
Agent Oriented Software Engineering

(AOSE) Approach to Game Development

Methodology

By

Rula K. Al-Azawi

Faculty of Technology

De Montfort University, Leicester, UK

A thesis submitted in partial fufillment of the

requirements of De Montfort University for the degree of

Doctor of Philosophy

Computer Sciences

February 2015

Abstract

This thesis investigates existing game development methodologies, through the process of

researching game and system development models. The results indicate that these method-

ologies are engineered to solve specific problems, and most are suitable only for specific game

genres. Different approaches to building games have been proposed in recent years. However,

most of these methodologies focus on the design and implementation phase. This research

aims to enhance game development methodologies by proposing a novel game development

methodology, with the ability to function in generic game genres, thereby guiding game

developers and designers from the start of the game development phase to the end of the

implementation and testing phase.

On a positive note, aligning development practice with universal standards makes it far eas-

ier to incorporate extra team members at short notice. This increased the confidence when

working in the same environment as super developers. In the gaming industry, most game

development proceeds directly from game design to the implementation phase, and the re-

searcher observes that this is the only industry in which this occurs. It is a consequence of

the game industry’s failure to integrate with modern development techniques.

The ultimate aim of this research to apply a new game development methodology using most

game elements to enhance success. This development model will align with different game

genres, and resolve the gap between industry and research area, so that game developers

can focus on the important business of creating games. The primary aim of Agent Oriented

i

Agile Base (AOAB) game development methodology is to present game development tech-

niques in sequential steps to facilitate game creation and close the gap in the existing game

development methodologies.

Agent technology is used in complex domains such as e-commerce, health, manufacturing,

games, etc. In this thesis we are interested in the game domain, which comprises a unique

set of characteristics such as automata, collaboration etc. Our AOAB will be based on a

predictive approach after adaptation of MaSE methodology, and an adaptive approach using

Agile methodology.

To ensure proof of concept, AOAB game development methodology will be evaluated against

industry principles, providing an industry case study to create a driving test game, which

was the problem motivating this research. Furthermore, we conducted two workshops to in-

troduce our methodology to both academic and industry participants. Finally, we prepared

an academic experiment to use AOAB in the academic sector. We have analyzed the feed-

backs and comments and concluded the strengths and weakness of the AOAB methodology.

The research achievements are summarized and proposals for future work outlined.

ii

Declaration

I declare that the work described in this thesis is original work undertaken by me for the

degree of Doctor of Philosophy, at the Faculty of Technology, De-Montfort University, Le-

icester, United Kingdom.

No part of the material described in this thesis has been submitted for the award of any

other degree or qualification in this or any other university or college of advanced education.

This thesis is written by me and produced using LATEX.

Rula Khalid Al-Azawi

Leicester, United Kingdom. 2014

iii

Publications, Other Output

The research towards this thesis has produced the following publications:

1. R. Al-Azawi, A. Ayesh, I. Kenny, and K. AL-Masruria,”Analysis of Using Intelli-

gent Technique in Games” , in 3rd GAMEON-ARABIA’2012 Conference, (Muscat-

Oman), pp. 83-87, EUROSIS Conference, 10-12 December 2012.

2. R. Al-Azawi and A. Ayesh, ”Comparing Agent Oriented Programming Versus

Object Oriented Programming” , in the 6th International Conference on Informa-

tion Technology ICIT’13, IEEE Jordan Chapter,(Amman-Jordan), 8-10 May 2013.

3. R. Al-Azawi, A. Ayesh, I. Kenny, and K. AL-Masruria, ”Towards an AOSE: Game

Development Methodology”, in Distributed Computing and Artificial Intelligence,

10th International Conference. Advances in Intelligent and Soft-Computing series of

Springer,(Salamanca- Spain), vol. 217, pp. 493-501, May 2013.

4. R. Al-Azawi, A. Ayesh and M. Al-Obaidi, ”Generic Evaluation Framework for

Games Development methodology”, The 3rd International Conference on Com-

munications and Information Technology (ICCIT-2013): Digital Information Manage-

ment and Security,(Beirut- Lebanon), pp. 55-60, IEEE Computer Society, 19-21 June

2013.

iv

5. R. Al-Azawi, A. Ayesh, I. Kenny, and K. AL- Masruria,”Generic Framework for

Evaluation Phase in Game development Methodologies”, in the IEEE Techni-

cally Cosponsored Science and Information SAI Conference 2013, (London- UK), pp.

237-243, IEEE Computer Society, October 7-9 2013.

6. R. Al-Azawi, A. Ayesh and M. Al-Obaidi, ” Towards Agent-based Agile Ap-

proach for Game Development Methodology”, WCCAIS’2014 World Congress

On Computer Applications and Information Systems, (Hammamet, Tunisia), IEEE

Computer Society, 17-19 January, 2014.

7. R. Al-Azawi, A. Ayesh, I. Kenny, and K. AL-Masruria,”Multi Agent Software

Engineering (MaSE) and Agile Methodology for Game Development”, 4th

GAMEON-ARABIA Conference, EUROSIS Conference. (Muscat, Oman) , pp. 116-

122.

Other Output

1. R. Al-Azawi and A. Ayesh,,” Agent Oriented Agile Based Game Development

Methodology (AOAB) Workshop”, was conducted in GameLab / Jordan, 26 July

2014.

2. R. Al-Azawi and A. Ayesh,,” Game Development Methodology -Agent Ori-

ented Agile Based (AOAB) Workshop”, was conducted at the GAMEON’2014

conference, 11 September 2014, University of Lincoln, Lincoln, UK.

3. R. Al-Azawi became the Head of the Judgment Committee in the Telecommunication

Regulatory Authority for game competition between undergraduate university students

in the Sultanate of Oman, which is a country located in the Middle East. Appendix

C illustrates the competition poster and costs, with the game theme ”My address is

Omani”.

v

Acknowledgments

To my supervisor Dr.Aladdin Ayesh, many thanks for being so kind, and so patient to my

circumstances, as well as highly cooperative and so supportive. His guidance was crucial to

this thesis and he has opened the door for me to the conference and research world, which

I really find myself drawn to more than any other academic activity. Dr. Aladdin is my

pacemaker. I appreciate his efforts and the support he extended to me to make this work

possible.

To Mr. Peter Hornort from Staffordshire University, thanks for your efforts and encour-

agement to me when starting my PhD study, and thanks to your lovely wife ”Karen”. I have

enjoyed your friendship.

To my local supervisor Dr. Khalfan AL-Masruria, thanks for all your efforts to encourage

me and for answering my enquiries whenever needed.

To my second supervisor Dr. Ian Kenny, thanks for giving me the time and help I needed.

To Mr. Nart and Mr. Hamza from GameLab, many thanks for the proficient organiza-

tion of the workshop conducted in Jordan, and for your support inviting professional people

from within the game field.

To Mr. Philippe the EUROSIS conferences organizer, I am grateful to your cooperation

and support in publishing two papers for different International EUROSIS conferences. Many

thanks for your support and presentation of our workshop in parallel with the GAMEON

conference in the UK.

vi

Dedication

To My mother

Thanks for your encouraging me throughout my academic life and thanks for your continuous

prayer.

To the loving memory of My father

I remember your words that ”your scientific degree and your money is your weapon in the

life”.

To My family:

My husband

Many thanks for your patience, your constant encouragement and support. Thanks for

introducing me to the great person and supervisor Dr.Aladdin.

My daughters: Maysam and Rahef

Sorry for being away from you and spending so much time stuck to the laptop. All that I

have done was to bring you a better life.

