2,471 research outputs found

    Recursive internetwork architecture, investigating RINA as an alternative to TCP/IP (IRATI)

    Get PDF
    Driven by the requirements of the emerging applications and networks, the Internet has become an architectural patchwork of growing complexity which strains to cope with the changes. Moore’s law prevented us from recognising that the problem does not hide in the high demands of today’s applications but lies in the flaws of the Internet’s original design. The Internet needs to move beyond TCP/IP to prosper in the long term, TCP/IP has outlived its usefulness. The Recursive InterNetwork Architecture (RINA) is a new Internetwork architecture whose fundamental principle is that networking is only interprocess communication (IPC). RINA reconstructs the overall structure of the Internet, forming a model that comprises a single repeating layer, the DIF (Distributed IPC Facility), which is the minimal set of components required to allow distributed IPC between application processes. RINA supports inherently and without the need of extra mechanisms mobility, multi-homing and Quality of Service, provides a secure and configurable environment, motivates for a more competitive marketplace and allows for a seamless adoption. RINA is the best choice for the next generation networks due to its sound theory, simplicity and the features it enables. IRATI’s goal is to achieve further exploration of this new architecture. IRATI will advance the state of the art of RINA towards an architecture reference model and specifcations that are closer to enable implementations deployable in production scenarios. The design and implemention of a RINA prototype on top of Ethernet will permit the experimentation and evaluation of RINA in comparison to TCP/IP. IRATI will use the OFELIA testbed to carry on its experimental activities. Both projects will benefit from the collaboration. IRATI will gain access to a large-scale testbed with a controlled network while OFELIA will get a unique use-case to validate the facility: experimentation of a non-IP based Internet

    Application-driven network management with ProtoRINA

    Full text link
    Traditional network management is tied to the TCP/IP architecture, thus it inherits its many limitations, e.g., static management and one-size-fits-all structure. Additionally there is no unified framework for application management, and service (application) providers have to rely on their own ad-hoc mechanisms to manage their application services. The Recursive InterNetwork Architecture (RINA) is our solution to achieve better network management. RINA provides a unified framework for application-driven network management along with built-in mechanisms (including registration, authentication, enrollment, addressing, etc.), and it allows the dynamic formation of secure communication containers for service providers in support of various requirements. In this paper, we focus on how application-driven network management can be achieved over the GENI testbed using ProtoRINA, a user-space prototype of RINA. We demonstrate how video can be efficiently multicast to many clients on demand by dynamically creating a delivery tree. Under RINA, multicast can be enabled through a secure communication container that is dynamically formed to support video transport either through application proxies or via relay IPC processes. Experimental results over the GENI testbed show that application-driven network management enabled by ProtoRINA can achieve better network and application performance.National Science Foundation (NSF grant CNS-0963974)

    Rumba : a Python framework for automating large-scale recursive internet experiments on GENI and FIRE+

    Get PDF
    It is not easy to design and run Convolutional Neural Networks (CNNs) due to: 1) finding the optimal number of filters (i.e., the width) at each layer is tricky, given an architecture; and 2) the computational intensity of CNNs impedes the deployment on computationally limited devices. Oracle Pruning is designed to remove the unimportant filters from a well-trained CNN, which estimates the filters’ importance by ablating them in turn and evaluating the model, thus delivers high accuracy but suffers from intolerable time complexity, and requires a given resulting width but cannot automatically find it. To address these problems, we propose Approximated Oracle Filter Pruning (AOFP), which keeps searching for the least important filters in a binary search manner, makes pruning attempts by masking out filters randomly, accumulates the resulting errors, and finetunes the model via a multi-path framework. As AOFP enables simultaneous pruning on multiple layers, we can prune an existing very deep CNN with acceptable time cost, negligible accuracy drop, and no heuristic knowledge, or re-design a model which exerts higher accuracy and faster inferenc

    SDN management layer: design requirements and future direction

    Full text link
    Computer networks are becoming more and more complex and difficult to manage. The research community has been expending a lot of efforts to come up with a general management paradigm that is able to hide the details of the physical infrastructure and enable flexible network management. Software Defined Networking (SDN) is such a paradigm that simplifies network management and enables network innovations. In this survey paper, by reviewing existing SDN management layers (platforms), we identify the general common management architecture for SDN networks, and further identify the design requirements of the management layer that is at the core of the architecture. We also point out open issues and weaknesses of existing SDN management layers. We conclude with a promising future direction for improving the SDN management layer.This work is supported in part by the National Science Foundation (NSF grant CNS-0963974)

