
Rumba: a Python Framework for Automating
Large-Scale Recursive Internet Experiments on

GENI and FIRE+
Sander Vrijders and Dimitri Staessens

Ghent University-imec
Technologiepark 15

9052 Zwijnaarde, Belgium
Email: {sander.vrijders, dimitri.staessens}@ugent.be

Marco Capitani and Vincenzo Maffione
Nextworks, s.r.l.

Via Livornese 1027
56122 Pisa, Italy

Email: {m.capitani, v.maffione}@nextworks.it

Abstract—A number of recent EU-funded projects have been
investigating the Recursive Internet Architecture (RINA). IRATI
built an initial prototype implementation, which was extended
by the PRISTINE project towards technology demonstrators
showing the feasibility of the architecture and demonstrating
how RINA tackles security and reliability and how it can
simplify network management. Currently, ARCFIRE sets out to
evaluate realistic network scenarios, scaling up experiments in
terms of numbers of nodes, services and running time. In this
paper we present Rumba, a free open source experimentation
framework developed within ARCFIRE in order to drastically
reduce the time required to deploy and conduct such large
experiments. Rumba is powerful yet easy to use. It provides
a simple abstraction to model the RINA network as well as
APIs for reserving testbed resources, installing the prototype,
configuring and bootstrapping the recursive network, running
the experiment scenario, collecting the results data and releasing
the testbed resources. Rumba provides QEMU, jFed and emulab
support to run experiments on a local machine or on various US
and EU testbeds provided by GENI and FIRE+. Our experiences
show that Rumba reduces the time required to configure and run
large experiments using the RINA prototypes by several orders
of magnitude.

I. INTRODUCTION

The enormous success and rapid growth of tech companies
that manage large datacenters has introduced a shift in the
telecoms industry where service providers aim to adopt
datacenter network management frameworks to simplify man-
agement of their network as to reduce capital and operational
expenditures. To this end, networks research efforts related to
Software Defined Networking (SDN) and Network Function
Virtualization (NFV) [1] have introduced a shift away from
traditional hardware-based black-box network appliances to
programmable white-box network elements. This trend of
network softwarization has led to Open Source projects such
as ONOS, CORD [2] and OpenDaylight [3]. Similarly, Open
Source Software is playing an increasing role in research,
where various EU-funded projects are developing prototypes
and frameworks that are made available to the public. Projects
such as Superfluidity [4] and SONATA [5] provide different
solutions for NFV network orchestration.

With a growing number of available software projects and
prototypes, there is a need for deploying and evaluating all
these novel technologies at scale in controlled experiments.
This need has been timely addressed by the Global Environment
for Network Innovation (GENI) [6] and the Future Internet Re-
search and Experimentation (FIRE) [7] initiatives in the United
States and European Union respectively, which provide virtual
laboratories that can support computer network experiments
with a large number of physical or virtual machines. The recent
Fed4FIRE project [8] federates a large number of testbeds from
FIRE and GENI and provides the jFed [9] framework to access
them in a uniform way.

Other research efforts, such as the Recursive InterNetwork
Architecture (RINA) [10], arrive at network programmability
starting directly from a distributed computing model. The
IRATI [11] project was funded through the FIRE initiative
and developed a first RINA implementation for GNU/Linux
systems. PRISTINE [12] extended the IRATI prototype with
scalable solutions for security, seamless mobility, routing and
reliability. These projects have deployed the prototypes to
perform small-scale integration tests in order to validate RINA
and its policies. Although small size deployments can be useful
for basic functional testing, design or implementation problems
often show up only when deploying the new technologies at
scale. The ARCFIRE project [13] aims at experimenting with
RINA at a larger scale, deploying experiments with hundreds
to thousands of nodes and thousands to tens of thousands of
application flows.

RINA research is experiment-intensive and typically makes
use of GENI or FIRE [14]. The generation of large experiment
topologies and their configuration is very time consuming, so it
is important to have tools to automate these processes [15] [16].
Our experience with manual configuration and setup of even
moderately sized RINA networks showed it is an error-prone,
hard to reproduce process, that can also introduce unwanted
dependencies on on-premise hardware.

In this work we present Rumba, an experimentation frame-
work that builds on existing testbed frameworks (jFed [9] and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/157575362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


emulab [17]) and extends them to provide a simple yet powerful
API for experimenters to configure all the aspects of a RINA
network, deploy it and run it on testbeds provided by GENI
and FIRE.