vii

Table of Contents

List of Figures . xv

List of Tables . xxiii

List of Abbreviations . xxiv

1 Introduction . 1

1.1 Motivation and Problem Formulation . 2

1.2 Thesis Objective . 3

1.3 Research Question . 4

1.4 Research Methodology . 5

1.5 Contribution of Thesis . 8

1.6 Thesis Outline . 9

2 The Structure of Computer Games . 12

2.1 Chapter Overview . 13

2.2 Game Definition and Classification . 13

2.3 Artificial Intelligence in Games . 16

2.4 Game Engine . 22

2.4.1 3DUnity . 22

2.4.2 Unreal Development Kit (UDK) . 23

2.4.3 XNA . 24

2.4.4 Blender 3D . 24

2.4.5 Game Maker . 25

viii

2.5 Game Architecture . 25

2.6 Game Engineering . 26

2.7 Summary . 27

3 Agents Technology: An overview . 28

3.1 Chapter Overview . 29

3.2 Agent Technology Overview . 29

3.3 Agent Typology . 31

3.4 Agent Versus Object . 32

3.5 Multi Agent System (MAS) . 34

3.6 Existing Agent-based Development Methodologies 37

3.7 Agent Communication . 38

3.8 Agent Platforms . 38

3.9 Agent Modeling Language(AML) . 38

3.9.1 AgentTool 3 . 39

3.10 Agent Service- Oriented Computing . 40

3.11 Intelligent Agent in Games . 40

3.12 Summary . 41

4 Critical Review Of Methodologies . 42

4.1 Chapter Overview . 43

4.2 Overview of Software Development Methodologies in Games 43

4.2.1 Agile Methodology . 44

4.2.2 Industry Game Design and Development Methodology 46

4.2.3 Agent Oriented Software Engineering (AOSE) Methodology 47

4.3 AOSE Methodology Types . 48

4.3.1 MaSE Methodology . 48

4.3.2 MESSAGE Methodology . 50

4.3.3 Gaia Methodology . 52

ix

4.3.4 Prometheus Methodology . 53

4.3.5 MAS-CommonKADS Methodology 54

4.3.6 O-MaSE Methodology . 54

4.3.7 Tropos Methodology . 56

4.4 AOSE Methodologies Evaluation . 57

4.4.1 Game Development Methodology Framework (GDMF) 58

4.4.2 Converting the Qualitative Results to Quantitative Evaluations . . . 60

4.4.3 Evaluation of the Methodologies by Meta-Model Metrics 63

4.4.4 Evaluation of the Methodologies using Diagrams 64

4.4.5 Critical Analysis . 65

4.5 Summary . 65

5 Agent Oriented Agile Based Game Development Methodology (AOAB) 67

5.1 Chapter Overview . 68

5.2 Problems With Current Game Development Methodologies 68

5.3 Archetypical Development Methodologies 72

5.3.1 Predictive Model . 73

5.3.2 Adaptive Model . 73

5.3.3 Predictive vs. Adaptive Methodologies 74

5.4 AOAB Goal and Objective . 77

5.5 Agent Oriented Agile Based Game Development Methodology (AOAB) . . . 77

5.6 AOAB Features . 81

5.6.1 Game Development Duration . 81

5.6.2 Team Collaboration . 82

5.7 AOAB Methodology Life Cycle Description 83

5.7.1 Requirement Phase . 83

5.7.2 Analysis Phase . 86

5.7.3 Design Phase . 88

x

5.7.4 Implementation Phase . 88

5.7.5 Evaluation Phase . 89

5.7.6 Testing Evaluation Protocol sets . 96

5.8 Critical Analysis of AOAB Methodology . 97

5.9 Summary . 99

6 Evaluation Methods Selection For AOAB . 100

6.1 Chapter Overview . 101

6.2 Purpose of Evaluation . 101

6.3 Evaluation Context . 102

6.4 AOAB Evaluation Framework Process . 103

6.4.1 Survey Approach . 105

6.4.2 Formal Experiment Approach . 107

6.4.3 Case Study Approach . 108

6.5 AOAB Evaluation Framework Procedure . 109

6.6 AOAB Evaluation Time Scales . 110

6.7 Summary . 110

7 Evaluation by Applying AOAB Methodology to Industry 111

7.1 Chapter Overview . 112

7.2 Serious Game . 112

7.3 Drive Test Game . 113

7.4 Requirement Specification . 114

7.4.1 Game Concept Paper . 114

7.4.2 Game Design Document (GDD) . 115

7.4.3 Sprint Backlog . 116

7.5 Analysis Phase . 118

7.5.1 Model Goal (Goal Hierarchy Diagram) 118

7.5.2 Apply Use Case and Sequence Diagram 120

xi

7.5.3 Role and Task Model . 121

7.6 Design Phase . 123

7.6.1 Creating Agent class . 123

7.7 Implementation Phase . 124

7.7.1 Deployment Diagram . 124

7.7.2 Implementation Section . 124

7.7.3 Implementation of Sprint 1 . 127

7.7.4 Implementation of Sprint 2 . 127

7.7.5 Implementation of Sprint 3 . 127

7.7.6 Implementation of Sprint 4 . 128

7.8 Critical Review . 128

7.9 Summary . 129

8 Evaluation AOAB Methodology by User Perspective 130

8.1 Chapter Overview . 131

8.2 Academic Game Design Experiment . 131

8.2.1 Course of Mobile Computing . 132

8.2.2 How the Course Changed . 132

8.3 Workshops Conducted . 133

8.3.1 Workshop Aims and Outlines . 134

8.3.2 Workshop Activities’ . 134

8.3.3 Workshop Evaluation Process . 135

8.4 Critical Review . 136

8.5 Summary . 137

9 Critical Analysis of AOAB Methodology . 139

9.1 Chapter Overview . 140

9.2 Part One : Industry Results . 140

9.3 Part Two: Academic Results . 141

xii

9.4 Part Three: Workshops Results . 145

9.4.1 Workshop 1 . 145

9.4.2 Workshop 2 . 146

9.4.3 Workshops Evaluation . 146

9.4.4 Qualitative and Quantitative Questionnaire Analysis 148

9.5 AOAB Evaluation Results . 150

9.5.1 AOAB Strengths and Limitations . 151

9.6 Summary . 152

10 Conclusion and Future Work . 154

10.1 Thesis Contribution . 156

10.2 Future Work . 157

APPENDICES . 159

A Game Design Document Template . 159

A.1 GDD Template First Version . 159

A.2 GDD Template Second Version . 164

B Game Evaluation Criteria Sets . 170

C Game Competition Poster . 180

D AOAB in Industry Section . 181

D.1 GDD For Drive Test Game. 181

D.2 Analysis Phase Diagrams . 188

D.3 Design Phase Diagrams . 197

D.4 Implementation Phase . 200

D.4.1 Deployment Diagram . 200

D.4.2 Game Layout and Graphics . 200

D.4.3 Communication Messages of the Drive Test Game 204

D.4.4 Java Script Code of the Drive Test Game 209

D.4.5 Screen Shot of the Drive Test Game 214

xiii

E Mobile Course Details . 224

F AOAB Workshops . 229

F.1 Workshop Details . 229

F.1.1 What is this workshop about? . 229

F.1.2 What is the objective of this workshop? 229

F.1.3 Who should participate in this workshop? 230

F.1.4 What is the organizer background? 230

F.1.5 What is the workshop goal? . 231

F.1.6 Our full day workshop agenda . 232

F.2 Workshops Invitation . 235

F.3 Workshop Attendees Questionnaire . 236

F.4 GameLab and Lincoln Workshop Pictures 241

F.5 AgentTool3 . 245

F.6 QSEE Technology . 249

F.7 Participants Positive and Negative Feedback 253

Bibliography . 254

xiv

List of Figures

1.1 Information System Research Framework for Hevner[68] 7

1.2 Our Research Methodology in Context of Hevner Framework 7

2.1 Game Classification . 14

2.2 Link Between Popular Agent Characteristics and Popular Games [142]. 20

2.3 General Game Architecture[27]. 26

3.1 A part View of an Agent Typology [106] . 31

3.2 A Classification of Software Agents . 32

3.3 Categorization of AOSE methodologies [93] . 37

4.1 Agile Methodology Diagram [136] [99] . 45

4.2 Agile Phases Approach [80] . 45

4.3 Games Development Process [94]. 47

4.4 Methodology Components and Relationships Between Them [130] 48

4.5 MaSE Life cycle [49] . 50

xv

4.6 The MESSAGE Work Flow [46] . 51

4.7 Gaia Life cycle [146] . 52

4.8 Prometheus Life cycle [109] . 53

4.9 MAS-CommonKADS Life cycle . 54

4.10 O-MaSE Meta-Module [52] . 55

4.11 Tropos Life cycle . 57

5.1 Occurrence of Problems in Current Game Development Methodology [111]. . . 71

5.2 Predictive Development Methodology[70]. 73

5.3 Adaptive Development Methodology[70]. 74

5.4 AOAB Designed From Hybrid Agile and MaSE Methodology. 79

5.5 Agent Oriented Agile Based Development Methodology 80

5.6 Duration for AOSE [99]. 82

5.7 Game Evaluation Criteria . 92

5.8 Game Evaluation Process . 93

6.1 Evaluation Methods [143]. 103

6.2 Comparison Between Evaluation Methods [28]. 104

6.3 AOAB Evaluation Process . 105

7.1 Game Design Document Elements [76]. 116

xvi

7.2 Main Goal Hierarchy . 119

7.3 Main Sequence Diagram . 120

7.4 Main Role Diagram . 122

7.5 Agent Diagram (Sprint 1) . 124

9.1 Register Students Percentage in Groups . 141

9.2 Students Assignment Results . 142

9.3 Students Assignment Percentage Time Spent on Different Phases 143

9.4 Attendance Classified by Gender Category . 149

9.5 Attendance Classified by Background Category . 149

C.1 Game Competition Poster . 180

D.1 Main Goal Hierarchy . 188

D.2 Goal Hierarchy (Sprint 1) . 189

D.3 Goal Hierarchy (Sprint 2) . 190

D.4 Goal Hierarchy (Sprint 3) . 191

D.5 Main Sequence Diagram . 191

D.6 Sequence Diagram (Sprint 1) . 192

D.7 Sequence Diagram (Sprint 2) . 192

D.8 Sequence Diagram (Sprint 3) . 193

xvii

D.9 Main Role Diagram . 193

D.10 Role Diagram (Sprint 1) . 194

D.11 Role Diagram (Sprint 2) . 195

D.12 Role Diagram (Sprint 3) . 196

D.13 Agent Diagram (Sprint 1) . 197

D.14 Agent Diagram (Sprint 2) . 198

D.15 Agent Diagram (Sprint 3) . 199

D.16 Deployment Diagram . 200

D.17 Car Model . 200

D.18 Unity Car Model . 201

D.19 Traffic Sign Images . 201

D.20 Traffic Sign Sample . 202

D.21 Background Sample 1 . 202

D.22 Background Sample 2 . 203

D.23 Background Sample 3 . 203

D.24 Background Sample 4 . 203

D.25 Communication Message 1 . 204

D.26 Communication Message 2 . 204

xviii

D.27 Communication Message 3 . 205

D.28 Communication Message 4 . 205

D.29 Communication Message 5 . 206

D.30 Communication Message 6 . 206

D.31 Final Score . 207

D.32 Well Done Parking . 207

D.33 Wrong Parking . 208

D.34 Java Script Code for movement to Scene ”Q1Eng” 209

D.35 Java Script Code for Second Camera Move Follow 210

D.36 Java Script Code for right Selection of Traffic Sign Test 211

D.37 Java Script Code for Wrong Selection of Traffic Sign Test 212

D.38 Java Script Code for Final Score of Traffic Sign Test 212

D.39 Java Script Code for Car Control . 213

D.40 Main Screen of Drive Test Game . 214

D.41 Description of Traffic Sign Test . 214

D.42 Game Language Selection . 215

D.43 Arabic Language Test . 215

D.44 First Question in Traffic Sign Test . 216

xix

D.45 Second Question in Traffic Sign Test . 216

D.46 Third Question in Traffic Sign Test . 217

D.47 Forth Question in Traffic Sign Test . 217

D.48 Fifth Question in Traffic Sign Test . 218

D.49 Traffic Sign Test Final Score . 218

D.50 Description of First Part of Parking Game . 219

D.51 First Part of Parking Game . 219

D.52 Result of First Part of Parking Game . 220

D.53 Description of Second Part of Parking Game 220

D.54 Second Part of Parking Game . 221

D.55 Result of Second Part of Parking Game . 221

D.56 Description of Third Part of Parking Game . 221

D.57 Third Part of Parking Game . 222

D.58 Result of Third Part of Parking Game . 222

D.59 Description of Road Test Game . 223

D.60 Road Test Game . 223

D.61 About Game . 223

F.1 First Workshop Invitation . 235

xx

F.2 Facilitator Explains AOAB Methodology . 241

F.3 Facilitator Explains AOAB Diagrams . 241

F.4 Audience in the Workshop . 242

F.5 Round table Discussion . 242

F.6 GameLab Entrance . 243

F.7 Laboratory in GameLab . 243

F.8 Audience in the Workshop . 244

F.9 Audience in the Workshop . 244

F.10 Step 1 . 245

F.11 Step 2 . 245

F.12 Step 3 . 246

F.13 Step 4 . 246

F.14 Step 5 . 247

F.15 Step 6 . 247

F.16 Step 7 . 248

F.17 Install QSEE . 249

F.18 Step 1 . 249

F.19 Step 2 . 250

xxi

F.20 Step 3 . 250

F.21 Step 4 . 251

F.22 Step 5 . 251

F.23 Step 6 . 252

xxii

List of Tables

2.1 AI Requirements Criteria. 16

2.2 AI In Games. 21

3.1 Object Oriented Programming Versus Agent Oriented Programming 32

4.1 Comparison of MaSE and Tropos [42]. 60

4.2 Comparison Regarding Steps and Usability of Tropos and MaSE Adopted From
[137] . 62

4.3 Availability and Specificity to Compare Between Tropos and MaSE. 64

5.1 Comparison of adaptive - predictive characteristics [70]. 75

7.1 Time Plan of Our Game . 116

7.1 Time Plan of Our Game . 117

9.1 Workshop Details. 145

9.2 Participants’ age distribution. 148

B.1 Playability Evaluation Sets . 170

B.2 Usability Evaluation Sets . 174

B.3 Quality Evaluation Sets . 176

B.4 Enjoyment Evaluations Sets . 178

E.1 Marking Criteria for the Further Programming for Mobile Devices and Handheld
Devices Course. 226

xxiii

List of Abbreviations

ABC Agent Based Computing

ABLE Agent Building and Learning Environment

ACL Agent Communication Language

AEF AOAB Evaluation Framework

AI Artificial Intelligence

AOAB Agent Oriented Agile Based Game Development Methodology

AOD Agent Oriented Development

AOM Agent-Oriented Methodology

AOSE Agent-Oriented Software Engineering

A-UML Agent-UML

AV Agent/Role View

BDI Belief Desire Intention

BGE Blender Game Engine

DV Domain View

CIS Computing Science

xxiv

CS Computer Science

DV Domain view

FIPA Foundation for Intelligent Physical Agents

FPS First Person Shooter

FSM Finite State Machines

FuSM Fuzzy State Machine

GA Genetic Algorithm

GDD Game Development Document

GDMF Game Development Methodology Framework

GEHF Game Evaluation Heuristics Framework

GOAP Goal Oriented Action Plan

GTV Goal/Task View

GUI Graphical User Interface

HEP Heuristics for Evaluating Playability

HCI Humen Computer Interaction

IE Interactive Entertainment

IS Information System

IV Interaction View

JADE Java Agent Development

JATLite Java Agent Template

xxv

MACR Multi agent and Cooperative Robotics

MAS Multi Agent System

MC Mobile Computing

MLs Modeling Languages

NCP Non Player Character

OAA Open Agent Architecture

OA Organizational agents

OOD Object Oriented Development

OOM Object Oriented Methodology

OV Organization View

QA Quality Assurance

QEF Quality Evaluation Framework

RUP Rational Unified Process

RTS Real Time Strategy games

RPG Role Playing Games

SOC Service-Oriented Computing

UDK Unreal Development Kit

UML Unified Modeling Language

xxvi

Chapter 1

Introduction

1

2

1.1 Motivation and Problem Formulation

Many researchers combine agents and games. This is because many games use agents or

multi agents to represent players and Non-Play Characters (NPC) in games. In reality, most

game development companies do not follow a specific lifecycle when developing games. They

mainly deal with standard software engineering methodologies such as Waterfall or Agile

methodology. From a search of the literature, we observed that it is not easy to find a

”common solution for a common problem in games”. Creating such a methodology would,

however, make the communication between developers easier and documentation more un-

derstandable, easy to follow, covering all the game elements.

The literature in reviews this study focuses on finding the best game development method-

ologies. We encountered limitation when searching for generic game development method-

ologies. Most existing methodology has been created to solve specific problems, such as

’INGENIAS’, which merge Multi Agent System (MAS) and Role Playing Games (RPG)

[67]. Furthermore, there is no standard methodology covering the entire game life cycle,

which is easy to use and generic to the most game genres. Furthermore, we found that

in some cases there is a gap between the industrial and academic sectors. After recogniz-

ing these problems, we began a survey of existing AOSE methodologies; specifically Gaia,

MESSAGE, Promethus, MAS-CommonKAS, O-MaSE, Tropos and MaSE. We compiled a

comparative study of these methodologies, selecting MaSE as part of the AOAB methodol-

ogy. MaSE covers the predictive approach, while Agile covers the adaptive approach. Finally,

we needed to prove our AOAB methodology by presenting different evaluation methods that

would be useful to evaluate game development methodologies.

3

1.2 Thesis Objective

During my PhD research work, which took place around three years ago, the author con-

ducted an intensive literature review of the game types and classifications, searching the

most popular game development methodologies. A critical analysis was conducted to find

the weaknesses in current game development methodologies.

Using software engineering methodologies and other Object Oriented methodologies were not

believed to be suitable options, and so a new customized game development methodology

was required. However, existing methodologies provide a good grounding. AOAB is a new

generic game development methodology and is easy to use, fitting with different game genres.

AOAB provides start to end development phases and steps, which provide the game designer

and developer with a sequence of steps to follow. Furthermore, AOAB also bridges the gap

between the academic developer and the industry sector. As a first step, we analyzed the

agent in general, prepared a critical evaluation framework to compare AOSE methodologies

and the MaSE methodology selected for adaptation to the AOAB methodology.

The second step, required focus on current software engineering methodologies, which have

been used in game development methodology. After a critical analysis of the problems

encountered with previous game development methodologies, we selected the Agile method-

ology to created an Agent Oriented Agile Base Game Development Methodology (AOAB).

Finally, we focused on the individual AOAB phases: the requirement phase, creating Game

Design Documents (GDD), analysis, design, implementation and an evaluation phase in

AOAB. The evaluation phase focused on expert and end user evaluators, who used differ-

ent criteria such as playability, quality, usability and enjoyment to evaluate games in each

iteration before the game’s final release.

4

1.3 Research Question

The main research question of this thesis is:

”Can we create a game development methodology that could be generic, standard and easy to

use for different game genres?”

The main objective of the thesis is to propose a game development methodology, namely

AOAB methodology. The life cycle of AOAB game creation is clear, and the overall goal of

the game is easy to identify. The documentation of the game is hierarchical, and organised

by each iteration. Moreover, the GDD template provides most of the information needed

by organisations, from a structural perspective. This investigative work began in 2011 and,

from previous work, it is observed that most game developers use Agile methodology in

general and, in some cases, create their own methodology that fits with their requirements

or specific game genres.

