or active muscles involved in displaying the

emotions/expressions. This can be seen from figure 6.2.
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Figure 6.2: Various Facial Emotions from the Prototype Face Developed Using
Shape Memory Alloy Actuators Tadesse and Priya (2012)
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This highlights yet another important design feature as mentioned in [38], where

action units are identified that contribute to display of facial expressions. Yet another

example of this design technique is the figure 6.3 that shows the design of the social

humanoid robot SAYA.

Figure 6.3: Saya Face Robots Fong et al. (2003)

The figure 6.3 incorporates several control points that are actuated under the

“skin” to produce a varied array of facial movements and human expression. The

control points can be seen in figure 6.4.
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Figure 6.4: Saya Robot Hashimoto et al. (2006)

As mentioned in the chapter research context, the research method of using tech-

niques from animation to model humanoid heads. The figure 6.5 shows a generated

3D image that models a humanoid head. The image is generated by graphical ren-

dering and thus packs many degrees of freedom that are available for generating

expressions. This face is rendered based on Delsarte’s code for facial expressions

Bruce et al. (2002).
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Figure 6.5: Vikia-Computer Generated Face Fong et al. (2003)

41



Chapter 7

EXPERIMENTS

The research in this paper is motivated by the use of machine learning algorithms.

As mentioned in chapter 2, under the section face recognition and classification al-

gorithms, the recognition and classification algorithms work as information retrieval

algorithms. The basic idea behind these various algorithms is efficient selection and

information retrieval strategy that identifies and retains the most important infor-

mation using which the quality of results obtained can be expected to have accurate

measures. The recognition and classification algorithms in this thesis is first used

to understand how it works on the data that is collected. The data consists of im-

ages acquired from already available databases. The recognition and classification

algorithms work by shifting the bases on which information with highest variance is

available to enable concentration of important information, as mentioned in chapter

2 as being the information with highest variance spread over the data set that is

being considered, along one base and trying to reduce information on other bases.

As detailed in earlier chapters these algorithms construct Eigen values and vectors

which when added with the right co-efficient values give back almost all of the original

image.

7.1 Limitations

The four experiments outlined below have some limitations that can be generalized

between all of them. Firstly, only those algorithms that have been very successfully

developed and proved to be highly useful through prior research have been used in

these experiments. This includes EigenFaces, FisherFaces and Local Binary Pattern
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Histograms. It has to be noted that these algorithms are used from the python library

OpenCV.

The images used in these experiments have been taken in controlled environments.

This indicates that the high performance of one of these algorithms on these images

might be a factor of how these images have been taken owing to the dependence of

these algorithms on the image. However, it is to be noted that when every time the

algorithms are run on images clicked in the same manner as the ones in these ex-

periments, the results can be expected to be obtained similarly. This eliminates the

need for different kinds of images to be clicked and passed through these algorithms.

However, it is possible to determine the effect of other kinds of images on these algo-

rithms and repeat these experiments in the future.

The mechanical social robots developed might have their own limitations in devel-

opment which might make it possible that the results remain consistently bad over

many trials. This aspect, however, is out of scope in this paper and shall not be

taken as a factor for the results obtained since the idea of these experiments is to

understand the limitations of the mechanical social robots itself.

7.2 Experiment 1: Evaluation of EigenFaces, FisherFaces and LBPH Algorithms

on Human Face Image Database

The experiment involves a training data set and a prediction data set both of

which are fed to the three of the algorithms. The experiments work with first prepar-

ing the dataset to suit the format in which the three algorithms accept the input.

The pre-processing/preparation of data, in a nutshell, involves converting the image

into grayscale and cropping the images by appropriate identification of face in the

image, making sure that the entire training data set contains images of the same di-

mensions. The pre-processing step is then followed by creating the required classifier
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and training it with the training data set to identify the facial expressions. This is

then followed by predicting the facial expression of the prediction data set.

The technical requirements of this experiment is:

Anaconda Version 4.2.13

PyCharm Community Edition 2016.3

Build PC-163.8233.8, built on November 22, 2016

JRE: 1.8.0 112-release-408-b2 x86 64

JVM: OpenJDK 64-Bit Server VM by JetBrains s.r.o

The experiment uses Anaconda OpenCV 2.4.8. This library contains functions ex-

tensively used in face recognition and classification.