Rumba is a Python library that allows the user to program-
matically define (i) the physical connectivity graph of the
network; (ii) how RINA layers are laid out on the nodes,
without any restriction on layer membership and stacking
geometry; (iii) the policies to be used by each layer; (iv)
where and when distributed applications should run. Rumba
already supports several testbeds and RINA implementations
and is easily extendible.

In Section II Rumba requirements and objectives are detailed.
Section III illustrates the Rumba software architecture. We eval-
uate the experiment setup times in Section IV. A demonstration
scenario is presented in Section V. Finally, Section VI reports
our conclusions.

II. REQUIREMENTS

RINA networks can be seen as distributed applications that
are layered on top of each other. A simple example of how
RINA and its layering works is shown in Fig. 1. In this example,
a client application β (on node B) and a client application δ
(on node D) want to communicate with a server application α
(on node A). The purpose of a layer in RINA is to provide an
Inter-Process Communication (IPC) mechanism allowing other
processes to allocate a flow over it. Internally, a layer consists of
co-operating processes, called IPC Processes (IPCPs), depicted
as grey circles in the Figure. Enrolling an IPCP into a layer
is the process of authenticating with an existing member of
the layer, obtaining the policies of the layer, and starting to
function as a full-fledged member of the layer, i.e. being able
to provide IPC resources to its users. The main difference
between the layers is the scope over which they provide IPC.
At the lowest layer, they simply provide an abstraction for the
physical medium that is used, so here the scope is link-local
(layers 1, 2 and 4 in the Figure). In the example, if the server
α is registered in layer 4, then client β can use the services
offered by layer 4 to allocate a flow to the server α. IPC
Processes themselves can also use the services offered by the
lower layers. The higher layers use the IPC services offered by
the lower layers to provide IPC over a greater scope. So the
same layer is repeated as many times as needed to achieve the
required scope. In our example, if the server α is registered in
layer 5, then client δ can use the services offered by layer 5
to communicate with the server α. A layer can be configured
differently depending on the environment it is operating in.

In a nutshell, the objective of Rumba is to minimize the time
spent on configuring advanced RINA networks and running
large-scale experiments, and allow the user to get reproducible
results.

Firstly, it should provide an easy-to-use API, so users can
define all the aspects of their experiments with a single script.
The obvious choice is to use a scriptable programming language
like Python.

Node A Node B Node C Node D

4

1 2

5

Server 
α

Client 
β

Client 
δ

3

Fig. 1. A simple example of RINA layering. Scope for layers 1, 2 and 4 is
local to a physical link. Scope for layers 3 and 5 is larger and spans multiple
nodes.

Secondly, it should support arbitrary experiment network
graphs, of any size. Using the API, the user can define how
layers are stacked on top of each other, with no restrictions.

Thirdly, it should support as many testbeds as possible,
interfacing with the most commonly used testbed management
services like emulab and jFed. Such services allow instantiating
a number of nodes (physical machines, virtual machines or
containers) and connect them to form an arbitrary experiment
infrastructure. The scriptable API offered by Rumba must be
independent of any specific testbed managed by this service.

Fourthly, it should support different prototypes. The user
must be able to easily select the prototype, while the framework
takes care of the installation and configuration on the nodes.
The API must be independent of the prototypes.

Fifthly, it should provide simple interfaces to define the
experiment execution, i.e. (i) which nodes can run a client or
server program; (ii) through which layers servers are reachable
and (iii) when clients should run and how long they should run
before terminating. Client scheduling time and duration can
be defined either with a timestamp or in terms of statistical
distributions, to emulate real world workloads.

Sixthly, once clients and server are done and the experiment
is complete, it should offer APIs to easily collect results.

Finally, Rumba should guarantee that experiments are as
reproducible as possible. Since an experiment is completely
defined by a script, running the same script multiple times
should lead to comparable results. Note that the testbed can
select different physical nodes and resources (or concurrently
host other experiments), so the actual results (such as through-
put and latency figures) may differ across different runs of the
same experiment. It is up to the experimenter to judiciously
select the testbed, and interpret the results based on the full
set of resources that the testbed can offer.

