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Intelligent Shop Scheduling for Semiconductor Manufacturing

Amr Arisha B.Eng. (Hons.)

ABSTRACT
Semiconductor market sales have expanded massively to more than 200 billion 

dollars annually accompanied by increased pressure on the manufacturers to 

provide higher quality products at lower cost to remain competitive. 

Scheduling of  semiconductor  manufacturing is one of the keys to increasing 

productivity,  however the complexity of manufacturing high capacity 

semiconductor devices and the cost considerations mean that it is impossible to 

experiment within the facility. There is an immense need for effective decision 

support models,  characterizing and analyzing the manufacturing process,  

allowing the effect of changes in the production environment to be predicted in 

order to increase util ization and enhance system performance. Although many 

simulation models have been developed within semiconductor manufacturing 

very lit tle research on the simulation of the photolithography process has been 

reported even though semiconductor  manufacturers have recognized that the 

scheduling of photol ithography is one of the most important and challenging 

tasks due to complex nature of the process.

Traditional scheduling techniques and existing approaches show some benefits 

for solving small and medium sized, straightforward scheduling problems. 

However,  they have had limited success in solving complex scheduling 

problems with stochastic elements in an economic timeframe. This thesis 

presents a new methodology combining advanced solution approaches such as 

simulation, artificial intelligence, system modeling and Taguchi methods, to 

schedule a photol ithography toolset.  A new structured approach was developed 

to effectively support building the simulation models.  A single tool and 

complete toolset model were developed using this approach and shown to have 

less than 4% deviation from actual production values. The use of an intelligent 

scheduling agent for the toolset model shows an average of 15% improvement 

in simulated throughput time and is currently in use for scheduling the 

photolithography toolset in a manufacturing plant.
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Chapter 1 

Introduction

Global competition and rapidly changing customer requirements are demanding 

numerous changes in manufacturing environment,  heralding a new industrial 

era with new planning and control techniques, recognition of decision-making 

tools, and new approaches and ideas about the arrangement of manufacturing 

systems. Confronted with ever-increasing competition and new products 

increases,  the product life-cycle time has become shorter, necessitating 

reduced development cycle time [1]. The need to shorten the loss zone and to 

reach the maximum profit  phase in shorter time is becoming a challenging task 

for research, Figure 1.1.

H---------------^ ---------------- H

Figure 1.1: Product Life Cycle

With the advent of computer technology, much capital has been invested to 

explore new technologies such as computer integrated manufacturing and 

highly automated systems. Since errors within advanced manufacturing systems 

result in a greater cost, production planning and scheduling of these systems
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play a crucial role in driving the different components in an efficient manner. 

A large part of this role is associated with scheduling, one of the most critical 

industrial  activities,  which is concerned with balancing resource-demand 

problems.

Traditionally, many researchers have dealt  with scheduling problems as an 

abstract mathematical model using relaxation algorithms and simplifications 

[2]. Interestingly, in a survey performed by Reisman et al. [3] based on 170 

research articles regarding the scheduling domain between 1952 and 1994, it 

was found that 87.3 per cent of  the non-survey papers dealt with static 

deterministic problems. Most of those models could not provide effective 

solutions to real-world applications. Confronted with the increasing automation 

level and the complexity of new technologies,  scheduling is becoming 

evermore challenging task. Traditional solving techniques are no longer 

capable on delivering satisfying solutions in a reasonable time with respect to 

the short product life cycle. Heuristic and advanced solving approaches (e.g. 

simulation, AI) have contributed significantly in providing solutions that are 

more comprehensive. The effective use of these new approaches can increase 

the efficiency of the manufacturing systems.

1.1 Problem Definition

Semiconductor manufacturing is one of the most complex manufacturing 

processes in the world. Although the importance of the semiconductor industry 

is widely acknowledged, few researchers have addressed production planning 

and scheduling problems encountered in this environment.  Nevertheless, 

scheduling of semiconductor manufacturing is still a problem area due to the 

dramatic increase in the number of devices on an IC (see Table 1.1), complex 

product flows, random yields and rework, t ime-critical operations, batching, 

simultaneous resource possession, and rapidly changing products and 

technologies.  Typical wafers undergo hundreds of processing steps, reentering 

the same processing machines multiple times, as each layer is successively 

added. Often, some processes are skipped, repeated, or completed in a different 

order. This results in a complex, highly reentrant process flow in a flexible
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manufacturing environment that is impossible to schedule in an optimum 

manner manually.

Table 1.1: Levels of Integration in Microelectronic Industry [4]

Number of devices 
Integration Level on a chip
Small scale integration (SSI)
Medium scale integration (MSI) 
Large scale integration (LSI)
Very large scale integration (VLSI) 
Ultra large scale integration (ULSI)

Approximate year 
introduced

1 0 -5 0  1959
5 0 -  103 1960s
IO3 -  104 1 970s
105 -  106 1980s
107 -  108 1990s

This thesis has focused on the most critical manufacturing area in wafer 

fabrication, photolithography, which is considered a high-risk process due to 

technology complexi ty and expensive equipment.  As shown in Figure 1.2 , 

photoli thography is a central process among the wafer fabrication processes. 

Appendix A provides more information about wafer fabrication processes and 

steps.

Figure 1.2: Advanced techniques for process improvement

The photol ithography process is described as the most complex process in the 

semiconductor fabrication in terms of technology and procedure [196]. In the 

photoli thography area, the structure of the circuits is mapped from the pattern 

on the mask to a wafer in a process similar to photographing. The system 

analysis is very complicated in the case of photolithography of wafer 

fabrication facilit ies due to the following:

Complex technology
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- Re-entrant process flows

- Random yields

- Product/Layer sensitivity (dependant set-up times)

Expensive equipment

Data availabili ty 

High product-mix 

Rapid product turnover 

Maintenance problems 

Lots priority

Non identical parallel  machines 

Random scheduling 

Critical dimensions 

Complex metrology 

These result in

a low overall  performance within photolithography tools 

less ut il ization/ higher cost 

more work in process inventory 

high risk planning area 

delay in products due dates/delivery 

an increase in throughput  time 

an increase cycle time per wafer/lot 

defining photoli thography as the factory bottleneck area 

The previous problems together with the high capital cost of photolithography 

equipment have put more pressure on the planning staff to schedule the 

photolithography in an optimum manner. Added to that, the experimentation to 

reach a satisfactory solution is a non-option. Therefore, the need of a powerful 

decision support system to minimize production cost and increase productivity 

while improving both quality and due date delivery is urged.

The planning and control of semiconductor manufacturing systems is usually 

complex with a huge number  of interrelationships between cells and units. The 

photolithography is even more complex due to those factors mentioned earlier. 

The approach which we used in chapter four and five that accommodate such 

complexity is that of breaking the problem into a hierarchy, which emphasizes
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the interrelationship of the manufacturing processes.  Once the problems have 

been broken into some specific sub-problems such as wafer arrival, buffer 

capacity etc., there are several methods that can be used to model the 

integration of these sub-problems. In this thesis, two main approaches (IDEF, 

and SASM) were used to carry out the modeling task. Then, the simulation 

models were run iteratively under different scenarios for the sake of 

verification and validation.

P ro c e s s  S im u la tio n
People

A rtific ia l In te llig e n c e

\ v -
Process Technology

T a g u c h i's  M e th o d o lo g y

Photolithography Process 
Improvement enablers

Figure 1.2: Advanced techniques for process improvement

The hypothesis of this thesis is to propose a decision support approach to 

solving scheduling problems in the photolithography manufacturing area in 

semiconductor facilit ies.  A methodology to direct the proposed approach is 

presented in the context of  the shop scheduling domain. A novel modeling 

approach, Schematic Approach for Simulation Modeling (SASM), to handle the 

complexity of photol ithography area has been developed. Simulation has been 

used into a comprehensive manner to build robust models (e.g. FMC model, 

IPS model) that mimic the factory floor in a satisfactory level of detail. The 

intelligent Photoli thography Scheduling model (IPS) provides promising 

assistance in decision making for the photolithography area. It has yielded 

important increases in both solution efficiency and schedule quality over a 

variety of competing existing techniques.

■o(fi
oa.a»
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1.2 Aims of the thesis

This thesis investigates a new scheduling approach, which combines three 

effective solving techniques (i.e. simulation, artificial intelligence, and 

Taguchi’s optimization methodology) in order to provide quality scheduling at 

a low cost. Additionally, these techniques have been used separately to deal 

with scheduling problems, but the key feature of the research that will be 

discussed lies in using their abili ties to dynamically adapt while solving the 

hard scheduling problems in photol ithography area. The proposed approach 

aims to provide an easy-use efficient technique to support decision makers. 

More specifically,  the research objectives are successively presented as 

follows:

To develop risk assessment model(s) to evaluate the photolithography 

tools performance.

To characterize flexible manufacturing tools of photolithography 

manufacturing area in semiconductor  fabrication using state-of-the-art 

simulation models.

To provide an efficient scheduling approach that can examine the impact 

of various production plans on the performance of photolithography 

toolsets.

To demonstrate the feasibility of integrating simulation based models 

and AI techniques within Taguchi’s paradigm to provide effective 

scheduling model.

To find an efficient schedule for lot sequence in every photolithography 

toolset.

To enhance the toolset performance (e.g. increasing tool utilization, and 

decreasing throughput t ime and cycle time).

To assist  detecting bottlenecks (constraint equipment/tools) in order to 

avoid building work in process (WIP).

To use the neural network ability to design a model that is capable of 

learning and dynamically generate near optimum schedules.

In addition, the thesis presents a comprehensive review on shop scheduling 

problems and their many solving techniques. A general flow shop scheduling
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model has been solved using traditional and heuristic techniques in order to 

analyze and compare features of these techniques.

1.3 Thesis Outline

The hierarchy of this thesis is shown in Figure 1.3. Chapters 2 - 6  form the 

main body of thesis,  while eight appendices provide background information.

Chapter 2: This chapter introduces manufacturing systems under market 

pressures due to global competition and the applications of new 

technologies.  It gives a brief classification of manufacturing systems 

based on production type, automation level, and production flow. It 

then goes on to discuss scheduling problems in manufacturing starting 

with different planning levels,  followed by concise discussion about 

shop scheduling, i.e. objectives, characteristics,  and different models. 

Solving techniques to shop scheduling problems are classified into two 

main groups; traditional and advanced techniques. Moreover,  the gap 

between theory and practice is discussed. There are three appendices 

attached to this chapter.  Appendix A provides a review on 

semiconductor manufacturing and main processes in wafer fabrication.

Chapter 3: This chapter reviews a broad range of literature, which has 

relevance to the areas of research in this thesis. Many tools have been 

used in scheduling of semiconductor manufacturing systems such as 

system modelling approaches and simulation. Simulation has received 

more attention in literature and therefore, Appendix C provides a 

comprehensive review of simulation applications in manufacturing 

systems and shows a new methodology for selection and evaluation of 

simulation software packages. Intelligent scheduling in semiconductor 

manufacturing has been introduced in this chapter in more detail with a 

review of past research. Finally,  a methodology for intelligent 

scheduling using simulation, intelligent-agent based, and Taguchi is 

proposed.
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Figure 1.3: Thesis Outline

Chapter 4: The scheduling of a flexible manufacturing cell (FMC) in 

photoli thography has been solved using a generic simulation model 

combined with Taguchi’s methodology for experimental design and 

optimizing selected scheduling parameters.  The model also uses the 

system approach IDEFO. Sensitivity analyses have been conducted in 

order to provide recommendations for the manufacturing team.
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Chapter 5: This chapter describes the IPS Model for a parallel cluster of 

FMC’s and is an expansion of  the photolithography FMC model. A 

hybrid intelligent scheduling methodology that integrates simulation, 

ihe intelligent agent-based approach, neural networks, and Taguchi’s 

methodology has been explored. Results obtained, using this 

methodology, have been used for scheduling actual production. This 

chapter  presents the intelligent agent-based approach used to optimize 

the model.

Chapter 6: The final chapter contains conclusions and recommendations for 

future research work.
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Chapter 2 

Scheduling in Manufacturing Systems

2.1 Introduction

Increasing global competition has made many business leaders and policy 

makers turn their attention to new technologies in order to remain competitive 

[5]. The purpose of this chapter is to give a brief introduction to manufacturing 

systems and scheduling approaches in four sections. Firstly an overview of the 

pressures imposed on manufacturing systems and the new technologies applied 

in last four decades is presented. Section 2 discusses the classification of 

manufacturing systems based on production type, automation, and production 

flow. Section 3 defines scheduling problems in different planning levels in 

manufacturing systems and in par ticular reviews shop scheduling problems 

which are a function of the manufacturing system being considered. Finally, 

section 4 presents a comprehensive classification of shop scheduling solving 

techniques including traditional and advanced techniques.

2.2 Manufacturing

Manufacturing can be defined two ways, one technological and the other 

economical  [4]. Technologically,  manufacturing is carried out as a sequence of 

operations to be done to make parts or products.  Each operation brings the 

material closer to the desired final state. Economically, manufacturing is the 

transformation of materials into items of greater value by means of one or 

more processing and/or assembly operations. The key point is that 

manufacturing adds value to the material by changing its shape or properties or 

by combining it with other materials that have been similarly altered. 

Manufacturing consists of a set of processes and systems (and people, of 

course) designed to transform a certain limited range of materials into products 

of  increased value (Figure 2.1).
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Scrap and 
waste

Figure 2.1: Manufacturing definition according to Groover [4]

Deuermeyer (1994) [4] suggested a comprehensive definition of manufacturing 

systems:

“A manufacturing system is an objective-oriented network o f  processes through 

which entit ies f lo w .”

The major objective of manufacturing system is to making profit [4]. The 

system contains processes,  which may include the usual physical processes 

(machining, packaging, etc.) but can also include other steps that support the 

direct manufacturing processes (order entry, maintenance, etc.). Entities 

include not only the parts being manufactured, but also the information that is 

used to control the system. The flow of the entities through the system 

describes how materials and information are processed. Management of this 

flow is a major part of a manufacturing manager’s job. Finally,  it is important 

to recognize that a manufacturing system is a network of interacting parts. 

Managing the interactions as well as managing individual processes and 

entit ies is a crucial task. This definition of manufacturing system serves to 

highlight the roles of the different disciplines that deal with manufacturing. As 

Hopp et al. [6] explained: mechanical and electrical engineering staff deals 

principally with manufacturing processes and the design of the entities 

(products),  while industrial engineering team focuses on the flows and the 

network. Management  is concerned with ensuring compliance with the
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objective, keeping harmony between activities,  and measuring progress 

towards the goals.

2.2 .1  G lob a l M a n u fa c tu r in g  C h a llen g es

Global competition and rapidly changing customer requirements are demanding 

increasing changes in the manufacturing environment. Today’s business 

climate for manufacturers requires high quality, high flexibility,  and quick 

response systems that turn out a wide variety of product configurations. 

Confronted with ever-increasing competition, companies need to produce parts 

of higher quality,  at lower cost, with the shortest possible lead times. To 

complicate matters further, increasing rate of technological change has caused 

product life cycles to be dramatically reduced. A product reaching the maturity 

stage of its l ife cycle may become much less common. Consequently, industry 

has recently accommodated numerous changes, heralding a new industrial  era 

with new advanced planning techniques, new ideas about the arrangement of 

manufacturing systems, and the recognition of the decision-making powerful 

techniques the manufacturing system.

With the advent of computer-technology, The need of effective techniques to 

deal with scheduling and planning of manufacturing systems, which involve 

very large capital costs and complex interactions, becomes an urgent request.

2.2.2 New Waves in Manufacturing

A significant difference between Western and Japanese companies, observed 

by Shigeo Shingo [7], is that Western companies generally implement 

improvements as a step change and by the application of technology, whereas 

the Japanese change incrementally and continually, and they generally involve 

people. The Japanese approach of continuous improvement will also typically 

involve low cost and high technology improvements.  Manufacturing trends or 

innovations over last decades are shown in Figure 2.2.
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1960 1970 I960 1990 2000

Figure 2.2: New trends in manufacturing systems

Most research and development efforts towards automation for modern 

manufacturing have been independently developed [8]. At the present time, 

highly automated areas in manufacturing (e.g. Computer-Aided Design (CAD), 

Computer-Aided Process Planning (CAPP), and Computer-Aided 

Manufacturing (CAM)) have been integrated to provide a Computer Integrated 

Manufacturing (CIM) environment,  Figure 2.3.

Computer Integrated Manufacturing (CIM) is a management philosophy in 

which the functions of design and manufacturing are rationalized and 

coordinated using computer, communication, and information technologies 

(Bedworth et al.) [9]. CIM has the capabi li ty to largely, or entirely, automate 

manufacturing by coordinating work cells, robots,  automatic storage and 

retrieval facilit ies (AS/AR) and material handling systems. To schedule 

operations successfully in the continuous state of flux which flexible 

manufacturing imposes, the controlling systems need some “look-ahead” 

capabilities such as predictive scheduling. A vast body of l iterature (e.g. 

[ 10][ 1 1][12][13]) has discussed CIM in detail.
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Figure 2.3: Computer Integrated Manufacturing Components [14]

2.3 Classifications of Manufacturing Systems

Manufacturing Systems (MS) can be classified based on many various schemes. 

MS can be grouped into classes based on the production type, production 

volume, production flow, production layout, or automation level. Table 2.1 

summarizes main classifications of production systems based on literature 

review (e.g. Groover [4], Zarembra et al. [8], and ISIC [15]). The key types of 

production systems discussed in the research are emphasized in italics. The 

following sections briefly highlight these manufacturing systems (e.g. 

semiconductor manufacturing).
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Table 2.1: A summary of production system classifications

Classification Types Notes
based on

u Small-quantity production Production range (1 to 100 units/year),
EJ3 Job shop style
©> Medium-quantity production Production range (100 to 10000 units
c annually), complexity increases with
o product-mix increases
sTJ High-volume production Production range from (10000 to
Ou millions units annually), mass

Pk production style

Job Shop production Different set of jobs on different 
machines, and order or sequence is 
prescribed.

£ Batch production Product variety is hard, batches for every
s type of product, and mostly repeated
co orders

iflu? Flow/line/mass production High volume of product, stable design
"0o and demand required, and transfer lines
u

P-r are typical.
Mixed production Mix between any two of previous, 

flexible system, and productivity is 
function of order.

Fixed position layout Large and complex industries (e.g. 
aircrafts, space ships)

Process layout Grouping the equipment based on the 
function, (e.g. lathes in one department,
welding in another), Material handling is

3O the disadvantage.
Cellular layout Similar to flexible manufacturing cells 

and group technology style.
Product layout Layout arranged into the operations

sequence of the product, normally one 
long production line (e.g. assembly, 
packaging)

Pr
od

uc
t 

Ty
pe Automotive production 

Semiconductor Manufacturing 

Electronic industry

Complex automated manufacturing with 
high capital of investment.

c Level 0 (manual ) Production systems can be categorized
_o . based on the level of automation. There
E are many standards to determine the

automation levels.
< Level 6 (FMS)
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2.3.1 Semiconductor Manufacturing

The miniaturization of electronic components by means of Very Large Scale 

Integration (VLSI) technologies has been one of the most significant 

technological developments of  the last fifty years. Improving technologies and 

decreasing prices have led to integrated circuits appearing in all walks of life, 

see Figure 2.4.

The computer  revolution of the past two decades is a direct result of the ability 

to develop and fabricate these components economically.

irrteP-
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Figure 2.4: World Semiconductor Sales fwww.intel.com̂

The development of computer integrated manufacturing systems has a 

significant effect in the maintenance of competitiveness edge in today’s highly 

competitive global markets.

Semiconductor manufacturing is one of the most complex manufacturing 

processes in the world [16] with random yields and rework, complex product 

flows, t ime-critical operations, batching, simultaneous resource possession, 

and rapidly changing products and technologies.  Typically,  wafers undergo 

hundreds of processing steps, reentering the same processing machines 

multiple times, as each successive layer is added. Often, some processes are 

skipped, repeated, or completed in different order. This results in a complex, 

highly reentrant process flow that is difficult to be scheduled manually in an

W orld  S e m ic o n d u c to r  Sales

— Semiconductors $B

’85  ’86  ’87 ’88 ’89 ’90 ’91 ’92  ’93 ’94  ’95  ’96  ’97  98 ’99 ’00 ’01

17



optimum manner. A quick look at the manufacturing process might help to 

show the complexi ty of this industry.

The process by which integrated circuits are manufactured can be divided into 

four basic steps: wafer fabrication, wafer probe, assembly or packaging, and 

final testing as shown in Figure 2.5.

Semiconductor/IC 
Manufacturing Steps

Final Tests

Assem bly/ Packaging

W afe r Probe

W afer Fabrication
1

Figure 2.5: Basic Steps in very large-scale integrated circuits manufacturing

The front-end steps are manufactured in the system under study while the back­

end processes are done overseas for economic reasons (i.e. cheaper labors, less 

tax). A description of the four basic steps is presented in Appendix A. A 

jigsaw diagram in Figure 2.6 shows the main manufacturing areas in wafer 

fabrication.

Cleaning/
Oxidation

Implantation

PhotoLithography V/~\ Diffusion

Etching T  Metrology

Figure 2.6: wafer fabrication jigsaw
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Although the industry is intensely competitive, only recently has attempts been 

made to apply industrial  engineering and operations research technologies to 

the operational aspects of semiconductor manufacturing [17]. The escalating 

cost of semiconductor manufacturing in the last decades, Figure 2.7, focused 

research on manufacturing strategies in semiconductor manufacturing to 

minimize the production cost and increase productivity while improving both 

quality and delivery on-time performance.

Figure 2 . 7 :  Escalating cost of semiconductor wafer facilities fwww.intel.com')

Many researchers have contributed in the semiconductor development in areas 

such as product design (e.g. Avram et al. [17]), chip allocation (e.g. Heath et 

al. [18]), quality control (e.g. Phdake [19]), and implementation of JIT 

manufacturing (e.g. Martin-Vega et al. [20]). This research concentrates on 

production planning and scheduling applications towards process improvement 

(optimization) in the semiconductor industry focusing in particular on the 

photoli thography process.

Automation plays a crucial role in semiconductor manufacturing [21]. The 

level of automation and the quality of scheduling have a significant impact on
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the general performance of semiconductor fabrication in terms of productivity 

and quality. Therefore, flexible manufacturing systems are considered the 

essential element of semiconductor  manufacturing. The coming section 

discusses FMS in more detail.

2 .3 .2  F le x ib le  M a n u fa c tu r in g  S y stem

Flexible Manufacturing Systems (FMS) are the heart of semiconductor 

manufacturing as they include at least 90% of the semiconductor equipment. 

Despite all the interest in flexible manufacturing systems, there is no 

uniformly agreed definition of the term FMS. The main feature which 

distinguishes an FMS from traditional manufacturing systems is “flexibility” 

[22] which does not have a precise definition. In fact, the scope and variety of 

flexible manufacturing are commonly disputed and are the focus of many 

research efforts.

Ranky [23] defines an FMS as a system dealing with high level distributed data 

processing and automated material handling flow using computer-controlled 

machines, assembly cells, industrial  robots,  inspection machines and so on, 

together with computer integrated material-handling and storage systems. This 

production technology has been designed to attain the efficiency of well- 

balanced machine paced transfer lines,  while utilizing the flexibili ty that job 

shops have to simultaneously machine multiple part types.

To summarize the components and characteristics of an FMS, as described by 

different authors and researchers,  are as follows [24]:

• Potentially independent NC machine tools.

• An automated material-handling system.

• An overall method of control that co-ordinates the functions of both the 

machine tools and material handling system so as to achieve flexibility.

Technical descriptions and definitions of FMSs can be found in Hopp’s text 

(Hopp et al. [6]). Kaighobadi et al. [24] also defined FMSs, reasons for change 

from conventional systems to FMSs, application issues, and problems of FMSs. 

Rachamadugu et al. [26] and Liu et al. [25] have classified exisiting 

scheduling procedures based on key factors such as the FMS type, and
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scheduling environment, while Browne et al. [27] focused on the advantages 

arising from util izing processing, routing, and other flexibilities.

The characteristics that distinguish FMS from conventional equipment are 

summarized in Table 2.2. The main features which bring flexibility are the 

integration, mechanization and re-programmable automation of operations 

(processing, material handling, and tool change), technical flexibility, 

complexity, regulation and expense.

Table 2.2: Characteristics of FMS Technology

Characteristics Definition
Integration The extent to which the system is able to perform different types 

of operations, to change tools, to transfer and load workpieces, 
and to integrate with other programs and production schedules 
through LAN or any other media.

Technical The ability to quickly change mix, routing and sequence of
flexibility operations within the part groups

Mechanization The degree to which operations such as workpiece transfer,
and re­ loading/unloading and fixturing, tool change, machine tool
programmable control, cutting tool control and inspection, are performed by the
automation system, with minimum or without human intervention.

Complexity The number of inter-related elements comprised in the system, 
such as operating units, material-handling system, control system, 
and other elements.

Regulation The extent to which the system regulates the work of operators, 
process planners, production planners, maintenance engineers and 
other personnel.

Expense The cost incurred in the investment in, and the operation, 
maintenance and operational management of the system. 
Moreover, the technology updating is effective factor in saving 
expenses.

One of the main characteristics that can significantly affect flexible systems 

which used in complex industries such as semiconductor manufacturing is the 

FMC/FMS life cycle (Figure 2.8). In the first stage, the flexible manufacturing 

unit is put into production with the low volume to examine the output in order 

to avoid the risk of the high investment cost of the flexible manufacturing unit. 

Ramping of the production volume is then based on the performance of the unit 

in the first phase of production. During these two stages, the process 

modifications and system configurations changes are less predictable,  and
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hence these stages require a flexible rather than a dedicated process.  Once 

these stages are successfully done, the maturity stage of the FMS takes place 

with high production potential of the production unit in order to maximize the 

capacity util ization. The product technology holds fixed during this stages 

however, each change in the product mix produced by the system causes a 

certain amount of delay and has an impact on process planning. Due to the high 

investment cost of the production unit, which urges companies to make the best 

use of available capacity, the cell might be used in less capacity. The product 

technology might keep fixed for the production unit although the process 

configurations might change. The life cycle time of the flexible manufacturing 

unit varies in range from two to five years based on many parameters such as 

manufacturing type, nature of product,  technology.

Figure 2.8: Flexible Manufacturing Systems life cycle

2.4 Scheduling Problems in Manufacturing

Scheduling is a decision making process that plays an important role in most 

manufacturing and service industries.  The scheduling function optimizes 

limited resource allocation to the processing of jobs. Resources can be 

machines, materials to be processed, or staff at the work center. Jobs may be 

operations in workshop or tasks (maintenance or function) to be done. Each job 

may have a priority level,  an earliest  possible starting time, and a due date. 

The optimization objectives may also take many forms, such as minimizing the 

time to complete all jobs, minimizing the number of late jobs, and so on.
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The role of scheduling in a generic manufacturing environment is crucial. 

Customer orders are translated into jobs with associated due dates in a 

manufacturing setting. These jobs often have to be processed on the machines 

in a work center in a given order or sequence. The processing of jobs may be 

delayed if certain machines are busy, and preemption may occur when high 

priority jobs  arrive at machines and have to be processed at once. Unexpected 

events on the shop floor, such as machine breakdowns or longer-than-expected 

processing times, also have to be taken into account, since they may have a 

major impact on the schedules.  The scheduling system makes decisions 

dynamically about matching activities and resources in order to finish jobs and 

projects needing these activities on time and with adequate quality fashion 

while simultaneously maximizing throughput and minimizing direct operating 

costs by increasing utilization. Developing a detailed schedule of the jobs to be 

performed helps maintain efficiency and control of operations. For example, 

classical scheduling has a set of basic decisions to be made include:

a. Sequencing,

b. Timing/release, and

c. Routing.

Added decisions for extended scheduling models include:

d. Resource reconfiguration and

e. Activity reconfiguration.

2 .4 .1  L ev e ls  o f  S ch ed u lin g

The theory of scheduling is characterized by a virtually unlimited number of 

problem types. Basic classification for the scheduling problem and comments 

in this section are based on vast body of l iterature (e.g. Blazewicz et al.[28], 

Conway et al. [29], French [30], Lenstra [31], Pinedo [32], Rinnoy Kan [33], 

Tanaev et al. [34], Tanaev et al. [35], Herrmann et al. [36]).

Scheduling, in the field of production, appears in many facets characterized by 

several criteria.  Table 2.3 summarizes common scheduling types of 

manufacturing/production systems.
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Table 2.3: Different Types of Scheduling Problem

Classification based on Scheduling Levels

Production Volume High Volume Scheduling 
Intermediate Volume Scheduling 
Low Volume Scheduling

Nature of Production Activity Scheduling
Batch Scheduling
Network ( P roject) Scheduling

Production Capacity Infinite Capacity Scheduling 
Finite Capacity Scheduling

Manufacturing System Flow shop Scheduling (Transfer lines). 
Job-shop Scheduling.
Flexible Manufacturing System Scheduling.

State of Scheduling Static Scheduling
Dynamic Scheduling (Reactive)

The scheduling may be at different levels of detail and realism depending on 

the need. At a high level, a manufacturing facility may be considered as a 

single resource, while local scheduling must deal with the detail within the 

facility. This may lead to a classification of manufacturing planning at several 

levels. Most schemes have four or five levels. However, time horizon 

classification can be employed on these types of scheduling. Table 2.4 shows 

one classification with five levels of scheduling based on time horizon. All 

these levels can be described as scheduling, in that they have issues of time 

objectives and reconfiguration decisions.

Table 2.4: Classification of Scheduling Levels Based on Time Horizon [37]

Level Examples Horizon

I Long-range planning Plant expansion, plant layout, plant design 2 - 5  years

II Medium-range planning Production smoothing, logistics 1 - 2  years

III Short-range planning MRP, shop bidding, due date setting 3 - 6  months

IV Scheduling Job shop routing, assembly line balancing, 
process batch sizing, floor scheduling

2 - 6  weeks

V Reactive scheduling / control Hot jobs, down machines, late material 1 - 3  days
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While this research focuses on shop scheduling level (level IV in Table 2.4), in 

practice, many scheduling levels can be merged together to characterize a 

single manufacturing environment.

2 .4 .2  Shop  S ch ed u lin g

Optimizing product mix and resource allocation based on inventory levels, 

demand forecasts,  and resource requirements are major aims of higher planning 

level in manufacturing systems and decisions made have affect the scheduling 

process directly.

Shop scheduling is one of the most critical levels of scheduling because it is 

the linkage between the tactical planning level and operational level. It is 

driven, as shown in Figure 2.9, by decisions taken in the medium planning 

levels as well as long term planning.

Figure 2.9: Information flow in a generic manufacturing system [38]
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The main activities are; dispatching, loading, and resource allocation. Shop 

scheduling has to interact with other decision-making procedures used within 

the plant. One popular system that is widely used is the material requirement 

planning (MRP) system. After a schedule is set up, all raw materials and 

resources need to be available at the specified times to perform the operations. 

The due dates of all jobs  have to be determined jointly by the production 

planning and scheduling system and MRP system. Figure 2.9 depicts the 

information flow in a generic manufacturing system [38].

2.4.2.1 Shop Scheduling Objectives

Virtually all manufacturing managers want on-time delivery, minimal work in 

process,  short customer lead times, and maximum utilization of resources. 

Unfortunately, these goals can conflict,  e.g. customer lead times can be made 

essentially zero if  an enormous inventory is maintained, or maximum 

utilizations are obtained with lower resources, and so on. The goal of shop 

scheduling is to strike a profitable balance among these conflicting goals [6]. 

The basic objectives of shop scheduling for real-world systems can be 

summarized as;

1. Meeting Due-Date

Goal : Basic goal of production schedule is to meet due-date.

Measure: Lateness and Tardiness are measures of distance from the

goal.

Influence'. Production type (make-to-order,  make-to-stock) is 

considerable factor.

2. Maximizing Utilization

Goal : Cost accounting encourages high machine utilization, as

higher util ization means higher return on investment.  

Measure : Make-span is the closest product based measure of

util ization.

Influence:  Factory physics promotes high util ization, provided cycle 

times, quality,  and service are not degraded excessively.

3. Reducing Work in Process (WIP) and Cycle Times (CT)

Goal. Minimize WIP and CT in order to speed up the production
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flow.

Measure'. WIP is often easier to measure, e.g. waiting and idle 

t imes, while overall cycle time is hard to measure in 

complex manufacturing systems.

In fluence : There are some factors can keep cycle time short 

including: better responsiveness to the customer,

maintaining flexibili ty,  improving quality,  relying less 

on forecasts,  and making better forecasts.

2.4.2.2 Shop Scheduling Problem Characteristics

A) Problem Constraints

Most of real-world scheduling problems fall into the NP-hard category and 

tend to have many constraints.  Pinedo [38], Brucher [39], and French [30] have 

discussed many of the constraints imposed on shop scheduling process.  Briefly, 

these constraints can be:

• Precedence

• Routing

• Storage-Space and Waiting Times

• Preemption

• Machine Eligibility

• Production Plans

• Setup

• Material Handling

• Personnel Scheduling

• Tooling

• Resource

• Capacity

• Industry type

• Automation

• Economic

• Demand Pattern
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In addition, the scheduling function in any organization or system has to 

interface with many other functions. These interfaces are system dependent and 

may differ substantially from one situation to another. For example, the 

scheduling environment may be defined as static or dynamic (scheduling 

parameters status), preemptive or non-preemptive (production activities), 

regular or special (objectives), and deterministic or stochastic (information 

type), see Appendix B. That adds more complexity on finding the optimal 

schedule.

B) Performance Criteria

The terms objective criteria,  performance criteria or measures of performance 

are often employed with similar meanings and their use depends on the 

application and the model type. For example, make-span is preferable in case 

of flow shop and job shop although it is not in single machine scheduling 

models [40].

Many different types of objectives are used in evaluating production 

scheduling. In practice, the overall objective is often a composite of several 

basic objectives.  The most important objectives lay in a shop scheduling 

objectives framework as follows:

• Criteria based on minimizing due dates

• Criteria based on maximizing util ization

• Criteria based on minimizing throughput time

• Criteria based on customized objectives

Panwalker  et al. [41] presented a survey on performance measures,  and 

Demirkol et al. [42] presented extensive sets of randomly generated test 

problems for establishing benchmarks for shop scheduling problems. Pinedo 

[32] has addressed criteria related to flow shop and job shop problems in detail 

in his book. Rather than go through the full range here, Arisha [40] describes 

the performance criteria in more detail.
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C) Dispatching Rules

Dispatching, in the production context,  is a procedure that uses logical 

decision rules to select a job for processing on a machine that has just become 

available [43]. These rules determine the value of a priority attribute that is 

assigned to each job, calculated as a function of such parameters as processing 

time, due date, the length of the queue in which the job is waiting, and the 

length of the queue at the next machine on the j o b ’s route. The particular 

parameters are based on the particular application and attributes assigned to 

the operations and jobs.

Dispatching rules can be categorized in six different groups:

I. Simple Priority Rules.

II. Combination of simple Priority Rules

III. Local and Global Rules

IV. Heuristic Scheduling Rules.

V. Static and Dynamic Rules.

VI. Other Rules.

Research to study dispatching rules has been active for more than three 

decades; a comprehensive survey done by Panwalker et al. [41] has included 

over 100 dispatching rules. He listed the most common simple priority rules 

and their combinations. From different point of views, French [30] has 

classified the rules as static priority rules and dynamic priority rules based on 

the time function and the effect of passing time over the rules. Conway et al. 

[29] classified them as local priority rules (only information about the jobs to 

be processed on a particular machine),  while global rule gives more 

information about jobs, machines, queue lines, and cost. It is impossible to 

identify any single rule as the best in all circumstances [44]. Outstanding 

surveys on shop scheduling have investigated the dispatching rules along with 

the shop scheduling problem from a variety of perspectives such as Jain et al. 

[45], Herrmann [36], and Blazewicz et al. [46]. Table 2.5 shows a sample of 

dispatching rules.
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Table 2.5: A sample of dispatching rules and their definitions

Category Rule Symbols Definition o f  rules

Simple Priority Rules SPT Shortest Processing Time
LPT Longest Processing Time
FCFS First Come First Serve.
LCFS Last Come First Serve.

Combination of Simple 
Priority Rules

FCFS/SPT Select jobs based on SPT, but for jobs 
whose waiting time is greater than a specific 
value, use FCFS rule.

SEQ Consider work-in-process value of the job, 
elapsed waiting time and the number of 
operation.

Local and Global Rules SRPT Shortest Remaining Processing Time (local)
LRPT Longest Remaining Processing Time (local)
FOPR Fewest Operation Remaining (global)
MOPR Most Operation Remaining (global)

Heuristic Rules RANDO Select in RANDOM order
Look Ahead Study the effect of scheduling a job on the 

other jobs that might arrive the queue before 
the scheduled job is completed

Static and Dynamic 
Rules

EDD Earliest Due Date (static)
StS Static Slack: due date- arrival time
DyS Dynamic Slack: due date- the remaining 

expected flow time- the current date

2.4.2.3 Shop Scheduling Models

There is a wide range of shop scheduling models that can be used to address 

manufacturing systems. Shop scheduling models are often characterized by the 

machine configuration, processing constraints,  production flow pattern, and the 

scheduling objective function. For example,

n/m/G/Fmax or n/m/F/F m a x

where,

Fmax = Maximum flow time,

G and F  refer to general job shop and flow shop, respectively.

The general scheduling models and in particular shop scheduling models are 

extensively classified and presented in Appendix B. This thesis is interested in 

the most common shop models; Job shop, flow shop, and flexible shop.

A) Job Shop Model

The job shop is the most general model of the shop floor. Job shops typically 

produce a large number of different products.  For example, consider a shop

30



floor where jobs are processed by machines, each job consisting of a certain 

number of operations. Each operation has to be performed by a dedicated 

machine and requires a predefined processing time. The operation sequence is 

prescribed for each job in a production recipe, imposing static constraints on 

scheduling. Thus, each job has its own machine order and no relation exists 

between the machine orders of any two jobs, Figure 2.10.

Figure 2.10: Typical job shop model

Theoretically,  JSS problem is a set V ’ of jobs Ji, J2 , J3 , ... Jn has to be 

processed on a set ‘AT of ‘m’ different machines Mi, M 2 , M 3, ... Mm. Job ‘7 /

consists of a sequence of ‘m /  operations Ojj, Oj2 , Ojs,..... , Ojmj, which have to

be scheduled in this order.  Moreover,  each operation can be processed only by 

one machine among the ‘m ’ available ones. Operation ‘Ojk has a processing 

time ‘Pjk-  The objective is to find an operating sequence for each machine 

such as to minimize a particular function of the job completion times, and in 

such a way that two operations are never processed on the same machine 

simultaneously.

An exhaustive survey on solving job shop scheduling problems using different 

techniques was presented by Arisha et al. [47], and Appendix B shows many 

types of job shop models with brief description.

B) Flow Shop Model

Flow shop model is a special case of job shop model where all the jobs have to 

take the same sequence of operations. The flow of work is still unidirectional, 

and can be represented as a pure flow shop (Figure 2.11) in which some of the
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operation times are zero. However, this does not allow a job to bypass a 

machine. In some flow shops, if  a job does not need processing at a particular 

machine, it may bypass that machine (Figure 2.12) and go ahead of the jobs 

being processed or waiting for processing there.

Input

Output

Figure 2.11: Work flow in Pure Flow Shop Scheduling Model

The focus of this problem is to sequence or order the in ’ jobs through the ‘m’ 

machine(s) so that some measure of production cost is minimized. Indeed, flow 

shop scheduling problem has been shown to be NP-complete for non- 

preemptive schedules.  Chapter 4 discusses flow shop scheduling problem in 

more detail.

In pu t in put Input Input

O u tp u t O u tp u t O u tp u t O u tp u t

Figure 2.12: Work flow in General Flow Shop Scheduling Model

C) Flexible Shop Models

These models describe the flexible manufacturing cells, where the jobs path 

can be either flow shop or job shop. Flexible shop models are more difficult to 

schedule due to physical flexibility,  and reentrant flow of products.  The next 

section has an extensive literature survey on solving scheduling problems in 

flexible manufacturing environments.
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2.4.3 FMS Scheduling Problems

Heavey [1] classified decisions within FMS into three levels;  long term 

decisions, medium term decisions, and short term decisions. Figure 2.13 shows 

most of activities and problems encountered in FMS.
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Figure 2.13: Flexible Manufacturing Systems Decisions
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Comparison of different methods or models is always difficult. In order to 

analyze and compare scheduling strategies in FMS and develop more effective 

and efficient approaches, it is necessary to have a sound framework within 

which to define precisely the problem under investigation.

Liu and MacCarthy [25] presented a comprehensive classification of FMS 

scheduling problems based on attributes such as production system, capacity 

constraints,  and performance measures. Rachamadugu et al. [26] reviewed the 

scheduling procedure of FMS, while Basnet et al. [87] focused on the control 

factor and scheduling approaches. Many more researchers discussed the FMS 

scheduling problem (e.g. Gupta et al. [88], Rodammer et al. [89]). Table 2.6 

summarizes the FMS scheduling problems addressed in the literature into five 

groups.
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Scheduling of FMC

FMCs have been developed over the last decades to help manufacturing 

industry move towards the goal of  flexibility. An FMC comprises three 

principal elements: CNC tools, MHS, and a control system.

Table 2.6: Classification of  FMS scheduling problems

Factor Main types Notes

System Type

Flexible Manufacturing System (FMS) FMS is a production system capable of 
producing a variety o f part types, which consists 
o f CNC or NC m achine tools connected by an 
automated material handling system. The 
operation o f the whole system is under computer 
control.

Single Flexible M achine (SFM) SFM is a computer controlled production unit 
that consists o f single CNC or NC machine with 
tool changing capability, a material handling 
device and a part storage buffer.

Flexible M anufacturing Cell (FMC) FMC is a type o f FMS consisting of a group of 
SFMs sharing one common material handling 
device.

M ulti-M achine Flexible Manufacturing 
System (MMFMS)

MMFMS is a type o f FMS which consists of a 
number o f SFMs connected by an automated 
MHS which includes two or more material 
handling devices or is otherwise capable of 
visiting and serving two or more machines at a 
time.

Multi-Cell Flexible M anufacturing System 
(MCFMS)

MCFMS is a  type of FMS that consists o f a 
number of FMCs, and possibly a number of 
SFMs if  necessary, all connected by an AMHS.

Capacity
Constraints

Zero Capacity It means that there is no buffer at that place in 
the system

Limited Capacity It indicates that the buffer can only 
accommodate a restricted number of parts at any 
one time.

Infinite Capacity W hen the buffer is large enough such that no 
delay will be caused by the waiting of a part for 
a place in the buffer.

Job
Characteristics

One operation for each job This factor describes the level of job complexity 
and the level of job  routing. Complexity may be 
defined with the num ber o f operations for the job 
and the capability o f machines to perform more 
than one operation.

Two or more operations for some or all jobs

One machine for each operation

Two or more machines for some or all 
operations

Production
Management
Environment

Due Date reguests This represents the policies o f the higher 
production management functions, which affect 
the scheduling activity. It is an important issue 
and needs careful consideration. The categories 
listed are not all the possible issues.

Periodic orders

Continuous orders

Part per type

Lot per type

Ratio request

Batch Size request

Scheduling
Criteria

M ake-Span This factor can vary based on the planning 
objectives o f the system. There are hundreds of 
objectives listed in publications such as, Baker 
[59] , Shannon [114], Iskander [41], and Banks 
[111], The selection o f the scheduling criteria is 
very critical issue for the system analysts to set 
with the planning and production stuff.

Product/Batch Cycle Tim e

M achine Utilization

M aximum Tardiness

M achine Idle Times

Productivity measures
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Although there has been a vast body of work on production scheduling in the 

technical l iterature and industrial  practice, the problem of assessing the quality 

of a given production schedule seems to be extremely expensive to implement 

in real-world manufacturing systems. The need of systematic framework for 

evaluating the performance of schedules generated is a crucial issue in research 

on scheduling.

FMC scheduling in semiconductor manufacturing is faced by profusion in 

product variety, decreasing lead times to delivery, exacting standards of 

quality,  and competitive costs. Simultaneously, the need for quick and efficient 

approaches to deal with such multifaceted problems has increased. In chapter 

five, a proposed model to study the scheduling of FMCs has been used.

Relevant Literature

FMS comprises two main components that provide flexibili ty as shown in the 

diagram below.

Machine F lex ib ility

Routing F lex ib ility

Product
Process

Operation

Vo lum e
Expansion

-► Production F lexib ility

Stecke and Solberg [90] carried out a study for a dedicated type of FMS 

examining five loading strategies and 16 dispatching rules. The study drew 

several significant conclusions about how the system should be controlled and 

indicated that the choice of applicable loading and dispatching strategies 

depends on many variables particular to the system. An FMS with multi-tool 

automated machines to produce a given product mix was studied by Arbib et 

al. [91]. They concluded that an optimal machine workload can be found by 

routing parts on a l imited number of paths. They found the best routing by 

minimizing the global amount of part transfers among all machines.

For an FMS, the choice of  an appropriate scheduling strategy is an important 

operational issue. However,  only a few successful implementations of
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scheduling techniques were found in practice [92]. The benefit of flexible 

routing to address loading and parts dispatching problems have been studied 

[93]. Alternative operations can also significantly impact the performance of 

FMSs. As suggested by Ro and Kim [94], alternative operations could be 

implemented dynamically or be planned to offload bottlenecks, with the 

objective of improving machine util ization as well as part flow time by using a 

l inear programming model before implementation. Chen and Chung [95] 

identified the potential benefits of multiple loading and alternative routing 

when the routing decision was planned or made before an order was released to 

the shop floor. Sabuncuoglu [86] examines the effect of scheduling rules on the 

performance of FMSs. He tested several machines and AGV scheduling rules 

against the mean flow time criterion.

An FMS ideally combines high levels of flexibili ty with high productivity and 

low levels of work-in-process inventory. It may also allow unsupervised 

production. In order to achieve these benefits, effective and efficient 

scheduling strategies are required. Many researchers have been studying 

routing policies and dispatching rules on different performance measures [96]. 

However,  few studies cover machine selection and part dispatching 

simultaneously with various manufacturing parameters.  A comprehensive 

survey on previous research on FMS scheduling problems have been presented 

by Chan [97]. The paper includes a summary of the publications on scheduling 

problems in last two decades. The majority of research dealt with part 

dispatching (70%) while few of these considered routing and operation 

selection problems.

2.5 Solution Techniques

A vast body of l i terature has focused on the most general forms of shop 

scheduling which are job shop scheduling and flow shop scheduling. This 

section provides an extensive survey on the solving techniques over the last 

decades.

