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Chapter 1

Introduction

As concerns about climate change, biodiversity loss, and pollution have become
more widespread, new worldwide challenges deal with the protection of the envi-
ronment and the conservation of natural resources. Thus, in order to empower
sustainability and circular economy ambitions, the world has shifted to embrace
sustainable practices and policies. This is carried out, primarily, through the im-
plementation of sustainable business practices and increased investments in green
technology. Advanced information systems, digital technologies and mathemati-
cal models are required to respond to the demanding targets of the sustainability
paradigm. This trend is expanding with the growing interest in production and
services sustainability in order to achieve economic growth and development while
preventing their negative impact on the environment. A significant step forward
in this direction is enabled by Supply Chain Management (SCM) practices that
exploit mathematical and statistical modeling to better support decisions affect-
ing both profitability and sustainability targets. Indeed, these targets should not
be approached as competing goals, but rather addressed simultaneously within
a comprehensive vision that responds adequately to both of them. Accordingly,
Green Supply Chain Management (GSCM) can achieve its goals through innovative
management approaches that consider sustainable efficiency and profitability to
be clearly linked by the savings that result from applying optimization techniques.
Savings can be measured according to both sustainability metrics regarding energy,
emissions, climate, water or labor, and business metrics regarding all operational
and strategic costs. To confirm the above, there is a growing trend of applying
mathematical optimization models for enhancing decision-making in pursuit of both
environmental and profit performance. Indeed, GSCM takes into account many
decision problems, such as facility location, capacity allocation, production planning
and vehicle routing.

Besides sustainability, uncertainty is another critical issue in Supply Chain
Management (SCM). Different sources of uncertainty may affect several stages
of the supply chain, including yields, prices, lead times, production or service
demand and all resource supplies, such as physical components or energy from
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renewables. Considering a deterministic approach would definitely fail to provide
concrete decision support when modeling those kinds of scenarios. According to
various hypothesis and strategies, uncertainties can be addressed by exploiting several
modeling approaches arising from statistics, statistical learning and mathematical
programming. While statistical and learning models accounts variability by definition,
Robust Optimization (RO) is a particular modeling approach that is commonly
applied in solving mathematical programming problems where a certain set of
parameters are subject to uncertainty.

In this dissertation, mathematical and learning models are exploited according
to different approaches and models combinations, providing new formulations and
frameworks to address strategic and operational problems of GSCM under uncertainty.
All models and frameworks presented in this dissertation are tested and validated
on real-case instances. In particular, all instances concern reverse logistics scenarios
from closed-loop supply chains. A closed-loop supply chain combines the traditional
supply chain (forward logistics) with reverse logistics, in charge of collecting and
processing returned products in order to ensure a socioeconomically and ecologically
sustainable recovery. Indeed, one of all accepted definition for Sustainable Supply
Chain Management (SSCM) would be one where all products are created, used, and
recycled or disposed of in a closed loop method.

This dissertation is structured as follows. Generalities on Supply Chain Man-
agement and its variations, along with the main decision problems in GSCM, are
introduced in Chapter 2. The chapter also discusses the primary causes of uncer-
tainty in GSCM, gathers the research prospects in this subject, and provides a brief
introduction to robust optimization.

Chapter 3 presents a two-stage model to design and operate a waste management
(WM) network. In this setting, a regional authority designs the network according
to a first strategic stage of the model, while a second operational stage refers to the
routing decisions of carriers in charge of the network usage. In particular, the regional
authority aims to determine an optimal location for waste disposal facilities, allocate
to each facility a proper capacity, cluster waste producing locations, then assign
facilities to these clusters without generating overlaps. In doing so, the authority
attempts to i) assign waste quantities to each facility by considering a safety stock
within its capacity in order to avoid shortages during the network operational usage,
ii) minimize greenhouse gases emissions, iii) be as compliant as possible with the
solution found by the second stage problem. The latter is a multi-depot routing
problem concerning the vehicles in charge of collecting and delivery waste to the
network facilities. After properly modeling the problem, a matheuristic solution
algorithm is proposed. Validation of the approach is achieved, and computational
analysis is presented to highlight how the matheuristic is able to improve upon the
first shortsighted solution. This chapter is based on a paper submitted by the author
for publication and co-authored by Massimiliano Caramia, Giuseppe Stecca and
Emanuele Pizzari.
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Chapter 4 investigates the operations of sorting facilities, where materials are
collected by a fleet of trucks and then sorted to be converted to secondary raw
materials. The activity is characterized by low margins, difficulties to track flows and
uncertainties in supplies. Indeed, streams processes of reverse logistics are affected
by several uncertainties, such as the stochastic processes regarding material arrivals
to sorting facilities. The author proposed in [83] a deterministic formulation to
optimally plan and schedule the sorting operations. Then, in this dissertation, the
model in [83] is extended by introducing robustness to data uncertainties related
to the stochastic nature of reverse logistics streams. Through a specific robust
approach, constraints are guaranteed to be satisfied both deterministically and
probabilistically. On instances drawn from a real case scenario, experiments are
performed and comparisons are made with various planning strategies. The contents
of this chapter are also published in [82], a paper co-authored by the author, Claudio
Gentile and Giuseppe Stecca.

Chapter 5 presents a procedure to address the main drawback of robust opti-
mization, this is the chance of producing over-conservative solutions with respect to
the real occurrences of the stochastic parameters. Indeed, the level of conservatism
of robust solutions can be such to constitute a significant cost in terms of optimality
reduction, also known as price of robustness. This chapter investigates how demand
forecasting can be used in conjunction with robust optimization in order to achieve
robust solutions that better control the extra-cost resulting from considering the
demand variability. The contents of this chapter are also published in [49], a paper
co-authored by the author, Claudio Gentile and Giuseppe Stecca.

Chapter 6 presents a framework that integrates an operational research (OR)
model providing optimal capacity allocation with a machine learning (ML) model
performing customer cost estimation. This framework is presented as a general
approach for every OR model allocating either capacity or resources across multiple
non-cooperative customers. The main objective of this framework is investigating the
impact of all customer characteristics over the cost that results from the optimization
of the process/service concerning that customer. Therefore, the idea behind this
framework is considering a set of customer features and their inherent variability in
order to evaluate their explanatory power within a customer cost regression task.
Accordingly, the purpose of the ML model is providing cost forecasts for a new
production/service request. Explainable Artificial Intelligence (XAI) techniques are
used at the very end of the framework to validate the information contribution of
each considered feature. Validation of the approach is done with real case instances
of a pick-up and delivery routing model dealing with reverse logistics operations. The
author proposes a new formulation of the considered routing problem and shows the
effectiveness of the proposed method. This chapter is based on a paper submitted by
the author for publication and co-authored by Marco Boresta and Giuseppe Stecca.
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Chapter 2

Green Supply Chain
Management under Uncertainty

This chapter introduces some generalities on Green Supply Chain Management
(GSCM), presents the main decision problems addressed by GSCM, discusses uncer-
tainty in GSCM, and reports a brief introduction to robust optimization (RO).

This chapter is structured as follows: Section 2.1 introduces the main definitions
and concepts of Supply Chain Management (SCM) and its variations, including
GSCM and Sustainable Supply Chain Management (SSCM). Section 2.2 reports the
most common applications of mathematical programming in GSCM, with a special
focus on Closed Loop Supply Chain Management (CLSCM) and Reverse Logistics
(RL). Section 2.3 debates about uncertainty issues in GSCM, and Section 2.4 reports
some of the research opportunities in GSCM under uncertainty. Finally, Section 2.5
introduces some well known concepts about robust optimization (RO) approaches
to solve linear optimization problems with uncertain data. Additional knowledge
regarding the probabilistic robust approach presented in [15] is also reported.

The reader interested in additional details and analysis of the reported concepts
can refer to the literature references of this chapter.

2.1 Generalities

The Supply Chain (SC) is an organizational system of individuals, undertakings,
information and funds that are involved in transferring of goods and services from
dealers or sellers to consumers. SC operations are the conversion of natural resources
and raw materials into the final product distributed to the end users. A large
business network that produces value through products and services delivered to
the end user, by means of several upstream and downstream contacts and relations,
across numerous procedures and activities [60]. The above is one of the multiple
definitions that can explain and bound the concept of SC. Considering the academic
literature, the same variety applies to all statements outlining the concept of SCM
and its variations, such as Sustainable SCM and Green SCM. The Council of
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Supply Chain Management Professionals (CSCMP) define SCM and its related
terminology in [80]. The CSCMP asserts that SCM encompasses the planning
and management of all activities involved in sourcing and procurement, conversion,
and all logistics management activities. Importantly, it also includes coordination
and collaboration with channel partners, which can be suppliers, intermediaries,
third-party service providers, and customers. In essence, SCM integrates supply
and demand management within and across companies. SCM is an integrating
function with primary responsibility for linking major business functions and business
processes within and across companies into a cohesive and high-performing business
model. It includes all the logistics management activities, as well as manufacturing
operations, and it drives coordination of processes and activities with and across
marketing, sales, product design, finance and information technology.

Nevertheless, as stated in [59] and in Section 1 of this dissertation, the rationale
for SCM is also the opportunity for cost savings and better customer service. Indeed,
even though all definitions could be satisfactory, only some emphasize the importance
of effectiveness and efficiency in SCM. Thus, for the aim of this dissertation, the
following definition given in [66] is used as the foundation for developing the models
for assessing supply chains effectiveness and efficiency. The authors of [66] refer to
SCM as a set of methods used to effectively coordinate suppliers, producers, depots,
and stores, so that commodity is produced and distributed in the correct quantities,
to the correct locations, and at the correct time, in order to reduce system costs while
satisfying service level requirements. The fundamental notion of this definition is
that a supply chain must be regulated in order to be fast and reliable, cost-effective,
and adaptable enough to satisfy consumer needs.

The reader can refer to [59, 87] for a comprehensive review of statements outlining
the concept of SC and SCM.

Another non-trivial exercise would be agreeing on a common definition for green
and sustainable supply chains. A review paper focusing purely on definitions for
green and sustainable supply chains found a total of 22 definitions for green and 12
definitions for sustainable supply chain management [3]. According to this review, the
definitions listed below have received the most Scopus citations for the publication
that contains them.

Green Supply Chain Management (GSCM) is about integrating environmental
thinking into supply-chain management, including product design, material sourcing
and selection, manufacturing processes, delivery of the final product to the consumers
as well as end-of-life management of the product after its useful life [103].

Sustainable Supply Chain Management (SSCM) is the management of material,
information and capital flows as well as cooperation among companies along the
supply chain while taking goals from all three dimensions of sustainable development,
i.e., economic, environmental and social, into account which are derived from
customer and stakeholder requirements [95].

Corresponding to a global trend, the concept of green and sustainable supply
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chain management has received more attention in the past decade and garnered
emerging clusters of research in this area [46]. All of these research clusters, according
to each specific area of interest, are fostering and empowering the ambitions of the
sustainability paradigm. Remarkable importance is given to the research area
concerning the integration of the closed loop method in SCM, namely Closed Loop
Supply Chain Management (CLSCM). These types of supply chains deal with the
streams of Reverse Logistics (RL). Logistics is defined by the Council of Logistics
Management as the process of planning, implementing, and controlling the efficient,
cost-effective flow of raw materials, in-process inventory, finished goods and related
information from the point of origin to the point of consumption for the purpose
of conforming to customer requirements. RL includes all the activities that are
mentioned in the definition above. The difference is that RL encompasses all of
these activities as they operate in reverse. Therefore, reverse logistics is the process
of planning, implementing, and controlling the efficient, cost-effective flow of raw
materials, in-process inventory, finished goods and related information from the
point of consumption to the point of origin for the purpose of recapturing value or
proper disposal [113]. A closed-loop supply chain is the result of considering forward
and reverse supply chains simultaneously. Figure 2.1 illustrates both forward and
reverse logistics for a generic supply chain.

Figure 2.1. A generic form of forward/reverse logistics

Given the incorporation of the closed loop approach in a supply chain, a reverse
logistics network faces a variety of decision-making challenges. These challenges, the
resulting decision problems and their relevant classifications, are briefly described in
the following Section 2.2.
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2.2 Decision problems

There are many decision problems addressed by GSCM. That is why optimization
models emerged as part of helping practitioners solving real-life problems related to
supply chain network, and it has become an integral part of GSCM literature [114].
This section holds a list of these problems, with a particular focus on those arising
in CLSCM and RL. For a comprehensive review on optimization in GSCM, SSCM
and RL, the reader is referred to [55, 78] and the references therein.

Each decision problem has a different level of planning horizon, which can be
categorized into the following three levels.

i) strategic decisions

ii) tactical decisions

iii) operational decisions

In terms of relationships, operational plans lead to the achievement of tactical
plans, which in turn lead to the attainment of strategic plans. In terms of timeline,
strategic plans are based on longest-term planning horizon, operational plans shortest
planning horizon, and tactical plans, in between. Operational plans can even refer
to day-to-day decisions. Decision planning can be integrated either “horizontal
integration” or “vertical integration”. Horizontal integration means by integration
the same decision level of optimization problems while vertical integration combines
two different levels of decision [84], such as strategic-tactical, strategic-operational
or tactical-operational. This dissertation addresses a strategic-tactical problem in
Chapter 3, a tactical one in Chapter 4, while chapters 5 and 6 propose planning
and learning models integration that are tested with a tactical and an operational
problem, respectively.

Besides the level of planning horizon, a literature review can consider some other
features for classifying a paper that deal with mathematical programming in this
research field. Some of these features are the ones describing the modeling approach,
such as deterministic assumption or uncertainty for parameters, decision variables
and solution methodologies.

Considering the addressed problem only, there are several types of study subjects
in GSCM, RL and CLSC. This dissertation acknowledges to the authors of [55] the
following classification of problems in RL and CLSC.

Designing. The main subjects of research are assigned to RL and CLSC network
design. The aim of designing is to determine strategic (long-term) decision
variables like locations and the capacity of all facilities.

Planning. In a planning problem, the most important decision variables are the
quantities of flows between supply-chain network entities, known as midterm
decision variables. Some studies regard designing and planning stages simulta-
neously, and some concentrate on one of them in depth.
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Price and coordination. Important discussions between two entities of a supply
chain network (for instance, a remanufacturer and a retailer of second market)
determine the price of products and coordinate win–win strategies to balance
profit margins. Usually, in such problems, optimum price and coordination
strategies are determined.

Production planning and inventory management. Some researches in supply
chain networks are related to operational decision variables, which play a vital
role in supply chain cost efficiencies. Scheduling of products and return
products (manufacturing and remanufacturing) simultaneously, and inventory
control policies of such production systems, are main subjects of these studies.
There are some studies that concentrate on production planning and lot sizing
decisions without regarding inventory issues. Such studies are categorized in a
different class as production planning. Conversely, there are some studies
which concentrate on the inventory management issues such as finding reorder
point, base stock, and economic order quantity without regarding production
planning subjects. These studies arranged in the category of inventory
management.

Vehicle routing. As distribution systems and the related strategies are one of the
most effective parts of the network and the total costs are closely dependent
on the transportation costs, Vehicle Routing Problem (VRP) is an effective
issue in RL and CLSC. There are some studies which directly consider this
problem, mostly in proposing efficient solution algorithms.

It must be highlighted that in the review of the literature, some papers do not
focus on a particular decision problem, rather propose conceptual and analytical
frameworks. These studies analyze some theoretical or practical factors to find a
framework for different aspects of RL/CLSC [55].

Considering the classification above, this dissertation addresses a designing and
planning problem in Chapter 2, a production planning and scheduling problem in
Chapter 3, while chapters 5 and 6 propose conceptual and analytical frameworks
that are tested with a production planning problem and a vehicle routing problem,
respectively.

The GSCM research domain also incorporate studies that draw attention to
several sources of uncertainty in the green supply chains, including the investigation
of the resulting risks and the possible uncertainty management methods. The
following Section 2.3 reports the main concepts and topics of addressing uncertainty
in GSCM.
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2.3 Uncertainty in Green Supply Chain Management

Uncertainty is an uncomfortable position.
But certainty is an absurd one.

- Voltaire, philosopher

Uncertainty is an inherent and inevitable feature in the process of green supply
chain management[64]. Furthermore, the green supply chain contains more green
behaviors than the traditional supply chain, which would face more uncertainty
[37]. A comprehensive review in this area is that in [100], which provide a list of
14 sources of uncertainty and 21 uncertainty management strategies. These lists
are recently adapted in [37] and presented in the following Table 2.1 and Table 2.2,
respectively. As shown in Table 2.1, uncertainties are classified according to three
types of sources, such as internal uncertainties which originate inside the specific
company, uncertainties which emerge within the organization’s supply chain (SC),
and external uncertainties from factors outside the SC.

Table 2.1. Sources of uncertainty in GSCM

Internal organization
uncertainties

Internal SC
uncertainties

External SC
uncertainties

Product characteristics End-customer demand Environment

Process/manufacturing Demand amplification Disruption,
natural uncertainties

Control/chaos uncertainties Customer as a supplier
Organization structure and
human behavior

Parallel interaction

Information technology/
systems complexity

Order forecast
horizon/lead-time gap
Chain configuration,
infrastructure and
facilities

Instead, as shown in the following Table 2.2, uncertainty management is cat-
egorized in reducing uncertainty strategies that enable organizations to reduce
uncertainty at its source, and coping with uncertainty strategies, which are not
aimed to alter the source of uncertainty, rather look for ways to adapt to uncertainty
in order to minimize its impact.

By adopting an uncertainty management approach, it is necessary to consider
its links with sustainability performance [101]. The rationale underlying this obser-
vation is that an organization’s sustainability performance is strongly related to the
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Table 2.2. Uncertainty management strategies in GSCM

Reducing uncertainty strategies Coping with uncertainty strategies
Lean operations Postponement
Product design Volume/delivery flexibility
Process performance measurement Process flexibility
Good decision support system Customer flexibility
Collaboration Multiple suppliers
Shorter planning period Strategic stocks
Decision policy and procedures Collaboration
Information and communication
technology (ICT) system

ICT system

Pricing strategy Lead-time management
Redesign of chain configuration
or infrastructure

Financial risk management

Quantitative techniques

alignment between uncertainties and the choice of uncertainty management strategies
[100]. This provides an intelligent perspective to examine the overall impacts of
uncertainty management strategies, which may alter the complexity of managing
a company or a supply chain. Indeed, these issues may generate inefficiencies that
increase operational costs, resource consumption, and environmental pollution [41].
Consequently, it is important to understand how these strategies, that are intended
to alleviate the effects of uncertainty, may lead to new problems that need to be
addressed. This is the case, for instance, of robust optimization, a quantitative
technique for coping with uncertainty that could induce over-conservative solutions
that raise operating costs, resource consumption, and the resulting environmental
pollution. In Chapter 5 this drawback of robust optimization is addressed by a
framework that integrates a learning model to achieve robust solutions that better
control the extra-cost resulting from considering uncertainty. Section 2.5 presents
an introduction to the main concepts of robust optimization.

2.4 Research opportunities in GSCM

In terms of research opportunities, literature and content analyses in GSCM
under uncertainty [28, 55, 114] reveal that this dissertation explores some of the
research gaps in this research area.

In terms of stochastic ways of handling uncertainties in GSCM, literature analyses
in [55] assert that researchers should consider two-stage stochastic approaches
and robust optimization techniques as future directions of research, instead of
regular stochastic programming. Robust optimization is indeed exploited in Chapter
4 as a valid uncertainty management strategy. In addition, the same analysis
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highlight how the other missing subject in uncertainty issues of GSCM is forecasting
parameters approaches. Only a few papers (mostly conceptual) discussed and
analyzed forecasting parameters. Accordingly, Chapter 5 investigates how demand
forecasting can be used in conjunction with robust optimization in order to achieve
a robust optimal planning that mitigates the risk of producing over-conservative
solutions.

In addition to price, demand, and costs, GSCM research also considers additional
features to be nondeterministic. Some of them are mentioned in [55], such as used
products’ rate of return, time of receipt of return products, and customer willingness
to return them. These are the types of uncertainties that affect most reverse logistics
networks, as the use-case of the research work presented in Chapter 6. Actually,
those types of uncertainties regard any business engaging multiple customers that
make production/service requests in such an unpredictable way that forecasting
methods are ineffective. In this scenario, the framework in Chapter 6 investigates
how the operative costs are altered by the variability of the customers characteristics
and their unpredictable and non-cooperative production/service requests.

In terms of addressing real situations in GSCM, refining the problem based on
typical scenarios in reality can increase the functional and practical importance of
the research [28]. In agreement with the latter statement, each model and framework
described in this dissertation was refined considering real-world applications and
verified with real-world data. Particularly, the research work of the following
chapters has been supported by two funds from EU POR-FESR program of Lazio
region, Italy [Grant No. B86H18000160002] and [Grant No. A0375202036611, CUP
B85F21001480002]. The last-mentioned grant refers to a research proposal conceived
and detailed by the author.

In terms of research opportunities in solution methodologies, there are different
discussions between analytical or exact solution methods and heuristics or meta-
heuristics approaches. In many instances, different methods could be effective to
some extent. For example, using heuristic and meta-heuristic algorithms to solve
large, complex problems is necessary, even if the quality of solutions remains unknown.
On the other hand, analytical and exact methods beside general exact solvers are
rarely applicable to real-sized instances of a problem or nonlinear problems, so
there is still a huge gap between theoretical solution methodologies and successful
practical methods [55]. As a result, there is still a significant gap between theoretical
solution methodologies and effective practical solutions. Perhaps hybrid algorithms or
approximation algorithms might offer a different acceptable approach to theoretically
and practically solving complex problems. Chapter 3 presents a meta-heuristic
solution algorithm that combines a Local search with a Tabu search logic, and
embeds exact methods in some phases of its algorithmic framework. The analyses
in [55] illustrate that simulation studies, heuristic methods, and meta-heuristic
algorithms are more applicable in practical situations in comparison with analytical
or exact solutions.
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2.5 Introduction to Robust Optimization

An effective, efficient, and robust supply chain gives countries and businesses
a long-term competitive edge and enables them to manage the escalating environ-
mental instability and competitive demands. Indeed, today’s supply chains operate
in complex environments that are characterized with high uncertainty, frequent
disruption, and great variability [53]. These issues are more significant in reverse
supply chain networks than in forward supply chains because the quantity and
quality of returned goods or waste are more unpredictable in reverse networks [85].
Since decisions in green supply chain management are frequently made in the face
of uncertainty, robust optimization and stochastic programming are useful tools to
assist in reaching reliable decisions.