III. DESIGN AND IMPLEMENTATION

To meet the requirements defined in Section II, Rumba is
written in Python and built on a modular design, consisting
of a core module with several plugin modules as shown in
Figure 2. The core module contains functions operating on
the abstract structure of the experiment, such as the nodes,
their connectivity graph and the layers. The core only contains



Rumba core

jFed plugin

Emulab plugin

QEMU VMs 
plugin

IRATI plugin

rlite plugin

Ouroboros 
plugin

User program

Storyboard

Docker plugin

Fig. 2. High level architecture of Rumba

a general abstraction of a testbed and a prototype and any
interaction with the actual testbed and prototype is handled via
plugin modules. This design based on plugins also allows the
Rumba library to be easily extended with support for additional
testbeds and future prototypes. As an indication, the current
plugins are between 200 and 450 lines of code.

A. Experiment model

Users interact with Rumba mainly through an Experiment
object, which stores the network graph, the structure and
configuration of all the layers, and references to the prototype
and the testbed to be used. In more detail, the user specifies the
testbed to be used through an instance of the Testbed class.
The network structure is defined by a collection of instances
of the Node and DIF classes (Distributed IPC Facility – DIF
in short – is RINA terminology for a layer). For every node,
the user has to pass the layers that they are a part of, and how
the layers are stacked in the node, i.e. which layer registers in
which layer. The user does not need to specify the IPCPs or
their configuration, as this detail is figured out by Rumba. It
is also possible to request a certain machine type for a node,
i.e. a physical or virtual machine or container. Any specific
testbed details are passed by the user through the Testbed
class. Then, an instance of the Experiment object has to
be created which links together the testbed, the layers and the
nodes. On Experiment creation, Rumba does not instantiate
any node nor tries to access the testbed. Instead it runs some
graph algorithms to generate information that will be necessary
during later stages.

First, it computes a topological ordering for the layers in the
network, using Kahn’s algorithm [18] on the registrations graph.
The registrations graph is a directed acyclic graph (DAG) that
contains a vertex for each layer and an edge from a layer x to
layer y if and only if an IPC Process (IPCP) in layer y registers
itself into the layer x. This graph represents the precedence
relationship between layers: in particular, enrollments within
a preceding layer must complete before enrollments within
the succeeding layer can start. Figure 3 shows the graph for
the layers in Figure 1. A cycle can occur because of user
misconfiguration (infinite recursion); in this case the issue is
detected and reported.

Second, Rumba derives the IPCPs that must be instantiated
on each node, generating for each one the required configuration
and commands to register to lower layers. Clearly, for each

layer 
1

layer 
2

layer
3

layer 
4

layer 
5

Fig. 3. Registrations graph for the layering of Fig 1. A possible topological
order for the layers is 1, 2, 3, 4, 5.

layer x, one (and only one) IPCP is generated for each node
that is part of x. In Fig. 1 each circle represents an IPCP.

Finally, the sequence of enrollments is generated respecting
the layer topological ordering, and in a way to avoid temporary
network partitions in any layer. Within each layer, an arbitrary
IPCP is elected to be the bootstrapper for that layer, i.e. it is
the first node in the layer without the need to enroll, and it
is configured as specified by the experimenter. All the other
IPCPs in the layer enroll against the bootstrapper or a previously
enrolled IPCP. In particular, the enrollment sequence within a
layer is obtained through a simple Breadth First Search on the
layer graph, starting from the bootstrapper; this strategy allows
to avoid temporary network partitions. The global enrollment
sequence is finally obtained by concatenating the list of all
layers according to their topological ordering.

Once an Experiment object is initialized, the user can
perform the following operations with subsequent API calls:

• swap-in: The testbed plugin is instructed to instantiate all
the nodes and the physical (or virtual) links connecting
them.

• install-prototype: The selected prototype is built and
installed from sources on all the nodes, using the services
offered by a prototype plugin. Every interaction with
the nodes happens through SSH. Installation happens in
parallel to speed up the process.

• bootstrap-prototype: The prototype plugin accesses each
node to start and configure the RINA software to realize
the RINA network specified by the Experiment object.
In this phase all the IPCPs are created and configured,
and enrollments are carried out in the order set during
the previous stages.

• swap-out: The testbed plugin is asked to terminate all
the nodes and links, and release all the testbed resources
associated to the experiment.