Initially, a literature review was carried out to determine current techniques and method-

ologies. A strong relation was observed between games and agents. The focus was then

on gaining a clear idea of the common and special characteristics of building a game. The

proposed AOAB methodology aims to be as standard and generic as possible, and combines

agent and Agile methodologies. This unique combination requires wide knowledge of a va-

riety of technologies and sciences. However, the research does not covers all aspect related

to agent, Agile and game. For example, the research did not address agent communication

language.

Once a complete methodology was established, AOAB was evaluated by sharing the method-

ology with different types of peoples through conducting workshops and participating in a

conference in order to obtain feedback and evaluate the methodology in a real life context.

The industry experiment removes the gap between the academy and industry sectors. In the

workshops, participants were invited from both academia and industry as well as some In-

dies, to participate in the workshops and complete the questionnaire to provide their opinion

of AOAB. It was clear from this feedback that AOAB fills most of the gaps between industry

5

and academia. On the other hand, AOAB is not suitable for building small games, as it is

designed to use more than one iteration and covers many details that are not necessary when

building small games. AOAB is designed to facilitate the easy creation of a new version of

game following game release by creating strong documentation. In the academic case study,

students were happy to create diagrams in their work, rather than just textural descriptions,

and AOAB outlines simple steps to make this easy for students to do.

1.4 Research Methodology

Selection of a particular research methodology is an important decision that will directly

affect the achievement of the research objective and the research outcome. There are many

research methodologies available to meet the research aims, complicating the possibility of

selecting the methodology that will most effectively meet our requirements and the demands

of scientific investigation. Despite making a decision regarding method selection, it is often

necessary to use a combination of methods to fully understand a problem [56]. However, no

standard procedures or rules can be applied to design the research, although there is a set of

considerations that can be used as guidelines to align the research aims and methodologies.

The classification of the research question(s), the data collection methods, the nature of

the problem statement, the research subjects, and the available resources are all criteria

providing important input into the research design process [101].

Our research methodology comprises the following main steps:

1. Literature review and problem definition of current game development methodologies

and a critical analysis of AI in games.

Deliverable: Publish two conference papers.

2. Perform intensive analysis of AOSE methodologies and select a suitable methodology

MaSE to adapt to the game development methodology by using a common evaluation

6

framework.

Deliverable: Publish the third conference paper.

3. Intensive work on the evaluation phases in AOAB. We have identified that the evalua-

tion game is an important component of the game industry, specifically prior to game

release. We have produced a generic evaluation framework that encompasses impor-

tant measures such as playability, usability, enjoyment...etc.

Deliverable: Publish the fourth and fifth conference papers and submit first journal

paper.

4. Study the current game development methodologies, which are based on software en-

gineering methodologies; select Agile game development methodology to adapt the

proposed methodology.

Deliverable: Publish the sixth conference paper.

5. Finalize all AOAB phases and produce the final version of AOAB.

Deliverable: Publish the sixth and seventh conference papers and submit second journal

paper.

6. Evaluate the AOAB using suitable evaluation methods, such as a case study, exper-

iment and presenting a workshop for both the academic and industry sectors. The

evaluation section will describe the research methods for use in the evaluation, de-

scribing why these particular methods are appropriate for the evaluation.

Havner et al [68] designed a research framework model for an information science framework

as shown in Figure 1.1. His Model was established in two complementary stages. Design

science addressing research through the construction and evaluation of artifact design to fulfill

the requirements identified. Behavioral science addresses research through the development

and justification of requirements.

7

Figure 1.1: Information System Research Framework for Hevner[68]

Figure 1.2 depicts a map of our research plan, establishing requirements and objectives in

the context of the Haven information system framework.

Figure 1.2: Our Research Methodology in Context of Hevner Framework

8

1.5 Contribution of Thesis

In this thesis, novel game development is introduced based on Agile and MaSE method-

ology. This thesis presents five main contributions. The first contribution is to enhance

the game development methodology by providing a novel game development methodology,

termed the AOAB methodology. AOAB is a hybrid methodology, which covers both adap-

tive and predictive approaches. Agile represents an adaptive approach, and MaSE represents

a predictive approach. The second contribution proves the validity of the AOAB method-

ology, helping the developer and programmer to use different evaluation methods. The aim

of the AOAB methodology is to ensure it is general and usable with different game genres.

The third contribution is to investigate the effect of a proposed new methodology to create

cooperation between the game industry and researchers by adding additional features such

as time management, team work policy, and project management. In this thesis, we propose

an investigation of how the game designer and developer deals with game creation from the

first prototype until the point of the final game release. The fourth contribution is to intro-

duce new and complete coverage of the evaluation phase into game design. The evaluation

phase prior to final game release plays an important role throughout the game industry. We

consider these problems in association with the evaluation phase, because it is an important

component of game creation and can resolve problems prior to final game release. Further-

more, the game development life cycle focuses on combining all the required Agent-UML

(AUML) diagrams to facilitate the work and provide for straight forward documentation in

the game update, or in the creation of new versions of games. The final contribution is to

create a generic Game Design Document (GDD) template to suit different game genres for

use by Indie game developers and expert game developers.

In this research, the work done to ensure the validity of the contribution is summarized as

follows:

9

• Create a novel game development methodology, which is a hybrid between the adaptive

and predictive approach.

• Evaluate the AOAB using different evaluation methods according to general and stan-

dard methodologies.

• The AOAB should be suitable for industrial and academic use.

• The AOAB needs to cover the full life cycle and direct more attention to the method-

ology evaluation phase.

• Create a generic GDD template suitable for different game genres and for all game

developers.

The proposed AOAB game development methodology is evaluated in many ways to investi-

gate its strengths and weaknesses. The results provide an outline for future work.

1.6 Thesis Outline

This thesis is comprised of ten chapters, including this one. It is also arranged as follows:

Chapter Two: This contains a critical analysis of the current literature regarding computer

gaming, and presents the relationship between the game and the agent. The chapter reviews

different game genres and classifications according to different criteria. The primary goal of

the chapter is to analyze the AI techniques used in the game by conducting a critical review

of known AI requirements in games. The second part of the chapter surveys the game engine

and architecture, which helps us to select the best game engine for our work.

Chapter Three: This chapter contains the literature of agents and intelligent agents in

games. Both this and the previous chapter provide information to be used in the creation

of a game development methodology. The review focuses on agent types, architecture and

agents in games. Furthermore, it presents the compression between agent and object. In

this chapter, we present AUML and select Agenttool3 software as part of our work.

10

Chapter Four: This chapter presents the starting point for our AOAB methodology cre-

ation. In the first part of the chapter, we present the Agile methodology, which is usually

used in game development. The second part of the chapter focuses on a survey of exist-

ing AOSE methodologies; such as Gaia, Tropos, MaSE and Prometheus. We also make a

comparative study between MaSE and Tropos to select the best one for use in the game

development methodology. The final part of this chapter focuses on the game development

methodology framework (GDMF), which is based on a critical analysis and evaluation frame-

work to select AOSE methodology that will match game methodology requirements.

Chapter Five : The first part of this chapter presents an extensive analysis and devel-

opment of AOAB, establishing problems with the current game development methodology.

The second part of this chapter focuses on the AOAB suggested, which was adopted from

MaSE and Agile methodologies. The final part of this chapter presents the completed phases

of AOAB with a full description.

Chapter Six : This chapter presents a comparative study of the different evaluation meth-

ods available to evaluate new methodologies. The evaluation methods are then used to eval-

uate and assess the AOAB methodology, which covers three aspects of the evaluation. First

by employing a survey approach, and second, by pursuing a formal experimental approach.

Finally, by following a case study approach. Furthermore, we have created a procedural

framework to evaluate AOAB and combine it with different evaluation time scales. The next

two chapters will cover the evaluation methods to evaluate the AOAB in detail.

Chapter Seven : This chapter offers a case study approach of the industry sector, including

introduction of full details of the game, beginning with creating a concept paper and GDD,

and continuing until the game’s final release. Furthermore, this chapter provides proof of

use of the AOAB methodology, with its deployment techniques in the industry sector. In

this chapter, we use 3Dunity as a game engine and Agenttool3 as AUML software, to create

a complete and comprehensive game.

11

Chapter Eight : This chapter covers the second and third evaluation methods for evalu-

ating AOAB. The first part covers formal experimental study for undergraduate students in

two groups, working to create a mobile game. The first group uses AOAB, while the second

uses the Agile methodology. The second part of this chapter covers a survey approach by

conducting two workshops. The participants of the workshops are drawn from academic and

industry sectors. The results, as indicated in this workshop have involved critical analysis.

Chapter Nine : This chapter outlines the conclusion of AOAB, which includes strengths

and weakness following the AOAB methodology evaluation. Furthermore, it includes a

critical analysis of the AOAB methodology, based on the results from previous evaluation

methods as covered in the two previous chapters.

Chapter Ten : This chapter concludes the overall work delivering recommendations for

future enhancement and work.

Appendix A : Contains the template for the GDD. This template facilitates the work of

the game designer and developer. In this template, we organize and cover all the important

aspects that need to be specified as general for games of different genres.

Appendix B : Contains game evaluation criteria tables.

Appendix C : Contains the game competition poster.

Appendix D: Contains the industry section in detail. This section contains diagrams re-

quired for the analysis and design phase. It also includes a snapshot of implemented games,

some Java Script codes and communication messages that have been provided to the player.

Appendix E: This contains the details of the mobile computing course, which comprises

part of the academic evaluation.

Appendix F: This contains all the materials used in both workshops, such as: the work-

shop details, invitation letters, questionnaires, pictures, the software tools required for the

workshops and finally a feedback table to conclude the positive and negative comments made

by the participants.

Chapter 2

The Structure of Computer Games

12

13

2.1 Chapter Overview

Computer games are an increasingly popular application within the domain of AI research.

Computer gaming is also a big and growing industry, with a huge variety of games currently

available. Recently AI has been used to resolve the issues that affect classical gaming.

Computer game design involves the design of behavior, platforms, and decision making

processes. AI fields have been used in new generation computer games, such as autonomous

agents, decision making tools, scheduling, path finding and learning. The success or failure

of games now depends on integrating some form of AI into the games. The game developers

face a challenge when incorporating AI into the games. The main goal of AI in games

is not only to find the optimal behavior required to win the game, but also to make the

game believable, enjoyable and as fun as possible. In this chapter, we will begin with game

definition and classification. We will then cover the AI in gaming in detail. Game engines

are an important component of game creation. We have presented the most popular game

engine, and this chapter will cover game architecture and game engineering.

2.2 Game Definition and Classification

We define a game in general as ”structured playing usually undertaken for enjoyment and

sometimes used as an educational tool”. Many other authors define a game as

”A game as an activity that must have the following characteristics: fun, separate, uncertain,

non-productive, governed by rules, fictitious” [14].

”A game is a system that players engage in an artificial conflict, defined by rules, those

results in a quantifiable outcome”[118].

”A game is a form of art in which participants; termed players, decisions making in order

to control resources through game tokens in the pursuit of a goal”[44].

”A game is an activity among one or more independent decision-makers seeking to achieve

their objectives in some limiting context” [16].

14

”A game is a form of play with goals and structure” [96].

However, Crawford’s definition is the most suitable definition of a game, because he mentions

the relationship between the game and its agents. A game according to his definition is

”An interactive, goal-oriented activity, with active agents to play against, in which players,

including active agents and NPC can interfere with each other”[45]. We have observed

that games could be defined in a variety of different ways. Furthermore, games could also

be classified into many types. A huge variety of games are currently available. Devising a

single game classification is a complex process, because there are many different categories of

classification, as shown in Figure 2.1 [55][43][92]. Decisions regarding choices of classification

are based on different criteria as follows:

Figure 2.1: Game Classification

15

• Depend on the game environment such as Outdoor games (play activity) and Indoor

games, which include a table game, such as a Board game and Card games and /or

into one of these three sub categories:

– Party games that require physical action or stunts

– Trivia games that require questions and answers

– Skill and Action games that require players to throw, roll, balance and build

• Depend on the audience for whom the game is targeted; i.e. children’s games, family

games or adult games.

• Depend on the number of players, such as single player e.g. Puzzle, or two players or

multi players.

• Depend on what the player does. This is referred to as game play.

• Depend on criteria employed such as:

– Action games: games played through a series of levels (set in a virtual world) with

a variety of enemies. In most action games the player is the first person shooter

(FPS) as in games such as Street fighter and Mortal Kombat.

– Sports Games: games that portray different kinds of sports, creating virtual rep-

resentations of sporting activities. Some simulation games simulate a sport’s

environment such as Astro Race.

– Adventure Games: games that tend to be plot based. Adventure games involve

activities such as exploration, information gathering and problem solving. [77].

Puzzle games are also an example of adventure games. Solving puzzles can unlock

access to new areas in the game world.

– Strategy Games: games that depend on creating a military-type battle scenario.

The design is not focused only on characters, but also on resources (building

16

of defensive, offensive units and troops) and the need to organize and manage

battles. Star Craft II: Wings of Liberty is a popular strategy game.

– Role Playing Games (RPGs): these games assume the role of characters acting

in a fictional setting. The main RPG is played with a handful of participants,

mostly face-to-face. RPGs generally require the player to undertake a quest.

Dragon Quest and Pokemon are examples of an RPG.

– Real Time Strategy Games (RTS): This is a game in which the players focus on

logistics and resource production, and manage combat and war. These games

usually involve quick decision making and fast reflexes. Players need to command

armies and gather resources at the same time. This can prove immensely chal-

lenging, and most RTS games have developed many in game tools to help players

deal with this task. Common examples of RTS games are Age of Empires, Age

of Empires 3 and Empire Earth.