The training set is a database of images of human faces exhibiting different facial

expressions/empotions ranging across- happiness, sadness, fear, disgust, contempt,

surprise, neutral. The images in the dataset are taken from Kanade et al. (2000).

The images contain FACS coded files to indicate the label of the expression that the

image represents. The FACS code is obtained from the FACS action units according

to the table 7.1.
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Table 7.1: FACS Action Units Kanade et al. (2000)

AU Facial muscle Description of muscle movement

1 Frontalis, pars medialis Inner corner of eyebrow raised

2 Frontalis, pars lateralis Outer corner of eyebrow raised

4 Corrugator supercilii, Depressor supercilii Eyebrows drawn medially and down

5 Levator palpebrae superioris Eyes widened

6 Orbicularis oculi, pars orbitalis Cheeks raised; eyes narrowed

7 Orbicularis oculi, pars palpebralis Lower eyelid raised and drawn medially

9 Levator labii superioris alaeque nasi

Upper lip raised and inverted; superior part of the

nasolabial furrow deepened; nostril dilated by the

medial slip of the muscle

10 Levator labii superioris
Upper lip raised; nasolabial furrow deepened producing

square-like furrows around nostrils

11 Levator anguli oris (a.k.a. Caninus) Lower to medial part of the nasolabial furrow deepened

12 Zygomaticus major Lip corners pulled up and laterally

13 Zygomaticus minor
Angle of the mouth elevated; only muscle in the deep

layer of muscles that opens the lips

14 Buccinator Lip corners tightened. Cheeks compressed against teeth

15 Depressor anguli oris (a.k.a. Triangularis) Corner of the mouth pulled downward and inward

16 Depressor labii inferioris Lower lip pulled down and laterally

17 Mentalis Skin of chin elevated

18
Incisivii labii superioris and Incisivii labii

inferioris
Lips pursed

20 Risorius w/ platysma Lip corners pulled laterally

22 Orbicularis oris Lips everted (funneled)

23 Orbicularis oris Lips tightened

24 Orbicularis oris Lips pressed together

25
Depressor labii inferioris, or relaxation of

mentalis, or orbicularis oris
Lips parted

26
Masseter; relaxed temporal and internal

pterygoid
Jaw dropped

27 Pterygoids and digastric Mouth stretched open

28 Orbicularis oris Lips sucked
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Table 7.2: FACS Action Units(continued) Kanade et al. (2000)

AU Facial muscle Description of muscle movement

41 Relaxation of levator palpebrae superioris Upper eyelid droop

42 Orbicularis oculi Eyelid slit

43
Relaxation of levator palpebrae superioris;

orbicularis oculi, pars palpebralis
Eyes closed

44 Orbicularis oculi, pars palpebralis Eyes squinted

45
Relaxation of levator palpebrae superioris;

orbicularis oculi, pars palpebralis
Blink

46
Relaxation of levator palpebrae superioris;

orbicularis oculi, pars palpebralis
Wink

Some examples of the images and their associated FACS coded file are shown

in the figures below. The training set contains of a total of 521 images each show-

ing different sets of emotions by the same subject. The training dataset is passed

through a face recognizer, which works along the explanation in literature survey

of facial recognition algorithms. The recognizers used in this experiment are haar-

cascade frontalface default, haarcascade frontalface alt2, haarcascade frontalface alt,

haarcascade frontalface alt tree. Each of these are pre-trained recognizers avaiable as

part of openCV library, haarcascades package.
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Figure 7.1: Face Image 1 Kanade et al. (2000)
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Figure 7.2: Face Image 2 Kanade et al. (2000)
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Figure 7.3: Face Image 3 Kanade et al. (2000)

Each of these images are identified in series for maximum feature recognition (

details of which can be found under literature survey of face recognition algorithms)

and cropped to the same dimensions. The cropped images are shown below
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Figure 7.4: Cropped Grayscale Recognized Face Image 1 Kanade et al. (2000)

Figure 7.5: Cropped Grayscale Recognized Face Image 2 Kanade et al. (2000)
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Figure 7.6: Cropped Grayscale Recognized Face Image 3 Kanade et al. (2000)

These images are then passed on to three different classifiers, FisherFaces, Eigen-

Faces, Local Binary Pattern Histograms classifiers (references and details in chapter

2).