    Multi-layer virtual transport network management

    Full text link
    Nowadays there is an increasing need for a general paradigm which can simplify network management and further enable network innovations. Software Defined Networking (SDN) is an efficient way to make the network programmable and reduce management complexity, however it is plagued with limitations inherited from the legacy Internet (TCP/IP) architecture. In this paper, in response to limitations of current Software Defined Networking (SDN) management solutions, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs) over different scopes (i.e., regions of operation). Different from the traditional virtual network model which mainly focuses on routing/tunneling, our VTN provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, and it involves all mechanisms (e.g., addressing, routing, error and flow control, resource allocation) needed to support such transport flows. Based on this approach, we design and implement a management architecture, which recurses the same VTN-based management mechanism for enterprise network management. Our experimental results show that our management architecture achieves better performance.National Science Foundation awards: CNS-0963974 and CNS-1346688

    Reducing the complexity of virtual machine networking

    Get PDF
    Virtualization is an enabling technology that improves scalability, reliability, and flexibility. Virtualized networking is tackled by emulating or paravirtualizing network interface cards. This approach, however, leads to complexities (implementation and management) and has to conform to some limitations imposed by the Ethernet standard. RINA turns the current approach to virtualized networking on its head: instead of emulating networks to perform inter-process communication on a single processing system, it sees networking as an extension to local inter-process communication. In this article, we show how RINA can leverage a paravirtualization approach to achieve a more manageable solution for virtualized networking. We also present experimental results performed on IRATI, the reference open source implementation of RINA, which shows the potential performance that can be achieved by deploying our solution

    ARCFIRE : experimentation with the recursive InterNetwork Architecture

    Get PDF
    European funded research into the Recursive Inter-Network Architecture (RINA) started with IRATI, which developed an initial prototype implementation for OS/Linux. IRATI was quickly succeeded by the PRISTINE project, which developed different policies, each tailored to specific use cases. Both projects were development-driven, where most experimentation was limited to unit testing and smaller scale integration testing. In order to assess the viability of RINA as an alternative to current network technologies, larger scale experimental deployments are needed. The opportunity arose for a project that shifted focus from development towards experimentation, leveraging Europe's investment in Future Internet Research and Experimentation (FIRE+) infrastructures. The ARCFIRE project took this next step, developing a user-friendly framework for automating RINA experiments. This paper reports and discusses the implications of the experimental results achieved by the ARCFIRE project, using open source RINA implementations deployed on FIRE+ Testbeds. Experiments analyze the properties of RINA relevant to fast network recovery, network renumbering, Quality of Service, distributed mobility management, and network management. Results highlight RINA properties that can greatly simplify the deployment and management of real-world networks; hence, the next steps should be focused on addressing very specific use cases with complete network RINA-based networking solutions that can be transferred to the market

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Results and achievements of the ALLIANCE Project: New network solutions for 5G and beyond

    Get PDF
    Leaving the current 4th generation of mobile communications behind, 5G will represent a disruptive paradigm shift integrating 5G Radio Access Networks (RANs), ultra-high-capacity access/metro/core optical networks, and intra-datacentre (DC) network and computational resources into a single converged 5G network infrastructure. The present paper overviews the main achievements obtained in the ALLIANCE project. This project ambitiously aims at architecting a converged 5G-enabled network infrastructure satisfying those needs to effectively realise the envisioned upcoming Digital Society. In particular, we present two networking solutions for 5G and beyond 5G (B5G), such as Software Defined Networking/Network Function Virtualisation (SDN/NFV) on top of an ultra-high-capacity spatially and spectrally flexible all-optical network infrastructure, and the clean-slate Recursive Inter-Network Architecture (RINA) over packet networks, including access, metro, core and DC segments. The common umbrella of all these solutions is the Knowledge-Defined Networking (KDN)-based orchestration layer which, by implementing Artificial Intelligence (AI) techniques, enables an optimal end-to-end service provisioning. Finally, the cross-layer manager of the ALLIANCE architecture includes two novel elements, namely the monitoring element providing network and user data in real time to the KDN, and the blockchain-based trust element in charge of exchanging reliable and confident information with external domains.This work has been partially funded by the Spanish Ministry of Economy and Competitiveness under contract FEDER TEC2017-90034-C2 (ALLIANCE project) and by the Generalitat de Catalunya under contract 2017SGR-1037 and 2017SGR-605.Peer ReviewedPostprint (published version
    • …
    corecore