2.3 Artificial Intelligence in Games

Many AI techniques and concepts are used with games. The most popular techniques include

the finite state machine, scripting fuzzy logic agent, etc., and a few game developers use

decision trees, neural networks and genetic algorithms [126]. We need to present the most

important AI criteria and explain how they are linked to game requirements. In general,

game AI focuses on creating the appearance of intelligence in many ways. Table 2.1 shows

the main AI criteria for games and explains how they are linked to AI techniques [24].

Table 2.1: AI Requirements Criteria.

AI requirement AI Criteria

Manage game world FSM, FuSM, Script

Optimal solution GA

17

Path finding A*, Streeing

Decision making NN, Agent, Fuzzy logic

Learning NN, GA

Developing game strategy GA

This section explores the use of AI, as used with games:

1. Finite State Machine (FSM) in Games

FSM is a set of a finite number of states, each set for input, output and state transition

function. The FSM in games divides the game object’s behavior into logical states. In

this case, the object has only a single state for each different type of behaviour. FSM

is realised by simple if-then statements, it uses graphical representations, which are

part of the nine diagrams defined by the Unified Modeling Language (UML)[150].

In a game’s AI, the possible ways in which to use an FSM are endless. FSM could be

used to specify module unit behaviors in an RTS. In addition, it could use be used to

parse input from the human player or even to simulate the emotion of a NPC [133].

FSM is a natural choice for game developers when designing NPCs. It is used in most

commercial computer games and video games like Age of Empires, and in FPS video

games, such as Quake, Quake 2, Doom, and Half Life or in RTS game like Enemy

Nations. The games that currently use FSM could also use other options, such as

fuzzy state and Neural Network.

2. Fuzzy Logic in Games

Boolean logic contains only true or false statements, while fuzzy logic allows interme-

diate values, such as ‘rather hot’ or ‘very fast’, to describe continuous or overlapping

states that can arise in mathematics. Fuzzy logic can represent a concept using the

smallest number of fuzzy values. The fuzzy logic used in decisions can be based on

18

incomplete or erroneous data, which could not be used in Boolean logic. It is useful

for decision making, behavior selection and input/output filtering.

Fuzzy logic is used to determine how frightening something is for the player, for the

NPC to decide how much they reveal to the ”player”. The most common use of this

technology on commercial games is in video games such as Platoon Leader; real time

tactic action games such as SWAT 2; and strategy games such as CCTP. If we impose

a nonlinear problem or no simple solution, or if NN is not applicable then fuzzy logic

is appropriate.

3. Neural Network in Games

Neural Networks (NN)contain a number of relative components linked to a system, and

which will be able to produce output based on the identification of patterns in data.

Many games that use neural networks can ”learn” through experience or training and

include the ability to make decisions.

A neural network can also be improved continuously, which means the player will be

challenged to change the style of the strategy of play, meaning they must not reuse the

same strategy. Neural network has been used in adventure games such as Battle-cruiser

3000AD; racing games such as Dirt Track Racing, and strategy games such as Fields

of Battle. The most interesting application of a neural network in AI is ‘Battle-cruiser

3000AD’. In this game a neural network controls the NPC.

4. Genetic Algorithm in Games

Genetic Algorithm (GA) is used to find an optimal solution, and can be effectively used

in machine learning to evaluate and find a solution to specific problems. GA starts

with a small number of initial strategies, creating an entire population, seeking out

solutions and evaluating each population to solve a problem. GA is a suitable solution

when a problem or game contains a large enough search domain. It is also useful for

solving nonlinear problems.

19

GA is used in RTS to adapt the computer strategy, to exploit the human player’s

weakness and define the behavior of individual units rather than a group. ‘Cloak,

Dagger, DNA’ (CDD) are examples of GA use in RTS games. In CDD, the players

share in the ’DNA’ that is responsible for monitoring and storing performance. GA is

used in RPG or FTS to evolve behaviors associated with characters and events.

5. Intelligent Agent in Games

This is a software agent seen in an environment and acting in that environment to

attain goals using an evaluative function, also called a heuristic function, to help the

agent to decide on the best value. In addition, agents have studied many problems in

AI. Games are ideal environments for agents because they use realistic environments,

but there is a limitation in available information, as decisions must be made under time

and pressure constraints. Generally, agents in games use a sets of FSMs and any other

techniques or any combination of some or all of the techniques that resolve specific

problems and make it possible to send messages.

The agent has the ability to take decisions and perform tasks to attain their goals

as humans do. Every game that includes an AI can be said to be using some form

of agent. In FTS or RPG, the monster would be an active agent and more suited

to simply reacting to what is happening in the game. Strategy games need to be

planned carefully, especially when planning a movement that will happen later in the

game. A good architecture for an RTS agent is necessary to ensure success. In Empire

Earth, the RTS contains several components called managers. There are managers

for civilizations, buildings, units, resources, research and combat. The civilization

manager is the highest level manager responsible for the player’s development and

for coordinating between other managers. The other managers are lower-level and

responsible for sending requests and reports to each other. Weddle et al [142] creates

Figure 2.2 which shows the links between the most popular agent characteristics and

the most popular games.

20

Figure 2.2: Link Between Popular Agent Characteristics and Popular Games [142].

6. Machine Learning in Games

This is a process of learning in games, which generally implies the adaptation of be-

havior for opponent players in order to improve performance. Machine learning may

help to cover the search space in computer games and search efficiently for successful

combinations of parameters[116]. Machine learning can either take place online or of-

fline.

Machine learning is also used in NPC. Machine learning can be employed to automate

the creation of intelligent NPC behavior. Machine learning appears in old games such

as Tic-Tac-Toe, Backgammon, Go, Othello, and Checkers. Recently, machine learning

techniques have begun to appear in video games, as well as in fights, in first- and third

person shooter games and also in strategy games.[29]

21

7. Fuzzy State Machine (FuSM) in Games

There is a mix between fuzzy logic and FSM. Instead of only using an ”on” or ”off”

state, we add ”almost on” or a ”little on”. FuSM are increasingly used in game play

because they add interesting and varied responses to the NPC. Therefore, the player can

interact with the NPC that can depict various degrees of ‘mad’, ‘wounded’ or ‘helpful’,

and the player can also test different experiences and obtain different outcomes in

similar situations when playing a game.

FuSMs were used in FPS to make the enemy appear intelligent. Based on the elements

in the battle situation, fuzzy logic is used to enable enemy characters to run away when

losing a battle[116]. Also, they are used in CCTP, which is an RTS game. FuSM is used

in RPG, to target the points of NPC and agents, and is ideal for controlling the behavior

of game characters and for imbuing them with variable actions and reactions.[77]

Table 2.2 shows the links between the popular AI in games.

Table 2.2: AI In Games.

AI Game type Game name

FSM, FuSM FPS- RTS Doom, Quake, unreal, CCTP

GA RTS CDD

Agent Action game RTS S.W.A.T2, CCTP, Empire Earth

NN
Racing, Action, Adventure,

Strategy games

Dirt Track Racing, Battle-cruiser

3000AD, Heavy Gear

GA RTS CDD

Fuzzy logic Adventure, Strategy games SWAT, CCTP

22

2.4 Game Engine

Game engine is a software system designed for the creation and development of video games.

The core functionality that is typically provided by a game engine includes a rendering engine

(“renderer”) for 2-D or 3-D graphics, a physics engine for collision detection and response,

and a scene graph for the management of both static and animation models, sound, script-

ing, artificial intelligence, networking, streaming, memory management, threading, etc. [98]

There are many game engines available and the majority are user friendly. Modern games

are frequently developed using game engines, which can be deployed on personal computers,

game consoles, pocket PCs and mobile devices [110], and combine several technologies from

the area of computer science, such as: graphics, artificial intelligence, network programming,

languages and algorithms. Game engines are designed to manage multiple levels of program-

ming expertise. They are divided into roll-your own versions (lowest level), mostly ready

game engines (mid level) and point and click engines (highest level). In the following, we

will explain the most popular game engine.

2.4.1 3DUnity

Point and click engines are becoming more common because they include a full tool chain

that allows the user to point and click to create a game. 3DUinty is an example of this game

engine. It is a free game engine development tool for individual and professional use, which

is one of the best game engines on the market. It is very easy for developers to use and

they can easily get to it. Because of the friendly interface it is relatively easy to understand

almost all the sections within a few minutes of using it. There are many tutorials available

online to find out about it. It has a very high graphic quality and always keeps improving.

The graphics almost look real and have real time lighting and shadows, and more. 3DUnity

has great realistic physics such as rigid body. Colliders and soft bodies help to make the

game more real, making it easy to attach them to the game. With plug-ins in the asset store

23

it becomes much easier to make the game more realistic. It is easy for most users to use

3DUnity as any additional help required is provided by 3DUnity solutions on the asset store.

Using 3DUnity one click is enough to publish the game to multiple platforms, such as Xbox

360, PS3, Wii, Mac, Pc, Linux, Web, Adobe Flash, Android and IOS. With all the platforms

supported it is easy to distribute the game [9]. The Unity engine’s scripting/programming is

built on Mono, an open source .NET implementation. There are three programming language

choices: C Sharp, Unity Script (which is basically Javascript), and Boo (a language intended

to be similar to Python) [1].

3DUnity also allows the game to be developed in multiple platforms. The advantages are

the following:

• Provide students with a degree of freedom in developing games for the platform of their

choice.

• Learn about the strengths and constraints of different platforms, for example user

interface, viewing screen size, resolutions, resources such as memory and processor

power, storage for saving and loading the game, in game development [149].

For our game creation, we have selected 3DUnity as the game engine because it operates at

a high level and can be published easily to many platforms.

2.4.2 Unreal Development Kit (UDK)

UDK is an example of a mostly ready game engine that is instantly ready for prime time,

out of the box, with rendering, input, GUI and physics. The UDK engine was used for

the AI, graphics and every other feature of the game aside from the physics. This was

outsourced another engine called ‘Havok’ to power the physics in the game; this is an example

use of middle ware. UDK has two version one is the free for non-commercial use, and

for commercially usable. UDK is a somewhat daunting for people who are new to game

development, although it is not impossible to learn how to use it, but it requires extra

24

learning. It is anticipated that in the new UDK version the interface will be much better

and more intuitive. The graphics are pretty mind blowing, the lights are advanced in the

game engine, and can dynamically render the light maps and illuminations for runtime, and

most of the other staff. This makes it possible to use hundreds of objects and textures from

the game to create new levels, but importing one’s own data is also an option. UDK supports

two different programming languages: Kis-met, used for basic scripting, and script for other

scripting. The developers can work only on PC, and their work can be published to iOS,

Android, Xbox, PS3 and Windows [3].

2.4.3 XNA

Microsoft XNA is one of the best options in the game industry currently. It’s a .NET

programming package that lets the user prepare any small to medium sized game they are

capable of coding, and then it allows the user to share their creation with the world on Xbox

Live [15].

Brains is an A.I library for use with XNA games. It consists of a few building blocks to get

the user quickly up and running with an A.I prototype that is simple to implement into the

game. It is currently only 2D but would not require too much modification to support 3D.

Brains A.I will also contain a list of Agent types. This type is used to provide autonomous

behaviors to the game. An Agent stores some simple positioning properties, such as Position,

Radius and the Cells the Agent is currently in. It also stores the desired orientation and the

desired position of the Agent for use with a Locomotion controller. An Agent can store a

set of feelers, which can be used to poke data around the world [6].

2.4.4 Blender 3D

Blender 3D is an open source freeware program maintained by the Blender Foundation.

Learning Blender is not easy but it has limitless possibilities and provides an understanding

25

of the complexities of computer animation. Blender has developed over time and its devel-

opment has evolved new releases (versions) of the program that have been made available.

The program reached a stage where the developers called for a complete overhaul of the

Graphical User Interface (GUI) [2]. Blender is used to make real-time interactive content

and is written from scratch in C++ as a mostly independent component; it includes support

for features such as Python scripting and OpenAL 3D sound.

Simulations of realistic physics behavior in blender are possible due to the Blender Game

Engine (BGE) module. This module uses a system of graphical logic blocks (called logic

bricks) to control behavior and visualize objects located in the 3D scene. All the object at-

tributes and methods (functions) of the BGE are available for users through Blender Python

API, and all of these can be used in the custom controllers implemented in the Python

programming language[128].

2.4.5 Game Maker

Game maker is a game engine created by YoYo company and it uses the Android, Browser,

iOS, Mac, PC and Windows Phone platforms. Game Maker is primarily used for 2D game

creations with flexibility in design, and can be bad or good depending on user requirements.

Its interface hides most of the coding involved and lets users input data rather than writing

lines of code, but those who want to dive into coding can do so in advanced areas of the

program. If the user is prepared to undertake programming then it is possible to customize

the creation into many genres, but if the user is concerned about programming, then there

will be restrictions on sidescroller and top down perspective games [7].

2.5 Game Architecture

One of the important considerations in the game research area is the architecture of the game

that the developer will use. We have adopted general game architecture from [27] as shown

26

in the Figure 2.3. This game logic holds the game’s story. The audio and graphics are the

modules that help the writer to narrate the story to the player. The event-handler and the

input modules supply the game logic with the player’s next action. The level data module

is a storage module for details about static behavior, and the dynamics module configures

the dynamic behavior of the game’s characters [27].

Figure 2.3: General Game Architecture[27].

2.6 Game Engineering

Contemporary game creation is an incredibly complex task, much more difficult than some-

one might initially imagine. This is because of the increased complexity combined with the

multidisciplinary nature of the process of game development (art, sound, gameplay, control

systems, artificial intelligence, human factors, among many others). The interaction with

traditional software development creates a scenario that also increases this complexity. To

make this connection, we need a methodology to take into account software engineering ex-

pertise in the field of gaming. As we know, the gaming industry is a very powerful sector

within the entertainment industry, earning billions of dollars in profit and creating trillions

of hours of fun [112].

