452 research outputs found

    Managing healthcare workflows in a multi-agent system environment

    Get PDF
    Whilst Multi-Agent System (MAS) architectures appear to offer a more flexible model for designers and developers of complex, collaborative information systems, implementing real-world business processes that can be delegated to autonomous agents is still a relatively difficult task. Although a range of agent tools and toolkits exist, there still remains the need to move the creation of models nearer to code generation, in order that the development path be more rigorous and repeatable. In particular, it is essential that complex organisational process workflows are captured and expressed in a way that MAS can successfully interpret. Using a complex social care system as an exemplar, we describe a technique whereby a business process is captured, expressed, verified and specified in a suitable format for a healthcare MAS.</p

    Agent oriented AmI engineering

    Get PDF

    Agent-oriented software engineering methodologies : analysis and future directions

    Get PDF
    The Internet of Things (IoT) facilitates in building cyber-physical systems, which are significant for Industry 4.0. Agent-based computing represents effective modeling, programming, and simulation paradigm to develop IoT systems. Agent concepts, techniques, methods, and tools are being used in evolving IoT systems. Over the last years, in particular, there has been an increasing number of agent approaches proposed along with an ever-growing interest in their various implementations. Yet a comprehensive and full-fledged agent approach for developing related projects is still lacking despite the presence of agent-oriented software engineering (AOSE) methodologies. One of the moves towards compensating for this issue is to compile various available methodologies, ones that are comparable to the evolution of the unified modeling language (UML) in the domain of object-oriented analysis and design. These have become de facto standards in software development. In line with this objective, the present research attempts to comprehend the relationship among seven main AOSE methodologies. More specifically, we intend to assess and compare these seven approaches by conducting a feature analysis through examining the advantages and limitations of each competing process, structural analysis, and a case study evaluation method. This effort is made to address the significant characteristics of AOSE approaches. The main objective of this study is to conduct a comprehensive analysis of selected AOSE methodologies and provide a proposal of a draft unified approach that drives strengths (best) of these methodologies towards advancement in this area.publishedVersio

    KEMNAD: A Knowledge Engineering Methodology for Negotiating Agent Development

    Get PDF
    Automated negotiation is widely applied in various domains. However, the development of such systems is a complex knowledge and software engineering task. So, a methodology there will be helpful. Unfortunately, none of existing methodologies can offer sufficient, detailed support for such system development. To remove this limitation, this paper develops a new methodology made up of: (1) a generic framework (architectural pattern) for the main task, and (2) a library of modular and reusable design pattern (templates) of subtasks. Thus, it is much easier to build a negotiating agent by assembling these standardised components rather than reinventing the wheel each time. Moreover, since these patterns are identified from a wide variety of existing negotiating agents(especially high impact ones), they can also improve the quality of the final systems developed. In addition, our methodology reveals what types of domain knowledge need to be input into the negotiating agents. This in turn provides a basis for developing techniques to acquire the domain knowledge from human users. This is important because negotiation agents act faithfully on the behalf of their human users and thus the relevant domain knowledge must be acquired from the human users. Finally, our methodology is validated with one high impact system

    Sustainable and Autonomic Space Exploration Missions

    Get PDF
    Visions for future space exploration have long term science missions in sight, resulting in the need for sustainable missions. Survivability is a critical property of sustainable systems and may be addressed through autonomicity, an emerging paradigm for self-management of future computer-based systems based on inspiration from the human autonomic nervous system. This paper examines some of the ongoing research efforts to realize these survivable systems visions, with specific emphasis on developments in Autonomic Policies

    Building and implementing policies in autonomous and autonomic systems using MaCMAS

    Get PDF
    Autonomic Computing, self-management based on high level guidance from humans, is increasingly being accepted as a means forward in designing reliable systems that both hide complexity from the user and control IT management costs. Effectively, AC may be viewed as Policy-Based Self-Management.We look at ways of achieving this, and in particular focus on Agent-Oriented Software Engineering. We propose utilizing MaCMAS, an AOSE methodology, for specifying autonomic and autonomous properties of the system independently, and later, by means of composition of these specifications, guided by a policy specification, construct a specification for the policy and its subsequent deployment. We illustrate this by means of a case study based on a NASA concept mission, and describe future work on a support toolkit

    Agent Oriented Software Engineering (AOSE) Approach to Game Development Methodology

    Get PDF
    This thesis investigates existing game development methodologies, through the process of researching game and system development models. The results indicate that these methodologies are engineered to solve specific problems, and most are suitable only for specific game genres. Different approaches to building games have been proposed in recent years. However, most of these methodologies focus on the design and implementation phase. This research aims to enhance game development methodologies by proposing a novel game development methodology, with the ability to function in generic game genres, thereby guiding game developers and designers from the start of the game development phase to the end of the implementation and testing phase. On a positive note, aligning development practice with universal standards makes it far easier to incorporate extra team members at short notice. This increased the confidence when working in the same environment as super developers. In the gaming industry, most game development proceeds directly from game design to the implementation phase, and the researcher observes that this is the only industry in which this occurs. It is a consequence of the game industry’s failure to integrate with modern development techniques. The ultimate aim of this research to apply a new game development methodology using most game elements to enhance success. This development model will align with different game genres, and resolve the gap between industry and research area, so that game developers can focus on the important business of creating games. The primary aim of Agent Oriented Agile Base (AOAB) game development methodology is to present game development techniques in sequential steps to facilitate game creation and close the gap in the existing game development methodologies. Agent technology is used in complex domains such as e-commerce, health, manufacturing, games, etc. In this thesis we are interested in the game domain, which comprises a unique set of characteristics such as automata, collaboration etc. Our AOAB will be based on a predictive approach after adaptation of MaSE methodology, and an adaptive approach using Agile methodology. To ensure proof of concept, AOAB game development methodology will be evaluated against industry principles, providing an industry case study to create a driving test game, which was the problem motivating this research. Furthermore, we conducted two workshops to introduce our methodology to both academic and industry participants. Finally, we prepared an academic experiment to use AOAB in the academic sector. We have analyzed the feedbacks and comments and concluded the strengths and weakness of the AOAB methodology. The research achievements are summarized and proposals for future work outlined
    corecore