The scheduling problem was first studied in the mid-fifties in the form of a 

paper presented by Johnson [48]. In the following years, several studies
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discussed the solution to SS in its standard form (e.g. Jackson [49], Conway et 

al. [29], Lawrence et al. [50], and Brucher [39]). An analysis of scheduling 

problem complexity is shown in Figure 2.14.
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e.g. preem ptions, perform ance analysis
unit processing - worst case behavior

- mean behavior
a) probabilistic analysis
b) simulation studies

Figure 2.14: An Analysis of a scheduling problem -  schematic view

The general SS problem is NP-hard in the strong sense (Lenstra et al. [31], 

Gonzalez et al. [51], Garey et al. [52], Rinnoy [33]) and is probably one of the 

most computationally intractable combinatorial problems existing in 

manufacturing systems. A practical proof of this intractabili ty comes from the 

fact that a small example with 10 jobs and 10 machines posed by Thompson et 

al. [53] was an open problem for over 15 years. It was solved by Pinson et al. 

[54] as the culmination of a considerable amount of research.

Feasible schedules are obtained by permuting the processing order of 

operations on the machines (operations sequence) without violating the 

technological constraints,  resulting in a maximum of (n!)m different solutions 

for a given problem [55], The explosive exponential growth in the number of 

alternative schedules with the size of problem is central to the difficulty of 

identifying one of  these as the optimum schedule.

The difficulty is twofold:

• First, there is the problem of deciding what characteristics should define 

for the best schedule.
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• Second, how can such a schedule be efficiently determined?

Techniques have been developed by researchers to deal with the scheduling 

problem. These techniques can be grouped as traditional and advanced 

techniques, Figure 2.15.
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Figure 2.15: Shop scheduling solving techniques

Often these solution techniques have been combined to provide more 

comprehensive solutions, Figure 2.16.
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Figure 2.16: Relationship between shop scheduling solving approaches
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2.5.1 Traditional Techniques

Traditional techniques can be classified under two main categories,  i.e. 

Analytical Techniques and Heuristic Techniques, Figure 2.17.

The general approach of the analytical methods is to consider the problem in 

its total system form of  scheduling ‘n ’ jobs on ‘m’ machines. The relative lack 

of success of this approach in providing a general optimization method of wide 

applicabili ty has led to a switch in the focus of attention from the total system 

to a more simple decomposed subsystem view of the problem, in which the job 

shop is considered to be a series of interrelated single machine scheduling 

problems [2].

Figure 2.17: Traditional Techniques

Fisher [56] obtained a more efficient enumeration method for JSS problems. 

More recently, a technique to obtain near-optimal solution for parallel  identical 

machines has been used by Hoitomt et a l . [55]. A shifting bottleneck heuristic 

as one successful approach for decomposing the job shop into sub-problems is 

presented by Pinedo [58].
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Table 2.7: A nalytical Techniques

Main Features Limitations
1. Kxoiicil Enumeration

In this method, they generate a complete enumeration tree. The 
leaves o f the tree represent all feasible solutions. The path from the 
root to a leaf o f minimal make-span represents an optimal solution. 
[59] and [53] offered an algorithm  which created an active schedule 
with respect to disjunctive arcs.
A com puter program  algorithm, which deals with optimal job 
sequence (250x250), it was economic for small and medium-sized 
problems only [60].

The remaining difficulty is the size o f search tree 
generated. Since we have a maximum of (n!) m 
solutions to consider.
The limitation o f algorithm [59], [53] is that it presents 
procedure relations that cannot be determined before a 
schedule is constructed. Also, it is not adequate to 
capture sequence dependent set-up and tear down time 
in every case (W hite et. al [61]).

2. ImDlicit Enumeration
The strategy o f implicit enumeration attempts to m inim ize an 
objective function without considering every possible solution. 
Implicit enumeration schemes exam ine increasingly sm aller subsets 
of feasible solutions until these subsets definitely do not contain 
improved solutions.

All implicit enumeration approaches for the 
determination o f an optimal schedule appear to be 
susceptible to the combinatorial nature o f these 
problems, when they are tested with multiple- 
resources (more than 50 activities) [59].

2.1. Branch and Bound
Branch and Bound Algorithms cut branches from the enumeration 
tree and therefore reduce the num ber of generated nodes 
substantially. An optimal solution can be found by systematically 
examining the subsets o f a  feasible solution.
Several different algorithms exist for SS [29] [59] and have been 
applied to flow scheduling [62], Survey on Branch and Bound 
methods in [39],

The limitation of this algorithm is that the make-span 
is the only criterion, which can be evaluated.
The efficiency of the technique depends very much on 
the efficiency of the lower bound. The more efficient 
the bound, the smaller the amount o f enumeration of 
the solution tree that needs to be carried out.
It is impractical to enumerate even this reduced set of 
alternatives because it is too large.

2.2. Branch and Dominate
Sim ilar to Branch and bound but differs in the pruning approach. If 
there is a set of conditions at a node which mean that the schedules 
will be inferior to the best schedule at some other node, then the 
first node may be elim inated from further consideration. In this way 
the second node dominates the first.

Using dominance conditions may shorten the search 
sufficiently such that a  reduction in overall 
computational requirements is obtained [59] [33], It is 
still impractical to enumerate this reduced set.

3. Partial Enumeration
The optimal schedule has been shown to always be in a subset of 
feasible schedules, termed ‘active’. This identification o f such 
active feasible schedules has been used in [63], Recently, Shifting 
Bottleneck algorithm is considered as a good step in partial 
enumeration by [58].

This method to define active and semi-active 
schedule's helps to reduce a computational work 
somewhat. However, there is still a need to generate a 
high number o f schedules to get the optimal one. The 
problem complexity increases with more machines and 
jobs.

4. Linear Proeram m ine
The particular attraction, from the model building point o f  view, of 
linear programming is that highly efficient program codes are 
available which can deal with very large problems involving many 
variables and constraints.
It is fair to say that, in some cases the specific nature o f the problem 
allows certain simplifying approximations that perm it a  solution by 
Linear Programming.

Linear Programming can often be used as a practical 
technique, but only if the problem conforms entirely to 
the requirements of the approach.
The main shortcoming in that most of the real 
manufacturing planning and scheduling do not behave 
linearly in most cases, even after the simplifications. 
Moreover, some or m ost o f constraints in practice 
cannot be represented as linear. For example, the 
specification that either machine A or B may be used 
to process job j.

5. Intcser Proeram m ine
To overcome som e of the lim itations o f linear programming integer 
variables may be used. This complication the solution requiring the 
use o f less efficient algorithms. Integer Programming formulations of 
the JSS problem have been reported in [64].

The present integer programming codes available are 
over-stretched even by very small JSS problem 
formulations, Even allowing for possible 
developments and improvements in integer 
programming computer codes, it would appear that as 
a general method for solution o f  JSS problems it is a 
non-starter.
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Table 2.8: H euristic Techniques

Main Features Limitations
1. Incremental Scheduling

Incremental schedule building starts with an em pty timeline and a set o f 
tasks to be scheduled. The basic idea behind incremental scheduling is 
to choose the next task to be scheduled and to place that task on the 
tim eline so that no constraints will be violated. The placement algorithm 
may be very simple or very involved, attempting some degree of 
optimization.
This process repeats until either all tasks have been scheduled, or there 
are still tasks that remain to be scheduled but no times. In this latter 
case, the scheduler has effectively reached a dead-end.

Some systems halt at this point o f dead-end, 
presenting an incomplete solution to the user. 
Others attempt to free the scheduler from the 
dead-end condition by undoing some previously 
made decision. Incremental scheduling can 
degenerate into brute-force trial-and-error 
searches. Since this is a computationally 
intractable alternative, incremental scheduling 
systems tend to be either slow or poorly 
optimizing, or both.

2. Neighborhood method
Neighborhood search techniques begin with any feasible schedule, 
adjust this somewhat, check whether the adjustment has made any 
improvement. Continuing in this cycle o f adjusting and testing until an 
improvement m easure is achieved. Two related concepts, which are the 
basis o f this method, are the neighborhood sequence and the 
neighborhood generating mechanisms for these sequences [30],

The search procedure of this family of algorithms 
terminates with a sequence that is a local 
optimum. Unfortunately, there is in general no 
way to guarantee or even know if  the terminal 
sequence is also a global optimum. However, few 
experiments indicated that, fundamental 
neighborhood search algorithm described above, 
is fairly reliable as a general-purpose heuristic 
procedure [59],

2.1. Taboo search
Taboo search approaches produce good results in reasonable runtime. 
Taillard [47] applied this global optimization technique to the SS and 
showed that it is typically more efficient than the shifting bottleneck 
procedure and simulated annealing implemented by Lenstra [31]. 
Taillard provides optimal solution for some identified problem  with 
shorter computational time for more complex problems.

Requires large memory, as subsets of the solution 
path are kept in memory.
Another crucial aspect is the maintenance of the 
taboo list using variable taboo list length and 
cycle detection mechanisms which prevent 
cycling around a number o f neighboring solutions.

2.2. Local search techniaue
Simulated annealing [65] and taboo search techniques are the main local 
search techniques that have been tested on the SS problem. In both 
cases, the neighborhood structure is based on scheduling arrangement.

In comparison with other heuristic methods both 
techniques yield quite consistently good solutions. 
Simulated annealing is comparatively much more 
time consuming that taboo search on difficult 
instances.

3. Truncated Branch mid Hound method
One of the m ost efficient approxim ate methods proposed so far is 
probably the shifting bottleneck procedure developed by Adams et al 
[57], Its m ain idea is following: Stalling with the initial SS problem, 
they optimally sequence one by one the machines, using Carlier (1982) 
algorithm for the one machine problem. The order in which the 
machines are sequenced depends on a bottleneck measure associated 
with them.

This procedure is embedded in a second heuristic 
o f an enumerative type, for which each node of 
the search tree corresponds to a subset of 
sequenced machines. In comparison to other 
algorithms, it is less efficient as each time a new 
machine is sequenced, they attempt to improve all 
previous scheduled machines in long re­
optimization steps.

4. Lagrangian relaxation
Scheduling methodologies based on Lagrangian relaxation have proved 
to be computationally efficient and have provided near optimal solutions 
to identical parallel m achine scheduling problems. It has been applied to 
schedule job shops, w hich include multiple machine types, generic 
precedence constraints and simple routing considerations [56],

It can be applied to some cases in machine 
scheduling and under certain conditions.
The results are not guaranteed in complex JSS 
problems.
It provides near optimal in case of identical 
machine scheduling.

S. D isoatching Rules
Dispatching Rules indicate how to assign a specific job to a specific 
machine at a  given time, when a machine becomes available for 
process.. A lot of studies were done over these rules,[29][30][54][59], 
Pinedo & Bhaskaran [43] presents classification of basic dispatching 
rules.
Panwalker el al. [41] presented over 100 priority rules. Dispatching 
Rules can be classified into groupes:

Simple Priority Rules.
Combination o f simple Priority Rules.
W eighted Priority Index.
Heuristic Scheduling Rules.
Other Rules.

Researchers have analyzed sequencing decisions 
jointly with other dynamic decisions (see Ref. 
[45]).
Unfortunately, none of the rules seems to 
outperform any other for practical problem 
setting. Recently simulated annealing was also 
applied to deal with JSS problems as a remedy.
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Attempts to bridge the gap between heuristic approaches and analytical 

approaches have also been undertaken (e.g. Hoitomt et al. [55], Fisher [56], 

and Adams [57]). In Adams, the solution is provided by ‘local optimizat ion’. 

However,  schedule evaluation could only be achieved through “selective 

enumerat ion” . Recently, the Lagrangian relaxation technique has been used by 

A concise survey on main analytical and heuristic techniques that have been 

used to deal with JSS problem is provided in Tables 2.7 and 2.8.

2.5.2 Theory Practice Gap

Unfortunately, no simple scheduling algorithm exists for the general ‘n ’ jobs, 

‘m’ machines case of JSS. There is a gap between scheduling theory -  as 

represented by analytical methods -  and practice, Figure 2.18. This stems from 

the inabili ty of theory, as so far developed, to cope adequately with the 

complexities of many of the real-world JSS problems.

Figure 2.18:The Theory-Practice Gap [2]

Many researchers in the field, faced with these difficulties in solving 

scheduling problems, make simplifying assumptions and approximations to 

reduce the problem to a form that they can hope to solve. In case of SS the 

fundamental difficulties of real practical problems have led to simplifications 

on a scale, which in some cases has reduced the problem to a shadow of reality 

[2].
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These have resulted in:

1. Emphasis on small-scale problems

Although most of research is concerned with the general n-job, m-machine 

scheduling problem there has been a great deal of concentration of effort  on 

the small-scale problem involving at most four machines.

2. Simplified Problem constraints

These constraints are covered in detail by French [30], the main ones are:

All jobs and their processing times are known prior to scheduling being 

carried out, effectively transforming the dynamic problem to a static one. 

Machines are assumed to be able to operate on only one job at a time.

Job splitt ing and job lapping are only permitted in very exceptional cases.

3. Simple objective functions

Most of these are single parameter objective functions, which are to be 

optimized. The most commonly used objective functions are: Mean flow time, 

Total lateness,  and Number  of late jobs.

It is true to say that some insight into the solution of the practical SS problem 

has been derived from this research activity on simplified problems. In 

practice, the complexi ty of production planning and control in general and 

scheduling in particular varies from one situation to another. The degree of 

complexity is governed by such factors as average number of operations per 

product,  product variety and scale and type of production.

4. Optimization & satisfying solutions

Analytical methods are generally concerned with optimizing solutions, where 

the optimization is carried out with respect to some particular success criteria. 

It is well known that the measures of success are multi-dimensional. For 

example, make-span time may be important but so is work in progress,  machine 

utilization, labor util ization, delivery performance ... etc.

The relative importance of each will vary from company to company, and 

indeed may change over time within a company. Probably, the most rational 

objective function would be one comprising a weighted function of the various 

performance criteria deemed relevant, with management determining 

subjectively the relative weight of each. In practical scheduling work, they are 

more concerned with establishing feasible schedules,  which will provide
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satisfactory performance against measures of success such as flow time, 

delivery dates, utilization, ..etc.

It is worth mentioning that the computational time to find the solution is 

uneconomic in most uses of traditional techniques. Heuristic methods of 

scheduling, by definition, give rise to satisfying solutions in shorter 

computational times and the advanced techniques build on this to provide a 

more comprehensive evaluation in the research for such solutions.

2 .5 .3  A d v a n ced  T ech n iq u es

2.5.3.1 Simulation

Simulation has proven to be an excellent strategic tool for high level planning; 

however,  it can also be used as a day-to-day tactical tool on the shop floor. 

While simulation can be applied to many aspects of manufacturing systems, 

two areas stand out in particular:

1. In Job shop, the simulation of  dispatching rules and the assessment of 

the effect of different rules on the shop’s ability to meet delivery dates 

and utilize the machines.

2. In flow lines to try to minimize the loss of output.

However, it has also been applied to more advanced systems in manufacturing 

such as FMS, Automation, . . .e tc.  The first application of simulation was studies 

of different priority rules carried out by Elmaghraby & Cole [66], applied their 

control of the production at Western Electric.

Other investigations such as [49][67][68][69] have experimented with 

computer simulation models of hypothetical shops in which assumptions are 

made about the mechanism for generating job arrivals and processing times, 

while Jones [70] establishes an economic evaluation of job shop dispatching 

rules. The priority dispatching rules in job shops with assembly operations and 

random delays has been studied [71], followed by more comprehensive study 

of Sculli  et al. [72] in a fabrication/assembly shop.

Ezat & El Baradie [73] showed how to use computer aided-simulation as a tool 

for the optimization of pure flow shop scheduling under different priority 

rules,  followed by further study on the effect of various priority rules on
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minimizing multiple criteria. The objective of all these simulation experiments 

has been to evaluate and determine efficient and effective scheduling rules that 

may be generally applied in practice.

Arisha et al. [171] developed a simulation model for general flow shop 

scheduling. This study aimed to:

1) To provide a simulation model able to find the optimum / near optimum 

sequence for general flow shop scheduling problem with make-span 

minimization as main criteria;

2) To compare computational t ime to obtain feasible solution in two 

different solving approaches.

3) To examine different dispatching rules on minimizing multiple criteria. 

This Simulation model can use for deterministic and stochastic flow shop 

scheduling. It reads and manipulates data for 500 jobs on 500 machines. The 

model presents heuristic technique (Dispatching rules) with different factorial 

experiments in a comparative study on the performance of different dispatching 

rules,  such as FCFS, SPT, LPT, SRPT and LRPT with respect to the objectives 

of minimizing make-span, mean flow time, waiting time of jobs, and idle time 

of machines. The proposed model is evaluated and found to be relatively more 

effective in finding optimal/ near optimal solutions in many cases. The 

influence of the problem size in computational time for this model and the 

results obtained are discussed in Appendix B.

The use of simulation software has thus become widely accepted as a too] for 

the improvement and enhancement of  the performance of a manufacturing 

system in general.  Simulation is also accepted as the tool for the evaluation of 

the manufacturing system in operations using “What-If” scenarios prior to 

doing any harm in real life. Current tools make it relatively simple to build a 

simulation model for planning and scheduling. Using this model,  through the 

definition and application of the rules used to assign work to the available 

resources, the scheduler can be sure that all of the combinations and exceptions 

are considered and the production objectives satisfied. More recently the 

tracking and reporting of this process has been integrated within the software, 

and hence simulation-based scheduling has become the start point in solving
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the scheduling problems. Improvements in simulation software can help to find 

efficient way to shorten the time needed to get the optimal scheduling. More 

about simulation applications in scheduling is described in chapter three.

2.5.3.2 Art ificial  Intelligence

The need for rapid solutions prompted researchers to use AI techniques such as 

Knowledge-Based Systems (KBS), Expert Systems (ES), Neural Networks 

(NNs), Case-Based Reasoning (CBR), Genetic Algorithms (GA), Fuzzy Logic 

and any combination of these techniques [5]. Figure 2.19 il lustrates some 

applications of AI in scheduling to deal with SS problem.

2.5.3.3 Constraint Satisfaction Methods

One of the most promising general approaches for solving combinatorial 

problems is repair heuristics.  Scheduling appears to be an excellent application 

area for repair-based methods. Supporting evidence comes from previous work 

on other real-world scheduling applications by Zweben [74], Biefeld and 

Cooper [75], and Lee et al. [135]. Each of these projects uses iterative 

improvement methods that can be characterized as repair-based. Repair-Based 

approach is that it is extraordinarily well suited to rescheduling. Rescheduling 

typically takes less time than the initial  schedule generation, as it requires 

fewer repairs. It has been pointed out, there are real-world scheduling 

problems where humans find repair-based methods very natural [84]. 

Repair-based idea was extended in a natural manner to solve constraint 

satisfaction problems (CSPs) [76], A CSP consists of a set of variables and a 

set of constraints.  The constraints indicate the allowable combinations of 

values that can be assigned to the variables.  A solution is an assignment 

specifying a value for each variable,  such that all the constraints are satisfied. 

A repair-based constraint-satisfaction method takes the variables and the 

constraints and begins by generating an initial assignment for the variables. 

The initial assignment is then repeatedly “repaired” until a solution is found. 

Heuristics such as Min-Conflicts attempt to minimize the number of variables 

that will need to be repaired in order to reduce the search space.
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The n-queens  problem is still the standard benchmark for testing CSP 

algorithms [77][78]. Whereas the n-queens problem is only of theoretical 

interest, scheduling algorithms have many practical applications. A scheduling 

problem involves placing set of tasks on a time line, subject to temporal 

constraints,  resource constraints,  preferences, etc. CSP has considered 

scheduling as a constraint optimization problem [80]. The fact that the min- 

conflicts approach well on n-queens,  a well studied “ standard” constraint- 

satisfaction problem, suggests that AI and repair-based methods might be more 

useful than previously thought.  Minton et al. [79] developed the initial 

scheduling system ‘S P IK E ’ using the min-conflict  method to solve scheduling 

problems. There are still many possible extensions to the CSP methods which 

would improve the performance of the solution technique. Minton et al. [76] 

suggested more heuristics are still needed to combine with the existed heuristic 

to provide robust solutions. For example, min-conflicts may combine with hill 

climbing heuristic search or backtracking in order to minimize the search space 

and the solution time. In addition, more sophisticated techniques such as best- 

first search is investigated [78] to be used with min-conflict  to provide quicker 

solutions.

Srivastave et al. [81] have developed a ‘REALPLAN’ in which resource 

allocation is de-coupled from planning and is handled in a separate scheduling 

phase. This research can be viewed as an important step towards merging 

planning with real-world problem solving where plan failure during execution 

can be resolved by undertaking only necessary resource re-allocation and not 

complete re-planning. Jonsson et al. [82] has integrated ANN methods for 

general CSP to solve problems which include boolean variables.  In contrast to 

conventional ANN methods, it employs a particular type of non-polynomial 

cost function, based on the information balance between variables and 

constraints in a mean-field setting. The performance is comparable to that of 

dedicated heuristics,  and clearly superior to that of conventional mean-field 

annealing. Shang et al. [83]developed a new heuristic taking into account the 

complexity of  continuous constrained problems. In their research, they studied 

complexity phase transition phenomena of continuous CSPs, then analyzed 

three continuous constraint satisfaction formulations based on (discrete) 3-SAT
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problems, which have a strong relation between structure and search cost. They 

proposed a generic benchmarking model for comparing continuous CSPs and 

algorithms, and presented two example problems based on sine functions. 

Regarding local versus global search techniques for constraint solving, the 

obtained results show that local search methods are more efficient for weakly 

constrained problems, whereas global search methods work better on highly 

constrained problems.

However, there is no guarantee that a solution will be found quickly or even 

that a satisfactory solution will be found in some complex cases using CSP 

methods.

2.6 Conclusions

Scheduling is a ubiquitous task that involves time-sequenced allocation of the 

available resources and jobs loading. With manufacturing responding more and 

more to the preferences of customers,  the scheduling process is getting more 

complex. The scheduling complexity is a function of manufacturing systems 

complexity. A range of classifications of manufacturing systems exist which 

can help in defining scheduling problems. Solultion techniques have been 

classified into two main groups; traditional and advanced techniques. These 

different techniques have characteristics which dictate what problems they can 

be most effectively applied to. The low acceptance of traditional techniques 

and the consequent overreliance on advanced techniques is due to a number of 

reasons (e.g. time needed to find the solution, and the quality of the solutions 

obtained). This thesis utilized many solution techniques (e.g. analytical, 

heuristic,  simulation, AI, and hybrid techniques) for scheduling problems (e.g. 

pure/general flow shop, flexible job shop in semiconductor manufacturing 

environment).  There are number of papers that are relvant to the development 

of scheduling models in flexible manufacturing systems in semiconductor 

fabrication. These and other aspects used in the development of the proposed 

model are described in detail in the next chapter.
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Figure 
2.19: Intelligent 

scheduling 
tools

H v b rid S v s te m s :
- Szelke and M arkus (1997) [81]com bined m achine learning techn iques and 

C B R  to  so lve  shop floo r schedu ling problem s.
- K im (1998) [82] used an in tegrated approach o f inductive learning and 

com petitive  N N s fo r deve lop ing m ulti-ob jective FMS schedu lers. The FMS 
schedu ler can ass is t to m ake a decision in real tim e, w h ile  satis fy ing 
m ultip le  ob jectives desired by the operator.

- Lee (1998) [85]com bined G As and m achine learning to  deve lop  a JSS
system .
- Soon and S ouza (1997) [90]have explored the poss ib ility  o f using a hybrid 
approach em ploy ing neural ne tw orks and sim ulation techno logy  to  solve 
the  de ta iled schedu ling problem  (a know n c lass o f N P-com plete problem s) 
in a  m anufacturing cell.

- Hybrid G A  is proposed fo r job  shop schedu ling where se lected dispatch ing 
rules are in tegrated in to the process of genetic evolution [96], In addition, 
ne ighborhood search is adopted as an auxilia ry procedure.

F u zzv  L o g ic :

-Y u  (1999) [88] proposed 
approach to  FM S w ith M ulti­
c riteria  based on Fuzzy 
inference.

- The proposed system  
perform ed very robustly w ith 
respect to shop w orkload fo r 
all used perform ance 
measures..

- Fuzzy logic tool in tended to 
rank flow  shop d ispatch ing was 
presented by Petroni e t al. [95].

N e u ra l N e tw o rk s  (N N s ):
- Neural N etw orks have been 

successfu lly  applied to  the 
so lu tion of constra ined 
op tim iza tion  problem s.

- The schedu ling  can be so lved
using NNs to reduce the 
com puta tiona l com p lexity  (G rabot 
1998) [84]. N N s have been tested  
in o rder to  em ulate the expertise 
invo lved in the defin ition o f such 
com prom ise (Zhang et al. 1995) 
[89]-_________

Knowledge-Based Systems (KBS). Expert Systems (ES):
- A  reform ula te approach to  schedu ling is proposed to  find a satis factory  solu tion. A lthough the algorithm ic approach concentrates 

heavily  on the  so lu tion m ethodo logy and trea ts  the problem  form ulation as given. The reform ulate approach acts  to  enrich the 
model (problem  fo rm ulation) until a satis factory  so lu tion [76],

- O rcich and Frost (1984) [91] has described the firs t w ork ing system  ISA (In te lligent Scheduling System ).
-T h e n  IS IS  (In te lligent Scheduling and In form ation System ) is described its  firs t level by Fox and Sm ith (1984) [92] as  a 

know ledge based decision support system  designed to provide in te lligen t support in the dom ain of JSS.
- schedu ling is an optim ization problem . Thus, the design o f IS IS  focus  on: 1) C onstructing a know ledge representation that 
captures  the requis ite know ledge o f the job  shop environm ent and th e ir constra in ts. 2) D evelop ing search arch itecture

- O ne of th e  m ost im portan t advantages in the  ISIS fam ily  tha t they are designed fo r both pred ic tive  and reactive schedu ling 
(Fox&Sm ith 1984) [92],

- ISIS-1 uses pure constra in t guided, but w as not very successfu l in so lv ing  practica l schedu ling problem s.
- IS IS -2 uses m ore soph is ticated search techniques. Search d iv ided in to the four phases: Job  selection, T im e analysis,

R esource ana lys is  and R esource assignm ent.
- IS IS -3 tries to  schedu le each job  using m ore in form ation from  the shop floo r especia lly  about bo ttleneck resources.
- The arch itecture o f ISIS is in flexib le  as fa r as m odifications o f g iven schedu les are concerned, a  new  schedu ling system  

called O P IS  deve loped (B lazew icz et al. 1994) [93],
- W here  as the  ISIS system s are prim arily  job-based and O P IS  sw itches betw een job-based and resource-based 

considerations, C O R TE S  takes  a task-oriented po in t of v iew , w h ich  provides m ore flex ib ility  of greater search effort.
- S O N IA  is the know ledge based schedu ling system  tha t relies on constra in t satis faction and It has a very flexib le  
arch itecture , generates pred ic tive and reactive schedu les and in tegrates both so lu tion approaches.

- C A M P S , E M P R E S S , and E M P R ESSII w ere  an im portan t c lass of schedu ling system s tha t ass is t the hum an schedu ler [94],

| \
G e n e tic  A lg o r ith m  (G A ):
- C andido e ta l (1998) [83] used a 

G A  to  so lve jo b  schedu ling  
problem s w ith m any constra in ts  
such as  jo bs  w ith  severa l 
subassem bly  leve ls, a lte rna tive  
process ing plans fo r parts  ..etc.

- Hybrid G A  tha t inco rpora tes a 
loca l hill c lim b ing  p rocedure  is 
applied to  the set of local 
optim um  schedu les.

- W ebste r (1998) [87] used a  G A  
fo r schedu ling  jo bs  about 
unrestric ted com m on due date 
on a s ing le  m achine.

- M in and C heng (1999) [86] have 
used G A s fo r the identical 
para lle l m ach ine-schedu ling  
problem  fo r m in im iz ing  the 
m ake span.
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Chapter 3

Literature Survey: Scheduling of Semiconductor
Manufacturing

3.1 Introduction

Semiconductor manufacturing is among the most complicated and capital- 

intensive manufacturing processes in the world. In this chapter,  an overview of 

scheduling problems of wafer fabrication, which is the complicated portion of 

planning, is discussed. Semiconductor manufacturing is a highly competitive 

business [121]. In the past, competition has been primarily in the product 

design arena, but in the last years, the cost to manufacture has become an 

important competitive factor,  especially when the cost of the wafer fabrication 

facility is expected to exceed $ 3 bill ion (US). The magnitude of investment 

required makes it imperative to use equipment in an optimum manner. In 

addition, reducing the time to manufacture a product is becoming increasingly 

essential.

Scheduling addresses these needs and also extends to affect the decisions about 

the impact of changes in the products,  enlarges in type and number of 

equipment necessary, and capacity planning. This chapter discusses the 

scheduling problems in semiconductor manufacturing. It also presents solution 

techniques for these problems. The need for a highly productive precise 

alternative to batch manufacturing, in particular,  has always been the major 

driving force behind the flexible manufacturing system (FMS) development 

[1]. Semiconductor manufacturing needs efficient automatic tools to turn 

thousands of operations into a final complex product [86]. FMS represents 

more than 90% of semiconductor equipment in use. Therefore, scheduling 

problems in flexible manufacturing systems and reviews related research to 

solve associated scheduling problems are described.

Scheduling tools,  such as using simulation and artificial intelligence to solve 

scheduling problems along with other modeling and optimization techniques
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are also discussed. Finally,  a new methodology for scheduling in 

photolithography manufacturing area is proposed.

3.2 Scheduling of Semiconductor Manufacturing

A detailed description of major semiconductor processes can be found in 

Appendix A. The main aspects in wafer fabrication scheduling problems are 

classified into six main groups. Examples of the elements of each group is 

shown in Figure 3.1. Scheduling has to take these elements into account.

Process M anufacturing
Process

E le m e n ts  o f  S c h e d u lin g  in  
S e m ic o n d u c to r  M a n u fa c tu r in g
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Num ber o f layers

S teps in each 
process
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Figure 3.1: Scheduling elements in Semiconductor Manufacturing

Scheduling is concerned with the problems ranging in scope from the next hour 

to the next several months. The issue addressed by scheduling at the shop floor 

level include decisions on the following:

1. How much of each product should be produced on a given period of 

time.

2. What priorities should be assigned to the different lots competing for the 

same resource.

3. When to perform preventive maintenance (PM).

4. Decisions to reduce cycle time per resource and per lot.

5. How to reroute product flows when tools are down.

6. Which tool to used for a given product and layer.
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Photoli thography is perhaps the most complex process in wafer fabrication. 

Most of the literature that addresses the planning and scheduling problems in 

wafer fabrication in last  years has not dealt with the photolithography area 

with a high level of detail. This is no doubt that the model complexity 

increases due to the reentrant nature of the process flow and the high level of 

variabili ty in the manufacturing areas.

Research on planning and scheduling that employ simulation often model the 

entire factory and treat the photoli thography as a black box [120], As a 

consequence, the quality of results obtained do not show the impact of 

proposed schedules on this critical manufacturing area.

Scheduling in the photolithography area is a difficult task. This comes from the 

fact that there are so many decision points along the process flow. Developing 

a model incorporating all the process details,  manufacturing procedure details, 

and associated operation details becomes extremely complex for the 

photoli thography process. Well-thought out simulation models along with a 

robust systems approach can be used effectively to characterize this 

manufacturing area. Hence, an optimization process can provide the 

manufacturing team with optimum/near optimum solutions. Chapter four and 

five have more detail about the photol ithography scheduling models.

3.3 Solution Tools for Semiconductor Scheduling

Due to the complexity of wafer fabrication manufacturing systems, simple 

analytical approaches to solve scheduling problems connot provide satisfying 

solutions. Many deterministic scheduling algorithms can be found in Uzsoy et 

al. [117]. However,  most of these algorithms/techniques run into trouble with 

the uncertainty of  many elements in semiconductor manufacturing such as job 

arrival,  equipment  breakdowns. A key factor in linking production planning 

and shop floor decisions is the development of accurate methods of modeling 

complex manufacturing areas such as photolithography. These methods have to 

be fast, flexible and adaptable in order to be valid for the dynamic 

environment.  A major issue is how much time one needs to make a scheduling 

decision. Thus, while the models formulated and solved by deterministic
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scheduling techniques are often removed from reality. Simulation modeling 

comes with a solution to many of these problems, with a suitable attention to 

the structure of the particular industrial problem at hand.

In general,  there are basically three approaches in dealing with scheduling 

problems in semiconductor manufacturing: analytical techniques (e.g. Stecke 

[98], Raman et al. [99], Ulusoy et al. [100]), simulation (e.g. Denzler et al. 

[101], Sabuncuoglu et al. [ 102][ 103]) and artificial intelligence/expert systems 

(e.g. Kusiak et al. [104], Udo [105]). While each approach helps to provide a 

better understanding and solution to the scheduling problems, this research 

uses a hybrid model combining simulation and artificial intelligence to provide 

a system to address scheduling in the photolithography manufacturing area.

The next sections discuss three main approaches used in solving scheduling 

problem; simulation, Al, and hybrid models.  In addition, Taguchi methodology 

is highlighted for design of experiments and as an optimization tool.

3.4 Simulation

Simulation is one of the most extensively used techniques in manufacturing in 

general and in complex industries (e.g. semiconductor manufacturing) in 

particular, see Appendix C. Simulation is an indispensable problem-solving 

approach for the solution of many manufacturing problems (e.g. Banks et al. 

[ I l l ] ,  Hollier [112], Kochhar [113], Shannon [114], and Arisha et al. [115]). 

Simulation has become a powerful approach in addressing FMS problems in 

last decade due to the rapid advancement in technology and the complexity in 

design of F M S ’s [116]. Therefore, simulation is extensively used especially 

for F M S ’s in semiconductor manufacturing. The reasons for this are the 

intractabili ty of detailed analytical models of the semiconductor manufacturing 

process, the uncertainties inherent in the manufacturing process itself, and the 

steady improvement  in computer technology which makes building simulation 

models easier and reduces the risk and the computational expenses.

Simulation models can also be developed at different levels of detail: a highly 

detailed model of a particular process step or workcenter,  or more aggregate 

model of an entire facility or sub-system. The focus in this survey is on
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scheduling and planning aspects in semiconductor manufacturing. Considerable 

effort has gone into the development of simulation models for wafer 

fabrication and their use in analyzing the effects of different control strategies 

and equipment configurations. Many of these efforts (up to 30 publications) 

have been discussed in Uzsoy et al. (1994) [117]. In this section, a number of 

applications (after 1994) concerning scheduling and planning are presented 

briefly.

Moench et al. [118] presented a simulation study for the solution of load- 

balancing problems in a semiconductor facility. However, they recommended 

more research to improve the performance of  their local search algorithm. 

Hunter et al. [119] simulated a full-scale semiconductor manufacturing plant. 

The model was able to provide an overview picture of the interactions between 

different manufacturing areas as well as detecting the bottlenecks.

Ignizio [120] used simulation to build a template model that permits the user to 

configure and analyze a given toolset, without need to have any experience in 

simulation. Mackulak et al. [122] used simulation for comparing automatic 

materials handling system (AMHS) performance in semiconductor fabrication 

facilities.  As the semiconductor industry moves towards 300-mm 

manufacturing, the design of AM HS’s becomes a significant issue as well as 

testing the performance of the new system. Lin et al. [123] analyzed the 

performance of a double-loop interbay AMHS in wafer fab by considering the 

effect of the dispatching rules. Sivakumar et al. [124] presented a preliminary 

analysis of  the relationship between selected input and output variables in 

semiconductor backend manufacturing systems, using a data-driven discrete- 

event simulation model. Vergas-Villamil et al. [125] proposed the application 

of  a two-layer production control method to a discrete event simulation of a 

semiconductor reentrant line. It provides for real-time production control; 

however,  they recommended additional optimization and scheduling studies for 

semiconductor reentrant lines in particular.

Dabbas et al. [126] proposed a modified dispatching approach that combines 

multiple dispatching criteria into a single rule with the objective of 

simultaneously optimizing multiple objectives.  The combined dispatching has 

been implemented into a scheduler at Motorola’s factories. They suggested a
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dynamic weight assignment algorithm in order to adapt to changing factory 

conditions. Dabbas et al. [126] have extended his research in order to 

combines more dispatching criteria into single rule. The research showed good 

results although further sensitivity analysis is needed to study more critical 

production parameters such as product-mix, start ratios, ..etc.

Dayhoff et al. [127] described a heuristic methodology (signature analysis) to 

characterize overall lot dispatches using three dispatch schemes i.e. earlier- 

steps-first , later-steps-first ,  and round-robin scheme. The simulation model 

provided the basis for comparison of the dispatch schemes, but the real 

dispatch schemes involved more interactions than those simulated. Atherton et 

al. [128] expanded the simulation work to include the inventory, cycle time 

and throughput in the form of trade-offs. Uzsoy has made a significant 

contribution to wafer fabrication research [129][130] and has set some 

optimization methodologies for test operations in semiconductor manufacturing 

as well as using decomposition methods for sequence dependent setup times in 

reentrant flow [ 131 ][ 132]. For scheduling, Uzsoy et al. [133] have described 

a number of considerations to evaluate and assess the quality of schedules.  He 

[134] also examines benefits of turn around time or cycle time reduction using 

a stochastic simulation model.

Shen et al. [197] have proposed a stochastic dynamic programming model 

l inked with simulation model for scheduling new releases and bottleneck 

processing by stage. MATLAB software is used to compute the optimal Fab 

scheduling. However, their paper focuses on layer-level release decisions, 

much work remains in translating the proposed linear release into on-line real­

time dispatching decisions. In particular,  it needs to evaluate the performance 

of the scheduling policies using a discrete-event Fab simulator.

Chern et al. [198] have proved general family-based scheduling rules to 

perform better than the individual job scheduling rule in terms of machine 

utilization. Five special family-based scheduling rules are constructed, of 

which FCFS-F, SRPT-F, EDD-F, and LS-F are modified from previous well- 

known scheduling rules. The simulation model is built to evaluate the 

performance of these five family-based rules. However,  the research has not 

managed the complexity of the real manufacturing floor and simplifications
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have led the problem being reduced to a shadow of reality especially for 

manufacturing areas such photolithography.

Kim et al. [199] focus on production scheduling in Fabs that have different due 

date and different process flows. They considered three rules for releasing lots 

but not simultaneously. The shortcomings in this research are that they used 

limited number of  rules and one set of data to verify. In addition, the model 

ignores some effective factors such as maintenance and variable yield rates. 

Kim et al. [202] also presented a simulation-based real-time scheduling 

(SBRTS) methodology to speed up scheduling decisions for unexpected events. 

In SBRTS method, lot scheduling rules and batch scheduling rules that give the 

best performance are selected from sets of candidate rules using results of 

simulation tests. Although the time required to respond to system disturbances 

is reduced without deteriorating the quality of schedules,  further research is 

still needed to adapt the model for multistep reentrant flows. Also, more 

scheduling rules need to be considered to develop more effective lot 

scheduling.

Photolithography

Comparatively li ttle research effort has been dedicated to photolithography, a 

bot tleneck manufacturing area in semiconductor fabrication. Lee et al. [135] 

addressed production planning and scheduling problem in particular the shift- 

scheduling problem for photolithography. Their study provides empirical 

evidence that the sequential method yields satisfactory results.

Williams et al. [136] presented dynamic deployment modelling for 

photolithography WIP management in order to reduce capacity loss. Lachman- 

Shalem et al. [137] described an approach for the control of material handling 

within photol ithography cells using a combination of genetic programming and 

nonlinear predictive control methods. Yoon et al. [138] address a deadlock- 

free scheduling method for material handling systems in photolithography 

cells. They employed the resource ordering approach to identify the potential 

deadlock in the track system and their proposed deadlock-free scheduling 

approach can be applied to track systems in the production of semiconductors,  

flat panel displays, disc-drive heads, etc. Karafyllidis [139] designed a
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dedicated parallel  processor for the simulation of the photolithography process 

using a genetic algorithm. Starting from a cellular automaton with continuous 

state space that simulates the photolithography process, the GA is used to find 

a cellular automaton with discrete state space, having the smallest possible 

latt ice size and the smallest possible number of discrete states. The results 

have not been validated and the detail of this complex process has not been 

included.

3.4.1 Modeling Approaches

Efficient modeling is the key to ensuring the success of any simulation project, 

as it is one of the critical tasks in simulation model building. The goal here is 

to develop structures for applying computer  technology (e.g. simulation) to 

manufacturing systems and to use computer-based methods to better understand 

how best to improve manufacturing productivity and follow the production 

flow (items and information) in the system. As problems become larger, the 

preparatory phase of analyzing the problem becomes larger as well. For 

example, semiconductor manufacturing needs special requirements in 

modelling due to:

• complexity

• large amount of data

• reentrant nature

• rapid changes in product configurations due to demand

• manual intervention in the system

These factors make the systems analysis phase more difficult but they reinforce 

the need for a tool to enable systems modeling. GIGO -  garbage in, garbage 

out -  not only applies to data, it applies to the logic of the software and the 

implementation of a system [108],

A number of modeling methods have been developed to model manufacturing 

systems. Some tools such as flow charts and block diagrams concern physical 

process flow, while others such as IDEF, and data flow diagrams relate to 

process information flow.
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3.4.1.1 Flow Diagram

Flow diagrams are one of the most common graphical methods to represent 

various activities and relationships within manufacturing systems. Although 

the use of flow diagrams is a simple method used in modelling, it is still 

widely used in most applications. Flow diagrams are limited in representing 

complex manufacturing systems because they do not provide useful 

information. However,  they have been used along with other methodologies 

such as the decomposition approach to represent the major steps in the 

manufacturing process. Chapter five and six use flow diagrams to provide 

overview of the main operations within the manufacturing prcesses.

3.4.1.2 1DEF

One of the most effective tools in modeling complex industrial systems is the 

Integrated Computer  Aided manufacturing (ICAM) DEFinition (or IDEF). It 

has been presented relatively quickly through the United States Air Force’s 

(USAF) ICAM program, which started in 1977 [109]. The USAF was using 

contractors in the United States and Europe and required a common means of 

specifying systems and communicating results across the program. This led to 

the development of IDEF [110]. The ICAM program developed three well- 

documented modeling methodologies around the IDEF approach to system 

study:

1. A functional model of a manufacturing system and environment called 

IDEFO;

2. An information model of the system and environment called IDEF1;

3. A dynamics model to describe time-varying system behavior called 

IDEF2.

In this thesis,  IDEFO has been used in modeling the manufacturing process,  see 

chapter five and six. A br ief description of IDEFO follows.

IDEFO provides a formalized modeling notation for representing the type of 

functional analysis.  The building blocks of the notation are shown in Figure 

3.2.
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Activ ity
O u tp u t^

M echan ism

Figure 3.2: The IDEFO building block

The inputs,  outputs,  controls,  and mechanisms signified by the arrows can be 

resources, such as machines or equipment, material,  data, information, people, 

products,  etc. In other words, almost any aspect of an enterprise’s operation. 

IDEFO can be used for the purpose of  identifying the data flows among a set of 

activities [108]. It also tackles the complexity of activity details by adopting a 

hierarchy of levels,  with the lower levels giving progressively greater detail. 

The top level of an IDEFO hierarchy comprises a single activity specified in a 

rectangle designated AO, as shown in Figure 3.3. The next level down, shown 

in Figure 3.4, has expanded this into three rectangles,  A l ,  A2, and A3. The 

next level will similarly explode each of these three activities into A l . l ,  A1.2, 

A1.3, etc.

Customer requirements

Product
Design

Materials

Manufacture
Product

Product

T
Planners

AO

Manufacturing
facilities

Buyers

Figure 3.3: Example of AO level
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Customer requirements

Figure 3.4: Example of second level of IDEFO

Discussion
Although those modeling methods (i.e. flow diagrams, IDEF) are adequate in 

many applications, they still have their pitfalls. Flow diagrams are too simple 

to contain all the required information needed for simulation model building 

especially for complex manufacturing systems. IDEF is an effective standard 

system approach, but are not easy to use by the non-specialist.  There is 

therefore a need for a simple effective method to model complex 

manufacturing in a manner that allows any non-specialist to analyze the system 

and build a simulation model using an appropriate simulation software 

package. The approach which follows has been used in complex real-world 

applications (i.e. semiconductor manufacturing) and found to be efficient.

3.4.1.3 Schematic Approach f o r  Simulation Modeling (SASM)

In order to make effective use of simulation in manufacturing systems, it is 

often helpful to develop a simple, intuitive model that describes the subsystem 

elements and the relationships among the elements in the simulation model. 

This thesis discusses the use of  a new schematic approach for simulation 

modeling (SASM) aims not only to visualize problems or to gain an 

understanding of complex systems on a heuristic basis, but also to allow the 

non-specialist  to translate the model into coded simulation model.
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The SASM allows the user to understand the information flow with a 

preliminary perception of the nature of the system that can be used as a 

starting point for simulation. In other words, a simulation expert who does not 

know about the manufacturing system will be able to code the simulation 

model and explore all the interactivities of the system to provide further 

information and insights.

SASM provides a modeling notation for representing the behavior of systems 

in terms of entit ies that pass through a series of blocks (see Appendix G). The 

diagram indicates the information resources required for the activity and the 

way to model that in simulation. SASM is designed to specify the relationships 

between data. As with defining the relationship, this description of the system 

will make it easy for the simulation team to convert the SASM model into a 

simulation model using any software package available and capable to do the 

job.

In addition, any simulation user can understand SASM notations simply and 

hence this approach saves plenty time by letting the simulation team 

understand the process before building the simulation model. SASM has been 

used in chapter five and six as modeling approach in the simulation phase and 

it seems to be one of  the promising modeling approaches for simulation. Figure 

3.5 shows a simple example of information flow in one machine unit.

O U T

Input Excel 
File

Figure 3.5: SASM Example
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3.5 Taguchi methodology

The Taguchi approaches were initially used in quality engineering especially in 

the parameter design phase of product quality by design [203], Taguchi 

developed orthogonal array (OA), interaction tables and linear graphs based on 

the design of experiments theory to study a large number of decision variables 

with a small number  of experiments [179] [204], Moreover,  he suggested more 

techniques which involve graphing the effects and visually identifying the 

parameters which appear to be significant. The schematic diagram of Taguchi’s 

parameter design is depicted in Figure 3.6.

Figure 3.6: Taguchi’s parameter design [203]

Taguchi methods were applied in many applications in industry in order to 

analyze the effect of process parameter and their interaction on the quality 

characteristic.  Krishna et al. [205] used Taguchi method in cold solid state 

joining process.

The reduction of  chemical usage in semiconductor manufacturing has been a 

topic of wide discussion over the past several years. Taguchi method was used 

by Namose [206] to optimize the process parameters in plasma reactions.

For job shop manufacturing system under constraint, Taguchi method was 

applied to the design phase and allowed the manufacturer to reduce the loss 

incurred by all part types according to their relative importance in the design 

of the system (Chen et al. [207]). Moreover,  Taguchi methods were applied to 

reconfigure the design of robust manufacturing system through experiments for
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the estimation of AGV speed in real-time circumstances ( Mezgar et al. [208]). 

The use of Taguchi in flexible manufacturing systems were discussed in some 

papers such as D ’Angelo et al. [210], and Arisha et al. [213],

The applications of Taguchi methods extends to use in optimization of neural 

networks, Khaw et al. [209]. More applications of Taguchi methods can be 

found in Antony et al. [204], Peace [211], and Clausing [212].