27

There is a strong relationship between agent and games as explained previously in this chap-

ter. The proposed AOAB will combine the concept of agent with the creation of a generic

game development methodology. In the following two chapters, we will explain the agent in

general and later we will explain AOSE methodologies in detail.

2.7 Summary

In this chapter, an analysis of the use of AI in commercial gaming and in research games is

presented. The main goal when using AI in games is to simulate intelligent behavior and to

make the games believable, challenging and fun at the same time. It also helps to find the

most optimal action for the available information.

In terms of marketing, the focus is on features, such as graphics and physics known to include

AI features in commercial games. Some of the AI techniques used were FSM, Agent and

decision making, because they are simple. Other AIs need extra resources faster CPUs and

extra run time, such as GA and NN. In addition, many games could be used with more than

one set of AI techniques, depending on the game requirements.

Furthermore, some AI concepts could linked together, for example NN could be used with

fuzzy logic. In conclusion, the aims is to enable academics and commercial experts to use

standard design and implementation features in game AI.

Chapter 3

Agents Technology: An overview

28

29

3.1 Chapter Overview

Nowadays software agents have evolved to a stage at which they have the ability to act

autonomously, proactively and cooperatively. These new developments make it possible to

delegate intelligent agents for use in games. These agents can learn the preferences of a

player and search for offers that match those preferences. The concept of an agent is become

important in AI, games and computer science.

The aim of this chapter is to introduce the most important theoretical and practical issues

related to agent. This chapter began with an explanation of agent technology, and the

agent typology is presented with an explanation of the relationship between them. However,

knowing the difference between agent and object will help the user attain a clear vision. One

of the main and important elements used in the game is the Multi Agent System(MAS).

Furthermore, we have presented a description of agent communication and the platform.

Agent modeling language will be used in our AOAB methodology. The final section explains

the agent oriented service and intelligent agents used in games.

3.2 Agent Technology Overview

The term agent has many definitions and yet no consensus has been reached about what it

means. A simple definition of an agent is a software unit that possesses autonomous behavior

toward its own service and relationships with other agents. However, the most common

definition in the software agent community is that stated by Wooldridge and Jennings [147].

They state that an agent is a software program that has the following properties:

• Autonomy: The agents operate without the direct intervention of humans or others,

and have control over their actions and internal states;

• Social ability: Agents interact with other agents (and possibly humans) via exerting

some form of control over their actions and internal states;

30

• Reactivity: Agents perceive their environment (which may be the physical world),

as a user via a graphical user interface, a collection of other agents, the Internet (or

perhaps all of these combined).

• Pro-activeness: Agents do not only simply respond to their environment, but also

exhibit goal-oriented and goal-directed behavior by taking the initiative.

From the viewpoint of AI researchers, an agent is a computer system with the attributes

mentioned above. It is either conceptualized or implemented using concepts more usually

applied to humans, such as knowledge, belief, intention, and obligation (and sometimes

emotion). Some additional attributes of an agent are:

• Mobility: The ability to move around an electronic network. The agent is used

heavily on the Internet to support Internet applications on the Internet framework

• Veracity: The assumption of not communicating false information knowingly.

• Benevolence: The assumption of not having conflicting goals.

• Rationality: The assumption of acting with a view to realizing its goals, instead of

preventing them.

There are different impacts from agent technology design in application domains, which in-

clude assistance in the designing of complex distributed systems, which is a source technology

in computing systems and a model for complex real world systems. One of the most well

known agent applications is video games, which have become a large component of many

peoples’ lives. The application of agent technology in video games has many aspects. One of

the obvious benefits of video games is the elimination of risk to human life that is involved

in a real world application. They also make an excellent test for techniques in Artificial

Intelligence. However, there are some general attributes and characteristics that distinguish

agents [88].

31

3.3 Agent Typology

Agents have different definitions based on their application. Because of this multiplicity,

different types of agents have been introduced. Agents can be classified according to several

ideal primary attributes, which each agent should exhibit. We have identified a minimal list

of three: Autonomy, Learning and Cooperation [20].

• Autonomy the agents can operate on their own without the need for human guidance.

Hence, agents have individual internal states and goals, and act in such a manner as

to meet their goals on behalf of the user.

• Cooperation with other agents is paramount. It is the reason for multiple agents

instead of just one. In order to cooperate, agents need to possess a social capability.

• Learn for agent systems to be truly smart, they have to learn as they react and/or

interact with their external environment [147].

We use these three minimal characteristics in Figure 3.1 to derive four types of agents to

include in the typology: Collaborative Agents, Collaborative Learning Agents, Interface

Agents and truly Smart Agents or Intelligent Agent [106].

Figure 3.1: A part View of an Agent Typology [106]

In principle, by combining all the previous parameters, we have summarized all the types as

shown in Figure 3.2.

32

Figure 3.2: A Classification of Software Agents

3.4 Agent Versus Object

Agent Oriented Development (AOD) is an extension of Object Oriented Development (OOD).

The word ”Development” is sometimes interpreted as ”Programming”; in addition, it is fre-

quently interpreted to include the full development process covering requirements specifica-

tion and design, in addition to the programming itself. Shoham et al [123] have discussed

the compression between agent and object, as shown in Table 3.1

Table 3.1: Object Oriented Programming Versus Agent Oriented Programming

OOP AOP

Basic unit Object Agent

Parameter defining unconstrained beliefs, commitments, capabili-

ties, choices,...

Process of computation message pass and response

methods

message pass and response

methods

Type of message unconstrained inform, request, offer, promise,

decline,...

Constraints on methods none honesty, consistency

1. Basic unit

The points listed below show differentiation between agents and objects:

33

• Agents may communicate using an Agent Communication Language (ACL), whereas

objects communicate via fixed method interfaces.

• Agents have the quality of volition. That is, using AI techniques, intelligent agents

are able to judge their results, and then modify their behavior (and thus their

own internal structures) to improve their perceived fitness.

• Objects are abstractions of things like invoices, and agents are abstractions of

intelligent beings. They are essentially anthropomorphic. Note that this does not

mean that agents are intelligent in the human sense, only that they are modeled

after an anthropomorphic architecture, programmed with beliefs, desires, etc.

2. Parameters defining state of basic unit

AOP agents comprise beliefs, commitments, choices, and the like and communicate

with each other via a constrained set of speech acts, such as inform, request, promise,

decline. The state of the agent is termed its mental state.

3. Process of computation

An object’s message may request only one operation, and that operation may only be

requested via a message formatted in a very exacting way. An object oriented message

broker has the job of matching each message to exactly one method invocation for

exactly one object.

Agent-based communication can also use the OO invocation method. However, the

demands that many agent applications place on message content are richer than those

commonly used by object technology. While ACL is formal and unambiguous, its for-

mat and content varies greatly. In short, an agent message could consist of a character

string, whose form can vary while obeying a formal syntax. Meanwhile the conventional

OO method must contain parameters whose number and sequence are fixed.

4. Type of message

Agents are commonly regarded as autonomous entities, because they can look out for

34

their own set of internal responsibilities. Furthermore, agents are interactive entities

capable of using rich forms of messages. These messages can support method invoca-

tion as well as informing agents of particular events, asking something of the agent, or

receiving a response to an earlier query. Finally, because agents are autonomous they

can initiate interaction and respond to a message in any way they choose. In other

words, agents can be thought of as objects that can say ”No” as well as ”Go”.

Due to the interactive and autonomous nature of agents, little or no integration is

required to launch an application physically. Objects, on the other hand, are conven-

tionally passive with their methods being invoked under a caller’s control. The term

autonomy barely applies to an entity whose invocation depends solely on other system

components [6].

5. Constrain on method

Usually, object classes are designed to be predictable to facilitate buying and selling

reusable components. Agents are commonly designed to determine their behavior

based on individual goals and states, as well as the states of ongoing conversations with

other agents. While OO implementations can be developed to include nondeterministic

behaviour, such thinking is common in agent-based modes.

3.5 Multi Agent System (MAS)

There is no fixed definition of a MAS, only an agreement regarding the most common fea-

tures like multiple agents acting in one environment. Each agent with specific goals. The

communications are between the agents themselves and between agents and the environment.

The actions affecting the common environment of all the agents in order to solve problems

that are difficult or impossible for an individual agent to solve. MAS is the subfield of AI

that aims to provide both principles for the construction of complex systems involving mul-

tiple agents and mechanisms for the coordination of independent agents’ behaviors. Some

35

domains require MAS. In particular, if there are different people or organizations with dif-

ferent (possibly conflicting) goals and proprietary information, then MAS is necessary to

handle their interactions [20]. From an individual agent’s perspective, MAS differs from

single agent systems, most significantly in that the environment’s dynamics can be affected

by other agents. In addition to the uncertainty that may be inherent in the domain, other

agents intentionally affect the environment in unpredictable ways. Thus, all MAS can be

viewed as having dynamic environments [129].

MAS is a promising approach and has the ability to meet new demands. The intelligent

agent must have appropriate characteristics (i.e. autonomy, pro-activity, etc.), as these are

necessary to meet the requirements of the new application. Unfortunately, there is a dis-

connection between the advanced technology created by the multi agent community and its

application in industrial software. The obstacles to industrial adoption have been the focus

of several discussions. Jennings, et al. [75] mentioned two major obstacles to widespread

adoption of agent technologies within the industry:

• The lack of complete methodologies and processes to help designers to specify, analyze,

and design agent-based applications.

• The lack of industrial strength agent-based toolkits.

An alternative approach to defining industrial strength methodologies that have gained sup-

port in the AOSE community is situational method engineering, which promotes flexibility

in MAS methods and processes [50].

In a MAS, each agent is aware that it does not possess a global view of the problem and

that it cannot solve the problem in isolation, thus it relies on interaction and coordination

with others. Nevertheless, it is still programmed to operate autonomously to compete for

the satisfaction of its own self-interest, which it believes are benevolent to the overall goals

of the group. Fundamental to a MAS environment is the ability for agents to demonstrate

social interaction with other agents. As with human social contexts, how agents go about

36

interaction depends on their role and the relationship they have with the target agent [145].

Within the AOSE area, multiple methodologies have been proposed to guide the MAS de-

velopment process, such as: Gaia, Tropos, INGENIAS, MaSE, MASSIVE, etc. Taking into

account several of these methodological proposals we can see that different abstractions

or terms have been proposed for the characterization of the MAS; the abstractions most

commonly identified are:

• Agents: autonomous and proactive software entities, which achieve their objectives by

interacting with each other and are present in a particular environment;

• Actors: an abstraction of autonomous behaviour, internal or external to the system,

which has some interest in it and helps define roles.

• Roles: Define the behavior of the agent, and have associated goals and specific tasks

to be carried out within the context of the organisation;

• Goals: Define the objectives of both the general system of each actor. Each goal may

relate to functional aspects (associated with the services) or functional (associated with

quality of service);

• Tasks: A structured set of activities essential to achieve a goal;

• Restrictions: The restrictions allow us to define the desired behavior for both the

organization and each agent;

• Interaction between agents: Typically, the agents operate within a context in which

they need to cooperate, compete or communicate solely with them to achieve their own

goals;

• Interactions with the environment: Agents typically operate in an environment with

which they may have to interact (detect and affect) depending on their roles, and their

current status;

37

• Resources: These are specific components of interaction with the environment;

3.6 Existing Agent-based Development Methodologies

The aim of this section is to introduce the AOSE methodologies in general. Those method-

ologies will be explained in details in Chapter four pages 47.

An agent-oriented software engineering methodology is a business process of developing soft-

ware, equipped with distinct concepts and modeling tools, in which the key abstraction used

in its concepts is that of an agent [18].

Luck et al., [93] surveyed the existing agent-based development methodologies and classified

them based on their approach, scope basis, phases they cover, syntax and semantics appli-

cation area, and type of agency support. The diagram in Figure 5.4 outlines classification

of the existing agent-oriented software engineering methodologies.

Figure 3.3: Categorization of AOSE methodologies [93]

The existing non-agent software development methodology does not possess the capabilities

to design agent abstractions or address the software agent abstraction. This is because

agent software system has unique abstraction and for the success of its analysis, design and

implementation a tailor-made development process is a prerequisite requirement[26]. We

have explained the non-agent methods that have been used in games in details in Chapter

four pages 43. In Chapter five pages 68, we have explained the problem with current game

development methodologies that doesn’t deal with agent concept in games.

38

3.7 Agent Communication

Agents have the ability to communicate with other agents, applications, and humans. This

communication includes sending and receiving messages to achieve their goals, or those of

the society/system in which they operate. Communication can enable agents to coordinate

their actions and behaviors to build more coherent systems. The degree of coordination

is the extent to which unnecessary activities can be avoided. Cooperation is coordination

among non-antagonistic agents, while negotiation is coordination among competitive agents

[145]. The Foundation for Intelligent Physical Agents (FIPA) is an ACL, and is a set of one

or more message parameters that include for example sender, receiver, performative role,

and content which is expressed in a content language.

3.8 Agent Platforms

Agent platforms are used to provide more realistic modeling of agents in the real world. The

platform becomes necessary for agents to communicate with each other using appropriate

protocols, to notify agent’s presence on a platform, and present common standards for agents

to work together. The platforms differ according to their features, abilities, and common

standards. There are some tools and environments that support agent developers, which

are mostly based on the Java programming language. These include ZEUS toolkit, Java

Agent Development (JADE), JACK Intelligent Agents, Java Agent Template (JATLite),

Open Agent Architecture (OAA), Foundation for Intelligent Physical Agents-Open ,Source

(FIPA-OS), IBM’s Agent Building and Learning Environment (ABLE), and Agent Builder

[59].