Based on the definition of different decision-making environments by [91] and
[92], uncertain environments in accordance with [54] can be categorized in three
main groups as follows.

1) Decision-making environments with random parameters in which their probability
distributions are known for the decision maker. Here, these parameters are
called stochastic parameters. Stochastic programming approaches including
two-stage stochastic programming, multi-stage stochastic programming, and
chance-constrained programming approach belong to this group.

2) Decision-making environments with random parameters in which the decision
maker has no information about their probability distributions. Robust op-
timization (RO) models belong to this group. Several studies considered
continuous uncertain parameters within pre-specified intervals, named as
interval-uncertainty modelling, in this area.

3) Fuzzy decision-making environments. Flexible and possibilistic programming are
two well known approaches to model ambiguity and vagueness under a fuzzy
decision-making environment

When the unknown data can be thought of as stochastic, it might be difficult
to specify reliably data distribution, especially in many real cases where there is
no enough historical data for the uncertain parameters. Indeed, the mere fact that
the data are stochastic does not help unless we possess knowledge of the underlying
distribution. The uncertain-but-bounded model of uncertainty also needs a priori
knowledge; however, it is much easier to point out the support of the relevant
distribution than the distribution itself [85]. Accordingly, robust optimization is a
valid alternative to stochastic programming approaches.

Robust optimization theory provides a framework to handle the uncertainty of
parameters in optimization problems that could immunize the optimal solution for
any realization of the uncertainty in a given bounded uncertainty set [14].

The first step in developing the RO theory is taken by Soyster [102], who proposes
a linear optimization model to construct a solution that is feasible for all data that
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belong to a convex set. This first non-probabilistic approach is worst-case oriented
and produces solutions that are too conservative, in the sense that it gives up
too much of optimality for the nominal problem in order to ensure robustness. A
significant step forward in RO theory was taken by Ben-Tal and Nemirovski [11–13]
and El-Ghaoui and Lebret [42]. To address the issue of overconservatism, these papers
proposed models for uncertain linear problems with ellipsoidal uncertainties, which
involve solving the robust counterparts of the nominal problem in the form of conic
quadratic problems. This less conservative approach allows control of the degree of
conservatism by adjusting a specific parameter and can be addressed as a probabilistic
approach in terms of probabilistic bounds of constraint violations. Although convex,
such a method has the practical disadvantage of producing nonlinear models, which
are more computationally demanding than the earlier linear models by Soyster [102].

At a later time, Bertsimas and Sim present in [15] another probabilistic approach
for robust linear optimization that retains the advantages of the linear framework of
Soyster [102]. More importantly, this approach offers full control on the degree of
conservatism for every constraint. To introduce the theoretical basis of Bertsimas
and Sim [15] approach, consider the following nominal linear optimization problem:

maximize c⊺x
subject to Ax ≤ b

l ≤ x ≤ u

In the above formulation, it is assumed that data uncertainty only affects the
elements in the matrix A. We assume without loss of generality that the objective
function c is not subject to uncertainty, since the objective maximize z can be used,
adding into Ax ≤ b the constraint z − c⊺x ≤ 0. This approach, as well as in Soyster
[102] and Ben-Tal and Nemirovski [13], is able to withstand parameter uncertainty
under the following model of data uncertainty U.

Model of Data Uncertainty U. Consider a particular row i of the matrix A and
let Ji represent the set of coefficients in row i that are subject to uncertainty. Each
entry aij , j ∈ Ji is modeled as a symmetric and bounded random variable ãij , j ∈ Ji

(see Ben-Tal and Nemirovski [13]) that takes values in [aij − âij , aij + âij ]. Associated
with the uncertain data ãij , we define the random variable ηij = (ãij − aij)/âij ,
which obeys an unknown but symmetric distribution, and takes values in [−1, 1].

Consider the ith constraint of the nominal problem a⊺
i x ≤ bi. Let Ji be the set of

coefficients aij , j ∈ Ji that are subject to parameter uncertainty; i.e., ãij , j ∈ Ji takes
values according to a symmetric distribution with mean equal to the nominal value
aij in the interval [aij − âij , aij + âij ]. For every i, we introduce a parameter Γi,
not necessarily integer, that takes values in the interval [0, |Ji|]. As would become
clear below, the role of the parameter Γi is to adjust the robustness of the proposed
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method against the level of conservatism of the solution. Intuitively, it is unlikely
that all the aij , j ∈ Ji will change. Here, the goal is to be protected against all
cases that up to ⌊Γi⌋ of these coefficients are allowed to change, and one coefficient
ait changes by (Γi − ⌊Γi⌋)âi. In other words, nature appears to be restricted in its
behavior, in the sense that only a subset of the coefficients will change in order
to adversely affect the solution. The approach described in the following has the
property that if nature behaves like this, then the robust solution will be feasible
deterministically, and moreover, even if more than ⌊Γi⌋ change, then the robust
solution will be feasible with very high probability. We consider the following (still
nonlinear) formulation:

max c⊺x

s.t.
∑
j

aijxj + max
{Si∪{ti}|Si⊆Ji,|Si|=⌊Γi⌋,ti∈Ji\Si}

{ ∑
j∈Si

âijyj + (Γi − ⌊Γi⌋)âitiyt

}
≤ bi ∀i

−yj ≤ xj ≤ yj ∀j

l ≤ x ≤ u
y ≥ 0

(2.1)

If Γi is chosen as an integer, the ith constraint is protected by βi(x, Γi):

βi(x, Γi) = max
{Si|Si⊆Ji,|Si|=Γi}

{ ∑
j∈Si

âij |xj |
}

(2.2)

Note that when Γi = 0, βi(x, Γi) = 0, the constraints are equivalent to that of
the nominal problem (i.e. a deterministic approach). Likewise, setting Γi = |Ji|,
corresponds to the Soyster’s method (i.e. a worst-case approach). Therefore, by
varying Γi ∈ [0, |Ji|], the robustness of the method can be flexibly adjusted against
the level of the conservatism of the solution.

In order to reformulate model 2.1 as a linear optimization model, the following
proposition is needed.

Proposition 2.5.1. Given a vector x∗, the protection function of the ith constraint,

βi(x∗, Γi) = max
{Si∪{ti}|Si⊆Ji,|Si|=⌊Γi⌋,ti∈Ji\Si}

{ ∑
j∈Si

âij |x∗
j | + (Γi − ⌊Γi⌋)âiti |x∗

j |
}

(2.3)

equals the objective function of the following linear optimization problem:

βi(x∗, Γi) = max
∑

j∈Ji

âij |x∗
j |zij

s.t.
∑

j∈Ji

zij ≤ Γi

0 ≤ zij ≤ 1 ∀j ∈ Ji

(2.4)



2.5 Introduction to Robust Optimization 15

Proof of Proposition 2.5.1. Clearly the optimal solution value of problem 2.4
consists of ⌊Γi⌋ variables at 1 and one variable at Γi − ⌊Γi⌋. This is equivalent to
the selection of subset {Si ∪ {ti}|Si ⊆ Ji, |Si| = ⌊Γi⌋, ti ∈ Ji \ Si} with corresponding
cost function

∑
j∈Si

âij |x∗
j | + (Γi − ⌊Γi⌋)âiti |x∗

j |

Next, model 2.1 is reformulated as a linear optimization model.

Theorem 2.5.2. Model 2.1 has an equivalent linear formulation as follows:

max c⊺x
s.t.

∑
j

aijxj + ziΓi +
∑

j∈Ji

pij ≤ bi ∀i

zi + pij ≥ âijyj ∀i, j ∈ Ji

−yj ≤ xj ≤ yj ∀j

lj ≤ xj ≤ uj ∀j

pij ≥ 0 ∀i, j ∈ Ji

yj ≥ 0 ∀j

zi ≥ 0 ∀i

(2.5)

Proof of Theorem 2.5.2. We first consider the dual of Problem 2.4:

max
∑

j∈Ji

pij + Γizi

s.t. zi + pij ≥ âij |x∗
j | ∀i, j ∈ Ji

pij ≥ 0 ∀j ∈ Ji

zi ≥ 0 ∀i

(2.6)

By strong duality, since problem 2.4 is feasible and bounded for all Γi ∈ [0, |Ji|],
then the dual problem 2.6 is also feasible and bounded and their objective values
coincide. Using proposition 2.5.1, we have that βi(x∗, Γi) is equal to the objective
functions value of problem 2.6. Substituting to problem 2.1, we obtain that problem
2.1 is equivalent to the linear optimization problem 2.5.

It is clear by the construction of the robust formulation that if up to ⌊Γi⌋ of
the Ji coefficients aij change within their bounds, and up to one coefficient aiti

changes by (Γi − ⌊Γi⌋)âit, then the solution of problem 2.5 will remain feasible. The
parameter Γi controls the trade-off between the probability of violation and the
effect to the objective function of the nominal problem, which is what can be called
the price of robustness.

Readers interested in more details and analysis of the Bertsimas and Sim approach,
particularly on the probability bounds of constraint violation, can refer to [15] and
the references therein. In conclusion, this approach has the following main features:
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• It is successful in controlling the price of robustness

• It is computationally tractable

• It captures the trade-off between return and risk

• It applies to discrete optimization problems

• It ensures deterministic and probabilistic guarantees on constraints satisfaction

Above all, it does so in a linear framework under the model of data uncertainty U.
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Chapter 3

Clustering and Routing in
Reverse Logistics: A Two-Stage
Optimization Approach

This chapter presents a two-stage model to design and operate a waste man-
agement (WM) network. The decision-maker (a regional authority) is interested in
locating sorting facilities in a regional area and defining the corresponding capacities
to install. The decision-maker is aware that waste will be picked up and brought
to the installed facilities by independent private municipal companies. Therefore,
the authority wants to foresee the behavior of these companies in order to avoid
shortsighted decisions. In the first stage, the regional authority divides the clients
into clusters, further assigning facilities to these clusters. In the second stage, it is
defined an effective routing to serve clients’ pickup demand. The main idea behind
the model is that the authority aims to find the best location-allocation solution
by clustering clients and assigning facilities to these clusters without generating
overlaps. In doing so, the authority tries to i) assign clients’ demand to facilities by
considering a safety stock within their capacities in order to avoid shortages during
the operational phase, ii) minimize greenhouse gases emissions, iii) be as compliant
as possible with the solution found by the second stage problem, the latter aiming at
optimizing tour lengths performed by vehicles. After properly modeling the problem,
a matheuristic solution algorithm is proposed. Validation of the approach is achieved,
and computational analysis is presented to highlight how the matheuristic is able to
improve upon the first shortsighted solution.

3.1 Introduction

In recent years, sustainability has become the center of public attention. This
global environmental concern results in new recovery and recycling targets imposed
by national and international waste directives. In order to achieve these goals,
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specific policies must be defined and employed. The need to achieve these goals has
caused an increasing interest in the recovery of materials from the waste streams [83]
along with the rising prices of raw materials. Recovery of materials is a common
concept of the Circular Economy, where every object that reaches an end-of-life state
is put back into the stream to create additional value. In order to achieve this goal,
it is vital to have technologically advanced facilities able to manage waste, although
with the possible drawback of increasing costs [108]. Since the recycling industry
is already characterized by low margins and high operations and logistics costs,
optimizing the processes becomes critical to turn it into a feasible and profitable
market.

Indeed, considerable attention has been directed toward the optimization of tasks
related to Waste Management (WM). The Waste Framework Directive 2008/98/EC
of the European Parliament [40] defines Waste Management as a group of several
tasks, ranging from waste collection to disposal to after-care of the sites designated
for disposal. Waste Management is also considered one of the main tasks of Green
Supply Chain [104]. The reader can refer to the survey of Ghiani et al. (2014)
[50] for a substantial knowledge of Operations Research (OR) literature related
to strategic and tactical issues in solid WM. A more recent survey focused on
strategic tasks in WM has been conducted by Van et al. (2020) [115]. Treating
every task independently of one another could be limiting. Indeed, when dealing
with a WM network, there is a concurrence of vital actions, such as collection [70],
sorting, disposal, waste-to-energy practices, and recycling. Moreover, the impact
of these tasks must be analyzed from an economic and environmental perspective.
Therefore, the simultaneity of strategical, operational and environmental problems
is highlighted.

It is also essential to focus on the potential imbalance between regions in charge
of WM. Indeed, the rates at which countries manage solid waste using landfill,
waste-to-energy plants, or composting facilities differ considerably at the global level
[61]. Di Foggia et al. (2021) [38] try to analyze these differences, further noting that
some regions struggle to achieve self-sufficiency. One of the main reasons is the level
of industrialization, most strikingly characterized by a critical under-capacity. In [38],
the authors underline how some regions’ overcapacity counterbalances others’ under-
capacity. This situation generates negative environmental and economic externalities
due to waste exports [38], further highlighting the importance of a proper Facility
Location and Capacity Allocation. Policymakers need strategical support to address
these gaps through policies that properly design networks, enabling appropriate
waste handling and disposal routing.

Therefore, the purpose of the work presented in this chapter is to propose a
WM network design model to sustainably achieve the recycling targets of circular
economy. This model aims to provide an optimal treatment capacity distribution
that limits waste movement while optimizing the overall economic and environmental
impact.
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3.1.1 Literature Review

Green Supply Chain Management (GSCM) is a complex field of research with
several tasks involved. Some of these are Green Design, Green Manufacturing,
Network Design and Waste Management [104]. Several papers tried to optimize a
GSC by focusing on specific parts. Cristobal et al. (2018) [32] propose a model
to prevent food waste generation, while Shoaeinaeini et al. (2021) [97] optimize a
network through the study of specific pricing policies and subsidies. Bruglieri et al.
(2019)[22] introduce the Green Vehicle Routing Problem with capacitated Alternative
Fuel Stations (AFSs), a more realistic variant of the Green Vehicle Routing Problem
where the capacity of the AFSs is addressed. Ma et al. (2020) [75] focus on green
design by including the computation of carbon emitted during production. The
reader can refer to the survey of Memari et al. (2016) [77] for comprehensive
knowledge on modelling GSC by including CO2 emissions. The research focus
of this work is oriented to waste management only. The aforementioned survey
of Ghiani et al. (2014) [50] analyses OR literature related to WM tasks, further
dividing them into strategic and tactical/operational (for instance facility location
and transportation, respectively). Erfani et al. (2018) [45] use operation research
and geographical information systems to investigate effective factors in the storage
service of municipal solid WM systems. Bautista and Pereira (2006) [7] provide
a facility location model for locating collection areas for urban WM, with a real
world application to Barcelona. Most of the articles in the survey deal with single-
level models with single objective functions, and just a few tackle the issue with
multi-objective models, such as location-routing. Although, the complexity of WM
networks may be dealt with other mathematical approaches. For instance, Caramia
and Pizzari [27] develop a fractional programming model to design a WM network
by clustering clients by considering their demand and their general utility. They aim
to maximize the clients’ overall utility and minimize costs and emissions.

Concerning transportation in WM, one of the most common approaches is the
Vehicle Routing Problem (VRP), which deals with a set of waste producing customers
that need to be visited. These customers may have a demand to be satisfied in
terms of waste to be picked up or delivered. Each customer is assigned to one route
served by one vehicle. Given the limited capacity of the vehicles, several routes may
be generated and each can serve different customers. There could also be several
deposits instead of just one. The VRP generalizes the Travelling Salesman Problem
(TSP), given the fleet of vehicles and the several routes to be optimized, instead of a
single vehicle and single route. This class of problems was first introduced in 1959
by Dantzig and Ramser [34], who also presented a heuristic for the solution. Since
the TSP is a particular case of the VRP, the VRP is NP-hard [48].

Over the years, several approaches have been proposed to solve the VRP, both
exact algorithms and heuristics. Among the exact methods, the main ones are
Branch and Bound, Dynamic Programming and Set partitioning, while for the
heuristic algorithms, Sweep algorithm [51] and Cluster first-Route second can be
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mentioned. In recent years, metaheuristics have been thoroughly investigated for
solving the VRP, given the large real-life instances, as highlighted by Elshaer and
Awad (2020) [43]. For an extensive knowledge of the methods employed for dealing
with VRP, the reader can refer to Laporte and Gilber (2009) [65], Braekers et al.
(2016) [20], and Elshaer and Awad (2020) [43].

Among the various methods in the literature, cluster first-route second logic
is a fairly standard approach for dealing with VRP. The large set of customers is
firstly divided into smaller groups of customers (clusters) not to exceed the overall
capacity of a vehicle. Several attributes can be taken into account when defining
the clusters. Afterwards, the vehicles are assigned to specific clusters and routing is
executed. Beltrami and Bodin first introduced this method (1974) [8], who used it to
solve a problem concerning the municipal waste collection. Cakir et al. (2015) [25]
further studied the clustering part of the problem by considering the clusters’ shape.
Clustering methods are studied by Comert et al. (2018) [31], too. They propose
three different algorithms (K-means, K-medoids and random) to help shape the
clusters. They further solve the routing via a branch-and-bound.

3.1.2 Main contributions

In terms of theoretical implications, this chapter’s main contributions to the
existing literature are:

• Dynamic clusters. Most articles dealing with cluster first-route second (and its
counterpart route first-cluster second) define clusters that cannot be changed.
Moreover, these clusters are done without taking into account information
arising from the routing. In the proposed model, the clusters are updated via
this information.

• The employment of cluster first-route second logic in a two-stage model.
Information from the routing (second stage) will be used as a new starting
point for the clustering phase (first stage).

• Fairness of capacity allocation between facilities. The issue of unbalanced
capacity and the economic and environmental impact it causes has already
been addressed in the introduction of this chapter.

• Penalty on capacity saturation. This feature has been included to consider the
uncertainties in waste streams and to better address the issue of unbalanced
capacity.

The model is tested in a real-world case scenario, namely the Lazio region, Italy.
Although the real case scenario application deals with an Italian region situation,
the model can provide several useful insights for other regions and countries.

The rest of this chapter is structured as follows: Section (3.2) gives the problem
definition and further provides the mathematical formulation, Section (3.3) explains
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the mathematical approach employed for solving the model, Section (3.4) describes
the computational analysis, and results for the case study. Finally, conclusions are
discussed in Section (3.5).

3.2 Problem definition and mathematical formulation

This section first introduces the considered waste management problem in 3.2.1,
then its mathematical formulation is presented in 3.2.2.

3.2.1 Problem definition

A regional authority, denoted for short also as RA, is involved in solving a
strategical problem, hereafter denoted as SP. The SP consists of opening a set of
collection facilities in proper geographical locations (drawn from a set F of prescribed
locations). Waste must be routed after being picked up from collection nodes, i.e.,
client nodes, where waste and the resulting collection demand is generated. Let us
denote this client set with C and demands with di, with i ∈ C.

Collection facilities act as hubs for the (spokes) client nodes. They may also be
referred to as sorting facilities in case waste need to be sorted in order to be finally
routed to recycling plants, incinerators or landfills for their disposal. In this chapter,
however, no attention is given to the downstream part of the supply chain, which
requires studying another strategic problem, as the one of Chapter 4.

Facilities to be opened by the RA have different sizes and capacities; let H be
the set of sizes associated with a facility, e.g., H={small, medium, large} and let
capf

jh be the capacity of a facility located in a candidate node j ∈ F with size h ∈ H.
Depending on both location and size, facilities have different opening costs cjh, with
j ∈ F and h ∈ H, and a different environmental impact in terms of CO2 emissions
emf

jh, with j ∈ F and h ∈ H.

The clustering phase in the strategical problem.
In an attempt to decide which facilities have to be opened and which sizes have to

be assigned to each of them, RA searches for a partition of set C into clusters, each
with its own facilities. In doing so, RA aims at implementing a proximity logistic
where capacities are fairly allocated to opened facilities and, consequently, to clusters,
based on the following assumptions:

• h1: demands di, with i ∈ C, are i.i.d. stochastic variables;

• h2: the number of clients in each cluster is large enough to let the overall
demand to be served in each cluster to follow the Central Limit Theorem.

Consider a generic cluster; let C ′ ⊆ C be the subset of clients belonging to
this cluster. Moreover, let d(C ′) =

∑
i∈C′ di be the overall cluster’s demand. By

hypotheses (h1) and (h2), d(C ′) is a Gaussian variable with expected value µ(d(C ′))



3.2 Problem definition and mathematical formulation 22

equal to the sum of the expected values of the variables di, with i ∈ C ′, and variance
σ2(d(C ′)) equal to the summation of the variances of the same variables.

With this setting, RA can define the probability (i.e., the service level) with which
an assignment of clients to a cluster will be obeying the cluster capacity, the sum of
the capacities of the facilities therein assigned.

For instance, further considering the example of a cluster with a set C ′ of assigned
clients, in order to guarantee a 0.99 service level, RA may impose 2.33 standard
deviations of d(C ′) from the expected cluster demand µ(d(C ′)) to determine the
minimum capacity to be assigned to that cluster.

Hypothesis in h1 related to the independence of the client demands appears to
be realistic since clients produce waste independently one to each other; hypothesis
in h1 for which client demands are identically distributed appears to be realistic in
those scenarios in which clients are represented by, e.g., comparable sets of families
or commercial activities. In the case in which clients are substantially heterogeneous
and, seemingly, it would be quite unrealistic to assume identical distributions, this
assumption can be properly relaxed as follows (this option is denoted as option (b),
as opposed to the current option (a)). Client demands di, with i ∈ C, are modeled
as (deterministic) parameters such that di = µdi, i.e., each demand is set equal to
its expected value, and a safety capacity sc on the capacity of a cluster is considered,
say, for instance, c̄c, to reserve and penalize in case of being used. By means of sc,
the action of the previously defined standard deviations is modeled without making
use of any assumption on the client demand stochastic variables. Formally, we have∑

i∈C′

di + (1 − η) · sc ≤ c̄c, (3.1)

where η is a continuous variable which should be minimized to let it be as close as
possible to 0 to let, in turn, the safety capacity to be untouched. In the worst case
η = 1, all the safety capacity will be used and, therefore, the cluster will be assigned
a capacity only on the basis of the expected values of the demands, which would
correspond to a service level of 0.5 in the case of identical distribution of the client
demands.