There are many applications of using Taguchi methods in solving industrial 

problems. This thesis has presented Taguchi method in a new application 

which is scheduling of photolithography area in semiconductor manufactuting. 

The coming sections show briefly the reasons to use Taguchi method integrated 

with simulation and explain the limitations on Taguchi methods.

3.5.1 W hy Taguchi and simulation?

The inference between Taguchi’s parameter design and the activities of 

simulation can be expressed briefly as follows:

In Taguchi methods, we seek to improve or establish the design of a product or 

product ion processes using physical prototype. In simulation approaches, we 

attempt to establish or improve the design of a system (such as manufacturing 

system, facility performance, etc.) using simulation models.

In Taguchi methods, the measures of performance are the desired functional 

characteristics of the product. In simulation approaches, the performance 

measures are the model performance measures for the system being designed or 

operated.

In Taguchi methods, the number of experiments required is very economic. In 

simulation, the time is one of the quality measures of the simulation model 

performance.

In Taguchi methods, stochastic variables cannot be optimized used the standard 

procedure. In simulation, most of simulation models can sort out variables with 

stochastic nature.

In Taguchi methods, the use of orthogonal arrays can systematically lead to 

optimize the parameters of the selected process. In simulation, trial and error
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method is the most common approach used because of the ease with which 

parameters are changed and new solutions calculated.

In the Taguchi method, the significance and the relative significance of the 

selected process parameters can be obtained directly from graphs or tables 

within an economic number of experiments.  Using simulation models,  the 

significance is not guaranteed as an output. However,  simulation can provide a 

sensitivity analysis quicker than Taguchi methods.

The previous discussion emphasize the importance of the integration of 

Taguchi’s methods and simulation to provide quality solution in an economic 

time. There are more advantages of applying Taguchi methods together with 

simulation models can be found in Antony et al. [204] and Law et al. [214], 

Simply, we can conclude “Taguchi is the manual for using simulation tool” .

3.5.2 Limitations on Taguchi Methods

Taguchi methods have their l imitations similar to any other optimization 

technique. Taguchi methods have limited capabilit ies to directly handle 

variables in stochastic optimization problems (Parks [215]). That’s one of the 

advantages in integrating simulation models with Taguchi methods. Continuous 

variables have to be converted into a discrete form that Taguchi methods can 

optimize, however, the approximation leads sometimes to a considerable 

reduction in the solution quality. Furthermore, the selection of the orthogonal 

array and the levels of the factors can have a significant impact on the outcome 

of Taguchi analysis. Added to that Taguchi matrix say nothing exactly about 

the intermediate values between levels. Therefore, after the taguchi analysis 

we might need to use simulation models to examine one parameter or more in 

isolation.

3.6 Intelligent Scheduling

Since the decision-making process in the advanced manufacturing system 

environment in general and in scheduling problems in particular is getting 

more difficult  and indeed, overwhelming for humans, Artificial Intelligent (Al) 

is widely used to assist human efforts. Al and intelligence mechanisms have
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provided several techniques to help solving scheduling problems. Intelligent 

scheduling as an optimization problem with an objective to allocate a limited 

amount of resources to a set of tasks has been subjected to many AI approaches 

as mentioned in chapter two. The following sections highlight the approaches 

which are used in this thesis.

3.6 .1  In te llig e n t  S ch ed u lin g  u sin g  A r tif ic ia l N eu ra l N etw ork

In the last decade, neural networks have gained more and more acceptance and 

been used more in the successful implementation of projects in manufacturing 

[105] [ 106] [ 107]. Artificial Neural Networks were defined by Kohonen (1988) 

in ref. [140] as ‘massively parallel  interconnected networks of simple (usually 

adaptive) elements and their hierarchical organizations which are intended to 

interact with objects of the real world in the same way as biological nervous 

systems d o ’. Figure 3.7 shows a simple architecture of a typical artificial 

neural network. The basic components of  any neural network (NN) are neurons 

and weighted connections.
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Figure 3.7: Topology of a typical ANN [141]
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There are different types of neurons that can be used in neural networks. NN 

may be distinguished based on the directions in which signals flow. There are 

two basic types of NNs, namely, feedforward networks and feedback networks. 

In feedforward network, signals propagate in only one direction from an input 

stage through intermediate neurons to an output stage. While in a feedback 

network, signals may propagate backward from the output of any neuron. The 

neural network shown in Figure 3.7 is a feedforward network.

NNs (Gurney [140]) are based on ideas about how the brain may work. They 

look for patterns in training sets of data, learn these patterns,  and develop the 

ability to correctly classify new patterns or to make forecasts and predictions. 

Therefore, they excel at problem diagnosis, decision-making, prediction, and 

other problems where pattern recognition is important and precise 

computational answers are not required. Input stimuli (e.g. the parameter 

values encountered in a problem situation) are connected through a network of 

nodes to output nodes (i.e. solution).  This technique has been widely used in 

many classification and optimization situations. Historic data are used to 

“tra in” the network, automatically determining the most appropriate 

configuration of the hidden network. Perhaps the most attractive property of 

neural network structures is their ability to adapt patterns (weights) within data 

input array. The learning procedure commonly consists of repeatedly 

presenting inputs which the output is known and comparing the output of the 

system to the desired output. The network begins by finding relationships 

between the inputs and the output. Weight values are assigned to the links 

between the input and output neurons, Figure 3.7, so that the outputs match the 

training data. After those relationships are found, neurons are added to the 

hidden layer so that nonlinear relationships can be found. Input values in the 

first layer are multiplied by the weights and passed to the second (hidden) 

layer. Neurons in the hidden layer "fire" or produce outputs that are based 

upon the sum of  weighting values passed to them. The hidden layer passes 

values to the output layer in the same fashion, and the output layer produces 

the desired results (predictions) [147], The network "learns" by adjusting the 

interconnection weights between layers. The answers the network is producing
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are repeatedly compared with the correct answers,  and each time the 

connecting weights are adjusted slightly in the direction of the correct answers. 

Additional hidden neurons are added as necessary to capture features in the 

data set. Eventually, if the problem can be learned, a stable set of weights 

evolves and produces good answers for all of the sample decisions or 

predictions. The real power of neural networks is evident when the trained 

network is able to produce good results for data that the network has never 

"seen" before.

The advantages of NNs are that they can achieve high computation rates by 

employing a massive number of simple processing elements with a high degree 

of connectivity to provide a new approach for optimization problems. More 

specifically,  feedback networks provide a computing model capable of 

exploiting fine-grained parallelism to solve a rich class of optimization 

problems (Zhang et al. [141]). NNs have been successfully applied to the 

solution of constrained optimization problems. The scheduling problem can be 

solved using NNs to reduce the computational complexity [142], The use of 

NNs combined with an interface-driven mechanism may provide a robust 

model capable of data interpretation as well as decision support. Chapter five 

provides a real-world application using NNs as an optimization tool in 

intelligent scheduling.

Many scheduling problems can be formulated as l inear or non-linear 

programming problems, then solved using optimization approaches. However,  

solving the combinatorial optimization problem often attains a local optimum 

solution depending on the initial state of the network and the training data. 

Recently, some stochastic neural network models have been proposed for 

avoiding convergence to local minima. There are many literature contribution 

towards solving scheduling and manufacturing problems using NN (e.g. 

Hopfield [143], Maa et al. [144], Vaithyanathan & Ignizio [145], and Arizono 

et al. [146]).
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3 .6 .2  In te llig e n t-a g e n t  based  sch ed u lin g  ap p roach

Unlike traditional manufacturing scheduling systems using a centralized 

scheduler, an agent-based manufacturing system supports distributed 

scheduling such that each agent can locally handle the schedule of its 

machine/machine centre, operator,  robot,  or station. However,  the participating 

agents can collectively perform global scheduling through some mechanisms 

and/or protocols.

3.6.2.1 Advantages o f  Intell igent-agent  based approaches

Agent-based scheduling approaches have several potential advantages for 

manufacturing scheduling [148][149]:

• The agent paradigm makes integrating process planning and 

manufacturing scheduling easy to realize the simultaneous optimization 

of  manufacturing process planning and scheduling.

• It is possibile to carry a connection between resource agents directly to 

their represented physical devices,  to realize real-time dynamic 

rescheduling. This can provide high fault tolerance.

• Agents can develop schedules using the same mechanism that businesses 

use (negotiation rather than simple search) in the manufacturing supply 

chain. Thus, direct connection between manufacturing capabilities of 

different manufacturing enterprises can ease the scheduling process and 

make optimization possible at the supply chain (enterprise) level as well 

as the shop floor level.

• The combination of agent-based approaches with other techniques at 

certain levels for learning and decision-making might promote better 

solutions.

Intelligent agents are seen as the solution for integration between 

manufacturing activities [150], Intelligent agents are used in distributed AI. 

They allow the co-ordination of local AI systems distributed throughout the 

manufacturing process (i.e. production, scheduling, inventory and maintenance 

etc.) and throughout the business as a whole (e.g. marketing , product design, 

operations, finance and personnel etc.). Negotiation between the separate AI
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systems, each with their own set of local optima or preferences, enables the 

selection of policies more closely aligned to the objectives of the 

manufacturing business (e.g. [151]).

3.6.2.2 Major  Issues o f  Intell igent-agent based approaches

Anyone developing an agent-based manufacturing scheduling system might 

deal with some or all of these four main issues among others: encapsulation, 

coordination and negotiation protocols,  system architectures, and decision 

schemes for individual agents.

Encapsulation

Among the different approaches for agent encapsulation in manufacturing 

scheduling systems, two are important: functional decomposition and physical 

decomposition. Functional decomposition uses agents to encapsulate modules 

assigned to functions such as order acquisition, planning, scheduling, material 

handling, transportation management,  and product distribution. No explicit 

relationship exists between agents and physical entities. Physical 

decomposition uses agents to represent entities in the physical world, such as 

operators, machines, tools, products,  parts, and operations. An explicit 

relationship exists between an agent and a physical entity. Both approaches 

have distributed implementations.

Functional decomposition tends to share many state variables across different 

functional agents. This can lead to inconsistency and unintended interactions. 

Physical decomposition naturally defines distinct sets of state variables that 

individual agents with limited interactions can manage efficiently. However, it 

needs a large number of resource-related agents, which can lead to other 

problems such as complex management.  However, functional decomposition is 

useful in integrating existing systems (for example, CAD tools, materials 

requirements planning systems, and databases), so as to resolve legacy 

problems.

Corresponding to these two agent encapsulation approaches, there are two 

types of distributed manufacturing scheduling systems.
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In the first, scheduling is an incremental search process that can involve 

backtracking (e.g. Sycara et al. [152], and Burke et al. [153]). Agents, 

responsible for scheduling orders, perform local incremental searches for their 

orders and might consider multiple resources. The system merges the local 

schedules to produce a global schedule, similar to centralized scheduling.

In the second system, an agent represents a single real-world resource (for 

example, a work cell, a machine, or even an operator) and maintains this 

resource’s schedule. This agent might negotiate with other agents to carry out 

overall scheduling. Most agent-based manufacturing scheduling systems use 

this approach and it is described in detail in chapter five.

Coordination and negotiation protocols

Systems that use functional decomposition are similar to traditional integrated 

systems; they usually use a predefined coordination mechanism. The 

coordination has been discussed in detail in Sycara [152] and Smith [154], The 

negotiation protocols are somewhat beyond the scope of the thesis.

Architectures

Agent system architectures provide the frameworks within which agents are 

designed and constructed. Architectures for agent-based manufacturing systems 

come into three main categories: hierarchical,  federated, and autonomous 

[153], The focus in this thesis is hierarchical structures.  The hierarchical 

structure is typical of most manufacturing enterprises with many levels of 

control over resources and with different information requirements.  The use of 

hierarchical structures to simulate the functional areas of manufacturing 

systems has many advantages when using a decomposition approach.

Decision Scheme
In most scheduling situations, the system needs to compare, negotiate,  and 

compromise the alternatives. Each step in scheduling should have information 

about the capabilities,  availabili ty,  and the entire system configurations. Using 

the intelligent-agent based approach to support decision-making depends on 

many factors e.g. knowledge of previous cases, system updates,  and production 

policies.
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3.6.3 Hybrid Intelligent Scheduling Models

The current trend of hybrid intelligent scheduling models is towards a 

combination of the three common solving approaches; Operations Research- 

based, simulation-based and Al-based. It is suspected that a synthesis of 

paradigms will be required (e.g. [89] and [155]). Chen et al. [201] have an 

embedded search strategy over a colored timed Petri net (CTPN) for wafer 

fabrication. Through the CTPN model, all possible behaviors of the wafer 

manufacturing systems such as WIP status and machine status can be 

completely tracked down by the reachability graph of the net. The simulation 

tool, UltraSim, provides a friendly user interface. Although the model outputs 

are more superior than the conventional dispatching rules, the model could not 

reach the level of detail that scheduling problem needs in wafer fabrication. 

Sample of efforts to use a mixture of several of the above paradigms are shown 

in the Table 3.1.

Table 3.1: Sample of research using Hybrid techniques

Author(s) Hybrids Techniques Notes

SerecoefaZ. [156] KBS Optimization techniques, hierarchical 
planning, and heuristic search

Dagli et al. [157] Lawler’s Algorithm & NN Algorithm generates schedules to train NN

Rabelo et al. [158] ES & N N IFMSS: intelligent FMS scheduling, expert 
system and a back propagation NN

Rabelo et al. [159] IFMSS Enhancing the model with adding simulation 
and GA to his control architecture

Yih et al. [160] AI& Simulation Hybrid model of AI and simulation for a 
small set of candidate scheduling 
heuristics

Yih et al. [161] Semi-Markov & ANN Semi-Markov optimization and ANN for 
robot scheduling in a circuit board 
production

MacCarthy et al. [ 162] LP & Simulation Rule-based framework; mathematical 
optimization procedure and simulation.

Sim et al. [163] ES & N N Expert system to train NN to reduce the time 
required for training.

Szelke et al. [164] CBR & Machine Learning Reactive learning of machine for shop floor 
scheduling

Kim et al. [165] Inductive Learning & NN Multi-objective FMS schedulers

Lee et al. [166] GA & Machine Learning To generate empirical results using machine 
learning for releasing jobs into the shop 
floor and GA to dispatch jobs.
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3.7 Proposed Methodology for Intelligent Scheduling

In fact, no single modeling paradigm currently appears to offer the basis for a 

unified theory of shop scheduling or to provide an appropriate calculus for 

generating schedules,  or even to support a complete representation of the 

attributes of a complex shop scheduling environment.

Operational research, simulation and AI representation schemes appear to be 

capable of capturing a wide range of problem attributes but fail as yet to 

provide good insights on workable solution strategies. Machine sequencing, 

resource-constrained scheduling, and AI search techniques offer insight into 

possible solution approaches but do not address the richness of the complex 

scheduling environment.

Most manufacturing systems are too complex to allow realistic models to be 

evaluated analytically (Rodammer et al. [89]). As an alternative simulation- 

based scheduling can provide an effective tool for shop floor scheduling while 

requiring few assumptions. The schedules generated must be based on an 

accurate,  realistic model of the production facility. It can allow various 

dispatch rules, or decisions regarding the system to be tried out and selected 

based on simulated performance results. Simulation-based scheduling has 

gained acceptance from both researchers and practitioners (see Ref. [167], 

[168][169][170]).

This research has found that Taguchi methods are completely suitable for the 

activities of simulation based on the literature review and the problem 

definition. It can be seen in the proposed methodology could comprise 

simulation approach with Taguchi method in a new application of scheduling 

in semiconductor manufacturing (see Chapter four). In addition, modeling 

approaches and AI have been used to deal with the complexity of 

semiconductor manufacturing. However,  this thesis provides a new 

methodology for scheduling the most difficult area of the semiconductor 

manufacturing, the photolithography area.
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The first steps are used for system modeling; a simulation model is built and 

executed using an appropriate verification and validation phase. Taguchi 

methods are used for planning and conducting simulation experiments and then 

optimizing the selected parameters. The experimental results are analyzed with 

the Taguchi method and a confirmation experiment is carried out to validate 

the result. The proposed methodology is a generic approach and the activities 

of simulation do not necessarily contain all these steps in the same order 

stated. Furthermore, it is worth noting that such a simulation study is not a 

strictly sequential process.

Artificial neural networks have shown good promise for solving combinatorial 

optimization and constraint satisfaction problems like shop floor scheduling. 

Extensive research has shown the capabilit ies of neural networks for automatic 

learning, association, generalizing and pattern recognition through their ability 

to provide non-linear transformations to model highly complex functions. In 

addition, the approach does not require the strong underlying assumptions on 

the structure of the data which are required by many traditional techniques. 

The complex interactions of the dynamic problems on the shop floor are 

therefore candidates for using neural network to learn and perform dynamic 

scheduling for a shop floor. The only disadvantage of neural networks is that 

“knowledge” in the network is not easily available to the user.

Therefore, the proposed methodology uses these effective tools; simulation, 

neural networks, intelligent algorithm, Taguchi’s paradigm, and modeling 

approaches (e.g. IDEFO) for shop scheduling has been set up and applied to 

solve a real-world application (chapter four and five). This intelligent 

methodology is shown in Figure 3.8, while the main phases in the methodology 

are given in Table 3.2.
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Table 3.2: The main phases in the proposed m etholodgy

Phase Activities Functions

I Problem Definition
•  Identify Scheduling problem
• Find system constraints
• Set assumptions/approximations

II Objectives
• Set scheduling objectives (with management)
• Objectives agreement (production/manufacturing staffs)
• Select Performance measures

III Model

Building Data

Collection

• Data Collection phase starts
• Model Building using modeling tools (e.g. IDEF, SASM)
• Intelligent model planning phase (AI tool selection)
• Planning for experiments

IV Model

Coding

• Building simulation model
• Software assumptions and constraints are considered
• Set coordination with the intelligent-agent
• Data collection phase ends

V Verification/V alidation
• Verifying the simulation model
• Validate simulation outputs if possible
• Verification/V alidation for the intelligent-agent

VI Experimentation
• Experimenting within Taguchi’s framework
• Number of experiments
• Repetitions of experiments

VII Results Analysis
• Results analysis
• Determine significance of selected parameters
•  Review results with production staff

VIII Optimization
• Optimizing selected parameters by finding best 

combinations
• Apply AI techniques for optimization

IX Sensitivity Analysis
• Further experiments for sensitivity analysis
• Sensitivity analysis of intelligent model

X Enhancement
• Improvement of model performance (simulation time, 

model size, coordination)
• Modifications for enhancement (user-friendly)
• Building knowledge base is recommended

3.8 Conclusions

For this review of past research relevant to scheduling in semiconductor 

manufacturing systems, a number of conclusions can be drawn:

• Within semiconductor manufacturing systems, scheduling remains 

among the most important and challenging tasks that must be performed 

routinely. Furthermore, within this scheduling of photolithography is the 

most complicated task due to the complex process flow and parameters.
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• Developing a schedule involves designating the resources needed to 

execute each operation of the process routing plan and assigning the 

times at which each operation in the routing will start and finish 

execution and should be performed intelligently to increase system 

efficiency.

• Many scheduling tools have been developed to support decision-making 

process. Simulation is a powerful technique to model complex 

manufacturing systems. The benefits of using simulation models have 

allowed the planner to easily experiment with new scenairos.

• Modeling tools such as IDEFO and SASM are the key elements to 

successful of  simulation development models.

• Intelligent scheduling models have received attention from many 

researchers in last decade. Results from these techniques provide better 

solutions, in terms of satisfying solutions than traditional techniques. 

However, hybrid intelligent scheduling models show more 

comprehensive solutions for complex scheduling problems.

• From the literature, it can be seen that there is a need for a generic 

methodology for an intelligent tool that has the purpose of optimizing 

the scheduling activity in the areas of complex manufacturing systems 

(e.g. semiconductor fabrication processes).

• A hybrid intelligent scheduling (simulation, intelligent-agent based 

approach, and Taguchi’s paradigm) has been chosen as the framework on 

which to develop a shop scheduling model of the the photolithography 

process in semiconductor.

• Simulation itself cannot provide optimal solutions, it must be driven in 

an intelligent manner.  The Taguchi experimental methodology can 

provide a good framework for applying simulation to better 

understanding and optimize a manufacturing process.
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Figure 3.8: New methodology for intelligent shop scheduling
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Chapter 4

Scheduling of Photolithography FMC

4.1 Introduction

The complexity of manufacturing high capacity semiconductor devices means 

that it is impossible to analyze the process control parameters and the 

production configurations using traditional analytical models.  There is, 

therefore, an increasing need for effective models of each manufacturing 

process,  characterizing and analyzing the process in detail, allowing the effect 

of changes in the production environment on the process to be predicted. 

Production scheduling of FM C ’s in such a dynamic environment is a 

complicated task due to the complex nature of wafer processing, constraint 

operations, product diversity,  and resource costs. It is essential to characterize 

the performance of these tools in detail to examine the production scheduling 

plans before they are finalized. Experimenting in the production plans on the 

real floor is non-option due to the high cost of equipment and the sensitivity of 

the process [196], Using state-of-the-art  computer simulation, a structured 

modelling methodology and Taguchi’s methodology, a generic model of 

photol ithography flexible manufacturing cells has been developed and used to 

mimic the actual performance of  the tools.

Figure 4.1: Photolithography process within the wafer fabrication processes
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The Photolithography process is considered the constraint process within 

semiconductor manufacturing due to its complex technology, critical 

dimensions, re-entrant flow, and product/layer sensitivity [ 117][172]. The 

photoli thography process,  a central process in wafer fabrication processes 

(Figure 4.1), involves the processing of wafers in order to build up the layers 

and patterns of metal and wafer material to produce the required circuitry. 

During the photolithography process the circuit pattern is transferred from a 

mask onto a photosensitive polymer and finally replicates the pattern in the 

underlying layer. The object of this process is the accurate and precise 

definition of a three-dimensional pattern on a semiconductor substrate. The 

basic photolithographic sequence is shown in Figure 4.2. Typically,  the lot to 

be processed goes through a coating operation, where the wafers are coated 

with a photo-resistant substance. The lot is then moved to the exposure 

operation where the patterns are projected on the wafers. The exposed wafers 

are moved to the developing operations. Once these steps are completed, the 

lot typically is moved to post-photolithography analytical operations. The 

amount of metrology is dependent on the product and the layer being 

processed. Details of  the three basic fabrication steps in photolithography are 

described later in section 4.5.2.

B a s ic  F ab ricatio n  steps

Figure 4.2: Simplified diagram of typical photolithography process flow

This chapter deals with the FMC by using a decomposition approach [132] and 

[173], and then integrates the output with the whole manufacturing system. The
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photoli thography area in the factory under study includes three different types 

of cells. These can perform the same jobs with variation in capability,  speed, 

and efficiency. The deficiencies of using traditional modeling techniques for 

predicting the performance of F M C ’s were clear when compared with actual 

production performance [174], Mathematical models and deterministic 

approaches were somewhat acceptable in small and simple processes where the 

simplifications and assumptions fit well.

The primary objective of this chapter is to establish a framework for 

simulation-based approach combined with Taguchi’s procedure for the 

experimental design to provide management  with an effective decision support 

system (DSS). The impact of changing many scheduling parameters on the 

performance of the FMC needs to be evaluated. First, a detailed simulation 

model was built  to characterize the flexible manufacturing cell in detail, then 

the effect of scheduling, planning and control problems on the cell 

performance was examined.

4.2 Basic elements of FMC

4.2.1 Operating units

The operating units are the workstations that are responsible for processing, 

inspecting, assembly, and control.  Most of these units are computer 

numerically control (CNC) machines. The function of the operating units 

varies depending on its use.

4.2.2 Material Handling

The material handling equipment is considered one of the most critical 

elements in the flexible manufacturing systems in general and FMC in 

particular.  The main characteristics of material handling systems include 

speed, number of degrees of freedom, payload, external sensors, intelligence of 

control system, response time, accuracy, reliability,  and precision 

Robots are used in many cells and their function might vary in every cell; they 

can perform basic assembly, material handling, processing, or inspection.
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Some FMCs may have more than one robot where the cooperation between two 

or more robots is necessary to perform the jobs harmonically in the same 

working space. However, this complicates the control system [175]. In 

semiconductor manufacturing, and especially with photolithography tools, 

there is always one robot that is responsible for delivering the wafers to the 

operating units. The intelligence of the robot control to handle the wafers and 

the information can have a significant effect on saving throughput time.

4.2.3 Buffers

On-site storage devices such as buffers,  indexed rotating tables,  or part feeders 

before or after the operating units are key elements in FMC. The capacity of 

these buffers has a significant effect on product cycle time especially with 

different product mixes in the same cell. The main objective of the buffers is to 

maximize machine util ization.

4.2.4 Peripheral equipment

The many different types of complementary equipment required for 

manufacturing processes include:

• Accessories required for the operations themselves.

• Tools that execute special functions (e.g. alignment)

• Gripper / Fixtures to hold the wafers in the place precisely during 

operating.

• Sinlge wafer buffer.

• Batching / Un-batching devices at the beginning and end of some 

operations.

4.3 Photolithography FMC Model

The photolithography FMC model has followed the proposed methodology 

discussed in chapter three. The model presents a comprehensive integration 

between three analytical techniques such as IDEF and SASM (for modeling),  

simulation, and Taguchi’s methodology in order to accomplish the objectives 

below.
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4.3.1 Model Objectives

The model objectives are to:

Simulate in detail the manufacturing cells in the photolithography area. 

Evaluate the actual performance of FMC in the area using a multi­

criteria approach.

- Determine bottleneck operations/steps in the cell.

Examine the impact under different loading conditions of product- 

mix/volume on the FMC performance.

Study the effect of various scheduling strategies on the system.

Develop a DSS to predict the impact of policy decisions on key 

manufacturing system parameters,  like product cycle time, tool 

throughput, WIP inventory, and utilization of each device.

Determine the significance of the production and planning parameters on 

performance measures.

Determine the sensitivity of the performance to the assigned parameters 

(in terms of  their main factor effects).

Determine appropriate or near optimum combinations of the parameters 

for better shop performance.

4.3.2 Process Parameters

In most of the cases, the photolithography process can run uninterrupted after 

wafers are loaded into the manufacturing cell. However, configuration changes 

sometimes interrupt the processing. In this study, the production staff selected 

the following key process scheduling parameters;

1) Wafer  starts(WS), which is the number of  new wafers starting 

production in a specified time period.

2) Product-mix (PM), which is the number of different products that will be 

in production at the same time.

3) Product Sequence (PS), which is the sequence of the products in the 

production schedule.

4) Stepper Buffer Size (BS); which is the size of the buffer in front of the 

stepper (exposure step).
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4.3.3 Performance Measures

The selection of performance measures depends on many parameters such as 

manufacturing application, nature of the production system, administration 

requirements.  The performance measures included in this Photolithography 

FMC model are:

1. Throughput Time (TPT)

2. Product/Layer Cycle Time

3. Machine Utilization

4. Mean Completion Time

5. Waiting Times

6. Average Delays

7. Machine Idle Time

8. Production Rate

4.3.4 Model Constraints

Due to the complexity of photolithography operations, the constraints imposed 

on the model fall into two main groups; constraints due to the technology 

complexity, and constraints due to production. The main constraints imposed 

on the model are listed below:

The sequence of operations

The photol ithography area is divided into three main operations: 

spin/coat,  Align/Expose, and Develop. The sequence of these operations 

is fixed for the manufacturing of the products.

Re-entrant nature

Photoli thography is performed at various times throughout the 

manufacturing process. That means a lot can visit photolithography 

many times in the production cycle but only return after it has been 

processed in other tools.

Lot Integrity

One of the most important factors in semiconductor manufacturing is lot 

integrity.  Every lot should keep the same wafers throughout the 

production process.
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Operating Times

The processing times differ from one cell to the next due to the 

variabili ty in products,  layers, and tool capacity.

Photolithography manufacturing cells

Each photolithography cell is considered to be a flow shop environment 

as every single product has to be processed on each operation inside the 

cell following the same sequence of operations.

FMC Loading

The loading of the cells can be either automated or manual.  The cells 

receive the lots in boxes (max. 25 wafers per lot), although the 

operations can only be performed on a wafer-by-wafer basis.  As a result, 

un-batching and batching functions are required in the cell to interface 

within the rest of the factory.

Maintenance

Preventive maintenance (scheduled maintenance) is specified on weekly 

basis.  Unscheduled maintenance is estimated based on the recorded 

history of the cell.

Preemption

Lot order may only be changed by changing the order of their insertion 

into the cell. Preemption is not allowed in the cells.

Setup Times

Setup time applies every time the product/layer is different from 

previous lot to be processed for a lot.

Storage Areas

The storage areas (buffers) inside the cell employ FIFO (First In First 

Out) rule regardless of the lot priority.

Metrology

Photol ithography metrology is an essential function to ensure the 

products are within specifications before leaving the cell.

4.3.5 Model Assumptions

The model assumptions have been classified into three main groups based on 

their source;
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a) Simulation constraints,

b) Manufacturing constraints,  or

c) Recommendations of manufacturing team.

Table 4.1, shows the main groups of assumptions and brief description of each 

one. It is worthwhile saying that all the assumptions were reviewed by the 

manufacturing team to verify the model logic.

Table 4.1: Classification of model assumptions

Group Sub-group Description

S
im

ul
at

io
n

Sim ula t ion  sof tware  
capab i l i t i es

- Lots priorities can be set in the start of the run.

- The global time unit in the model is seconds.

S im p l i f i c a t io n - The initial setup is negligible.

- All parts (wafers) are available for processing at 
the start of simulation with the sequence required, 
although wafers entry into the cell is dependent on 
request from the cell sensor.

M
an

uf
ac

tu
ri

ng

C
on

st
ra

in
ts

Tech nolog ica l  const ra in ts - Preemption is not allowed.

- The default lot size is 25 wafers.

Equipment  Sett ing - The setup time of changing reticle considers 300 
seconds.

- Each machine or operating unit can process only 
one operation at a time.

Capaci ty - Tools are available 100% at the start o f  the run.

- Limited size buffers are located before specific 
operating units.

- Buffer size can be variable.

Pr
od

uc
tio

n 
Pl

an
ni

ng
 

an
d 

M
an

uf
ac

tu
ri

ng
 

S
ta

ff

S im p l i f i c a t io ns - The models consider every cell is an independent 
unit that has its own input source.

- Processing times of every product/layer have 
included the material handling times.

- Machines are never unable to perform a required 
operation for lack o f operator, tool, or raw material.

- Rework/Scrap products are considered as a 
percent overall of the production output.

- Preventive maintenance considered to be weekly 
based and the unscheduled maintenance has been 
considered as random distribution based on 
historical data from the floor.

4.4 Data Collection

The data collection phase is very critical in order to guarantee good output, 

and is also an essential step in modeling as a full description of each of the 

system entities must be obtained. Simulation output efficiency must always be 

judged based on the quality of the inputs. The input data for the model includes

86



the processing times, maintenance schedules,  material handling times, wafer 

arrival rates, product ..etc.

Operational time variability is one of the key parameters determining the 

actual utilization as well as average cycle time of wafers/lots [176]. Although 

the high level of automation involved in semiconductor manufacturing would 

suggest very little variations in processing times, many different sources of 

variabili ty can be identified within the photolithography cells, such as wafer 

arrival rates, travel t imes between steps, breakdowns, changes in setup times 

due to product/layer changes and operator availability.  The model consideres 

this variabili ty in the system and uses the historical data to define the required 

times.
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Figure 4.3: Snapshot of the input file (shopfloor data)

Most of data needed were saved in spreadsheet format are submitted to the 

model in same format after sorting them out, Figure 4.3 and 4.4. The 

probability distributions for the important system parameters have to be 

developed.
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Figure 4.4: Snapshot of the input file (model input format)

The input data for the model have been classified into two main type: 

deterministic data and stochastic data. The available data from the factory 

floor have been used to provide the model with the information that needs to 

be processed to calculate the objective functions.

Deterministic data includes:

- Wafer starts 

Storage areas capacity 

Product sequence/Order 

Product-mix 

Required layers 

Operation sequence

- Nominal number of wafers per lot 

Stochastic data such as:

Processing times
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- Maintenance schedule

o Preventive maintenance (PM)

o Unscheduled maintenance

- Wafers arrival times

- Material handling times

The stochastic items have been manipulated in order to use them in the model. 

For the sake of simplifying the form of the stochastic data, statistical

distributions were assumed based on historical data collected from the shop 

floor. As indicated in the assumptions (Table 4.3), the material handling times 

have been included within the processing times. The processing times are 

assumed to have Normal distributions and are represented as mean and

standard deviation times for each layer/product/tool combination calculated

from the historical shop floor database. This must be completed before the

model verification can take place. For i llustration sake, a sample of the data 

collected for combined processing and material handling times for one single 

layer/product is shown in Figure 4.5 below.

In te rva ls : [ " "  P o in ts ; [

1 39.3894
2 39.1976
3 39.5558
4 38.6036
5 39.4685
6 39 0055
7 38 6494
8 40.0248
3 39.177
10 39 3742
11 39,7967
12 39.1415
13 38 5092
14 39 6363
15 38.634
16 39 4766
17 39.1198
18 39.4141
19 39.8302

Figure 4.5: Snapshot of the Excel input file
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A total of  195 such definitions are required to charaterise one 

photolithography tool. Each particular tool will have its own set of data, 

indicating the complexity required in developing such models !

4.5 Photolithography FMC Conceptual Modeling

The diversity and interdisciplinary nature of modern complex industrial 

systems such as semiconductor manufacturing almost require some forms of 

modeling that can provide a reliable mechanism to describe the real system. 

The model building simply can be defined as the process of  setting the logical 

interrelations of the system in terms of its elements and their attributes,  sets, 

events,  activities,  and delays.

4.5.1 Block Diagram

The block diagram is one of the most common approaches to represent the flow 

of the production in a par ticular process. Many studies use block diagram to 

provide a simple overview of the whole process under study. Figure 4.6 shows 

the overview of photolithography FMC.

Figure 4.6: Detailed diagram of FMC in Photolithography Area

The upper arrow on the left side expresses the loading of the cell in lots that 

contain up to 25 wafers. The wafers go through the cell in a flow shop manner
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and leave the cell again as a lot. The MHS inside the cell includes a robot arm 

to deliver the wafer to each operating unit and some peripheral equipment to 

support the handling and the fixturing. The number of operating units varies in 

every cell based on the technology.

4.5.2 IDEF Model

The TDEF technique considered earlier is a standard tool in modeling. 

Although IDEFO models provide a top-bottom (hierarchy) approach [173], the 

model here varies from top-bottom approach to bottom-top approach. 

Semiconductor manufacturing is based on multi-layer manufacturing that 

involves a more complex processing sequence consisting of several layers. The 

inner layers are fabricated first, and then the fabricated layers are bonded to 

allow further outer-layer processes.  The model here represents 

photolithography tools that are involved in the fabrication of up to thirteen 

different layers.

A. Aggregate level o f  Photolithography Tool model

The top level of the IDEFO model for Photolithography tools,  B l ,  given in 

Figure 4.7, indicates the scheduling parameters; the inputs (process planning 

data and wafer in lots), the control (process characteristic,  process factors), the 

mechanisms (tool, layer, product),  and the output (processed wafers).  Bl can 

then be decomposed into the second level of detail, Figure 4.8, which includes 

the main steps in each photolithography tool, B l l  -  B15. Each of these blocks 

is then decomposed into further blocks to describe the operations in the 

photolithography area in more detail.

B. Detailed level o f  Photolithography Tool model

Figure 4.9 describes loading operation operation in B l l .  The wafers arrive to 

the FMC in lots (boxes contains up to 25 wafers),  loaded to the FMC with 

predetermined batch size. The cell handles the lot and un-batches it into wafers 

to start the operations.
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Figure 4.7: Top level of the developed model for  Photolithography tools
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Figure 4.8: Second level of systematic developed model for photolithography
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Figure 4.9: Loading operation in detail 

C. Main operations in photoli thography

Most photol ithography processes have a similar process flow with limited 

variations. The process comprises three sets of operations “Spin/Coat” , 

“Align/Expose” , and “Develop” . Figures (4.10 - 4.12) i llustrate the main 

operations in the photolithography process in steps.

C.l. “Coat/Spin” Operations

In the “Coat /Spin” set of operations (Figure 4.10),  the wafers surface needs to 

be free of moisture to prevent contamination and process hazards. Operation 

one is used to drive off  moisture from wafers using very high temperatures.  

The second operation is assurance for the first step, where 

Hexamethyldisilazane (HMDS) vapor is applied to surface of the wafer to 

ensure no water is on the surface. This chemical promotes resist  adhesion by 

binding with the silicon surface and presenting an adhesive friendly surface to 

the resist,  thus preventing adhesion of water. The next operation is pre-coat 

chill where the wafers cool down to same temperature as the resist  which is 

dispensed in the center of  wafer and spun over the surface area. In addition to 

coating, top and bottom chemical Edge Bead Removal (EBR) is performed in
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this module with the application of a chemical,  around the edges of the wafer 

to clean off the resist. The wafer is then baked gently to remove solvent from 

the resist  coating, before being cooled to ambient temperature in order to 

transfer to the exposure operation.

Operation 1 
(Dehydration 

Bake)
..._______BÍH' I Operatlon2 

► (Adhesion Prime)

Operallon3 (Prs- 
; Coal Chill)

| Operalion4 {Coal, j 
Resisi Spin)

OperallonS 
(W ater Edge | 

Cleaning)
EI1S Operatlon6 (Soil 

Bake)

1 Operation? (Pre- I
Expose Chill) h r^ *  ►

La,ta  mechanism

HQQE B12 MTLE Decomposiicn dì 012

Figure 4.10: IDEFO of “Coat/Spin” Operations 

C.2. “Align/Expose” Operations

The wafer in this set of operations is exposed to ultraviolet (UV) radiation, 

which transfers the pattern onto the surface of the panel. This operation is the 

most critical one in photolithography. The sub-operations in this stage are 

mainly for alignment to ensure that the exposure will happen in the right way. 

The light from the il lumination system goes through the reticle. Each reticle 

has to go through many adjusting steps during initial loading. For each layer 

there is a particular pattern held on a reticle must be placed and then aligned in 

the tool in these stages. The coarse alignment uses a single mark, the 

intermediate alignment uses four marks around the edge of the exposure field, 

while fine alignment uses 13 marks and ensures focus as well as position. 

These operations need only be carried out when a layer change occurs.
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Each wafer,  however, must also be positioned correctly before exposure. Here 

again a multi-stage alignement is used with the centre of the wafer and edge 

notch being located first as a coarse alignment. The wafer is then clamped in 

the chuck and an intermediate alignment over the full wafer performed before 

fine alignment to an individual IC device. The wafer is then exposed to UV 

light passing through the reticle under strict controls to ensure that the sub­

micrometer  features are transferred within tolerance, Figure 4.11.

Decomposition ol B

Figure 4.11: IDEFO of “Align/Expose” Operations

C.3. “Develop” Operations

The wafer then goes through the ‘Develop’ set of operations starting with 

wafer edge clearing, where a small-scale exposure tool all around the edge of 

wafer creates a uniform cleared pattern. The ‘Post Exposure Bake’ is required 

to counter a mechanism known as Latent Image Decay. The exposed resist 

becomes slightly acidic while the unexposed remains slightly basic, thus 

causing a concentration gradient and diffusion with resulting degradation of 

the pattern. Application of  heat at the ‘post exposure bak e ’ halts this process. 

Often parallel  flows (dual ovens) are used here to increase run rates. The wafer 

must then be cooled to the same temperature as the developer chemical
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puddles,  which dissolves exposed resist  for positive resist and unexposed resist 

for negative resists. Resist wafers are then rinsed and dried by spinning. 

Finally, wafers then cool down to ambient temperature to prevent melting the 

lot box and centered to ensure proper wafer handling by robots, Figure 4.12.

Figure 4.12: IDEFO of “Develop” Operations

OalfhSj*

8161

*
Figure 4.13: Unloading operation in detail
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D. Un-Loading Photolithography Tool

Once the wafers’ set of operations have been completed, the batch size is 

determined after the scrap or rework and batching operations will take place in 

order to unload the lot keeping its integrity,  Figure 4.13.

4.5.3 Model Coding

Models for FMCs of the photolithography area were built  on this hierarchical 

structure based using Extend software (ImagineThat,  Inc.) [177], The software 

supports building dynamic time models,  blocks can be inserted from libraries 

provided with the software or customized. The model decomposes the process 

into blocks allowing nesting for top-bottom or bottom up modeling approaches. 

The hierarchical approach of modeling and coding is effective in managing the 

process complexity, see Figure 4.14.

V <5

r 'r T  T T 1’ r T  1r  T  T  T  1
A  _•> >  p  A t A  A

/ /  /  / / / / y  y / / y /d f d r »  o<5 0<? o-f 0<? 0<?

Figure 4.14: Hierarchical structure of FMC modeling

The model is composed of components (called “blocks”) with connections 

between them, each used to represent a portion of the model.  Some blocks may 

simply represent a source of information that is passed on to other blocks.
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Other blocks may modify information as it passes through them while other 

blocks act like hierarchical blocks and contain groups of other blocks. Most 

blocks have a dialog associated with them to enter values and settings before 

executing the model. The most common use for a block is to pass information 

to other blocks or connect outputs to inputs graphically.  Different types of 

connectors transmit different typye of information. The simulation model has 

successfully converted the real system into a computerized time-based model. 

The data required has been specified in a generic manner to help the 

manufacturing team. The model has considered some assumptions as described 

earlier in order to reduce the complexity of the process.  Added to that, the 

level of detail which the model handles, was agreed with the manufacturing 

team of the industry partner.

The real manufacturing system may be subjected to random influences, and the 

simulation model has some randomization and statistical distributions to 

simulate somehow the actual manufacturing system.

In the photolithography FMC, the three hierarchical blocks in Figure 4.15 

represent the flexible manufacturing cell, its input schedule and the output. 

Each of these blocks contains set of blocks and entities.

The first block on the left side (Wafer generation) simulates wafer arrival 

t imes at the beginning of the process.  Moreover, it considers batching wafers 

into lots (default is 25 wafers) taking into account the lot integrity and the 

order constraints.  Once the wafers arrived, this block set the initial production 

order settings such as product,  layer, lot code, learn rate, ..etc.

The main block ‘photol ithography too l’ represents the flexible manufacturing 

cell in detail, Figure 4.16. The photolithography FMC model simulates the 13 

operations that the wafer has to go through in this process.  The processing time 

of each operation is different.  The processing time and material handling times 

as mentioned earlier were considered a normal distribution with a prespecified 

mean and standard deviation. This model reads the data from spreadsheets 

l inked to the model.
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Figure 4.15: The simulation model for FMC of Litho

Once the wafers arrived at this block, the simulation model starts to process 

the wafer into the operations in the same sequence as shown in Figure 4.16. 

The setup times were considered in the model in some operations. The model 

can handle it automatically when the product or the layer changes.

I Tool Start j |  Tool Exil j

Figure 4.16: Inside ‘Photolithography Tool’ (main blocks of FMC)
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Figures 4.17 -  4.20 use the new modeling approach ‘SASM ’ to clearly 

illustrate the operations in photolithography process.  Some of the operations 

are described in this section.

Operation one is presented using SASM shown in Figure 4.17. The blocks 

below represent the first operating unit  in the FMC.

W afers IN
In fo rm a tio n a l B lock

ET 3 [

X
 .  <s ;

Inpu t Exce l 
File

O u tp u t Excel G lob a l
File File

O pe ra tion
In fo rm a tion

W afers OUT

Prc cess ing  T im e

Figure 4.17: Schematic Diagram of Operation 1 (Detailed)

The information block helps the model to identify the nature of the wafers 

coming to be processed. The link between the model and the spreadsheet was 

established in order to allow the model to read data from spreadsheet rather 

than having manual entry of the parameters for each wafer.  The machine block 

reads the processing time based on the wafer parameters such as product,  layer, 

and operation number.

There are some similar operations in modeling, although some operations have 

a complicated logic, e.g. Figure 4.18. Here the'Operat ion f ive’ block consists 

of two identical parallel  machines; a wafer has to select one of the machines. 

The manufacturing team has set some rules to assign a machine for different 

jobs. The simulation model mimics the real system logic exactly in the 

selection criteria,  and therefore the ‘operation f ive’ block looks complicated. 

There is mathematical formula set to assess the decision making for the 

machine dedicated to the incoming wafers.
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Figure 4.18: Schematic Diagram of Operation 5 (Detailed)

Operation eight ‘S tepper’, Figure 4.19, is the most important operation in the 

photolithography process as it is the critical dimensional operation. The 

stepper is responsible of exposing the wafer to the light in the 

photolithography process.  This operation is setup dependent and is also 

product/layer sensitive. However, all operations in the cell are layer dependent 

operations.

Figure 4.19: Schematic Diagram of Stepper Operation 8 (Detailed)
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Some Operations -  such as operations ten (Figure 5.18) and twelve -  have two 

identical machines with simple selection logic which allows the first available 

machine to take the job. The global file was used as a catalyst in selecting the 

machine, Figure 4.20.
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Figure 4.20: Schematic Diagram of Operation 10 (Detailed)

The model has considered all the parameters that the manufacturing team takes 

into account. The next step was to verify the model before the experimentation 

phase would take place.

4.6 Model Verification

The strength of decisions made based on the simulation mode] are a direct

function of the validity of the obtained data [178], and hence the need for

efficient and objective methods to verify and validate the model. The 

verification and validation of the model took place as a continuing process

[ 111] [ 175]. In the initial  stages, the IDEF model was verified using

manufacturing expertise.  To ensure that the conceptual model is realistic,
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historical and clean (industrial expression) data have been examined for 

verifications sake.

The simulation model has been verified using three approaches. The first 

approach compares the output of the simulation model with actual data from 

the manufacturing floor and to other simulation models,  although these models 

cannot provide same capabilities for high wafer starts. The second approach is 

to check the output through a trace file, which consists of detailed output 

representing the step-by-step progress of the simulation model over the 

simulated time. In addition, a decomposition approach has been applied to 

verify sub-blocks in the model.  This approach detects the errors in the model 

efficiently and makes sure that every block functions as it should. Finally, the 

third approach is based on reasonableness of the model outputs. This approach 

relies on experts and manufacturing staff who are the reference to validate the 

model results based on reasonableness.

■ First verification approach

The outputs of the simulation model have been verified with actual data from 

the manufacturing floor and deterministic models that the industrial  partner has 

used before. The main criteria for verification were the total completion time 

and cycle time. The preliminary verification was on one product using 

different number of wafers to be processed. Table 4.2, shows a sample of the 

verification experiments performed to examine the simulation model outputs. 

The Simulation model output shows a comprehensive trend on throughput time 

criterion, up to 3000 wafers,  the results were close to the floor data, although 

there is a gap between simulation model and reality as can be seen in Figure 

4.21. The difference comes from neglecting the preventive maintenance times 

in the simulation model.  The scheduled preventive maintenance is estimated to 

be 4 hours weekly and the nonscheduled is approximately 2 hours weekly. The 

gap between simulation results and real data varies from 3% to 4% in wafer 

starts greater than 3000 wafers per week. I t ’s worth mentioning that the 

simulation run for 6000 wafer starts required a matter of few minutes on a 

personal computer (Processor Pentium III) to calculate the solution.
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Table 4.2: Comparison between the simulation model output,  the deterministic 

model,  and actual data from the shop floor (Time in Seconds).