3.9 Agent Modeling Language(AML)

The modeling language for MAS is an important subfield in the research into MAS technol-

ogy. Researchers and organizations have proposed some methodologies in the development

39

of MAS for the purpose of helping developers to ease the development process and solve

the internally complex problems of MAS [122]. In the software engineering domain, Unified

Modeling Language(UML) offers a standard way to specify, visualize, modify, construct and

document the artifacts of an object oriented software-intensive system that is under devel-

opment. The most significant motivation driving the development of AML was the extant

need for a ready-to-use, comprehensive, versatile and highly expressive modeling language

suitable for the development of commercial software solutions based on multi agent tech-

nologies [138].

The AgentTool supports the methodology analysis and design phases. Through this tool,

it is possible to represent security, authentication and report issue using the roles, Concur-

rent Tasks and Agents Class Diagrams. This provides the analyst with the responsibility to

monitor the project progress and keep the diagrams updated throughout the project phases

[125].

3.9.1 AgentTool 3

A useful agent tool, which has been used with MaSE methodology is AgentTool 3 (aT3);

this tool is a product of the Multi agent and Cooperative Robotics (MACR) Laboratory

at Kansas State University. AgentTool is a Java-based graphical development environment,

designed to help users analyze, design, and implement MASs. The initial version of aT3

is an Eclipse plug-in that will give the agent system designer unprecedented flexibility, yet

still retain the verification capabilities previously provided [10]. In our practical work we

have used AgentTool to create a goal diagram, role diagram, and an agent class diagram.

The AgentTool3 web page [10] contains the latest version to download and includes tutorials

and examples. We have used the software QSEE, which is UML model software to create a

sequence and deployment diagram.

40

3.10 Agent Service- Oriented Computing

Service-oriented computing (SOC) is a computing paradigm that utilizes services as fun-

damental elements for developing applications/solutions. SOC has emerged as a powerful

paradigm for designing distributed and Internet based systems. The interaction between

agent and service can enhance the function and range of the agent; while the dialog between

Agent Based Computing (ABC) and SOC can integrate bilateral benefits from both, which

are more suitable for building enterprise applications. In general, agent and service are two

independent computational concepts. ABC presents unprecedented computational intelli-

gence of flexibility and autonomy when modeling complex software systems. However, ABC

faces many challenges from distributed and especially Internet computing[37]. SOC is good

at integrating and managing Internet based enterprise, and wrapping legacy applications.

The capabilities of ABC and SOC are quite complementary. For the internal qualities of

applications, it is the agent and ABC that do well; while service and SOC are more suitable

for implementing the software as a service initiative, and application to application architec-

ture. The integration of each can benefit the other in the construction of a more powerful

computational system [69]

3.11 Intelligent Agent in Games

The question that remains is “What is an intelligent agent?” The qualities of an intelligent

agent fulfil the four properties of agency, as explained in the definition of agent. They also

include additional concepts including notions on the Belief Desire Intention model (BDI)

of agency as an example of the application of such notions, emotional abilities and the

representation of the agent through visual means, perhaps through a cartoon or an animated

face [104]. Intelligent agents have been used in a vast range of applications. For this reason,

it is of value to identify the application areas of greatest relevance to work on designing

agents for interactive entertainment (IE) purposes. For IE agents, the environment is a

41

virtual world in which interaction takes place and becomes ever more complex. A number of

attempts have been made to design NPCs for computer games using agent-based techniques.

This work identifies a potential intelligent agent architecture for use in IE applications.

Agents in IE applications must be able to engage the user (or player) in interesting and,

obviously, entertaining interactions. In addition, NPCs must appear to engage other NPCs

in interesting social interactions.

3.12 Summary

Agent technology is used in a wide variety of applications, ranging from comparatively small

systems to large, complex, and mission critical systems. In this Chapter, we have presented

the main concepts linked to agents. Furthermore, we have presented the most popular agent

typologies, and the relationship between them. Intelligent agents have been used for a vast

range of applications particularly in the context of gaming.

Chapter 4

Critical Review Of Methodologies

42

43

4.1 Chapter Overview

In method engineering, the literature uses several terms. The most popular among these are

methodology, method, process and model. In our thesis, the terms method and methodology

are used synonymously with a process model, while the process is used as an instance of the

method or process model. In this chapter, we will begin by describing a Software Engineering

methodology that is used in game development methodologies, such as Agile methodology.

The next step is to present the AOSE methodology to select one as a hybrid, with an Agile

methodology, to create our AOAB methodology. The main aim of this chapter is to present

current methodologies, and establish our game development methodology framework, which

includes different criteria to select a suitable AOSE methodology as a game development

methodology.

4.2 Overview of Software Development Methodologies in Games

Game development has evolved to include large projects employing hundreds of people and

development time is now measured in years. Unlike most other software application domains,

game development presents unique challenges stemming from multiple disciplines, which con-

tribute to the games. There are many methodologies available in traditional systems and

software development. Some of these methodologies include Waterfall, Incremental, Proto-

typing and Spiral. Each is structured as either linear or iterative, although sometimes a

hybrid of both, and is usually used in game development methodology. Most linear man-

ner methodologies are classified as predictive, even if they contain some iteration; although

these usually follow sequential phases, such as Waterfall methodology. The prototyping

methodology involves breaching the system into small segments, and involves the user in the

process. The Spiral methodology combines linear and iterative frameworks. Spiral develop-

ment breaks the projects down into the number of cycles, all of which then follow a set of

increasingly larger steps.

44

The majority of methodologies selected for use by game developers can be described as

predictive, i.e. comprehensively planning a separate task prior to actual development; or

adaptive, i.e. using multiple iterations and prototypes to shape a game and its design based

on feedback and analysis [70]. In the following section, we focus on the most popular adap-

tive software development methodology ‘Agile’, which is mostly used in game development

methodology.

4.2.1 Agile Methodology

Agile methodology is based on implementation of documentation with customer collabora-

tion, and has the ability to solve problems and make precise changes quickly. Agile methodol-

ogy is used as an alternative to traditional methods in game development. It retains essential

practices of traditional methodology with a focus on other project dimensions, such as col-

laboration with the user at all stages of development. Furthermore, it depends on iterative

and incremental development, with a very short iteration that helps to provide custom-made

solutions.

As the use of Agile developments has increased, a number of different methodologies have

surfaced. Some were derived from Agile, others from systems that have been in use, but

these were never fully defined or applied to software development. One such method was

Scrum [97]. The main characteristics of Agile methodologies were: customer cooperation,

simplicity, individuality, interaction, adaptability and being incremental. These character-

istics have been brought together to understand an approach to game development based

on an Agile methodology [65]. The Agile methodology as mentioned earlier is an iterative

and incremental approach. It achieves quality and productivity through iterations. Each

iteration or Sprint phase includes a software development team working through a full soft-

ware development life-cycle, including planning, requirements analysis, designing, coding,

unit testing, and acceptance testing, as shown in Figure 4.1, which was adapted from [136]

and [99].

45

Figure 4.1: Agile Methodology Diagram [136] [99]

The Agile phase approach diagram, which is used by Keith [80] as shown in Figure 4.2,

shows that Agile methodology is based on iterations that could trigger new iterations before

completion of the previous iteration.

Figure 4.2: Agile Phases Approach [80]

Agile methodology allows use and application through the iterative development framework

Scurm [80]. The Scurm game development method is an Agile process that manages game

development using iterative and incremental approaches, which are the life of the game

project. It works in game development methodology by breaking down the process of creating

a game into a series of tasks, named ”Sprint”. To facilitate work with Sprint, the game

developer breaks the games down into groups of related tasks or features that must be

recorded in the Product Backlog. As mentioned in Figure 4.1, every two to four weeks at

the end of Sprint phase, the whole team meet to discuss the current state of games, and to

improve a version of the game with stakeholders, and to select new tasks from the backlog.

46

According to [80], the Agile game development with Scurm could be labeled an iterative and

adaptive model.

4.2.2 Industry Game Design and Development Methodology

Most game development companies or organizations will need to take decisions regarding

methodology, applications and hardware and software technology selections. To remain in

business an organization must invest in appropriate new technologies. In all of these cases

the organization is attempting to understand and balance a number of competing concerns

regarding new technology [36]. These concerns include:

• The initial cost of acquiring the new technology;

• The long term effect on quality, time to market, and overall cost of the organization’s

products and services when using the new technology;

• The impact of introducing the new technology into the organization in terms of training

and other necessary support services;

• The relationship of this new technology to the organization’s overall future technology

plans;

• The attitude and actions of direct competitor organizations with respect to the new

technology.

Major software companies are interested in video game development due to the high industry

revenues and growing capabilities [13]. Games in this industry area have three main stages;

the preproduction stage, when the games are designed and deliverable named GDD. Then,

in the production stage, the GDD is used for software design, development and validation.

In the post-production stage, games are distributed and monitored following delivery, with

the purpose of taking any required corrective action, as well as an analysis of the company’s

expectations regarding the sales and performance of the game product [117]. By contrast,

47

in some other industries, the game development process has only two stages: preproduction

and production. However, these two stages involve several phases, such as an analysis phase

and a testing phase. Figure 4.3 is adopted from [94] and illustrates the details of the phases

of each stage.

Figure 4.3: Games Development Process [94].

4.2.3 Agent Oriented Software Engineering (AOSE) Methodology

Within recent years, and with the increase in the complexity of projects associated with

software engineering, many AOSE methodologies have been proposed for development[18].

At present, the intelligent agent-based system applies to many domains, including robotics,

networks, security, traffic control, games and commerce. As part of our work, we focused on

the AOSE methodology to apply this to the game domain.

During the last decade, many methodologies for developing agent-based systems have been

invented to solve different types of problems. In general, a methodology must contain the

guidelines to cover the entire life cycle, and should provide the following: a full life cycle

process; a comprehensive set of concepts and models; a full set of techniques (rules, guidelines,

protocol); a fully delineated set of deliverables; a modeling language; a set of metrics;

quality assurance; coding (and other) standards; reuse advice; and guidelines for project

management. The relationships between these components are shown in Figure 4.4 [130].

48

Figure 4.4: Methodology Components and Relationships Between Them [130]

4.3 AOSE Methodology Types

AOSE has been categorised into different major classes based on influencing approaches:

• Methodologies based on knowledge engineering approaches such as MAS-CommonKADS

and Tropos, which focus on agent knowledge level concepts.

• Methodologies based on object oriented approaches, such as MESSAGE/UML and

Prometheus, which focus on object oriented concepts.

• Methodologies based on existing software engineering methodologies, focusing on state

machines and components such as MaSE [132].

While some methodologies cover from the start to the end of the life cycle such as Tropos and

MaSE, the six methodologies chosen were: Gaia, MaSE, MESSAGE, MAS-CommonKADS

Prometheus, and Tropos. In the next section, we briefly describe each of these.

4.3.1 MaSE Methodology

MaSE stands for Multi Agent Systems Engineering. It is a complete life cycle methodology

that helps the developer work with a MAS from start to the end. This means that it describes

49

the process guiding the system developer from the initial system specification to system im-

plementation. The first phase begins with requirement collections and goal capture. The

second phase deals with analysis, which includes three steps: capturing goals, applying use

case scenarios and refining roles. The design phase has four steps: creating agent classes;

constructing conversations; and assembling agent classes and system design. At each step,

related models are created. Models in one step produce outputs that then become inputs

for the next step, supporting the traceability of models across all components. Furthermore,

there is the possibility of free access between components in each phase, as shown in Figure

4.5 [49].

MaSE combines several pre-existing models into a single structured methodology. The ma-

jority of the models used within the methodology have therefore already been justified and

validated within the realm of agents and MAS. A sequence of guided transformations con-

nects the elements with a strong foundation together into a clear high specification image,

detailing how a designer should go about creating MAS [144].

The advantage of MaSE as an agent tool supports analysis and design in each of the seven

MaSE steps. In addition, the MaSE methodology operates independently of any particular

agent architecture, programming language or communication framework [48]. The goal of

MaSE is to guide the system developer from the initial system specification stage to system

implementation [51] [49].

50

Figure 4.5: MaSE Life cycle [49]

4.3.2 MESSAGE Methodology

MESSAGE stands for Methodology for Engineering Systems of Software Agents, which is not

a complete life cycle methodology. The life cycle contains only analysis and design activities

and ignores the implementation and testing. The aim of MESSAGE is to extend existing

methodologies to allow them to support AOSE, and in particular effects the needs of the

telecommunications industry.

51

In the ”Data level”, the MESSAGE uses standard UML, while at the ”knowledge level”

meta-model concepts are used, adding new meta-concepts such agent, goal and task. The

meta-model also provides a declarative interpretation of some UML concepts, which are then

used to describe the relevant behavior. The Rational Unified Process (RUP) is used as a

coarse-grained iterative process model. The lifecycle model of RUP for software development,

which provides a generic software engineering project life cycle framework is adapted to

MESSAGE [46].

MESSAGE is developed based on a view-oriented approach. The analysis and design phase

are shown in Figure 4.6, and contain five different viewpoints: Organization view (OV),

Goal/Task view (GTV), Agent/Role view (AV), Interaction view (IV) and Domain view

(DV). The different views provide a comprehensive representation, while the design phase

is not well-documented and provides flexibility in the sense that the designers are allowed

to choose between different design approaches [46]. The MAS organization and architecture

driven design approach are considered the target systems as organizations of several agents.