The prediction data set in this experiment is again human face databases with the

aforementioned 7 expressions that is taken from Kanade et al. (2000) and a total of

119 images from the database are used for prediction at random selection. Some of

the limitations of this experiment are:

1) Images clicked in a controlled environment

2) Only frontal view images

3) No profile views

4) Since the pictures are posed, expressions are not natural in a few sequences.
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7.3 Experiment 2: Evaluation of EigenFaces, FisherFaces and LBPH Algorithms

on Social Robot Face Images Database

The second experiment runs on the same principles as the first experiment out-

lined above. The first experiment is intended to understand how the classifiers and

recognizers run on the database containing human face images only.

This experiment uses 521 human face images as part of training data set. A data set

containing a total of 36 social robot head images is used as the prediction data set.

The 36 robot images are taken from the internet.

The aim of this experiment is to identify the prediction success rates on robot face

images as prediction set when the classifiers are trained on human face images show-

casing similar expressions. This accounts to the humanness of the robot face images.

The results can be used accurately since they do not depend on human altered sur-

veys.

The second experiment’s technical requirements do not change from the first experi-

ment’s requirements. The recognition and classification for this experiment is run on

pycharm editor, using anaconda openCV library, the four recognizers used are haar-

cascade frontalface default, haarcascade frontalface alt2, haarcascade frontalface alt,

haarcascade frontalface alt tree recognizers and FisherFaces, EigenFaces and Local

Binary Pattern Histogram classifiers.

Below shown are some of the robot face images and their images after face recognition,

gray scaling and cropping.
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Figure 7.7: Social Robot SOPHIA Neutral Image (http://www.hansonrobotics.com)

Figure 7.8: Cropped Grayscale Recognized Robot SOPHIA Image
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Figure 7.9: Social Robot FACE Fear Image

Figure 7.10: Cropped Grayscale Recognized Robot FACE Image
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Figure 7.11: Social Robot Sophia Happy Image(http://www.hansonrobotics.com)

Figure 7.12: Cropped Grayscale Recognized Robot SOPHIA Image

These are some of the robot images used in this experiment. The 36 images of

robots used in this experiment consist of different fidelity designs of robots ranging
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from most human-like to least human like.

7.4 Experiment 3: Segregation of Robots With Different Design Fidelity Using the

Prediction Confidence Levels of Classification Algorithms

The aim of this experiment is to evaluate and automate the identification of hu-

manness of humanoid robot using the deep learning algorithms. The motivation

behind this experiment is to evaluate how elimination of survey regarding humanness

of a humanoid robot design can prove to be successful.

The three algorithms that are used in this experiment, FisherFaces, EigenFaces and

Local Binary Pattern Histogram while predicting the images in the prediction set, also

provide the confidence levels of every prediction. When a prediction is successful, the

confidence levels can be used to establish thresholds beyond which a humanoid robot

can be considered as high-fidelity or medium fidelity or low-fidelity humanoid robot.

The three classifiers, FisherFaces, EigenFaces and Local Binary Pattern Histogram

are trained using 521 human face images taken from Kanade et al. (2000). Examples

of different kinds of robots used as prediction set in this experiment are shown below.
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Figure 7.13: Image of Nexi Robot(robotic.media.mit.edu)

Figure 7.14: Image of Nadine Robot (http://imi.ntu.edu)
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Figure 7.15: Image of Robot Displaying Fear

7.5 Experiment 4: Evaluating Performance of the Learning Algorithms on

Ethnically Similar Training Dataset and Prediction Data Set

The aim of this experiment is to understand whether design of facial expressions of

social robots is affected by the research involving subjects that are ethnically similar.

The training data set in this experiment is taken from Lyons et al. (1998) and contains

a total of 168 images of human faces with the following expressions: Happiness,

sadness, fear, anger, disgust, surprise, neutral. The images are coded with the subject

label followed by emotion label and the image number.

The examples of training data set is as shown in the figures below.
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Figure 7.16: Human Face Image Displaying Anger Lyons et al. (1998)

Figure 7.17: Human Face Image Displaying Digust Lyons et al. (1998)
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Figure 7.18: Human Face Image Displaying Happiness Kanade et al. (2000)

Since the appearance of humans of different ethnicities is different, it will serve as

a good input into the research of facial expressions when the results of training set

containing human face images from a particular ethnicity and prediction set images

being of robots that look ethnically similar to the ones in the training set.