The operational problem nested inside the strategical problem.
After opening the facilities, RA cannot play any role in determining how clients will

be served and which facilities will be used. Moreover, it appears not to be realistic
to impose clusters at an operational routing level, since carriers are free to choose
routes based on their minimum cost criterion. Therefore, to minimize the risk of
failing in the clustering task, RA tries to infer which will be the best routing to serve
clients from the carrier’s point of view, given the set of opened facilities; this task
requires that RA nests a new optimization problem in their problem formulation.
This new problem will be denoted as OP. The optimal solution of OP allows the
calculation of miss-clustered clients to be penalized in the SP full objective function,
i.e., a penalty arises in the case a client allocated in a cluster and to be served by
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the associated facilities in that cluster, is instead served by a different facility in the
routing solution offered by OP.

The different nature of both SP and OP leads to define a two-stage optimization
problem (denoted as TSOP) which well represents the interactions between the two
problems. In order to entirely define TSOP, OP is considered in more detail. To this
end, additional notation is introduced.

Let G = (N, A) be a graph modeling the geographical area of the problem, where
N is the node set encompassing three different subsets, i.e., N = C ∪ F ∪ D, being
C the subset of node clients, F the subset of sites where facilities may be opened,
and D is the subset of depot nodes. Let tab be the travelling time between nodes
a ∈ N and b ∈ N .

There is a set V of vehicles in charge of collecting wastes from clients in C. Each
vehicle l ∈ V has a capacity cvl. The demand di of each client i ∈ C has to be served
by a vehicle l ∈ V . Each depot, in turn, is associated with a set of vehicles. The
matrix A ∈ Z|D|×|V | stores this allocation of vehicles to depots in such a way that
its generic element akl is equal to 1 if the vehicle l starts its tour from the depot k,
and holds 0 otherwise.

OP have to find tours of vehicles in such a way that a vehicle l ∈ V starts its
collection tour from a depot k ∈ D, serves a subset of the clients in C obeying its
capacity cvl and then goes to an opened facility j ∈ F of size h ∈ H. Finally, it
routes back to the same depot k ∈ D. A service operated by a vehicle l ∈ V should
respect a maximum servicing time per tour, denoted as Tl.

The objective function of OP is to minimize the sum of the travelling time of all
vehicles.

As mentioned earlier, the regional authority first decides which facilities to open
by minimizing emissions due to installation of facilities and minimizing predicted
capacity saturation. Afterwards, the authority uses this information to infer the
optimal routing in the second stage, which gives feedback on the eventual miss-
clustering and on the actual capacity saturation. Therefore, it makes sense to have
two different objective function for the SP, namely a reduced objective function,
computed in the first stage, and a full objective function, computed after the second
stage.

The reduced objective function of SP is to minimize the conic combination of
two functions to be minimized:

• (i) emissions due to installation of facilities

• (ii) penalty associated to the usage of the safety stock capacity of a facility

The full objective function of SP is to minimize the conic combination of three
functions to be minimized:

• (i) emissions due to installation of facilities and transportation

• (ii) penalty associated to the usage of the safety stock capacity of a facility
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• (iii) penalty associated to a possible miss-match between the clustering solution,
represented by the solution of SP, and the assignment clients/routes, offered
by the solution of OP.

Figure 3.1 briefly display the interaction between the two models. In the figure,
OF shorten objective function.

Figure 3.1. The Two-Stage Optimization Model

3.2.2 The mathematical formulation

After the definition of the problem, the mathematical formulation of TSOP is
given. In order to get to the overall formulation, the constraints of SP and OP are
presented separately.

The strategical problem constraints. Let S be the set of clusters the municipal
firm may define, i.e., |S| is an upper bound on the number of non-empty clusters
defined by the problem solution. Let scjh be the safety capacity associated with a
facility j ∈ F of the size h ∈ H. The decision variables of SP are:

xis =

1 if client i ∈ C is assigned to cluster s ∈ S

0 otherwise

rjhs =

1 if facility j ∈ F of size h ∈ H is assigned to cluster s ∈ S

0 otherwise

yj =

1 if facility j ∈ F has been opened
0 otherwise
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ηjhs ∈ [0, 1] = the fraction of used safety capacity scjh associated with
facility j ∈ F of size h ∈ H assigned to cluster s ∈ S

The constraints of SP are described in the following; note that, in defining the
capacity of each cluster, they encompass option (b) (Equation 3.1).

(1)
∑

s∈S xis = 1, ∀i ∈ C,

(2)
∑

s∈S

∑
h∈H rjhs = yj , ∀j ∈ F,

(3)
∑

i∈C di · xis ≤
∑

j∈F

∑
h∈H(rjhs · capf

jh−
(rjhs − ηjhs) · scjh), ∀s ∈ S,

(4) xis ≤
∑

j∈F

∑
h∈H rjhs, ∀i ∈ C, ∀s ∈ S,

(5) ηjhs ≤ rjhs, ∀j ∈ F, h ∈ H, s ∈ S,

(6)
∑

j∈F

∑
h∈H

∑
s∈S cjh · rjhs ≤ B,

(7)
∑

j∈F

∑
h∈H rjhs ≤ mc, ∀s ∈ S,

(8) ηjhs ∈ [0, 1] ∀j ∈ F, h ∈ H, s ∈ S

(9) xis, rjhs, yj ∈ {0, 1} ∀i ∈ C, ∀j ∈ F,

∀h ∈ H, ∀s ∈ S.

Constraints (1) say that every client i ∈ C has to be assigned to one cluster in S.
Constraints (2) impose that a facility j ∈ F can have at most one size h ∈ H and
can be allocated to at most one cluster s ∈ S; moreover, in case facility j ∈ F of
size h ∈ H is assigned to cluster s ∈ S, facility j is opened, i.e., yj . Constraints (3)
guarantee that the overall demand of clients assigned to a cluster s ∈ S (considering
demands as given parameters, see Subsection 3.2 for details) must not exceed the
sum of the capacities capf

jh of all the facilities j ∈ F (each with their own size h)
assigned to cluster s minus the fractions ηjhs of the safety capacities scjh of the
same facilities. Constraints (4) assign at least one facility to a cluster s ∈ S if at
least one client i ∈ C is assigned to that cluster s. Constraints (5) impose that if
no facility j ∈ F is opened with size h ∈ H and assigned to cluster s ∈ S, then no
safety stock can be used. Constraint (6) imposes that the cost of locating facilities
cannot exceed a given amount of budget B. Constraints (7) puts a limit on the
maximum amount mc of facilities that can be assigned to a cluster. Constraints (8)
and (9) define the range of feasible values for the decision variables.

The operational problem constraints. Let us now define constraints of OP.
Let

ha
l =

1 if vehicle l ∈ V visits node a ∈ N during its tour
0 otherwise

zab
l =

1 if vehicle l ∈ V travels from node a ∈ N to node b ∈ N

0 otherwise
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pa
l ≥ 0; the arrival time of vehicle l ∈ V in node a ∈ N

vj
l ≥ 0; the total amount of waste transported by vehicle l ∈ V to facility j ∈ F

Constraints are as follows:

(10)
∑

j∈F hj
l =

∑
k∈D

∑
i∈C zki

l , ∀l ∈ V,

(11)
∑

k∈D hk
l = 1, ∀l ∈ V,

(12)
∑

j∈F hj
l = 1, ∀l ∈ V,

(13)
∑

l∈V hi
l = 1, ∀i ∈ C,

(14) zij
l = 0, ∀l ∈ V, i ∈ N, j ∈ N : i = j

(15)
∑

i∈C zki
l ≤ akl, ∀k ∈ D, ∀l ∈ V,

(16)
∑

j∈F zjk
l ≤ akl, ∀k ∈ D, ∀l ∈ V,

(17)
∑

i∈C zji
l = 0, ∀j ∈ F, l ∈ V,

(18)
∑

k∈D zjk
l =

∑
i∈C zij

l , ∀j ∈ F, l ∈ V,

(19)
∑

j∈C+F zij
l = hi

l, ∀i ∈ C, l ∈ V,

(20)
∑

j∈D+C zji
l = hi

l, ∀a ∈ C, l ∈ V,

(21)
∑

i∈C hi
l · di ≤ cvl, ∀l ∈ V

(22) pb
l = pa

l + tab, ∀l ∈ V, a ∈ D + C, b ∈ C + F : zab
l = 1,

(23)
∑

l∈V

∑
k∈D pk

l = 0
(24) pa

l = 0, ∀l ∈ V, a ∈ N : ha
l = 0,

(25)
∑

j∈F pj
l ≤ Tl, ∀l ∈ V

(26)
∑

i∈C hi
l · di = vj

l , ∀j ∈ F, l ∈ V : hj
l = 1,

(27)
∑

l∈V vj
l ≤

∑
h∈H

∑
s∈S rjhs · capf

jh, ∀j ∈ F,

(28) vj
l = 0, ∀j ∈ F, l ∈ V : hj

l = 0,

(30) hi
l ∈ {0, 1}, ∀i ∈ N, l ∈ V,

(31) zij
l ∈ {0, 1}, ∀i, j ∈ N, l ∈ V,

(32) pa
l ≥ 0, ∀a ∈ N, l ∈ V

(33) vj
l ≥ 0, ∀j ∈ F, l ∈ V.

Constraints (10) say that if a vehicle l ∈ V travels from depot k ∈ D, i.e.,∑
k∈D

∑
i∈C zki

l = 1, then it must exist exactly one facility j ∈ F visited by ve-
hicle l in its tour. Constraints (11) impose that each vehicle l ∈ V must have
precisely one depot k ∈ D in its route (that is, the one for which alk = 1), while
constraints (12) impose that each vehicle must have exactly one facility in its route.
Constraints (13) impose that each client node must be visited by exactly one vehicle.
Constraints (14) do not allow loops over the same node. Constraints (15) define
that a vehicle l ∈ V in a depot k ∈ D, i.e., one for which akl = 1, can exit from
depot k to visit as immediate successors only (client) nodes i ∈ C (i.e., facility or
depot nodes are not allowed). Constraints (16) define that a vehicle exiting from a
facility j ∈ F can visit only one deposit k ∈ D afterwards, namely the one for which
akl = 1. Constraint (17) guarantee that a vehicle l ∈ V cannot visit a client node
i ∈ C after having visited a facility node j ∈ F . Constraints (18) define that if a
vehicle l ∈ V has visited a facility j ∈ F , the next node visited by vehicle l must be
its depot. Constraints (19) guarantee that after visiting a client, a vehicle can visit
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another client or a facility, while constraints (20) state that a vehicle can enter a
client node only from a deposit or another client. Constraints (21) impose to respect
the maximum capacity for each vehicle. Constraints (22)-(25) regulate the behavior
of the variable pa

l , i.e. the arrival time of vehicle l in node a. In detail, constraints
(22) computes the arrival time at node b from node a as the arrival time at node
a plus the time needed for the arc (a, b), but only if the arc (a, b) is in the route
of vehicle l. Constraints (23) initializes the arrival time for each vehicle to be zero
at each deposit. Constraints (24) sets the arrival time to zero for each node not
visited. Finally, constraint (25) puts a limit on the time-length of a route finishing
in a facility. Constraints (26) compute the overall load of a vehicle l ∈ V , linking
this information to the facility j ∈ F visited during the route. Constraints (27) are
the capacity constraints for the facilities; they ensure that the vehicles’ overall load
does not exceed the capacity installed. Constraints (28) put the load towards the
facilities not visited to zero. Constraints (30)-(33) state the feasible domain of the
decision variables.

The operational problem objective function.
OP aims at minimizing the sum of the vehicles’ travelling time. This means that

the objective function associated with OP is:

ofOP : min
∑

a∈D+C

∑
b∈C+F

∑
l∈V

zab
l · tab.

The strategical problem objective function.
This paragraph is intended to give a more in depth understanding of term (iii)

mentioned at the end of Subsection 3.2; to this end, in Figures 3.2 and 3.3, a gadget
example of a problem instance is illustrated.

The upper part of Figure 3.2 reports a gadget graph G = (N, A) with C =
{1, 2, 3, 4, 5, 6, 7}, F ={Facility 1, Facility 2}, and D={Depot 1, Depot 2}. The lower
part of Figure 3.2 reports a clustering solution consisting of two clusters, i.e., Cluster
1, including clients 1, 2, and 3, and Cluster 2, including clients 4, 5, 6, and 7.

Figure 3.3 shows (upper part) an example of routing operated by the company
in charge of collecting the waste demands of the network, i.e., Route 1, which starts
from Depot 1, visits clients 2, 5, 4, and 7, and, finally, reaches Facility 2; and Route
2, which starts from Depot 2 and visits clients 1, 3, and 6, and, finally, reaches
Facility 1. Both routes, after having visited their respective facilities, end up at the
initial depot.

Looking at the lower part of Figure 3.3, there is a misalignment between the
cluster composition and the clients in each route. In particular, clients 1, 2, and 3,
belong to the same cluster but are not served on the same route. A similar situation
occurs for clients 4, 5, 6, and 7, which belong to cluster 2 but are not served on the
same route. Therefore, the unmatched assignments, e.g., those related to clients
2 and 5 (same route, different clusters), or those related to clients 2 and 6 (again,
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Figure 3.2. An example of a network and a clustering

same route, different clusters), will activate a penalty term in the objective function
of SP.

The full objective function of SP is, therefore, the following:

ofSP : min γ1 ·

∑
i∈N

∑
j∈N

∑
l∈V

zij
l · emt

ij +
∑
j∈J

∑
h∈H

∑
s∈S

emf
jh · rjhs

 +

γ2 ·
∑
j∈F

Pj · ηj + γ3 ·
∑
i∈C

∑
i′∈C

∑
l∈V

∑
s∈S

max{0, zii′
l − xis · xi′s},

where γ1, γ2, and γ3 are real scalars. The first piece of the function defines the
overall emissions, given by the sum of the emissions caused by transportation (the
first term in the parenthesis, where emt

ab is the emission for each arc (a, b)) and the
sum of the emissions caused by facility locations and their assigned size (second
term in the parenthesis). The second piece of the function models the amount of
penalty ηj · Pj to be paid in case a fraction 0 ≤ ηj ≤ 1 of safety capacity scj is used
in the facility j, ∀j ∈ F , Pj being a real scalar defining the maximum penalty in a
facility j ∈ F . The third term of ofSP refers to the penalty defined at the beginning
of this paragraph, i.e., the penalty occurring when two clients are assigned to the
same route in OP but to different clusters in SP. It can be linearized by introducing:

• a real non-negative variable gii′ls, with i ∈ C, i′ ∈ C, l ∈ V , s ∈ S,

• a binary variable uii′s, with i ∈ C, i′ ∈ C, s ∈ S,
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Figure 3.3. An example of routing and the associated penalty occurrence

and by adding the following constraints in SP:

(34) gii′ls ≥ 0, ∀i ∈ C, ∀i′ ∈ C, ∀l ∈ V, ∀s ∈ S,

(35) gii′ls ≥ zii′
l − uii′s, ∀i ∈ C, ∀i′ ∈ C, ∀l ∈ V, ∀s ∈ S,

(36) uii′s ≥ xis + xi′s − 1, ∀i ∈ C, ∀i′ ∈ C, ∀s ∈ S,

(37) uii′s ≤ xis+xjs

2 , ∀i ∈ C, ∀i′ ∈ C, ∀s ∈ S,

(38) uii′s ∈ {0, 1}, ∀i ∈ C, ∀i′ ∈ C, ∀s ∈ S

and further rewriting the objective function as follows:

ofSP : min γ1 ·

∑
i∈N

∑
j∈N

∑
l∈V

zij
l · emt

ij +
∑
j∈J

∑
h∈H

∑
s∈S

emf
jh · rjhs

 +

γ2 ·
∑
j∈F

Pj · ηj + γ3 ·
∑
i∈C

∑
i′∈C

∑
l∈V

∑
s∈S

gii′ls,

As mentioned earlier, the first stage model also employs a reduced objective
function, which is the following:

of ′
SP : min γ1 ·

∑
j∈J

∑
h∈H

∑
s∈S

emf
jh · rjhs + γ2 ·

∑
j∈F

Pj · ηj

3.3 A Matheuristic Solution Approach

Decisions taken in the first stage of the model affect decisions taken in the second
stage. Furthermore, the second stage decisions affect the full objective function of
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the regional authority. If a simple two-stage scheme is employed, i.e. the first stage
is optimally solved, then the second stage is optimally solved, and finally, the overall
results are computed, several shortsighted decisions may be selected. Therefore,
a matheuristic is developed in order to provide the RA with better solutions. The
proposed matheuristic combines a Local search and a Tabu search logic. The overall
framework is displayed in Figure 6.2, where the reader can easily recognize three
main sectors, i.e. sector A, B, and C.

At the beginning of sector A, the RA solves SP on the reduced objective function.
Information regarding opened facilities and their size is then passed upon the second
stage, which is then solved. After OP is solved, the RA has the information that
it needs for computing the full objective function. At the end of sector A, the RA
checks if there are facilities whose safety stock is being used, i.e. if there are facilities
that are overly used by the OP.

Sector B comprises all the possible actions that could be taken. The authority
selects the facility that struggles the most, i.e. has the most amount of safety stock
used. The authority first tries to enlarge the under-sized facility. If it is not possible,
the authority checks if there are facilities whose capacity is used under a certain
threshold, eventually closing them and replacing them with other facilities. The
reason behind is that facilities under-used may not be attractive to the second-stage
routing. Therefore, the RA tries to open other facilities, which may be more attractive.
If there are not under-used facilities, the RA opens an additional facility, in order to
try to assist the one in need.

In sector C, the action undertaken is then passed on to the second stage, which
is again solved. Finally, the authority is able to infer if the new combination of
facilities and sizes yields better results for the full objective function. If it is so, the
authority continues the matheuristic. If the solution is worse than the one already
obtained, the change in facilities location/size is reverted and added to a Tabu list
to avoid making the same decision. When there is no more room for improvement,
i.e. all facilities are acceptably used, or if there are no available moves, i.e. the Tabu
list contains all the possible moves from the current solution, then the matheuristic
stops.

3.4 Computational Analysis and Case Study

Both the model and the matheuristic are coded in Python3 programming language.
All SP and OP problems instances are solved via branch-and-cut using the Gurobi
9.5.2 solver on a PC running an AMD Ryzen 7 4800H Processor with 16 GB of RAM.
In order to test the behavior of the two-stage model and of the matheuristic before
applying them to a real world case study, a set of random instances of different
size is created. Table 3.1 displays the number of facilities, clients, deposits, and
vehicles for each size of the instances, as well as the solver time limit (TL) for
each stage of the model (expressed in seconds). For each size, 5 different instances
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Figure 3.4. Framework of the matheuristic

are considered. For what concerns the network nodes of each instance, these are
the results of different random samples of real locations of waste disposal facilities,
industrial waste-clients and depots of waste companies trucks fleets. These types
of nodes are all located within the Lazio region of centre-Italy. Dealing with data
from a real-case scenario, the expected waste demand of served clients is computed
according to 5 years (2017-2022) of waste pick-up instances obtained from a research
project sponsored by the EU POR-FESR program of Lazio region, Italy [Grant No.
B86H18000160002]. The attributes of the graph edges, such as travelling distance
and duration, are generated by Open Source Routing Machine (OSRM), a high
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performance routing engine written in C++14 designed to run on OpenStreetMap
data [74].

Table 3.1. Random instances - details

Instance Facilities Clients Deposits Vehicles SP TL OP TL

Small 5 15 2 4 25 200
Medium 10 25 5 10 35 400
Large 15 40 8 12 50 800

Table 3.2 displays the results for each random instance. Specifically, it shows
the value of the full SP objective function computed in the first iteration and the
best value of the objective function computed according to multiple starting points
provided by the matheuristic. The improvement column shows that the proposed
approach improved the results with respect to the initial solution for most instances.
For the few not improved instances, the matheuristic did not start, meaning that the
allocation of capacity done at the SP stage was proved acceptable by the OP. Table
3.3 shows how the SP objective function values evolve across the iterations (shorten
as It). The underlined values highlight the instance with the best value. The results
certify that the matheuristic is able to improve upon the original solution. A limit
of 10 maximum iterations bounds the matheuristic test, still this limit did not come
into play. Indeed, all possible starting points are explored in less than 10 iterations.

Table 3.2. SP results for the random instances

Size Instance First Value Best Value Improvement
1 139.30 139.30 0.00%
2 337.78 337.78 0.00%

Small 3 228.56 228.56 0.00%
4 157.29 157.29 0.00%
5 181.05 181.05 0.00%
6 302.96 288.69 4.71%
7 519.48 282.58 45.60%

Medium 8 293.13 274.13 6.48%
9 430.69 328.50 23.73%
10 481.95 456.53 5.27%
11 457.20 443.80 2.93%
12 545.90 543.94 0.36%

Large 13 465.61 441.00 5.29%
14 557.70 557.70 0.00%
15 544.38 506.93 6.88%

Table 3.4 displays the values of the second stage model for each matheuristic
iteration. Underlined results do not represent the best OP values, they instead
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represent the iteration the RA settles on (i.e. the iteration for which the value of SP
is the lowest). The SP problem was always solved at the optimum, while the OP is a
more complex problem and its optimal solution is not always found in a reasonable
amount of time (Table 3.5). Regarding computational times associated to the gaps
in Table 3.5, the first four instances are optimally solved in less than 1 second. The
solver required 30 seconds circa to close the gap for both OP problems of the instance
n.6. Regarding instance n.10, the solver did not manage to find the optimum of the
first OP problem, while it succeeded in the two following OPs in less than 20 and 30
seconds, respectively. All nonzero gap values of Table 3.5 refer to the solver time
limits previously reported in Table 3.1.

3.4.1 Case study

The case study focuses on the Lazio region, located in the centre of Italy. Lazio
region has an extension of 17, 242km2(6, 657mi2) and a population of 5, 864, 321
(Figure 3.5). Considering such a large area is indeed a challenging network design

Figure 3.5. Lazio region (highlighted in red)

problem. Therefore, only some municipalities are selected for each district. Lazio
region has 5 districts, namely Rome, Viterbo, Rieti, Latina, and Frosinone. For
each district, the provincial county seat and the most populated municipalities are
the ones considered by the use-case application. Rome is out of this case study due
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to its size as a metropolitan city, which implies specific management approaches.
Nevertheless, the author is collaborating with AMA S.p.a. (the WM operator in
charge of all WM operations in Rome) to investigate optimization opportunities to
better design and operate the WM network of Rome. Regarding this use-case, several
facilities are selected for each province, and all data regarding waste production,
population, and processing capacity has been taken from ISPRA’s Catasto dei rifiuti
(Waste cadastre)[1].

