
Reducing complexity of Virtual Machine
networking

Sander Vrijders1, Vincenzo Maffione2, Dimitri Staessens1, Francesco Salvestrini2

Matteo Biancani3, Eduard Grasa4, Didier Colle1, Mario Pickavet1, John Day5, Lou Chitkushev5

1Ghent University - iMinds, INTEC, Gaston Crommenlaan 8 bus 201, 9050 Gent, Belgium
E-mail: firstname.lastname@intec.ugent.be

2Nextworks s.r.l., Pisa, Italy
3Interoute S.p.A, Rome, Italy

4i2CAT Foundation, Jordi Girona, Barcelona, Spain
5Computer Science, Metropolitan College, Boston University, Massachusetts, USA

Abstract—Virtualization is an enabling technology that im-
proves scalability, reliability and flexibility. Virtualized network-
ing is tackled by emulating or paravirtualizing Network Interface
Cards (NICs). This approach, however, leads to complexities
(implementation and management) and has to conform to some
limitations imposed by the Ethernet standard. The Recursive
InterNetwork Architecure (RINA) turns the current approach
to virtualized networking on its head: instead of emulating
networks to perform inter process communication on a single
processing system, it sees networking as an extension to local
inter-process communication. In this article, we show how RINA
can leverage a paravirtualization approach to achieve a more
manageable solution for virtualized networking. We also present
experimental results performed on IRATI, the reference open
source implementation of RINA, which shows the potential
performance that can be achieved by deploying our solution.

I. INTRODUCTION

Virtualization technologies provide a cost-effective way of
increasing the scalability, reliability and flexibility of services
deployed over the internet. Virtual Machine networking, the
way a VM connects to the physical network, is an aspect
of high importance in the virtualization world, with network
performance being paramount [1]. The traditional way that
hypervisors implement VM networking is based on NIC
emulation - e.g. QEMU [2], VirtualBox [3], VMWare [4] are
able to emulate Intel e1000, Realtek r8169 and other NICs.
This is also referred to as full NIC emulation, where the
hypervisor implements a NIC hardware model in software,
including the transmit and receive memory mapped rings and
the Peripheral Component Interconnect (PCI) registers.

The paravirtualization approach initially proposed by Xen
[5] with the netfront/netback paravitualized NIC, gained pop-
ularity over traditional emulation, leading to the advent of
VMware vmxnet [6] and the VirtIO [7] standard for I/O par-
avirtualization. NIC paravirtualization (and I/O paravirtualiza-
tion in general) is a software technique that greatly improves
VM networking performance and eases implementation of VM
I/O support in hypervisors. Paravirtualization removes the need
to implement the emulation of hardware-related details and
features, thereby exposing a simple and efficient interface for
shared-memory communication between VM and hypervisor.

The main advantage of the paravirtualization approach is a
gain in performance. However, it is still necessary to present
a NIC device in the VM, which makes it a solution that is
hard to manage.

In this article we try to reduce the complexity associated
with managing Virtual Machine (VM) communication by
applying the paravirtualization paradigm, a cleaner and simpler
interface for VM I/O, in the Recursive InterNetwork Archi-
tecture [8]. This results in a simple and clean solution for the
communication between VMs and their hypervisor, without
the need for the VM to even implement a (paravirtualized)
NIC.

In Section II we will give a brief description of RINA.
In Section III, we introduce IRATI, the open-source imple-
mentation of RINA in Linux/OS. In Section IV we introduce
our main contribution, a new component, which is called the
shim DIF for hypervisors, that leverages the paravirtualization
approach. Some experimental results with this new component
are presented in Section V. Finally, in Section VI we explore
future works and in Section VII we conclude the paper.

II. RECURSIVE INTERNETWORK ARCHITECTURE

The Recursive InterNetwork Architecture is a network ar-
chitecture ab initio, aiming to provide an alternative to the
current TCP/IP Internet architecture. RINA extends Inter Pro-
cess Communication (IPC), the way processes communicate
on a single processing system, from a local concept to the
scope of an (inter)network [9].