The prediction data set contains 29 robot images that are similar to training data

set in ethnicity. The examples of some of the images chosen are shown in the figures

below.
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Figure 7.19: Robot Face Image 1 Displaying Anger

Figure 7.20: Robot Face Image 2 Displaying Anger
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Figure 7.21: Robot Face Image 3 Displaying Anger

The ethnicity that was chosen in this experiment was Asian. This was motivated

by the number of Asian-looking robots/ humanoids that have been developed so far.

This gives the experiment enough data to work with while making the results more

reliable.

The limitations of this experiments were:

1) Asian as an ethnicity is widely varying. There are facial differences within the

ethnic group itself. This has not been accounted for in this experiment, citing the

reason that the variance between Asian people does not vary by huge differences.

2) The training data is gathered in a controlled environment, where the expressions

are similar to the others or not natural. This can be seen from figure 7.18.
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7.6 Code snippets for Preparation, Recognition and Classification of Images

7.6.1 Preparing the Dataset Including Recognition of Face in the Dataset

The code snippet below is the code that is used to prepare the dataset for passing

as input into the classification algorithms. The preparation step involves identifica-

tion of faces in the face images of the current database that is being used as the

dataset for training/prediction. The libraries used in this code are released under

BSD license(open source). The code snippet is inspired from the blogpost by van

Gent (2016).

import cv2

import glob

#using 4 face recognizers in order, any face not discovered in order is

discarded

faceDet =

cv2.CascadeClassifier("haarcascades/haarcascade_frontalface_default.xml")

faceDet2 =

cv2.CascadeClassifier("haarcascades/haarcascade_frontalface_alt2.xml")

faceDet3 =

cv2.CascadeClassifier("haarcascades/haarcascade_frontalface_alt.xml")

faceDet4 =

cv2.CascadeClassifier("haarcascades/haarcascade_frontalface_alt_tree.xml")

#define emotions for classification

emotions = ["neutral", "anger", "contempt", "disgust", "fear", "happy",

"sadness", "surprise"]

def detect_faces(emotion):

files = glob.glob("jaffe-robots//%s//*" % emotion)

# Get list of all images with emotion
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filenumber = 0

for f in files:

frame = cv2.imread(f) # Open image

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Convert image to

grayscale

# Detect face using 4 different classifiers

face = faceDet.detectMultiScale(gray, scaleFactor=1.1,

minNeighbors=10, minSize=(5, 5),

flags=cv2.CASCADE_SCALE_IMAGE)

face2 = faceDet2.detectMultiScale(gray, scaleFactor=1.1,

minNeighbors=10, minSize=(5, 5),

flags=cv2.CASCADE_SCALE_IMAGE)

face3 = faceDet3.detectMultiScale(gray, scaleFactor=1.1,

minNeighbors=10, minSize=(5, 5),

flags=cv2.CASCADE_SCALE_IMAGE)

face4 = faceDet4.detectMultiScale(gray, scaleFactor=1.1,

minNeighbors=10, minSize=(5, 5),

flags=cv2.CASCADE_SCALE_IMAGE)

# Go over detected faces, stop at first detected face, return empty

if no face.

if len(face) == 1:

facefeatures = face

elif len(face2) == 1:

facefeatures == face2
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elif len(face3) == 1:

facefeatures = face3

elif len(face4) == 1:

facefeatures = face4

else:

facefeatures = ""

# Cut and save face

for (x, y, w, h) in facefeatures: # get coordinates and size of

rectangle containing face

print "face found in file: %s" % f

gray = gray[y:y + h, x:x + w] # Cut the frame to size

try:

out = cv2.resize(gray, (350, 350)) # Resize face so all

images have same size

cv2.imwrite("jaffe-robot-dataset//%s//%s.jpg" % (emotion,

filenumber), out) # Write image

except:

pass # If error, pass file

filenumber += 1 # Increment image number

for emotion in emotions:

detect_faces(emotion)
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7.6.2 Training the Classifier With Training Dataset Prepared from Previous Step

and Feeding the Prediction Dataset for Classification

This code snippet outlines the training of classifier, the code specifically shows

training of FisherFace classifier while the same code is changed to achieve training of

a different classifier. The code is then passed a prediction dataset and the prediction

of all images is run for 10 times. The average of the results is evaluated as the final

result of prediction success percentage. This code is also inspired from the blogpost

by van Gent (2016).

import cv2

import glob

import random

import numpy as np

import pickle

emotions = ["neutral", "anger", "contempt", "disgust", "fear", "happy",

"sadness", "surprise"] # Emotion list

fishface = cv2.createFisherFaceRecognizer()