A total of 40 municipal-clients and 15 facilities are selected. They can be served
by a fleet of 12 vehicles, distributed across 8 depots. Figure 3.6 displays the selected
municipal-clients (green), facilities (orange), and trucks depots (blue).

Figure 3.6. Real case instance with vehicle depots, facilities, and demand points

The optimal use-case solution that results from employing the matheuristic is
described in the following. In particular, Table 3.6 shows the number of opened
facilities, their size, and the used capacity. Table 3.7 shows the values of the SP
objective function, as well as the evolution of the matheuristic’s iterations. The time
limit for solving the SP is 50 seconds, while the time limit for the OP is 1800 seconds
(30 minutes). Once again, the limit of 10 maximum iterations does not bound the
matheuristic implementation.

Table 3.8 shows the solution results w.r.t. the OP. The number in bold corresponds
to the iteration that the regional authority settles on, i.e. the third iteration, which
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Facility Size Capacity used (%) Safety stock used (%)
6 Small 81.94 % 39.8%
12 Small 58.66% 0
13 Large 31.17% 0
14 Large 40.43% 0

Table 3.6. Open facilities and capacity allocation in use-case application

First value Best value Improvement Iter 1 Iter 2 Iter 3 Iter 4

972.17 887.78 8.60% 947.35 957.64 887.78 903.74
Table 3.7. Results of the SP in the case study

is the one with the best result for the RA, as shown in Table 3.7. Although the value
of the OP in the third iteration improves upon the first solution, the second stage
model could settle for an even better result in the fourth iteration.
Figure 3.7 showcases the vehicles’ tour length in km for each of the twelve considered
vehicles.

Figure 3.7. Vehicles’ tour length with vehicle id in

First value of OP Iter 1 Iter 2 Iter 3 Iter 4

2051.39 1901.99 1932.09 1836.38 1821.15
Table 3.8. Results of the OP in the case study
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3.5 Conclusions

This chapter presented a novel two-stage model in order to assist a regional
authority in designing a WM network. The authority wants to cluster clients, locate
facilities for these clusters, and define the correct amount of capacity to install.
The regional authority is aware that the network will then be used by independent
decision-makers, i.e. the carriers in charge of picking up waste and delivering it to
the opened facilities. To foresee the behavior of the operational decision-makers and
to avoid possible miss-clustering or misallocation of capacity, the regional authority
relies on the second stage of the model and a matheuristic.

Several random instances are used to test the two-stage optimization problem
TSOP within the proposed matheuristic. Given the promising results, the TSOP and
the matheuristic are then applied to a real-world case study. Once again, the model
provides promising results, and the matheuristic is able to improve upon the first
shortsighted solution.

Given that some tour lengths are uneven, a future research may address tour
lengths balance.

Most importantly, several instances of the OP were optimally solved. For these
instances, the whole TSOP model is de facto a Bilevel optimization model, which can
be used with multiple decision-makers, an inherent hierarchy and a possible degree
of cooperation. For these instances, the first stage can be seen as the leader, whereas
the second stage could be perceived as the follower. However, the exact solution
approach is not always able to close the duality gap of the second stage problem
within a reasonable amount of time. For all the instances where the second stage was
not optimally solved, we cannot refer to the TSOP as a bilevel optimization problem.
Indeed, the optimality of the follower’s problem solution is a strict requirement in
order to have a feasible bilevel solution. Therefore, another future research may
address these gaps in order to achieve the optimality needed for a bilevel optimization
approach.
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Chapter 4

Robust Optimal Planning of
Waste Sorting Operations

Circular economy objectives are worthwhile and worldwide challenges concerning
both the protection of the environment and the conservation of natural resources with
aim of zero waste. A considerable attention has been directed over the last decade
towards the optimization of planning procedures related to waste management
in order to empower circular economy ambition. This chapter investigates the
operations of waste recycling centers where materials are collected by a fleet of trucks
and then sorted in order to be converted in secondary raw materials. The activity is
characterized by low margins, difficulties to track flows and uncertainties in supplies.
In [83] a formulation has been proposed to address and optimize the sorting process.
However, special attention should be paid to the fact that waste streams processes
are affected by several uncertainties, such as the stochastic processes regarding waste
arrivals to sorting facilities. This work extends the model in [83] by introducing
robustness to data uncertainties related to waste supplies. Accordingly, the main aim
of this study is to develop a mixed integer linear programming model for planning
and scheduling the packaging waste recycling operations, taking into consideration
also the stochastic nature of waste arrivals. This is done by introducing a protection
function in each constraint according to the probabilistic robust approach presented
in [15] and in Section 2.5 of this dissertation. This approach ensures deterministic
and probabilistic guarantees on constraints satisfaction. The model supports other
strategic decisions, such as sizing of the amount of processed waste and allocating of
the optimal number of operators for each shift of the sorting processes. Experiments
are performed on instances taken from a real case scenario, and comparisons are
made against different planning strategies.

4.1 Introduction

Performances of waste management systems have been improving thanks to
a noticeable commitment of decision makers and research efforts regarding the
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optimization of each system component. As an example, a conventional operational
task addressed by research is about waste shipment and collection trucks route
optimization as in [93][19]. In the meantime, similar optimization models have
been drastically reducing transportation costs, enhancing the growth of the online
shopping of any sort of good. As a result, while logistic companies start serving
a new magnitude of customers, also a new dimension of packaging waste started
affecting the overall waste system. This leads to the need of a stronger technological
and strategic decision support to packaging waste facilities in order to lower all
the extra costs involved with the selective collection and sorting of this kind of
waste. Not only logistic companies, but also every other kind of industry, generates
a considerable amount of packaging waste. In Europe, the Directive 2004/12/EC
on packaging and packaging waste laid down the European recycling and recovery
targets. In particular, official reporting on packaging waste for all EU Member States
was implemented in 2007 and since then Eurostat monitors also the developments of
this important statistics. Therefore, the need of meeting the recovery and recycling
targets imposed by EU law and the rising prices of raw materials used for packaging
have resulted in an increasing interest in the recovery of materials from the waste
streams. Moreover, the recycling industry is characterized by very low margins
and high percentage of operation and logistics costs. For this reason, it is critical
the optimization of the process in order to turn it into an economically sustainable
business. Special attention should be paid to the fact that this objective is affected
by several uncertainties, such as those arising in the waste streams processes. In
particular, waste arrivals to sorting facilities are stochastic processes. Indeed, waste
truck arrivals are subject to considerable variability that should be properly addressed
when modeling scenarios including waste streams. In [83] this subject has been
investigated. This work intends to expand the modeling power of the MILP presented
in [83] by introducing robustness to data uncertainties related to waste supplies.

The reminder of this chapter is organized as follows: the literature review is
given in Section 4.1.1; Section 4.2 is dedicated to the problem description and the
MILP formulation; Section 4.3 presents the experimental results; finally, Section 4.4
gives conclusions and future research perspectives.

4.1.1 Literature review

The range of scientific literature contributions to waste management is justified
by the variety of technological configurations and decision levels (mainly strategic
and operational). The main type of waste flows considered are municipal solid
waste, as a result the great majority of works are related to the management or
the strategic definition of municipal solid waste networks, such as in [105]. The
conventional operational task addressed by research is about collection trucks route
optimization and waste shipment [93][19]. Besides them, a real case application is
presented in [6]. A complete survey of both strategic and tactical issues in solid waste
management that have been addressed by operations research methods is presented
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in [50]. Within the waste management paradigm, none of the previous works is close
to the original operational application of mathematical programming presented in
[83]. This chapter expands the value of the original work in [83] by extending the
model presented therein with the introduction of robustness to data uncertainties
related to waste supplies. The contents of this chapter are also published in [82], a
paper co-authored by the author, Claudio Gentile and Giuseppe Stecca.

4.2 Problem definition and modeling

In this section, the main operational features covered by the nominal deterministic
model are described together with the formulation of its robust counterpart. It will
be clarified how the model is able to cover the main strategic decisions of the process
while properly modeling the typical production dynamics of a reverse logistic setting.
The production demand of the waste facility arises from the need to program and
size the sorting operations of waste in order to balance the availability of the buffer
of received material with the production and set-up costs of sorting operations and
storage costs of all the inter-operational buffers. Therefore, the simultaneity of the
scheduling problem and the lot sizing problem is highlighted.
It is important to notice that, in the considered industrial case, costs of storage are
not directly measurable. Indeed, it is impossible to compute the inventory costs
as proportional to the inventory value because there is no means to evaluate that
value before the material is sorted. At the same time, the level of buffer storage can
be such as to constitute a criticality in terms of saturation of the storage capacity.
This is particularly evident when a specific level of stock is passed. Therefore, in
[83] it is considered appropriate to model this dynamic through a storage cost curve
which originally included a non-linearity from the exceeding of the critical stock level.
The linearity of the model is indeed guaranteed using a piece-wise linear curve that
approximates the real cost curve. The indications about the threshold perceived by
the waste company in relation to the customer service level can also be considered.

A mixed integer linear programming (MILP) model which defines the robust
counterpart to the problem introduced in [83] is described and detailed in the
following. The basic notations that will be used in the MILP, such as parameters
and indexes, are here listed:

j ∈ {1, . . . , J} : index of the J sorting stages

p ∈ {1, . . . , P} : index of the P time-shifts

T : time horizon partitioned in time shifts with t ∈ {1, . . . , T} = T1 ∪ . . . ∪ TP

C : hourly cost of each operator

σt : working hours for time t determined by the corresponding shift p

Ct = C ∗ σt : cost of each operator at time t
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fj : set-up cost of sorting stage j

at : quantity of material in kg unloaded from trucks at time t

αj : percentage of waste processed in stage j − 1, received in input by buffer j

Sj : maximum inventory capacity of the sorting stage buffer j

LCj : critical stock level threshold of buffer j

ρj : fraction of material allowed to be left at buffer j at the end of time horizon

Kj : single operator hourly production capacity [kg/h] of sorting stage j

SKj,t = Kj ∗ σt : operator sorting capacity in sorting stage j, at time t

M : maximum number of operators available in each time shift

Ej : minimum number of operators employed in each time shift of stage j

∂hi
j : slope of the i-th part of linearization of the buffer j stock cost curve

The nominal deterministic model consider the following variables.

xj,t ∈ Z+ : operators employed in the sorting stage j at time t

uj,t ∈ R+ : processed quantity at stage j at time t

yj,t ∈ {0, 1} : equal to 1 if stage j is activated at time t, 0 otherwise

Ij,t = I
′

j,t + I
′′

j,t ≥ 0: stock level of material in buffer j at time t; for each stage
j the corresponding I ′

j,t and I ′′
j,t represent the inventory level before and after

reaching the critical threshold respectively

wj,t ∈ {0, 1} : equal to 1 if I
′′

j,t > 0, 0 otherwise. Indeed, these binary variables
are used to model the piece-wise linear functions of the buffer stock costs.

We consider the set of parameters at, t ∈ T , that are subject to uncertainty,
taking values according to a symmetric distribution with mean equal to the nominal
value at in the interval [at − ât, at + ât]. Indeed, ât is the maximum deviation of
at. In order to meet the standard formulation of the nominal problem presented
in [15], where parameters subject to uncertainties belong to inequality constraints
only, the equality constraints of [83] regarding waste arrivals at are reformulated to
turn them into inequality constraints. This is performed considering, for each period
t, the sum of all the received and processed quantities of waste up to that period,
as in constraints (4.5),(4.6),(4.7),(4.8) of the formulation presented in this section.
According to the robust approach presented in [15], a parameter Γi is introduced for
each constraint i holding one or more uncertainty coefficients. Γi is not necessarily
integer and takes values in the interval [0, |Ji|] where Ji is the set of the coefficients
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of constraint i being subject to uncertainty. The nominal problem presented in [83]
presents only one set of T constraints considering the coefficients at and these are the
ones reformulated as inequality constraints. Therefore, we get Γ ∈ RT

+, and because
of this reformulation |Jt| = t ∀t ∈ {1, . . . , T}. For each period t, Γt represents the
number of coefficients that we consider as allowed to vary within their interval, ergo
we consider nature behaving like only a subset of the coefficients will change with
respect to their nominal value. Indeed, as affirmed in [15], it is unlikely that all
|Jt| will change; so the idea of conservative robustness is to be protected against all
cases that up to ⌊Γt⌋ of these coefficients are allowed to change, and one coefficient
at changes by (Γt − ⌊Γt⌋)ât. Note that when Γt = 0 ∀t ∈ {1, . . . , T} we get the
nominal deterministic scenario, while setting Γt = |Jt| = t ∀t ∈ {1, . . . , T} represents
solving the problem of the worst case scenario. It is clear then that by varying Γ
the level of robustness can be flexibly adjusted against the level of conservatism of
the solution. Considering the peculiar structure of the constraints including at is
important: because of the telescopic expansion of each set Jt as t goes from 1 to T

(i.e. |Jt+1| = |Jt| + 1), we consistently constraint Γt to be bigger or equal to Γt−1.
The following list presents all the additional variables and parameters that are
required to introduce the robustness protection functions presented in [15] and
formulate the robust counterpart of the model presented in [83]:

ϵt ∈ R+ : extra variables multiplying at ∀t ∈ T . These variables are introduced
in order to have a variable multiplying the only set of parameters that are
affected by uncertainty. These are indeed constrained to be equal to 1 ∀t ∈ T .

zt ∈ R+ : variable resulted of duality within Bertsimas and Sim [15] robustness
theory; when multiplied by Γt provides its overall contribution to the protection
function of constraint t.

pt,k ∈ R+ : variable resulted of duality within Bertsimas and Sim robustness
theory; provides its contribution to the protection function of constraint t with
respect to the specific coefficient ak.

st ∈ R+ : variable resulted of duality and Bertsimas and Sim robustness theory;
multiplied by ât sets the lower bound of the protection function contribution
in each constraint t.

Γt : parameter to adjust the level of robustness of each period t.

Considering a case study where J = 2 sorting stages, for the 1st sorting phase,
u1,t ≥ 0 and x1,t ∈ {0, 1} represent the quantity of material to be selected and
decision to activate the process respectively at time t. For the 2nd sorting phase,
u2,t ≥ 0 and x2,t ∈ {0, 1} represent the quantity of material to be selected and
decision to activate the process respectively at time t. I1,t, I ′

1,t, I ′′
1,t ≥ 0 are the

inventory levels at 1st phase sorting buffer while I2,t, I ′
2,t, I ′′

2,t ≥ 0 are inventory levels
at 2nd phase sorting buffer. As previously stated, w1 and w2 are used to model the
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piece-wise linear functions of the buffer stock costs. In detail w1 = 0 if I ′
1,t < LC, 1

if I ′
1,t = LC and I ′′

1,t > 0; similarly w2 = 0 if I ′
2,t < LC, 1 if I ′

2,t = LC and I ′′
2,t > 0.

The model minimizes the sum of sorting and holding costs and is detailed as following:

min Z =
∑
j∈J

∑
t∈T

Ctxj,t +
∑
j∈J

∑
t∈T

fjyj,t +
∑
j∈J

∑
t∈T

(
∂h1

jI
′
j,t + ∂h2

jI
′′
j,t

)
(4.1)

s.t.
Ej yj,t ≤ xj,t ≤ M yj,t ∀j ∈ J, t ∈ Tp, p ∈ P (4.2)∑
j∈J

xj,t ≤ M ∀t ∈ T (4.3)

uj,t ≤ SKj,t xj,t ∀j ∈ J, t ∈ T (4.4)

I1,0 +
t∑

k=1
akϵk −

t∑
k=1

u1,k + ztΓt +
t∑

k=1
pt,k ≤ S1 ∀t ∈ T (4.5)

I1,0 +
t∑

k=1
akϵk −

t∑
k=1

u1,k ≥ 0 ∀t ∈ T (4.6)

I1,0 +
T∑

k=1
akϵk −

T∑
k=1

u1,k + zT ΓT +
T∑

k=1
pT,k ≤ ρ1 LC1 (4.7)

I1,t = I1,0 +
t∑

k=1
akϵk −

t∑
k=1

u1,k + ztΓt +
t∑

k=1
pt,k ∀t ∈ T (4.8)

Ij,t = Ij,t−1 − uj,t + αj uj−1,t ∀t ∈ T, j ∈ J \ 1 (4.9)

Ij,t = I
′

j,t + I
′′

j,t ∀j ∈ J, t ∈ T (4.10)

LCj wj,t ≤ I
′

j,t ≤ LCj ∀j ∈ J, t ∈ T (4.11)

0 ≤ I
′′

j,t ≤ (Sj − LCj) wj,t ∀j ∈ J, t ∈ T (4.12)
Ij,T ≤ ρj LCj ∀j ∈ J \ 1 (4.13)
zt + pt,k ≥ ât st ∀t ∈ T, k ∈ {0, ..., t} (4.14)
− st ≤ ϵt ≤ st ∀t ∈ T (4.15)
ϵt = 1 ∀t ∈ T (4.16)
xj,t ∈ Z+ ∀j ∈ J, t ∈ T (4.17)
uj,t ∈ R+ ∀j ∈ J, t ∈ T (4.18)
yj,t ∈ {0, 1} ∀j ∈ J, t ∈ T (4.19)

The objective function (4.1) defines the minimization of the sum of the three
cost terms, which are sorting, setup, and inventory costs respectively. (5.2) and
(4.3) bounds the number of workers that can be assigned to each sorting station and
to each time shift. Constraints (4.4) limit the quantity sorted uj,t to the sorting
capacity dependent on the number of workers xj,t. The following constraint sets
(4.5)(4.6)(4.7)(4.8)(4.9) define and limit the inventories: constraint (4.5) defines the
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inventory for the first buffer, considering the cumulative inbound material at up
to period t, the overall sorted material u1t up to period t, and the uncertainties
protection function made of the joint contribution of ztΓt and the sum of pt,k for
k ∈ {1, . . . , t}. Constraint (4.6) sets the lower bound of the inventory for each period
and (4.7) imposes the maximum unsorted material allowed to be left at the end
of the planning period for the first buffer, as constraint (4.13) does for all other
subsequent buffers. Equality constraint (4.8) allows the inventory of the main buffer
(i.e. buffer no. 1) to be considered in the corresponding piece-wise linear part
of the cost function. Constraint (4.9) defines the inventory for the other buffers
corresponding to j > 1. Indeed, (4.9) outlines the waste flow across the sorting
stages that follow one another: each subsequent inter-operational buffer j receives by
the previous sorting stage j − 1 a quantity of waste equal to a αj percentage of the
waste processed in stage j − 1. Constraint sets (4.10), (4.11), and (4.12) define the
piece-wise linear functions for inventories; in these constraints, maximum capacity
level Sj and the critical stock level threshold LCj are connected with the inventory
levels through the variable wj,t. Constraints (5.9) and (5.10) resulted from duality
in [15] robustness theory; where (5.9) sets the lower bound of the protection function
contribution in constraints (4.5) and (4.7).

4.3 Experimental results

This section holds the main results from the studied scenarios described in
the following. All instances are created by a real-world case study from a waste
sorting plant located next to Rome, Italy. All model instances are coded in Python3
and solved via branch-and-cut using the Gurobi 9.0 solver on a PC running a
1.60GHz Intel Core-i5-10210U CPU with 16 GB RAM. This has been performed
in order to test the model response to different levels of robustness (i.e. different
Γ selection), the corresponding price of robustness (i.e. the optimality reduction
w.r.t the deterministic scenario) with respect to different weeks of scheduling time
horizons. Figure 4.1 provides a first look at the model reaction to three different
scenarios: the deterministic case, an intermediate level of protection and the worst-
case scenario. It is evident that in the deterministic case, the protection function
value remain null for each period, almost like the first buffer stock level. Indeed,
the production marginal cost is less than the storage marginal cost, resulting in the
processing of waste as soon as it arrives at the sorting facility. This is the reason
why considering constraint (4.8) the protection function value equals for each period
the first buffer stock level, and this applies for each protection scenario. Therefore,
it can be reasonable to attribute a cost to the protection function value as the
extra cost related to a higher level of stock in first buffer receiving the uncertain
amount of waste. The robustness performance and the corresponding additional
cost definitely depend on the protection strategy of choosing the vector Γ ∈ RT

+ s.t.
Γt ≥ Γt−1∀t ∈ T . In Figure 4.1 the intermediate protection relies on a moderate, still
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Figure 4.1. Illustration of protection function and stock level evolution over three different
uncertainty’s protection scenarios

continuous increase of Γt. This approach represents a cumulative sum of protection
over the risk considered across the time horizon. Dealing with robustness to reverse
demand uncertainties in a scheduling problem setting, is a suggestion to consider the
seasonality of the stochastic behavior of the coefficients when setting the strategy of
choosing Γ ∈ RT

+. In the considered real case application, the parameters a have a
one-week period (i.e. tperiod = 12 when P = 2 working shifts a day for six working
days). Therefore, a good approach is increasing Γt for t ∈ {1, .., tperiod} and keeping
the maximum Γperiod for the rest of the time horizon. Figure 4.2 shows an example
with a three weeks time horizon (i.e. T = 36).

Figure 4.2. Using demand period for Γ selection strategy

The price of robustness (the optimality reduction w.r.t. the nominal deterministic
problem) is tested over twenty protection magnitudes with respect to different time
horizons from one to four weeks. All Γ selections linearly increase with different
slopes from minimum to maximum risk protections, as shown in Figure 4.3.
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Figure 4.3. protection magnitude scenarios: from deterministic to worst-case

Results concerning the price of robustness are presented in Figure 4.4. It is clear
that the evolution of the price paid for risk protection remains reasonable, and its
evolution with respect to the protection scenarios strictly depend on the strategical
selection of Γ. Indeed, a linear evolution of the price is obtained with a linear
expansion of Γ components.