The endpoints of all communications are processes, the
means of communication between them is called the IPC
service. By definition, if processes can communicate locally
using shared memory (test-and-set), they reside on the same
processing system. In this case, an Operating System will
provide and manage the IPC service between processes. If
processes can’t communicate using test-and-set, they are on
different processing systems. In RINA, an operating system
process that provides IPC services is called an IPC process
(IPCP). To provide the IPC service to processes residing on
multiple processing systems, IPCP instances on each system
work together to form a Distributed IPC Facility (DIF). A DIF

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55849659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Fig. 1. An example of the Recursive InterNetwork Architecture

is the core organising structure in RINA and corresponds to
what typically is referred to as a “network layer”. As many
DIFs can be stacked on top of each other as needed by the
network designer. Most of the time at least two levels of DIFs
are needed, at the scope of links and at the scope of the
network, interconnecting nodes over multiple hops. DIFs of
higher order can be internetworks, Virtual Private Networks
(VPNs) or application-specific virtual networks. A DIF offers
a fixed set of functionalities and services (the mechanism),
but is fully configurable with suitable policies, in order to
adapt to the environment it operates in and to fulfill the
requirements of the applications (or other DIFs) it serves. DIFs
are bootstrapped from a single IPCP instance and the process
of an IPCP instance joining a DIF is called enrollment.

All IPC processes provide the same Application Program-
ming Interface (API) to their users, which can be regular
applications or other IPC processes. Through this API -
referred to as the IPC API - an application can

• register with a DIF, so that it can be reached by other
applications that are clients of this DIF.

• allocate a flow to a registered application.
• read and write from/to an allocated flow.
• deallocate the flow when desired.

IPCPs that both provide the IPC API northbound and make
use of the IPC API southbound are called normal IPCPs
and they form a normal DIF. Some internal components of
the IPCP are dedicated to layer management, while others
are devoted to data transfer or data transfer control. RINA
has special IPCPs that are tailored to a transmission medium
(possibly incorporating a Media Access Control protocol) or
wrap around an existing legacy network technology such as
Ethernet and provide the IPC API northbound only. Such
IPCPs are called shim IPCPs and form shim DIFs.

An example scenario is shown in Figure 1. Two physical
machines are interconnected over an Ethernet LAN, wrapped
by a shim DIF over Ethernet with VLANs (IEEE 802.1Q) [10].
Each physical machine is running a Virtual Machine (VM).

Between each VM and the physical machine it runs on, there
is a shim DIF for hypervisors, which provides communication
directly using shared memory. On top of these shim DIFs lays
a normal DIF, which uses the (basic) IPC services provided
by the shim DIFs, and which itself provides IPC services to
applications running on top. The line denotes the path that
Service Data Units (SDUs) sent by the applications would
follow through the network in this specific scenario.

Due to space restrictions, a complete discussion of RINA
is not possible here. We kindly refer the reader to [8] [9] for
further details.

III. THE IRATI PROTOTYPE

IRATI [11] is an open source Linux/OS implementation of
RINA, written in C/C++. In IRATI, the data transfer and data
transfer control functionalities (the fast path) run in kernel
space, whereas layer management functionalities (the slow
path) run in userspace in the context of system daemons; i.e.
the IPC Manager daemon and the IPC Process daemons.

The current implementation provides the following features:

• Enrollment, which allows IPCP instances to join an
existing DIF.

• Allocation of flows with different QoS characteristics.
• Data Unit protection functionalities like checksumming,

encryption and Time To Live mechanisms.
• A simple link-state routing protocol, that works on a flat

(not hierarchical) addressing space.
• Extended programmability, by allowing policies to be

plugged into components, both in user and kernel space.
• Two shim IPCPs: the shim IPCP over TCP/UDP, the shim

IPCP over IEEE 802.1Q [10].

We extended the IRATI prototype with a new component:
the shim DIF for hypervisors. This new component provides a
point-to-point shim DIF over shared memory between a Virtual
Machine and its hypervisor, which is achieved by leveraging
the paravirtualization approach.