A user script will normal carry out swap-in, install-prototype
and bootstrap-prototype and then run the applications using
the Storyboard services described in Section III-D. On script
termination, the swap-out is invoked to release the testbed
resources.

B. Testbed plugins

A testbed plugin wraps all the operations needed to acquire
and release the compute, storage and network resources needed
for an experiment. It provides an implementation for the swap-
in and swap-out operations as described in Section III-A. The
backend testbed management software provides operations to



instantiate physical or virtualized nodes and setup Ethernet
connectivity between pairs of nodes (e.g. using dedicated
switches, VLANs or software L2 bridges).

Rumba currently supports any testbed accessible through the
jFed and emulab interfaces; these testbeds are remote, since
the nodes are instantiated in a remote cloud environment that
is separate from the machine where the Rumba script runs. In
addition to those, Rumba also supports two local testbeds. For
the first local testbed each node is backed by a QEMU [19]
virtual machine running locally (i.e. on the same host where
the script runs). Nodes are interconnected using TAP devices
(bridged together through a software L2 switch) or UDP sockets,
as provided by QEMU, to emulate the physical network graph.
The other local testbed instantiates a docker container for every
node in the experiment. It is also interconnected using TAP
devices and L2 software switches. The local testbeds should
not be used to measure performance (since the resources of a
single machine are too limited), but it is extremely useful to
speed up developing and debugging Rumba scripts, due to its
fast swap-in times in terms of seconds per node.

C. Prototype plugins

A prototype plugin wraps the operations required on each
node to build a RINA prototype from sources, and setup and
configure all the layers specified by the experiment. These
operations are grouped together to implement the install-
prototype and bootstrap-prototype methods described in Section
III-A. Even in the bootstrap-prototype phase, the task of the
prototype plugin is relatively simple, as it only needs to translate
the list of abstract instructions (generated during the creation
of an Experiment object) to prototype specific instructions.
Such instructions lists are already sorted in the correct order
(induced by the network structure), so the plugin does not need
to worry about dependencies. This is also shown by the small
code size of the prototype plugins, only a mere hundred lines
of code specific to the prototype is required.

In more detail, a prototype plugin needs to process three
lists of instructions: (i) IPCP creation and configuration; (ii)
registration of IPCPs in their lower layers; and (iii) enrollment
of IPCPs to layers they belong to.

Currently, Rumba supports three implementations (all of
them free and open source):

1) IRATI [11], the first complete RINA implementation
developed by the EU-funded RINA projects, targeted at
GNU/Linux systems.

2) rlite [20], a lightweight RINA implementation for
GNU/Linux operating systems.

3) Ouroboros [21], a user-space recursive network imple-
mentation with a focus on portability. It is written in
C89 and works on any POSIX.1-2001 compliant system.

D. Storyboard

After the bootstrap-prototype phase, the recursive network
is ready to run distributed applications. This task is achieved
by means of the Rumba Storyboard module. The Storyboard is
able to emulate realistic network traffic by starting and stopping

server and client programs at specific nodes across the network.
The user specifies: the duration of the Storyboard, the server
programs and their command line arguments, through which
layers a particular server is reachable, the node where servers
run, the client programs with their corresponding command
line arguments, and the nodes where clients run. Programs
can be terminated by a custom command (if specified), or
by the SIGTERM signal. As an example, a server program
may be an Apache server, and the client programs could be
the Firefox and Chrome web browsers. The emulation can
be either generated as a random process (according to given
statistical distributions), replayed from a previously generated
Storyboard, or the schedule can be manually specified by the
user. In addition to starting and stopping user applications, the
Storyboard is also able to emulate network failure and recovery
events, such as link up/down events or node up/down events.
This is very useful for experiments involving load balancing,
resiliency, consistency and high availability.

E. Other implementation details

Rumba has minimal dependencies. On any machine with
Python version greater than 3.2 installed, the only extra
dependency is Paramiko, which is the SSH library used by
Rumba to access the nodes in the experiment. In case the
installed Python version is smaller than 3.2, some wrapper
packages are required.

Rumba also provides the rumba-access script to access
the nodes after swap-in, which wraps any testbed specific
details for accessing the nodes, such as proxy commands. The
user can simply invoke rumba-access followed by the node
name as defined in the user’s experiment script to access the
node.