Figure 4.4. Price of robustness results
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4.4 Conclusions

This chapter presented a tuned version of the model presented in [83] with
additional complexity due to the introduction of robustness on the most critical
parameters values. The formulation keeps supporting all the original strategic
decisions that are critical in the business considered. This robust counterpart showed
a good adjustable protection capacity when used in a real-world application. Findings
concerning the controllable price of robustness in the considered case study are also
interesting. Indeed, for the company level of service, this economical and controllable
improvement is highly remarkable, taking into account the low margin of the activity.
Future works may consider introducing more complexity in the formulation, such as
considering production capacity dependent on the size of working teams.
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Chapter 5

Price of Robustness
Optimization through Demand
Forecasting

Robust optimization can be effectively used to protect production plans against
uncertainties. This is particularly important in sectors where variability is inherent
the process to be planned. The drawback of robust optimization is the chance of
producing over-conservative solutions with respect to the real occurrences of the
stochastic parameters. Information can be added in order to better control the extra-
cost resulting from considering the parameter variability. This work investigates
how demand forecasting can be used in conjunction with robust optimization in
order to achieve an optimal planning while considering demand uncertainties. In
the proposed procedure, forecast is used to update uncertain parameters of the
robust model. Moreover, the robustness budget is optimized at each planned stage
in a rolling planning horizon. In this way, the parameters of the robust model can
be dynamically updated tacking information from the data. The study is applied
to a reverse logistics case, where the planning of sorting for material recycling is
affected by uncertainties in the demand, consisting of waste material to be sorted and
recycled. Results are compared with a standard robust optimization approach, using
real case instances, showing potentialities of the proposed method. The contents of
this chapter are also published in [49], a paper co-authored by the author, Claudio
Gentile and Giuseppe Stecca.

5.1 Introduction

Robust optimization approaches are commonly applied in solving mathematical
programming problems where a certain set of parameters are subject to uncertainty.
Considering either production or procurement planning problems, these are dealing
with the stochastic nature of demand, and a deterministic approach would definitely
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fail to provide concrete decision support when modeling those kinds of scenarios.
Therefore, demand variability across the planning time horizon should be properly
addressed. This can be done by introducing a protection function in each constraint
according to the probabilistic robust approach presented in [15] and introduced in
Chapter 2. This approach ensures deterministic and probabilistic guarantees on
constraints satisfaction, and it does so in a linear framework.

In order to trade-off between optimality and level of robustness, a risk parameter
has to be set to formulate the robust counterpart of the nominal model and its level
of conservatism. At the same time, the level of conservatism of robust solutions can
be such to constitute a significant cost in terms of optimality reduction, also known
as price of robustness. This is often the case of over-conservative robust solutions,
which consider demand values perturbations with low probability of occurrence. In
a production planning setting, these solutions lead to extra costs resulting from
additional production and storage.

Either risk-adverse or risk-taking decision makers will struggle to deal with the
challenging trade-off of risk management by setting the robustness control parameter
only, besides its odd interpretation. This topic is studied by the literature of robust
approaches aiming at producing models better supporting the reality of decision-
making in uncertain scenarios. Adjustable robust models, for example, is a branch
of robust optimization introduced in [10] where some of the decision variables can
be adjusted after some portion of the uncertain data reveals itself. This approach
offers increased flexibility and produces less conservative solutions with respect to
static robust optimization. An interesting application of this approach in scheduling
problems is presented in [23]. In the aforementioned paper, the authors present an
adjustable robust formulation where sequencing decisions are taken in a first stage,
and scheduling decisions are made in a second stage. The reader can refer to the
survey in [117] for a substantial knowledge of adjustable robust optimization (ARO)
literature. Other approaches are Soft Robust Optimization [9], Light Robustness
[47], Scenario-Based Robust Optimization [52] and the one proposed in [90].

Demand is the most critical information input of production planning and the
main source of uncertainty as well. Addressing demand forecasting with proper time
series analysis and regression models plays an important role in the overall decision
processes. Features such as fitness of demand regressions models should be taken
into account along with their parameters setting and forecast accuracy metrics.

Supply chain management is one of the most used scenarios to prove the po-
tentialities of robust optimization. Some fundamental supply chain and inventory
management models are revised using robust optimization theory in [16, 17]. The
authors develop robust models for the optimization of the inventory in different
settings and policies, such as the (s, S) case, allowing to control the level of conser-
vatism of the solution, without assuming a specific demand distribution. The models
are applied to a multi-period planning problem for single or networked warehouses,
and for the uncapacitated and capacitated cases. The networked capacitated case
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is similar to the model studied in this work as an application case. Multi-period
inventory management is addressed in detail in [94] where the concept of budget of
uncertainty proposed in [16, 17] is extended for controlling the demand. This is done
considering demand descriptive information such as standard deviation, seasonality
and autoregressive aspects. The inventory policy introduced by the authors is solved
by means of Second Order Cone Programming (SOCP).

In real case applications, robust optimization could induce over conservatism.
The problem is addressed in [33] where correlation between uncertain parameters
is taken into account in the definition of uncertainty sets in order to mitigate
over conservatism. Another methodology used to shape the uncertainty sets based
on data analysis has been proposed in [88]. The authors propose a data-driven
robust approach of modeling the multi-product inventory problem with demand
uncertainties. Basically, they construct an uncertainty set using historical demand
data which are estimated not via demand descriptors but using a Support Vector
Clustering (SVC) model.

The research work of this chapter aims to provide a mechanism for setting the
level of conservatism of robust solutions according to accurate estimates of robustness
costs. Thus, a framework integrating both a forecasting model and two extensions
of the nominal multi-period planning model is proposed.

The central idea is to iteratively solve planning and forecasting problems, with
the goal of finding the best configuration of robust parameters that minimizes the
costs that result from overestimating or underestimating risk. These costs are the
so-called price of robustness (Pr) as described in [15] and the potential extra cost
resulting from overtime production (Po) whenever demand is underestimated. In the
considered setting, the way of dealing with demand underestimation errors is indeed
the activation of overtime production, while demand overestimation contributes to
Pr costs.

In order to study the performance of the proposed method, a robust optimization
problem arising from waste management and inverse production planning with
demand uncertain coefficients is solved and variants of the model with different
protection strategies are compared with real case instances.

The remainder of this chapter is organized as follows: Section 5.2 is dedicated
to the definition of the planning problem formulations; the proposed framework
aimed at the optimization of the risk considering parameters is presented in Section
5.3; Section 5.4 presents the experimental results, while Section 5.5 gives some
conclusions and research perspectives.

5.2 Problems definition and modeling

This section presents the formulations of the problems used in the proposed
framework, which is then detailed in the following Section 5.3.

Let τ be a planning period made of T time slots. Each time slot is indexed by
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t ∈ T = {1, . . . , T} and corresponds to a working shift where production can be
activated. Thus, the planning consists of defining the production lot sizes and the
schedules in order to meet the demand quantity dt of each time slot t. Therefore,
each planning period τ is given with a foreseen demand vector dT ∈ RT

+.
Considering a deterministic planning problem D, we refer to R as its robust

counterpart, while a third model E replicates the same deterministic formulation of
D and includes some additional decision variables regarding overtime production.
Overtime production is the assumed strategy to counteract, with an extra cost, the
uncovered demand.

The formulations of problems D, R, and E are presented in Subsection 5.2.1,
Subsection 5.2.2, and Subsection 5.2.3, respectively.

5.2.1 Deterministic model D

Dealing with a production planning setting, D is a mixed integer linear program-
ming model to schedule and lot-size production operations. To better introduce a
general formulation of D, model notation for parameters and indexes is set out in
the following.

T : time horizon length;

t ∈ T = {1, . . . , T} : index of working shifts across time

ft : set-up cost of working shift at time t;

dt : production demand at time t;

kt : production capacity at time t;

ct : unitary production cost at time t;

ht : unitary inventory holding cost at time t;

I0 : initial inventory level.

The model considers the following variables.

yt ∈ {0, 1} : equal to 1 if production is activated at time t, 0 otherwise

ut ∈ R+ : production quantity at time t

It ∈ R+ : inventory level at time t

The model minimizes the sum of production, setup and holding costs and is detailed
as follows:

min Z =
∑
t∈T

ctut +
∑
t∈T

ftyt +
∑
t∈T

htIt (5.1)



5.2 Problems definition and modeling 54

s.t.
ut ≤ ktyt ∀t ∈ T (5.2)
It = It−1 − dt + ut ∀t ∈ T (5.3)
It ∈ R+ ∀t ∈ T (5.4)
ut ∈ R+ ∀t ∈ T (5.5)
yt ∈ {0, 1} ∀t ∈ T (5.6)

The objective function (5.1) defines the minimization of the sum of the three cost
terms, which are production, setup, and inventory costs, respectively. Constraints
(5.2) bound the production quantity for each time period, and constraints (5.3)
define the inventory.

5.2.2 Robust model R

The mixed-integer linear programming model R defines the robust counterpart
of D according to the robust approach presented in [15]. We first consider the
parameters dt, t ∈ T = {1, . . . , T}, which are subject to uncertainty, to take values
according to a symmetric distribution with mean equal to the nominal value dt in
the interval [dt − σt, dt + σt]. Indeed, σt is the maximum deviation allowed for dt.
In order to meet the standard formulation of the nominal problem presented in
[15], where parameters subject to uncertainties belong to inequality constraints only,
the equality constraints (5.3) of D regarding demand quantities dt are reformulated
to turn them into inequality constraints. This is performed considering, for each
period t, the sum of all demanded quantities up to that period, as in constraints
(5.7) and (5.8) of the formulation of R presented in this section. According to the
robust approach presented in [15], a parameter Γi is introduced for each constraint i

holding one or more uncertainty coefficients. Γi is not necessarily integer and takes
values in the interval [0, |Ji|] where Ji is the set of the coefficients of constraint i

being subject to uncertainty. The nominal problem D presents only one set of T

constraints considering the coefficients dt and these are the ones reformulated as
inequality constraints. Therefore, we get Γ ∈ RT

+, and because of this reformulation
|Jt| = t ∀t ∈ {1, . . . , T}. For each period t, Γt represents the number of coefficients
that we consider as allowed to vary within their interval. In practice, we consider
nature behaving like only a subset of the coefficients will change with respect to
their nominal value. Indeed, as affirmed in [15], it is unlikely that all |Jt| will
change; so the idea of conservative robustness is to be protected against all cases
that up to ⌊Γt⌋ of these coefficients are allowed to change, and one coefficient dt

changes by (Γt − ⌊Γt⌋)d̂t. Note that when Γt = 0 ∀t ∈ {1, . . . , T} we get the nominal
deterministic scenario, while setting Γt =|Jt| = t ∀t ∈ {1, . . . , T} represents solving
the problem of the worst case scenario. It is clear that by varying Γ the level of
robustness can be flexibly adjusted against the level of conservatism of the solution.
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Considering the structure of the constraints including dt is important: because of
the telescopic expansion of each set Jt as t goes from 1 to T (i.e. |Jt+1| =|Jt| + 1),
we consistently constraint Γt to be bigger than or equal to Γt−1.
The following list reports all the additional variables and parameters that are required
to introduce the robustness protection functions presented in [15] and formulate the
robust counterpart of D:

ϵt ∈ R+ : extra variables multiplying dt for t ∈ T . These variables are
introduced in order to have a variable multiplying the only set of parameters
that are affected by uncertainty. These are indeed constrained to be equal to 1
for t ∈ T as in constraint (5.11) of R.

zt ∈ R+ : variables resulting from duality within Bertsimas and Sim’s ro-
bustness theory; when multiplied by Γt, these variables provide their overall
contribution to the protection function of constraint t.

pt,k ∈ R+ : variables resulting from duality within Bertsimas and Sim’s
robustness theory; they contribute to the protection function of constraint t

with respect to the specific coefficient dk.

st ∈ R+ : variables resulting from duality and Bertsimas and Sim’s robustness
theory; multiplied by σt, they set the lower bound of the protection function
contribution in each constraint t.

Γt : parameter to adjust the level of robustness of each period t.

The robust counterpart R of D is introduced as follows:

min (5.1)

s.t.
(5.2), (5.4), (5.5), (5.6)

I0 −
t∑

k=0
dkϵk +

t∑
k=0

uk + ztΓt +
t∑

k=0
pt,k ≥ 0 ∀t ∈ T (5.7)

It = I0 −
t∑

k=0
dkϵk −

t∑
k=0

uk + ztΓt +
t∑

k=0
pt,k ∀t ∈ T (5.8)

zt + pt,k ≥ σt st ∀t ∈ T , k ∈ {0, ..., t} (5.9)
− st ≤ ϵt ≤ st ∀t ∈ T (5.10)
ϵt = 1 ∀t ∈ T (5.11)

Constraint (5.7) defines inventory considering the cumulative demand dt up to period
t, the overall produced quantity ut up to period t, and the uncertainties protection
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function made of the joint contribution of ztΓt and the sum of pt,k for k ∈ {1, . . . , t}.
Constraint (5.7) sets the lower bound of the inventory for each period. Equality
constraint (5.8) allows the inventory to be considered within the cost function.
Constraints (5.9) and (5.10) resulted from duality in [15] robustness theory; where
(5.9) sets the lower bound of the protection function contribution in constraints (5.7)
and (5.8).

Solving model R allows us to evaluate the price of robustness (Pr) resulting
from a specific protection Γ. This is done by computing the difference between the
optimal objective function value of R and the optimal objective function value of D.

5.2.3 Overtime production model E

In the considered approach, overtime production is to be activated whenever
standard scheduled production is not enough to meet the entire demand across the
time horizon. For this reason, the third model E replicates the same deterministic
formulation of D and includes some additional decision variables regarding overtime
production. This additional production has of course a higher unitary cost with
respect to standard scheduled production. Solving model E is intended to evaluate
the need and the cost of overtime production (Po).

Considering the main decision variables of D, such as yt ∈ {0, 1} and ut ∈ R+,
the formulation of E incorporates also y′

t ∈ {0, 1} and u′
t ∈ R+ which correspond to

the overtime production equivalent of the previous ones. These additional variables
allow E to capture the extra costs resulting whenever the robust solution of R is
not feasible when the true demand vector d̄ is observed. Indeed, while both D
and R are solved considering the predicted demand vector d̂, instances of E are
solved w.r.t. the true demand vector d̄ and its set of standard production variables
(i.e. yt and ut) are fixed to the values of the robust solution of R for the same
corresponding scheduling time window. The corresponding unitary costs of these
overtime production variables are f ′

t > ft and c′
t > ct, respectively. Therefore, the

formulation of E is the following:

min (5.1) +
∑
t∈T

f ′
ty

′
t +

∑
t∈T

c′
tu

′
t (5.12)

s.t.
u′

t ≤ kty
′
t ∀t ∈ T (5.13)

It = It−1 − d̄ + ut + u′
t ∀t ∈ T (5.14)

y′
t ∈ {0, 1} ∀t ∈ T (5.15)

u′
t ∈ R+ ∀t ∈ T (5.16)

It ∈ R+ ∀t ∈ T (5.17)

Solving E allows the evaluation of the cost of overtime production (Po) as the
difference between the optimal objective function value of E and the optimal ob-
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jective function value of D. Thus, the sum P of the price of robustness (Pr) and
overtime production (Po) can be computed according to a specific protection Γ
(i.e. P (Γ) = Pr(Γ) + Po(Γ)). Given the above, a procedure named Eval_P, that
generates a single evaluation of P (Γ), is introduced. This procedure is part of the
routine, detailed later in Section 5.3, aimed at the optimization of the robustness
control vector Γ. The pseudocode of Eval_P is set out below.

Eval_P
(
Γ, d̄, d̂, σ

)
:

1. Solve R
(
d̂, σ, Γ

)
to get y∗, u∗, Obj∗

R

2. Solve D
(
d̂

)
to obtain Obj∗

D

3. Pr(Γ) = Obj∗
R − Obj∗

D

4. Solve E
(
d̄

)
where y and u are fixed to y∗ and u∗ respectively to obtain Obj∗

E

5. Po(Γ) = Obj∗
E − Obj∗

D

6. Return P (Γ) = Pr(Γ) + Po(Γ)

5.3 Robustness control optimization

The main notation used in the proposed framework is defined in Table 5.1.

Table 5.1. Notation

Symbol Description
τ ∈ T = {1 . . . N} Planning time period
T Time slots for each planning period τ

Γ(τ) ∈ RT
+ Robustness control parameters vector for planning period τ

ρ Number of planning periods used as forecasting model training data

D(ρ, τ) Demand time-series considering the planning periods
from τ − ρ to τ corresponding to time slots from (τ − ρ)T to τT

F (D(ρ, τ)) Forecasting model
d̄(τ) ∈ RT

+ Observed demand vector of planning period τ

d̂(τ) ∈ RT
+ Predicted demand vector of planning period τ

σ̂(τ) ∈ RT
+ Predicted demand standard deviation vector

σ(τ) ∈ RT
+ Maximum allowed deviation of d̂(τ) from d̄(τ)

D (d(τ)) Deterministic version of the planning model
R (d(τ), σ(τ), Γ(τ)) Robust counterpart of the planning model
E (d(τ)) D (d(τ)) with additional variables modelling overtime production
Obj∗

{model} Objective function value at the optimizer of a specific model
Pr Price of robustness equal to Obj∗

{R} minus Obj∗
{D}

Po Price of overtime production equal to Obj∗
{E} minus Obj∗

{D}
P Sum of Pr and Po
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The forecasting model F employed in the framework to evaluate the expected
demand is presented in Section A of the appendix; its implementation is available as
open source software, is called Prophet [110], and it uses a decomposable time series
model [56] with three main model components: trend, seasonality, and holidays.

The robustness control vector Γ is learned by a routine properly built in order to
achieve this parameter tuning objective. The optimization of Γ is to find the value
that minimizes the sum P (Γ) of the price of robustness Pr(Γ) and the potential extra
costs resulting from overtime production Po(Γ). Given below is a detailed routine
that seeks for the best configuration of Γ for a considered planning period τ with its
corresponding demand forecast d̂(τ) and its true observations d̄(τ). Its pseudocode
is set out below. We refer to this routine as Optimize_Γ

(
Γ0, Γstep, d̄(τ), d̂(τ), σ(τ)

)
:

1. Set Γ0 ∈ RT
+ : the starting configuration of Γ

2. Set Γstep ∈ RT
+ : a vector of the updating step sizes of each component Γt of Γ

3. Set maxk = floor (1/Γstep) : maximum number of iterations k for a complete
search over the space of Γ ∈ RT

+

4. Set k = 0 ; Γk = Γ0

5. P (Γk) = Eval_P
(
Γk, d̄(τ), d̂(τ), σ(τ)

)
6. Set P ∗ = P (Γk) ; Γ∗ = Γk

7. While k ≤ maxk

(a) k = k + 1

(b) Γk = Γk−1 + Γstep

(c) Pk = Eval_P
(
Γk, d̄(τ), d̂(τ), σ(τ)

)
(d) if Pk ≤ P ∗

P ∗ = Pk

Γ∗ = Γk

Whatever setting of Γ0 and Γstep is made, this must be done according to the peculiar
structure of constraints (5.7), (5.8) of the formulation of R. Indeed, as stated in
Section 5.2, before introducing model R, the telescopic expansion of each set Jt (i.e.
|Jt+1| =|Jt|+1) constrains each component Γt of the protection vector Γ to be bigger
than or equal to the component Γt−1 and smaller than t. The setting of both Γ0
and Γstep must be consistent with these constraints. Given a scalar γstep ∈ {0 . . . 1},
a possible rule for setting each component Γstep(t) of Γstep, such that the previous
constraints are satisfied, is the following:

Γstep(t) = γstep t ∀t ∈ {1 . . . T}
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This Optimize_Γ routine can be embedded in the proposed framework for solv-
ing the multi-period planning problem under uncertainties. The purpose of this
framework is to provide automated decision support to implement an appropri-
ate robustness control vector that minimizes the aforementioned costs of over- or
underestimating risk in this class of planning problems.

Referring to the most recent demand realizations, and to its corresponding
time-series D(ρ, τ), we consider τ planning period as the latest T time slots part of
D(ρ, τ). This demand time-series D(ρ, τ) can be used along with Optimize_Γ to
mine what would have been the best robustness control vector Γ∗ for the planning
period τ . This is indeed described in the following:

1. Set ρ and τ , then consider D(ρ, τ) and get d̄ (τ)

2. Solve F (D(ρ, τ)) to forecast d̂(τ) and σ̂(τ)

3. Set Γ0 and Γstep

4. Γ∗ = Optimize_Γ
(
Γ0, Γstep, d̄(τ), d̂(τ), σ(τ)

)
The rationale of the proposed framework is the use of D(ρ, τ) and its corresponding
best configuration Γ∗ to solve the planning problem of the future planning period τ +1.
Therefore, for each observed demand time-series D(ρ, τ), the corresponding Γ∗ impact
in terms of P (Γ∗) is evaluated when Γ∗ is used to protect against the uncertainties
of the very immediate future period τ + 1. Considering a sequence of framework
implementations, at each of these it is reasonable to set Γ0 starting configuration
to Γ∗

τ−1. The experimental results of both Optimize_Γ and its implementation
framework are presented in Section 5.4. Performances in terms of P costs are
compared with P resulting from either the deterministic and worst-case scenario
approaches that we refer to as P (Γnominal) and P (Γworstecase), respectively.

5.4 Application to Waste Management

This section holds the experimental results obtained by applying the proposed
methodology to a waste management (WM) setting.

With respect to the problem addressed, while it is possible to find several applica-
tions of robust optimization to supply chain and production problems, fewer research
works address circular economy and reverse logistics related cases. Stochastic based
approaches in waste flow optimization have been addressed in [107] and [119]. The
work of [63] develops a robust model where box uncertainty and robustness budget
is used to control uncertainty in a closed loop supply chain in the textile industry.
The paper considers recycling operations in a networked environment, considers the
over conservatism problem, but does not consider demand characteristics. In [58],
p-robust constraints are used to control disruption events. In [44] a multi-objective
multi-period multi-product multi-site aggregate production planning model is solved
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with reverse flow considerations. In this case, the robust approach is pretty standard.
In [82], the same problem addressed as an application scenario of this work, is treated
with classical robust theory.

In WM, the planning consists of scheduling and lot sizing each phase of a recycling
material sorting process. The planning model presented in [83] is considered as the
deterministic model D for testing the proposed framework. The formulation of D
is reported in Section B of the appendix. This model supports several strategic
decisions that are critical in the considered WM application. It can be described
as a variant of a lot sizing model with non-linear costs (approximated by mean of
piece-wise linear functions) with the additional features of scheduling the operations
and allocating the appropriate workforce dimension. The aim of the model is finding
the best allocation of operators to each working shift in order to process the recycling
material quantity dt arriving at each time slot t. In this scenario, a time slot is indeed
a working shift where teams of operators may be allocated. The robust counterpart
of D is presented in [82] and is considered as R for what concerns the experimental
results. The formulation of R is reported in Section C of the appendix. Model E is
derived from model D in [83] as illustrated in Section 5.2.3 and its formulation is
reported in Section D of the appendix.