Wafers Start Deterministic Model 
(Exisiting Models)

Simulation Model 
(New)

Actual Data 
(Floor Data)

100 11245.2 13221.4 13618.04

200 24739.4 25799.8 26444.8

500 58475.04 63533.5 63660.57

1000 97833.24 126423 128456

1500 146749.9 189313.2 178012.7

3000 293499 .7 377983.4 393858.7

5000 430466 .3 590123.3 618034.2

5500 516559.5 692433.4 730250.6

6000 513624.5 755323.4 798042.1

C o m  p a r  is  o n  b e t w e e n  D i f f e r e n t  T h r o u g h p u t  T im  e s  o f  D i f f e r e n t  D a ta

W a f e r s  S ta r t

Figure 4.21: Comparison between different models based on throughput Time

The simulation model preliminary results are encouraging, as the model 

mimics the real manufacturing cell to the extent that the results were very 

close to the real system and much better than the existing deterministic models.
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The simulation model could mimic the real complex process steps in 

photolithography and the way the manufacturing cell acts. The first 

verification procedure shows a good overall performance of the model. The 

second and third verification objectives are to confirm the details of the model.

■ Second Verification Approach

The model trace carries some useful information about the process, such as the 

effect of the use of two identical parallel  machines in some operations and the 

impact of the buffer size on the total completion time. The model was verified 

throughout by tracing the file and the details and every module and sub-module 

has been tested separately (decomposition analysis).

■ Third verification approach

The third way is to check the output for reasonableness. Similar runs with 

different parameters were performed. Increasing the wafers at the beginning 

and changing the processing times of process steps has tested the model

sensitivity to changes and verified the output. Reasonable output indicates

correct logical and structural data assumptions for the model,  and thus verifies 

the model. The measure for reasonableness on average cycle time per wafer 

and total throughput t imes (productivity measures) was checked by the 

manufacturing team. They reviewed the model outputs and agreed about the 

error limits.

4.7 Experimentation

There are five main steps in applying design of experiments in a research 

project and hera are shown below in Figure 4.22.

Logically the first step is the task of experiment planning. The purposes of 

planning are many, and how it should be carried out appropriately has been 

described in Roy [179] and Peace [183]. A few things that should be

considered are on the right blocks (procedure) in Figure 4.22.
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Figure 4.22: Design of Experiment (DOE) Steps

Selecting the orthogonal array, assigning factors to columns, and then 

describing the experimental combination constitute the experiment design step. 

“Understanding o f  the experimental design technique and planning are 

necessarily the f i r s t  and most steps in effective”, Roy mentioned. For the most 

part, experiments are to be carried out in a manner that best simulates the real- 

life application environment.  The number of samples to test under each 

experimental condition is one of the key issues in conducting the experiments.
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The results collected from the experiments contain information that delineates 

the primary reasons for the experiment,  and more. Then, these results have to 

be analyzed to obtain key information with statistical validity. Analysis of 

means (ANOM) and analysis of variance (ANOVA) are two standard tools to 

analyze the data and determine the significance of each factor as well as the

error percentage. Results verification and validation have to be part of the

experimental design to confirm the model output. More additional experiments 

may be recommended for sensitivity analysis or optimization.

The experimental design here has employed two main approaches, Taguchi 

methodology [180] and full factorial experiments [181]. Taguchi’s 

experimental design framework has been adopted for conducting the main 

simulation runs. Taguchi’s experimental design procedure provides a

convenient framework for establishing both the relative factor effects and the 

significance of the assumed factors [179]. Further,  it helps identify suitable 

factor (level) combinations for finding near-optimal performance measure 

estimates.  Full Factorial Experimentation (FFE) tends to find direct

correlation between some assumed parameters. FFE has been applied for more 

comprehensive sensitivity analysis to study the performance of the cell under 

some specific criteria such as cycle time per batch (lot), operating unit 

util ization, WIP and other productivity measures.

4.7.1 Taguchi experimental design framework

The Taguchi experimental design paradigm is based on the technique of matrix 

experiments [182]. A matrix experiment consists of a set of experiments where 

the settings of the process parameters under study are changed from one 

experiment to another. The experimental data generated subsequently is 

analyzed to determine the effects of the various process parameters.  In the 

statistical l iterature, matrix experiments are called designed experiments  and 

the individual experiments in a matrix experiment are called treatments.  

Settings are also referred to as levels and parameters as factors.
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Experimental matrices essentially are special orthogonal arrays, which allow 

the simultaneous effect of several process parameters to be studied efficiently. 

The columns of an orthogonal array are mutually orthogonal;  that is, for any 

pair of columns all combinations of factor levels occur an equal number of 

t imes. This, called the balancing property , implies orthogonality [180]. The 

columns of an orthogonal array represent the individual factors under study, 

and rows represent the experiments to be conducted.

The purpose of conducting orthogonal experiments is twofold:

1) To determine the factor combinations that will optimize a defined 

objective function (i.e., to determine the optimal level for each factor)

2) To establish the relative significance of individual factors in terms of 

their effects on the objective function.

Taguchi suggests using a summary statistic, rj, called the signal-to-noise (S/N) 

ratio,  as the objective function for matrix experiments.  Phadke discusses the 

rationale for using rj as the objective function. Taguchi classifies objective 

functions into one of three categories: the smaller-the-better type, the larger- 

the-better type; and the nominal-the-best type. S/N  ratios are measured in 

decibels (dB).

One important goal in conducting a matrix experiment is to determine 

optimum/ near optimum factor levels. The optimum/ near optimum level of a 

factor is that which results in the highest value of r/ in the experimental region. 

The effect of a factor level (also called the main effect ) is defined as the 

deviation it causes from the overall mean. The overall  mean value of rj for the 

experimental region is shown in the formula below;

m =

where;

n = number of experiments performed

i = experiment number.
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The process of estimating the main effects of each factor is called analysis o f  

means.  Taguchi makes a fundamental assumption in the method suggested for 

determining the optimal/near optimal factor combination (based on the optimal 

level for each factor) for a defined objective function. He assumed that the 

variation of r| as a function of the factor levels is additive in nature; that is, 

cross-product terms involving two or more factors are not allowed. The 

assumption of additivity essentially implies the absence of significant 

interaction effects between factors. Taguchi suggests that a verification 

experiment (with factors at their optimum levels) be run to validate the 

additivity assumption. After running a verification experiment,  Phadke [180] 

points out “if the predic ted and observed rj are close to each other, then we 

may conclude that the additive model is adequate fo r  describing the 

dependence o f  rj on the various parameters.. . . On the contrary, i f  the 

observation is drastically different from the prediction, then we say the 

additive model is inadequate.. ..  This is evidence o f  a strong interaction among 

the parameters”. In fact, Taguchi considers the absence of  interactions to be 

the primary reason for using orthogonal arrays to conduct matrix experiments.

4.7.1.1 Standard orthogonal arrays

Taguchi has tabulated 18 basic orthogonal arrays, called standard orthogonal  

arrays  [183]. To illustrate the notational scheme used for standard orthogonal 

arrays, consider as an example the L25(5 6) array, which has 25 rows with six 5- 

level factors. For brevity, the array L25(5 6) will be called the L25 array. The 

number of rows of an orthogonal array represents the number of experiments to 

be conducted. To be a viable choice, the number of rows must be at least equal 

the degrees of freedom required for the problem.

The number of columns of an array represents the maximum number of factors 

that can be studied using that array. Further,  to use a standard orthogonal array 

directly,  we must be able to match the number of levels of the factors with the 

number of levels in the columns in the array. Keeping one or more columns of 

an array empty does not lose orthogonality of the matrix experiment.

The real benefit in using matrix experiments is the economy they afford in 

terms of the number of experiments to be conducted. In the present study,
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because we need to experiment with four factors, each at five levels, a full 

factorial experiment would have required S'1 = 625 experiments.  In contrast,  it 

has found the L25 orthogonal array lo be suitable for our purposes based on the 

number of factors and levels considered. Therefore, only 25 experiments were 

needed to run.

4.7.1,2 Experimental  Array

To study the impact of  the assumed factors within the FMC’s considered, 

standard orthogonal array experiments are used. As mentioned earlier, 

Taguchi’s standard L2.s orthogonal array (Table 4.3) is found suitable for 

experimentation purposes.

Table 4.3: Taguchi’s standard form of L,2s(5 6) Orthogonal Array

Standard 1 ^ (5  ) orthogonal array

1 1 1 1 1 1

1 2 2 2 2 2

1 3 3 3 3 3

1 4 4 4 4 4

1 5 5 5 5 5

2 1 2 3 4 5

2 2 3 4 5 1

2 3 4 5 1 2

2 4 5 1 2 3

2 5 1 2 3 4

3 1 3 5 2 4

3 2 4 1 3 5

3 3 5 2 4 1

3 4 1 3 5 2

3 5 2 4 1 3

4 1 4 2 5 3

4 2 5 3 1 4

4 3 1 4 2 5

4 4 2 5 3 1

4 5 3 1 4 2

5 1 5 4 3 2

5 2 1 5 4 3

5 3 2 1 5 4

5 4 3 2 t 5

5 5 4 3 2 1
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This enables simultaneous consideration of six factors at five levels. In the 

present case only four factors are considered, so the first four columns of the 

L25 orthogonal array are used, with the fifth and sixth columns being excluded 

for experimentation purposes without affecting the orthogonality of the matrix. 

The factors (parameters) under investigation have been set to five different 

levels, Table 4.4. The levels of each parameter have been set based on 

information from the manufacturing team. The Wafer Starts (WS) is the total 

number of wafers in front of the cell at the beginning of simulation run. 

Product-mix is the number of products selected randomly. Sequencing of 

wafers was done using one of the following five rules: First comes First served 

(FCFS), wafer with shortest total processing times (W-STPT), wafer with 

longest total processing times (W-LTPT), wafer with least/minimum layer 

number (W-FLN), and Random selection (Random).

Finally,  stepper buffer size is variable and can be assigned to one of the five 

values 2, 3, 5, 8, or 13 wafers.  The resulting matrix experiment table with the 

factor level details is shown in Table 4.5.

Throughput time is the selected criterion to measure the cell performance; it 

can be suitably modified into the corresponding S/N  ratio for incorporation into 

the matrix experiment.  It may be noted that, the real benefit  in using S/N ratios 

is for situations where multiple repetitions are performed. For this case, Each 

experiment constitutes five repetitions. The number of repetitions was selected 

based on some statistical references such as Roy [179].

The equations below show the conventional notation in the Taguchi 

methodology of experimentation.

rji = - 10 Log¡0 (MSD)

H
j R e s u l t s 2

MSD = — ------------
n

MSD = mean square deviation for smaller-the-better,

Resul ts  = the output or readings collected.
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Table 4.4: Factor-level details 

used in the matrix experiment

Table 4.5: Experim ental table details

Exp. WS PM PS BS
1 750 1 FCFS 2
2 750 3 W-STPT 3
3 750 5 W-LTPT 5
4 750 10 W-FLN 8
5 750 15 Random 13
6 1500 1 W-STPT 5
7 1500 3 W-LTPT 8
8 1500 5 W-FLN 13
9 1500 10 Random 2
10 1500 15 FCFS 3
11 2250 1 W-LTPT 13
12 2250 3 W-FLN 2
13 2250 5 Random 3
14 2250 10 FCFS 5
15 2250 15 W-STPT 8
16 3750 1 W-FLN 3
17 3750 3 Random 5
18 3750 5 FCFS 8
19 3750 10 W-STPT 13
20 3750 15 W-LTPT 2
21 6000 1 Random 8
22 6000 3 FCFS 13
23 6000 5 W-STPT 2
24 6000 10 W-LTPT 3
25 6000 15 W-FLN 5

Factor Factor
Level

Factor-level
details

Wafer
starts(WS)

1 750
2 1500
3 2250
4 3750
5 6000

Product-mix
(PM)

1 1
2 3
3 5
4 10
5 15

Products 
Sequence (PS) 
(Dispatching 
Rule)

1 FCFS
2 W-STPT
3 W-LTPT
4 W-FLN
5 Random

Stepper Buffer 
Size

1 2
2 3
3 5
4 8
5 13

4.7.1.3 Matrix experiment results

Simulation experiments are performed using ‘Extend’ simulation software 

package, into which user-written C++ code is l inked to capture the 

customization to be incorporated into the models.  All wafers are assumed 

available at the start of the simulation run (i.e., wafer arrivals are not 

stochastically generated); although wafer arrivals into the system are 

dependent on signals coming from the cell or first operating unit. The 

processing times as well as product mix is assumed to be predefined before the 

simulation run. Finally,  identical experimental testing conditions for each 

simulation scenario are ensured using the method of common random numbers.
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Table 4.6: M atrix experim ent sim ulation results

Experiment
#

Avg. Throughput 
Time (Seconds)

Average Throughput
per wafer (Seconds)

S/N Ratio (r|i) 
(dB)

1 88470 117.96 -41.4347
2 90239.4 120.3192 -41.6067
3 95893.5 127.858 -42.1346
4 96547.6 128.7301 -42.1936
5 99300 132.4 -42.4378
6 175436.1525 116.9574 -41.3606
7 178944.8756 119.2966 -41.5326
8 184207.9601 122.8053 -41.7843
9 189471.0447 126.314 -42.029
10 196733.5 131.1557 -42.3557
11 259775.9795 115.456 -41.2483
12 266464.7785 118.4288 -41.4691
13 269464.7785 119.7621 -41.5664
14 279153.5775 124.0683 -41.8732
15 290141.55 128.9518 -42.2085
16 420896.836 112.2392 -41.0029
17 430534.7727 114.8093 -41.1995
18 451332.1936 120.3553 -41.6093
19 466448.5829 124.3863 -41.8955
20 472018.4 125.8716 -41.9986
21 702054.36 117.0091 -41.3644
22 725018.7088 120.8365 -41.644
23 731500.8832 121.9168 -41.7213
24 761362.514 126.8938 -42.0688
25 770334.5 128.3891 -42.1706

The results obtained from the simulation model based on the matrix experiment 

are detailed in Table 4.6. The data analysis using the Taguchi experimental 

framework involves the analysis of means (ANOM) and analysis of variance 

(ANOVA). ANOM helps to identify the optimal/near optimal factor 

combinations, whereas ANOVA establishes the relative significance of factors 

in terms of their contribution to the objective function.

4.7.2 Analysis of means (ANOM)

The main factor effects,  calculated using the formulas given in references (e.g. 

Phadke [180], Roy [179], and Peace [183]) are summarized in Table 4.7.

The notational convention adopted for analysis is
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m <=i
jk

m -

k
t!
5>.
i=\

n

nijk = main factor effect for the kth level of factory  , factory  is assigned 

the following factors: WS, PM, PS, BS. 

rji= observed S/N  ratio for the i th orthogonal experiment, 

n= number of experiments performed, 

m= overall  mean value of  t]

Based on the analysis of means, the optimum/near optimum level for each 

factor resulting from matrix experiment is shown italicized in the throughput 

column of Table 4.7.

Table 4.7: Factor main effects for matrix experiment simulation study results

Factor-level Main effect value
main effects Applicable formula TPTper wafer

™WS1 ( I1 i+  r |2+  113+ % +  Tls)/5 - 4 1 . 9 6 1 5
m w s 2 ( % +  H 7+  t|8+  %+■ T11 o )/5 - 4 1 . 8 1 2 4
<An S3 (Tl l l +  T1J2+ r ll3 +  Tll4+ n is ) /5 - 4 1 . 6 7 3 1
m w s 4 (■>116+ T |l7+  T ll8+  I l l 9 +  T|2o) /5 - 41.5411
n%NS5 (T1 2 1 +  TI2 2 +  TI2 3 +  TI2 4 +  T|2s)/5 - 4 1 . 7 9 3 8
fttpM I 6 l l  +  T16+ T111+ r | l6 +  Tl2 lV 5 - 41.2822
rripM 2 0 l2 +  ^ 7 +  T ll2+  Ï | l7 +  r|22)/5 - 4 1 . 4 9 0 4
m pM 3 (Î13+ % +  T) 13+ TI1 8 +  T123V5 - 4 1 . 7 6 3 2
m PM4 (r)4+  r)9+  r i14+  r )J9+  T|24 )/5 - 4 2 . 0 1 2

(^ 5 +  ^ 10+  l l l 5 +  TI2 0 +  1120/5 - 4 2 . 2 3 4 2
AHpsi ( r l i +  r |io +  r | i4 +  Hi 8+  rl22)/5 - 4 1 . 7 8 3 4
AT7pS2 ( r l2+  r|6 +  t l l5 +  Ï | l9 +  1l23)/5 - 4 1 . 7 5 8 5
mps3 ( ^ 3 +  H 7+ tl l l +  Tl20+ Tl24)/5 - 4 1 . 7 9 6 6
^ P S 4 0 l4 +  T|8+ 1112+ 1116+ Tl25)/5 - 41.7241
mp S5 ( l l5 +  119+ 1113+ T |l7+  T |2 l)/5 - 4 1 . 7 3 9 4
/77BS1 ( r | i +  % +  r |12+  T|2o+ t|2 3 )/5 - 4 1 . 7 3 0 5
m BS2 ( 112+  T |l0+  1113+ 1116+ T|24)/5 - 41.7201
™ BS3 ( r |3 +  r |6 +  T |l4+  1117+ 1125)̂ 5 - 4 1 . 7 4 7 7
m Bs4 ( ll4 +  117+ I I15+  1118+ l l2 l) /5 - 4 1 . 7 8 1 7
m BS5 ( l l5 +  118+ 1 1 1  1 +  I I19+  ll2 2 )/5 - 4 1 . 8 0 2
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It may be noted that the main effects values are measured in decibels because 

they refer to S/N  ratios. Accordingly, the predicted factor level combination 

that should optimize (i.e., minimize) the throughput t ime per wafer is WS4, 

PM1, PS4, BS2, which easily is interpreted to mean the wafer starts = 3750 

wafers, the product-mix is one product,  the product sequence is wafer with the 

least layer number first, and the stepper buffer size = 3. Interestingly, the 

predicted best setting corresponding to row number 16 in the matrix 

experiment.

Figure 4.23 plots the main effects of each factor level. The near optimum for 

each factor can be easily identified as the level that results in the highest value 

of r] in the factor-level range (rj is negative, and hence the lowest points are the 

best). Note that the prediction of the near optimum factor level combination is 

conditioned by the variation of  rj as a function of the factor level, satisfying 

the additivity assumption.
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Figure 4.23: Analysis of means (ANOM) plot of factor main effects

To justify the validity of this assumption, we need to carry out a verification 

experiment with the near optimum setting obtained.

The ANOM plot shown in Figure 4.24 reveals the relative magnitude of effects 

by factors on the throughput time per wafer. The product-mix is seen to affect 

the throughput time the most, followed by wafers start. The effect of both of 

the control rules is seen to be relatively less pronounced based on the selected 

criterion (throughput t ime). However,  a better feel for the relative effects is
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obtained by conducting an analysis of variance (ANOVA) test, which is also 

needed for estimating the error variance for the factor effects and the variance 

validity of the prediction error, to provide the necessary input for justifying 

the additivity assumption.

w s  PM PS BS

Figure 4.24: ANOM plot of factor main effects on TPT per wafer 

4.7 .3  A n a ly s i s  o f  V a r ia n c e  (A N O V A )

The main formulas that have been used in conducting the ANOVA test are as 

follows:

SST = SSB + SSE

where,

SST = Total sum of squares,

SSB = Sum of  the sums of squares due to various factors,

SSE  = Sum of squares due to error.

Also,

SST = GTSS -  SSM

where,
n

GTSS = Grand total sum of squares and can be calculated as GTSS = ^ r / f  ,
;=i

SSM = Sum of squares due to the mean and can be calculated as 
SSM = n x m 2.
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Now,

GTSS = 43593.49(dB)2 

SSM=25x(-41.7564)2 =43589.92(dB)3

Therefore,

SST = GTSS -  SSM

SST = 43593.49 -  43589.92 = 3.57(i/B)z

SSB = £

where,

lj i ( mjk - m f
k=i

c = number of factors,

lj = number of  levels for factors j .

SSB = SSB] + SSB2 + SSB, + .... + SSBC

In the case under study,

SSB = SSBws + SSBpm + SSBrs + SSB/jS

where for example,

SSBm =5[(m,,il - m ) 2 +{mws2- m f  +...+(/»,,,5- m ) 2\

Now,

SSBws = 0.499298 (dB)2 , SSBPM =2.946854 (dB)2,

SSBpS = 0.023777 (dB)2, SSBbs= 0.023888(dB)2
So,

SSB = 3.493817 (dB)2 

SSE = S ST -SSB

SSE = 3.57 -  3.493817 = 0.076183{dB)2

The error variance (cr) ,  defined as
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2 SSE
G  = ---------------

e ErrorDOF

o] = i ^ p ?  = 0.00774(dB)2

Table 4.8: ANOVA using the simulated results estimated as S/N ratios

Factor Degree of Freedom 
(DOF)

Sum of squares 
(SSB)

Mean square 
(SSB/DOF)

F

WS 4 0.499298 0.124825 16.126
PM 4 2.946854 0.736714 95.1765
PS 4 0.023777' 0.005944
BS 4 0.023888' 0.005972

Error 8 0.076183" 0.009523
Total 24 3.57

(Error) (16) (0.123848) (0.0077405)
I n d i c a t e s  t h e  s u m  o f  s q u a r e s  a d d e d  t o g e t h e r  to  e s t i m a t e  (he  p o o l e d  e r r o r  su m  o f  s q u a r e s ,  i n d i c a t e d  by 

p a r e n t h e s e s .  T h e  F r a t i o  is  c a l c u l a t e d  u s i n g  th e  p o o l e d  e r r o r  m e a n  s q u a re .

Phadke [180] suggests using F ratio resulting from ANOVA only to establish 

the relative magnitude of  the effect of each factor on the objective function and 

to estimate the error variance. However, probability statements regarding the 

significance of the individual factors are not made. From the ANOVA table, 

Table 4.8, the relative effects of the factors product-mix and the number of 

wafers are seen to be important,  followed by product sequence and stepper 

buffer size. This is in agreement with the ANOM results.

Table 4.9: ANOVA using the original simulation results

Factor Degree of Freedom 
(DOF)

Sum of squares 
(SSB)

Mean square 
(SSB/DOF)

F

WS 4 98.97987 24.74497 15.466

PM 4 585.837 146.4593 91.537

PS 4 4.040589* 1.010147

BS 4 4.701041* 1.17526

Error 8 16.84222* 2.105278

Total 24 710.4007

(Error) (16) (25.58385) (1.6)
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The statistical significance of the impact of individual factors on the 

throughput time per wafer is highlighted in Table 4.9 using the original 

simulated results (i.e., without converting to S/N ratios). The resulting F ratios 

(F-calculated) confirms the fact that the product-mix and the number of wafer 

starts are significant, at 95 % confidence level, Tablulated F0.5, 4, 16 is 3.01.

4.7.4 Testing of additivity

To validate the assumption of additivity, a verification experiment needs to be 

conducted with the optimal/near optimal factor settings. The result of the 

verification experiment then is compared with a predicted optimal/near optimal 

value, resulting in a prediction error. If the prediction error happens to fall 

within a two-standard-deviation confidence limit of the variance of prediction 

error,  the additivity assumption can be assumed justi fied [179]. Validation of 

the additivity assumption essentially implies the absence of significant 

interaction effects between factors.

•  Verification experiment

A verification experiment was performed with the optimal/near optimal factor 

combination (WS4, PM1, PS4, BS2). The observed optimal/near optimal 

throughput time per wafer was 112.2392 seconds; that is, r | o b s .o p t  = -41.0029 

dB. The following equation was then used to predict the optimum/near 

optimum performance measure value:

V pre .op , = m  +  ( m WSA - m )  +  ( m PM I -  m )

= -41.7564+C-41.5411+41,7564)+(-41.2822+41.7564)
= -41.0669 dB

Note that r\pre.oPt is calculated using only significant optimal (main effects) 

factor-level values. The prediction error then becomes 

Prediction error  =  r \ 0 b s . o P t  -  i l p r e . o p t  

= -41 .0029-(-41.0669)

= 0.064 dB

The variance of prediction error <y] is calculated as:



where,

no = equivalent sample size for the estimation of r\pre,opt. 

nr = number of repetitions of the verification experiment. 

In the present case, no is given by

+
1 1

nws n
+ 1 1

V  n P M  n  J

1

V25 J
+

V

I____1_
5 25

+
5 25

9_
25

where,

n = number of rows in the matrix experiment = 25, 

n Ws = number of times factor WS was repeated in the matrix 

experiment = 5,

npM = number of times factor PM was repeated in the matrix 

experiment = 5.

Further, because in this study nr = 5, the variance of the prediction error is 

calculated to be

rr2t' prt'i!

e pred

\ n0

25
x 0.0077405 +

\ UrJ
e TPTperWafer

X0.0077407

:0.004335(J5)2

The corresponding two-standard-deviation confidence limits for the prediction 

error are ±2x^(7^pred =±0.132(dB).

The prediction error of 0.064 dB is well within the calculated confidence 

limits, so the additivity assumption is justified.

4.7.5 Results Analysis

The Taguchi experimental design paradigm has been used to gain a better 

understanding of the significance of each parameter on the system 

performance. Based on the ANOVA detailed in Tables 4.8 and 4.9, the main 

control parameters (i.e., the number of wafer starts and product-mix) that have 

a statistically significant impact on the throughput time are determined. In
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contrast,  the parameters such as product sequence and stepper buffer size are 

not seen to be statistically significant. The results suggest that experimentation 

should focus attention on the alternatives available for the product-mix and 

wafer starts and only then the other parameters for improving the global 

performance. The results are noteworthy, because manufacturing teams have 

typically been tempted to experiment with different production plans. The use 

of  the Taguchi experimental design procedure provides an efficient platform 

for quickly focusing in on the parameters that need to be given priority.

The ANOM plots in Figure 4.23 and 4.24 provide two useful insights with 

regard to wafers start: an increase in the WS from 1 to 3 reduces the TPT per 

wafer as the util ization of the machines were getting higher, until it reaches the 

best TPT per wafer at WS4 (3750). After that, for 6000 wafer starts the 

performance starts to drop as a result of wafer blocking in the cell (increasing 

waiting times). Moreover,  the ANOM plot confirms our intuition with respect 

to the impact of increasing the product-mix on cell performance and in 

particular TPT per wafer.

It is important to say that the compromise between product-mix and wafer 

starts poses a more challenging problem. For the experimental framework, 

attention is drawn to the planning conditions in increasing/decreasing product- 

mix and the impact of it on the FMC performance. Other issues such as a 

sensitivity analysis of batch size of each product on total completion time need 

to be investigated.

4.8 Sensitivity Analysis

The complexity of FMC planning in the photolithography area has encouraged 

a more in depth study of the effect of increasing the number of products in the 

FMC. Further experiments have been conducted to focus on the impact of 

increasing product-mix on cell performance. The Taguchi methodology has 

efficiently provided an insight into the impact of product-mix on the TPT per 

wafer criterion. All the experiments have employed the same operating 

conditions and five repetitions for every single experiment were performed.
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A number of simulation sensitivity analyses were performed. These included 

experiments to analyze:

■ The impact of changing the quantity of product batch size on wafer cycle 

time

■ The impact of  increasing product-mix on loading of the FMC

■ Comparison of cycle times through each of the photolithography steps in 

order to determine the bottlenecks in the photolithography FMC.

a) Impact  o f  product batch size on wafer cycle time

The number of lots of each product in a batch can be adjusted to reduce wafer 

cycle time. However, the manufacturing team do not have any confident 

methodology to find the optimum size. The simulation model was used to 

determine the effect of changing the number of each product in the product- 

mix on wafer cycle time (CT/wafer).  In this case, wafers were introduced to 

the system according to their product type. For the five products selected for 

simulation, equal numbers of each type were used with all of product 1 being 

introduced before the first  lot of product 2 , ..etc. Each product requires 

processing of the same layer so that the main impact on set up times are the 

reticle changes associated with a product change. The results of 20 

experiments on a sample of two different layers, with five different products,  

are shown in Figure 4.25.

A v e ra g e  C ycle  T im e  p e r W a fe r

Q u a n t i t y  p e r  P r o d u c t

Figure 4.25: Impact of product batch size on average CT/wafer

1 2 2



It has been concluded that the minimum start volumes permitted on any given 

product should be 150 wafers to allow the cell performance to reach an 

acceptable level.

b) Variation in product batch s ize (cascade) due to vroduct-mix increase

The objective here was to examine the impact of increasing product-mix and 

wafer starts on the number of batch sizes to meet planned production. A set of 

36 experiments was performed in order to gain insight on the effect of 

increasing the product-mix on batch size, detailed in Table 4.10. Figure 4.26, 

shows that for more than 10 products in the cell, the minimum batch size to 

meet production demands had a consistent value near two. These results are 

have many significant for the manufacturing team, as the batch sizes currently 

are four lots based on their deterministic models and verified by previous 

sensitivity analysis results.

Table 4.10: Matrix experiment

Exp. PM WS Exp. PM WS Exp. PM WS
1 1 1000 13 10 1000 25 20 1000
2 1 2000 14 10 2000 26 20 2000
3 1 3000 15 10 3000 27 20 3000
4 1 4000 16 10 4000 28 20 4000
5 1 5000 17 10 5000 29 20 5000
6 1 6000 18 10 6000 30 20 6000
7 5 1000 19 15 1000 31 25 1000
8 5 2000 20 15 2000 32 25 2000
9 5 3000 21 15 3000 33 25 3000
10 5 4000 22 15 4000 34 25 4000
11 5 5000 23 15 5000 35 25 5000
12 5 6000 24 15 6000 36 25 6000

It is clear that, as the product-mix requirements are increased, the performance 

of the cell is decreased due to the increase in setup times. The cell takes about 

300 seconds to change reticle for every layer or product change. The analysis 

indicated that average batch size tends to two lots in each batch. However, in 

order to achieve four or five lots with current FMC and operating conditions, 

number of product-mix should not exceed four or five at most . For il lustration 

sake, one layer has been examined in this case to show the effect of changing 

product-mix ratio.
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N o .o f  P ro d u c ts

Figure 4.26: variation in product batch size due to increase in product-mix

c) Comparison o f  Cycle times for each photolithography step

Experiments were designed to analyze the cycle time through each of the 

photolithography steps. The primary objective here was to identify those steps 

contributing to high variances in FMC throughput times. The experiments have 

been carried out for many combinations of wafer starts, layer-mix, product- 

mix, and product sequences as shown in Table 4.11. The results of simulation, 

Figure 4.27, were used to detect the bottleneck steps in the cell and hence more 

alternatives can be proposed to enhance the cell performance.

The sensitivity analysis of cycle times through each step in the 

photolithography FMC shows the bottleneck steps in the cell.

Table 4.11: Experiments setting matrix

Experiment
No

No. of 
Products

No. of 
Layers

Total wafers 
start

1 5 1 6000
2 1 1 6000
3 15 1 6000
4 10 1 6000
5 5 2 6000
6 5 5 6000
7 5 10 6000
8 5 13 5200
9 3 5 2500
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Figure 4.27: Comparison of average cycle times for each step in a
photolithography FMC

Figure 4.27 shows that the stepper and step number five may be classified as 

the critical steps (bottlenecks) in the cell. The simulation output shows the 

variation of stepper util ization across all the steps is significantly high as the 

stepper is sensitive to any changes in layer or product. In addition, minor 

variations can be seen within each step because of applying different scenarios. 

This might be worth another sensitivity study.

4.9 Conclusion

Integration of simulation and Taguchi experimental design paradigm provides 

effective, quick, and efficient results. Moreover, sensitivity analysis gives a 

better understanding of the photolithography flexible manufacturing cell. 

Analysis of the performance of  an existing or planned FMCs has usually been 

achieved by means of deterministic spreadsheets.  Unfortunately, such 

deterministic models ignore such critical real world phenomena as system 

variability.

The quality of a technique’s solution is measured generally in at least two 

dimensions: (1) how close the solution comes to the optimal solution if it can

■  5 P / lL /6 0 0 0 w
□  1P/1L/6000W
□  1 5 P / lL /6 0 0 0 w
□  1 0 P / lL /6 0 0 0 w
■  5P /2L /6000w
□  5P /5L /6000w
■  5P /10L /6000w
□  5P /13L /5200w
■  3P /5L /2500w

MlmiBI
10 11 12 13
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be measured; and (2) how much computer time is required to solve problems of 

a given size.

The simulation model has shown reasonable results and gives better 

understanding of the cell behavior under various operating conditions. The 

quality of the output has been verified with actual floor data under similar 

conditions. The computer time required to run the simulation model for one 

experiment was so economic (less than five minutes).

A number of conclusions can be made based on the simulation results and the 

analysis.

1) There are many factors that affect the performance of the 

photolithography FMC performance including product-mix, product 

ratios, product sequence, wafers start, buffer size, and layers.

2) The Taguchi methodology for experimental analysis shows that the 

product-mix is the most significant factor in all the controllable 

parameters,  followed by the wafers start.

3) Increasing product-mix significantly increases the wafer throughput time 

and therefore diminishes the cell performance.

4) Since product-mix cannot be set to one, it is suggested to keep the 

product-mix as low as possible.

5) The wafer starts show a high impact on wafer throughput time. It 

reaches an optimum at 3750 wafers.

6) The stepper buffer size and the sequence of products did not have a 

significant effect on wafer throughput time in comparison to other 

parameters.  Nevertheless,  the stepper buffer size and in particular the 

product sequence may have a significant effect on other performance 

measures such as machine util ization and WIP. This will be explored in 

chapter six.

7) The Taguchi methodology has provided useful insights with regard to 

near optimum combination of the selected parameters.

8) The higher the number of each product, the better the wafer cycle time 

per wafer. The sensitivity analysis shows that the minimum start
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volumes permitted on any given product should be at least ¡50 wafers (6 

lots) to allow the cell performance to reach an acceptable level.

9) The product-mix has been shown to be the critical factor for normalizing 

batch size, as the increase of  product-mix (more than 10 products) can 

lead to very low batch size (two or less) which is not acceptable for the 

production planning team.

10) The bottlenecks of the FMC have been identified to be the stepper, 

followed by step number five as they have relatively high processing 

times. In addition, the stepper requires significant setup times with layer 

and product changes.
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Intelligent Scheduling of Photolithography in Semiconductor

Manufacturing

Chapter 5

5.1 Introduction

The dynamic nature of semiconductor scheduling adds more complexity in 

finding solutions. Traditional industrial engineering analyses and techniques 

using mathematical/  deterministic models are simply not powerful enough to 

analyze these complex manufacturing areas [184]. As an alternative, a 

simulation-based technique can help towards providing an effective tool for 

scheduling. However,  simulation only provides a prediction based on input 

scenarios and does not inherently optimize the inputs. Further the simulation 

sometimes for complex models can have a significant computation time. It has 

also been proved inadequate in modeling complex systems which include some 

element of  human decision-making [186].

Artificial Intelligence turns out to be one of the most effective approaches to 

handle problems with dynamic natures [ 150] [185], Moreover,  incorporating it 

within the simulation environment enables the development of intelligent 

systems to evaluate complex systems such as semiconductor manufacturing. 

Neural networks have shown good promise for solving combinatorial 

optimization and constraint satisfaction problems [187]. The intelligent-agent 

based approach is also capable of providing assistance in decision making 

[149],

This chapter presents an intelligent model for scheduling lots through the 

photolithography toolset (IPS Model) including a problem oriented interface, 

which allows the user to define the parameters of the model,  execute the 

simulation run, collect the results and perform the analysis to set the 

appropriate (near optimum) lots schedule before real production takes place. 

The model has linked intelligent-agent based scheduling and a neural network 

to the simulation model to optimize the lot selection criteria and hence enhance
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the quality of results.  The development of this hybrid model employs the 

methodology proposed in Chapter 3. This chapter uses the model in chapter 

five and expands it to include the whole group photolithography toolset. The 

theory of constraints is the framework of semiconductor management and 

hence a brief description of the theory is presented first. An overview of the 

photolithography scheduling problem in semiconductor manufacturing along 

with quick definitions of the process flow is also discussed. Finally,  the results 

from the model are analyzed and their use as the basis for 

modification/enhancement of the performance of the toolset are shown.

5.2 Theory Of Constraints (TOC)

The Theory of Constraints (or TOC as it is called) is a relatively recent 

development in the practical aspect of making organizational decisions in 

situations in which constraints exist. A constraint is anything in an 

organization that limits it from moving toward or achieving its goal. There are 

two basic types of constraints:  physical constraints and non-physical

constraints.  A physical constraint is something like the physical capacity of a 

machine. A non-physical constraint might be something like demand for a 

product or a corporate procedure.

The theory Of Constraints was first described by Dr. Goldratt  in his novel, The 

Goal [188], TOC emphasizes a systematic management approach to 

discovering the uncertain factors hindering development and suggests the 

global deployment of resources. The Theory of Constraints has been used at 

three different levels:

Production Management - TOC was initially applied here to solve problems of 

bottlenecks, scheduling, and inventory reduction.

Throughput Analysis  - Application of TOC has caused a shift from cost-based 

decision making to decis ion-making based on continuous improvement of 

processes in which system throughput,  system constraints,  and statistically 

determined protective capacities at critical points are key elements.

Theory o f  Constraints Logical Processes - This third level is the general 

application of TOC reasoning to attack a variety of process problems within
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organizations. TOC logic is applied to identify which factors are limiting an 

organization from achieving its goals, developing a solution to the problem, 

and then getting the individuals in the process to implement the requisite 

changes for themselves.

The steps in applying TOC are as follows:

1. Identify the system's constraints.  Of necessity this includes prioritization 

so that the ones that most limit system progress toward the goal are 

clearly identified. In the case under study, it is used to find the FMC 

with lowest production capacity.

2. Decide how to exploit the sys tem’s constraints.  Once it has been decided 

how to manage the constraints within the system, keep the constraint 

operational 100% of its available time at all costs and always operate it 

at full production rate.

3. Subordinate everything else to the above decision in Step 2. Here it is 

the step to manage the non-constraints resources so that they just 

provide what is needed to match the output of the constrained resources. 

These resources should never supply more output than needed because 

doing so moves the system no closer to the goal. Priortize material 

closer to completion for re-entrant tools,  e.g. photolithography tools. 

This will generate throughput in the shortest possible time. There is a 

method called ‘Drum-Buffer-Rope’, or DBR, that allows for 

subordination. It will be explained later using an example.

4. Elevate the system's constraints.  If we continue to work toward breaking 

a constraint (also called elevating a constraint) at some point the 

constraint will no longer be a constraint. The constraints are not acts of 

God. The constraints can be broken.

5. I f  the constraint is broken, beware o f  inertia, return to Step 1. When 

that happens, there will be another constraint,  somewhere else in the 

system that is l imiting progress to the goal. There is always a weakest 

link in any chain.

Over the past several years, many manufacturing systems have successfully 

employed the concepts of Goldratt's  Theory Of Constraints (TOC) to improve 

the performance of their capacity management.
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Example: TOC in Manufacturing

S tep  1 S tep  2
f  W afers j-------------- V  V"-----------** \ f

Release ' 1 2 0 0  •' -  7 0 0
W a fe rs /S h ift  W a fe rs /S h ift

M a ch in e  A  M ach ine  B
I_________ _ _I I______

Figure 5.1: a simple factory

Consider the simple semiconductor factory shown in Figure 5.1. There are 

three processing steps, each with a flexible manufacturing cell, and an average 

run rate in wafers per shift. Since Step 2 has the lowest capacity of all of the 

resources in the system, it is identified as the factory throughput constraint.  

The factory cannot produce any more than this step can run, and any time this 

step is idle, factory capacity is irreversibly lost. As part of the exploitation 

process,  its rate is identified as the "drumbeat" with which to synchronize the 

rest of the production line. To fully exploit  the capacity of the constraint,  it 

must have three things available at all times: material to work on or work-in- 

progress (WIP), a manufacturing cell, and a skilled operator.  Subordination of 

the rest of the resources of the factory involves ensuring the constraint has its 

requirements satisfied at all times. If the factory capacity is to be raised, the 

capacity at Step 2 must be raised by improvement projects or equipment 

acquisition, and if it is raised beyond 900 wafers per shift, then Step 2 is 

broken as the constraint and Step 3 takes its place.

The first requirement for exploitation of the constraint is WIP, and other 

resources must be subordinated to ensure that the constraint is always fed. One 

cause of the constraint starving is the inevitable breakdown of Machine A 

(variable availabili ty).  One way to protect the constraint is to place a WIP 

buffer between Machine A and Step 2. The size of the buffer is based on the 

historical distribution of t imes to repair Machine A. Machine A is subordinated 

to Step 2 by always being run in such a way as to maintain the correct level in 

the buffer. Too much WIP in the buffer increases overall factory throughput 

time (TPT) but does not raise output. Too little WIP in the buffer risks factory 

capacity.

S tep  3

900
W a fe rs /S h ilt

M a ch in e  C
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Figure 5.2: the Drum-Buffer-Rope ‘D B R ’ factory

Another way to ensure that WIP is fed to the constraint is to control material 

release. Subordinating material release to the constraint involves allowing the 

constraint to pull for work it requires.  This concept is described in TOC as 

tying the "rope" between the constraint and material release so that the 

constraint can "pull in" the work it needs as it needs it.

The TOC-based approach to WIP management gets its name from the 

combination of these ideas: drum-buffer-rope or DBR (Figure 5.2). Consistent 

use of these ideas drives the factory towards maximum throughput at minimum 

throughput time in the face of any variability in the availabili ty of equipment.

5.3 Photolithography Scheduling Problem

Photolithography is a complex manufacturing area and is the constraint 

process, so care must be taken in scheduling to prevent severe reduction in 

product yield. In this respect, the impact of the photolithography cluster 

performance on successful manufacturing and the economical stability of a 

factory is crucial.

The dynamics of scheduling photolithography are not l imited to unpredicted 

downtime of tools and sudden changes to product demands during production, 

there are also predictable changes that occur over a variety of t ime-scales.  The 

equipment pool, as one of the most critical pools in production, changes as 

older tools (flexible manufacturing cells) which can produce a reduced set of 

layers as determined by the qualifying matrix work in parallel with new tools
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having improved technology and capabilities.  These changes, in addition to 

new processes being introduced, cause complexity in scheduling a specific lot 

for a specific tool at a certain point of time.

The purchase of more equipment is a primary solution, but it is not cost 

effective when the manufacturing cell costs more than 15 million US dollars. 

Therefore, the maximum utilization of the equipment is essential. Good 

scheduling is essential to provide the best process parameters as well as 

production plan. Therefore, understanding the performance of photolithography 

has been a key focus for several years. Many deterministic models were 

developed to estimate the behaviour of the toolset under different loading 

conditions. These models of capacity calculations, processing times, and 

production plans have been the foundation and source of the data that is input 

to the model.

The toolset under investigation has 21 FMCs (tools) and can process 13 layers 

in a product menu of 15 products.  The key questions which have driven the 

development of this IPS model are:

i) Which tool is best placed to process the next lot arriving in 

this area ?

ii) Is the capacity of this set of tools sufficient to produce enough 

wafers to fulfil demand?

The model merges the photolithography tools (FMC) performance data (based 

on the model in chapter four), intelligent scheduling, and practical deployment 

restrictions to come up with a prediction of toolset performance under different 

loading conditions.

5.3.1 Nature of the Photolithography Area

The following are the main constraints in the photolithography cluster in 

semiconductor manufacturing:

1. Complex Product Flows

The complexity of product flows within photolithography has been 

discussed earlier.

2. Random Yields
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Process yields are uncertain and vary due to environmental conditions, 

problems with production equipment or material.  Yields for well- 

established products may be predicted using historical data, but the 

constant introduction of new products and technologies makes yield 

estimation a major problem. Cunningham [189] provides a survey and 

comparison of statistical yield estimation models in use in industry.

3. Diverse Equipment

In well-established Factory, due to the use of more than two or three 

technologies in the photolithography area along with new products 

developing, the photolithography toolsets have grown in complexity 

with several distinct tool types. As a result, the manufacturing team had 

set a deployment practices summary sheet (qualifying matrix), which 

documented the tool technical restriction states. These tool states 

document the level of qualification of a photolithography tool for 

running certain layers. Each tool in photolithography has multiple 

generations having different capability restrictions.

4. Equipment Downtime

The production equipment used in semiconductor manufacturing is 

extremely sophisticated. It requires extensive preventive maintenance 

and calibration, and is still subject to unpredictable failures. It is 

estimated that the main cause of uncertainty in semiconductor operations 

is due to unpredictable (unscheduled) equipment downtime, which is 

i tself also cited as major problem. For bottleneck machines or flexible 

manufacturing cells,  this time is particularly sensitive as it affects the 

total throughput t ime of the system.

5. Production and Development in Shared Facilit ies

Due to the constant development of new products and processes,  very 

often same equipment is used for both production lots and engineering 

test and qualification lots.

6. Data Availabili ty and Maintenance

The sheer volume of data in a semiconductor manufacturing facility 

makes data acquisition and maintenance an extremely time-consuming 

and difficult  task. For each operation a product undergoes, information
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like processing times and yields has to be recorded. The constant 

introduction of  new product types to keep up with the changing markets 

further complicates this problem, which is also compounded as one 

moves from the front-end towards the final testing stages due to multiple 

packaging and co-production possibili ties.

In order to address the complexities of the photolithography cluster in the 

semiconductor manufacturing, a list of the parameters that affect on the 

throughput time per lot/wafer within the photol ithography manufacturing area 

is shown below:

■ Product type

■ Batch size

■ Previous product

■ Tool setup time (layer/product)

■ Product priority

■ Preventive maintenance

■ Unscheduled maintenance

■ Number  of  qualified tools available

■ WIP inventory

■ Material Handling System (MHS)

An enormous amount of t ime is needed to examine and schedule all these 

parameters.

To summarize the problem, the photolithography area considers as a factory 

bottleneck. However,  fabs that employ simulation often model the area in less 

detail and treat each individual toolset as a black box. The decisions made in 

pholithography toolset can have an influential impact on the total TPT. That 

urges to find a methodology to model and simulate this complex area in order 

to experiment and optimize the performance of the photolithography area.
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5.4 Intelligent Photolithography Scheduling Model (IPS)

The proposed IPS model was built to assist decision making in the 

photolithography area and to improve the performance of the photolithography 

toolset using intelligent scheduling approach. The hybrid model was 

configured to receive information from production files and then use the data 

to make the selection decision. The model can learn more by inserting data in 

the neural network module. The model development methodology was shown in 

Figure 3.8 (Chapter 3).