IV. SHIM DIF FOR HYPERVISORS

Virtual machine networking is commonly implemented by
providing VMs with Network Interface Cards (NICs) that are
emulated by the hypervisor, which also creates and manages
the Virtual Machines (VMs). The emulated NIC forwards the
VM’s packets to/from the hypervisor’s TCP/IP stack. The
hypervisor usually connects to the emulated NIC through a
special (software) network interface. As an example, Xen [5]
Domain 0 uses a so-called vif interface (a xen-netback device),
while QEMU [2] uses a tap interface.

In order to connect the emulated NIC with other VMs
hosted by the same hypervisor or with the external network,
the hypervisor’s software interfaces are bridged to other host
interfaces (physical interfaces and/or software interfaces asso-
ciated to other emulated NICs) using software switches, e.g.
OpenVSwitch [12] or the standard Linux in-kernel bridge.
Each hypervisor may host many bridges in order to build
arbitrary network topologies for VMs.

In TCP/IP, applications require an IP address, which must
be assigned to an interface. In RINA this is not the case.
Applications request IPC services through the IPC API to
any DIF that can provide connectivity to the destination
application. Because of this strong API, the physical layer is
abstracted away and not visible to applications. In short, the
DIF abstraction is at a higher level than the NIC abstraction.
As a consequence, there is no need to emulate a NIC to
connect the VM stack to the hypervisor’s stack. Instead, VM-
to-hypervisor point-to-point connectivity is provided directly
using shared memory or message passing mechanisms pro-
vided by the hypervisor itself. This method is implemented
in the shim DIF for hypervisors. While a physical machine
will typically have one or more shim DIFs over Ethernet or
TCP/UDP as lowest level network access, a VM will have one
or more shim DIFs for hypervisors.

Exploring the possibilities of using hypervisor internal
mechanisms other than the traditional networking subsystem
for VM-to-hypervisor communication provides an easier man-
ageable solution and may also allow for better performance.
Of course, it is necessary to configure the DIFs in the network,
but management is simplified, since it is always the same
architectural component that has to be configured; there is
no need for a different ad-hoc component. Since the shim
DIF for hypervisors provides VM-to-hypervisor point-to-point
connectivity directly using shared memory or message passing
mechanisms provided by the hypervisor, it is not restricted
by some limitations of Ethernet technology (unlike traditional
VM networking).

The shim DIF for hypervisors is built on top of a new
device we implemented: the Virtual Message Passing Inter-
face (VMPI) VM-to-hypervisor shared-memory communica-
tion mechanism. The high-level architecture of the VMPI is
depicted in Figure 2. A VMPI device is used to implement the
point-to-point link and it is seen as a special device on both
VM and hypervisor. It requires only a very small driver on
the guest and hypervisor. The VMPI device implementation is

almost entirely datapath since it focuses on message passing
only. There is no need for all the details of Ethernet NICs,
like tens of configuration registers, autonegotiation, TCP/IP
offloading, checksumming, MAC addresses, MTU limitations,
VLAN support, configuration of the internal modem (e.g.
PHY), internal buffering, DMA configuration, EEPROM con-
figuration.

As a concrete example of the simplicity, the e1000 driver in
Linux is implemented in about 17 kilo lines of code (KLoC),
the ixgbe driver in 37 KLoC. An emulated NIC such as e1000
is implemented in 3 KLoC on QEMU and in 8 KLoC on
VirtualBox. The differences in KLoC are due to a different
degree of emulation accuracy. For paravirtualized devices, on
the guest, the virtio-net driver is 2 KLoC, whereas the VMPI
driver is only 1 KLoC. Similarly, on the host, virtio-net support
is about 2 KLoC, while VMPI support is implemented in about
1 KLoC. Most of the complexities of NIC drivers are due
to the configuration routines as opposed to the datapath, i.e.
the TX and RX rings. This explains the differences in code
size among traditional NIC drivers/emulators and paravirtu-
alized solutions. All the configuration-related complexities of
an emulated NIC are overhead-only when deployed in VM
environments, since there is no real hardware to drive.