Optimize_Γ routine is supposed to densely explore the search space of Γ for
an exhaustive search aimed at the optimization of P . In order to validate its
performances, some preliminary experiments are performed over a set of subsequent
planning periods: for each planning period τ , performances in terms of P costs
resulting from applying Γ∗ found by Optimize_Γ are compared with P resulting from
the deterministic (i.e. nominal) and worst-case scenario approaches. The results are
illustrated in Table 5.2 and discussed below. The accuracy of the forecast model is
reported in terms of symmetric mean absolute percentage error (i.e., SMAPE), an
accuracy measure based on percentage errors which is usually defined as follows:

SMAPE = 1
n

N∑
t=1

|Ft − At|
(|At|+|Ft|) /2

where At is the actual value and Ft is the forecast value. The absolute difference
between these values is divided by half the sum of absolute values of the actual value
At and the forecast value Ft. Then the value of this calculation is summed for every
fitted point t and divided by the number of fitted points n.
The table’s columns present the reduction of robustness and overtime production
costs P achieved by P (Γ∗) with respect to the deterministic P (Γnominal) and worst-
case P (Γworstecase) approaches. The presented values of costs reduction result from
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the following expressions:

wrt nominal = P (Γ∗) − P (Γnominal)
P (Γnominal)

wrt worstecase = P (Γ∗) − P (Γworstecase)
P (Γworstecase)

The following columns of Table 5.2 present the percentage of protection guaranteed
by each Γ∗ considered, obtained as the ratio between the sum of the components
of Γ∗ and the sum of the components of the vector Γ corresponding to the worst
case; the SMAPE accuracy metrics of the forecasting model; while the last column
presents the sum of all the forecasting residuals of the planning period to consider
forecast bias, that is overestimating (a positive value of bias) or underestimating (a
negative value of bias) the future demand. Indeed, the forecast model is implicitly
introducing robustness to the planning solution whenever is overestimating the
demand realization. At the same time, the model F is incautiously fostering the
importance of robust planning solutions whenever it is underestimating the demand
realization. Indeed, considering systematical biased behavior of forecast models
is crucial for a proper planning. Results of Table 5.2 show how Γ∗ moderates
its robustness contribution with respect to forecast bias over the planning period:
its percentage protection remains minimal (or close to zero) for positively biased
prediction in order to produce solutions close or equal to a deterministic (nominal)
solution, while it is providing a stronger protection to uncertainties when dealing
with underestimating demand forecasts. However, for both types of biased prediction
scenarios, Optimize_Γ routine produces configurations of Γ minimizing risk costs
with respect to either deterministic and worst-case approaches. Figure 5.1 shows an
example of Optimize_Γ instance solving.

5.4.1 Analysis of results

As described at the end of Section 5.3, considering an observed demand time-
series D(ρ, τ), the proposed framework essence is using the very close past best
configuration Γ∗ to protect against the uncertainties of the very immediate future.
That is, solving the robust planning problem R

(
d̂, σ, Γ∗

)
of the subsequent future

planning problem τ + 1. Therefore, a new set of experiments is performed to test the
performance relative to the observed costs P of robustness and overtime production
of the very next future. All instances are created by a real-world case study from a
waste sorting plant located next to Rome, Italy. Results are shown in Table 5.3. As
in Table 5.2, performances in terms of P (Γ∗) costs are compared with P resulting
from either the deterministic P (Γnominal) and worst-case P (Γworstecase) scenario
approaches. Demand arising from the considered real-case study is particularly
unstable, and it seems reasonable to consider this adverse feature of the time-series
D particularly challenging for the proposed framework. Indeed, no autocorrelations



5.5 Conclusions 62

Figure 5.1. Example of an Optimize_Γ instance solving

are present either for small or larger seasonal lagged values of D. Therefore, the
larger the planning period τ +1 towards the future, the smaller the chances of a good
performance of Γ∗ learned over the immediate past planning period τ . Experiments
presented in this section consider 50 instances of subsequent planning periods of two
weeks (i.e. 12 time slots considering 6 weekly working days of 2 working shifts each).
Table 5.3 highlight two main important results: the framework provides stronger
protections to uncertainties (as featured in Γ∗ column) for most of the occasions of
underestimation of demand realization and it does so while guaranteeing a lower cost
P of robustness and eventual overtime production with respect to the deterministic
and worst-case approaches. Indeed, out of the 30 instances where F underestimates
the demand, 21 of these reveal a valuable P cost reduction, that is about 70% of
the occasions. At the same time, costs reduction are also observed for 7 of the
remaining 20 occasions (35%) where F overestimate the demand. Moreover, 42 of
all 50 instances (84%) prove how the framework is providing protection vectors Γ∗

with smaller associated P (Γ∗) with respect to P (Γworstecase).

5.5 Conclusions

This chapter addressed the problem of controlling the extra-costs resulting from
considering demand uncertainties in planning problems. Robust optimization theory
is applied to both a general production planning model in the general discussion
and to a waste management use-case regarding recycling operations planning. An
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wrt nominal wrt worst-case Γ∗ SMAPE Tot. Pred. Bias

-0.30 -0.68 0.20 0.50 5720
0.00 -0.44 0.00 0.62 15000
0.00 -0.40 0.00 0.59 6880
0.00 -0.51 0.00 0.66 11300
-0.09 -0.38 0.08 0.55 7080
-0.20 -0.62 0.04 0.70 13380
-0.48 -0.72 0.12 0.58 8940
-0.18 -0.57 0.28 0.76 16200
-0.32 -0.41 0.30 0.60 -18400
-0.20 -0.23 0.47 0.60 -27440
-0.18 -0.31 0.30 0.49 -7040
-0.23 -0.35 0.16 0.55 -3460
-0.45 -0.56 0.12 0.80 18100
-0.14 -0.28 0.16 0.67 -4280
-0.06 0.15 0.26 0.78 -33440
-0.03 -0.28 0.32 0.61 -10260
0.00 -0.46 0.00 0.67 11240
0.00 -0.65 0.00 0.64 1820
-0.32 -0.57 0.04 0.63 25700
-0.12 -0.14 0.12 0.70 -3160
-0.31 -0.62 0.16 0.52 19140
-0.26 -0.39 0.04 0.52 -3300
0.00 -0.72 0.00 0.55 5880
-0.53 -0.58 0.02 0.79 3860
-0.19 -0.59 0.02 0.66 1220
-0.54 -0.74 0.10 0.70 3140
-0.26 -0.31 0.30 0.63 520
-0.18 -0.27 0.55 0.70 -11900
-0.12 -0.39 0.06 0.67 -11760
-0.13 -0.06 0.43 0.49 -17560
-0.14 -0.16 0.39 0.70 -30360

Table 5.2. Optimize_Γ validation results
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P (Γ∗) P (Γnominal) P (Γworstecase) wrt nominal wrt worst-case Γ∗ SMAPE Tot.Pred.Bias

1838 3461 3062 -0.47 -0.40 0.20 0.62 -18200
2381 2586 3605 -0.08 -0.34 0.16 0.88 -3440
3225 3451 4560 -0.07 -0.29 0.14 0.48 -12160
2268 2268 3737 0.00 -0.39 0.00 0.59 6880
1579 1546 3246 0.02 -0.51 0.02 0.70 13380
1942 1708 3225 0.14 -0.40 0.16 0.76 16200
2398 3310 3402 -0.28 -0.30 0.30 0.60 -18400
3362 3890 2674 -0.14 0.26 0.30 0.60 -27440
3081 3207 3677 -0.04 -0.16 0.49 0.49 -7040
2925 2765 3305 0.06 -0.11 0.18 0.55 -3460
1301 2378 3007 -0.45 -0.57 0.16 0.80 18100
3322 3064 3946 0.08 -0.16 0.12 0.67 -4280
2634 2174 2861 0.21 -0.08 0.18 0.61 -10260
3226 1607 3042 1.01 0.06 0.32 0.67 11240
1428 1428 3945 0.00 -0.64 0.00 0.64 1820
1832 1832 2906 0.00 -0.37 0.00 0.63 25700
2646 3076 4151 -0.14 -0.36 0.10 0.70 -3160
1804 1605 3046 0.12 -0.41 0.08 0.52 19140
2509 3459 4109 -0.27 -0.39 0.02 0.52 -3300
2542 2542 2929 0.00 -0.13 0.00 0.79 3860
1797 2676 3558 -0.33 -0.49 0.37 0.65 -16540
4029 4546 4449 -0.11 -0.09 0.65 0.53 -35380
3696 3997 3759 -0.08 -0.02 0.81 0.98 -40840
1932 2289 2715 -0.16 -0.29 0.18 0.50 -3460
1431 1474 2955 -0.03 -0.52 0.02 0.66 1220
1754 2253 2190 -0.22 -0.20 0.08 0.53 -9200
2855 1758 3095 0.62 -0.08 0.06 0.70 3140
3848 3626 3906 0.06 -0.01 0.10 0.63 520
2575 2276 2525 0.13 0.02 0.35 0.70 -11900
3188 2167 3172 0.47 0.01 0.43 0.67 -11760
3747 3748 3772 0.00 -0.01 0.43 0.70 -30360
2527 3012 3548 -0.16 -0.29 0.39 0.62 -30640
2562 3041 3861 -0.16 -0.34 0.16 0.42 -12580
1039 2235 2495 -0.53 -0.58 0.12 0.55 9360
3033 3790 3925 -0.20 -0.23 0.06 0.64 -12240
1865 1620 2895 0.15 -0.36 0.22 0.49 2160
2451 2409 2863 0.02 -0.14 0.02 0.63 9860
1151 1473 2894 -0.22 -0.60 0.10 0.71 13100
3204 2746 2665 0.17 0.20 0.04 0.54 -1260
2782 3418 4385 -0.19 -0.37 0.26 0.77 -12640
2095 1600 3125 0.31 -0.33 0.20 0.67 12600
3104 3066 2850 0.01 0.09 0.02 0.74 11280
2006 1888 2675 0.06 -0.25 0.12 0.78 -6480
2946 2007 2607 0.47 0.13 0.16 0.86 9240
3060 1443 2270 1.12 0.35 0.41 0.60 -7820
2722 2722 3563 0.00 -0.24 0.00 0.64 -23260
2220 3087 2839 -0.28 -0.22 0.28 0.79 -1800
2536 1987 2802 0.28 -0.10 0.26 0.68 -3180
1754 1673 3277 0.05 -0.46 0.04 0.71 3680
2108 2216 3015 -0.05 -0.30 0.60 0.24 9580

Table 5.3. Framework results in real case application
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optimization procedure determining the best possible robustness budget to use in
successive planning stages is proposed. In this way it is possible to dynamically
update both the estimated demand and the robustness budget, helping to balance
the extra costs of robustness and extra costs due to overtime production. The
framework is tested in a real case environment where demand does not follow a
specific probability distribution. The results show that, most of the time, the classical
robust approach is over conservative. Moreover, when the forecasts overestimate the
observed demand, the robustness budget Γ can be effectively optimized. Forecasting
model features and their overall effect over the protection cost are not addressed by
this study and they could in a future work. Moreover, the proposed approach can
be applied to different planning problems and tested against different scenario in
future works.
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Chapter 6

Customer Cost Forecasting
through Patterns Learning of
Optimal Capacity Allocation

Production, logistics, and service systems involve multiple customers being served
by shared resources. Once either a process or a service concerning several customers
is optimized, business sustainability and profit opportunities become a matter of
contracted commercial offers and business inherent risks sharing. Commercial offers
are indeed intended to cover the expected costs, be competitive without reducing net
margin, and robust to risks resulting from the uncertainties affecting the business.
This chapter presents a framework that integrates an operational research model
providing optimal capacity allocation with a learning model performing customer cost
estimation. This estimator relies on a set of input features related to each customer.
The aim is to provide a cost forecasting framework for contract management that
considers a fair allocation of costs to customers. Validation of the approach is done
with real case instances of a pick-up and delivery routing model dealing with reverse
logistic operations. The author introduces a new formulation of the considered
routing problem and show the effectiveness of the proposed method. The contents
of this chapter are based on a paper submitted by the author for publication and
co-authored by Marco Boresta and Giuseppe Stecca.

6.1 Introduction and literature review

To meet the ambitious targets of the sustainability paradigm, new advanced infor-
mation systems, digital technologies, and mathematical models are required. With
the increased interest in sustainable production and services to promote economic
growth and development while minimizing their adverse effects on the environment,
this trend is particularly rising. At the heart of this scenario there are both smart
industries, in which data flows steadily between well-connected processes, and the
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opportunity of using that information to better support decisions affecting each
business target, including profitability and sustainability. Particularly, these latter
ones should not be viewed as competing goals; rather, they should be addressed simul-
taneously within a comprehensive vision that adequately addresses these objectives.
Organizations can achieve these goals through innovative management approaches,
such as recognizing sustainable efficiency and profitability to be inextricably linked
by the savings that result from an optimal capacity allocation. Savings can be of
many kinds according to sustainability metrics that measure the direct impact of the
social or environmental issue a company is addressing (including energy, emissions,
climate, labor, water, race and gender) and business metrics such as all operational
and strategic costs.

This chapter intends to extend this research area, addressing the problem of
forecasting the cost of serving customers while taking into account the benefit of
sharing production/service capacity for a set of independent customers. These type
of benefits in cost allocation are addressed by the literature in different settings and
with different approaches. In [118] a set of firms have the choice of either operating
their own production/service facilities or investing in a facility that is shared; the
problem is formulated as a cooperative game and there is a cost allocation that is in
the core under either the first-come, first-served policy or an optimal priority policy.
In [72], firms decide on the allocation of demand from different sources to different
facilities to minimize delay and service-fulfillment costs. Considering logistics,
the authors of [116] present a new approach to horizontal carrier collaboration:
the sharing of distribution centers with partnering organizations. This approach
allows transport companies to cooperate to increase their efficiency levels by, for
example, the exchange of orders or vehicle capacity. The same source report that,
to ensure cooperation sustainability, collaborative costs need to be allocated fairly
to the different participants, and they analyze the effects of different cost allocation
techniques with numerical experiments. Thus, also in the aforementioned work,
capacity is shared across firms that decide to operate collectively as a coalition.
Moreover, they highlight the importance of a fair cost allocation of the shared
capacity. In [4], capacity sharing is exploited in the horizontal collaboration between
taxis in the settings of Demand-Responsive Transport (DRP); in the paper, the
authors define and solve optimization problems aimed at minimizing the total cost
of the service while maintaining a balance of work among operators. In logistics
applications, it is common to aggregate customers in order to optimize the service.
In [106], a negotiation based scheme is used to exploit customer aggregation in a
waste management application. The aggregation can be done using concepts related
to clustering or creating corridors [76]. The concept of green corridors can also be
used to lower the environmental impact of logistics services [26].

Capacity-sharing in logistics solutions is definitely a pathway towards sustain-
ability. Indeed, the research effort of this work addresses (as a use-case) a logistic
scenario where capacity sharing solutions ensure sustainability without collaboration
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between the participants. These participants are the customers sharing the transport
capacity of a logistic company that provides pick-up and delivery solutions. With
respect to the evaluated research, this contribution intends to provide a cost fore-
casting framework for contract management of logistics operators considering fair
allocation of costs to customers. Customers have heterogeneous locations, visiting
time windows and service variability that may represent distinctive valuable features
for the customer cost forecasting model. In the considered scenario, logistic costs
need to be fairly allocated to each customer in order to ensure that the forecast-
ing model can be trained to provide fair customer cost estimates for competitive
commercial offers.

Given the above, this work comes at a time when many companies are increasingly
considering innovation solutions linked to sustainability challenges, and when the
literature is still scarce on research incorporating non-cooperative sharing of capacity
allocations.

The reminder of this chapter is organized as follows: Section 6.2 describes the
learning framework and its details; a novel logistic model is presented in Section 6.3;
Section 6.4 introduce a real-case scenario application of the new model in Section
6.3, Section 6.5 reports the experimental results of applying the learning framework
to the application in Section 6.4, and provides insights and in-depth analysis of
the customer features importance. Finally, Section 6.6 gives some conclusions and
reports research perspectives.

6.2 Customer cost learning framework

This section describes a framework that integrates an operational research (OR)
model providing optimal capacity allocation with a machine learning (ML) model
performing customer cost estimation. This framework is presented as a general
approach for any OR model allocating either capacity or resources across multiple
non-cooperative customers. In Section 6.5 this framework is applied to a real-case
of a reverse logistic (RL) setting regarding waste management. The RL setting is
described in Section 6.4 and the considered OR model is the one detailed in Section
6.3.

The main objective of this scheme is evaluating the impact of the customer fea-
tures over the customer cost that results from the optimization of the process/service
concerning that customer. The same objective applies for all engineered features
arising from the specific instance concerning that customer. Therefore, the idea
behind this framework is considering these set of features and their inherent variabil-
ity in order to evaluate their explanatory power within a customer cost regression
task. Accordingly, the purpose of the regression model is providing cost forecasts
for a new production/service request. This cost estimate is the essential input of
any profitable and competitive commercial offer. Therefore, Explainable Artificial
Intelligence (XAI) techniques are used at the very end of the framework to validate
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the information contribution of each considered feature. The reader can refer to the
survey of Das and Rad (2020) [35] for substantial knowledge over the opportunities
and challenges in XAI. The framework is illustrated in Figure 6.1 and is made of
the following main components:

• Data Augmentation

• OR model

• Cost Allocation Strategy

• ML Dataset

• ML regression model

• ML model Explainability

Figure 6.1. Customer Cost Patterns Learning Framework

Data augmentation (DA) in data analysis are techniques used to increase the
amount of data by adding slightly modified copies of already existing data or newly
created synthetic data from existing data. It acts as a regularizer and helps reduce
overfitting when training a machine learning model [98]. In the proposed framework,
performing DA is particularly important to ensure that the regression model is
identified from a dataset containing all relevant observations of the possible customer
features values. In particular, the amount and variety of data is increased by
sampling values from reasonable probability distributions to be determined from
a given customers database. Given the above, DA is used to produce synthetic
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data in order to perform a comprehensive scan of the customers variability and the
associated risk.

As mentioned above, the OR model can be any model incorporating non-
cooperative sharing of capacity allocations across multiple customers. Still, this work
focuses on the VRP with Pickup and Delivery and with Semi Soft Time Windows
that is presented in Section 6.3.

The cost allocation strategy represents one of the most important component
of the presented framework, both in terms of fairness and expected regression
performance. In either production or services scenarios, costs need to be fairly
allocated to each customer in order to ensure that the forecasting model can be
trained to provide fair customer cost estimates. This is also relevant for delivering
competitive commercial offers. The following Section 6.2.1 presents an allocation
strategy that combines three different approaches for the considered logistic setting.

The main types of information hold in a record of the regression dataset are
the customer related features, some additional engineered features arising from
the instance concerning that customer, and the allocated cost according to the
selected strategy. Considering the logistic scenario, basic customer features concern
pickup and delivery locations, time window bounds and width, service times, number
of surrounding customers within distance thresholds in the customers database,
distance and duration information between pickup node, delivery node and the
depot. Moreover, some instance related features can be engineered in order to
extract any relevant information to explain the allocated cost. Some examples w.r.t.
the logistic setting are the vehicle tour total distance and duration, the number of
costumers served within the tour, the number of surrounding customers within some
distance thresholds that are served in the specific instance.

The ML regression task investigates the relationship between the set of the
described features and the dependent outcome being the expected customer cost.
The objective of the ML model is that of learning how to predict new, unseen data.
The ability to perform well on inputs not seen during the training phase is called
generalization, and it provides insights into how well the model will perform on
unseen data. As a consequence of this, a data segregation stage is often used to split
the dataset into training and test subsets. Although the training of the model is
performed using the former and by minimizing the loss function on this set, a bigger
interest is placed on the performance measures that are normally evaluated on the
second set of data, the test set. Additional information can enrich the set of data
within a feature engineering phase. To decrease the amount of data ingested into
the training model, shorten training times, improve the generalization properties of
the model and its interpretation, explanatory features with high information content
can be extracted in accordance with feature selection strategies. Multiple classes
of modeling architectures of various complexity can be tested with respect to their
accuracy performance. Validation techniques can be employed to avoid overfitting
issues and guarantee model quality aspects such as proven generalization properties,
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reliability and robustness to significant datasets changes. The performance of models
can be assessed by comparing predictions and actual observations on the test subset
using relevant accuracy metrics.

In the end, XAI techniques are used to validate the information contribution
of each considered feature. Indeed, XAI methods are included in the framework in
order to overcome the issues related to the lack of interpretability of ML models.
XAI methods allow identifying the impact of the original interpretable features
on predictions by evaluating the effect of single input features on the outcome of
interest, while excluding the effect of other features. The reader can refer to a recent
review of Linardatos et al. (2020) [71] on machine learning interpretability methods.

6.2.1 Fair Cost Allocation

Given the solution of a capacity allocation model, it is critical to find a way
to divide the resulting overall production/service cost, in a way that is fair to all
customers. Different cost allocation solutions for scenarios that can be modelled
as cooperative games have been proposed [30][67]. The problem in transportation
logistics is determining how much of a route’s total cost should be allocated to each of
the customers served. This fair division problem turns out to be very challenging and
is addressed in recent literature with different strategies. From relatively simple to
state-of-the-art solutions are reported in [62]. An ideal solution is well-defined and is
based on the Shapley value [96] of the Travelling Salesman Game (TSG). In essence,
the Shapley value of player/customer i is an average of all marginal costs due to
player i, over all possible coalitions, including player i. The Shapley value is the only
attribution method that satisfies the properties of Efficiency, Symmetry, Dummy
and Additivity [96], which together can be considered a definition of a fair allocation
and makes it a preferred choice for a fair cost allocation scheme [86]. Unfortunately,
this method has exponential computational complexity, which makes it practical
only for small scale examples involving few customers. In real-case applications,
scenarios involving a few dozen or even a few hundred customers are more typical.
This has led to substantial research effort dedicated to finding approximations
with lower computational complexity. Novel methodologies to generate high-quality
approximations to the Shapley values are presented in [86] and [68].