# Initialize fisher face classifier

#the above line can be changed to train different classifiers

data = {}

def get_files(emotion): # Define function to get file list, randomly

shuffle it and split 80/20

files1 = glob.glob("jaffe-robot-dataset//%s//*" % emotion)

files2 = glob.glob("robot-dataset//%s//*" % emotion)
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random.shuffle(files1)

training = files1[:int(len(files1) * 0.8)] # get first 80% of file list

prediction = files2

return training, prediction

def make_sets():

training_data = []

training_labels = []

prediction_data = []

prediction_labels = []

for emotion in emotions:

training, prediction = get_files(emotion)

# Append data to training and prediction list, and generate labels

0-7

for item in training:

image = cv2.imread(item) # open image

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # convert to

grayscale

training_data.append(gray) # append image array to training

data list

training_labels.append(emotions.index(emotion))

for item in prediction: # repeat above process for prediction set

image = cv2.imread(item)

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

prediction_data.append(gray)
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prediction_labels.append(emotions.index(emotion))

return training_data, training_labels, prediction_data,

prediction_labels

def run_recognizer():

training_data, training_labels, prediction_data, prediction_labels =

make_sets()

print "training fisher face classifier"

print "size of training set is:", len(training_labels), "images"

fishface.train(training_data, np.asarray(training_labels))

print "predicting classification set"

cnt = 0

correct = 0

incorrect = 0

for image in prediction_data:

pred, conf = fishface.predict(image)

if pred == prediction_labels[cnt]:

correct += 1

cnt += 1

else:

incorrect += 1

cnt += 1

return ((100 * correct) / (correct + incorrect))
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# Now run it

metascore = []

for i in range(0, 10):

correct = run_recognizer()

print "got", correct, "percent correct!"

metascore.append(correct)

print "\n\nend score:", np.mean(metascore), "percent correct!"
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Chapter 8

RESULTS AND DISCUSSION

8.1 Results

The results from experiment 1 is outlined in table 8.1. The results show a very

high prediction rate with the FisherFaces algorithm as opposed to EigenFaces or

Local Binary Pattern Histogram. This is justified by the literature survey in chapter

2. The FisherFaces algorithms classify the algorithms based on classes, thereby trying

to automate the identification or reference image formation of the required emotion

and/or person. The classification is segregated by classes. This helps better and

efficient classification, thereby showing excellent results as opposed to the other two

algorithms.

The result from this experiment, where it is observed that FisherFaces works best, is

intended to be suggested for use in the facial expression design.

Table 8.1: Prediction Results on Human Images Database Over 10 Trials

Classifier Average successful prediction (%)

FisherFaces 81.7

EigenFaces 46

Local Binary Pattern Histogram 48

The results of experiment 2 are shown in table 8.2. Here also, we can see that

the FisherFace algorithm is the best algorithm when it comes to classification. But

the major observation to be taken away from this experiment is that when the same
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training set is used to train the classifiers and the prediction set is changed from

human images to humanoid face images, the results of even the best working algorithm

drops by more that half of when the human images were used as prediction set.

This experiment and the results from this experiment highlights the fact that even

the most advanced facial designs fail at being recognized as the appropriate facial

expression.

Table 8.2: Prediction Results on Robot Images Database Over 10 Trials

Classifier Average successful prediction (%)

FisherFaces 25.9

EigenFaces 13.7

Local Binary Pattern Histogram 13.9

The results from experiment 3, which involved prediction set containing humanoid

face images of different design fidelity, as intended failed to even pass the first recogni-

tion step for the low-fidelity humanoids. This is a major milestone in this experiment

since the surveying of humanoid images to rank them by their humanness can be

eliminated by just passing them through the recognizer. Any images that do pass

through the recognizer are already enough human like and require additional research

into the facial expressions. This can be said because the images that did pass through

the recognizer failed to be classified as the correct emotion. This is seen as a result

of two factors

1) The data set used for training was in controlled environment. The natural expres-

sions of human beings are not staged. This has an effect on the way the prediction

set is classified.