The VMPI consists of two blocks: the VMPI High Level
(VMPI-HL) and the VMPI Low Level (VMPI-LL). The
VMPI-LL block is hypervisor dependent, and is used to access
Xen [5] I/O rings or QEMU/KVM [13][7] Virtqueues [2] with
a common (internal) interface, referred to as VMPI-IMPL.
VMPI-LL acts therefore as a wrapper for the shared memory
communication mechanism made available by the hypervisor,
effectively making use of the paravirtualization mechanisms
Xen and QEMU/KVM offer. The VMPI-IMPL interface is
used by the VMPI-HL block, which is hypervisor independent,
to implement the VMPI device abstraction. VMPI-HL offers
the VMPI API to its users, allowing data to be exchanged
between the VM and the hypervisor. Each VMPI device is
assigned two identifiers, one on the VM OS and the other
on the hypervisor OS. The first identifier is necessary to
distinguish multiple VMPI devices in the same VM, while
the second one is required to distinguish between the multiple
VMPI devices (assigned to possibly different VMs) on the
same hypervisor. Nevertheless, the scope of those identifiers
is confined to a single OS, so that the management is far
easier than MAC management. The scope of MACs needs to
be unique on the L2 domain in which the NICs exist (or can
exist), which may be a large segment of a data center (DC)
infrastructure, involving multiple hypervisors. A shim DIF for
hypervisors makes use of the VMPI API offered by a VMPI
device, which is a much simpler API than the one between the
kernel and the NIC driver, to offer the IPC API to its users. The
VMPI identifier serves as an address within the shim DIF for
hypervisors. Addresses are contained within a layer in RINA,
and the shim DIF for hypervisors is a layer inside the OS.

The shim DIF for hypervisors has several advantages when
compared with traditional NIC emulation:

• No need to implement complex and expensive NIC



Fig. 2. Shim DIF over hypervisors in-depth

emulation.
• No need to generate and assign MAC addresses, which

can become an issue at scale, especially for large DCs.
Generation of VMPI-ids is needed, but it is confined to
a single OS and thus they need to be unique only per
hypervisor, not network-wide. The length of a VMPI-id
is quite small because of this.

• No need to create and configure software L2 bridges to
connect VMs and hypervisor physical NICs together.

• Users of the shim DIF are not restricted to the Ethernet
MTU (maximum payload of 1500 bytes or 9000 bytes if
Jumbo frames are used). This restriction is commonly
bypassed in traditional VM networking by using the
TCP Segmentation Offloading (TSO) features offered by
emulated NICs. However, this is a workaround that adds
complexity and dependencies between layers, since L4
specific operations are needed in the driver which is
situated at L2. It is not needed by the shim DIF over
hypervisors.

• No need to perform TCP/UDP checksumming in the
emulated NIC (checksum offloading), since shared mem-
ory communication is protected from corruption by other
means. Checksumming is not actually performed by mod-
ern paravirtualized NICs (e.g. virtio-net [7], xen-netfront
[5]), but this is again a complex workaround that is not
needed by the shim DIF over hypervisors.

V. EXPERIMENTATION RESULTS

In order to assess the possible gains from deploying the shim
DIF for hypervisors in the DC, we measured the performance
of the IRATI stack against the performance of the TCP/IP
stack in Linux, when deployed to support VM networking.

Note however up front that the IRATI stack is currently
not optimized for performance. In particular, kernel-space
components have several bottlenecks such as high per-packet
locking overhead (too many locks taken for each PDU to be

processed) and several unnecessary per-packet deep copies.
These bottlenecks have been identified but their implementa-
tion is out of scope for a research prototype. Therefore, we
expect our prototype to underperform by possibly an order of
magnitude compared to its theoretical performance.

The tests reported in this section involves one or two
physical machines (hosts) that act as a hypervisor for one or
two VMs. We performed three different test scenarios:

• Host-to-VM tests; where a benchmarking tool (rina-tgen
[14] for IRATI tests and netperf for TCP/IP tests) is used
to measure the goodput between a client running in the
host and a server running on VM.

• Intra host VM-to-VM tests; where a benchmarking tool
is used to measure the goodput between a client running
on a VM and a server running on a different VM in the
same host.

• Inter host VM-to-VM tests; where a benchmarking tool
is used to measure the goodput between a client running
on a VM and a server running on a different VM in
different hosts. The hosts are connected through a 10
Gbps Ethernet link.