Considering the scope of this research work, the cooperative hypothesis and the
computational complexity of the Shapley value, along with the amount of customers
involved in the considered instances and the data augmentation requirements of
the designed framework, this research work proposes a cost allocation strategy that
is out of the Shapley value paradigm. The proposed allocation strategy appears
to be fair and is computationally tractable in all allocation examples. Moreover,
this strategy applies to the solution of a VRP with Pickup and Delivery, hence a
customer i is identified by two distinct nodes: the one of pickup Pi and the one of
delivery Di.
The proposed allocation strategy provides a weighted average of the outcomes of
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three different allocation rules, namely:

• Stand-Alone (SA)

• Neighbors Savings (NS)

• Extreme Neighbors Savings (ENS)

Stand-Alone rule assigns costs in proportion to the shortest paths distances of
the route that starts from the depot towards the pickup node Pi, thus to the delivery
node Di, then returns to the depot. This travelled distance can serve as a first proxy
in order to allocate a proportion of the total route cost. For each customer, the SA
proportion is obtained from the normalization of all travelled distances, computed
in such a way, of the customers served by the same vehicle. This rule assigns a cost
that is proportionate to both Pi and Di distances and takes into account these nodes
as independent of the other visited ones, embedding the non-cooperative scenario.
At the same time, this represents its main downside, as SA rule does not consider
the reduction in costs due to proximity to other served customers, both in terms of
pickup and delivery.

Neighbors Savings rule is intended to recover the main SA downside. This is
accomplished by evaluating the marginal cost of visiting Pi and Di in the vehicle
tour. With this objective, the following quantities are considered for each customer
i being served by vehicle k :

Ctot : the total distance travelled by a vehicle k visiting customer i in its tour.

Cdeviation : the sum of all travel distances to visit both Pi and Di as deviations
from the tour of k not considering customer i. This is the sum of all distances
associated to the graph edges crossed by k in its tour that have Pi or Di as
either departing or arriving node.

Clink : the sum of all distances associated to the graph edges that k should cross
to complete its tour without visiting Pi and Di while respecting the nodes
visiting order of the original solution.

Ĉ : the marginal distance contribution of i being Ĉ = Ctot - Cdeviation + Clink

Once these quantities are computed for all costumers served by k, NS rule assigns
to customer i a portion of the cost obtained from the normalization of all marginal
distance contributions Ĉ of the customers served by k. The main downside of NS
rule is the risk of not being fair to customers in proximity of the depot that are
involved in a tour that reaches distant locations. NS would assign a portion of cost
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that is related to the value of Ctot which is expected to be high in such a tour.

Extreme Neighbors Savings rule is intended to recover the aforementioned NS
downside. This is accomplished by computing the marginal distance contribution of
i without considering Ctot. Therefore, ENS employs the EN rule with the exception
of considering Ĉ = max(0, Cdeviation − Clink)

The final output of the proposed strategy is a cost allocation proportion that is a
weighted average of the outcomes of SA, NS and ENS rules. Numerical experiments
have analyzed the effects of different weights to address the fairness of this allocation
technique. Intuitively, equal weights provide a fair balance between all rules objectives
and downsides.

Although the proposed allocation strategy is out of the Shapley values paradigm,
the Shapley value is the theoretical base of the XAI method used in the features’
importance explanation of the cost forecasting framework. Indeed, a unified ap-
proach for interpreting predictions is presented in [73], is called SHAP (SHapley
Additive exPlanations), and assigns each feature an importance value for a particular
prediction according to Shapley values. SHAP is expolited in the XAI section of the
framework and its results w.r.t. the application use-case are presented in Section
6.5.4.

6.3 Operational problem definition and modeling

This section describes in detail a novel mixed integer linear programming model
for the optimization of planning routes for pick-up and delivery services. This
general problem is one of the main operational tasks of supply chain management
and is known as the Vehicle Routing Problem (VRP), a NP-Hard and well-known
combinatorial optimization problem [111]. The presented formulation is intended
to find the optimal set of routes for a single depot fleet of trucks to pick up goods
from a given set of customers and deliver them to another given set of delivery
nodes. A feasible solution of this model simultaneously satisfies the network system
constraints, transport capacity constraints, and those associated with each customer
and delivery location. Indeed, each graph node, corresponding either to a customer
or a delivery node, has a time window bounding the time in which that node can
be visited. Truck units are heterogeneous in terms of operating and emissions costs
and can haul goods according to specific hauling capacity. Non-linear costs are
considered for truck drivers, a two part tariff is made of a fixed fee plus a cost
per driving hours. With and additional overnight cost, trucks can take multiple
driving shifts to reach distant locations. In case the size of a node time window is
particularly small, either causing infeasibility or bounding route savings, this can be
extended with an additional cost per hour. Indeed, the presented formulation can be
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seen as a variant of the VRP with pickups and deliveries (VRPPD) [112] that only
considers penalties on late arrival while waiting on early arrival is allowed without
cost, namely the Vehicle Routing and scheduling Problem with Semi Soft Time
Windows (VRPSSTW) [89]. Considering a logistic service request i, this is identified
by two nodes, i and n + i, corresponding, respectively, to the pickup and delivery
stops of the request. It is possible that different nodes may represent the same
geographical location. Then, denote the set of pickup nodes by P = {1, ..., n} and
the set of delivery nodes by D = {n + 1, ..., 2n}. If request i consists of transporting
di units from i to n + i, let li = di and ln+i = −di. Next, let K be the set of vehicles.
The aim of the VRP is to define the routes serving all the customers, respecting
vehicle and user constraints, while minimizing the total traveling costs.
To better introduce the formulation, and all its additional features w.r.t. what
presented in [112] and [89], model notation for parameters indexes and variables is
set out in the following.

n : number of customer to be served

P = {1, ..., n} : set of pickup nodes

D = {n + 1, ..., 2n} : set of delivery nodes

N = P ∪ D : overall set of pickup and delivery nodes to visit

o : depot as a departing node

d : depot as a returning node

od = o ∪ d

No = N ∪ o

Nd = N ∪ d

Nod = o ∪ N ∪ d : overall set of graph nodes

K : set of heterogeneous vehicles

[ai, bi] : service time window for node i

ci,j : cost of arch i, j as the sum of distance and duration costs

ti,j : arch i, j travel time

si : service time at node i

li : pickup or delivery demand at node i

Ck : carrying capacity of vehicle k
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uk : activation cost of vehicle k related to expected operating and emissions
costs

O : overnight cost

R : maximum number of driving hours in a shift

Z : maximum number of subsequent driving shifts

Γ : time window enlargement cost per hour

The model consider the following variables.

xi,j,k ∈ {0, 1} : equal to 1 if vehicle k crosses arch (i, j), 0 otherwise

Ti,k ∈ R+ : service starting time at node i by vehicle k

Li,k ∈ Z+ : load of vehicle k when leaving node i

yk ∈ R+ : bounds the time span between departure and returning to depot of
vehicle k

zk ∈ Z+ : number of subsequent driving shifts of vehicle k

ok ∈ Z+ : number of subsequent overnights stay for vehicle k

γi ∈ R+ : node i time window upper bound enlargement

The model minimizes the sum of several transport costs and is detailed as following:

min Z =
∑
k∈K

∑
i∈Nod

∑
j∈Nod

ci,j xi,j,k +
∑
k∈K

(uk zk + O ok) +
∑
k∈K

yk + Γ
∑
i∈N

γi (6.1)
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s.t.∑
i∈od

Li,k = 0 ∀k ∈ K (6.2)

∑
k∈K

∑
j∈Nd

xi,j,k = 1 ∀i ∈ P (6.3)

∑
j∈N

xi,j,k =
∑
j∈N

xj,n+i,k ∀k ∈ K, i ∈ P (6.4)

∑
j∈P

x0,j,k ≤ 1 ∀k ∈ K (6.5)

∑
i∈D

xi,2n+1,k =
∑
j∈P

x0,j,k ∀k ∈ K (6.6)

∑
i∈No

xi,j,k =
∑

i∈Nd

xj,i,k ∀k ∈ K, j ∈ N (6.7)

Ti,k + si + ti,j − Tj,k ≤ M(1 − xi,j,k) ∀k ∈ K, i ∈ Nod, j ∈ Nod, i ̸= j (6.8)
ai ≤ Ti,k ≤ bi − si + γi ∀k ∈ K, i ∈ N (6.9)
Ti,k + si + ti,n+i ≤ Tn+i,k ∀k ∈ K, i ∈ P (6.10)
Li,k + lj − Lj,k ≤ M(1 − xi,j,k) ∀k ∈ K, i ∈ N, j ∈ N, i ̸= j (6.11)

li
∑

j∈N,j ̸=i

xi,j,k ≤ Li,k ≤ Ck ∀k ∈ K, i ∈ P (6.12)

Li,k ≤ (Ck + li)
∑

j∈N,j ̸=i

xi,j,k ∀k ∈ K, i ∈ D (6.13)

T|N |+1,k − T0,k ≤ yk ∀k ∈ K (6.14)∑
i∈N,i̸=j

∑
j∈N,j ̸=i

(si + ti,j)xi,j,k ≤ R zk ∀k ∈ K (6.15)

zk ≤ Z(
∑
j∈P

x0,j,k) ∀k ∈ K (6.16)

zk ≥
∑
j∈P

x0,j,k ∀k ∈ K (6.17)

ok ≥ 0 ∀k ∈ K (6.18)
ok ≥ zk − 1 ∀k ∈ K (6.19)
γi ≥ 0 ∀i ∈ N (6.20)
x0,j,k = 0 ∀k ∈ K, j ∈ D (6.21)
xi,i,k = 0 ∀i ∈ Nod, k ∈ K (6.22)
xi,0,k = 0 ∀i ∈ N, k ∈ K (6.23)

The objective function (6.1) defines the minimization of the sum of the routing costs
(regarding emissions and operating costs per km and hour), driving shifts activation
and overnights costs, and time window enlargement costs. In addition, (6.1) includes
the unit cost of the auxiliary variable y bounding the time span between departure
and returning to depot for each used vehicle.
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Constraints (6.2) limits each truck to be empty when exiting or entering the
depot; constraints (6.3) guarantee that each customer i ∈ P is served by one and
only one truck; constraints (6.4) describe the network flow conservation and at the
same time ensure that each pickup is delivered to its delivery location; constraints
(6.5) guarantee that each used truck departs from the depot to reach a pickup
node; constraints (6.6) force used vehicles to return to the depot; constraints (6.7)
ensure network flow conservation; for all subsequently visited nodes, constraints (6.8)
introduce time coherence between arrivals, service and travel times; constraints (6.9)
force each node i to be visited in its time window while considering service time
and the opportunity of extending the upper bound bi; constraints (6.10) ensure that
delivery occurs later than pickup; constraints (6.11) introduce truck load coherence
between each subsequently visited node; constraints (6.12) and (6.13) limit truck load
capacity and guarantee truck load coherence when visiting a pickup and a delivery
node respectively; constraints (6.14) bounds vehicles time span between the exit and
the return to depot; constraints (6.15) limit each vehicle travel time with respect to
the driving shifts and their maximum driving hours; while constraints (6.16) bound
the maximum number of subsequent shifts for each used truck, constraints (6.17)
ensure the activation of at least one driving shifts of each used truck; constraints
(6.18) and (6.19) imply that for each truck the number of overnights is zero unless is
used for more than one driving shift; constraints (6.20) ensure that time windows can
only be extended; constraints (6.21) avoid trucks traveling from the depot directly
to a delivery node; constraints (6.22) avoid node loops and (6.23) ensure that no
vehicle returns to the depot as a departing node.

With the rapid growth in the processing speed and memory capacity of computers,
various algorithms can be used to solve increasingly complex instances of VRPs [109].
Indeed, while the computation time for the exact approach is adequate for smaller
instances, the computation time for large-sized problems is usually very large for
the exact solution technique, which favors the use of heuristics and meta-heuristic
algorithms. The reader can refer to the reviews presented in [21] and [109] to
find relevant literature, recent trends and solution methodologies in the field of
VRPs and some well-known variants. The computational experience reported on
the VRPPDTW indicates that algorithms capable of solving larger or more difficult
problems are constantly being proposed. Nevertheless, computational experiments,
solution methodologies and computing times are out of the scope of this work. The
research work is instead aimed towards the study of a learning framework that
consider some relevant customers features to forecast each customer cost.

6.4 Application to a reverse logistic service

Waste management (WM) is a worthwhile and important challenge concerning
both the protection of the environment and the conservation of natural resources; it
can be defined as the collection, transport, recovery and disposal of waste, including
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the supervision of such operations and the after-care of disposal sites, and including
actions taken as a dealer or broker (Directive, 2008) [2]. The need of meeting the
recovery and recycling targets imposed by EU law and the rising prices of raw
materials have resulted in an increasing interest in the recovery of materials from
the waste streams. This recycling industry is characterized by very low margins
and high percentage of operation and logistics costs, for this reason it is critical
the optimization of its processes in order to turn it in an economically sustainable
business. Indeed, a considerable attention has been directed over the last decade
towards the optimization of both strategic and operational tasks related to WM. In
particular, performances of WM systems have been improving thanks to a noticeable
commitment of decision makers and research efforts regarding the optimization of
each system components. The reader can refer to the surveys of Ghiani et al. (2014)
[50] and Das et al. (2019) [36] for an extensive knowledge of literature related to
strategic and tactical issues in solid WM. Industrialization and consumerism are
deeply affecting the amount of generated waste, leading to the need of a stronger
technological and strategic decision support to waste facilities dealing with industrial
waste management in order to lower all the extra costs involved with the selective
collection and sorting of this kind of waste. Indeed, within WM one of the major
topic of interest besides Municipal Solid Waste Management (MSWM) is Industrial
Waste Management (IWM) which encompasses every task involved from collection
and transportation of the waste generated in industrial sites to its process in sorting
facilities where all its kinds of mixed materials are sorted to extract the so-called
secondary raw materials. In the described setting, waste companies usually serve
their industrial customers according to a pull logic for the waste containers’ collection.
Indeed, a company truck picks up the waste container of a customer whenever the
company logistic services are contacted by the client for the container pick up. As
planning and scheduling the operations of sorting facilities represents the main
tactical task of IWM performed by OR models, the logistic cost of trucks routing to
pick-up and deliver waste is the main operational cost of IWM that these models
have to optimize. Accordingly, the model presented in Section 6.3 is able to optimize
logistic operations of such an IWM setting. In this scenario, the model finds the
optimal set of routes for a fleet of trucks in order to pick up waste containers
from a given set of industrial customers and deliver them to waste sorting facilities.
Taking the waste collection management as a practical background, the problem in
Section 6.3 can also be considered as belonging to the class of Rollon-Rolloff Vehicle
Routing Problems (RR-VRPs). The RR-VRP is studied in several papers, such as
[5, 18, 69], and involves tractors pulling large containers between customer locations
and disposal facilities. A feasible solution of this model simultaneously satisfies both
the network system constraints and those associated with each waste producing
customer and related disposal unit. Indeed, each graph node, corresponding either
to a customer or a waste sorting facility, has a time window bounding the time in
which that node can be visited. Truck units instead can haul either one or two waste



6.5 Experimental results 79

containers, depending on each truck capacity. The following Section 6.5 presents the
experimental results obtained by applying the proposed framework to the described
IWM setting.

6.5 Experimental results

In this section, the integration of an operational research (OR) model providing
optimal capacity allocation with a machine learning (ML) model performing customer
cost estimation is described.

In order to test the proposed framework, a real case study from the IWM setting
is considered. In particular, the case of an operator of a medium-sized waste company
based in the province of Rome, Italy. Every day, the logistic company receives a
different set of customer service requests. Accordingly, the firm determines the routes
for its fleet of trucks in order to pick up waste containers from the set of industrial
customers and deliver them to their designated sorting facilities. A critical aspect
for both sustainable efficiency and profitability performance is related to commercial
offers submitted to clients. Indeed, the business should be able to make competitive
commercial offers that embed the ability of satisfying customer demand in the most
efficient way.

The objective of this experiment is to provide the contract management of the
WM company with a tool, in the form of a machine learning model, that produces
an estimate of the costs associated to the satisfaction of the service requests, based
on the information of each customer such as its demand, its position and other
information that can have an impact on the operative costs of the business. Once
trained, the machine learning model is able to provide profitability classification
in short time, and on demand, while embedding different scenarios in which the
customer can be served, considering the costs that the company must afford in
different routing scenarios. Conversely, the VRP optimization tool can provide
output only for a well specified instance.

As discussed in Section 6.2, the tool can be realized with the framework which
includes the following steps:

1. Creation of the dataset that is the input of the OR problem, with the possible
application of data augmentation techniques;

2. Resolution of the OR problem instances, with the subsequent allocation of
costs across multiple customers;

3. Creation of the ML dataset.

4. Model training and performance evaluation: using Explainable Artificial Intel-
ligence (XAI) to compute feature importance.

The above steps are discussed in detail in the following Sections.
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6.5.1 Dataset creation

This section describes the dataset used for the experimental test and the data
augmentation performed to increase the variability of the data and to investigate
the role of variables of interest.

Original Dataset

The WM firm provided access to data ranging from January 2020 to March 2022.
The data consists of daily records of customers served requests, including the list of
customers served each day, their position as well as the position of each customer’s
waste sorting facility, and the demand, expressed as the number of containers to
pick up. This dataset, in particular, covered 668 operating days, with an average of
17.3 clients served, and 27 containers picked up each day.

Data augmentation

In addition to the information at our disposal, this experiment investigates the
role played by other variables that are expected to have an impact on the resolution
of the VRP problem and, thus, to the operating costs of the company, but that have
not been recorded and that the contract management does not currently consider
when preparing a commercial offer to its clients.

In particular, it is investigated the role played by the visiting time windows
of both the pickup and delivery nodes, and the service time associated to each
node, as described in Section 6.3. To explore the role of such variables, different
copies of each operating day of the dataset are made. For each copy, DA then uses
random sampling from appropriate probability distributions to generate values for
the time windows and service times for each customer. The next section describes
the resolution of the OR model and the strategy used to allocate the cost to each
customer.

6.5.2 OR model and cost allocation strategy

The logistic problem of the use-case application, concerning pickups, deliveries
and semi soft time windows, is modeled according to the formulation described in
Section 6.3.

Model instances are coded in Python3 and tested on a PC running a 1.60GHz
Intel Core-i5-10210U CPU with 16 GB RAM. Considering the available data of 668
operating days, a total of 2672 instances are solved (one for each of the four DA
copies that differ in the values of the time windows and service time of each client).
These are solved via branch-and-cut using the Gurobi 9.5.2 solver hosted on a server
running on an Intel Xeon Gold 6136 CPU @3.0 GHz with 250 GB RAM, with a
solution time limit of 60 minutes.
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Out of the total number of instances, 2172 (or 82% of the total) are solved with a
duality gap less than 0.05. Out of them, 1433 are exactly solved finding the optimal
solution.

In the following phase of the experiment, the ML model is trained only using
the 2172 instances solved with a duality gap < 0.05.

To determine how much of a route’s total cost should be allocated to each of the
customers served, the allocation strategy described in Section 6.2.1 is used, namely
the arithmetic average of three different allocation rules: Stand-Alone rule (SA),
Neighbors Savings (NS) and Extreme Neighbors Savings (ENS).

It is important to remember that this allocation choice is just one of the possible
allocation choices that can be made, and that any other allocation could be used
without affecting the validity of the framework as long as it distributes costs fairly.

6.5.3 ML dataset and preliminary data analysis

This section describes the dataset resulting from the application of the proposed
framework. In order to present data considerations, it also contains a preliminary
data analysis. Additional details about how the dataset is used to train the machine
learning model are given in the following Section 6.5.4.

The ML dataset consists of 14669 records, each corresponding to one customer
served in a replica of one of the 668 operating days. For each record, while the target
variable is ServiceCost (i.e., the routing cost allocated to the customer, expressed in
Euro currency), the list of feature columns is the following:

• demand: number of containers that the customer asks to pick up

• distHtoP: shortest path distance in km from the depot (H) and the pickup
node

• distHtoD: shortest path distance in km from the depot (H) and the delivery
node

• distPtoD: shortest path distance in km from the pickup node and the associated
delivery node

• distSingleTour : shortest path distance in km of the tour depot - pickup node -
delivery node - depot

• timeWindowPD: sum of the widths of the pickup time window and delivery
time window, expressed in minutes. For example, if the pickup node has
a 9am − 3pm time window, and the delivery node has a 11am − 4pm time
window, the variable timeWindowPD will have a value of 60 · 6 + 60 · 5 = 660

• serviceTimePD: sum of the service time of the pickup node and delivery node,
expressed in minutes



6.5 Experimental results 82

• concentration20km: number of other customers, across the whole dataset, that
are within a 20 km shortest path distance from the customer

• concentration50km: number of other customers, across the whole dataset, that
are within a 50 km shortest path distance from the customer

• concentration100km: number of other customers, across the whole dataset,
that are within a 100 km shortest path distance from the customer

Several of these features are the result of some feature engineering. The latitude
and longitude of the position of each pickup and delivery node are not used as raw
values, but are used to compute the shortest path distances from and between the
depot, the pickup node and the delivery node. The Open Source Routing Machine
(OSRM) [74] is used to compute the shortest path distances. OSRM is an open-source
router, exploiting Dijkstra’s algorithm [39], and designed for use with data from the
OpenStreetMap project [81].

The last columns consider all client location recorded in the database to report,
for each customer, the concentration of other clients within a given distance. These
features are engineered to help the model learn the allocated costs’ reduction that may
result from the proximity of customers. According to the proposed cost allocation,
in fact, customers that are isolated are charged more than customers that, being
close to each other, can be served within a more efficient route.

Considering this set of data, inductive inference is accomplished by a machine
learning model that is intended for the discovery of knowledge from observations.
Nevertheless, as a first analysis step, it is always advisable to examine either feature’s
histogram or scatter plots. This enables the examination of the data’s variance and
distribution in order to make some initial deductive inferences. For example, in
case data distribution shows an almost null variance, most likely the corresponding
feature will not add any useful information for modeling purposes. Some of the most
interesting data plots that resulted from a preliminary deductive analysis are set
out, and commented on, below.

Figure 6.2 displays the allocated ServiceCost along the vertical axis (dependent
target variable) and the corresponding values of the distSingleTour feature along the
horizontal axis (independent variable). Intuitively, this might be one of the features
being mostly responsible for the service cost. Moreover, dist single tour stems out
of one of the allocation strategy rules (SA), thus providing useful information about
the allocated cost. Accordingly, Figure 6.2 shows a positive correlation between
the two axis values. At the same time, for the same distSingleTour value, there is
a highly variable result in terms of ServiceCost. In particular, this variance trend
increase w.r.t. the magnitude of the feature values, proving that such a positive
correlation is not sufficient to explain the variety of scenarios addressed by the OR
model.