IV. OPERATION

Rumba has built-in support for performance tests, with
automated client/server log recovery and swap-in, install,
bootstrap and swap-out timers. This shortens the time needed to
retrieve results and allows the user to focus on results analysis.
We measured the timings of swap-in, installing a prototype,
bootstrapping it and swapping the experiment back out for
the example in Figure 1; we repeated the measurement ten
times. We did not include the time it takes for a Storyboard
to complete, since this is configurable by the experimenter.
Bringing up this scenario manually could easily take up to
a day of work, as the user has to: use a GUI to create the
network physical connectivity graph, instantiate the resources
on the testbed, login to the nodes one by one and install the
prototype, manually figure out the registrations and enrollment
order of IPCPs, execute the commands one by one, and check
the logs for any prototype errors due to misconfiguration. The
results of these measurements with the rlite prototype for
different testbeds are shown in Table I, together with their
95% confidence intervals. We did not perform tests for the
docker testbed, since rlite does not yet support namespaces in
the kernel (a required feature for containers to work).



TABLE I
TIMINGS FOR A RUMBA EXPERIMENT (IN SECONDS)

Swap-in Install Bootstrap Swap-out
QEMU 20.92± 0.03 N/A 22.36± 0.04 0.86± 0.03

Emulab (Virtual Wall) 94.27± 4.33 132.49± 2.33 25.31± 0.09 1.01± 0.04
jFed (Virtual Wall) 186.97± 9.02 128.39± 1.09 24.57± 0.08 31.63± 8.93

jFed (Exogeni) 141.88± 26.37 156.31± 36.77 42.73± 1.09 27.17± 0.99

In the case of the QEMU testbed, prebuilt VM images
are used of around 35 MB in size. These images contain
the latest versions of each prototype pre-installed and are
downloaded automatically to a cache directory if they are not
present on the system running the experiment. Since the images
come with pre-installed prototypes, there is no measurement
for the installation phase. The total time of the experiment
on the QEMU testbed is 44.15 seconds, so this is an ideal
setup for debugging and tweaking experiments or running
preliminary tests before deploying it on an real testbed (thus
conserving valuable testbed resources). The confidence intervals
are also very low since the experiment executes locally, which
minimizes uncontrollable variables. The QEMU testbed can
be leveraged for catching any deficiencies in a test setup early-
on. It is also ideal for integration testing of the prototypes.
The main limitation of this testbed is that it is limited by the
computer it is running on; every new node requires a new
VM, which consumes CPU power and a significant amount of
RAM. Furthermore, any performance results will be impacted
by the host Operating System (schedulers, disk I/O, memory
architecture, etc). For such measurements, we need to rely on
large testbeds.

The imec iLab.t Virtual Wall [22] consists of a few hundred
physical machines and supports both the emulab interface and
the jFed interfaces. We ran tests using both interfaces on the
Virtual Wall 2 authority. As can be seen, the timings of install
and bootstrap are very similar, which is to be expected, since
the same hardware is used in both tests. The main difference
in these tests are in swap-in and swap-out time. In the case
of emulab the total time spent provisioning resources is 94.27
seconds, whereas in the case of jFed this is 186.97 seconds,
almost double the amount of time. We believe this difference in
swap-in time between emulab and jFed is because via emulab
a direct interface is provided to the Virtual Wall, whereas via
jFed some other steps are required specific to jFed (information
has to be shared with other federated testbeds). The swap-out
time for emulab is also a lot lower, however, this is due to the
fact that emulab does not wait until all resources are released.
In case an emulab interface is provided by the testbed, we
suggest using that one to minimize the experiment time, since
only around 4 minutes are needed per experiment on getting
the fully functioning RINA network depicted in Figure 1 on
physical machines.

The final test we performed was with jFed on the ExoGENI
testbed [23], which itself is a federation of independent cloud
sites. The testbed consists of several Virtual Machines in
different locations around the world, but mainly concentrated in
the US. As can be seen, the swap-in time is on average 141.88

Metro 
network 1

Metro 
network 2

Core

Node A

Node B

Fig. 4. Physical connectivity graph of the converged network operator demo.