The measurements were taken on a processing system
with two 8 core Intel E5-2650v2 (2.6GHz) CPUs and 48GB
RAM. QEMU/KVM was chosen as the hypervisor, since it
is one of the two hypervisors supported by the shim DIF for
hypervisors.

For the host-to-VM scenario, three test sessions were ex-
ecuted. The first two tests assess UDP goodput performance
at variable packet size, therefore assessing the performance of
traditional VM networking. The tap device corresponding to
emulated NIC in the VM is bridged to the host stack through a
Linux in-kernel software bridge. This setup is also depicted in
Figure 3, where the setup of traditional networking in VMs is
shown. The Linux bridge is accessible in the host stack through
a bridge interface (e.g. br0). Once the bridge interface and the



Fig. 3. Setup of traditional networking in VMs

VM NIC have been given an IP address on the same IP subnet,
as they are on the same L2 domain, the netperf benchmarking
tool is used to measure UDP performance between the host
and the VM. In particular, the netperf server (netserver) listens
on the VM’s interface, while the netperf client runs in the host
and uses the bridge interface.

In the first session, a NIC belonging to the Intel e1000
family is used, which is implemented in QEMU by emulating
the hardware behaviour (full virtualization); e.g. NIC PCI
registers, DMA, packet rings, offloadings, etc. The second test
session makes use of a paravirtualized NIC model, the virtio-
net device. Paravirtualized devices don’t correspond to real
hardware, instead they are explicitly designed to be used by
virtual machines, in order to save the hypervisor from the
burden of emulating real hardware. Paravirtualized devices
allows for better performances and code reusability. The virtio
standard also provides paravirtualized disk, serial console,
number generator, etc. The only difference between the first
and the second test session is the model of the emulated NIC.
Despite being more virtualization-friendly than e1000 (or other
emulated NICs like r8169 or pcnet2000), the guest OS still
sees the virtio-net adapter like a normal Ethernet interface,
with all the complexities and details involved, e.g. MAC,
MTU, TSO, checksum offloading, etc.

The third test session shows the performance of the shim
DIF for hypervisors. A scenario comparable to the one de-
ployed in the first and second test sessions involves a shim
IPC process for hypervisors on the host and the corresponding
one on the guest. No normal IPC processes are used, the
applications can run directly over the shim DIF. This is a
consequence of the flexibility of RINA, since the application
can use the lowest level DIF whose scope is sufficient to
support the intended communication (guest-to-host in this
case) and that provides the required QoS. This also drastically
reduces the header size. In TCP/IP the minimum header size
is 84; the Ethernet header is 38 bytes and requires a payload
of at least 46 bytes. With the shim DIF for hypervisors, the
minimum header length is 4, the actual data is only prepended
by an identifier of the VMPI channel. Zero is the control
channel, other channels can be used to send data on. The
host runs our rina-tgen application in server mode, while the
guest runs rina-tgen in client mode. Rina-tgen is a traffic
generator for RINA that also functions as a benchmarking
application; it uses the IPC API to measure goodput. Each

test run consists of the client sending an unidirectional stream
of SDUs of a specified size to the server. Measurements have
been taken varying the SDU size, ranging from 0 to 4000
(the page size of the processing systems), with a step size of
250. We repeated every measurement 20 times. The result of
these goodput measurements for host-to-VM communication
scenario are shown in Figure 4a. 95% confidence levels are
also depicted, as well as a first degree polynomial regression
line.

As shown in Figure 4a, the shim DIF for hypervisors
outperforms both e1000 and virtio-net NIC setups, which
validates that a simpler and cleaner architecture allows for
better performance, even with an unoptimized prototype. Note
that while the Ethernet MTU is set to 1500 in the first two
sessions, it is possible to go beyond the limit because of
the UDP Segmentation Offloading (UFO) feature which is
supported by both e1000 and virtio-net models. This feature
allows the NIC (real hardware or emulated) to accept UDP
packets that do not fit into a single 1500 bytes Ethernet frame.
A real NIC performs the necessary segmentation in hardware,
while an emulated one (e.g. e1000) emulates the segmentation
in software. It’s interesting to note that in the virtio-net case,
this segmentation is not really carried out, since there is no real
Ethernet cable to deal with, but the oversized packet is directly
forwarded to the host stack, which is able to process and
deliver to the receiving application (netserver) without further
segmentations. This is clearly an optimization made possible
by paravirtualization, but can also be seen as a workaround
that is not necessary in our solution.