2) The facial expression design is not accurate enough.
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Table 8.3: Prediction Results on Ethnically Similar Robot Face Images Database
Over 10 Trials

Classifier Average successful prediction (%)

FisherFaces 20.3

EigenFaces 21.9

Local Binary Pattern Histogram 13.1

The results from the last experiment can be seen in 8.3. The aim of this exper-

iment was to analyze whether the performance of experiment 2 can be improved by

using ethnically similar training and prediction data set. This experiment is used to

evaluate whether design considerations of ethnicities and the functioning of classifi-

cation algorithms work differently.

As seen from the table 8.3, the results from experiment 2 and this experiment are

almost identical, with very negligible differences. This can be accounted to conclud-

ing that the facial recognition and classification of face images are not dictated by

ethnicity, thereby suggestions made from analyzing the results of these experiments

are valid in any condition.

8.2 Discussion

The motivation of this thesis was to bridge the gap between what humans see as

human-like and what the humanoid design features portray as being human-like. It

is evident from a couple of figures from chapter 6 that the facial expression that the

humanoid is intended to display does not agree well with the human eye.

The first research question was how the human cognition and artificially constructed

facial systems differ. This can be seen as an information retrieval problem. Human
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cognitive system retrieves a lot more important information that help the proper

identification of the expression that the other person is displaying. This also helps

the humans with the display of expressions. Imitation is the key to learning of ex-

pressions.

The current research method extensively relies on actuating the facial muscles ar-

tificially on the robot faces to enable display of expressions. But as seen with the

experiments, the facial recognition and classification algorithms fail to identify the

expression. This shows that some information is being missed from the design of

facial expression of social robots currently.

As mentioned in chapter 2, the facial classification and recognition algorithms work

well because of reduction of bases and maximization of variance along the reduced

base. The research method that is proposed after the careful consideration of the

results from the experiments is that instead of actuation, the design should progress

from first developing design outlines from data obtained through the learning al-

gorithms, since learning algorithms preserve important information more accurately

than just measuring facial features that help actuation. This would help in construc-

tion of a facial image since as mentioned in chapter two, the basis images that are

obtained in the process of training the classifiers can be combined to obtain an image

that is almost similar to the training image that was used.

This implies that a training data set containing of human images is to be used, which

will then give rise to basis images, that which contain the most importance variance

information, which then can be used to produce a robot facial design that will have

the important features for it to be recognized as human.

The second research question was how automation or learning algorithms like these

can help with survey aspect of facial expression design. As seen from the previous

point, not only do these algorithms help in facial design, but can also be used to
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evaluate humanness, thereby eliminating the need to survey first.

Therefore, the image can be constructed using basis images’ information, passed

through the recognition algorithms for an initial humanness measure and then passed

on to actual survey that would help in further modifications, This reduces the time

and effort in surveying so many images, as well as improves the design process of

facial expression of social robots.
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Chapter 9

CONCLUSION

The present humanoid facial expression design technique that has been motivated

by actuators fail to identify certain important features in the human face which

is caught by the facial recognition and classification algorithms, as seen from the

experiments. This implies that the with the actuation method information retrieval

fails to account for important information. It is therefore suggested based on the

experimental outcomes that when the design process progresses from establishing

a design using basis images formed from the learning algorithms, most important

information can be retrieved, which can then be used for successful construction of

facial image that can be translated into the mechanical humanoid face design.
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Chapter 10

FUTURE WORK

The major step after the identification of design technique of facial expression of social

robots is how this design is translated to the mechanical design phase. This future

work is understanding how the basis images can be combined in a useful manner

and what each of the coefficients of the basis images should be chosen so that the

reconstructed image can give rise to an accurate facial expression design. The main

future work still remains understanding what these artificially learnt facial features

that form the basis for humanizing the facial expressions correspond to in the me-

chanical face.

The information that is currently being missed in the actuation process is caught by

human eye and the recognition and classification algorithms, but is unknown to the

research world. Identification of the exact information that would add to the facial

expression research can be made sense of using the learning algorithms. If identified

correctly, it can be used to improve actuation process of facial design as well.

Understanding how clear statements like formal statements, example: programming

languages, that are unambiguous, Natural Language Interface that depend on lan-

guage and context, which are ambiguous and Body Language Interface that includes

verbal, non-verbal and para-verbal(pronunciation) language which have the highest

ambiguity affect the facial expression display and cognition/recognition.

The same set of experiments can be run over multiple trials on different databases

with images clicked in different conditions, including angles, expressions and lighting.

This might reveal further details about the the algorithms used in these experiments.

Along with this, different algorithms can also be taken into consideration.
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