5.4.1 Model Objectives

As the photolithography area has been identified as a factory constraint cluster, 

TOC steps two and three provided the insights about the model objectives. The 

model aims to exploit  the photolithography tools within the system. The 

proposed IPS model objectives apply to three different planning levels:

I. Tactical (Strategic) planning

II. Intermediate planning 

III. Shop floor planning (scheduling)

On the tactical level, the model output is used to

■ Predict the approximate number of  tools needed in the coming period.

■ Provide a robust stochastic model to mimic the floor in the 

Photolithography area.

On the intermediate planning level, the model results could be used to

■ Test the impact of product-mix / volume on the performance of 

Photolithography area.

■ Perform sensitivity analysis on planning parameters in the manufacturing 

area.

■ Determine the average util ization of  every tool.

■ Find the WIP inventory along the production flow.

■ Examine different production schedules in order to estimate the effect of 

changes before the implementation.
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■ link the existing models to the new model so as to import data.

■ Explore the impact of production flow dynamics on delivery time.

■ Provide the planner with infomation about the constraint equipment 

(bottlenecks) and their impact on lead-time.

Finally, at the floor level, the model simulates one of the main issues on the 

floor, which is lot selection. The model provides the shop floor

■ Near optimum solution of the sequence of the lots to be processed in order 

to increase the productivity and reduce lead times.

■ Operational recommendations to improve the performance in the 

photolithography area.

■ Impact of the selection criteria on the process performance.

5.4.2 Model Assumptions

The model assumptions are similar to previous FMC model in chapter four, 

(see Table 4.1). The new assumptions in the IPS model are:

Tools are set to perform specific layers based on technical 

qualifications.

Tools can be qualified to perform more than one layer.

Lots sequence in the actual floor is random.

The tools are down for maintenance after completing the wafer (no 

interruption of the operations).

The industrial partner has verified all the assumptions.

5.4.3 Performance Measures

The selection of performance measures depends on many things such as the 

application, nature of  the production system and administration requirements.  

In the case under study, the performance measures were set within the TOC 

framework. The model was designed to allow the use of various performance 

measures, although this thesis has concentrated on the following.
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TOC I: Production Management

This level concerns bottlenecks, scheduling and inventory reduction. The 

selection of measures of performance selected to evaluate these criteria are

1. Product/Layer Cycle Time

2. Machine Utilization

3. Total Waiting Time

4. Average Delays (Tardiness)

TOC II: Throughput Analysis

This level concerns system throughput time, system constraints,  and production 

capacities.  The selection of measures of performance which were considered to 

evaluate these criteria are:

1. Machine Idle Time

2. Production Rate

3. Throughput Time

TOC III: Logical Processes

This third level is the general application of TOC reasoning to identify the 

factors that are significant in developing a robust solution for scheduling. 

Statistical analysis tools are used such as ANOM, ANOVA, and Taguchi 

methodology on the measures from TOCI and TOCII.

5.4.4 Conceptual Modeling Approaches

The IPS conceptual modeling phase have used block Diagrams, IDEFO, and 

SASM modeling approaches to the photolithography toolset.

5.4.4.1 Block Diagram

The overall blocks of the model of the photolithography toolset in 

semiconductor manufacturing are shown in Figure 5.3.
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Figure 5.3: block diagram of the flow of lots in the model

Scheduling of photolithography typically starts when there are a number of lots 

of  wafers positioned at specific steps in the process (some waiting, some in 

process) and a number of active resources (some idle, some processing, some 

down for maintenance). The model starts to schedule lots in the block before 

the toolset as shown in Figure 5.3.

5.4.4.2 IDEFO

A. Aggregate level of model A1

Figure 5.4 shows the top level of the developed IDEFO model for wafer 

fabrication and indicates the inputs (wafers, process planning, and process 

preparations),  the control (process characteristics and process factors),  the 

mechanisms (layer, tool, product, and CAM software) and output (finished 

product) of  the system. The A1 has been decomposed into second level of 

detail, (Figure 5.5) which includes the processes that the wafer should go 

through to be fabricated.
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Figure 5.4: Top level of  the developed mode! for wafer fabrication - A1

Figure 5.5: Second level of systematic developed model for wafer fabrication
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B. Photolithography - A13
The photol ithography process has described in detail in chapter five. The flows 

of lots and information in the model are shown in Figure 5.6. Wafers come in 

lots to the photolithography area where the information about the lots has to be 

identified. The model has a set of selection criteria (A132) that have been 

verified by the manufacturing team. The tool selection (A133) involves a more 

complex processing sequence using an intelligent agent to assist the selection. 

The photolithography tool or FMC (A134) has been decomposed in detail 

earlier in Figure 4.8. Once the layer has been processed, the lots move to next 

step based on the production settings (A135) of the lot that assigns the 

incoming layer and the next manufacturing area.

___JE---------------- T .— bXHa_________,---------To Litho I*
Lot In lo rm a lion ------  C

A131
---------- ) ~  i  -

S a lec lion  C rite ria

A 132  ■ *

LSI No.
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A 133 ?.. jr . t  ? *

I  PhotoL ithography

^ A134
-----1 ■ A

tflim
NMfliaw

T T T T T

Lot Settings

A l3 5

Produci
mechanism

'NODE: A13 TfTtE Decomposition ol A13

Figure 5.6: photolithography model steps in detail

5.4.5 Model Coding

A hierarchical-structured approach has been used to develop the model of 

photolithography toolset using simulation software package EXTEND (ver.5 

Imaginethat,  Inc.). The model focuses on the scheduling problem, and the 

major aim of this study, process optimization. There are three main
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components in the top level of the hierarchy including production schedule, 

Photolithography toolset,  and output as shown in Figure 5.7.

For a better and more comprehensive illustration, the model has been modeled 

using SASM to represent the lots flow in the model. The production schedule 

of the model (left-most block in Figure 5.7) has been shown schematically in 

Figure 5.8. The production planning settings including number of wafers to 

start the production, product-mix, required wafers of each product, dispatching 

rule, priority, the first layer, and maintenance schedule have to be entered into 

the model. The model handles the data in two ways spreadsheets and global 

arrays. Wafers are normally generated using statistical distribution 

(Exponential distribution) or time-based schedule. The information about each 

lot come is recorded using the global array, which allows it to be updated 

during the simulation run. Meanwhile,  the spreadsheet keeps records of the 

information required for analysis. Based on the schedule, the generated wafers 

are assembled in lots of 25 wafers unless the product or layer changes.
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Figure 5.7: Photolithography simulation model blocks
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Some lots can be less than 25 wafers and the model has been customized to 

handle this. Once completed, the lots pass the photolithography toolset block.

P ro d u c tio n  S ch e d u le

Figure 5.8: Schematic Diagram of Production Schedule Block

The lots come to toolset block, in Figure 5.7, where there is a buffer at the 

start of this step followed by information retrieval blocks, see Figure 5.9. The 

model decides based on this information which layer to be processed for the 

lot. Every layer has its own path in the model flow followed by buffer. The 

scheduling of lots is the major aim of the incoming step. Intelligent agent and 

set of selection criteria have been considered to arrange the lot scheduling. 

Once the decision have been made and a tool is selected to process the lot, 

information concerning the process is retrieved automatically and the tool 

condition information is updated in both the intelligent agent block and the 

data stores elements (global array and spreadsheets). Every tool has been 

individually modeled and simulated as a photolithography FMC model 

discussed in chapter four. When the lot is processed, either it goes to another 

manufacturing processes or re-entery to the photolithography toolset to build a 

new layer (re-entrant lots).
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Photo lithography

L ith o  Lo ts  (R e -e n ta n t)

Figure 5.9: Schematic Diagram of Photolithography Toolset Block
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The third block (Figure 5.7) collects the results needed for analysis and 

evaluation. This block gives the signal to stop the simulation once the 

production of the ‘wafers started’ has been completed. The data is sent to the 

output files for graphing and presentation purposes, Figure 5.10.

Output

Figure 5.10: Schematic Diagram of Output Block 

5.5 Intelligent Scheduling Methodology

The intelligent-agent based module associated with the IPS model provides 

decision support at control level as well as production/tactical planning level. 

The previous attempts had provided some insights into the functioning of the 

photolithography area but were not able to obtain a quick robust solution to 

handle the lots scheduling problem. The solution space is large due to the 

number and range of controllable variables and assignable parameters. 

Moreover,  the complex nature of the process flow leads to numerous conflicts 

in decision-making. This makes the evaluation and testing of all potential 

solutions in a search space rather difficult,  risky, and uneconomic. The 

intelligent-agent evaluates the major decision making criteria using a 

heuristically established set of rules. The parameters assumed were a mixture 

between dynamic parameters such as tool status and buffer status and static 

parameters such as priority products or layers and product sequence.

It is worth saying that most of the FMS decisions are generally affected by 

decisions made earlier,  and attempts to isolate individual decisions and treat 

them as independent decisions are likely to be problematic.
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This thesis puts forward a model that provides support for decision-making in 

a large and complex domain through selective exploration of the solution space 

for a single toolset, as well as the assessment of the effects of other related 

decisions. The concept of the generalized simulation model is key to the 

research objective. The following sections discuss the main elements in the 

intelligent agent that have been used to solve scheduling within the 

photolithography toolset.

• Quali fy ing Matr ix

The manufacturing team uses a qualifying matrix (QM) that declares which tool is capable 

of processing each layer. The factory cannot replace older equipment as long it is still 

functioning and the replacement period is not due. The qualifying matrix is updated 

periodically based on manufacturing policies. Table 5.1 illustrates a sample of the 

qualifying matrix showing the tools and the layers on which they are able to perform.

Table 5.1: Sample of the Qualifying Matrix
Tool Layer 
No. No.->

1 2 3 4 5 6 7 8 9 10 11 12 13
X01
X02
X03
X04
X05 v'
X06
X07 S
X08 ✓

X09
X10 > /

X l l
X12
X13
X14
X15
X16
X17
X18
X19 V s
X20 s s

X21 s
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The QM is a two dimensional matrix which ignores the particular product to 

concentrate on layers and tools. Therefore, it is assumed that all the tools can 

process a qualified layer on any product.  For example, the manufacturing team 

always assigns the new tools to perform the hard/complex layers as the older 

tools may not be capable of achieving the required quality in a timely manner.

•  Selection Criteria

The manufacturing team has a significant input in assigning a short list of  the 

major constraints that photol ithography tools encounter within the lots flow. 

Technically, the problem of scheduling lots is a problem of assignment. There 

are several criteria that will affect the decision to select a tool to perform the 

incoming lot. The schedule generated for a manufacturing run is highly 

dependent on the particular criteria used in the scheduling process. These 

criteria can be either process-oriented or wafers-oriented (Figure 5.11):

A. Process oriented criteria are the criteria that concern the equipment 

i tself such as technology, maintenance, .. etc.

B. Wafer oriented criteria are the ones which concern the lot information 

such as product,  layer, .. etc.

Figure 5.11: Lots scheduling criteria

The criteria shown in Figure 5.11 are the most effective for decision-making 

based on manufacturing team. The main goal in this step of modeling 

scheduling intelligently is to set weights for these criteria based on their
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importance. The goal is to minimize setup times per tool due to change in 

layers and products.  The following order of evaluating these criteria has been 

established with the manufacturing team.

■ Qualifying Matrix

■ Maintenance

■ Tool status

■ Buffer status

■ Lot priority

■ Previous layer & product

■ Previous layer

■ Previous product

This means the selection of  the best tool for incoming lot will be taken through 

a series of arguments.  First , the selected tool must qualify to build the required 

layer for the lot. Second, it should not be in maintenance either preventive or 

unscheduled. After that, the model has to check if the tool is idle and if not, 

check the buffer status in front of the tool. The lot priority can be set to high 

(hot) or regular priority.  Finally,  the previous lot characteristics have an 

important effect to the scheduling because a tool already processing same layer 

or product can be given priority to process the incoming lot.

•  Selection Algorithm

The major issue for scheduling lots is the algorithm/approach for selecting the 

tool to process the lot. The model uses a weighted-score approach for 

evaluating the possible alternatives.  The description of the algorithm and some 

issues involved is given in this section.

The scheduling problem is defined as follows:

Assume an incoming lot Oij has to process layer tj ’ for product T ,

where i = 1, 2 , ......... , «, , and j  = 1, 2, 3, ...... . nj.

The scheduling problem is to assign a specific tool to process the incoming lot. 

The tool with highest score is the optimum for the selected criteria, as shown 

in the formula below;
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M a x \ S , r yI m  I » 1 = 1

where,

Sm is the score of tool ‘m’ and N qt is the number of qualified tools 

for this layer.

The score of tool ‘m’ can be calculated based on the following equations:

s „ = £ Ï X * ,
c- 1

where,

n r is the value of  selection criteria V ,  r = M, TS, BR, xl, xp, H  

n is the number of selection criteria, and

Kc is binary variable (0-1) to set if the criterion is applied (1) or 

not (0).

The selection criteria for the case under investigation are described below: 

Maintenance criterion (M):

The criterion has a value of wmr if the tool is down and wmo if tool is ready.

= w m r K m + w m o ( \ - K m )

where,

nM is the value of the maintenance function,

w M r  is the weighting if  tool is down for maintenance,

w m o  is the weighting if tool is ready, and

K m is the maintenance flag (1= down, 0= ready).

Tool Status criterion (TS):

The criterion has a value of  w T s r  if the tool is busy and w t s o  if tool is idle.

n TS —  W TSR K j S  W TSO ( 1  —  K Ts  )

where,

k T s  is the value of the tool status function,

W t s r  is the weighting if tool is busy,

Wtso is the weighting if  tool is idle, and 

K Ts is the tool flag (1= busy, 0= Idle).
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Tool Buffer Status cr iter ion(BR).

The criterion has different values based on how many lots are in the buffer in 

front of the tool.

7C c ™ B R  + (wBO l - i
SB

where,

kb is the value of the tool buffer status function, 

wbr is the weighting if tool buffer is full, 

wbro is the weighting if tool buffer is empty,

N 0 is the number of lots inside the buffer,  and 

SB is the size of the buffer.

Previous Layer criterion (xl ):

The criterion has a value of wxir if the tool is processing same layer and wxio if 

tool is not.

K* = wx!RKxl + wxlo

where,

7Txi is the value of the previous layer function, 

wxiR is the weighting if layers are same, 

wxio is the weighting if different layers, and 

Kxi is the layer flag (1= same, 0= different).

Previous Product criterion <xv)\

The criterion has a value of wxpr if the tool is processing same product and 

wxpo if tool is not.

*xp = WWRK1P + Wv O

where,

nxp is the value of the previous product function, 

wxpR is the weighting if products are same, 

wxpo is the weighting if different products,  and 

Kxp is the layer flag (1= same, 0= different).
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Lot Priority criterion (H ):

The criterion has a value of whr if the lot has high priority (hot lot) and who if 

lot is not.

~ whrK h + WHO

where,

7Th is the value of the lot priority function, 

whr is the weighting if lot priority is high,

W h o  is the weighting if lot is regular, and 

Kh is the priority flag (1= high, 0= regular).

•  Scheduling Methodology

The scheduling methodology used in this thesis is a dynamic dispatching 

technique where, every time a lot becomes ready to be processed, a decision 

about which tool to process has to be made. However,  here information about 

lots, tools,  and the system is updated simultaneously to exploit toolset 

conditions and consider that in the selection decision. This methodology 

enables the manufacturing team to explore the alternatives as well as examine 

the production scenario before the real production takes place.

The intelligent-agent based approach has been integrated with a simulation 

model to help in scheduling the lot selection. It starts with the grouping of the

tools inside the toolset. The tools have been grouped based on a qualifying

matrix so every group has some common layers which it can process, however 

ability to process a particular layer is not exclusive to the group. The purpose 

of this grouping is to save more time in the scheduling process by applying the 

qualifying matrix at an early stage. The scheduling starts once the lot is about 

to enter the photolithography toolset, and in the early stages the model put the 

lots into the path based on the layer to be processed.

Lot information has to be read (product, layer, and lot number) before they 

reach the tool selection block. Scheduling is connected directly to the 

intelligent-agent based block where the scores of each qualifying tool are 

calculated, and the tool with the highest score is identified. Then the model
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sends the lot to the selected tool. Figure 5.12 shows the logic of selection 

criteria.
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Figure 5.12: The Scheduling Criteria Logic

5.5.1 Model Optimization

In most cases,  neural network approaches hold significant advantages 

especially when suitable training data is available with adequate quality level. 

An Artificial Neural Network (ANN) presents at least an alternative to the 

more conventional optimization techniques. ANN has been applied in order to 

optimize the selection criteria weights.  Neural network has been discussed in 

chapter three.
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ANN used takes the advantage of regression and attempts to predict input- 

output transformation functions based on restructuring the weights of the 

nodes. It is important to note that it is not necessary to develop complex 

algorithms, and once trained the ANNs have an ability to generalize data and 

produce outputs for previously unseen inputs. Optimization software 

“NeuroShell  Predictor, Ward System Group Inc.” [147] was used to build the 

ANN model. Figure 5.13 shows how the ANN is used with the simulation 

model to form a hybrid system.

Figure 5.13: Architecture of ANN scheduling model

•  Optimization Process

The network model of continuous variables for optimization problems by 

Hopfield and Tank [143] is the most popular.  The rationale behind 

optimization using neural networks is that a neural network can act as a goal 

seeking dynamic system and the equilibrium state of a neural network can 

minimize an abstract energy function [190]. The central part of the network is 

the formulation of an energy function based on an objective function and 

constraints of a given problem. Most of these approaches focus on the 

optimization of a given problem by iteratively searching for the minimum
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energy point. They do not provide a method to util ize the acquired knowledge 

to solve many other problems that share similar characteristics [191].

The major advantage of the ANN approach is that it utilizes the acquired 

weights of criteria in making better balance or sequence decisions. It involves 

three stages, which may be sequential:

1. the initial setting stage;

2. the learning (training) stage;

3. the knowledge refinement stage.

In the initial setting stage, the desired inputs and outputs have to be defined.

The selected measures of the toolset performance were the number of reticle

changes (RtC) and total throughput time (TPT). The model was initially trained 

using fixed operating conditions of 6000 wafer starts, 13 layers, and 10 

products.  The weights for use in the training are defined in a spreadsheet 

format or text. Each row in the spreadsheet represents a set of weights for the 

scheduling criteria as shown in Figure 5.14.
Show data -  -------------

Path name of file: C : \.. .  SeUings\Am i\M y Docum ents\My

Initial label row detected: [ yes 
Number of cotumni rend; 113 

Number of data rows read: [~32

Exd Ml On I Mt Off | Idle Tod f Duty Tool | fkdfot F ill Buller not 1 X -% «( On | X-tapcf oil | X-prc-dud. On | X-ixoduen Off I  Dotptrt IHtCJ | Output TPf
1 3 •5 0 4 1 •1 4 5 0 5 0 1187 4R5
2 2 -5 1 8 1 -5 G 5 0 2 n 1159 440
3 3 -10 1 6 1 -5 6 5 0 2 0 1159 44?
4 •240 25 20 10 •10 20 50 15 50 15 645 m
5 5 •245 25 100 25 -50 100 50 15 50 15 1137 257
6 6 -120 10 50 20 -10 50 GO 10 60 10 1212 260
7 7 •120 10 60 10 •10 60 70 5 50 5 1134 294

.. e 9 -200 25 10 10 •10 10 70 5 50 5 512 2S8
3 -200 25 10 2 -20 10 90 5 50 5 512 268.

10 10 -200 25 20 2 ■30 20 60 5 40 5 676 284
11 11 -200 25 20 5 •20 20 60 5 40 5 876 264
1? 12 •150 10 30 20 ■10 30 70 5 50 5 G02 294
13 13 -150 20 30 10 ■5 30 80 5 60 5 602 284
14 14 -200 20 100 50 -50 100 150 5 120 5 1134 294
*'■> 15 •200 20 15 5 •10 15 60 10 50 10 602 284
is 16 •200 20 10 0 -15 10 60 5 50 5 602 285
1? 17 -120 10 10 5 •15 10 60 10 50 10 604 287
18 18 •120 10 10 5 •15 10 30 5 20 5 880 27 2
13 13 -120 10 10 5 -5 10 30 5 20 5 831 269
; i 20 -120 10 10 5 •5 10 60 5 40 5 448 253
21 21 •120 10 15 0 •10 15 60 5 40 5 602 285
22 22 -120 10 15 5 -5 15 60 5 40 5 512 268
23 23 -150 25 20 5 -5 20 60 5 40 5 602 205
24 24 -120 10 20 5 •10 20 60 5 40 5 604 286
& 25 -120 10 10 5 •5 10 40 10 30 10 602 285
2$ 26 ■120 10 10 5 -5 10 30 5 20 5 269 831
27 27 •120 10 10 5 -5 10 70 10 50 10 602 285
28 28 -120 10 15 10 ■10 15 60 5 40 5 602 285
29 29 •120 10 10 5 -5 10 40 5 60 5 760 281
30 30 ■120 10 10 5 -5 10 70 5 50 5 448 253
31 31 •120 10 12 5 -7 12 80 10 60 10 448 254

to ta l data rows: 32________________________ _____ Selected rows: 32 jfrccn 1 to 32)_________________________  Tj

Figure 5.14: Sample of ANN training data format 

In the learning stage, the data file is used to train the network. The parameter 

columns (inputs) and the output column have to be defined to the ANN before
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executing training. Once the model is run, the knowledge is stored in an output 

file and graphs can be obtained to make decisions.

The method employed in training the ANN depends on supervised learning. 

This implies that there is prior or available knowledge of the system to be 

modeled in the form of inputs-output pairs [165].

A simple module of NN was built to predict the near optimum weights of the 

selection criteria. The module has limits up to 20 input nodes in the input layer 

and maximum of 20 hidden nodes in the hidden layer. The output of the model 

was 2 nodes as mentioned earlier (RtC and TPT). The module learns to make 

predictions by learning patterns in the given data file. The software used 

facilitates integration of the NN with other programs, which helps to read the 

data from spreadsheet directly and export the result out to the same 

spreadsheet.

N o t 'C h e c k  th e  d e v ia tio n
a n d  th e  tra in in g / 
le a rn in g  c u rv e s

Acceptable
f

F in d  th e  o p t im u m /n e a r  
o p t im u m  o u tp u t

Figure 5.15: ANN training steps

Input patterns are propagated through the ANN to produce an output pattern 

that will initially be different than the desired output. The desired output has 

been assumed to be the theoretical sum of the total processing times and
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transportation time of lots in the model. This desired output is therefore 

considered to be a non-achievable target.

Values

Values

(a)

(b)

Figure 5.16: The training curves (a)before training,(b) after training
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However,  the training process consists of adjusting the weight values to 

produce minimum error of the outputs.  Error is defined simply as the 

difference between the model output and the desired output (see Figure 5.15). 

The ANN has been developed in two-phases that each incrementally train the 

model for one objective function alone to assure the near optimum weights of 

the selection criteria.  The improvement in the prediction is obvious in Figure 

5.16(a,b) showing the performance of the ANN before the training phase and 

the output curve of the trained ANN module. The ANN module can provide a 

number of graphic displays such as actual output versus the network 

predictions, the relative importance of  inputs,  and the network learning curve.

The software also calculated the sensitivity of  the output (error) to changes in 

the inputs. Figure 5.17 shows the relative importance between the selection 

criteria based on the assigned objective function. The previous layer seems to 

be the most significant criterion for RtC as a measure of performance, while 

the tool buffer status (full or not) and tool status (idle or busy) seem to be the 

most significant criterion for TPT as a measure of performance.

In summary, based on the knowledge gained from learning using a set of 

training exemplars,  the ANN model could significantly improve the solution 

quality to find near optimum weights of selection criteria. The ANN has 

recommended two combinations of weights for the selection criteria based on 

TPT and RtC. These combinations provide the minimum TPT and RtC values 

repectively. Therefore, there are two alternatives for weighing scores for these 

criteria. The ANN outputs have been used to update the weights in the 

simulation model manually. If more training is given to the ANN, the quality 

of results is expected to increase. The performance of the ANN model is 

evaluated using comparison with the results of other simulation model outputs.
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Relative Importance of Inputs

(a)
Relative Importance of Inputs

(b)

Figure 5.17: The relative importance of selection criteria based on (a)RtC,

(b)TPT

•  Numerical Example

Assume that a lot comes with these configurations (Product ‘5 ’, Layer ‘2 ’, 

Normal priority).  In this configuration, the qualifying matrix has three tools 

that can build this layer for that product,  i.e. tool ‘0 1 ’, tool ‘0 2 ’, and tool ‘0 3 ’. 

First, the model will follow the logic indicated in Figure 5.12 by checking if 

any of these tools is out for maintenance reason. Then, le t ’s assume that the
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three tools are busy (Tool Status criterion), the model will examine the buffer 

of each tool along with the lot information (layer, product) to evaluate the tool 

scores. After that the model will apply the selection algorithm calculations to 

every qualified tool and come up with three scores S4 0 1 , S4 0 2 , and S4 0 3 .

For illustration sake, presume that S 01 = 120, S02 = 85 and S03 = 65.

The model will send the lot to tool ‘0 1 ’ because it gets the highest score.

5.5.2 Data Management

The model was built to support two levels of authorization, the administrative 

level and the operational level. The administrative settings allow the planners 

to set the values of the critical factors such as the qualifying matrix and 

maintenance schedule. Whilst  the operational level is the experimental level 

for sensitivity analysis as well as the floor control level and at this level the 

engineers can change the other parameters such as the number of wafer starts, 

lots priorit ies,  .. etc. The diagram in Figure 5.18 shows the different levels of 

data control levels and the inputs that the model needs to run.

Simulation Output '
- N u m b e r of w a fe rs  IN
- N u m b e r o f w a fe r O U T
-  T o ta l T P T  
-T o o ls  U tiliza tion
- Lo ts  in fo rm ation
- U tlliza lion  vs . A va ila b ility
- A vg . w a iting  tim e s
- W IP  in fo rm a tion
- B atch ing
- N u m b e r o f re tic le  

chan ges  pe r too l
- C yc le  T im e  p e r too l /

f Simulation Settings
■ - N u m b e r o f runs  ’ 
\ -  Leng th  o f ea ch  run 

\  - R and om  seed s

IPS  M odel

Adiminstration Level

Operational Level

[ S preadsheet O utput 
File

N otebook

S preadsheet Input 
File

/  In p u t
1 - S e le c tion  c r ite r ia  w e ig h ts  \  
■ - T ra in in g  se ts  
\  - M ode l ou tp u ts  ,

S preadsheet NN File

IPS  N otebook

IPS S im ulation  
M odel

■ - Q ua lify ing  too ls
- M a in tenance  s ch e d u le  (PM )
-  U nsch edu led  m a in te n a n ce  inpu ts
- C a p a c ity  o f B u ffe rs

\  -  D isp a tch in g  P o lic y  /

Operational Inputs N
, - W a fe r  s ta rts
j - N u m b e r o f p rod uc ts  j
! *  N u m b e r o f laye rs *
\  -  L o ts  p rio rity  /

A vg , S e tu p  tim e s

Figure 5.18: The IPS data management diagram
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5.5.3 Model Verification and Validation

Many decisions are made based on data derived from simulation models.  The 

strength of these decisions is a direct function of the validity of this data

[178]. It is evident that validation is an integral part of simulation model 

building right from input data collection through model development to output 

data analysis. Integration of verification and validation with model 

development is crucial. The goal of this section is to verify that the model of 

the photolithography toolset is valid. A number of approaches were taken to 

confirm the status of the model.

•  First verification approach

This approach can be called in quality terms an ‘internal audit’. The software 

used for simulation produced a trace file, which consists of detailed output 

representing the step-by-step progress of the model over time. This allowed 

detection of subtle errors. The trace file displayed that some stations had 

higher utilization values than would be expected from production. The numbers 

would be misleading if this were not corrected. To ensure that t imes were not 

overlooked, this verification was checked by people other than the modeller to 

confirm that the correct logic was followed for each event type.

•  Second verification approach

The output was checked for reasonableness,  similar to an ‘external audit’. A 

set of different runs that were given by the manufacturing team was simulated 

to ensure that the throughput time and cycle time levels were near to the actual 

levels. This indicates that the logic and assumptions in the model are correct.

•  Third verification approach

A decomposition approach to verification can be applied throughout the 

complex manufacturing simulation model because the method of construction 

allows the tracing of each small part of the model separately. This approach 

established greater confidence in the model as the errors can be detected 

quickly. Moreover,  this approach was also successful in the previous FMC 

models.
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Verification was carried out for clean data (this is an industrial  expression 

means data without chaos or irregularit ies) and the simulation results were 

compared to the actual data, Table 5.2. The arithmetic average of deviation 

varied between 2 % - 16 % (see model implementation and remarks end of this 

section). The intelligent-agent based module was turned off to simulate what is 

happening in the actual production. The first check was for the tool processing 

times (overall) and to agree with the experts that the overall throughput time is 

reasonable. While part of the model was verified in chapter four, after 

including the complexity of the FMS as a whole, it needs reverification.

The verification process gave many useful insights for model building and 

execution. The simulation runs were performed on a PC Pentium III; the time 

needed to finish one simulation run was about 8 hours for 6000 wafer starts 

(real time is more than 3 weeks). This t ime is comparatively small to the other 

existing models in use by the manufacturing team. However,  the coming 

section has further analysis to reduce the simulation running times.

Table 5.2: Results of model verification

No. Scenario
Sim ulation

Results
(Hours)

Actual
Data

(Hours)
1 1 product, 13 layers, 3000 wafer starts, 

random scheduling 330.8459 291.3205
2 1 product, 13 layers, 6000 wafer starts, 

random scheduling 542.6478 570.8261
3 5 product, 5 layers, 3000 wafer starts, 

random scheduling 137.4299 156,0054
4 10 products, 1 layer, 4000 wafer starts, 

random scheduling 61.6568 74.12381
5 10 products, 5 layers, 4000 wafer starts, 

random scheduling 89.78155 98.75971
6 15 products, 1 layer, 3750 wafer starts, 

random scheduling 124.8965 145.7323
7 15 products, 1 layer, 6000 wafer starts, 

random scheduling 82.45752 98.70811
8 25 products, 2 layers, 6250 wafer starts, 

random scheduling 81.92122 80.24792
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Model Verification
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Figure 5.19: Comparison between simulation results vs. actual results of

average TPT
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The information in Table 5.2 is shown in graphical form in Figure 5.19 and 

this was considered to mimic production data closely by the manufacturing 

team.

* Remarks on verification phase:

The error (variation) in the preliminary results was slightly high in some 

scenarios.  In fact, this variation happened due to:

Shortage of clean data in some scenarios

Simplifications and assumptions were assumed by manufacturing team to 

handle the difficulties to collect actual floor data in some cases 

Unscheduled maintenance yields 

High priority lots (in actual production)

Random lot selection.

Intelligent-agent module is off.

However, the preliminary results were considered acceptable and the model has 

been verified. The latter sections in this chapter compare the outputs of the 

model with the actual floor data.
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5.5.4 Simulation Time Trade-off

In general, the quality of simulation models can be measured in at least two 

dimensions [171]:

(1) How close the model mimics the real system if it can be measured?

(2) How much computer time is required to solve problems or obtain results?

Due to wide differences in software, platform, problem size, experimental 

design and reporting, it is very difficult  to compare the performance of 

different simulation models directly. However,  the simulation execution time is 

still one measure of  the implementation success of the simulation technique 

that should be considered. It is a compromise situation between model details 

and efficiency in running time. The model running time reaches 8 hours for 

6000 wafers start. The actual production time (real time) for processing 6000 

wafers can be more than three weeks, and hence the simulation time was 

acceptable.  To enable further investigations of several scenarios and sensitivity 

analysis, shorter run time of the model is required.

•  Model modifications

The model has included the flexible manufacturing cell model in each tool. 

That means when the model starts, based on the hierarchical approach, it calls 

the FMC module. The FMC simulation model had simulated the process wafer 

by wafer and the time step resolution was in seconds while, in this IPS model 

(toolset),  the resolution requirements are lots instead of wafers and hours 

instead of seconds.

To improve the speed of calculation the original FMC module was replaced 

with another hierarchical block that functions with less detail. First  the data 

collected from FMC model and fed into spreadsheet file. A statistical analysis 

of the data shows that the normal distribution is the best fitting for the average 

processing times per lot. The normal distributions of the processing times with 

predefined mean and standard deviation were saved into a new spreadsheet file 

(input file).
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The IPS model reads the processing times from the input spreadsheet as shown 

in Figure 5.20.

Collect average 
processing times of 

each lot

Figure 5.20: The model modification to reduce simulation run time

The trade-off between the simulation run time and the level of detail in the 

model is a crucial issue and time-consuming process.  Guaranteeing the finding 

of an optimum solution is nolonger a possible choice for complex systems, 

however obtaining a satisfying solution is the new target. The modified model 

can run 6000 wafer starts in less than 4 minutes , approximately 160 times the 

reduction in simulation run time. The model was then re-verified and re­

validated.

•  Model  re-verification

The outputs for the new model were verified using the old model scenarios. 

Random scenarios were selected to examine the new model and compare results 

between the old model and the new one as shown in Table 5.3. The tool buffer 

size was assumed to be five lots and number of layers is 13 layers for every 

lot. The deviation in percent between the old model and the modified one is 

presented in Figure 5.21 and Figure 5.22. The order of the experiment is the 

only difference between the two figures. It is clear that for increasing wafer
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starts and increasing product-mix, the deviation between the two models 

increases slightly.

Table 5.3: the experiment matrix

Experim ent Product-M ix W afer S tarts E xperim ent Product-M ix W afer S tarts
1 1 2000 17 10 6000
2 1 4000 18 15 1125
3 1 5000 19 15 1875
4 1 5000 20 15 4125
5 5 1000 21 15 5250
6 5 1000 22 15 5250
7 5 2000 23 20 1000
8 5 2000 24 20 3000
9 5 6000 25 20 3000
10 5 6000 26 20 4000
11 10 2000 27 20 5000
12 10 2000 28 20 6000
13 10 3000 29 25 3125
14 10 4000 30 25 4375
15 10 5000 31 25 6000
16 10 5000

On close examination of Figure 5.21 and Figure 5.22, it becomes apparent that 

the effect of applying the modified model is reasonable as the mathematical 

average of error between the two models averages 4% of the performance 

measure. The manufacturing team were satisfied about this deviation as they 

considered it small compared to the benefits of having quick outputs of the 

simulation model. The deviation mean was 4.128% and standard deviation is 

1.568 %, this supports our conjecture that applying the modified model will 

save time and the error is traceable and detectable.  A statistical software 

package was used to evaluate the deviation (Qualitek 4.0, Nutek Inc. [192]).

166



Modified Model vs. Old Model
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Figure 5.21: The deviation percentage between the two models (order of 

experiment based on product-mix)
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Figure 5.22: The deviation percentage between the two models (order of

experiment based on wafers start)
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5.6 Experimentation

Experiments will be much simpler if they can always have only one factor 

influencing the output [179]. Unfortunately, given the complexity of 

semiconductor manufacturing and in particular the photol ithography area the 

challenge is to decide how many parameters to select to study and how many 

levels should be set for each? The answers of all these questions come into the 

design of experiments,  which already was explained in chapter four, sec 4.7.

5.6.1 Experiment Repetitions

There are generally two types of experimental error: between-experiment error 

and within-experiment error. Between-experiment error is the error in the 

results associated with different setups. Within-experiment error is the error 

associated with repeating experiments (repetitions) under the same conditions

[179]. The way to keep both these types of error to a minimum is to conduct 

experiments in an efficient manner.

The repetition of experiments is an important issue to be considered in order to 

obtain accurate output especially when there is more than one objective that a 

product or process is expected to satisfy. Moreover,  a stochastic element in the 

manufacturing environment is quite common in many industrial  clusters. Each 

experiment has to use the same number or range of repetitions under the same 

running condition in order to evaluate the results; five repetitions have been 

for each experiment.  For comparison purposes, the average is the most common 

criterion as long the dispersion is not significant.

The standard deviation and range of variation in the results were calculated. 

The module considers quality characteristics,  which selected to be the smaller 

is better with target of zero. The results distribution was Normal distribution 

curve with standard deviation in TPT of 5.641 hours. The manufacturing team 

has considered the dispersion of preliminary output acceptable,  taking into 

account the stochastic nature of the production system.

5.6.2 Process Parameters

The manufacturing team has selected the following parameters {factors):

1. Wafer starts per product (WS)
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2. Product-mix (PM)

3. Tool Buffer Size (BS)

4. Number of  Layers (NL)

5. Scheduling agent (SA)

The simulation model was developed to focus on the effect of these parameters 

on the defined objective functions. The performance measure of interest is 

throughput time (total completion time). Sensitivity analysis has included more 

performance criteria that give support to decision-making.

Each of the assigned parameters has been set to a different level of operation 

based on the manufacturing team recommendations, Table 5.4.

Table 5.4: Factors assumed and their levels

Factor Factor
Level

Factor-level details

W afer starts(WS) 1 2250

2 3750
Total number of wafers at the 
beginning of production

3 4500

4 6000

Product-mix (PM) 1 1

2 5
Number of products 3 10

4 15

Tool Buffer Size (BT) 1 1

2 3
Size of the buffer in front of each 
tool

3 5

4 8

Number of Lavers (NL) 1 5

2 8
Number of layers required to be 
processed

3 10

4 13

Schedulina-aeent based (SA) 1 0

Either random scheduling or 
intelligent-agent based

2 1
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The wafer starts was assumed to be fixed per each product, for example, if 

there is 1000 wafer starts and the product-mix is 5, that means there is 200 

wafers of each product in this scenario. The product-mix can be set for four 

different levels 1, 5, 10, 15 products at the beginning of the production.

The buffer size in front of each tool in the toolset is affected using one of the 

following four sizes: 1, 3, 5, 8 . The effect of varying the number of layers 

(four different levels) on the tool performance, was one of the experimental 

objectives.  Finally,  the scheduling-agent based can be either on or off. In other 

words, there is no systematic approach in lots scheduling for actual production 

rather the experience of experts working on the shop floor.

5.6 .3  T a g u ch i M eth o d o lo g y

Taguchi experimental design procedures have been applied to the experiments 

in chapter four and it allowed the team to understand the behavior of the 

flexible manufacturing tools under different production scenario. Therefore the 

same procedure has also been used here. Experimental matrices were used 

based on the standard orthogonal arrays, which allow the simultaneous effect 

of the selected process parameters to be studied efficiently. The purpose of 

conducting orthogonal experiments is twofold:

1. To determine the factor combinations that will optimize a defined objective 

function (i.e., to determine the optimal level for each factor)

2. To establish the relative significance of individual factors in terms of their 

effects on the objective function.

Quality characteristic (QC) is considered as the sense of desirabili ty.  There 

could be three different types of QC as mentioned earlier in chapter five: 

smaller is better (QC=S), bigger is better (QC=B), and nominal is best 

(QC=N).

■ Smaller  the better

Here, as the major objective function is throughput time, the smaller the 

better magnitude of the results is always preferred over the others. The
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theoretical target is the minimum, or in other words, the lowest achievable 

value that can be obtained.

Summary statistics have used average throughput time (TPT) per lot (to 

normalize the output) as the objective function for matrix experiments.  S/N 

ratios could not be measured in this study due to the scale of the output.

The overall mean value of average TPT for the experimental region is shown in 

the formula below;
n

&
i=lm = —------ -

n
where;

rji= observed S/N  ratio for the i'h orthogonal experiment,  

n = number of experiments performed, 

i = experiment number, 

m= overall  mean value of rj

■ Standard Orthogonal Array  

The selection of  the orthogonal array is based on the number of factors and 

their levels. Here, there are five factors with different levels. There is one two- 

level factor and four four-level factors. The standard orthogonal array L32 (21, 

4 9) modified was selected and then the factors assigned to the columns. Table

5.5 shows the standard for of L 32 orthogonal array as Taguchi designed.

This array enables the simultaneous consideration of 1 factor (at two levels), 

and 9 factors (at four levels). In the present case only one factor (at two levels) 

and four factors (at four levels) are considered, so the first five columns of L32 

modified are used with the remaining columns being excluded without 

affecting the orthogonality of the matrix.

To study the impact of the factors listed earlier within the photolithography 

toolset considered, the orthogonal array has been adjusted based on number of 

factors used and the levels dedicated. Table 5.6 distributes the factor levels 

into the orthogonal array form for experiments.

The arithmetic mean equation and other equations of the Taguchi methodology 

were similar to these used in chapter four.
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2 9Table 5.5: Standard L32 ( 1 , 4 )  modified (mixed level) orthogonal array
Exp. No. ________________________________________________Column

1 2 3 4 5 6 7 8 9 10
1 1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 2 2 2 2 2
3 1 1 3 3 3 3 3 3 3 3
4 1 1 4 4 4 4 4 4 4 4
5 1 2 1 1 2 2 3 3 4 4
6 1 2 2 2 1 1 4 4 3 3
7 1 2 3 3 4 4 1 1 2 2
8 1 2 4 4 3 3 2 2 1 1
9 1 3 1 2 3 4 1 2 3 4

10 1 3 2 1 4 3 2 1 4 3
11 1 3 3 4 1 2 3 4 1 2
12 1 3 4 3 2 1 4 3 2 1
13 1 4 1 2 4 3 3 4 2 1
14 1 4 2 1 3 4 4 3 1 2
15 1 4 3 4 2 1 1 2 4 3
16 1 4 4 3 1 2 2 1 3 4
17 2 1 1 4 1 4 2 3 2 3
18 2 1 2 3 2 3 1 4 1 4
19 2 1 3 2 3 2 4 1 4 1
20 2 1 4 1 4 1 3 2 3 2
21 2 2 1 4 2 3 4 1 3 2
22 2 2 2 3 1 4 3 2 4 1
23 2 2 3 2 4 1 2 3 1 4
24 2 2 4 1 3 2 1 4 2 3
25 2 3 1 3 3 1 2 4 4 2
26 2 3 2 4 4 2 1 3 3 1
27 2 3 3 1 1 3 4 2 2 4
28 2 3 4 2 2 4 3 1 1 3
29 2 4 1 3 4 2 4 2 1 3
30 2 4 2 4 3 1 3 1 2 4
31 2 4 3 1 2 4 2 4 3 1
32 2 4 4 2 1 3 1 3 4 2

Table 5.6: Experimental table details

Exp. SA PM WS BT NL Exp. SA PM WS BT NL

1 0 1 2250 1 5 17 1 1 2250 8 5
2 0 1 3750 3 8 18 1 1 3750 5 8
3 0 1 4500 5 10 19 1 1 4500 3 10
4 0 1 6000 8 13 20 1 1 6000 1 13
5 0 5 2250 1 8 21 1 5 2250 8 8
6 0 5 3750 3 5 22 1 5 3750 5 5
7 0 5 4500 5 13 23 1 5 4500 3 13
8 0 5 6000 8 10 24 1 5 6000 1 10
9 0 10 2250 3 10 25 1 10 2250 5 10
to 0 10 3750 1 13 26 1 10 3750 8 13
11 0 10 4500 8 5 27 1 10 4500 1 5
12 0 10 6000 5 8 28 1 10 6000 3 8
13 0 15 2250 3 13 29 1 15 2250 5 13
14 0 15 3750 1 10 30 1 15 3750 8 10
15 0 15 4500 8 8 31 1 15 4500 1 8
16 0 15 6000 5 5 32 1 15 6000 3 5
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Simulation experiments are performed using Extend (Imaginethat Inc. [177]), 

into which C++ code is linked to capture the customization incorporated into 

the models.  All wafers are assumed available at the start of  the simulation run 

(i.e., wafer arrivals are not stochastically generated); although part arrivals 

into the system are dependent on signals from the cell or first operating unit.

5.6.4 Matrix Experiment Analysis

Table 5.7: Matrix experiment simulation results

Experiment
#

Avg. 
Throughput 

Time (Hours)

Average 
Throughput per 

Lot (Hours)

Experiment
#

Avg. 
Throughput 

Time (Hours)

Average 
Throughput per 

Lot (Hours)
1 58.295 0.648 17 55.844 0.620
2 167.951 1.120 18 99.974 0.666
3 247.951 1.378 19 206.235 1.146
4 319.554 1.331 20 300.290 1.251
5 96.287 1.070 21 65.383 0.726
6 82.842 0.552 22 78.020 0.520
7 276.578 1.537 23 239.657 1.331
8 351.985 1.467 24 301.123 1.255
9 131.195 1.458 25 92.882 1.032
10 287.510 1.917 26 241.343 1.609
11 130.399 0.724 27 96.342 0.535
12 246.545 1.027 28 200.779 0.837
13 153.090 1.701 29 103.442 1.149
14 233.906 1.559 30 219.610 1.464
15 238.114 1.323 31 198.405 1.102
16 206.597 0.861 32 182.014 0.758

The processing times and product mix are assumed to be predefined before the 

simulation run.

Finally,  identical experimental testing conditions for each simulation scenario 

are ensured using the method of common random numbers.  The results 

obtained from the simulation model based on the matrix experiment are 

detailed in Table 5.7.

■ ANalvsis O f Means (ANOM)

Based on the analysis of means, the opt imum/near optimum level for each 

factor resulting from the matrix of experiments is shown italicized in the 

throughput column of Table 5.8. Accordingly, the predicted factor level
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combination that should optimize (i.e., minimize) the throughput time per lot is 

SA2, PMI,  WS1, BT3, and NL1, which is interpreted as scheduling with the 

wafer starts = 2250, the product-mix is one product,  The tool buffer size is five 

lots, and the number of layers is five. The predicted best setting does not 

match to any of the rows in the orthogonal matrix used.