Figure 6.3 and Figure 6.4 are the scatter plots that relate the concentration20km
feature and concentration50km feature to the target variable cost, respectively.
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Figure 6.2. Scatter plot service cost - dist single tour

Considering a non-cooperative scenario, a customer who requests a service in an
area with a high concentration of potential customers is more likely to be served
by a route that is more efficient and therefore assigned with a lower allocated cost.
Accordingly, Figure 6.3 shows that both the mean and variance of the customer
service cost decrease as the number of close customers, across the whole dataset,
increase. The same type of considerations about Figure 6.3 apply to Figure 6.4.

Figure 6.5 and Figure 6.6 are the scatter plots that relate the time windowPD
feature and serviceTimePD feature to the target variable cost, respectively. It is
very important to highlight that, even though both plots are scattered and no clear
relation with the service cost is shown, these features do have an impact on the service
cost. This is proved in Section 6.5.4 by the ML model explainability, which allows
investigating the importance of all features w.r.t. the regression performance of the
model. Furthermore, neither plot’s observations are evenly distributed throughout
the plot, making it impossible to draw any firm conclusions or even infer a non-linear
relationship. This aspect supports and validates the use of a non-linear regression
within the machine learning paradigm.

In the following section, the training of the ML model is described and the impact
of each feature on the prediction of the service cost is analyzed.
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Figure 6.3. Scatter plot

6.5.4 Model training and performance evaluation

In order to learn the function that maps the aforementioned list of input features
to the target variable ServiceCost, the XGboost model [29] is trained. This model,
that belongs to the tree ensemble model class, is known to be one of the most reliable
models for tabular data, often outperforming the popular artificial neural networks
[99].

To train the model, data are split according to a 80 − 20 proportion, with the
following caution: if a record related to a customer served on a given day is in
the training (or test) set, then all the records of all the replicas of that given day
are also in the training (or test) set. For example, if there are 4 replicas of the
operating day (instance) 1/01/2020 in which 10 customers have been served, then
all of them will be part of one among the training and test set. This is done to avoid
the potential information leakage that can derive from seeing two records related
to the same customer-instance combination in both the training and test set. The
same information leakage may apply to the case of having, in both the training and
test set, two customers with similar characteristics (such as location and demand
features) that are served in the same instance.

The XGboost model is implemented on Python 3.8.10. The hyperparameters
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Figure 6.4. Scatter plot

Training Set Test Set
MAE 33.07 31.92

MAPE 0.49 0.47
Table 6.1. ML model performance

of the model are determined by means of a random search with a K-fold Cross
Validation (K = 5), and the hyperparameters’ combination that minimizes the
average Mean Absolute Error (MAE) on the validation sets is selected. Table 6.1
reports the performance of the XGboost model trained with such combination of
hyperparameters on the training set and test set. In particular, the metrics reported
are MAE and Mean Absolute Percentage Error (MAPE), the latter measuring the
mean absolute percentage difference between the actual and the predicted value.

Both the error metrics assume similar values in the training and test set, thus
showing the ability of the model to generalize on new, unseen data, not suffering
from the problem of overfitting.

To better appreciate the performance of the model w.r.t. the use-case application,
it is worth to observe the distribution of the target variable displayed in Figure 6.7.
It is possible to see that the ServiceCost values are within the range 0-1256, with
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Figure 6.5. Scatter plot

the majority of records having a ServiceCost between 0 and 200, a discrete amount
of records within a 200-600 range, and a third group of customers is served within
an 800-1100 cost range. Given this distribution, a model with a MAE of 32 Euro
on unseen data can be considered worthy and useful for the specific application.
Nevertheless, a MAPE value of 0.49 may appear to be high without decomposing
this metric w.r.t. different ranges of true observation values. Accordingly, Table 6.2
presents a breakdown of the MAE and MAPE errors on the test set for customers
within various ranges of service cost values. It is interesting to observe that the
highest MAPE values are associated to records with the lowest ServiceCost values.
In other words, the lower the real target value, the higher the percentage error made
by the model. At the same time, the mean percentage error is less than 0.3 for
customers whose service cost is greater than 100 and is below 0.13 for records whose
service cost is greater than 500. It is also possible to observe a sublinear increase in
the MAE as the Service Cost rises.

When evaluating the performance of the proposed framework, an important
aspect to consider is the following: throughout the course of the three years of data,
the same customer is served in numerous daily instances that vary in terms of the
total number of different clients requesting the service. This is the main reason why
the same customer can cause a different operating cost depending on the specific
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Figure 6.6. Scatter plot

daily instance. Indeed, it is the entire set of customers that determines the way in
which logistics resources are efficiently assigned to each of them by the optimization
model. Therefore, in the ML dataset, the variety of the costs assigned to the same
customer reflects the diversity of the service instances that include that customer.
Explaining this variance is the complex non-linear challenge of the regression task.

For sure, the considerations above could also apply to a different type of service
provider or production environment.

To find out what importance each feature has in explaining the variation of the
target variable’s data, XAI techniques can be exploited. As introduced in Section
6.2.1, the XAI method used in this work to explain the model features’ importance

Service Cost range MAE MAPE Test records
0 - 100 17.06 0.63 1891

101 - 200 41.45 0.27 380
201 - 500 53.06 0.16 511
501 - 1256 89.59 0.12 200

Table 6.2. Breakdown of MAE and MAPE metrics
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Figure 6.7. Histogram
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is called SHAP (SHapley Additive exPlanations) [73], which assigns each feature
an importance value for a particular prediction according to Shapley values [96].
The summary plot that combines feature importance with feature effects is shown
in Figure 6.8. For each feature, every record of the dataset appears as its own
point. The position on the y-axis is determined by the feature, and on the x-axis
by the Shapley value. The color represents the value of the feature from low to
high. Overlapping points are jittered in the y-axis direction, so we get a sense of the
distribution of the Shapley values per feature. The features are ordered according to
their importance [79].

Figure 6.8. SHAP values to explain features importance

Examining the color distribution horizontally along the x-axis for each feature
provides insights into the general relationship between a feature’s raw values and its
Shapley values.

The feature with the highest impact on model predictions is distSingleTour. In
particular, the lower values of distSingleTour have negative SHAP values (the points
extending towards the left are increasingly blue) and higher values of distSingleTour
have positive SHAP values (the points extending towards the right are increasingly
red). This confirms that customers having lower predicted costs are those who
request a pick-up and delivery service that could be accomplished by a short distance
tour. The same type of colours polarization, thus the same type of impact, applies to
the features distPtoD, distHtoP, distHtoD. The plot reveals that the latter’s impact
is moderate. This is due to the fact that, in this use-case, the distance between the
depot and the delivery node is frequently zero, since the depot location coincides
with the delivery node of several service requests. Still, for the records in which
this distance is high, the SHAP values have a positive value, indicating a higher
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predicted service cost.
Another set of feature that has an interesting behavior is the group of features

that considers the concentration of other clients within a given distance. The most
relevant of them is concentration50km that, for each record, counts the number
of other clients within a 50 km shortest path distance from the customer of that
record. It is evident how a dense cluster of records has a high feature’ value (red
points) with a small but negative Shapley value. Records with a low number of other
customers within 50 km (blue points) extend further towards the right, suggesting
that being isolated from other customers has a positive impact on the predicted
service cost. This is in line with the considerations expressed in the comments of
Figure 6.4, namely that a customer who requests a service in a location with a high
concentration of potential customers is more likely to be served by a route that is
more efficient and, as a result, assigned with a lower allocated cost.

Features concentration100km and concentration20km show a similar behavior,
and the same considerations apply.

Taking the IWM application background, truck units can haul either one or two
containers, and the demand feature is limited to a few number of containers, often
one or two. Accordingly, most features values are distributed in a low value range,
while the few records with a high feature value have a clear positive SHAP value.
Indeed, customers requesting for a pick-up of several containers are likely being
served with dedicated logistic resources.

The plot of Figure 6.8 proves that another important customer characteristic is
the timeWindowPD. Indeed, this feature has a well-defined impact on the predicted
customer cost, as reflected by the polarized distribution of its SHAP values w.r.t. the
feature values. In particular, the lower feature’s values have positive SHAP values
and higher feature’s values have negative SHAP values. Therefore, customers with a
shorter time windows (both pick-up and delivery nodes time windows are considered)
are expected to be served with higher costs compared to customers that allow the
carrier to be visited within larger time windows. This is because the constraints on
feasible, and efficient service solutions are tighter the smaller the customer’s time
window. This result confirms that contract management should take into account
this characteristic when collecting relevant customer features.

Time is money, and even if serviceTimePD is the least important feature on
the list, it produces a moderate but clear effect over the customer service cost: the
more time spent in pickup and delivery locations, the less likely that customer can
share service capacity and costs with another set of clients. Indeed, driving hours
are limited for each working shift, and when roll-on-roll-off container operations
are time taking, fewer customers can be served within the same truck tour, thus
requiring the use of additional resources (i.e. truck units).
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6.6 Conclusions

Research in mathematical programming and supply chain management incorpo-
rates studies that draw attention to the several sources of uncertainty the businesses
must cope with. In addition to price, demand, and costs, other factors can be
considered to be nondeterministic. Some of them are the uncertainties related to
the customer characteristics, such as its location or time window. These types of
uncertainties affect any business engaging multiple customers that make production
or service requests unpredictably. The IWM application of this research activity is an
example of such business. In this scenario, the proposed framework investigates how
the operative costs are altered by the variability of the customers characteristics and
their unpredictable and non-cooperative production/service requests. This is allowed
by XAI methods that highlight the impacts that each considered characteristic have
on the cost allocated to the single customer. In case the performance of the regression
model are such to accurately forecast customers cost, then the proposed framework
is also able to provide reliable and fair costs estimates that are the essential input of
any profitable and competitive commercial offer. Indeed, competitive commercial
offers embed the ability of satisfying customer demand in the most efficient way.

Future research may look at testing the framework when an ideal fair cost allo-
cation is made using novel methodologies that can produce accurate approximations
of the Shapley value with less computing effort. This would make it possible to
apply the Shapley values cost allocation strategy in real-case application that involve
several customers. Running sensitivity analyses on the features’ importance results
with respect to the cost allocation strategy is another interesting future work. In
addition, it may be relevant to extend experimental testing to capacity allocation
problems that arise from a production setting.
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Appendix A

Prophet forecasting model

This appendix describe the time series forecasting model presented in [110] and
designed to handle the common features of time series seen both in business and
industrial scenarios. The implementation is available as open source software, is
called Prophet, and it uses a decomposable time series model [56] with three main
model components: trend, seasonality, and holidays. They are combined in the
following equation:

y(t) = g(t) + s(t) + h(t) + ϵt (A.1)

where g(t) is the trend function which models non-periodic changes in the value
of the time series, s(t) represents periodic changes such as seasonality, and h(t)
represents the effects of holidays which occur on potentially irregular schedules. The
error term ϵt represents any changes which are not captured by the model and is
assumed to be normally distributed. Therefore, seasonality and potential holidays
are treated as additive components. The model is identified within this class of
models by solving a curve-fitting problem, either using backfitting or L-BFGS [24].
This is a different approach from time series models that explicitly account for the
temporal dependence structure in the data.
Regarding the trend component g(t), a piece-wise constant trend provides a parsimo-
nious and often useful model. In addition, eventual trend changes in the model are
modeled with changepoints where the trend is allowed to change. The trend model
g(t) is indeed considering S changepoints at times sj , (j ∈ 1, ..., S) and a vector
δ ∈ RS , where δj is the change in rate that occurs at time sj . The rate at any time
t is then the base rate k plus all of the adjustments up to that point: k +

∑
j:t>sj

δj .
This is better represented by considering a vector a(t) ∈ {0, 1}S such that:

aj(t) =
{

1, if t ≥ sj

0, otherwise.

The trend rate at time t is then k + a(t)⊺δ. The trend component g(t) considers
also an offset parameter m that must be adjusted whenever the rate k is adjusted in
order to connect the endpoints of the segments. The adjustment at changepoint j
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is computed as γj = −sjδj . Therefore, the trend component g(t) can be defined as
following:

g(t) = (k + a(t)⊺δ)t + (m + a(t)⊺γ) (A.2)

Many time series have multi-period seasonality producing evident repeated effects
that should be properly addressed by a forecasting model. The model relies on
a Fourier series to provide a flexible model of periodic effects [57]. Let Q be the
expected regular period the the time-series (e.g. Q = 7 for weekly data), then the
smooth seasonal effects component can be approximated with the a standard Fourier
series:

s(t) =
N∑

n=1

(
ancos

(2πnt

Q

)
+ bnsin

(2πnt

Q

))
(A.3)

Fitting s(t) requires the estimation of the 2N parameters β = [a1, b1, ..., aN , bN ]⊺.
This is done by firstly setting N and the period Q, then constructing a matrix of
seasonality vectors X(t) for each value of t in both historical and future data:

X(t) =
[
cos

(2π(1)t
Q

)
, ..., sin

(2π(N)t
Q

)]

By doing so the seasonal component is then

s(t) = X(t)β (A.4)

The authors suggest to impose a prior smoothing on the seasonality by taking
β ∼ Normal(0, σ2).
Incorporating holidays effects with the corresponding component h(t) is made by
firstly assuming that these effects are independent. Considering each holiday i, Di

is the set of past and future dates for that specific holiday and an indicator function
1(t ∈ Di) is defined in order to represent whether time t is during holiday i. Then,
a parameter ki is assigned to each holiday being the corresponding change in the
forecast. As similarly done for seasonality s(t), a matrix of regressors is defined as
follows, where L is the number of yearly holidays considered:

Z(t) = [1(t ∈ D1), ...,1(t ∈ DL)]

By doing so the holidays component is

h(t) = Z(t)k (A.5)

As with seasonality, the authors suggest to use a prior k ∼ Normal(0, σ2).
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Appendix B

Model D

Dealing with a waste management setting, D is a mixed integer linear programming
model scheduling the sorting operations of each phase of a waste sorting process.
The model can be described as a variant of a lot sizing model with non linear costs
(approximated by mean of piece-wise linear functions) with the additional features
of scheduling the operations and allocating the appropriate workforce dimension. To
better introduce the formulation of D, model notation for parameters and indexes is
set out in the following.

j ∈ {1, . . . , J} : index of the J sorting stages

p ∈ {1, . . . , P} : index of the P time-shifts

T : time horizon partitioned into time shifts with t ∈ T = {1, . . . , T}

C : hourly cost of each operator

bt : working hours for time t determined by the corresponding shift p

Ct = C ∗ bt : cost of each operator at time t

fj : set-up cost of sorting stage j

dt : quantity of material in kg unloaded from trucks at time t

αj : percentage of waste processed in stage j − 1, received in input by buffer j

Sj : maximum inventory capacity of the sorting stage buffer j

LCj : critical inventory level threshold of buffer j

nj : fraction of material allowed to be left at buffer j at the end of time horizon

Kj : single operator hourly production capacity [kg/h] of sorting stage j

SKj,t = Kj ∗ bt : operator sorting capacity in sorting stage j, at time t
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M : maximum number of operators available in each time shift

Ej : minimum number of operators to be employed in each time shift of stage
j

∂hi
j : slope of the i-th part of linearization of the buffer j inventory cost curve

Ij,0 : initial inventory level in buffer j

The model consider the following variables.

xj,t ∈ Z+ : operators employed in the sorting stage j at time t

uj,t ∈ R+ : processed quantity at stage j at time t

yj,t ∈ {0, 1} : equal to 1 if stage j is activated at time t , 0 otherwise

Ij,t = I
′

j,t + I
′′

j,t ≥ 0: inventory level of material in buffer j at time t; for each
stage j the corresponding I ′

j,t and I ′′
j,t represent the inventory level before and

after reaching the critical threshold, respectively.

wj,t ∈ {0, 1} : equal to 1 if I
′′

j,t > 0, 0 otherwise. Indeed, this binary variables
are used to model the piece-wise linear functions of the buffer inventory costs.

The model minimizes the sum of sorting and holding costs and is detailed as following:

min Z =
∑
j∈J

∑
t∈T

Ctxj,t +
∑
j∈J

∑
t∈T

fjyj,t+

∑
j∈J

∑
t∈T

(
∂h1

jI
′
j,t + ∂h2

jI
′′
j,t

)
(B.1)

s.t.
Ej yj,t ≤ xj,t ≤ M yj,t ∀j ∈ J, t ∈ T (B.2)∑
j∈J

xj,t ≤ M ∀t ∈ T (B.3)

uj,t ≤ SKj,t xj,t ∀j ∈ J, ∈ T (B.4)

I1,t = I1,t−1 + dt − u1,t ∀t ∈ T (B.5)
Ij,t = Ij,t−1 − uj,t + αj uj−1,t ∀t ∈ T , j ∈ J \ 1 (B.6)

Ij,t = I
′

j,t + I
′′

j,t ∀j ∈ J, t ∈ T (B.7)

LCj wj,t ≤ I
′

j,t ≤ LCj ∀j ∈ J, t ∈ T (B.8)

0 ≤ I
′′

j,t ≤ (Sj − LCj) wj,t ∀j ∈ J, t ∈ T (B.9)
Ij,T ≤ nj LCj ∀j ∈ J (B.10)
xj,t ∈ Z+ ∀j ∈ J, t ∈ T (B.11)
uj,t ∈ R+ ∀j ∈ J, t ∈ T (B.12)
yj,t ∈ {0, 1} ∀j ∈ J, t ∈ T (B.13)
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The objective function (B.1) defines the minimization of the sum of the three
cost terms, which are sorting, setup, and inventory costs respectively. Constraints
(B.2) and (B.3) bound the number of workers that can be assigned to each sorting
station and to each time shift. Constraints (B.4) limit the quantity sorted uj,t to the
sorting capacity dependent on the number of workers xj,t. The remaining constraint
sets define and limit the inventories: constraint set (B.5) defines the inventory for the
first buffer, considering the inbound material dt and the sorted material u1t, while
(B.6) defines the inventory for the other buffers corresponding to j > 1. Indeed,
constraints (B.6) describe the waste flow across the sorting stages that follow one
another: each subsequent inter-operational buffer j receives by the previous sorting
stage j − 1 a quantity of waste equal to a αj percentage of the waste processed
in stage j − 1. Constraint sets (B.7), (B.8), and (B.9) define the piece-wise linear
functions for inventories; in these constraints, level Sj and maximum capacity LCj

are connected with the inventory levels through the variable wj,t. The last constraint
set (B.10) imposes the maximum unsorted material allowed to be left at the end of
the planning period for each buffer.
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Appendix C

Model R

The robust counterpart R of D is introduced as following:

min (B.1)

s.t.
(B.2) − (B.4), (B.6) − (B.13)

I1,0 +
t∑

k=1
dkϵk −

t∑
k=1

u1,k + ztΓt +
t∑

k=1
pt,k ≤ S1 ∀t ∈ T (C.1)

I1,0 +
t∑

k=1
dkϵk −

t∑
k=1

u1,k + ztΓt +
t∑

k=1
pt,k ≥ 0 ∀t ∈ T (C.2)

I1,0 +
T∑

k=1
dkϵk −

T∑
k=1

u1,k + zT ΓT +
T∑

k=1
pT,k ≤ n1 LC1 (C.3)

I1,t = I1,0 +
t∑

k=1
dkϵk −

t∑
k=1

u1,k + ztΓt +
t∑

k=1
pt,k ∀t ∈ T (C.4)

zt + pt,k ≥ σt st (C.5)
∀t ∈ T , k ∈ {0, ..., t}
− st ≤ ϵt ≤ st (C.6)
∀t ∈ T
ϵt = 1 (C.7)
∀t ∈ T

Constraint sets (C.1)(C.2)(C.3)(C.4) define and limit the inventories: constraint
(C.1) defines the inventory for the first buffer, considering the cumulative inbound
material at up to period t, the overall sorted material u1t up to period t, and the
uncertainties protection function made of the joint contribution of ztΓt and the sum
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of pt,k for k ∈ {1, . . . , t}. Constraint (C.2) sets the lower bound of the inventory
for each period and (C.3) imposes the maximum unsorted material allowed to be
left at the end of the planning period for the first buffer, as constraint (B.10) does
for all other subsequent buffers. Equality constraint (C.4) allows the inventory of
the main buffer (i.e. buffer no. 1) to be considered in the corresponding piece-wise
linear part of the cost function. Constraints (C.5) and (C.6) resulted from duality in
[15] robustness theory; where (C.5) sets the lower bound of the protection function
contribution in constraints (C.1) and (C.3).
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Appendix D

Model E

Model E replicates the same deterministic formulation of D and introduces some
additional decision variables to model overtime production. Considering the following
set of main decision variables of D:

yj,t ∈ {0, 1} : equal to 1 if production stage j is activated at time t, 0 otherwise

xj,t ∈ Z+ : operators employed in the production stage j at time t

uj,t ∈ R+ : processed quantity at production stage j at time t

The formulation of E incorporates also the variables y′
j,t, x′

j,t and u′
j,t which correspond

to the overtime production equivalent of the previous ones. The corresponding unitary
cost of these overtime production capacity variables (i.e. yj,t ∈ {0, 1} and xj,t ∈ Z+)
are f ′

j and C ′
t respectively, while M ′ is the maximum number of operators available

for overtime production. Therefore, the formulation of E is the following:

min (B.1) +
∑
j∈J

∑
t∈T

f ′
jy′

j,t +
∑
j∈J

∑
t∈T

C ′
tx

′
j,t (D.1)

s.t.
(B.2), (B.3), (B.4), (B.7), (B.8), (B.9), (B.10)∑
j∈J

x′
j,t ≤ M ′ ∀t ∈ T (D.2)

u′
j,t ≤ SKj,t x′

j,t ∀j ∈ J, t ∈ T (D.3)
I1,t = I1,t−1 + dt − u1,t − u′

1,t ∀t ∈ T (D.4)
Ij,t = Ij,t−1 − uj,t + αj uj−1,t + αj u′

j−1,t ∀t ∈ T , j ∈ J \ 1 (D.5)
x′

j,t ∈ Z+ ∀j ∈ J, t ∈ T (D.6)
u′

j,t ∈ R+ ∀j ∈ J, t ∈ T (D.7)
y′

j,t ∈ {0, 1} ∀j ∈ J, t ∈ T (D.8)
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