Next, similar goodput performance measurements were
taken on the intra host VM-to-VM scenario. Again, three
test sessions were performed, the first two for traditional VM
networking and the third one for the IRATI stack. The setup of
the first two sessions is very similar to the corresponding one
in the host-to-VM scenario. The VMs are given an emulated
NIC, whose corresponding tap device is bridged to the host
stack through a Linux in-kernel software bridge (see Figure
3). Both VMs and the bridge interface are given an IP address
on the same subnet. Measurements are again performed with
the netperf utlity, with the netperf server running on a VM
and the netperf client running on the other VM.

In the case of the IRATI tests, point-to-point connectivity
between host and VM is provided by the shim DIF for
hypervisors. A normal DIF is overlayed on these shim DIFs
to provide connectivity between the two VMs. Tests are
performed again with the rina-tgen application, using a flow
that provides flow control without retransmission control. Flow
control is used so that the receiver’s resources are not abused.
Retransmission control is not needed since no SDUs can be
lost along the datapath - since in this very specific tests we
are sure the SDU never leaves the host or is dropped in
some intermediate queue. In TCP/IP, this kind of functionality,
flow control without retransmission control, is not available.
Hence we chose again UDP to perform the tests for the
traditional networking solution, since its functionality is most
similar. The result of these test sessions are depicted in Figure



0 500 1000 1500 2000 2500 3000 3500 4000
SDU size (in bytes)

0

2000

4000

6000

8000

10000

12000

G
oo

dp
ut

 (i
n 

M
b/

s)

e1000 network adapter
VirtIO network adapter
Shim DIF for hypervisors

(a) Host to VM communication

0 500 1000 1500 2000 2500 3000 3500 4000
SDU size (in bytes)

0

1000

2000

3000

4000

5000

6000

7000

G
oo

dp
ut

 (i
n 

M
b/

s)

e1000 network adapter
VirtIO network adapter
Normal DIF over shim DIF for hypervisors

(b) VM to VM communication intra host

0 500 1000 1500 2000 2500 3000 3500 4000
SDU size (in bytes)

0

1000

2000

3000

4000

5000

6000

7000

G
oo

dp
ut

 (i
n 

M
b/

s)

e1000 network adapter
VirtIO network adapter
Normal DIF over shim DIF for hypervisors

(c) VM to VM communication inter host

Fig. 4. Goodput of different network virtualization technologies



TABLE I
COMPARISON BETWEEN VM NETWORKING IN TCP/IP AND RINA

VM networking in TCP/IP VM networking in RINA
Checksumming is always performed Only checksumming if needed

Header length >= 84 Header length >= 4
Hardware offloading required for performance No hardware offloading needed

MAC address to be unique in whole data center VMPI-id to be unique per OS
SDU size restricted by Ethernet standard No restrictions on SDU size

Complete NIC to be implemented Simple device to be implemented
Hard to configure Easy to configure

Ad-hoc components are needed VM networking is part of the architecture
Code size increased due to configuration Most code is related to the data path

4b, again with their respective 95% confidence intervals and
a first degree polynomial regression line. Full virtualization
again performs poorly. The paravirtualized solution currently
outperforms the unoptimized IRATI stack, because a normal
DIF is used to provide the connectivity between the VMs. This
part of the IRATI stack is the least optimized for performance,
which explains why the IRATI prototype performs worse than
TCP/IP in this case.

Finally, inter host VM to VM tests were performed. The
hosts are connected through a 10 Gbps link. The setup of
the first two sessions now differs in the fact that both hosts
have to setup a Linux bridge. Each VM is given an emulated
NIC, whose tap device is bridged to the host stack through a
Linux in-kernel software bridge. On both hosts, the interface
connecting the host to the other host is also added as an
interface to the bridge. In this way, the VMs are connected
to each other. The VMs are assigned an IP address in the
same subnet, and all NICs are enabled to use jumbo frames.
Once more we used netperf to test the goodput between the
VMs.