Table 5.8: Factor main effects for matrix experiment simulation study results

Factor-level 
main effects

Applicable formula Main effect value 
TPT per lot

fHpM1 O li+  T]2+ t]3 +  t |4 +  "H17 +Tli8+ H 19+  r|2o)/8 1.02004
mP M2 (■>15+ Tl6+ 1)7+ H 8+ H21 +T)22+ ^ 2 3 +  *124)^8 1.057251
rt7pM3 (%+ '110+ H11+ r l l2 +  f|25 +>126+ 1127+ r l28)/8 1.142369
mPM 4 0 l l 3 +  1 |l4 +  ^15+  1 |l6 +  M29 +1130+ 1|31 +  IteV^ 1.239765
tr>swi (T11+ >15+ ^ 9 +  T ll3+  T)l7 +T121+ T|25+ II29V 8 1.050581
ms W2 0 l2 +  %+ T110+ 1114+ 11l8 +1122+ 1126+ l^oV^ 1.175963
msw3 (r)3+  r)7+  r ) n +  r | i 5+  T|i9 +r)23+ H27+  i l3 i) /8 1.134501
m Sw 4 (T |4+ 118+ 1112+  TI16+  1120 +1124+ II28+  1132 VB 1.098379
MbT1 ( i l  1+ 115+ 1110+1114+ 1120 +T124+ 1127+ 1 l3 l) /8 1.167132
Mqj2 ( l l2 +  116+ 119+ 1113+ T)l9 +T123+ 1128+ 1l32)/8 1.112854
MbT3 (T)3+ 117+ 11l2+ T ll6+  T|l8 +1122+ 1125+ T|29)/8 1.021268
Mbî 5 ( l l4 +  118+ 11 ll+  Î115+ 1117+1121+ Ï126+ 1l30)/8 1.158171
MNL1 (T |l+  1)6+ "Hi 1+ Tll6+ 11l7 +1122+ 1127+ Tl32)/8 0.652441
MnL3 (1)2+ T15+ T)l2+ 11l5+ 1118 +1121+ 1128+ 1131 0.983932
M n L4 0 l3 +  118+ 119+ 1114+1119 +1124+ H25+ Tl30)/8 1.344714
MnL5 ( l l4 +  117+ H l0 +  1113+ 1120 +T123+ T126+ H29)/8 1.478338

0 l  1+ T]2+ 1)3+ T)4+ 115 +116+ H 7+  118+ 1)9+

Msai "H 10+ Hi 1+ H 12+  1)13 + H 14+  H 15+  Hl6)/16 1.229493
( l l l7 +  1)18+ >1l 9+  1120+ 1|21 + I I22+  1)23+ 1124+

MsA2 1125+ 1126+ 1127+ 1128+ H29 +1130+ 1131+ 1132) / !  6 1.000219

The main effects of each factor level are shown in Figure 5.23. The near 

optimum value for each factor can be easily identified as the level that results 

the lowest value and hence the lowest points are the best. Note that the 

prediction of the near optimum factor level combination is conditioned by the 

additivity assumption. To justify the validity of  this assumption, a verification 

experiment using the near optimum combination needs to be carried out. The 

ANOM plot shown in Figure 5.23 reveals the relative magnitude of effects of 

factors on the throughput time per lot. The number of layers (NL) is seen to 

affect the throughput  time the most, followed by applying intelligent 

scheduling of lots. The effect of both factors is seen to be relatively less 

pronounced than the other parameters based on TPT criterion.
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However,  a better feel for the relative effects is obtained by conducting the 

analysis of variance. ANOVA is also needed for estimating the error variance 

for the factor effects and the variance of the prediction error, which provide 

justification for the additivity assumption. Moreover,  the experiments may be 

extended to evaluate the effect of the significant factors on different 

performance criteria.

Factor Levels

Figure 5.23: Analysis of means (ANOM) plot of main effects 

■ ANalvsis O f  VAriance (ANOVA)

The main formulas used in conducting the ANOVA in chapter five were used 

again in this analysis,  and the results are shown in Table 5.9. The error 

variance (of),  calculated and found to be 0.1419.

a )  =0.1419 (Hr)2

Taguchi methodology suggests using the F ratio resulting from ANOVA mainly 

to establish the relative magnitude of the effect of each factor on the objective 

function and to estimate the error variance. From the ANOVA tableau, Table 

5.9, the most significant factors are the number of layers and the application of 

intelligent scheduling of  lots.
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Table 5.9: ANOVA using the simulation results

Factor DOF SSB SSB/DOF F Cal F tabl.

SA 1 0.42136 0.42136 23.48 4.4139

PM 3 0.22913 0.07638 4.26 3.1599

WS 3 0.06818 0.02273 1.27 3.1599

BT 3 0.10688 0.03563 1.99 3.1599

NL 3 3.32899 1.10966 61.83 3.1599

Error 18 0.32304 0.01795

Total 31 4.47758

The product-mix is seen to be important,  followed by wafer starts and tool 

buffer size (taking into consideration that F-tabulated (at a=0.5, i.e., F0.5, 3, 18= 

3.1599 and F0.5, 1 , is = 4.4139)).

5.6.5 Testing of Additivity

A verification experiment,  similar to chapter five, was performed with the near 

optimal factor combination (SA2, PM1, WS1, BT3, and LN1). The observed 

optimal/near optimal throughput time per lot was 0.5925 hours.

The following equation was then used to predict the optimum/near optimum 

performance measure value:

V p re .o p t = m  +  ( m w i  -  m ) +  0mSA2 -  m )  +  ( m PM x -  m )
= 1.1149+ (0.6524- 1.1149)+ (1.00022- 1.1149) + (1.02004 - 1.1149)
= 0.44286 Hr

Note that r\pre,opt is calculated using only significant optimal (main effects) 

factor-level values. The prediction error then becomes 

Prediction error = t]0bs.opi - Vpre.opt 

= 0.5925 - 0.44286 

= 0.15 Hr

The variance of  prediction error o ] is calculated using same formulas as in 

chapter five:

a )  . = 0.0626Hr2a prea

The corresponding two-standard-deviation confidence limits for the prediction 

error a r e ± 2 x ~  =+0.5{Hr).
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The prediction error of 0.15 hour  happens to be well within the calculated 

confidence limits, so the additivity assumption is justified.

5.6 .6  R esu lts  A n a ly s is

The Taguchi methodology has been applied to gain better understanding of the 

significance of the selected parameters. Taguchi methodology has a remarkable 

save in number of experiments needed to analyze the performance.

The ANOM plot in Figure 5.23, provides useful insights with regard to the 

severe impact of increasing the number of layers on the average TPT. It is 

interesting to note the benefit obtained from using ANOM to give quick and 

effective indication for the factors. The results recommend 2250 wafer starts 

which is not possible to set in many cases of actual production. However, the 

planning team has to keep the wafer starts as minimum as 2250 wafers, if 

possible. The impact of increasing wafer starts can be easily examined using 

the model. The tools buffer size has been suggested to be 5 lots per tool.

Based on the ANOVA Table 5.9, the number of layers and application of 

intelligent scheduling of lots, then product-mix have a significant impact on 

the throughput time per lot. The effect of the remaining factors has less impact 

on throughput as an objective function. Testing of additivity has been 

conducted to verify the experimental design assumptions and confirm the 

errors are within acceptable limits.

To prevent changes in the number of layers masking the effects of the other 

parameters the number of layers in all products was fixed at 13 layers for the 

following experiments.

More experiments were performed to study the effect of other factors on 

different toolset performance criteria. Sensitivity analyses have been set to 

provide better understanding of the system performance under various 

production scenarios.

5.7 Sensitivity Analysis

To evaluate the performance of the toolset using other measures of 

performance than throughput time, further experiments were conducted. A
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number of simulation sensitivity analyses were performed. These included 

experiments to analyze the impact of:

■ Increasing product-mix on batch size.

■ Changing the Buffer size in front of each tool on RtC.

■ Changing selecsted parameters on RtC using ANOM.

a) Effect o f  product-mix increase on batch size for toolset

Product-mix increase is one major problem that faces manufacturing team and 

has an impact on the toolset performance. The objective here was to find the 

impact of increasing the number of products on the batch size needed to meet 

planned production. A combination of experiments (36 experiments) was 

performed and the number of wafers per product is shown in Table 5.10.

Table 5.10: The experiment matrix

WS Wafers Start
PM 1000 2000 3000 4000 5000 6000

1 1000 2000 3000 4000 5000 6000

§ 5 200 400 600 800 1000 1200
10 100 200 300 400 500 600

P
T 3 15 75 125 200 275 350 400
O

r h
20 50 100 150 200 250 300
25 50 75 125 175 200 240

The buffer size was fixed at five lots and the number of layer is 13 layers. The 

results have been handled based on counting the total number of changes 

occurred in the toolset,  and the changes per batch size has been determined as 

well. Figure 5.24, shows the variation in product batch size due to increase in 

product-mix. The analysis showed that for more than 10 products in the 

production, the batch size tends to be consistent value, about two. The 

manufacturing team of  the industry partner has verified the simulation model 

results.

These results suggest several directions for more experiments to study the 

impact of changing the buffer size in front of the tools (FMCs) on the reticle 

changes and the batch size. It has been seen that for one product, the number of 

changes tends to be constant and therefore one product was not included.
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Figure 5.24: the impact of changing product-mix on toolset batch size

b) Change Tool Buffer size on reticles changes

Product-mix considers the main independent variables for this analysis, as 

buffer size has been examined on four different levels (1, 3, 5, 8). The 

performance criteria were RtC and the batch size per lot or change ratio. A set 

of experiments (16 experiments) was performed as shown in Table 5.11.

Table 5.11: The experiment matrix

Exp PM BT Total Reticle 
Changes

Ratio
(Lots: Changes)

Exp PM BT Total
Reticle

Changes

Ratio
(Lots:Changes)

1 1 1 387 8 9 1 5 363 9
2 5 1 567 6 10 5 5 734 4
3 10 1 735 4 11 10 5 1015 3
4 15 1 1023 3 12 15 5 1270 2
5 1 3 371 8 13 1 8 392 8
6 5 3 671 5 14 5 8 920 3
7 10 3 960 3 15 10 8 1149 3
8 15 3 1170 3 16 15 8 1413 2

The experiments have assumed all the lots need to process 13 layers and the 

wafer starts 6000 wafers. The results of the experiments are summarized in 

Figure 5.25.

The most prominent results is that this analysis showed consistently the ratio 

to average lots per changes turned to between two and three all the cases when 

the product-mix increases.  The buffer size has no significant effect on RtC, the 

trend is almost same, that gives the manufacturing team better understanding to

1 5 10 15 20 25
P ro d u c t-M ix
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the WIP issue and consider its impact on toolset performance for more 

comprehensive floor configurations.

Reticle«' Changes Ralio Changea per Loi

A) Reticles’ changes plot B) Average lots to change Ratio

Figure 5.25: Summary of tool buffer size sensitivity analysis

c) Analysis o f  means for changing too ls ’ reticle

A set of experiments was designed to study the RtC based on analysis of means 

as primary analysis approach and analysis of variance as a secondary approach. 

The ANOM considers the smaller the better type in the quality characteristic 

while investigating RtC. The experiments have been performed based on 

orthogonal array L-32 modified with four factors to study as number of layers 

(LN) has been excluded because its significance was already established. Table 

5.12 shows the experiment matrix and the results.

Based on the ANOM, the best level for each factor resulting from matrix 

experiment is shown italicized in the throughput column of Table 5.13. The 

tool buffer size has been set to one lot, which contradicting with the ANOM in 

the earlier section but buffer tool size has been distinguished as a non 

significant factor and hence it was acceptable to have some variations in the 

results.

The ANOM plots shown in Figure 5.26 reveal the relative magnitude of effects 

by factors on the average number of  changes of the mask. The product-mix is 

seen to affect the objective function the most, followed by applying intelligent 

scheduling of lots.
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Table 5.12: The experiment matrix and results

Exp. SA PM WS BT Avg. RtC Exp. SA PM WS BT Avg. RtC
1 0 1 2250 1 71 17 1 1 2250 8 431
2 0 1 3750 3 319 18 1 1 3750 5 666
3 0 1 4500 5 856 19 1 1 4500 3 168
4 0 1 6000 8 664 20 1 1 6000 1 207
5 0 5 2250 1 246 21 1 5 2250 8 240
6 0 5 3750 3 502 22 1 5 3750 5 942
7 0 5 4500 5 387 23 1 5 4500 3 845
8 0 5 6000 8 393 24 1 5 6000 1 601
9 0 10 2250 3 469 25 1 10 2250 5 49
10 0 10 3750 1 687 26 1 10 3750 8 283
11 0 10 4500 8 198 27 1 10 4500 1 796
12 0 10 6000 5 363 28 1 10 6000 3 600
13 0 15 2250 3 209 29 1 15 2250 5 460
14 0 15 3750 1 568 30 1 15 3750 8 614
15 0 15 4500 8 589 31 1 15 4500 1 355
16 0 15 6000 5 460 32 1 15 6000 3 930

Table 5.13: Factor main effects for matrix experiment simulation study results

Factor-level Main effect
main effects Applicable formula value Avg. CtR

mpm Oll +  r\2+ H3+ 14+ 1l7 + 1 l8+  T1i9+ 12o)/8 210
mpM2 (15+ r l6+ 17+ 18+ 121 +Tl22+ 1123+ l24)/8 501
mpMz 0l9+  Tll0+ Til 1+ 112+ 125 +126+ 127+ 12s)/8 5 8 7
mpm ( l n +  114+ 115+ 116+ 129 +rhn+ Thl+ 1l?)/8 5 9 9
msm ( l l +  15+ 119+ 1 l3+  T|l7 +121+ 125+ ItoV S 372
A77SW2 0l2+ H6+ 1l0+  1114+ 118 + II22+ 1)26+ lboV8 4 8 2
rrisws Ü13+ H7+ 111 1+ 1 l5+  1l9 +1123+ 127+ Tl3l)/8 4 7 3
msw4 (ll4+ 1s+ 1112+ 1116+ 112(1 +124+ Tb¡¡+ 1 to) /8 5 7 0
M b ti (il 1+  1I5+  I 10+  1 14+  I 20 + I 24+  I 27+  ri3i)/8 430
MbJ2 0l2+ H6+ 119+ 1113+ >119 +1123+ 128+ ll32)/8 4 4 3
M bT3 (ll3+ 1)7+ 1112+ 1 16+ 1l8 +1122+ 1125+ ll29)/8 5 1 3
M b T5 (114+  118+ Til 1+  1115+ H 17 + 1121+  1126+  T|wV8 511

(Vli+ 1 2 + 1)3+ t|4+ r|5 +ri6+  t)7+  r|s+  % +  r))0+ 1 i i +
M s a i 1 l2+  1l3 +T114+ 1)5+  116V16 5 3 8

( l l7 +  1)18+ 1 l9+  120+ 121 +1)22+ T)23+ 124+ 125+
MsA2 126+ 127+ 128+ 129 +1)30+ 1 ll  +  I 32V I 6 410

Factor Levels

Figure 5.26: Analysis of means (ANOM) plot of main effects

181



It is worth showing the ANOYA table of this analysis in Table 5.14, indicating 

the sum of  squares added together to estimate the pooled error. The ANOVA 

reinforces the trend from ANOM plot and highlight the relative magnitude of

the effect of the first two factors on the objective function.

Table 5.14: ANOVA using the simulation results

F acto r D OF SSB SSB/DOF Fcal. Fiabl,

SA 1 132612 132613 3.78 3.1599

PM 3 791575 263858 7.52 4.41139

WS 3 157629 52543*

BT 3 46151 15384*

Error 21 743509 35405

Total 31 1871476
* T h e  p o o le d  f a c to r s  h a v e  b e e n  ta k in g  in to  c o n s id e ra t io n

5.8 Advantages of Intelligent Scheduling approach

Additional experiments were conducted to study the impact of  intelligent-agent 

scheduling on the toolset performance. The performance measures considered 

were tool util ization and RtC according to the manufacturing team priority. 

Three different levels of wafer starts were used 2250, 4500, and 6000, while 

product-mix was to 5, 10, and 15 products.  Number of layers to be processed 

assumed to be 13 for all experiments and tool buffer size is five lots. The 

combinations of these scenarios (18 experiments) are summarized, Table 5.15. 

A sample of  the results is shown in Figures 5.27, 5.28, and 5.29. In the first 

two scenarios, wafer input level 2250 wafer starts for five different products 

are the settings for experiments (1 and 10). The output of  the model presents 

all the data required for analysis, for example, Tables A and B in Figure 5.27.

Table 5.15: Summarized simulation experiments

Exp. WS PM SA Exp. WS PM SA
1 2250 5 On 10 2250 5 Off
2 2250 10 On 11 2250 10 Off
3 2250 15 On 12 2250 15 Off
4 4500 5 On 13 4500 5 Off
5 4500 10 On 14 4500 10 Off
6 4500 15 On 15 4500 15 Off
7 6000 5 On 16 6000 5 Off
8 6000 10 On 17 6000 10 Off
9 6000 15 On 18 6000 15 Off
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The first row of each table explains the experiment number and the scenario 

conditions, while the second is the total completion time in hours. The columns 

have the data about the tool number and its util ization over the running time. 

Column four has the total number of  changes (due to layer, product,  or both) 

for every tool, while last column shows the number of lots which went through 

the tool in order to reflect the usage of the tool, and was used to verify the 

model as this number is directly related to the total number of layers to be 

processed (2250 x 13/25) in this case. Figure 5.27, il lustrates two experiment 

outputs while different scheduling approach has been applied but still the total 

number of lots same.

The model using the intelligent approach of scheduling lots (SA1) has run 

same conditions for same experiment matrix to compare the output. The results 

explore the advantages of adding the intelligent lot scheduling for tool 

utilization as well as RtC.

Examining the following Figures 5.27 - 5.29, it becomes apparent that the 

benefits of applying the intelligent approach for scheduling the lots in the 

photolithography toolset. This is particularly clear in the reduction of TPT and 

RtC at each tool as well as the increase of tool utilization.
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T able A l Table B1
Exp.1

TPT=

Number

WS 2250 
121.5294 

Tool 
Number

PM 5 
Hours

Utilization

SA 1

Number of 
Changes

Number 
of Lots

1 401 0.980428 13 60
2 402 0 957596 14 67
3 403 0.979028 13 60
6 406 0.360035 6 49
12 412 0.544403 37 143
13 413 0.289349 35 86
14 414 0 39983 24 48
15 415 0.414981 34 57
16 416 0.338889 29 48
17 417 0.209764 24 48
18 418 0,201712 19 58
19 419 0 0 0
20 420 0.312092 30 47
21 421 0.302607 17 67
22 422 0.132665 12 30
23 423 0.152021 8 44
24 424 0,090106 6 27
25 425 0 0 0
26 426 0.597291 48 128
27 427 0.331613 27 63
28 428 0.312593 18 40

Total 
Number = 
Average -

414
19.71429

1170
55.71429

Exp. 10 WS 2250 PM 5 SAO
TPT= 162.4638 Hours

Tool Number of Number
Number Number Utilization Changes of Lots

1 401 0.63537 33 60
2 402 0.662361 31 90
3 403 0.465273 27 60
6 406 0.131065 7 30
12 412 0.164707 22 66
13 413 0.082436 30 41
14 414 0.271201 28 45
15 415 0.172203 18 45
16 416 0.164427 22 45
17 417 0.351192 85 148
18 418 0.082529 40 41
19 419 0 078566 31 40
20 420 0.166024 18 45
21 421 0.124609 17 45
22 422 0.121581 14 45
23 423 0.079264 13 36
24 424 0.080123 11 36
25 425 0.117369 38 54
26 426 0.302808 39 90
27 427 0.237011 33 63
28 428 0,241945 28 45

Total
Number = 585 1170
Average - 27.85714 55.71429
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Figure 5.27: Summary of experiments (1 and 10) output
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T able A2
E xp , 5 W S  4 5 0 0 P M  10 S A  1

T P T 2 5 6 .7 3 4 1 H o u rs
T o o l N u m b e r o f N u m b e r o f

N u m b e r N u m b e r U tiliz a tio n C h a n g e s Lo ts
1 401 0 .9 8 9 2 7 6 23 1 20
2 4 0 2 0 .9 5 7 2 0 7 2 8 148
3 4 0 3 0 .9 8 8 5 7 23 120
6 4 0 6 0 .3 6 6 5 9 5 10 86
12 4 1 2 0 .4 7 2 8 7 4 5 6 2 7 0
13 4 1 3 0 .3 2 7 4 9 3 3 7 2 1 7
14 4 1 4 0 .4 0 5 7 6 7 4 6 94
15 415 0 .4 2 6 7 7 8 5 8 10 5
16 4 1 6 0 .3 7 3 1 5 8 50 91
17 4 1 7 0 .2 5 7 2 9 41 94
18 4 1 8 0 .1 2 4 9 8 7 48 9 0
19 4 1 9 0 .0 2 2 2 4 1 9 15
2 0 4 2 0 0 .3 6 0 0 2 1 4 6 90
21 421 0 .1 9 5 4 5 3 2 2 104
2 2 4 2 2 0 .1 0 0 3 7 6 16 5 4
23 4 2 3 0 .1 5 5 2 4 9 3 9 101
24 4 2 4 0 .0 6 3 0 5 3 7 3 9
25 4 25 0 .0 2 8 1 9 6 18
26 4 2 6 0 .6 3 8 9 5 6 59 2 9 0
2 7 4 2 7 0 .3 4 6 0 0 7 6 4 1 07
28 4 2 8 0 .3 5 8 6 7 9 43 87

T o ta l
N u m b e r  = 731 2 3 4 0
A v e ra g e  = 3 4  8 0 9 5 2 1 1 1 .4 2 8 6

Table B2
E x p . 14 W S  4 5 0 0 P M  10 S A O

TPT 3 1 4 .0 6 6 H o u rs
T o o l N u m b e r o f N u m b e r o f

N u m b e r N u m b e r U tiliz a tio n C h a n g e s Lo ts
1 401 0 .6 2 0 7 1 8 6 4 120
2 4 0 2 0 .6 3 5 5 3 6 7 3 180
3 4 0 3 0 .5 1 4 8 5 6 61 120
6 4 0 6 0 .1 2 5 7 1 2 13 6 0

12 4 1 2 0 .1 6 3 2 0 7 63 1 32
13 4 1 3 0 .0 7 7 6 7 3 3 6 81
14 4 1 4 0 .2 5 3 5 6 9 4 4 90
15 4 1 5 0 .1 5 6 9 6 6 52 9 0
16 4 1 6 0 .1 5 5 9 5 9 39 90
17 4 1 7 0 .3 4 3 2 7 5 1 20 2 9 7
18 4 1 8 0 .0 7 9 8 0 4 29 81
19 4 1 9 0 .0 7 7 0 6 2 42 81
2 0 4 2 0 0 .1 5 7 6 2 7 3 5 90
21 421 0 .1 1 3 6 0 5 34 9 0
2 2 4 2 2 0 .1 1 4 5 6 9 31 90
2 3 4 2 3 0 .0 7 7 7 2 6 35 7 2
2 4 4 2 4 0 .0 7 7 9 1 1 1 7 72
2 5 4 25 0 .1 1 0 0 4 4 6 7 108
2 6 4 2 6 0 .2 9 2 6 9 98 180
2 7 4 2 7 0 .2 2 6 6 4 5 52 126
2 8 4 2 8 0 .2 3 1 3 0 1 53 90

T o ta l
N u m b e r  = 1 0 5 8 2 3 4 0
A v e ra g e  = 50.38095 111.4286

1.2

1

0.8

0.6

0 4

0.2
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Figure 5.28: A summary of experiments (5 and 14) output
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Table A3
E x p .9 W S  6 0 0 0 P M  15 S A  1

T P T 2 2 0 .6 6 4 6 H o u rs
T o o l N u m b e r  o f N u m b e r

N u m b e r N u m b e r U tiliz a tio n C h a n g e s o f  L o ts
1 401 0 .9 9 1 6 9 6 33 160
2 4 0 2 0 .9 7 4 3 5 8 39 179
3 4 0 3 0 .9 9 1 9 6 3 3 161
6 4 0 6 0 .3 8 3 9 7 2 18 1 24

12 4 1 2 0 .3 1 0 9 2 2 32 139
13 4 1 3 0 .3 8 1 7 5 5 7 6 2 0 9
14 4 1 4 0 .4 0 3 6 1 5 80 126
15 4 1 5 0 .4 2 7 8 1 1 7 3 134
16 4 1 6 0 .3 7 4 6 5 5 6 6 123
17 4 1 7 0 .4 2 2 6 8 9 73 2 0 2
18 4 1 8 0 .1 9 9 7 6 4 62 1 30
19 4 1 9 0 .0 8 3 9 7 4 2 3 63
20 4 2 0 0 .3 6 1 1 9 2 5 8 119
21 421 0 .3 4 0 4 5 5 45 159
2 2 4 2 2 0 .3 3 5 6 4 1 5 2 168
2 3 4 2 3 0 .3 6 6 7 7 7 66 181
2 4 4 2 4 0 .2 2 1 4 6 1 75 1 39
2 5 4 2 5 0 .1 6 1 7 0 4 5 6 1 08
2 6 4 2 6 0 .5 4 4 1 8 3 7 5 2 6 3
2 7 4 2 7 0 .3 7 6 4 6 4 6 5 118
2B 4 2 8 0 .3 6 5 9 5 6 56 115

T o ta l
N u m b e r = 1 1 5 6 3 1 2 0
A v e ra g e  » 5 5 .0 4 7 6 2 1 4 8 -5 7 1 4

Table B3
E xp. 18 W S  6000 P M  15 S A O

T P T 4 0 7 .1 9 6 5 H o u rs
T o o l N u m b e r o f N u m b e r

N u m b e r N u m b e r U tiliz a tio n C h a n g e s o f L o ts
1 401 0 .5 9 5 2 8 2 8 9 1 60
2 4 0 2 0 .6 2 0 4 1 6 1 40 2 4 0
3 4 0 3 0 .5 1 3 8 7 6 95 1 60
6 4 0 6 0 .1 2 4 3 9 2 43 8 0

12 4 1 2 0 .1 6 0 1 3 3 50 176
13 4 1 3 0 .0 7 7 5 7 7 45 1 08
14 4 1 4 0 .2 4 6 1 6 4 73 120
15 4 1 5 0 .1 5 1 9 5 1 4 5 1 20
16 4 1 6 0 .1 5 3 7 4 1 54 1 20
1 7 4 1 7 0 .3 3 5 0 2 1 66 3 9 6
18 4 1 8 0 .0 7 7 8 8 4 7 1 08
19 4 1 9 0 .0 7 5 8 2 9 56 1 08
20 4 2 0 0 .1 5 3 2 3 4 38 1 20
21 421 0 .1 1 4 8 9 5 34 120
2 2 4 2 2 0 .1 0 9 2 1 6 2 9 1 20
2 3 4 23 0 .0 7 8 3 2 21 9 6
2 4 4 2 4 0 .0 7 6 3 5 2 21 9 6
2 5 4 2 5 0 .1 0 6 4 9 7 9 1 44
2 6 4 2 6 0  2 8 5 6 8 6 1 20 2 4 0
2 7 4 2 7 0 .2 2 0 1 4 8 8 0 168
2 8 4 2 8 0 .2 3 3 8 2 67 120

T o ta l
N u m b e r  = 1 392 3 1 2 0
A v e ra g e  - 66 28571 148.5714

1.2

0,8

0 6

0.4

0.2

The higher the better ■ U tilization (SA1)
□ U tilization (SAO)

II
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Figure 5.29: A Summary of experiments (9 and 18) output
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The manufacturing team has successfully employed the IPS model for 

scheduling the lots to the photolithography toolset showing the solution to be 

robust.

The average reduction of TPT was 14.78% with standard deviation 4.388%. 

Nine different production orders were compared with similar scenarios with 

IPS model to verify the model outputs,  and the results were close to the actual 

production (see Table 5.16). The overall average deviation was 5.29% with 

standard deviation 1.36%.

5.9 M odel Im plem entation

Table 5.16: Comparison between actual data before and after IPS

S c e n a r io s ws P M L a y e rs A c tu a l T P T  (H rs ) S im u la te d  T P T (H r s ) D e v  %
U s in g  in te llie e n t  s c h e d u lin g

1 2 6 0 0 5 1 fte s t) 63.11 6 0 .5 8 4 .1 7
2 2 6 0 0 5 13 1 4 9 .6 2 143.41 4 .3 2
3 2 6 0 0 10 13 1 7 0 .9 9 162 .85 5 .02
4 3 3 7 5 5 13 200.61 18 9 .9 7 5 .6 2
5 3 3 7 5 8 13 2 0 6 .4 5 1 99 .47 3.51
6 3 3 7 5 10 13 2 2 4 .2 9 210.21 6 .7 3
7 6 0 0 0 8 13 235.01 2 2 5 .3 2 4 .3 2
8 6 0 0 0 10 13 2 5 4 .4 9 2 3 7 .1 8 7.31
9 6 0 0 0 15 13 2 7 5 .3 3 2 5 7 .8 0 6.8

The results of the model have caused a significant reduction in the TPT per 

lots within the photol ithography area resulting in a clear improvement of 

average tool util izations (Figure 5.30). Comparing the photolithography toolset 

performance before using IPS model with after using the model shows that the 

average TPT is higher (see Table 5.17).

Table 5.17: Simulation versus actual production
S c e n a r io s A c tu a l T P T  (H rs ) D e v  %

B e fo r e  IP S A fte r  IP S

1 7 0 .1 2 63.11 11 .13
2 1 7 0 .5 5 14 9 .6 2 14.1

3 1 9 6 .6 4 1 7 0 .9 9 15 .05
4 2 2 0 .2 2 200.61 9 .78
5 2 2 7 .0 9 2 0 6 .4 5 10 .07
6 2 5 2 .9 6 2 2 4 .2 9 1 2 .78
7 2 8 2 .7 7 235.01 2 0 .3 2
8 3 0 8 .3 5 2 5 4 .4 9 2 1 .1 6
9 327.31 2 7 5 .3 3 18 .88
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Figure 5.30: A Summary of model implementation experiments output

The scheduler has now become a reliable tool in the manufacturing area. Table 

5.17 shows a minimum of 10% improvement in TPT in the photolithography 

toolset. In addition, Fab statistics indicate that after implementation of the 

scheduler,  there has been a reduction in WIP and mean cycle time.

5.10 Concluding Remarks

There was an urge to develop intelligent scheduling in the photolithography 

area. Since, at present, the way to schedule is the expertise on the floor. The 

scheduling turns to be random in some stages due to the complexity of the 

production.

Theory of Constraints is a relatively recent development in the practical aspect 

of making organizational decisions in situations in which constraints exist. 

TOC has been used in our approach to guide the identification of the factors 

hindering the development,  and proposing solutions to the global deployment

S A c tu a l T P T  (IPS_O FF) 
O A c tu a l TP T  (IPS _O N )

4 2 1 7 5 8 6 3 9

S c e n a r io  N u m b e r
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of  resources. One of the requirements for exploitation of the constraint is that 

the constraint equipment be utilized as much of the time as possible.

One of the main goals of the intelligent-agent based approach was to try to 

increase the too ls ’ utilization and reduce TPT. In general, the more the 

qualified tools available in the factory, the easier scheduling process.  In 

simpler industries,  scheduling of lots goes into straight forward approach that 

directs the lot to the idle tool, while many criteria (e.g. qualifying matrix, 

reticle changes,. .etc.) must be considered .

The approach used has considered the photolithography toolset in detail. The 

model has 21 tools. The results indicate that the model is viable, and highlight 

the importance of having such robust methodology to examine the production 

plans as well as the manufacturing equipment performance during the early 

stages of ramping up.

The results provide a number of interesting insights into the performance 

benefits.  As one would expect the greatest benefit is obtained from 

improvements at the total throughput time and tools’ utilization. Figure 5.31 

and Figure 5.32 show a comprehensive comparison between some scenarios 

that clearly indicate the performance prior to the approach and after 

implementation. Applying Intelligent Scheduling has a significant effect on 

improving the lot distribution across the tools taking into consideration that 

having uniform lots distribution across the tools is impossible due to the high 

variability in the system (e.g. qualifying matrix, product-mix, and unscheduled 

maintenance). Nevertheless,  the number of lots that will arrive at the toolset 

over a certain time interval,  say the time required to complete 6000 wafers 

currently in process,  will be better distributed compared to a situation where 

experts can only assign lots manually in the shop floor. In a simpler job shop 

environment with random or almost random scheduling, the workload tends to 

be fairly uniformly distributed across all the machines.

The semiconductor manufacturing system has different products with different 

configurations within complex production procedure and limited resources. 

The results obtained from IPS model support our conjecture that the benefits of 

applying the intelligent-agent based scheduling of lots using simulation global
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information are greater in shop configurations with high competition for 

capacity at key resources.

A CA

1 10 2 11 3 12 4  13 5 14 6 15 7  16 8 17 9 18

Experiments

Figure 5.30: Effect of Intelligent Scheduling Approach on TPT

1 10 2  11 3  12 4  13 5  14 6  15 7  16  8 17 9  18

Experiments

Figure 5.31: Effect of Intelligent Scheduling Approach on Average RtC per tool

The ANN for optimization demonstrates very promising properties for solving 

real-world scheduling problems. The proposed model follows three simple 

stages in order to capture a generalized pattern for the problem. Even though
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the initial population was not as diverse in factor levels as experimentation, 

the ANN model efficiently searches for near optimum solution, without 

converging prematurely to a local minimum.

The obvious advantages of intelligent agent-base scheduling methodology 

were:

• speed,

• easy of application,

• flexibility to add more rules or constraints,

• effectivness for complicated toolset,  and

The modeling phase is a novel approach to developing a simulation model. The 

modeling approach which has used SASM to show the flow of product as well 

as information through the system. The main benefit  of this approach comes 

from the possibility to code this schematic model using any commercial 

simulation software package which has the requisite capability.

The benefits of having the modified simulation model with short execution 

time showed the efficacy of the modeling approach. The motivation for this 

approach stemmed from the fact that quick effective results of simulation are 

reported to be highly recommended by manufacturing team. More time can 

dedicated to analyze results and perform more sensitivity analyses. In addition, 

the error variations were within an acceptable range for the manufacturing 

team. Therefore, the extra effort involved in developing the modified 

simulation model seems worthwhile.

The main obstacles faced the simulation projects under investigation have been 

concluded in the following factors.

1) Absence of input data for the models.

2) Data inaccuracy.

3) Inability to address real sized problems.

4) Lack of sub-problem integration.

5) Software selection problem (software capabilit ies).

6) Understanding results.

7) Setting determined objectives.

191



Conclusions and Recommendations for Future Research 
Work

6.1 Summary of the Thesis

The main theme of this thesis is the application of solving scheduling problems 

in semiconductor manufacturing systems. From a description of the 

manufacturing systems and scheduling problems in chapter 2, it can be seen 

that the pressures on manufacturers due to cost considerations, rapid growth of 

process technology, quality constraints,  feature size reduction, and 

increasingly complex products are requiring ever higher efficiency systems to 

meet increased global competition. Scheduling is well known as the most 

important task in manufacturing planning activities.  Solving scheduling 

problems has been recognized as an important key in improving manufacturing 

performance. Solution techniques of scheduling problems were classified into 

traditional and advanced techniques. Each of these techniques has advantages 

and pitfalls that feature at which type of problem is best used. The integration 

of number of these techniques provides a framework for developing tools that 

easily updated and adapted to dynamic situations, thus increasing the quality 

and accuracy of the solutions.

Planning problems in semiconductor manufacturing systems have attracted the 

researchers last decades. There are a number of techniques have been 

developed to support scheduling activity such as simulation and artificial 

intelligence. Chapter 3 has reported a review on related work and proposed the 

new methodology to develop intelligent scheduling model for photolithography 

area in semiconductor manufacturing facility. The steps into developing 

simulation models has been presented. These photolithography models were 

evaluated using existing models and actual data from the shop floor. The 

results obtained have proved that the new models are powerful tools and have 

been employed by the industry partner.

Chapter 6
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6.2 Conclusions

The conclusions of this thesis are successively presented as follows:

■ Scheduling activity is one of the most complex tasks in the manufacturing 

systems. From the manufacturers and researchers observations, the 

complexity of this activity will increase in the future due to

global competition, 

variations in customer demands, 

decreasing in product life cycle, 

rapid changes in technologies,  and 

quality constraints.

■ This thesis has provided an extensive literature review of the solution 

techniques of scheduling problems. There are two main groups, analytical 

and advanced techniques. An overview has been given of the inherent 

strengths and weaknesses of each of these techniques.

* The dynamic environment of  semiconductor manufacturing makes factory 

scheduling and dispatching in a semiconductor facility a complicated and 

challenging task. The research discusses the use of simulation in scheduling 

of these complex processes in such a flexible manufacturing environment.

■ This thesis supports the conjecture that using simulation, specifically 

discrete event simulation, in semiconductor manufacturing provides an 

alternative to analytical and deterministic models.  In turn simulation 

overcomes most of the shortcomings in these models.

■ From the li terature review, It has been seen that a good body of research 

has been published concerning the application of simulation in 

semiconductor manufacturing. However,  there is a significant shortage of 

research in the photol ithography manufacturing area, the most complex part 

of the production process. Most of the semiconductor factories that employ 

simulation often model the entire installation and typically treat each
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manufacturing area as an aggregate (and simplified) unit. As a consequence, 

potentially important events (e.g. maintenance downtime, repair time, 

priority of products,  ..etc) may not be observed or considered in the 

simulation outputs.

■ A detailed simulation model was built to characterize the flexible

manufacturing cell in the photolithography process.  It also examined the 

effect of scheduling, planning and control parameters on the cell

performance. The FMC model demonstrates the benefits of using a 

framework of a simulation-based approach combined with Taguchi 

methodology to provide management with an effective decision support 

system (DSS).

■ The model gives effective quick insights to the impact of changing 

scheduling policies and parameters on the performance of the FMC in one 

of the most critical manufacturing areas. It has also been applied 

successfully,  verified, and provides the manufacturing team with a robust 

approach for better understanding of the behavior of the cells.

■ Developing effective models incorporating all the process details, operating

details,  and manufacturing procedure details for scheduling becomes

extremely complex. Well-thought out hybrid models based on the 

photolithography toolset can be effectively used to mimic the production 

flow and resources needed to support capacity and strategic planning. This 

model can also be used to predict and examine the performance of the 

photol ithography toolset as well as the impact of various production 

parameters on that performance. These understandings are crucial to a 

facility prior to making investment decisions to improve production flow 

without the loss of throughput.  To achieve this goal, the hybrid scheduling 

model was developed using ‘EXTEND ’ simulator software along with an 

intelligent-agent based approach and Taguchi methodology.
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■ Photolithography scheduling in semiconductor manufacturing is a very 

complex process because it can be considered as a multifaceted problem, 

e.g., the problems for lot release control,  lot scheduling at serial processing 

tools and batch scheduling with the objective of minimizing mean TPT. The 

IPS model was developed to provide a solution to these problems using the 

information from the model which mimics that available on the factory 

floor. The model has been compared to actual production and other models 

used in industry. The results of a series of simulation scenarios showed that 

the newly developed model outperformed existing solutions for scheduling 

of photolithography.

■ The IPS model was developed by interconnecting several modules of a 

single toolset. The ANN module was a simple one, trained with a limited set 

of data, yet its accuracy was satisfactory. The aim of the ANN is setting the 

near optimum weights of selection criteria for scheduling the lots in 

photolithography toolset under different production scenarios.

■ The main observations made from the experiments in ANN are summarized 

as follows:

1. The ANN model incrementally improves the solution quality over time 

as it is provided with more training exemplars;

2. The neural-net approach achieves consistently better solution quality in 

significantly reasonable computational time.

The results from ANN support the efficacy of using the neural-nets for real 

time scheduling applications.

■ The benefits of using Taguchi experimental design methodology has to gain 

better understanding of the impact of the production scheduling parameters 

(e.g. product-mix, wafers start) on tool performance have been shown. The 

methodology can be used to provide quick insights into the significance 

factors in the system and their behavior.
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■ One of the competitive modeling techniques that was developed in this 

work is the SASM approach. It has been demonstrated with its use in coding 

the simulation model. The approach was effective in the example 

application of photolithography manufacturing area. It also enables new 

possibilit ies for simulation using any simulation software package that has 

the capabilit ies to code the model.  All the blocks are simple and quick to 

model with the well-defined blocks. SASM has been used in modeling phase 

by the industrial  partner and found to be easy to learn and use by personnel 

new to simulation.

■ One of the major issues is how much time one needs to make a scheduling

decision. The models developed in this thesis show an effective time to 

answer the required questions. Using appropriate modeling techniques to 

address the problem in an efficient way with clear predefined objectives is 

the key to success in building robust models.  It is worth mentioning that it 

takes few minutes to run production order of 6000 wafer starts. The 

simulation run time with the quality of the results obtained has encouraged 

the industrial  partner to employ the models as part of their day-to-day 

decision making system.

■ The simulation running time was reduced from 8 hours to less than three

minutes with only 4% average predicted error. The modified simulation

model of  photolithography toolset has enabled more knowledge for 

evaluating the impact of policy decisions on the real manufacturing system 

to be captured in a shorter time. Further time for sensitivity analysis has 

resulted from reducing the execution time of the model with more 

possibili t ies to provide more training data to neural networks module. 

Therefore, the extra effort  involved in developing the modified simulation 

model was worthwhile.

■ In terms of  effectiveness of the decision-supporting capabilit ies,  the model

are reliable robust and useful. In addition, it has a satisfactory level of

quality and integrity within the specific FMS problem domain knowledge. It
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is well known that the main limitation of most of simulation-based model is 

the data validity and accuracy. The proposed approach has been evaluated 

on a range of production plans by manufacturing team, and the model 

results also compared with previous deterministic techniques used in the 

facility. The model results were found to be better in terms of both speed 

and quality.

6.3 Recommendations for Future Research Work

The recommendations for future research come into two main areas, extending

the application of IPS model,  and scheduling research in general. The

following are the recommendations presented.

■ The intelligent scheduling approach described in this research use global 

information in a l imited way, making local scheduling decisions at 

individual toolset. The model is generic and can be used for any 

photolithography toolset, although it is suggested to develop a global model 

that considers all the toolsets in the manufacturing facility. Instead of 

getting schedules of each toolset individually, a general view will be 

considered by linking toolset models with the rest of the manufacturing 

facility.

■ The ANN module outputs used to update intelligent-agent based module and 

simulation were fed manually. In order to allow quicker feedback to the 

model,  it is recommended to develop an automatic connection between the 

three modules,  ANN, intelligent-based and simulation using spreadsheet.

■ Artificial Intelligence has become one of the effective tools in solving 

many optimization problems. Designing a user-friendly expert system for 

photol ithography to aid the non-specialist user in getting the appropriate 

schedule is a worthy objective for future research in this area.

■ The new modeling approach using schematic diagrams has been briefly 

described. It is suggested to address the idea to establish a web simulation
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database that might successfully standardize the terminology while 

facili tating the addition of new symbols to the standard list via expert 

committee. The approach will help simulation software companies to adapt 

their software on the market needs as well as developing simulation entities 

(blocks) that can ease building the simulation model. In addition to that, it 

helps non-specialists in simulation to convert the schematic model to 

simulation codes without the need to understand the real world application.

* An interesting area of research is to explore the relationship between the

simulation model complexity in terms of number of blocks, layers, and

interrelationship and the simulation run time. This research will revolve 

around how level of detail the model could use to give feedback in an 

economic and reasonable time.

■ Virtual manufacturing is one of the promising research areas for providing 

better understanding to the complex manufacturing systems. Virtual reality 

tools would greatly enhance the scheduling presentation and improve the 

understanding of the system behavior. Reference in this area are Kim et al. 

[216J and Chawla et al. [217],

■ This research agrees with Rodd et al. [193] and Kopacek [194] who state

that integration will be the main task facing manufacturing systems in the

future. Morad et al. [195] have investigated the integration of process 

planning and scheduling using genetics algorithms. The model developed 

can handle a set of identical parallel  machines that perform the same 

processes.  Much of the work on intelligent system to integrate various 

manufacturing modules in order to provide full-integrated systems is still 

needed. Intelligent agents are seen as one of the keys for integration.
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Appendices



Review on Semiconductor Manufacturing Basic Processes 

Basic Processes in Semiconductor M anufacturing

The process by which integrated circuits are manufactured can be divided into 

four basic steps: wafer fabrication, wafer probe, assembly or packaging, and 

final testing as shown in Figure 1.

Appendix A

Sem iconductor/IC  
M anufacturing Steps

Final Tests

Assembly/ Packaging

W afer Probe

Wafer Fabrication

Figure 1: Basic Steps in very large-scale integrated circuits manufacturing

What follows is a brief description of the four basic steps in semiconductor 

manufacturing, more detailed description may be found in the literatures if 

required (e.g. Groover [1], Uzsoy et al. [2], Runyan et al. [3], and Atherton et 

al. [4]).
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• Wafer Fabrication

Wafer fabrication is the most technologically complex and capital intensive of 

all four phases. It involves the processing of wafers of silicon or gallium 

arsenide in order to create the semiconductor devices in the wafer and build up 

the layers of conductors and dielectric on top that provide the complex 

interconnection between devices. The total number of operations can be in the 

hundreds to build a complex component such as a microprocessor. Many of 

these operations have to be performed in a clean-room environment to prevent 

particulate contamination of the wafers. The facility in which wafer fabrication 

takes places is referred as a wafer Fab. While the specific operations may vary 

widely depending on the product and the technology in use, an idea of the 

processes in wafer fabrication can be seen in the Figure 2.

Figure 2: Main processes in wafer fabrication

Brief  description of basic manufacturing process steps for wafer fabrication 

includes:

Cleaning: The object of this operation is the removal of particulate matter 

before a layer of circuitry is produced.

Oxidation, déposition, metall izat ion: A layer of material is grown or deposited 

on the surface of the cleaned wafer. Extensive setup times are involved, 

resulting in machines being dedicated to a limited number of operations. 

Photoli thography: This is the most complex operation, as well as the one 

requiring greatest precision. A photo-resistant l iquid is deposited onto the 

wafer and the circuitry defined using photography. The photo-resist is first
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deposited and baked. It is then exposed to ultraviolet l ight through a mask 

which contains the pattern of the circuit. Finally the exposed wafer is 

developed and baked.

E tch in s '. In order to define the circuits,  the exposed material is etched away.

Ion Implantat ion'. Selected impurities are introduced in a controlled fashion to 

change the electrical properties of the exposed portion of the layer. Setup times 

may range from minutes to hours.

Photo-resist  Strip : The photo-resist  remaining on the wafer is removed by a 

process similar to etching.

Metrology: The layer inspected and measured to identify defects and guide 

future operations.

One of  the features of semiconductor manufacturing is that the sequence of 

operations is repeated for each layer of circuitry on the wafer. Detailed 

descriptions of the technologies used in wafer fabrication can be found in texts 

on this subject such as Sze [5] and Runyan et al. [3].

• Wafer Probe

In wafer probe, the individual circuits,  of which there may be hundreds on each 

wafer, are tested electrically by means of thin probes. Circuits that fail to meet 

specifications are marked with an ink dot. The wafers are then cut up into 

individual circuits and the defective circuits discarded.

Wafer fabrication and probe are generally referred to as “front-end” 

operations. The following stages, assembly and final test, are referred to as the 

“back-end” . In back-end operations, lots may vary in size from several 

individual circuits to several thousands. The actual sequence of operations a 

lot will go through depends on the product and on customer specification. 

These characteristics are due to the fact that a lot is generally more closely 

associated with a particular order and customer than is the case in wafer Fab or 

probe.
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• Assembly

In assembly the circuits are placed in plastic or ceramic packages that protect 

them from the environment. There are many different types of packages, such 

as plastic or ceramic dual in-line packages, leadless chip carries,  and pin-grid 

arrays. Since it is possible for a given circuit to be packaged in many different 

ways, there is a great proliferation of product types at this stage. Once the 

leads have been attached and the package sealed and tested for leaks and other 

defects,  the product is sent to final test.

• Final Tests

The goal of the testing process is to ensure that customers receive a defect free 

product by using automated testing equipment to interrogate each integrated 

circuit and determine whether it is operating at the required specifications. An 

important characteristic of the testing process from a production planning 

standpoint is the downgrading or binning that takes place here. A circuit, when 

tested, may not meet the specification it was originally built  for, but may meet 

another less rigorous one [2], For example, a microprocessor intended to 

operate at 2.4 GHz may fail at that frequency but may pass test at 2.0 GHz. 