Figure 4.6: The MESSAGE Work Flow [46]

52

4.3.3 Gaia Methodology

Gaia is an agent oriented analysis and design methodology. It is applicable to a wide range

of MAS and is comprehensive. It handles both macro-level (societal) and the micro-level

(agent) aspects of systems [146]. The Gaia methodology includes two analysis models and

three design models, as shown in Figure 4.7. The analysis phase is based on well-defined

concepts, which represent a subset of conceptual needs in agent analysis. The main goal of the

design phase is to produce a sequence of steps, an identifiable set of models, and indicate the

interrelationships between the models. Gaia guides designers to build agent-based systems,

as a process of organizational design.

Figure 4.7: Gaia Life cycle [146]

53

4.3.4 Prometheus Methodology

Prometheus has a complete life cycle methodology for developing intelligent agents, which

have evolved out of industrial and pedagogical experiences [109]. The goal when developing

Prometheus is pursued by industry practitioners and undergraduate students who do not

have a background in agents and who can use to develop intelligent agent systems. Much of

the existing methodology does not support an intelligent agent. In the Prometheus method-

ology, it supports the development of BDI, which renders it useful in many areas. One of

the advantages of this methodology is the number of places in which automated tools can

be used for consistency checking across the various artifacts of the design process [109]. The

Prometheus methodology consists of three phases: the system specification phase, architec-

tural design phase and the detailed design phase as shown in Figure 4.8.

Figure 4.8: Prometheus Life cycle [109]

54

4.3.5 MAS-CommonKADS Methodology

MAS-CommonKADS extends the knowledge engineering methodology, Common KADS,

with techniques to object-oriented and protocol engineering methodologies. MAS-Common

KADS covers the software development life cycle of MAS through reusable development mod-

els. The software process model combines a risk-driven approach with a component-based

approach [71]. MAS-Common KADS has six models for analysis, and three for design, as

shown in Figure 4.9. These models are comprehensive and the method lacks a unifying

semantic framework and notation.

Figure 4.9: MAS-CommonKADS Life cycle

4.3.6 O-MaSE Methodology

O-MaSE denotes an organisation-based multi agent software engineering methodology frame-

work, which integrates a set of concrete technologies aimed at facilitating industrial accep-

tance through situational method engineering. Specifically, O-MaSE is a customisable agent

oriented methodology based on consistent, well-defined concepts supported by plug-ins in

an industrial strength development environment. The goal of the O-MaSE methodology

55

framework is to allow method engineers to build custom agent oriented methods using a set

of method fragments. To achieve this, O-MaSE is defined in terms of a meta-model. The

O-MaSE meta-model defines a set of analysis, design, and implementation concepts, and

portrays a set of constraints between them.

O-MaSE depicts the roots of the original MaSE methodology. The O-MaSE methodology

framework was based on two meta-models: SPEM 2.0 and the O-MaSE meta-model. The

O-MaSE meta-model defines the main concepts and relationships used to define MAS. The

O-MaSE meta-model is based on an organisational approach [52]. As shown in Figure 4.10,

O-MaSE is composed of five entities:

Figure 4.10: O-MaSE Meta-Module [52]

In the agent environment, the goal was defined as a mental attitude representing preferred

progressions of particular MAS. O-MaSE uses goals to define the objectives of the organisa-

tion. A role defines a position within an organization whose behavior is expected to achieve

a particular goal or set of goals. An agent that possesses all the capabilities required to play

a role may be assigned that role in the organisation. Capabilities can be defined as

• A set of sub-capabilities

56

• A set of actions that may interact with the environment

• A plan to use actions in a specific way

Organisational agents (OAs) are organizations that act as agents in a higher-level organi-

zation and thereby capture the notion of an organisational hierarchy. The domain model

is used to capture the key elements of the environment in which agents operate and finally

protocols define interactions between roles or between the organization and external actors.

4.3.7 Tropos Methodology

Tropos is a requirement-driven agent oriented software development methodology, created

based on agent-based system development. It focused on early requirement analysis whereby

the basic identifier of stakeholders was defined and their intentions identified and analysed.

During the late requirement, the system actor was introduced. The system’s global archi-

tecture was defined in architectural design. In the detailed design, the behavior of each

component was defined in detailed. This analysis process described the reasons for develop-

ing the software for capture [102]. The software development process of Tropos comprises

five phases: early requirements, late requirements, architectural design, detailed design and

final implementation, as shown in Figure 4.11 [35]. From the previous figure, the goal of

Tropos is divided into two parts: soft goal and hard goal, where the hard goal is related

to functional requirements and the soft goal relates to non-functional requirements. Two

models represent them at this point in the methodology. First, the actor diagram that de-

scribes the stockholders and their relationship in the domain; Second, the goal diagram that

presents an analysis of goals and plans with regard to a specific actor with the responsibility

of achieving them. One of the goals of the methodology is to reduce the mismatch between

the concepts used to describe the operational information systems environment, and the

concepts used to describe the architecture and high level design of the systems[89].

57

Figure 4.11: Tropos Life cycle

4.4 AOSE Methodologies Evaluation

There are several methodologies in AOSE, each with its own life cycle. However, some of

these were precise only for analysis and design, such as Gaia, while others covered the entire

life cycle such as Tropos, MaSE and Prometheus. In the evaluation framework literature

for AOSE, the majority of researchers [33][46] used qualitative evaluation tools, designed

according to the author’s viewpoint, or with regards to the questionnaire. Furthermore, the

authors of the methodologies presented some of these evaluations, which renders them highly

subjective.

The majority of the existing work found in the literature is based on qualitative evaluations

using different techniques, such as features based analysis, surveys, case studies and field ex-

periments. Chia et al.[42] consider qualitative evaluation in reference to four main criteria:

Concepts and properties; modeling techniques; and process and pragmatics. His evaluation

technique was based on a features based analysis. Each criterion contains different attributes,

whereby Yes or No have been used to represent the criteria in each of the methodologies.

58

The criteria with the same definitions have also been used in [19]. Another interesting eval-

uation of these methodologies is provided by Tran et al. [137] who attempted to cover ten

of the most important methodologies by employing different criteria. Thus instead of using

Yes or No, as in the case of the previous author, ’H’ was used for high, ’L’ for low and ’M’

for medium. While Saremi et al [119] presented a quantitative evaluation, which evaluated

the complexity of diagrams for MESSAGE and Prometheus, and used case study methods

to measure the magnitude and diversity and to determine the final complexity. Increases in

magnitude and diversity are heightening the complexity of the model.

Additional effort has been performed by Basseda et.al [33] who measured the complexity

of the methodology using different attributes. Lower software complexity provides advan-

tages, such as lower development and maintenance time and costs, less functional errors

and increased re-usability. Therefore, this approach was commonly used in software metrics

research to predict software quality based on complexity metrics. By studying evaluation

frameworks proposed to date, it seems that:

• There is no appropriate framework for evaluating methodologies.

• There are frameworks mostly based on feature-based analysis or simple case study

methods.

• There are only a small number of frameworks that have been evaluated with quanti-

tative approaches.

Therefore, presenting a proper framework evaluated using both quantitative and qualitative

methods and using feature based analysis, surveys and case study methods is anticipated to

be highly beneficial.

4.4.1 Game Development Methodology Framework (GDMF)

The framework presented below is based on two criteria: first, some adaptations of existing

qualitative frameworks; second, new quantitative evaluation frameworks. Furthermore, the

59

results derived from these particular frameworks are guiding us in the selection of the most

suitable methodology for the game development domain. We performed comparisons of well

known methodologies, selected based on the following criteria:

a) They were described in detail and had a complete life cycle. The majority of the existing

AOSE focuses only on analysis and design; whilst MaSE, Prometheus and Tropos have a full

life cycle [132].

b) They are influenced by the software engineering root.

c) They are perceived as significant by the agent community [47].

According to these criteria, we decided to take into account only the MaSE and Tropos.

A quantitative evaluation is an important component of the evaluation process, because it

is based on fixed results for comparative purposes. The majority of the previous research

focused on the qualitative approach, enabling a comparison to be made between method-

ologies [25]. Some difficulties were encountered during the literature review regarding the

quantitative evaluation:

a) The majority of the evaluations such as [119] [38] compared two methodologies, by using

a specific case study to determine results.

b) There were no standard attributes used for evaluation.

To evaluate our framework, the following criteria were used:

1. Select the common criteria. Regarding the qualitative evaluation, we decided to first

adopt a methodology from [42], because his precise evaluation covered qualitative cri-

teria and used feature based analysis methods and secondly from [137], since his eval-

uation was based on survey methods. Regarding the quantitative evaluation criteria,

the criteria were divided into three sub-criteria: by transferring the existing qualitative

attribute values of the quantitative numbers, dealing with meta-model metrics and use

case evaluation methods [25].

2. Transfer the qualitative attributes into quantitative values, and then convert these

values using a proposed common scale for each metric, as shown in the following:

60

• Yes-No to 0-1 and the common scale 0-10

• None-Low- Medium- High To 0-1-2-3 and the common scale 0-3-7-10

4.4.2 Converting the Qualitative Results to Quantitative Evalu-

ations

In this section, we adopted [42], [137] evaluation, converting their criteria to numerical

results to facilitate comparison between MaSE and Tropos. Initially, we represented the

summarized lists provided from [42]. In each of the main four criteria areas: Concept and

properties, modeling techniques and process and pragmatics as shown in table 4.1. From

the criteria defined by Tran et al. [137], we selected the criteria for the steps measuring

usability. However around twenty steps were used to compare Tropos and MaSE, as shown

in table 4.2.

Table 4.1: Comparison of MaSE and Tropos [42].

Criteria Sub-Criteria Tro-

pos
MaSE

Comment

Concept and Properties
Autonomy 10 10

Mental Mechanism
10

* 10
achieve goals and soft

goals

Reactivity 10 10

Pro-activeness. 10 10

Adaptation 10 0
*

Needs to add iteration

Concurrency 10 10

61

Table 4.1: Comparison of MaSE and Tropos [42]

Criteria Sub-Criteria Tro-

pos
MaSE

Comment

Agent interaction 10 0
* Needs to add agent

interaction

Collaboration 10 10

Teamwork 10 10

Agent oriented 10 10

Modeling techniques

Expressiveness 10 10

Modularity 10 0

Refinement 10 10

Traceability 10 10

Accessibility 10 10

Process
Life cycle Coverage 10 10

Architecture Design 10 10

Implementation Tools 10 10

Deployment. 0 10

Management 0 0
* Needs to add

management

Requirement capture 10 10

Pragmatics

Tools Available 0 10

Modeling Suitability 0 10

Domain Applicability 10 10

Scalability 10 10

62

Table 4.2: Comparison Regarding Steps and Usability of

Tropos and MaSE Adopted From [137]

Steps Tropos MaSE

Identify system goal 10 10

Identify system tasks/behaviors 10 10

Specify use case scenario 10 0

Identify roles 10 0

Identify agent classes 10 10

Model domain conceptualisation 0 0

Specify acquaintance between agent classes 10 7

Define interaction protocol 10 10

Define content of exchange message 7 7

Specify agent architecture 7 0

Define agent mental 0 7

Define agent behavior interface 0 0

Specify system architecture 0 0

Specify organizational structure 0 10

Model MAS environment 0 10

Specify agent environment interaction mechanism 0 0

Specify agent inheritance 0 0

Instantiate agent classes 10 0

Specify instance agent deployment 10 0

63

4.4.3 Evaluation of the Methodologies by Meta-Model Metrics

This section of our framework addresses meta-model diagrams, using meta-modeling tech-

niques to define the abstract syntax of MAS modeling languages (MLs), which is a common

practice today. We also use a set of metrics to measure the meta-models. These metrics help

to quantify two features of the language: specificity and availability.

1. The availability metric as shown in equation 4.1 measures how appropriate an ML is

for modeling a particular problem domain. A higher value is better in resolving the

domain problem.

The ncmm indicates the number of necessary meta-model elements; nc indicates the

number of necessary elements; mc indicates the number of missing concepts.

Availability = nccm÷ (nccm + mc) (4.1)

2. The specificity metric, as shown in equation 4.2, measures the percentage of the model-

ing concepts used for modeling a particular problem domain. If the value of this metric

is low, this means many ML concepts are not being used for modeling the problem

domain [95].

Specificity = nccm÷ cmm (4.2)

The term cmm represents the number of all the concepts in the meta-model. Table 4.3 was

created by [95] and uses four use cases, with six methodologies included Tropos and MaSE

to find the availability and specificity for the purposes of comparison.

64

Table 4.3: Availability and Specificity to Compare Between Tropos and MaSE.

Tropos MaSE

Case study Availability Specificity Availability Specificity

Cinema 75 75 77.7 60.9

Request exam-

ple

91.7 45.8 100.0 52.2

Delphi 72.2 66.782.4 82.4 60.9

Crisis Manage-

ment

63.6 58.3 77.7 60.9

Total Average 75.8 61.5 84.5 58.7

Therefore, we could conclude that MaSE was considered better than Tropos with regard to

the final results. Actually, MaSE obtained a higher percentage of availability than Tropos;

but Tropos had a higher percentage in terms of specificity. The availability is a more impor-

tant parameter than specificity in game development because game development implements

modules based on priority.

4.4.4 Evaluation of the Methodologies using Diagrams

The majority of the AOSE methodologies was delivered in phase diagrams or tables, in par-

ticular during the analysis and design phase, i.e. UML diagrams and agent diagrams. An

important point to consider in this evaluation is that we worked within an abstract level of

methodology, which resulted in difficulties finding artifacts to be qualified. The important

points raised in this evaluation are based on a case study, and the results depend on the

case study itself [32]. Therefore, in some case studies, MaSE may obtain better results than

those associated with Tropos and vice versa.

According to results found in Basseda et al [32], which compared diagrams, and the com-

plexity of the dependency of modules for three AOSE. MaSE shows greater complexity in

65

terms of dependency modules than MESSAGE and Prometheus. This means that MaSE has

more dependencies between its models. Thus, using MaSE requires more time and effort.

