764 research outputs found

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    A review of data mining applications in semiconductor manufacturing

    Get PDF
    The authors acknowledge Fundacao para a Ciencia e a Tecnologia (FCT-MCTES) for its financial support via the project UIDB/00667/2020 (UNIDEMI).For decades, industrial companies have been collecting and storing high amounts of data with the aim of better controlling and managing their processes. However, this vast amount of information and hidden knowledge implicit in all of this data could be utilized more efficiently. With the help of data mining techniques unknown relationships can be systematically discovered. The production of semiconductors is a highly complex process, which entails several subprocesses that employ a diverse array of equipment. The size of the semiconductors signifies a high number of units can be produced, which require huge amounts of data in order to be able to control and improve the semiconductor manufacturing process. Therefore, in this paper a structured review is made through a sample of 137 papers of the published articles in the scientific community regarding data mining applications in semiconductor manufacturing. A detailed bibliometric analysis is also made. All data mining applications are classified in function of the application area. The results are then analyzed and conclusions are drawn.publishersversionpublishe

    A Representation of Tactical and Strategic Precursors of Supply Network Resilience Using Simulation Based Experiments

    Get PDF
    Modern supply chains are becoming increasingly complex and are exposed to higher levels of risk. Globalization, market uncertainty, mass customization, technological and innovation forces, among other factors, make supply networks more susceptible to disruptions (both those that are man-made and/or ones associated with natural events) that leave suppliers unavailable, shut-down facilities and entail lost capacity. Whereas several models for disruption management exist, there is a need for operational representations of concepts such as resilience that expand the practitioners’ understanding of the behavior of their supply chains. These representations must include not only specific characteristics of the firm’s supply network but also its tactical and strategic decisions (such as sourcing and product design). Furthermore, the representations should capture the impact those characteristics have on the performance of the network facing disruptions, thus providing operations managers with insights on what tactical and strategic decisions are most suitable for their specific supply networks (and product types) in the event of a disruption. This research uses Agent-Based Modeling and Simulation (ABMS) and an experimental set-up to develop a representation of the relationships between tactical and strategic decisions and their impact on the performance of multi-echelon networks under supply uncertainty. Two main questions are answered: 1) How do different tactical and strategic decisions give rise to resilience in a multi-echelon system?, and 2) What is the nature of the interactions between those factors, the network’s structure and its performance in the event of a disruption? Product design was found to have the most significant impact on the reliability (Perfect Order Fulfillment) for products with high degrees of componentization when dual sourcing is the chosen strategy. However, when it comes to network responsiveness (Order Fulfillment Cycle Time), this effect was attenuated. Generally, it was found that the expected individual impact these factors have on the network performance is affected by the interactions between them

    Mathematical optimization and learning models to address uncertainties and sustainability of supply chain management

    Get PDF
    As concerns about climate change, biodiversity loss, and pollution have become more widespread, new worldwide challenges deal with the protection of the environment and the conservation of natural resources. Thus, in order to empower sustainability and circular economy ambitions, the world has shifted to embrace sustainable practices and policies. This is carried out, primarily, through the implementation of sustainable business practices and increased investments in green technology. Advanced information systems, digital technologies and mathematical models are required to respond to the demanding targets of the sustainability paradigm. This trend is expanding with the growing interest in production and services sustainability in order to achieve economic growth and development while preventing their negative impact on the environment. A significant step forward in this direction is enabled by Supply Chain Management (SCM) practices that exploit mathematical and statistical modeling to better support decisions affecting both profitability and sustainability targets. Indeed, these targets should not be approached as competing goals, but rather addressed simultaneously within a comprehensive vision that responds adequately to both of them. Accordingly, Green Supply Chain Management (GSCM) can achieve its goals through innovative management approaches that consider sustainable efficiency and profitability to be clearly linked by the savings that result from applying optimization techniques. To confirm the above, there is a growing trend of applying mathematical optimization models for enhancing decision-making in pursuit of both environmental and profit performance. Indeed, GSCM takes into account many decision problems, such as facility location, capacity allocation, production planning and vehicle routing. Besides sustainability, uncertainty is another critical issue in Supply Chain Management (SCM). Considering a deterministic approach would definitely fail to provide concrete decision support when modeling those kinds of scenarios. According to various hypothesis and strategies, uncertainties can be addressed by exploiting several modeling approaches arising from statistics, statistical learning and mathematical programming. While statistical and learning models accounts variability by definition, Robust Optimization (RO) is a particular modeling approach that is commonly applied in solving mathematical programming problems where a certain set of parameters are subject to uncertainty. In this dissertation, mathematical and learning models are exploited according to different approaches and models combinations, providing new formulations and frameworks to address strategic and operational problems of GSCM under uncertainty. All models and frameworks presented in this dissertation are tested and validated on real-case instances