Thus when a lot is tested a number of different grades of product may emerge, 

resulting in not enough of the desired product being available and unwanted 

inventory of the lower grade product.
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Appendix B

General Flow Shop Scheduling

1. Introduction

The flow shop scheduling is perhaps the most common form of industrial 

scheduling. Numerous combinatorial optimization procedures have been 

proposed for solving the general flow shop problem with the maximum flow 

time criterion. Many researchers have been successful in developing solution 

algorithms for flow shop scheduling and sequencing [1]. The beginning was 

Johnson [8] trying to optimize two and three machines, followed by many 

researchers trying to solve larger problems (e.g. Campbell [13], and Baker[9]). 

Many resarechers developed algorithms tryingo to solve problems up to 10 

machines (e.g. [4] and [14]). Dannenbring [15] found that for small size shop 

problems his heuristic outperformed others in minimizing the make-span for 

1280 flow shop scheduling problems. Ezat and El Baradie carried a simulation 

study for pure flow shop scheduling with make-span minimization as a major 

criterion for number of jobs n < 90 to be processed on number of machines m < 

90 [12].

In this appendix, a computational study has been developed to obtain optimal / 

near optimal solution for general flow shop scheduling problem with make- 

span minimization as the primary criterion and the minimization of either the 

mean completion time, total waiting time or total idle time as the secondary 

criterion. The objective is to determine a sequence of operations in which to 

process ‘n ’ jobs on ‘m’ machines in same order (flow shop environment) where 

skipping is allowed. The Simulation approach for deterministic and stochastic 

flow shop scheduling has been developed. It reads and manipulates data for 

500 jobs on 500 machines. Phase 2 of the simulation model presents heuristic 

technique (Dispatching rules) with different factorial experiments in a 

comparative study on the performance of different dispatching rules, such as 

FCFS, SPT, LPT, SRPT and LRPT with respect to the objectives of minimizing

B1



make-span, mean flow time, waiting time of jobs, and idle time of machines. 

Moreover,  comparison between the enumerative technique and the dispatching 

rules based on computational t ime and the optimum make-span has been

issued.

The proposed model is evaluated and found to be relatively more effective in 

finding optimal/ near optimal solutions in many cases. The influence of the 

problem size in computational t ime for this model is discussed.

The purpose of this study is twofold:

4) To provide a simulation model able to find the optimum / near optimum 

sequence for general flow shop scheduling problem with make-span 

minimization as main criteria;

5) To compare computational time to obtain feasible solution in two 

different solving approaches.

6) To examine different dispatching rules on minimizing multiple criteria.

2. General Flow Shop Scheduling Problem

The general flow shop problem consists of two major elements: (1) a 

production system of ‘m ’ machines; and (2) a set of ‘n ’ jobs to be processed on 

these machines. All ln ’ jobs are so similar that they have essential the same 

order of processing on the lM ’ machines, Figure B . l .  The focus of this problem 

is to sequence or order the ‘n ’ jobs through the ‘m’ machine(s) production 

system so that some measure of production cost is minimized [16].

lnPut Input Input Input

Output Output Output Output

Figure B . l :  Work flow in General Flow Shop Scheduling Model
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2.1 Problem Assumptions

The assumptions of the flow shop problem are well documented in the 

production research li terature (e.g. Baker [9] [59], French [4]). In summary:

1) All ‘n ’ jobs are available for processing, beginning on machine number 

1, at time zero.

2) Once started into the process,  one job may not pass another,  but must 

remain in the same sequence position for its entire processing through 

the ‘m’ machines.

3) Each job may be processed on only a single machine at one time, so that 

job splitt ing is not permitted.

4) There is only one of each type of machine available.

5) At most,  only one job at a time can be processed on an individual 

machine.

6) The processing times of all ‘n ’ jobs on each of the ‘m’ machines are 

predetermined.

7) The set-up times for the jobs are sequence independent so that set-up 

times can be considered a part of the processing times.

8) In-process inventory is allowed between consecutive machines in the 

production system.

9) Non-preemption; whereas operations cannot be interrupted and each 

machine can handle only one job at a time.

10) Skipping is allowed in this model.

2.2 Performance Criteria

The performance criteria discussed in chapter two, and Appendix D provides a 

classification of main performance criteria. The performance criteria used in 

this study are those most commonly used as reported by Stafford [17], for 

optimizing the general flow shop model in particular in phase two of the 

model.

1. Make-span
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Throughout the half century of flow shop scheduling research, the predominant 

objective function has been to minimize make-span [17]. The formula used to 

calculate the make-span is shown in Table B . l .  Minimizing make-span has 

been taken as the primary criterion for the simulation model.  The expression 

used is as follows: Minimize: Cmax

2. Mean Completion Time

Many researchers (e.g. Conway et al. [3], Panwalker et al. [6], Pinedo[7]) have 

discussed mean job completion time or mean flow time as an appropriate 

measure of the quality of a flow shop scheduling problem solution. Mean job 

completion time can be expressed as follows:
_ n
C = Job completion times /  n

;=i

3. Total Waiting Time

Minimizing total job idle time, while the jobs wait for the next machine in the 

processing sequence to be ready to process them, may be expressed as follows:
m n 

M  7=1

4. Total Idle Time

Overall all machine idle t ime will be considered in this model (the time that 

machines 2,..., M  spend waiting for the first job in the sequence to arrive will 

be counted).  Overall machine idle t ime may be minimized according to the 

following expression:
m n

Minimize: Z E * .
1=1 7=1

3. General Flow shop Simulation Model

Simulation study for general flow shop scheduling problem with make-span 

minimization as primary criteria for n < 250 and m < 250 with different ranges 

of  random numbers generated (0-99) for processing times matrix in stochastic 

models has been conducted into two phases:
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■ Phase ( 1 ) to find the optimum/near optimum solution for general flow 

shop problem to minimize the make-span;

" Phase (2) to measure the effectiveness of heuristic approach 

(dispatching rule) for flow shop scheduling and compare the 

performance of different rules.

Flow shop scheduling problem considers as an optimization problem imposed 

to sequencing constraints.  The proposed model has been developed of computer 

program using C language (MS Visual C ++) and the full coded program is 

shown in Appendix E and F. The model runs on Pentium III PC (300MHz) and 

128 MB RAM.

The simulation model solves large sequencing problems using exact 

enumerative techniques. The main objective in the first phase is to find the 

optimum/ near optimum as it sweeps through all possible feasible schedules 

and select the optimum sequence of operations. The second phase tends to 

examine heuristic approach (dispatching rules) using a comparative study with 

phase one results. For better quality, a number of reptit ions of each simulation 

run to be set.

A summary of model parameters,  decision variables,  and throughput time 

(TPT) formula used to calculate the make-span, performance criteria, and 

dispatching rules under study in phase two has been shown in Table B. l .

3.1 Phase 1: Simulation Model

This phase has multi-objectives for n/m/F/Cmax problem. It can provide the 

followings:

1) All the job sequences and their correspondent make-span for each 

sequence.

2) The optimal job sequence and its make-span value.

3) Frequencies for all job sequences.

4) CPU time for the solution.
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Table B .l :  Summary of Terminology associated with Simulation Model

Model parameters Decision Variables

Model n/m/F/Cmax

n number of jobs to be processed,

m number of machines ( processing
steps),

F  general flow shop scheduling problem,

Cmax the criterion is Make-Span,

processing time off job ‘f  on machine
T,

the criterion is Mean Completion Time,

waiting time before start the job ‘j ’,

idle time of machine ‘i’ before start job 
in position j in the sequence,

total waiting time.

Pij

C

W ij

Xn

W(nxm)

Dispatching Rules

FCFS : First Come First Served
SPT : Shortest Processing Time
LPT : Longest Processing Time
SRPT : Shortest Remaining Processing Time
LRPT : Longest Remaining Processing Time

n i O  i = 1 , ......... , n,
n < 250 ( recommended )
(the model can read up to 500 

jobs),
m > 0 j = 1 , ........ . m,
m < 250 ( recommended)
(the model can read up to 500 

machines),
Number of runs,
Number of seed.

Objective functions

1) Make-span 

Minimize: Cmax

2) Mean Completion Time
___  n m

Minimize: C = j  £  £  (wy + P&) 
7= 1  ,=1

3) Total Waiting Time

Minimize: W(nxm) = E l Wr.
M  7=1

4) Total Idle Time
m n

Minimize: EE x a 
1 =1  7 = 1

The Make-span formula used in the model is given as:

=max[f{q(n- \ ,m) ,m}, f{q(n ,m) ,m-l}]  + t{q(n,m),m}

The first step in the simulation model is the determination of the problem type 

that will be solved. The model can handle both deterministic and stochastic 

problems. The input processing times are generated from different seed random 

numbers (0-99) for each run for stochastic models or may be read directly 

from an input file (in.dat) for deterministic models.
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Start

Set
- Max. Problem Size (nxm)
- Random numbers seed
- Processing Times range

Create new tiles for Input 
, ouput ( in.dat, out.dat)

In Deterministic 
models: 
Processing 
Times Input

- Enter Number ol 
Jobs (n)

- Enter Number ol 
Machines (m)

- Enter Seed 
Number

- Enter No. ol 
Runs

Calculate the make-span 
using the lormula

- Sort )ob sequence In order
- Find minimum make-span
- set the frequencies ol each 
sequence

O utputs
• Optimum Job 
Sequence and 
associated make-span

• Frequencies for each 
make-span

- CPU Time

Outputs 
-►) stored in 

'out.dat'

Figure B.2: Flowchart of simulation model (Phase 1)
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The processing times range from 0-10 time units as a default but can be set to 

any different range based on the particular problem. Once the type of model to 

be evaluated has been determined, the size of the problem (number of jobs ‘n ’ 

and number of machines ‘m’) should be given. It is recommended to use a 

range of n < 250, and m < 250.

Following the determination of the model type and size, the model starts to set 

the main variables (number of machines, number of jobs) and then the number 

of runs (replications) in case of stochastic models.  The model uses TPT 

formula in Table B . l  to calculate all the possible feasible sequences of jobs. 

Meanwhile,  the frequency of every make-span and the optimum sequence and 

its corresponding make-span are provided as model outputs. The output of the 

model comes into two forms; (1) displays on the screen and (2) saves in text 

file (out.dat). The flowchart (Figure B.2) shows the model steps from the 

beginning to the output.

3.1.1 Experimentation

Different factorial sets of  experiments were conducted to verify that the 

program would provide optimal solutions to general flow shop problems, a 

sample of the output of the program and optimal make-span are shown in 

Figure B.4. Four sets of problems were presented as examples. These sets are 

characterized by {D(4 x 4), D(8 x 8), S(10 x 75), S (11 x 35)}, where the first 

terms in the braces represent the number of jobs and the second is the number 

of machines, while D stands for deterministic and S denotes a stochastic.The 

results are shown in Figures B.5 to B.8 respectively. The processing times in 

stochastic models generated from a random seed set of numbers (45, 25). The 

number of runs for each case is set to be 300 where the results turn to steady 

state started in phase two as shown in Figure B.3.

Although, many researchers  have been working on the flow shop scheduling 

problem for many years,  very few results has been found about the distribution 

of the objective function. In effect, such presentation gives an intuitive idea 

about the problem and is important to allow the reader to judge the quality of 

the solution [18]. The distributions of all the possible make-spans obtained by 

complete enumeration of two different problems are given in Figures B.5 to
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B.8. The processing times were randomly generated (integers between 1 and

10). The distribution seems to be almost symmetric and its range is contained 

in an interval of 20% around the mean. A £  test  does neither confirm nor 

refute that this distribution is Gaussian; therefore, the use of the mean make- 

span given by a heuristic seems to be meaningful.
00

7 5

7 0

6 5

c 60COQ .
$  5 5Si
A
s  50  

45 

40 

3 5  

30
1 10 3 0  1 0 0  3 0 0

No. of Runs

5 jobs on 7 machines
n\ m Ml M2 M3 M4 M5 M6 M7
J1 8 9 7 8 6 2 8
J2 3 5 9 7 5 2 4
J3 9 1 8 0 10 a 2
J4 3 8 10 2 3 0 0
J5 4 2 6 8 10 l 0

Figure B.3: A Steady-State Analysis of the Model

Input matrix o f processing times

^5 Jobs, 7 Machines« Random seed=48 
Number of runs = 1

Job sequences 12345 Make-Span=75 
12354 Make-Span=75 
12435 Make-Span=75 
24153 Make-Span=71 
24513 Make-Span=72 
24531 Make-Span=67 
31524 Make-Span=66 
34125 Make-Span=66 
34152 Make-Span=64 
41532 Make-Span=66 
45312 Make-Span=61 
45321 Make-Span=63 
54132 Make~Span=66 
51342 Make-Span=64 
51432 Make-Span= 6 6

A

v  The entire possible job sequences

Number of Job Sequences =120
53421 = Optimum Job Sequence, Optimal Make-span = 60
CPU time in seconds =0.211000
Make-Span1s Frequencies :
For the Make-Span =60 
For the Make-Span =61 
For the Make-Span =62 
For the Make-Span =63 
For the Make-Span =64 
For the Make-Span =66 
For the Make-Span =67 
For the Make-Span =68 
For the Make-Span =70 
For the Make-Span =71 
For the Make-Span =72 
For the Make-Span =73 
For the Make-Span =75

the Frequency =3 
the Frequency =3 
the Frequency =1 
the Frequency =3 
the Frequency =15 
the Frequency =15 
the Frequency =20 
the Frequency =6 
the Frequency =1 
the Frequency =39 
the Frequency =1 
the Frequency =3 
the Frequency =10

A

> The frequency of 
each make-span

y
53421= Optimum Job Sequence, Optimal Make-Span = 60 i > Optimal Jo b  Sequence

Figure B.4; A sample of the program output
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4 jobs on 4 machines
Processing times are represented in the following table:

Ml M2 M3 M4
J1 5 8 8 6
J2 5 5 5 5
J3 6 10 1 6
J4 9 6 0 4

4 Jobs, 4 Machines, Random seed=0 
Number of runs = 1

1234Make-Span=42 
1243Make-Span=38 
13 2 4Make-Span=4 6 
1342Make-Span=48 
1432Make-Span=4 8 
142 3Make-Span=4 0
213 4Make-Span=4 2
214 3Make-Span=42 
2 314Make-Span=4 5 
234IMake-Span=4 8 
243IMake-Span=4 7 
2413Make-Span=44 
3214Make-Span=50 
3241Make-Span=52 
3124Make-Span=46 
3142Make-Span=48 
3412Make-Span=48 
342IMake-Span=5 2 
42 3IMake-Span=4 7 
4213Make-Span=44 
4321Make-Span=52 
4312Make-Span=48 
4132Make-Span=4 8 
4123Make-Span=4 0

Number of Job Sequences = 24

F r e q u e n c y  D is tr ib u tio n

8 

7  

6 ■
>* c: X ü 0 
C

§  4CJ
3

: i  ü .0 □ u
3 8  4 0  4 2  4 4  4 5  4 6  4 7  4 8  5 0  5 2

M ake-Span

1,2,4,3 = Optimum Job Sequence, Optimal Make-span = 38 
CPU time in seconds =0.020000
Make-Span's Frequencies:
For the Make-Span =38 the Frequency =1
For the Make-Span =40 the Frequency =2
For the Make-Span =42 the Frequency =3
For the Make-Span =44 the Frequency =2
For the Make-Span =45 the Frequency =1
For the Make-Span = 46 the Frequency =2
For the Make-Span = 47 the Frequency =2
For the Make-Span = 48 the Frequency =7
For the Make-Span = 50 the Frequency =1
For the Make-Span = 52 the Frequency =3
1,2, 4,3 = Opt imum Job Sequence, Optimal

Figure B.5: Example ‘ 1’ Deterministic model (4 jobs x 4 machines)
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6 Jobs, 8 Machines,
Random seed=0
Number of runs = 1
Number of Job Sequences = 40320

6,5,4,3,8,7,1,2 = Optimum Job
Sequence,

Optimal Make-span = 67
CPU time in seconds =61.519000
N.B :
The Best results from LEKIN was 77 
unit time and the sequence 
was 6 2 1 3 7 5 4 8

3 500

3 000

250 0

“ 2000 
o>3
S' 1500 -

IL .

1000

F re q u e n c y  D istribution

.L n .D .0
11 13  15 1 7  19 21 23  25  2 7  2 9  31 3 3  35  

M a k e -S p a n

Figure B.6: Example ‘2 ’ Deterministic model (8 jobs x 8 machines)

Figure B.7: Example ‘3 ’ Stochastic model (10 jobs  x 75 machines)

11 Jobs, 35 Machines,
Random seed =25
Number of runs = 3 00
Number of Job Sequences = 39916800

5,10,3,11,1,4,8,7,9,2,6 = Optimum
Job Sequence,
Optimal Make-span = 12 5

CPU time in seconds =13179.451000

N.B: Processing times are 
represented generated from the 
random seed 2 5 and their values 
between 0-10.

F r e q u e n c y  D is t r ib u t io n

Ea1m.a
4 . . 1 I l l l i u . ...........

^
Make-Span

Figure B.8: Example ‘4 ’ stochastic model (11 jobs x 35 machines)
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3.1.2 Verification and Validation

The simulation model has been verified in three ways, first by comparing with 

LEKIN scheduling software package [38], although this is l imited as LEKIN 

cannot handle shop problem higher than n > 10 and m > 18. Second, LINDO 

linear programming software has also been used to check a sample of the 

output. The third checks the output through a trace file that consists of detailed 

output representing the step-by-step progress of the simulation model over the 

simulated time. This allows detection of subtle errors.

Once the model was verified, the next step was validation using other proven 

techniques. In general, the quality of a technique’s solutions is measured in at 

least two dimensions: (1) how close the solution comes to the optimal solution 

if it can be measured; and (2) how much computer time is required to solve 

problems of a given size.

Table B.2: Comparison between some different studies

Method
Avg. % 

increase over 
Optimum

Limitations

Palmer, 1965 10 % - 35 % Optimum achieved in 30% of cases 
Small scale problems only

Campbell, 1970 [13] 5 % -  20 % Optimum is not guaranteed 
Economical n i  8 ,

Dannenbring, 1977 [15] 5 % -  15 % Optimum achieved in 35% of cases 
n < 6 , m < 10 only

Gupta, 1971 [141 1 0 % - 2 0 % Optimum is not guaranteed
Al-Qattan, 1990 [191 0 % - 15 % Optimum is not guaranteed
E z a t-E l  Baradie, 1993 [12] 0 % - 10 % Optimum is for n ^ 12 m £ 60

Pure flow shop scheduling problems only
Max. size n ^ 90 , m ^ 90

Tsang -  Stafford, 2001 [16] 0 % - 5 % Optimum is guaranteed for n s  7 , m s  7
LEKIN, 1998 [7] 0 % - 10 % Optimum is not guaranteed 

Max. size n s  1 0 , m i  18
Arisha -  El Baradie, 2001 [1] 0 %

0 % - 10 %

Optimum is guaranteed for 
n 5 5 0 , m 5 250
General flow shop scheduling problems only 
Max. size n £ 500 , m £ 500 
For n s  50, m i  250

Due to wide differences in software, platform, problem size, experimental 

design and reporting, it is very difficult  to compare the performance of 

different techniques directly.  To allow some comparison to be made, Table B.2
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shows the average percentage increase over optimum make-span time as 

reported by each o f the researchers for their algorithms. To enhance the 

comparison, the right column indicates the relative limitations of each model.

3.1.3 Results Analysis

Due to the advent o f  computer technology, the optimum solutions to small and 

even relatively medium-sized problems can be found in reasonable 

computational time. The particular attraction o f this enumerative technique is 

that can highly efficient get the optimum sequence. However, this approach is 

uneconomical and partial enumeration and other algorithms can offer more 

applicable means to find optimum or near optimum solutions.

The computational times for the different factorial experiments are shown in 

Table B.3. The exponential growth in computational time with the number of  

jobs is central to the difficulty o f  using this approach for larger problems. 

Figure B.9 plots the computational times on logarithmeic scales to show the 

range.

Table B.3: CPU time (seconds) to find optimum make-span for different

problem sizes

n x m 5 10 20 40 100 250
5 0.161 0.18 0.17 0.181 0.21 0.22
6 1.1 1.1 1.2 1.2 1.3 1.3
7 8.1 8.2 8.4 8.4 8.8 9.0
8 40.3 43.3 44.9 45.6 44.3 45.2
9 232.1 232.6 245.0 235.3 245.1 248.1
10 1158.0 1176.3 1256.4 1307.3 1354.2 1298.3
11 13115.3 13118.3 14234.7 13215.2 13684.3 13968.3
12 56025.3 56036.9 57231.3 56016.7 57863.3 58015.2
20 - 551369.4 - 543652.4 - -
30 - - - 2605248.0 - -

3.2 Phase 2:

The explosive growth in computational times needed to find the optimum 

solution for larger problems means that the enumerative approach is no longer 

econom ic. Heuristic approaches attempt to find feasible solution (near 

optimum) in less computational time. One o f the common heuristic techniques
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is using dispatching rules (priority rules) in order to reduce the solution space 

and hence the computational time.

10000000

1000000

_100000 co
c
8 10000
CD

3 1000 
E 
i—
Z) 100 
CL

§* 10 
_ i

1

This phase two of the model shares the same main characteristics of phase one. 

It deals with problems up to n < 250, m < 250 and examines five different 

dispatching rules. The output of each is the expected value of the criterion 

function, which results when the rule is followed [11].

The second phase of the simulation model has multi-objectives ‘n/m /F/X  

p roblem’; it can also provide the followings:

1) Comparison of Output based on each criterion.

2) CPU time for the solution.

3.2.1 Dispatching Rules

A dispatching rule is used to select the next job to be processed from a set of 

jobs awaiting service at a facility that becomes free. The difficulty of the 

choice of a dispatching rule arises from the fact that there are (n !) ways of 

sequencing ‘n ’ jobs waiting in the queue at a particular facility and the shop

■ 10 Machines
□ 40 Machines
□ 100 Machines
■ 250 Machines

5 6 7 8 9 10 11 12 20 30
Number of Jobs

Figure B.9: CPU Times vs. different Number of Jobs
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floor conditions elsewhere in the shop may influence the optimal sequence of 

jobs at the present facil i ty[20].

The dispatching rules are used mainly in two areas in the production line; 

inventory and shop floor. A vast body of l iterature discussed the dispatching 

rules extensively (e.g. Pinedo et al. [7][43], Blackstone et al. [21], Haupt

[22]). The dispatching rules varied from very simple to extremely complex 

rules and they have normally many objectives,  some of them are to:

1) Minimize make-span,

2) Minimize waiting time/cost,

3) Maximize machine utilization,

4) Improve the production flow, and

5) Decrease delay.

Despite of the fact that no dispatching rule has been demonstrated to be 

optimal for general shop scheduling, the use of dispatching rules can help to 

find a satisfying solution in many applications and optimal solution in other 

applications[2],

3.2.2 Selected Dispatching Rules

The need for studying dispatching rules arises and the comparison between 

them is essential to find the best rule for the application under study. Five 

popular basic dispatching rules have been selected to be investigated in this 

research as reported by Mattfeld [23].

• Rule (1) FCFS (First Come First  Served): This rule dispatches jobs 

based on their arrival times or release dates. The job that has been 

waiting in queue the longest is selected. The FCFS rule is simple to 

implement and has a number of noteworthy properties.  For example, if 

the processing times of the jobs are random variables from the same 

distribution, then the FCFS rule minimizes the variance of the average 

waiting time. This rule tends to construct schedules that exhibit a low 

variance in the average total time spent by the jobs in the shop.
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• Rule (2) SPT (Shortest Processing Time): The SPT rule minimizes the 

sum of the completion times ECj (usually referred as the flow time), the 

number of jobs in the system at any point in time, and the average 

number of jobs in the system over time for the following machine 

environments:

o Set of unique machines in series, 

o Bank of identical machines in parallel, 

o Proportionate flow shop.

• Rule (3) LPT (Longest Processing Time): The LPT rule is particularly

useful in the case of a bank of  parallel machines where the make-span

has to be minimized. This rule selects the job with the longest 

processing (from the queue of jobs) to go next when a machine becomes 

available. Inherently, the LPT rule has a load balancing property, as it 

tends to avoid the situation where one long job is in process for long 

time. Therefore, after using the LPT rule to distribute the jobs among 

the machines, it is possible to re-sequence the jobs for the individual 

machines to optimize another objective besides make-span. This rule is 

more effective when preemption is allowed.

• Rule (4) SRPT (Shortest Remaining Processing T im e) : The SRPT is a 

variation of SPT that is applicable when the jobs have different release 

dates. SRPT rule selects operations that belong to the job with the 

smallest total processing time remaining. It can be effective in 

minimizing the make-span when preemption is allowed.

• Rule (5) LRPT (longest Remaining Processing T im e) : The LRPT is a

variation of LPT that selects the operations that belong to the job with

the largest total processing time remaining. LRPT rule is of importance 

when preemption is allowed and especially in parallel  identical 

machines. LRPT rule always minimizes the idle time of machines.

B16



3.2.3 Experiments

The same steps in phase one were carried out in this phase. A different 

factorial experiment for the selected rules has been set to include a wide range 

of industrial shops beginning with a simple shop floor of 5 machines up to 

complex industrial  shops (such as semiconductor manufacturing) with 200 

machines or more. The model examines seven machine shops (5, 20, 50, 80, 

130, 200, 250) and nine different loading conditions (number of jobs) equal to 

(5, 10, 30, 50, 80, 100, 150, 200, 250). A sample of phase two output is shown 

in Figure B.10.

Number o f  Runs

The number of runs for each case is set to be 300 for every stochastic run, 

where the results turn to steady state started as shown in Figure B.3.

3.2.4 Results

In order to obtain a wide range of shop scheduling problems, the full factorial 

experiments have been run. The detailed results are given in Appendix G, and 

only summaries of the results are shown in this section.

■ A verage M ake-Span C riterion

For small and medium machine numbers,  Figure B . l l  and B.12, there is a clear 

spread across the different rules with the SPT rule providing the best results 

and the LPT rule performing worst.

For larger machine numbers,  Figure B.13, the LPT rule is still clearly the 

worst,  however the other rules show almost identical results. Nevertheless the 

SPT rule is the best performer overall.

■ A verage Mean Com pletion Time Criterion

For this criterion, Figures B.14 -  B.16, the SRPT rule provides the best results. 

Again, the LPT rule performs worst, sometimes rivaled by the LRPT rule.
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16 Jobs, 33 Machines, Random seed=33 
Number of runs = 3 00

Average Make-span
Rule
Rule
Rule
Rule
Rule

FCFS
SPT
LPT
SRPT
LRPT

= 1029 
= 909 
= 1042 
= 993 
= 1014

*\

Average Mean Completion
" The Output based on Make-span criteria 
Time

Rule
Rule
Rule
Rule
Rule

FCFS
SPT
LPT
SRPT
LRPT

= 729 
= 733 
= 784 
= 782 
= 751

> The Output based on Mean Completion
Average Total W aiting  TÉLmeTime criteria

Rule 1 FCFS 
Rule 2 SPT 
Rule 3 LPT 
Rule 4 SRPT 
Rule 5 LRPT

= 3120 
= 2708 
= 2457 
= 2856 
= 2564

Average Total Idle Time
>

Rule
Rule
Rule
Rule
Rule

FCFS
SPT
LPT
SRPT
LRPT

6087
6274
8262
4896
7351

The Output based on Total Waiting Time 
criteria

CPU time in seconds = 2 . 9 
> ^Îl?e®êutput based on Total Idle Time

criteria

D D E C>
Total computational 
Time_____________

Figure B.10: A sample of phase two output

■ A verage W aiting Time C riterion

This criterion changes the order of the rules with LPT performing best and SPT 

performing worst,  Figures B.17 -  B.19. In addition increasing the number of 

jobs increases the spread between best and worst results significantly.
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■ Average Idle Time Criterion

As with the waiting time criterion, Figures (B.20 -  B.22) show that the spread 

of the performance increases  with job number. Here the LRPT rule is clearly 

the best while the LPT rule performs worst.

Avg. Make-Span vs Different Dispatching Rules (5Machlnes/300 Runs)

Figure B . l l :  Five machines shop (make-span criterion)

Avg, Make-Span vs Different Dispatching Rules (20 Machines/ 300 Runs)

—  ♦  -FCFS
-SPT

— .  . sRp r
— - * - LRPT

Figure B.12: 20 machines shop (make-span criterion)
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Avg. Make-Span vs Different Dispatching Rules (130 Machines/300 Runs)

No.ol Jobe

Figure B.13: 130 machines shop (make-span criterion)

Avg. Mean Completion Time vs Different Dispatching Rules (5 Machines/300 Runs)

—♦ —PCFS 
SPT

I -  - LPT 
—»  - SRPT 

I -  -  LRPT

Figure B.14: Five machines shop (mean completion time criterion)

Avg. Mean Completion Time vs Different Dispatching Rules (20 Machines/300 Runs)

— ♦ -FCfS 
► SPT
f -  LPT

—  >» • SRPT
— -X- - LRPT

Figure B.15: 20 machines shop (mean completion time criterion)
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Avg Mean Completion Ttme vs Different Dispatching Rules (250 Machines/300 Runs)

tte, o( Jobs

Figure B.16: 250 machines shop (mean completion time criterion)

Avg. Waiting Tfmo vs Different Dispatching Rules {5 Machines/300 Runs}

5 10 :M SO 90 100 IH  700 £50
to - »I J«to

Figure B.I7: Five machines shop (jobs waiting time criterion)

Avg. Wailing Timo vs Different Dispatching Rules (80 Machines/300 Runs)

Mow of Jobn

Figure B.18: 80 machines shop (jobs waiting time criterion)
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Avg. Waiting Time vs Different Dispatching Rules (250 Machines/300 Runs)

Figure B.19: 250 machines shop (jobs waiting time criterion)

Avg. Idle Time vs Different dispatching Rules (5 Machines/300 Runs)

N o .o f Jobe

Figure B.20: Five machines shop (machines idle time criterion)

Avg. Idle Time vs Different Dispatching Rules (80 Machines/300 Runs)

. X ’  *

_______________________ >

/  .✓ * '

/  ✓ '

s '/s ' ^

y —♦ -rcFs 
SPT

/  '/  .
✓

*  ’

****

|— -  • SRPT 
------- L0PÌ|

/  * * ‘TiX*

. , x * ‘ '

10 30 100 150 200 250

Figure B.21: 80 machines shop (machines idle time criterion)
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Avg. idle Time vs Different Dispatching Rules (200 Machines/300 Runs)

1 — ♦  — FCFS 
— a— SPT 
_ 4 _  LPT " 
—  *■ - SRPT 
■ ->î- -  LRPT

Figure B.22: 200 machines shop (machines idle time criterion)

3.2.5 Results Analysis

The comparative study on the performance of  various dispatching rules has 

been carried out under different shop machine and util ization levels. As 

mentioned earlier, the model runs for 300 iterations to reach the steady state 

using the random generator for process times for the same specific shop 

conditions. It has been observed that no single rule performs well for all 

criteria related to completion time, waiting time and idle time. SPT has 

performed the best to minimize make-span under different conditions, as is 

clearly evident from Figure B.23.

I  S.O

SPT LPT
Dispatching Rules

Figure B.23: Comparison of average normalized increase over optimum make-

span for different dispatching rules
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The SPT rule is quite often used as benchmark since it is found to be very 

effective in minimizing make-span and mean tardiness under highly loaded 

shop floor conditions [20]. SPT is the worst for minimizing the job-waiting 

criterion, while LPT shows the worst performance for make-span criterion; it 

tends to be the best rule to minimize the job waiting time especially for high 

util ization level (n ^ 80). For the average mean completion time (mean flow 

time) SRPT shows the best performance for different levels of utilization. 

LRPT and LPT performed worst for average mean completion time criterion. 

LRPT rule tends to dominate with respect to the machine idle time while LPT 

and SRPT showed the worst performance as job number increased.

While never being the best or worst performer for any criterion the FCFS rule 

is effective in minimizing the maximum flow time and the variance in flow 

time. Its consistent “mid-table” performance allows its use as a benchmark.

4. Concluding Remarks

• The exponential increase in solution time with number of jobs is shown 

in Table B.3 for the first phase (enumerative).  The length of time for 

computation means that the full search cannot be economically used 

where the number of jobs exceeds 30.

• The parameters that affect the size of flow shop problems are ‘n ’ and 

‘m ’. The problem size complexity is based on these two parameters. The 

results of the proposed model indicated that ‘n ’ has much stronger 

influence on computer solution time than ‘m’. Based on these studies 

and the proven NP-completeness  of the problem, it is clear that ‘n ’ is a 

much more important determinant of computer solution time required for 

the flow shop problem.

• Although, researchers have been working on the flow shop sequencing 

problem for many years,  no clear comparative study about the difference 

of computational t ime of exact enumerative approach and any heuristic 

technique has been reported. Table B.4 shows such a comparison
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between computational time to find the optimal solution in phase 1 

(exact enumeration) and to solve the problem using heuristic technique 

to get near-optimum solution or satisfying solution.

Table B.4: Comparison of  computational time

Problem Size 
( nx m)

Computational time in seconds
Phase 1 Phase 2

5 x 5 0.161 17.25

8 x 2 0 44.9 18.00

10x 40 1307.3 19.12

11 x4 0 13215.2 19.13

1 2x 4 0 56016.7 19.32

20 x 10 551369.4 19.63

3 0 x 4 0 2605248.3 20.45

100 x 100 . 22.42

250 x 250 - 25.96

• Dispatching rule based scheduling is a computationally fast approach 

[23]. Dispatching rules are useful heuristic for finding a reasonably good 

schedule with regard to a single objective such as the make-span, mean 

completion time, mean waiting time, or mean machine idle time. As no 

signal dispatching rule showed high superiority for all the performance 

criteria, the combination of several basic rules may be more effective. 

Added to that, there is also the possibility to switch between different 

rules based on the shop dynamics.

• Dispatching rules cannot provide the optimal solution in most cases but 

the difference between the near-optimal solution and the optimal 

solution might be acceptable when computational time and problem size 

are taken into account. SPT provides a solution 6.5% from the optimal,  

while the worst rule (LPT) was 13.8% more than the optimal.
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Appendix C

Review on Simulation for Manufacturing
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Simulation is the imitation of  the operation of a real-world process or system 

over time by means of  analogous situation, either to gain information more 

conveniently in order to enhance the system performance. According to 

Shannon [1], Simulation is the process of designing a model of a real system 

and conducting experiments with this model for the purpose either of 

understanding the behavior  of the system or of evaluating various strategies 

(within the limits imposed by a criterion or set of criteria) for the operation of 

the system.

Simulation involves the generation of an artificial history of the system, and 

the observation of that artificial history to draw inferences concerning the 

operating characteristics of the real system that is represented. Simulation is an 

indispensable problem-solving methodology for the solution of many real- 

world problems and is used to describe and analyze the behavior of a system, 

ask “what if” questions about the real system, and aid in the design of real 

systems. Both existing and conceptual systems can be modeled with 

simulation. A vast body of  research efforts has reviewed simulation in
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manufacturing (e.g. Banks [2], Banks et al. [ I l l ] ,  Law et al. [4], Pritsker [5], 

Shannon [1], and Kochhar [6]).

Cl. Classification of Simulation Models

Simulation models have many ways to be classified (e.g. [1], [3], [4], [8], [9], 

and [10]). Simulation model can be classified into three groups, Figure C.l .

fin ite  )  
in fin ite  )

C-------------- \
C o m b in e d

V_________ y

Figure C . l :  Classification of Simulation Models

The discrete-event simulation (DES) model and continuous simulation models 

have been a focus of many comparisons due to their applications in industries. 

Table C. l  shows a brie f  comparison between the two types of simulation 

models.

Table C. l :  A comparison between DES model and continuous simulation
models

Comp. Continuous Discrete-Event

Time step Infinite, Model recalculation are 
sequential and time dependent

Interval is dependent on when 
events occur.

Method Differential equations Logical relationships

Components Aggregate Individual entities

Variables Levels Queues, states, attributes

Changes Rates Events

Ordering FIFO in most cases Any described priority rule

Applications Chemical industries, control 
systems, System dynamics

Manufacturing, Business process, 
Networks
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C2. Applications of Simulation in Manufacturing

Simulation has turned to be in a real challenging task. Over last three decades, 

computer simulation as one of the advanced techniques has been applied to 

various activities in manufacturing systems such as process planning, 

maintenance and diagnosis,  scheduling, and quality management.

Figure C.2: Simulation Applications in Manufacturing Systems

Simulation models provide a picture that gives the appearance that it can think 

for itself. It has the capability of considering complex interrelated tasks and 

structurally projected outcomes by exercising the many alternative 

combinations in a reasonable time, while normally would take months to do in 

the real process.  Simulation, by definition, allows for experimenting with a 

model of the system to better understand processes,  with a goal of improving 

performance. Simulation modeling incorporates various inputs to a system and 

provides a means to evaluate,  redesign, and measure or quantify customer 

satisfaction, resource util ization, process streamlining, and time spent.
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Simulation of sophisticated automation systems in both the discrete parts and 

process environments has been relatively common since 1970’s. Usually 

exercises were carried out to assist with the utilization of fixed resources and 

finite capacity under static conditions. Nevertheless,  many Researchers made a 

significant contribution to the development of the simulation as a decision 

making tool [2]. New tools,  new methods, and new software packages have 

been designed to build a powerful model that can deal with complex systems 

and to make a trade-off  between the universality of the simulation and the 

complexity of the modeling.

A focus on simulation of FMS is shown in the coming section as the interest of 

this research in the use of simulation for FMSs.

C2.1 Simulation of FMS

Along with the rapid advancement in the power of the computer hardware and 

software, the possibili ty to simulate more sophisticated FMS with higher 

expectations and objectives [11]. Simulation modeling turns to be a powerful 

and flexible analysis approach in addressing many issues in FMS (Figure C.3). 

The role of simulation in FMS [1][4][8][12][23] started with the representation 

of real problem (real system) by a formal model to observe the dynamic 

behavior of the model and extended to assist in building knowledge-base of 

expert system to optimize the processes.
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S im u la t io n  A p p lic a tio n s  in  F M S

v  ■ -

System configuration
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"v:
Utilization
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Figure C.3: Main applications of simulation in FMS

The main use of simulation in FMS issues comes into three main categories as 

follows:

1) FMS design problems

a) Optimal system configuration (i.e. determination of number and 

types of machines, level of WIP in the system)

b) Specification of the FMS layout and FMC

c) Selection of a storage system (size of local buffers and/or central 

storage)

d) Determination of other important system resources (i.e. number of 

pallets,  number of fixtures,  number and types of tools)

2) FMS planning problems

a) Part type selection problem

b) Machine grouping problem

c) Loading problem

d) Routing mix problem

e) Other planning problems (i.e. tool storage capacity, scheduling, 

optimization of unit utilization)
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3) FMS control and functions

a) Specification of the type and capacity o f  the material handling 

system (MHS)

b) Determination of  optimal size o f  buffers

c) Unit utilization

d) Delays due to bottlenecks

Moreover, simulation o f  f lexible manufacturing operations is one of  the best 

tools for studying the impact of  integration between different components upon 

overall system performance [13]. Each component in the production facility 

will have some individual performance capability,  but when this is integrated 

to the manufacturing and imposed to different constraints due to production,  

the adjustments to this performance must be known. Many simulation software 

packages provide efficient means to accomplish replications of  operation and 

examine different scenarios.

C2.2 Simulation of FMC

Simulation approach has been used in FMC. The simulation applications to an 

FMC can be classified into three main groups as shown in Figure C.4.
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Applying Simulation to an FMC
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Figure C.4: Main applications of simulation in FMC

Simulation provides a simple yet flexible approach to generate a superb 

schedule for the flexible manufacturing cell scale. It has been influential in 

developing models to characterize the real systems and hence apply the 

required sensitivity analyses and optimization methods to the critical 

parameters (see chapter five).

C2.3 Advantages and Pitfalls of Simulation

The number of projects using simulation is steadily increasing. Many firms are 

realizing the benefits of  utilizing simulation for more than just the one-time 

modeling of the facility.  Rather, due to advances in software, managers are 

incorporating simulation in their daily operations on an increasingly regular 

basis. For most companies,  the benefits of using simulation go beyond just 

providing a look into the future. These benefits are mentioned by many authors 

(e.g. Banks et al. [2] and [3], Pritsker [5], Law et al. [4][7] and [7], Carrie [8], 

Harrington et al. [16], and Arisha et al. [17] and [27]). In this research, a
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comprehensive classification of benefits and pitfalls in simulation projects 

have been presented in Table C.2.

C3. Simulation Software

Simulation software has been classified into different number of groups based 

upon many research studies (e.g. [1] [2] [5] [7][10], and [12]). In this research, 

the simulation software is classified in three main groups as shown in Figure. 

The fist group includes simulation language, and the second is general-purpose 

computer language whilst  the third group refers to simulation packages which 

embrace different types of  simulation software such as data-driven generic 

simulators and program generators.

Simulation Software Types

G e n e ra l-p u rp o s e  | 
S im u la tio n  
L a n g u a g e s

I
_  I  1
P a cka g e s  I

G e n e ra l-p u rp o s e  | 
C o m p u te r  

L a n g u a g e s

D a ta -d r iv e n P ro g ra m
S im u la to rs G e n e ra to rs

Figure C.4: Simulation Software types



Table C.2: Advantages and pitfalls of simulation

Factor Advantages Pitfalls

Simulation software package price is less than 1 % of Some full simulation software packages are expensive
total amount being expended for the implementation of a for small enterprises to spend.

— design and redesign or any real experimentation.
w
Ô Simulation proved to be wise investment as the benefits Simulation speed is factor o f upgrading hardware and
c of having model can save many times than the cost o f the updating the package. This is attributable to the
c package. advances in hardware.
II

Many simulation firms offer special deals for many users 
or network installation which makes the price o f the user 
is low.

Time savings in simulation have many directions. For Implementation time and project horizon depend on
example, an entire shift in a matter o f minutes or less can the data availability and staffs support.

<D be examined.
E
i— Time flexibility is an essential tool in simulation.

Simulation saves the time o f experimenting the scenarios 
on the real facilities

Training (if needed) is time-consuming in many cases.

Simulation software packages are getting easier to use Special training for the staff is needed in some
O) and having friendly interface more and more. projects.
c
c Some packages just need some simulation basics to be Assigning team for simulation training is inappropriate

« able to make a  model in many big firms.

1- Training the sim ulation team  can provide less disruptive The preliminary training offered by the simulation
and less mistakes in building then using the model software companies is not enough in  some cases.

■ M odeling steps are well defined and easy to follow. M odeling is an art that is learned over time and

5 ?
through experience.

o .E Identify the constraints and diagnoses o f the problems In many cases, the complexity o f the manufacturing
s provide better understanding o f  the system. system gives modeler a hard time to do his job.

Simulation gives the possibility to test every aspect o f a In some cases simulation provides hassles when the

ino
proposed change or addition without committing output interpretation is on a good level.
resources.

>
Explore possibilities is one o f the greatest advantages of Inappropriate use o f the model might lead to non sense

<0
c simulation that one can have once a valid model has been results.

o> developed.

< Bottlenecks detection as well as overview on the facility 
which provide the m anagem ent to think better in the 
options to change.

Animation feature is powerful tool o f presenting the Not all the packages have the same capabilities in

o model and gives better understanding of the processes. presenting the models. Virtual Reality module does
o Some packages have virtual reality modules which enrich not have many features when it comes with the
1-
£ the presentation capability. simulation package.

o M ost o f the packages have link to M icrosoft Excel and Evaluating and Selecting the appropriate software
4-1ra Access to provide more practicality to the use simulation package is a crucial problem, (see [27])
3 mode.
E
c/j

Statistical analysis techniques are helpful to the users and 
save lots o f time.

Simulation reduces risk  o f implementation on real facility Successful simulation projects percent are still not as

V)
as it provides a safe econom ic tool to provide answers. high it gives confident to many administrations.

CC Using simulation, build consensus to present design If the model is not well established the results can not
changes and approve modifications. be trusted and they can misconduct in some cases.



A general-purpose simulation language is a simulation package that is used for 

modeling different types of systems with different characteristics.  When a 

model is developed using a simulation language, the simulation analyst has to 

write a program using the modeling constructs of the language. This approach 

provides flexibility, but it is costly and time consuming. Some of the most 

popular simulation languages are SIMAN, SLAMII, SIMSCRIPT II.5, GPSS/H, 

SIMULA, PCModel,  AutoMod II and ECSL. Some of these languages may have 

special features for manufacturing such as workstation and material handling 

module [19]. For example, AutoMod II is specifically directed towards 

material handling and manufacturing problems. Another example of such a 

package, SIMAN/CINEMA IV, has special material handling features,  such as 

forklifts and conveyors.

C3.2 General-purpose Computer Language

Using the general-purpose language such as FORTRAN, C, or C++ involves 

writing routines for the basic facilit ies that would be included in any 

simulation package. This is time consuming and most unlikely to be cost- 

effective unless no available package can fulfill the requirements of the user.

C3.3 Simulation Packages

There are many different methods of classifying simulation packages into 

different types or groups. However, the main two groups are data-driven 

simulators and program generators.

A) Data-driven Simulators
Data-driven simulator has been defined as a computer  package that allows the 

modeler to model systems with little or no programming [19]. Many data- 

driven simulators are domain-specific.  They are used to model systems with 

specific features (e.g. cellular manufacturing systems) [20]. There are 

simulators currently available for certain types of manufacturing, computer, 

and communication systems. Examples of simulators that are dedicated to 

manufacturing simulation are SIMFACTORY II.5, WITNESS, ProModel for

C3.1 General-purpose  Sim ula tion Language
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Windows, and Xcell+. A graphical user interface is a fundamental part of 

simulators,  which is used for modeling as well as for running the model.  Most 

of these simulators employ a network in their underlying concept.  Thus, 

entities are assumed to flow through a network from node to node. At these 

nodes they may be delayed as they engage in activities with entit ies and 

resources placed on the nodes. The resources placed on the nodes may also be 

engaged in endogenous activities.  For example, in a manufacturing application 

such entities can be machines, which occasionally fail.

B) Program  G enerators
Program generators are used as another way of making simulation more 

accessible to non-computer  specialists.  A program generator is a computer 

program which itself generates another program. Unlike a compiler,  which 

takes a source program written in a problem-oriented language and produces 

machine code, a program generator takes a system description and produces 

source code. This generated source code may then be compiled or interpreted 

to present a computable simulation model. Examples of program generators are 

CAPS/ECSL, VS7, and DRAFT. Program generators are usually interactive and 

accept a description of a conceptual model such as an activity cycle diagram 

(ACD). Most program generators require definition of the model entities, 

activities,  queues, attributes, and priorities. Thus, the user starts modeling by 

drawing an ‘ACD ,’ and then describes the components of the diagram to the 

program generator.  Generally,  features of program generators lie between those 

of simulation languages and data-driven simulators.  A survey by Hlupic and 

Paul [21] showed that 10% of the users at universities and industry use only 

simulation language and this percent decrease with the advent of simulators. 