Node A Metro 1 router Node B

Server 
α

Client 
β

Metro 2 router Core router Core router 

Public Internet Layer

Metro 1 
Layer

Core Layer Metro 2 
Layer

Fig. 5. Recursive layering of the converged network operator demo

seconds, which is comparable to the swap-in time of jFed with
the Virtual Wall, yet the 95% confidence interval for this result
is very high, 26.37 seconds. We believe this is due to the fact
that ExoGENI is very distributed, and different sites have to be
contacted to provision the required resources. If the availability
of resources on a single location is low, then another location
has to be contacted, and so on until the required amount of
nodes is found. The install and bootstrap times are similar
to the ones on the Virtual Wall. They are just a bit slower
since the experiment is running on Virtual Machines. The high
confidence interval for installing the prototype can be explained
by the fact that Rumba installs some required packages via
aptitude in the case of an Ubuntu or Debian image; however,
the Ubuntu image used by ExoGENI sometimes is busy with
automatic software updates, so Rumba needs to wait until the
aptitude lock is released before installing its own packages.
The total time an experiment on ExoGENI takes is 368.10
seconds. However, the main advantage of the ExoGENI testbed
is its abundance of resources, since most of the time it has
800 VMs or more available.

V. DEMONSTRATION

We now describe a larger scale experiment with Rumba than
the one depicted in Figure 1, namely a converged network
operator’s network. Figure 4 shows the physical connectivity
graph of the operator’s network. It consists of servers and
clients connected to a metro network, which in turn is connected
through a core network to other metro networks with more
servers and clients connected to them. This network is easily
generalized, as it can be enlarged at will by adding more
metro networks and by enlarging the core network. We want to
demonstrate this scenario and show that Rumba dramatically
cuts back on the setup time.

How such a network can be modelled with RINA is depicted
in Figure 5 as a 2D projection for the case of a client β that



wants to communicate with a server α in a different metro
network. Note that we purposely kept the design relatively
simple; a real design might be more complicated. At the bottom
level, each physical link is abstracted away as a layer over
Ethernet. The routers in the metro network and the servers
and clients will all have an IPCP in the metro layer. In case
a client wants to talk to a server that is located in the same
metro network, it can simply use the metro layer to allocate
a flow over. The core routers and the metro border routers
will have an IPCP in the core layer. This is done so that the
management of the core layer is self-contained. Each layer is
its own management domain.

In case a server and client in different metro networks want
to communicate with each other, they need another layer with
even greater scope, here conveniently called the public internet
layer. All servers, clients, and metro border routers will have an
IPCP in the public internet layer. When the client β allocates a
flow to server α, it will do so over the public internet layer. A
flow allocation request will be sent in the public internet layer
by node B’s IPCP. The next hop, the metro 2 border router’s
IPCP, is reached by using the IPC services provided by the
metro 2 layer. The metro 2 border router’s IPCP will then use
the services offered by the core layer to reach the next hop, i.e.
the metro 1 border router’s IPCP. Finally, the metro 1 border
router’s IPCP will forward the request to node A’s IPCP. Once
a positive reply is sent back and acknowledged, the flow is
allocated, so that β and α can start to communicate.

We will demonstrate this scenario by installing and bootstrap-
ping the different prototypes on different testbeds. Every node
connected to a metro network will be available as both a server
and a client. A Storyboard will thus be run to emulate real
network traffic over the converged network operator network.

VI. CONCLUSION

In this paper we presented Rumba, a free open source
experimentation framework for installing and bootstrapping
recursive networks on various testbeds. We explained the
layering structure of RINA and outlined the requirements for
a RINA experimentation framework, upon which we based the
design of Rumba. We described Rumba’s modular design which
abstracts away any prototype or testbed internals, enabling easy
integration of several prototypes and testbeds. We showed that
by using Rumba, the experiment execution time is drastically
reduced. We presented a more elaborate demonstration of RINA,
namely how it can be deployed on a converged network operator
network. The repository holding Rumba can be found at [24],
or it can be installed through pip, the Python package manager
by issuing pip install rumba. In the future, we intend
to extend Rumba with more testbeds; for instance, work is
being done to add support for OpenStack. We also intend to
implement traffic limitation and degradation, to emulate subpar
links with packet loss, delay, low bandwidth and high bit error
rate.

ACKNOWLEDGMENT

This work was partially funded by the European Commission
through the FIRE+ H2020 Programme, grant no 687871,
ARCFIRE.

REFERENCES

[1] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and
research challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, 2016.