For the IRATI prototype, the setup is identical to what is
depicted in Figure 1. Point-to-point connectivity between host
and VM is provided by the shim DIF for hypervisors. Point-to-
point connectivity between the hosts is provided by the shim
DIF for IEEE 802.1Q. The NICs on the hosts have jumbo
frames enabled. On top of these shim DIFs, a normal DIF is
overlayed. Tests are performed using the rina-tgen application.
These test sessions’ results are shown in Figure 4c, with
their respective 95% confidence intervals and a first degree
polynomial regression line. Full virtualization performs similar
to the previous test sessions. Both the paravirtualized solution
and the IRATI prototype solution achieve a performance
that is similar to the one in the previous test session. The
paravirtualized solution again outperforms the unoptimized
IRATI stack, since the IRATI prototype also uses a normal DIF
in this test session, which is the bottleneck for performance.

VI. FUTURE WORKS

We plan to optimize the IRATI stack to achieve better per-
formances by reducing buffer copies and allocations to the bare
minimum to improve the performance when communicating
between VMs.

VII. CONCLUSION

In this paper, we illustrated how paravirtualization can be
leveraged by the Recursive InterNetwork Architecture (RINA),
a network architecture ab initio. We presented the shim DIF
for hypervisors as an alternative to traditional networking
solutions in Virtual Machines, which has been implemented
in the IRATI prototype.

We explained how the shim DIF for hypervisors is a
more manageable solution for Virtual Machine networking.
A summary of the main differences between VM networking
in TCP/IP and VM networking in RINA can be found in
Table I. We also showed how it already allows for good
performances in some reference scenarios, host-to-VM and
VM-to-VM, despite being unoptimized.

ACKNOWLEDGMENT

This work is partly funded by the European Commission’s
Seventh Framework Programme (FP7/2007-2013) through the
projects IRATI (Grant 317814), part of the Future Internet
Research and Experimentation (FIRE) objective and IRINA,
part of the GN3plus Open Calls.

REFERENCES

[1] L. Rizzo, G. Lettieri, and V. Maffione, “Speeding up packet i/o in
virtual machines,” in Proceedings of the ninth ACM/IEEE symposium
on Architectures for networking and communications systems. IEEE
Press, 2013, pp. 47–58.

[2] F. Bellard, “Qemu, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, FREENIX Track, 2005, pp. 41–46.

[3] (2015, Nov.) The VirtualBox website. [Online]. Available:
https://www.virtualbox.org/

[4] (2015, Nov.) The VMware website. [Online]. Available:
http://www.vmware.com/

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM
SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 164–177, 2003.

[6] “Performance Evaluation of VMXNET3 Virtual Network Device.”
VMware, inc., Tech. Rep., 2009.

[7] R. Russell, “virtio: towards a de-facto standard for virtual i/o devices,”
ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 95–103,
2008.

[8] J. Day, Patterns in network architecture: a return to fundamentals.
Prentice Hall, 2008.

[9] J. Day, I. Matta, and K. Mattar, “Networking is IPC: a guiding
principle to a better internet,” in Proceedings of the 2008 ACM CoNEXT
Conference. ACM, 2008, p. 67.



[10] S. Vrijders, E. Trouva, J. Day, E. Grasa, D. Staessens, D. Colle, M. Pick-
avet, and L. Chitkushev, “Unreliable inter process communication in
Ethernet: migrating to RINA with the shim DIF,” in 5th International
Workshop on Reliable Networks Design and Modeling (RNDM-2013),
2013, pp. 97–102.

[11] S. Vrijders, D. Staessens, D. Colle, F. Salvestrini, E. Grasa, M. Tarzan,
and L. Bergesio, “Prototyping the Recursive Internet Architecture: the
IRATI project approach,” Network, IEEE, vol. 28, no. 2, pp. 20–25,

2014.
[12] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker,

“Extending networking into the virtualization layer.” in Hotnets, 2009.
[13] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the

linux virtual machine monitor,” in Proceedings of the Linux Symposium,
vol. 1, 2007, pp. 225–230.

[14] (2015, Nov.) RINA traffic generator. [Online]. Available:
http://www.github.com/IRATI/traffic-generator