Table C.3 shows that the majority use both simulators and simulation 

languages or just  simulators.

Table C.3:Percentage of different types of simulation software users at universities and
industry (based on Ref. [26])

Type o f software Universities Industry
Simulators 52% 73 %
Simulation languages 4% 9 %
Both 45 % 18%
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Another interesting survey by Christy and Watson [22] showed how new 

programming languages are selected for simulation applications (Table C.4). 

The fact that most of simulation software either simulator or language followed 

similar trends.

Table C.4: How new simulation software is selected for organization
Basis o f selection Percent %
Championed by someone in the organization 62
Available on time-sharing network 34
Checklist of features 29
Benchmark tests 24
Outside Recommendations 23
Other 12

C4. Simulation Model Building

Many research efforts directed to the simulation model building (e.g. [1], [3],

[16], and [23] - [25]). The simulation model building has been discussed in this 

research into two phases; the model building approach and the simulation 

modeling process.  For model building approaches, there are five basic options 

to establish the required simulation model. Table C.5 shows the different 

techniques including the advantages and disadvantages of each technique. 

However, manufacturing applications include so many aspects and details and 

hence simulation modeling process can be arduous. Banks [2] showed a set of 

steps to guide a model builder in a thorough simulation modeling process.  

Similar figures and interpretation can be found in other sources such as 

Shannon et al. [1], Law et al. [4], and Centeno et al. [25], Figure C.5 shows 

the main steps to implement for simulation modeling process. It is worth 

saying that the modeling process has been used in chapter five and six while 

building the simulation model relevant to the research.
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Table C.5:Different techniques of building simulation model
Technique Exam ples A dvantages Disadvantages

Using a
simulation
Package

Use software packages 
such as: WITNESS, 
AUTOMOD, 
PROCESSMODEL, 
TaylorED, and 
EXTEND

Powerful software tailored to 
the purpose of simulation

Permits user to concentrate on 
logic of system to be modeled, 
not on computer programming 
as such.

Makes available many man- 
years of experience and 
programming effort.

Permits models to be developed 
more quickly than in a general- 
purpose computer language.

Can be used by non-specialist 
in simulation.

Purchase cost is 
relatively high.

Training needs.

May not be well 
designed for the special 
features of user’s 
system.

Risk of invalid 
conclusions until 
substantial expertise is 
gained.

Using a
simulation
language

Use a software 
packages such as: 
GPSS/H, SIMULA, 
ECSL and PCModel

The programmer can develop 
the model to achieve all the 
user requirements

Some packages provide special 
features that serve in 
manufacturing models

Most suitable for use by a 
simulation specialist.

it needs programming, 
so it is time and money 
consuming

Hard to be used with 
non-specialist.

Writing the 
model in a 
general-purpose 
computer 
language

Use languages such as: 
FORTRAN, C ,C++

It fits more with the system 
requirements (tailored 
program).

Avoids the cost of purchasing a 
package.

Programmer knows all the 
details of his own program.

Cost of good 
programmer is high.

Time needed to develop 
the program.

The entire program has 
to be debugged.

Using a generic 
model

Use generic models for 
particular types of 
systems, such as: FMS, 
AGV,....

Avoids any programming.

Minimize the time to get 
results.

Usually acceptable cost.

Usually runs on any “standard” 
hardware.

Suitable for use by non­
specialists.

May not be capable of 
modeling specific 
features.

May include 
unacceptable 
simplifications or 
assumptions.

Using a 
consultant

Use simulation 
expertise or consultancy 
company

Speed of obtaining results. 

Professional expertise.

The cost is normally 
high.

Difficulty in modifying 
model if plans change.

Expertise may not be 
transferred to 
company’s own staff.

C13



Figure C.5:The simulation modeling process steps 

C5. Simulation Software Selection
The number and variety of simulation software packages on the market 

increased tremendously along with the increase of using simulation. 

Consequently, the varieties of these packages led to some bewilderment on the 

part of potential users when faced the selection process.  The use of simulation 

as a tool to help these complex, dynamic and stochastic manufacturing systems 

involve large capital investments,  as it is cheaper and easier to experiment with 

simulation models,  rather than experimenting with the real systems. There is a
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variety of potential benefits of simulation in manufacturing environments 

including: greater understanding of systems, reduced operating costs, risk 

reduction, lead time reduction, reduction of capital costs, and faster 

configuration changes. As a result, managers and administrators have begun to 

look to simulation for an aid to day-to-day operational problems as well as 

tactical and strategic issues. The growing use of simulation for the analysis of 

manufacturing systems has resulted in a rise in the number of both general 

purpose and application oriented simulation software packages. Some 

researchers have contributed their own classifications of evaluation criteria. 

Table C.6 extends the literature proposed by Nikoukaran et al. [26] in order to 

cover major studies in this subject. More details about the classification and 

selection criteria can be found in Arisha et al. [27]. The simulation software 

selection process is considered as one of the most critical tasks in simulation 

projects.  There are many considerations that should be taken into account 

while selecting the simulation package. The classification of the criteria into 

groups and sub-groups is an effective way to organize the list different features 

that should be considered in the evaluation process. The criteria can be 

classified twofold: technical criteria and business criteria as shown in Figure 

C.6. These two groups represent the highest levels of the proposed framework. 

The business criteria concern the vendor, the user, and their contract features, 

while the technical elements consider most of the features of the simulation 

software. An explanation of each criterion and sub-criterion is presented to 

describe the feature and its importance in evaluating simulation software.

Figure C.6: Simulation software evaluation criteria (cause and effect
diagram)[27]
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Table C.6: Major literature in simulation software selection criteria

Holder

1990

[31]

Banks

1991

[30]

Law et. al

1991

[7]

Banks et. al

1991

[14]

Mackulake«. al

1994

[32]

Davis et. al

1994

[33]

Banks et. al

1996

[34]

Kuljis

1996

[35]

Hlupic

1997

[36]

Nikoukaran
et al
1999

[37]

Arisha

2002

[27]
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5.Functionality results constructs execution 6.Statistical 6. Output

5.Training 5.Printed facilities - Model
6-Commercial 6 .Documentation manuals 7.User Output

6.Ease of use 7.Input/Output
7. Simulation 6.0n-line 2.Business
project data 7.Hardware user 8.Modelling

and assistance assistance -Vendor
8.Methods of 
user interface

installation

8.Confidence 
related issues

9.Software
compatibility

lO.Experimenta
1 facilities

-Contract 

- User

11 .Financial 
and technical 
features



C6. Simulation Software Evaluation and Selection Methodology

A suggested methodology of simulation software selection is shown in Figure 

C.7. As an analysis of the background research material and research 

experience, the methodology established. First  step represents the beginning of 

the process of selection and considers being critical. The purpose of simulation 

software and the need for the package direct the selection process to more 

specific simulation software type that serves the application. For example, if 

the software is intended to use in education purpose, it should be determined 

whether teaching will be performed for undergraduate or postgraduate level

[9]. As the level of education increases, the comprehensiveness and complexity 

of software might increase, beside the model development complexity. After 

the determination of the purpose of the simulation software, a preliminary list 

of simulation software packages can be used. The next step is to fill the 

assessment checklist (the user, expert,  or simulation team). An empirical 

weighing approach (based on customer/application preferences) has to be 

employed to complete the selection methodology. Step 3 contains the main 

selection criteria that should be assigned to evaluate the software packages in 

the list. The main elements of evaluation performed in step 4 without going 

further in the details. Step 5 is to shorten the simulation software list based 

upon the evaluation performed in step 4. The assessment of the packages in 

Step 4, 5 achieved through a checklist  that is shown in Figure C.8. Two actions 

should be established in parallel ,  first is to let the user with the aid of his 

simulation team or simulation expert and based on the results, weight each 

criteria in terms of its relative importance will be set. Beside, the simulation 

packages evaluation should carry on the same time as a contact with the short­

list simulation software companies for contract details and prices discounts if 

possible.  On the other hand, detailed evaluation criteria should be applied to 

the selected list. Following this stage, a final selection for one package to be 

purchased should be made based upon the scores collected from the checklist. 

There are many elements could be added to this stage but it is beyond the 

scope of this study. After purchasing, staff training is an important step 

towards ensuring efficient performance and effective implementation.
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Figure C.7:Steps of suggested simulation software selection



Criterion group Sub-group Feature Indication Levels
A B C D E
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P edigree Vendor history ( Reputation)

Vendor experience

Contact facility

Company type (local, international,.,etc.)

Service Service after sale

Trouble shooting

Documentation availability

Pre-Purchase services (CD demo, evaluation copy, ...etc.)

S u p p o rt Training on the software

Technical support

Consultancy session

C
on

tr
ac

t

F inanc ia l Package price

Discount availability

Number o f modules

Type of license (network, individual,,,etc)

Payment allowance

Updating cost

Technical Maintenance

Group meeting

Secuiity/ Authority

Te
ch

ni
ca

l

M
od

el
 I

np
ut

B uild ing  Tools Data Collection options

Model merging possibility

Library o f  usable modules

Model options (formal logic. Hierarchical modeling ... etc,)

F ea tu res Functions (built-in, user defined., .etc.)

Dialogue boxes available

Pick and click capability

Error detection

Language interface

D istribu tions Statistical Distribution

Standard fitting

User Defined Distribution

Lim its Model size (no. o f elements» entities, icons...etc.)

Number o f tutorial examples

Si
m

ul
at

io
n 

T
ec

hn
iq

ue
s

M odel C oding Accessibility to source code

Programming tools

Auiibutes , Global Arrays , -e tc

M odeling
A pproaches

Variety o f  modeling approaches (event based, process interactions,., etc.)

S hop F loor 
C on tro l

Conditional routing option

Dispatching rules

G en era to rs Program schedules generator

Random numbers generators

Conceptual modeling generator

Pr
es

en
ta

ti
on

Fe
at

ur
es

A nim ation Icons (library, interlace CAD. Bitmap. 3D. colors...etc.)

Model animation (concurrent, post-simulalion.. etc,)

D isplay Display (paths, values dynamically, state ...etc.)

V irtu a l R eality Virtual Reality features available

M
od

el
E

xe
cu

ti
on

Speed C o n tro l Model speed control while runs

R un Run options ( Automatic batch run, multiple runs, step function...etc)

W arm -u p Warm-up pel iod determination options

C lock Time control options ( backward clock... etc)

O ptions M ore options ui execution (breakpoints, multitasking„ etc.)

M
od

el
 O

ut
pu

t

R eport Standard set o f reports

Customized reports

T rac in g Snapshots option

In teg ra tio n Integration with other packages (Hxcel, Access ...  etc.)

S tatus Sialic o r dynamic results option

Statistical Statistical analysis options (mean, variance, ...etc.)

O u tp u t fo rm Output form (hardcopy, file, software interface.. .etc.)

G rap h ic s Output presentation options (Pie chart, bai chart... elc.)

V alidation  & Options (interactive debugger, error messages... etc.)

O ptim iza tion Optimization module

Figure C.8: Assessment Checklist
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Appendix D

General Flow Shop Scheduling Model (Phase 1)

/* The optimum Make-span Program Codes */

/* For Data Input ,Rows are the jobs and the column are the machines */

♦♦include <conio.h>
♦♦include <stdio.h>
#include <malloc.h>
♦♦include <stdlib.h>
♦♦include <time.h>
♦♦define RANGE 11 
♦♦define MAX 32767

typedef struct NODE{ 
long num; 
long val;
struct NODE *next;

}
NODE ;
NODE *make_N0DE(void);
NODE *link_data(long);
void del_NODE(NODE*);
void insert_NODE(NODE*,NODE*);
void remove_N0DE(NODE*);
void dump_list(NODE*);
void perm2(int*,int);
void store(void);
void ran();
void readdata(void);
NODE *head;

#define OFF 0 
#define ON 1

void process(int n,int m ) ;
int T [250] [250] ,f [250] [250] ,temp[250] [250];
int i,j,n,m,number,x,index[250],seq[250],maximum=1000000000; 
long count =0; 
int num;
int amout,column; 
long now;
long int yy,runs,y,ave,average,result; 
int output=0N; 
char c;
F I L E  * f p , * f p 2 ;

/* to define function max. */ 
int max(int x, int y)
{

if (x>y) return x; else return y;
}

D1



void insert_NODE(NODE *at,NODE *ins)
{

ins->next=at->next; 
at->next=ins;

}

void remove_NODE(NODE *node)
{

/* Remove the next node down */
NODE *old; 
old=node->next; 
node->next=node->next->next; 
free(old);
}

NODE *make_NODE()
{

NODE * ret;
if ((ret=(NODE *)malloc(sizeof(NODE)))==NULL)
{

printf("out of memory program halted\n"); 
exit(0) ;

}
return(ret);

}
void del_NODE(NODE *node)
{

free(node);
}

NODE* link_data(long data)
{

static int flag=0; 
static NODE * head;
NODE * new_NODE;
NODE * current;
NODE * Old;

if(flag==0) {
head=make_NODE(); 
head->val=0; 
head->num=0; 
head->next=NULL; 
flag=l;

}

old=head;
current=head->next; 
while(current){

if (data<current->val)
{

new_NODE=make_NODE(); 
new_NODE->val=dat a ; 
new_NODE->num=l; 
insert_NODE(old,new_NODE); 
return(head);

}
if (data==current->val)
{
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current ->num++; 
return(head);

}
if (data>current -> val)
{

old=current; 
current=current->next;

}
}
new_NODE=make_NODE(); 
new_NODE->val=data; 
new_NODE->num=l; 
insert_NODE(old,new_NODE);

return (head);
}

void dump_list(NODE* head)
{

NODE* current;
FILE *OUt;

out = fopen("out.dat","w+"); 
current=head->next; 
while(current)
{

if ( output==ON)
{

printfC'For the Make-span =%ld : The Frequency =
%ld\n",current->val,current->num);

fprintf(fp2,"For the Make-Span =%ld: the Frequency =%ld 
\n",current->val,current->num);

}

fprintf(out%ld\t\t%ld \n",current->val,current->num); 
current=current->next;

}

fclose(out); 
printf("\n"); 
for(i=0;i<n;i++)
{

fprintf(fp2,"%d",seq[i]);
}

fprintf(fp2,"= Optimum Job Sequence , Optimal Make-Span=
%d",maximum);

printf("Problem matrix size:");printf("(%d X %d) \n",n,m);
}

void main (int argc,char * argv[])
{

{
unsigned seed;
if (argc >1) if (*argv[1]=='n ') output=OFF; 
fp2=f open ("out. dat11, "w+") ;
printf(" \nEnter number of jobs ....  " ); /* = %d\n",n);*/
scanf ("%d",&n);
printf("Number of Jobs = %d\n",n);
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printf("\nEnter number of Machines... " ); 
scanf("%d",&m);
printf("Number of machines =%d\n",m); 
printf("\nEnter number of runs ... "); 
scanf("%d",&runs);
printf("Number of runs = %d\n",yy); 
column=n;
printf("\nEnter random seed ..... ");
scanf("%d",&seed);
printf("Random seed = %d\n",seed);
printf("\n"); 
srand(seed);
{

clock t start, end;

start= clock();

/* Read in data in matrix (n X m) problem */ 

for (yy=0;yy<runs;yy++)
{

maximum=1000000000;
/* in case of stop generating random processing times, 

block the next line */
/* ran(); */ 
readdata(); 
fprintf(fp2,"h

: " ) ;

seed=%d\n",n,m,seed) 

%d\n",yy);

fprintf(fp2, 
fprintf(fp2,

fprintf(fp2,

\n Optimal job sequence problem 

\n\n"); */
%d Jobs,%d Machines, Random 

Number of runs =

bld\n",count);

for (i=0;i<n;i++)
index[i]=i+l; 

perm2(index,n);
printf("Number of job Sequence = %ld\n",count); 
fprintf(fp2," Number of Job Sequences =

fprintf(fp2,"\n");

for (i=0;i<n;i++)
{

printf("%d",seq[i]); 
fprintf(fp2,"%d",seq[i]);

}

printf(" = Optimum Job Sequence, Optimal Make-span
= %d\n",maximum);

fprintf(fp2," = Optimum Job Sequence , Optimal
Make-span = %d\n", maximum);

result =maximum; 
ave=ave+result;

/* system ("els") ;
fprintf(fp2,"\n");

fprintf(fp2,"%d Jobs , %d Machines, the Pure Flow- 
Shop , (Number of runs)=%d\n",n,m,yy);

fprintf(fp2,"\n");
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average =ave/runs;
/* printf("Average Optimal Make-span= %d \n",average); 

fprintf(fp2,"Average Optimal make-span=
%d\n",average);

*/
end = clock();
printf("CPU timein seconds =%f \n ", (float)(end-

Start)/CLOCKS_PER_SEC);
printf(" \n");

/* fprintf(fp2," Make-span's Frequencies : " );
printf("(%d X %d) \n\n",n,m); */

/* fprintf(fp2,"\n"); */
fprintf(fp2,"CPU time in seconds =%f \n" ,

(float)(end-start)/CLOCKS_PER_SEC);
fprintf(fp2,"\n");
fprintf(fp2,"fp2, Make-Span's Frequencies:"); 

fprintf(fp2,"\n\n");
/* fprintf(fp2,"Problem matrix size"); fprintf(fp2,"(%d 

X %d)\n\n ",n,m); */

dump_li st(head);

}

void process (int n, int m )
{

/* The make_Span Formula used */ 
int i , j ; 
f [1] [1] =T [ 1 ] [1] ; 
for (i=2;i<m+l;i++)

f [1] [i] =f [1] [i — 1 ] +T [1] [i] ;

}

for ( i=2;i<n+l;i + +)
{ f[i] [l]=f[i-1] 11]+ T [i] [1] ;
}

for (j=2;j<m+l;j++)
{

for (i=2;i<n+l;i++)
{

f [i] [j]=max(f [i-1] [j] ,f [i] [ j -1 ] ) +T [i] [j] ;
}

}
return;

void store(void)
{

static int co=0; 
count++;

for (i=l;i<=n;i++)
{

for (j =1;j <=m;j ++)
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{
T[i] [j ]=temp[index[i-1]] [j] ;

)
}

process(n,m);

if(output) {
for (i=0;i<n;i++)
{

printf("%d",index[i] ) ;

/* Try to stop the details in the output */ 
fprintf(fp2,"%d",index[i]);

}
printf("Make-Span =%d\n",f[n][m]);

/* Try */

fprintf(fp2,"Make-Span=%d\n",f[n][m]);

head=link_data((long)f[n][m]);
}

if (maximum> f [n] [m])
1

maximum = f[n] [m] ; 
for (i=0;i<n;i++)
{seq[i]=index[i];
}

}
}

void perm2 (int *s,int n)
{

int i ; 
int tmp;

if (n==l)
store () ; 

for (i=0;i<n;++i)
{

tmp=s[0]; 
s [0] =s [i] ;

s[i]=tmp; 
perm2(&s[1],n-1); 
tmp=s [0 ]; 
s [0] =s[i] ; 
s[i] =tmp;

}

void ran()
{

FILE *fp;
fp=fopen("in.dat"," w " ) ; 

int amount=n*m;
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count=0;
for(i = 0 ;i<amount;i++)
{

y=rand()%11; 
fprintf(fp,"%-3i", y) ; 
count++;
if (count==column)
{

fprintf(fp,"\n"); 
count=0;

}
}

f d o s e  (fp) ;

void readdata(void)
{

FILE *fp;
fp=fopen("in.dat","r"); 
for (i=l;i<m+l;i++)
{

for(j =1 ;j <n+l;j ++)
{

fscanf(fp,"%d",&number); 
T[j] [i]=number; 
temp[i] [j]=number;

}
}

fclose(fp);
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Appendix E

General Flow Shop Scheduling Model (Phase 2)

Phase 2

/* Effect of the priority Rules */

#include <conio.h>

#include <stdio.h> 

flinclude <string.h> 

^include <malloc.h> 

#include <stdlib.h> 

#include <time.h> 

#define RANGE 10 

«define MAX 32767 

#define SIZE 250

int intcmp(int a , int b); 
void process (void); 
void rule2(void); 
void rule3(void); 
void display (void); 
void readdata(void); 
void rule4(void); 
void rule5(void); 
void sort4(void); 
void ran () ;
int compare(const void *argl, const void *arg2);

int T[SIZE] [SIZE] ,f[SIZE] [SIZE] ,temp[SIZE] [SIZE] ; 
int i,j,k,m,n,1,number; 
char x; 
int
index[SIZE].store[SIZE],store2[SIZE],sum[SIZE],store3[SIZE],p[SIZE],z[SIZE
],su[SIZE];
char c;
int rulenum;
int amount,count,y,column; 
long now;

El



double num; 
int yy , runs ;
long int idle,idlel,result6,result7,avl,av2,av3,av4,av5,av,results; 
long int a,al,a2,a3,a4,a5;
long int average,averagel,average2,average3,average4,averages,result; 
long int
resultl,result2,ave,avel,ave2,ave3,ave4,ave5,result3,result4,results;
FILE *fp,*fp2;
int max(int x, int y)
{

if (x>y) return x; else return y;
}
void main()
{

{
unsigned seed;
fp2=fopen("out.dat", "w+");
printf(" \n Enter Number of Jobs .. ");
scanf("%d",&n);
printf("\n Enter number of machines .. ");
scanf("%d",&m);
printf("\n Enter number of runs .. "); 
scanf("%d",&runs);
printf("\n Enter number of seed .. "); 
scanf("%d",&seed); 
srand(seed); 
column=n;
{

clock_t start, end; 
start= clock();

/* Read in data in matrix */
/* printf(%d jobs, %d machines \n\n",n,m); */ 
for ( yy=0;yy<runs;yy++)
{

printf("MAKESPAN RUN %d \n",yy);

/* In case that the data should be read from the file, Cancel 
the next line */

ran() ;

rulenum=l; 
readdata(); 
process () ; 
display () ;
averagel=averagel+result; 
avel=avel+result2; 
avl=avl+result8; 
al=al+result5; 
rule2(); 
display();
average2=average2+result; 
ave2=ave2+result2 ; 
av2=av2+result8; 
a2=a2+result5; 
readdata() ; 
process () ; 
rule3 () ; 
display () ;
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average3=average3+result; 
ave3=ave3+result2; 
av3=av3+result8; 
a3=a3+result5; 
readdata(); 
process(); 
rule4(); 
display();
average4=average4+result; 
ave4=ave4+result2; 
av4=av4+result8; 
a4=a4+result5; 
readdata(); 
process () ; 
rules(); 
display();
average5=average5+result; 
ave5=ave5+result2; 
av5=av5+result8; 
a5=a5+result5; 
readdata(); 
process () ;
}
/* end of yy loop */ 
system ("els " ) ; 
printf("\n"); 
fprintf(fp2,"\n");
fprintf(fp2,"%d Jobs, %d Machines, Random seed = %d,(number of 

runs)=%d \n\n", n,m,seed,yy);
/* printf("%d Jobs,%d Machines \n\n",n,m); 
fprintf(fp2,"Average MAKE-SPAN \n\n");
printf("Average MAKESPAN ( Number of runs) = %d\n\n",yy); 
printf("\n\n"); */ 
average=averagel/runs;
/* printf("Rule FCFS =%d \n",average); */ 
fprintf(fp2,"Rule 1 FCFS = %d\n\n",average); 
average=average2/runs;
/* printf("Rule SPT (SI)=%d\n,average); */ 
fprintf(fp2,"Rule 2 SPT(SI)=%d \n\n",average); 
average=average3/runs;
/* printf("Rule LPT(LI)=%d \n", average ); */ 
fprintf(fp2,"Rule 3 LPT(LI)=%d \n\n",average); 
average=average4/runs;
/* printf("Rule SRPT = %d \n " , average); */ 
fprintf(fp2,"Rule 4 SPRT = %d \n\n",average ); 
average=average5/runs;
/* printf("Rule LRPT = %d \n",average); */ 
fprintf(fp2,"Rule 5 LPRT = %d \n\n",average );
/* end= clock(); 
fprintf(fp2,"\n");
fprintf(fp2,"Computation time in seconds =%f\n ",(end- 

start)/CLK_TCK); */
fprintf(fp2,"\n");
/*fprintf(fp2,"problem matrix size: (%d X %d)\n",n,m);
printf("\n"); 
fprintf(fp2,"\n"); */
fprintf(fp2,"average mean completion time \n\n"); 
ave=avel/runs;
fprintf(fp2,"Rulel FCFS= %d \n\n",ave); 
ave=ave2/runs;
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fprintf(fp2,"Rule 2 SPT(SI)=%d\n\n",ave); 
ave=ave3/runs;
fprintf(fp2,"Rule 3 LPT(LI)= %d \n\n",ave); 
ave=ave4/runs;
fprintf(fp2,"Rule 4 SRPT = %d\n\n",ave); 
ave=ave5/runs;
fprintf(fp2,"Rule 5 LRPT = %d \n\n",ave); 
fprintf(fp2,"Average Total Waiting Time \n\n"); 
av=avl/runs;
fprintf(fp2,"Rule 1 FCFS = %d \n \n ",av); 
av=av2/runs;
fprintf(fp2,"Rule 2 SPT = %d \n\n",av); 
av=av3/runs;
fprintf(fp2,"Rule 3 LPT = %d\n\n",av); 
av=av4/runs;
fprintf(fp2,"Rule 4 SRPT = %d \n\n",av); 
av=av5/runs;
fprintf(fp2,"Rule 5 LRPT = %d\n\n",av); 
fprintf(fp2,"\n");
fprintf(fp2,"Average Total Idle Time \n\n");
fprintf(fp2,"\n\n");
a=al/runs;
fprintf(fp2,"Rule 1 FCFS = %d \n\n", a); 
a=a2/runs;
fprintf(fp2,"Rule 2 SPT =%d \n\n",a); 
a=a3/runs;
fprintf(fp2,"Rule 3 LPT = %d \n\n",a); 
a=a4/runs;
fprintf(fp2,"Rule 4 SRPT = %d \n\n",a); 
a=a5/runs;
fprintf(fp2,"Rule 5 LRPT = %d \n\n",a); 
end=clock () ;
fprintf(fp2,"Computational time in seconds =%f\n", 

(float)(end-start)/CLOCKS_PER_SEC);
}}
fclose(fp2);
}
void ran ( void)
{

fp=fopen("in.dat","w");
amount=n*m;
count=0;
for (i=0;i<amount;i++)
{

y=rand()%11; 
count++;
fprintf(fp,"%-3i",y); 
if (count==column)
{

fprintf(fp,"\n"); 
count=0;

}
}

fclose (fp) ;
}

void readdata( void)

fp=fopen("in.dat","r");{
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for { i=0;i<m;i++)
{

for(j=0;j <n;j ++)
{

fscanf(fp,"%d",fcnumber); 
T [ j] [i]=number; 
temp[j] [i]=number;

fclose(fp);
}

void rule4(void)
{

for(i=0;i<m;i++)
{

sum[i]=0; 
index[i]=0;

}

rulenum = 4; 
for (j=0;j<n;j++)
{

for(i=0;i<m;i++)
{

sum[j]=sum[j]+temp[j] [i]; 
index[j]=sum[j]; 
result3=sum[j];

}
}
sort4();

}

void sort4(void)
{

// qsort(index,n,sizeof(index[1]),compare);
qsort( (void *)index, (size_t)n, sizeof(int), compare ); 
for (i=0;i<n;i++)
{

j =0;
while((index[i] !=sum[j]) && (j<n))

j++;
for (k=0;k<m;k++)
{

T [i] [k]=temp[j] [k];
i

sum[j]=9999;
}
for (i=0;i<n-l;i++)
{

temp[i][0]=store2[i];
}
process();

}

void rule5(void)
{

for(i=0;i<n+m;i++)

sum[i]=0;
{
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index[i] =0 ;
}
rulenum=5;
for (i=0;i<n;i++)
{

for (j =0 ;j <m;j ++)
{

sum[i]=sum[i]+temp[i][j] ; 
index[i]=index[i]+temp[i][j];

}
}// qsort(&index,n,sizeof(index[1])»compare);
qsort( (void *)index, (size_t)n, sizeof(int), compare ); 
for (j=0;j<n;j++)
{

store[n-j-1]=index[j];
}
for(j=0;j<n;j ++)
{

index tj]=store[j];
}
for (i=0;i<n;i++)
{

j =0 ;
while((index[i] != sum[j])&& (j<n))

++j ;
for (k=0;k<m;k++)
{

T [i] [k] =temp[j] [k] ;
}
sum[j]=9999 ;

}
for (i=0;i<n;i++)
{ tempii][ j]=store2[i];
}process();

void rule2(void)
{

/* it allows the program to sort the values */
rulenum=2;
for(j = 0;j<n;j++)
{

index[j]=temp[j][0];
}

/* sorting the first row using the qsort method */

qsort( (void *)index, (size_t)n, sizeof(int), compare ); 
for(i=0;i<n;i++)
{

j=0;
while((index[i] !=temp[j][0] )&& {j<n))

++j ;
for(k=0;k<m;k++)
{

T [i] [k] =temp[j] [k] ;
}
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store2[j]=temp tj] [0]; 
temp[j][0]=9999;

}
for (i=0;i<n;i++)
{

temp[i][0]=store2[i];
}
process () ;

}

void rule3(void)
{

rulenum=3;
for(j=0;j <n;j++)
{

index[j]=temp[j][0];
)

// qsort(fcindex,n,sizeof(index[1]),compare);
qsort( (void *)index, (size_t)n, sizeof(int), compare ); 
for ( j=0 ;j<n;j++)
1 store[n-j-1]=index[j];
};
for (j=0;j<n;j++)
{

index[j]=store[j];
}
for(i=0;i<n;i++)
{

j=0;
while((index[i] !=temp[j][0] ) && (j<n))

+ + j ;
for(k=0;k<m;k++)
{ T[i] [k]=temp[j] [k];
}
temp[j][0]=9999;

}
process();

}

int intcmp(int a,int b)
{

return(a-b);
)

void process(void)
{f [0][0]= T [0][0]; /* make span formula */
for (i=l;i<m;i++)
{

f [0] [i]=f [0] [i — 1]+T [0] [i] ;
}
for (i=l;i<n;i++)
{

f ti] [0] =f [i-1] [0] +T [i] [0] ;
}
for ( j =1;j<m;j++)
{
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for (i=l;i<n;i++)
{

f [i] [j] =max(f [i-1] [j] , f [i] [j-1] )+T[i] [j] ;
}

}

void display(void)
{

system("els"); 
printf("\n"); 
i=m-l;
for (j=0;j<n-l;j++)
{

resultl=f[j][i];
}
result=f[n-1][i];
{

i=m-l;
for(j=0;j <n-2;j ++)
{

resultl=resultl+f[j] [i];
}
result2=(resultl+result)/n;

}
for (i=0;i<n+m;i++)
|

p [ i ] = 0 ; 
sum[i]=0;

}
count=0; 
p [0]=0;
f o r ( i = l ; i<m;i++)
{

p[i]=p[i-l]+T[0] [i-1] ;
}
for (i=0;i<m;i++) 
i count=0;

f o r (j = 0 ; j <n;j + +)
{

coimt=count+T [ j ] [i] ;
}
sum[i]=count;

}
{

for (i=0;i<m;i++)
{

for(j=0;j<n;j++)
{
}
printf("\n");
idle=f[n-1][i]-sum[i]-p[i]; 
result5=f[n-1][i]-sum[i]-p[i];

}
printf("\n");

}
j =n-l;
for (i=0;i<m;i++)
{
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result5=result5+f[n-1][i]-sum[i]-p[i];
}
{

for (j=0;j<n+m;j++)
{

z [j] =0; 
su[j] =0;

}
Z [ 0 ] = 0 ;

for (j =1;j <n+l;j + + )
{

Z [ j ] = Z  [ j  - 1  ] +T [ j - 1 ]  [0]  ;

}
for(j=0;j<n;j++) 
i

count=0;
for(i=0;i<m;i++)
{

count=count+T[j] [i];
}
su[j]=count;

printf("\n"); 
i=m-l;
for(j = 0;j <n;j++)
{

printf("\n");
result8=f[j] [i]-su[j]-z[j];
{

printf("\n");
)
i=m-1;
for(j =0;j <n;j ++)
{

result8=result8+f[j] [i]-su[j]-
z [j ] ;

}
}

}
}

}

int compare(const void *argl, const void *arg2) 
i

return (Mint *)argl == *(int *)arg2);
}
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Appendix F

Results

/* Results of Dispatching Rules Comparison */

• Average Make-Span Criteria
n x m FC FS SPT LPT SR PT LRPT
5x5 58 54 62 58 59
10x5 93 86 100 91 94
30 x 5 211 196 231 209 209
50 x 5 324 310 370 323 324
80 x 5 512 490 587 510 508
100 x 5 693 666 803 693 691
150 x 5 936 900 1082 936 934
200 x 5 1188 1140 1380 1 176 1173
250 x 5 1382 1289 1622 1342 1427
5 x 20 173 165 182 173 173
10 x 20 210 198 221 208 208
30 x20 319 310 349 319 320
50 x 20 469 381 523 469 439
80 x 20 591 495 689 569 546
100 x 20 772 616 890 721 738
150 x20 1000 782 1115 946 968
200 x 20 1260 989 1368 1160 1205
250 x 20 1505 1220 1712 1370 1425
5 x 50 310 300 318 310 308
10 x 50 434 419 452 434 434
30 x 50 557 541 587 554 554
50 x 50 723 699 764 720 718
80 x 50 933 906 996 930 930
100 x 50 1134 1107 1224 1128 1134
150 x 50 1442 1407 1561 1435 1435
200 x 50 1745 1710 1864 1791 1774
250 x 50 2024 1980 2220 2044 2083
5 x 80 543 529 553 539 543
10 x 80 583 566 600 580 583
30 x 80 818 792 811 784 764
50 x 80 954 933 1002 951 954
80 x 80 1182 1117 1243 1182 1155
100 x 80 1368 1341 1464 1368 1368
150 x 80 1715 1687 1838 1712 1712
200 x 80 2092 2014 2200 2047 2007
250 x 80 2339 2293 2528 2335 2331
5 x 130 833 810 846 828 828
10 x 130 889 870 916 893 889
30 x 130 1081 1057 1119 1078 1078
50 x 130 1325 1291 1373 1317 1314
80 x 130 1591 1558 1672 1591 1591
100 x 130 1789 1758 1915 1782 1805
150 x 130 2144 2104 2272 2136 2132
200 x 130 2561 2507 2727 2459 2523
250 x 130 2834 2792 3027 2829 2825
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Cont. Average Make-Span Criteria

n x m F C FS SPT LPT SR PT LRPT
5 x 200 1012 990 1034 946 1062
10 x 200 1177 1150 1205 1095 1238
30 x 200 1326 1293 1364 1232 1397
50 x 200 1440 1405 1490 1340 1515
80 x 200 1581 1534 1628 1446 1649
100 x 200 1715 1676 1793 1602 1793
150 x 200 1945 1910 2045 1825 2040
200 x 200 2244 2206 2371 2107 2354
250 x 200 2428 2388 2571 2286 2542
5 x 250 1407 1376 1437 1315 1475
10 x 250 1412 1379 1445 1313 1485
30 x 250 1521 1482 1569 1400 1592
50 x 250 1608 1561 1663 1458 1679
80 x 250 1755 1703 1807 1605 1830
100 x 250 1921 1877 2009 1795 2009
150 x 250 2237 2197 2352 2099 2346
200 x 250 2513 2470 2655 2359 2636
250 x 250 2720 2675 2879 2560 2847
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• Average Mean Completion Time Criteria
n x m F C FS SPT LPT SR PT LRPT
5 x 5 46 42 51 41 51
1 0 x 5 66 59 74 56 74
30 x 5 149 137 174 127 167
50 x 5 198 185 237 169 220
80 x 5 298 281 364 258 335
100 x 5 386 351 462 327 422
150 x 5 506 467 619 437 575
200 x 5 669 624 810 579 759
250 x 5 832 778 980 727 916
5 x 20 135 127 144 124 146
10 x 20 149 139 158 133 162
30 x20 251 239 276 225 272
50 x 20 326 312 366 293 351
80 x 20 419 403 475 380 454
100 x 20 530 512 606 480 572
150 x20 675 653 770 603 730
200 x 20 825 798 939 738 891
250 x 20 980 949 1113 879 1061
5 x 50 323 310 333 298 342
10 x 50 363 348 380 328 389
30 x 50 434 416 460 393 463
50 x 50 521 501 557 476 557
80 x 50 669 645 723 612 714
100 x 50 746 724 814 692 789
150 x 50 911 881 997 835 967
200 x 50 1110 1079 1227 1022 1182
250 x 50 1236 1200 1368 1136 1316
5 x 80 490 475 505 456 521
10 x 80 496 483 515 454 528
30 x 80 630 609 655 574 665
50 x 80 751 728 792 690 799
80 x 80 858 832 911 792 908
100 x 80 953 924 1033 880 1005
150 x 80 1103 1075 1183 1022 1162
200 x 80 1332 1300 1436 1236 1408
250 x 80 1505 1471 1634 1398 1591
5 x 130 769 750 789 715 804
10 x 130 781 756 802 722 823
30 x 130 907 877 937 834 959
50 x 130 1046 1017 1087 968 1099
80 x 130 1180 1 152 1240 1100 1244
100 x 130 1278 1244 1340 1205 1373
150 x 130 1483 1449 1571 1382 1554
200 x 130 1707 1674 1817 1596 1794
250 x 130 1867 1834 1997 1747 1963
5 x 200 1001 982 1025 1001 1006
10 x 200 1272 1248 1301 1277 1272
30 x 200 1555 1525 1605 1555 1560
50 x 200 1773 1746 1836 1769 1773
80 x 200 21 15 2075 2201 211 1 2106
100 x 200 2282 2241 2381 2273 2273
150 x 200 2654 2617 2797 2650 2654
200 x 200 3065 3025 3245 3060 3045
250 x 200 3424 3381 3631 3424 3419
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Cont. Average Mean Completion Time Criteria
n x m F C F S SPT LPT SR PT LRPT
5 x 250 1392 1365 1424 1392 1398
10 x 250 1526 1498 1561 1532 1526
30 x 250 1866 1830 1926 1866 1872
50 x 250 2092 2060 2166 2087 2092
80 x 250 2348 2303 2443 2343 2338
100 x 250 2555 2560 2770 2600 2610
150 x 250 3052 3010 3216 3047 3052
200 x 250 3433 3388 3634 3430 3420
250 x 250 3835 3787 4066 3835 3829
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• Average Waiting Time Criteria
n x m FCFS SPT LPT SRPT LRPT

5 x 5 43 37 44 21 57
1 0 x 5 146 165 133 90 179
30 x 5 994 1602 824 781 1105
50 x 5 2091 3881 1703 1751 2212
80 x 5 3489 7041 2836 3016 3751
100 x 5 7425 14000 5640 6502 7300
150 x 5 1 1437 21235 7223 9223 11516
200 x 5 16470 30414 12540 14056 16578
250 x 5 26010 50400 18524 22050 25380
5 x 20 61 59 65 34 84
10 x 20 315 349 287 207 386
30 x20 1924 2722 1547 1581 2152
50 x 20 3866 5958 3017 3236 4169
80 x 20 7618 12108 5903 6525 8280
100 x 20 12780 20948 10084 11228 13842
150 x20 22500 36700 17600 18200 24100
200 x 20 32960 54416 25640 26000 35176
250 x 20 49800 81984 38700 40300 52860
5 x 50 166 158 164 92 222
1 0 x 50 715 788 678 480 878
30 x 50 3426 3972 3000 2472 4026
50 x 50 7896 10068 6486 6264 8892
80 x 50 16392 23148 12888 13656 18138
100 x 50 23338 33600 18144 19936 25256
150 x 50 35784 52119 27522 30735 38736
200 x 50 54528 82092 42420 47472 59508
250 x 50 79080 119160 60510 68595 84600
5 x 80 272 269 277 154 370
10 x 80 860 943 793 578 1055
30 x 80 4368 5051 3848 3140 5181
50 x 80 10554 13063 8779 8371 11927
80 x 80 21674 27622 17597 17524 24086
100 x 80 33609 44809 26632 28325 36730
150 x 80 52839 71996 41567 45563 57443
200 x 80 82579 114787 63501 70523 88757
250 x 80 117819 169480 90174 102467 126768
5 x 130 357 344 357 192 459
10 x 130 1095 1168 1014 742 1330
30 x 130 5975 6747 5374 4360 7129
50 x 130 12558 15267 10570 10108 14112
80 x 130 24272 30976 19696 20200 26960
100 x 130 35350 46047 28177 29764 38855
150 x 130 68100 93000 43400 54100 74900
200 x 130 104380 143378 81702 91 137 113407
250 x 130 163208 226458 125074 142163 176663
5 x 200 273 271 282 156 367
10 x 200 1123 1204 1050 767 1386
30 x 200 7191 8092 6528 5355 8602
50 x 200 16129 19196 13694 12849 18311
80 x 200 34466 42809 28213 28540 38291
100 x 200 50765 66127 40698 43605 55957
150 x 200 95075 124646 74920 81881 103295
200 x 200 141900 187200 111700 124300 156100
250 x 200 199079 269331 155015 174701 214226
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Cont. Average Waiting Time Criteria

n x m F C F S SPT LPT SR PT LRPT
5 x 250 379 376 391 217 511
10 x 250 1348 1445 1260 920 1663
30 x 250 8629 9710 7834 6426 10322
50 x 250 19033 22652 16159 15162 21607
80 x 250 38257 47518 31317 31679 42503
100 x 250 69600 88700 52000 60800 80000
150 x 250 1 19600 143343 86158 106800 131800
200 x 250 173600 209664 125104 153400 193200
250 x 250 236500 267200 173616 214900 252700
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• Average Idle Time Criteria
n x m F C F S SPT LPT SR PT LRPT
5 x 5 40 42 42 61 23
1 0 x 5 69 62 86 91 45
30 x 5 150 120 195 179 115
50 x 5 205 161 300 239 154
80 x 5 262 204 411 304 203
100 x 5 320 260 527 400 252
150 x 5 392 317 665 503 285
200 x 5 497 430 825 630 378
250 x 5 645 585 986 797 510
5 x 20 732 710 710 990 440
10 x 20 1070 960 1210 1368 706
30 x20 1763 1612 2298 2200 1316
50 x 20 2145 1930 3120 2680 1690
80 x 20 2530 2400 3930 3140 2050
100 x 20 2940 2700 4600 3630 2270
150 x20 3450 3060 5290 3970 2680
200 x 20 3912 3438 6240 4512 3264
250 x 20 4620 4140 8050 5327 3810
5 x 50 2358 2376 2484 3303 1422
10 x 50 3924 3591 4194 4340 2700
30 x 50 6756 6252 7908 7410 4872
50 x 50 9132 8508 10640 10250 7080
80 x 50 11316 10332 13560 12380 8988
100 x 50 13400 12140 16710 15290 10560
150 x 50 15610 14500 19790 18000 12770
200 x 50 18432 17260 23410 21344 15530
250 x 50 23570 22470 29000 25930 21130
5 x 80 3293 3143 3210 4388 2010
10 x 80 6318 6003 6777 8073 4500
30 x 80 11500 9600 14602 16058 8100
50 x 80 15000 12870 18800 17200 10703
80 x 80 20500 17600 28100 25100 15700
100 x 80 25920 22600 34400 30496 19600
150 x 80 29600 26443 3971 1 34600 23514
200 x 80 36200 32652 49860 42700 29142
250 x 80 44300 41100 56600 51100 37200
5 x 130 9792 9728 10096 13552 6544
10 x 130 15747 15355 17129 20394 11414
30 x 130 26200 24900 28700 30300 20200
50 x 130 33611 31863 39368 39881 26049
80 x 130 43200 40620 53620 50960 34780
100 x 130 52946 50439 68632 62560 43516
150 x 130 61975 58850 80725 71600 51200
200 x 130 71300 65900 95700 81700 57700
250 x 130 82593 78660 114741 95304 69654
5 x 200 15084 14688 15012 20286 9504
10 x 200 29022 27573 30072 36582 20307
30 x 200 46200 41700 52400 59100 32000
50 x 200 61568 59280 72280 74178 48776
80 x 200 78300 74900 94000 90700 63600
100 x 200 92520 88920 115320 107880 75990
150 x 200 114300 109200 138000 128400 95200
200 x 200 134280 126792 168400 153900 112464
250 x 200 151320 143715 201006 180700 127257
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Cont. Average Idle Time Criteria

n x m F C FS SPT LPT SRPT LRPT
5 x 250 18101 17626 18014 24343 11405
10 x 250 34826 33088 50000 43898 24368
30 x 250 62300 50040 79100 70920 38400
50 x 250 81200 71136 100000 89014 58531
80 X 250 108800 89880 132400 121400 76320
100 X 250 131600 106704 168200 154500 91188
150 x 250 156100 131040 209500 185200 114240
200 x 250 180500 152150 258100 227800 134957
250 x 250 210000 172458 301100 267200 152708

F8



Schematic Approach for Simulation Modeling (SASM)

This appendix provides table of the main blocks used in SASM models.  Each 

block has an icon represents its function.

Appendix G

Block F u n c tio n

In fo rm a tio n a l B lock

This b lock  reads in fo rm ation  of  i tem s/parts  then passes 
them  through . The block  can be used to change or remove 
a ttr ibu te .  The  block can send info rm ation  to Excel file or 
s tore  it.

In fo rm atio n  
R etrieva l B lock

This b lock  acts like lookup icon. It re tr ieve  inform ation 
from  ex te rna l  or local files and then use it to calculate  the 
ou tput or pass it another block.

O pera tion  b lock  s im ulates a m achine  or m anufac tu ring  cell 
opera t ing  on a single  item /lot.  This b lock  is usually 
connec ted  with a source o f  in fo rm ation  about the processing 
tim e for every  item /lot,  delay  times due to m aintenance. It 
also sends inform ation  about u t i l iza tion , p roductiv ity  and 
o ther a ttr ibu tes  to be stored in file.

P ro d u ctio n  S ettin g s
P roduc tion  se tting  b lock  p rovides items based  on 
schedu ling  in fo rm ation  such as product-m ix , p roduct 
sequence , num ber o f  i tem s/lo ts  at the start, and priority  
setting.

External File

This b lock  can be either input or ouput file. It 
w ri te s /reads /s to res  da ta  from /to  any block. The common 
forms o f  fi les  are Excel, and Access  files.

Global
File

G lobal or local files are genera l-pu rpose  files available 
anyw here  in the model. They can be set, reset,  or modified. 
Any num ber  of  b locks can access the same file.

Buffer

A buffer  is a p lace  to hold  num ber o f  i tem s/lo ts  and release 
them  on p rese t  rule such as FIFO, or with a particular  
a ttr ibu te . The buffer  has a m ax im um  queue length  (size).

Decision

D ecis ion  b lock  selects  where to send the i tem /lo t that is 
p resen t at the se lec ted  input. The decis ion  can be made 
based on any prese t cr iter ia . In some cases, a default 
dec is ion  is set to go when the s itua tion  is random.

-Data- D ata  arrow  presen ts  the flow of data.

© C onnec to r  a llows the user to fo llow  the model flow.
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