    Intelligent shop scheduling for semiconductor manufacturing

    Get PDF
    Semiconductor market sales have expanded massively to more than 200 billion dollars annually accompanied by increased pressure on the manufacturers to provide higher quality products at lower cost to remain competitive. Scheduling of semiconductor manufacturing is one of the keys to increasing productivity, however the complexity of manufacturing high capacity semiconductor devices and the cost considerations mean that it is impossible to experiment within the facility. There is an immense need for effective decision support models, characterizing and analyzing the manufacturing process, allowing the effect of changes in the production environment to be predicted in order to increase utilization and enhance system performance. Although many simulation models have been developed within semiconductor manufacturing very little research on the simulation of the photolithography process has been reported even though semiconductor manufacturers have recognized that the scheduling of photolithography is one of the most important and challenging tasks due to complex nature of the process. Traditional scheduling techniques and existing approaches show some benefits for solving small and medium sized, straightforward scheduling problems. However, they have had limited success in solving complex scheduling problems with stochastic elements in an economic timeframe. This thesis presents a new methodology combining advanced solution approaches such as simulation, artificial intelligence, system modeling and Taguchi methods, to schedule a photolithography toolset. A new structured approach was developed to effectively support building the simulation models. A single tool and complete toolset model were developed using this approach and shown to have less than 4% deviation from actual production values. The use of an intelligent scheduling agent for the toolset model shows an average of 15% improvement in simulated throughput time and is currently in use for scheduling the photolithography toolset in a manufacturing plant

    The bridge of dreams::Towards a method for operational performance alignment in IT-enabled service supply chains

    Get PDF
    Concerns on performance alignment, especially on business-IT alignment, have been around for three decades. It is still considered to be one of the most important driving forces for business success, as well as one of the top concerns of many practitioners and organizational researchers. It is also found to be a major issue in two thirds of digital transformation projects. Many attempts from researchers in diverse disciplines have been made to tackle this issue. Unfortunately, they have been working separately and the research appears in various forms and names. This dissertation presents a piece of interdisciplinary research that focuses on identifying operational performance alignment issues, discovering and assessing their root causes with attention to the dynamics in operating IT-enabled service supply chain (SSC). It makes a modest contribution by providing a communication-centred instrument which can modularize complex SSC in terms of a hierarchically-structured set of services and analyze the performance causality between them. With a special focus on the impact of IT, it makes it possible to monitor and tune various performance issues in SSC. This research intends to provide a solution-oriented common ground where multiple service research streams can meet together. Following the framework proposed in this research, services, at different tiers of an SSC, are modelled with a balanced perspective on both business, technical service components and KPIs. It allows a holistic picture of service performances and interactions throughout the entire supply chain to be viewed through a different research lens and permits the causal impact of technology, business strategy, and service operations on supply chain performance to be unveiled

    Building and investigating generators' bidding strategies in an electricity market

    Get PDF
    In a deregulated electricity market environment, Generation Companies (GENCOs) compete with each other in the market through spot energy trading, bilateral contracts and other financial instruments. For a GENCO, risk management is among the most important tasks. At the same time, how to maximise its profit in the electricity market is the primary objective of its operations and strategic planning. Therefore, to achieve the best risk-return trade-off, a GENCO needs to determine how to allocate its assets. This problem is also called portfolio optimization. This dissertation presents advanced techniques for generator strategic bidding, portfolio optimization, risk assessment, and a framework for system adequacy optimisation and control in an electricity market environment. Most of the generator bidding related problems can be regarded as complex optimisation problems. In this dissertation, detailed discussions of optimisation methods are given and a number of approaches are proposed based on heuristic global optimisation algorithms for optimisation purposes. The increased level of uncertainty in an electricity market can result in higher risk for market participants, especially GENCOs, and contribute significantly to the drivers for appropriate bidding and risk management tasks for GENCOs in the market. Accordingly, how to build an optimal bidding strategy considering market uncertainty is a fundamental task for GENCOs. A framework of optimal bidding strategy is developed out of this research. To further enhance the effectiveness of the optimal bidding framework; a Support Vector Machine (SVM) based method is developed to handle the incomplete information of other generators in the market, and therefore form a reliable basis for a particular GENCO to build an optimal bidding strategy. A portfolio optimisation model is proposed to maximise the return and minimise the risk of a GENCO by optimally allocating the GENCO's assets among different markets, namely spot market and financial market. A new market pnce forecasting framework is given In this dissertation as an indispensable part of the overall research topic. It further enhances the bidding and portfolio selection methods by providing more reliable market price information and therefore concludes a rather comprehensive package for GENCO risk management in a market environment. A detailed risk assessment method is presented to further the price modelling work and cover the associated risk management practices in an electricity market. In addition to the issues stemmed from the individual GENCO, issues from an electricity market should also be considered in order to draw a whole picture of a GENCO's risk management. In summary, the contributions of this thesis include: 1) a framework of GENCO strategic bidding considering market uncertainty and incomplete information from rivals; 2) a portfolio optimisation model achieving best risk-return trade-off; 3) a FIA based MCP forecasting method; and 4) a risk assessment method and portfolio evaluation framework quantifying market risk exposure; through out the research, real market data and structure from the Australian NEM are used to validate the methods. This research has led to a number of publications in book chapters, journals and refereed conference proceedings
    • 

    corecore