[2] (2017, Dec.) Open Networking Foundation. [Online]. Available:
https://www.opennetworking.org/platforms

[3] (2017, Dec.) OpenDaylight. [Online]. Available: https://www.
opendaylight.org

[4] L. Chiaraviglio, L. Amorosi, S. Cartolano, N. Blefari-Melazzi, P. Del-
lolmo, M. Shojafar, and S. Salsano, “Optimal superfluid management
of 5G networks,” in 2017 IEEE Conference on Network Softwarization
(NetSoft), July 2017, pp. 1–9.

[5] S. Dräxler, H. Karl, M. Peuster, H. R. Kouchaksaraei, M. Bredel,
J. Lessmann, T. Soenen, W. Tavernier, S. Mendel-Brin, and G. Xilouris,
“SONATA: Service programming and orchestration for virtualized soft-
ware networks,” in 2017 IEEE International Conference on Communica-
tions Workshops (ICC Workshops), May 2017, pp. 973–978.

[6] (2017, Dec.) The GENI website. [Online]. Available: http://www.geni.net/
[7] (2017, Dec.) The FIRE website. [Online]. Available: http://www.ict-fire.

eu
[8] W. Vandenberghe, B. Vermeulen, P. Demeester, A. Willner, S. Papavas-

siliou, A. Gavras, M. Sioutis, A. Quereilhac, Y. Al-Hazmi, F. Lobillo,
F. Schreiner, C. Velayos, A. Vico-Oton, G. Androulidakis, C. Papagianni,
O. Ntofon, and M. Boniface, “Architecture for the heterogeneous
federation of future internet experimentation facilities,” in 2013 Future
Network Mobile Summit, July 2013, pp. 1–11.

[9] (2017, Dec.) The jFed website. [Online]. Available: https://jfed.ilabt.
imec.be/

[10] J. Day, I. Matta, and K. Mattar, “Networking is IPC: a guiding principle to
a better internet,” in Proceedings of the 2008 ACM CoNEXT Conference.
ACM, 2008, p. 67.

[11] S. Vrijders, D. Staessens, D. Colle, F. Salvestrini, E. Grasa, M. Tarzan,
and L. Bergesio, “Prototyping the recursive internet architecture: the
IRATI project approach,” IEEE Network, vol. 28, no. 2, pp. 20–25, 2014.

[12] V. Maffione, F. Salvestrini, E. Grasa, L. Bergesio, and M. Tarzan,
“A Software Development Kit to exploit RINA programmability,” in
Communications (ICC), 2016 IEEE International Conference on. IEEE,
2016, pp. 1–7.

[13] (2017, Dec.) The ARCFIRE website. [Online]. Available: http:
//ict-arcfire.eu/

[14] Y. Wang, F. Esposito, and I. Matta, “Demonstrating RINA using the
GENI Testbed,” in Research and Educational Experiment Workshop
(GREE), 2013 Second GENI. IEEE, 2013, pp. 93–96.

[15] Z. Fei, Q. Xu, and H. Lu, “Generating large network topologies for
GENI experiments,” in IEEE SOUTHEASTCON 2014, March 2014, pp.
1–7.

[16] D. Duplyakin and R. Ricci, “Introducing configuration management
capabilities into CloudLab experiments,” in 2016 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), April
2016, pp. 39–44.

[17] (2017, Dec.) The Emulab website. [Online]. Available: http:
//www.emulab.net/

[18] A. B. Kahn, “Topological sorting of large networks,” Communications
of the ACM, vol. 5, no. 11, pp. 558–562, 1962.

[19] F. Bellard, “QEMU, a fast and portable dynamic translator,” in USENIX
Annual Technical Conference, FREENIX Track, 2005, pp. 41–46.

[20] (2017, Dec.) The rlite repository. [Online]. Available: https://github.com/
vmaffione/rlite/

[21] (2017, Dec.) The Ouroboros website. [Online]. Available: https:
//ouroboros.ilabt.imec.be/

[22] (2017, Dec.) imec iLab.t Virtual Walls. [Online]. Available: http:
//doc.ilabt.iminds.be/ilabt-documentation/virtualwallfacility.html

[23] (2017, Dec.) The ExoGENI website. [Online]. Available: http:
//www.exogeni.net/

[24] (2017, Dec.) The Rumba repository. [Online]. Available: https:
//gitlab.com/arcfire/rumba