4.4.5 Critical Analysis

The proposed framework was applied to MaSE and Tropos, as two case studies to demon-

strate how the framework could be used to evaluate the possible methodologies. There are

differences in the results of the comparison. Both [131] and [47] evaluated MaSE as better

than Tropos. Moreover, when we made the suggested change to MaSE, this increased its

efficacy MaSE. In [39], the author compared two popular reference works [47]and [131] using

a profile analysis, which is a multivariate statistical method. The majority of the results

were found to be similar to those in our own evaluation and results.

We calculated the means for Tropos and MaSE from table 4.1, and found the means of

Tropos =0.84 and obtained the same results as with MaSE, in this case we also applied the

suggested enhancement to MaSE, as shown in the comment column of Table 4.1, the means

of MaSE after enhancement are =0.96. The means for MaSE is=1.7894 as shown in Table

4.2, which was greater than Tropos=1.2631.

As we observed from Table 4.3, MaSE obtained a higher percentage of availability than

Tropos; but Tropos had a higher percentage in terms of specificity. Availability is a more

important parameter than specificity in game development because game development im-

plements modules based on priority. When we calculated the total percentage for both

specificity and availability, MaSE obtained 71.6 and Tropos obtained 68.65. Thus, MaSE

was considered better than Tropos with regard to the final results of that metric.

4.5 Summary

Game development has evolved to deliver large projects employing hundreds of people over

development times measured in years. Unlike most other software application domains, game

66

development presents unique challenges which stem from the multiple disciplines that con-

tribute to gaming. The relationship between games and AOSE is clear, given that software

agents and intelligent agents are used as virtual players or actors in computer games and

simulations. The development process is very close to the process of game development[66].

From the previous measurements, we found that MaSE used frameworks that obtained higher

scores than Tropos in the majority of measurements, using a feature based analysis, survey

and case study evaluation methods. Furthermore, we observed the following weaknesses with

most AOSE methodologies:

• All AOSE methodologies lacked industrial strength tools and standards. In addition,

they did not seem to cover team work, since project management and time planning

were not considered in the AOSE methodologies found in the literature.

• There was a weakness at the implementation phase.

• There were no standard metrics that could be used in each phase to evaluate the phase

output, the complete system or the most effective methodology for an application.

The next chapter will present the proposed game development methodology based on a

critical review of previously conducted work.

Chapter 5

Agent Oriented Agile Based Game

Development Methodology (AOAB)

67

68

5.1 Chapter Overview

The suggested methodology AOAB combines Agile methodology to meet the dynamic re-

quirements of the customer with MaSE. MaSE is a rapidly developing area of research, de-

signed to support the development of complex and distributed systems in open and dynamic

environments, with the use of intelligent component. Game development methodology works

better using an iterative methodology, because this permits fast preparation of features, en-

abling discovery and adding fun to games. Through the process of research, a number of

development models have been used. The AOAB methodology focuses on two archetypical

development models, the predictive and the adaptive models.

It is important to have a formal understanding of the game development process, and of how

we can create a formal game development methodology that will be generic to many game

genres. Ideally, the type of hybrid development methodology approach, which we already

defined in AOAB is recommended for use by independent game developers. It possesses a

mix of characteristics that can be positioned somewhere between those of a predictive or an

adaptive approach to a generic methodology that is useful for game projects. In this chapter,

we have begun to analyse and detect problems with current game development methodolo-

gies. The archetypical development methodologies are presented in detail. The remainder

of this chapter focuses on presenting AOAB with detailed descriptions of each AOAB phase.

At the end of this chapter, we present a critical analysis of AOAB methodology.

5.2 Problems With Current Game Development Methodologies

A vast majority of the problems facing the entertainment industry and its development are

deeply rooted in the production methodology employed. Teams of approximately 100 people

are still using methodologies that were developed at a time when ten people were consid-

ered an excessively large team[97]. Specific features of game development have been found

to prevent the success of great games. The major problems that arise are in the areas of

69

project management. The use of methodology focuses on game development, and takes into

account the project management concept to help avoid management problems.

Games and software engineering comprise important aspects that can be mutually beneficial

to understanding, as in the main they share the same methodology and problems. A game

contains a confluence of interesting properties, such as emergence, real time interaction and

challenging components, which create a new field of study [91].

Software engineering has greatly assisted the entertainment industry in its resolution of

problems. The unique aspects of gaming, which are not available in traditional software

development include the requirement for the game to be ‘fun‘, which cannot be assessed by

any metric, and is purely subjective.

After a survey of the current game development methodology problems, we will highlight

the main problems found in the literature:

Schedule Problems: According to Flynt [62], a key reason for a project being delivered

behind schedule is that no target has been established. Likewise, problems may occur when

an estimated deadline does not include the time needed for communication, and lacks doc-

umentation or emergent requirements that may alter the system architecture and thereby

cause serious problems. Furthermore, delay can be caused by a multidisciplinary approach;

as it is essential to include input from different teams, as delays may occur. A task involves

a series of risks that imply underestimates, resulting in cumulative schedule delays. Flynt

et al [62] report that developers recurrently fail in their estimates, due to a lack of historical

data to assist them in determining a realistic time frame to complete a task [111].

Crunch Time Problems: In the entertainment industry crunch time is a term that is

typically used for the period of work when overload may occur; this is usually, in the final

weeks before the validation phase or the deadline for project delivery. During this period, the

developer may work in excess of 12 hours a day and take between 6 and 7 days to complete

unfinished tasks. In the entertainment industry, crunch time is a fact of life [111].

Scope and Feature Creep Problems: Feature creep is a term used in the entertainment

70

industry when a new functionality is added during the development phase. This increases

the project scope and alters the schedule timing [111]. Any new functionality should be

evaluated carefully. Any unmanaged feature creep can lead to increased error, possible de-

fects and increased likelihood of failure. However, some feature creep is unavoidable, since

it adds fun to the game [78]. Flynt et al [62], report the biggest reason for game project

imperfection is the failure to accurately establish project scope.

Risk management helps a project manager to understand the changes to a plan and identify

the potential costs in terms of time and money. The project scope will never be a true

reflection of required effort, due to the iterative and exploratory nature of game develop-

ment; however, it can be an effective guide when predicting success, such as when discussing

milestones, time lines, and budgets[78].

Technology Problems: All games are technology dependent. Technological components

generate risks to game projects that can require greater effort and a higher investment of

time. According to Gershenfeld et al [64], the risks associated with technology risks are

generally higher when a team works on a new platform, because of two factors; the first

being that the developer has not worked with the technology before. The second being that

related hardware frequently contains problems.

Documentation Problems: Lack of documentation is a common source of additional dif-

ficulties. Documentation can be valuable in reducing feature creep. Having a finite amount

of documentation is useful when game developers work on difficult projects, as this helps

them to obtain a good estimate of project scope and schedule. Usually, Game Design Docu-

ment(GDD) generates considerable uncertainty around a game’s goal and solution require-

ments [87].

Collaboration and Team Management Problems: One of the main problems when

creating games is communication between teams. The teams in games include people with

distinct profiles, such as developers, plastic artists, musicians, scriptwriters and designers.

Different teams need to collaborate and explain their work and instructions to others.

71

Training Problems: One of the biggest problems with Agile game development especially,

and in game development methodology generally, is new employee training.

Linear Process Problems: Game development is not a linear process [62]. Iteration in-

forms the lifeblood of game development. Game developers use the Waterfall methodology

with enhancements, adding iteration to the methodology.

Petrillo et al[111] present in Figure 5.1 the histogram of occurrence of problems in a decreas-

ing sequence. From the previous study, we can observe that the most traditional software

problems are the same as the game development problems.

Figure 5.1: Occurrence of Problems in Current Game Development Methodology [111].

72

5.3 Archetypical Development Methodologies

There are many methodologies offered within traditional systems and software development

scenarios. As mentioned above, some of the better known methodologies include Waterfall,

Incremental and Spiral. Each of these are structured as either linear or iterative, and are

sometimes hybrid. Most linear methodologies are classified as predictive, even where they

contain iteration; they typically follow sequential phases, such as Waterfall methodology.

Prototyping involves dividing the system into small segments to involve the user in the pro-

cess.

Spiral methodology combines linear and iterative frameworks. Spiral development breaks

down projects down into a number of cycles, all of which follow a set of increasingly larger

steps. The majority of methodologies employed by game developers are predictive, employ-

ing comprehensive planning as separate tasks prior to actual development. Some of these

methodologies are also described as adaptive, because multiple iterations and prototypes are

used to shape the game [70]. The question here is

What criteria should be applied to choose between predictive and adaptive models in game

development methodology?

In AOAB, we will not select between the types, because we need to draw on both concepts

for game creation. For this reason AOAB is a hybrid methodology, combining the best fea-

tures from predictive and adaptive models. The second important question is

How can components from a variety of game design and development models be integrated

into standard development guidelines?

In reality, it is a challenging task to create generic game development methodology to cover

the most important game requirements. Furthermore, there should be standard game devel-

opment guidelines. In this chapter, we have created an AOAB methodology that provides

all the answers to these questions and requirements.

73

5.3.1 Predictive Model

In general predictive models are preferable when we have clear goals and the customer’s

requirements are clear and complete and the specific structure of the game must be withheld

at all costs, allowing for a definite vision of the final product to be established long before

it takes a playable form as shown in Figure 5.2. We will take the AOSE methodology as an

example of predictive methodology

Figure 5.2: Predictive Development Methodology[70].

5.3.2 Adaptive Model

Adaptive models are encouraging the change in customer requirements and customers are

being allowed to add new goals or new requirements even in the late stages of games devel-

opment, and thus these must not affect the game plan. Furthermore the customer is usually

74

invited to give a direct response on the development process, regarding the lessons learned,

as shown in Figure 5.3. We will take Agile methodology as an example of an adaptive

methodology.

Figure 5.3: Adaptive Development Methodology[70].

5.3.3 Predictive vs. Adaptive Methodologies

This section presents the difference between predictive and adaptive development method-

ologies to reach a common understanding of predictive and adaptive characteristics. The

adaptive models are based on iteration with follows a bottom up approach. Adaptive fo-

cuses on are developing more than simply documentation. The predictive models are based

on a linear process which follow a top bottom approach. Predictive focus on documentation

and expected changes in requirements only effect the initial stages of development. Unlike

the adaptive model which anticipates a change in the customer’s requirements in any stage

75

of development.

The other difference between adaptive and predictive relates to testing and debugging. The

adaptive model deals with the integration of testing and debugging in the development pro-

cess and iteratively in prototype building. However, the predictive testing and debugging

is done mostly at the end of the development process and tests all the system components.

Ideally, the type of hybrid development methodology recommended for use by independent

game developers would be likely to possess a mix of characteristics [70]. Table 5.1 from [70]

presents a comparison of adaptive and predictive characteristics.

Table 5.1: Comparison of adaptive - predictive characteristics [70].

predictive Adaptive

Linear Iterative

Pre-planned Planned

Focused on Documentation Minimal Documentation

A broad definition of the game early in de-

velopment

Game features are developed, then later

synthesised

Restriction of changes to the initial concept Refinement and adaption of the initial con-

cept

Testing and Debugging discrete from con-

tent development

Integration of testing and debugging

throughout the development process

Sequential creation of final game compo-

nents from scratch

Game development are prototypes; these

are then built upon and improved iteratively

The final difference between adaptive and predictive is the planning concept. The important

question here is “How much planning is enough” . Adler et. He asserts that having a planned

approach and project schedule before development begins can minimize the high risks of soft-

ware development. Both of adaptive and predictive approaches are using planning concepts

but in different ways. Predictive approach is based on pre-panned approach. This is because;

76

predictive is usually used when we have well understood of customer requirements.

While in adaptive approach, we also deals with planned approach over the software develop-

ment process [17]. Keith argues that as much new knowledge is generated during the design

process, constant iterations are needed in order to incorporate this knowledge into the fi-

nal product. He stresses that working prototypes, playable demonstrations and constant

adaption are integral to producing a fun, coherent game, rather than comprehensive design

documents and pre-planning [80]. Aside from being iterative by being structured around a

series of task iterations and revisions, Keith’s Agile game development model with Scrum

could be labeled as adaptive. In this sense, although a final game is planned from the begin-

ning of the development cycle, the developers constantly adapt the game’s features (and thus

final form) throughout the development cycle, in response to feedback from prototyping and

demonstrations. This differs from other more archetypically predictive development models

[80].

Overall, predictive models would be preferable when there is a pre-defined customer expec-

tation or specific structure the game must withhold at all costs, allowing for a definite vision

of the final product to be established long before it takes a playable form. Adaptive models

encourage change and thus will not usually allow for all aspects of a game to be planned in

unison, seeking to allow a game’s final project to be a direct response to its development

process and the lessons learnt within [70].

However, one can see that such models are rarely purely adaptive or predictive, often in-

corporating elements primarily from one archetype but possessing a few from the other.

And these concepts are appearing clearly in AOAB methodology because it is fully hybrid

methodology. It is recommended that independent teams should at least partially conceptu-

alize and plan the core features of their game before development begins. The game’s scope

should realistically be considered in terms of the team’s abilities and first and foremost focus

on delivering a finished, playable game.

77

5.4 AOAB Goal and Objective

We have listed some goal oriented criteria to enhance the development process and to min-

imise errors. As a result, consistency through the development will increase. These criteria

are:

• AOAB methodology should be easy to use and easy to learn. The use of clear and

uncomplicated notation and clear phases of the methodology will make AOAB easy to

use by both experts and new game developers such as Indie developers.

• AOAB must have complete steps and clear documentation to guide the developer

through initial requirements, moving through design and evaluation to reach the final

game release.

• AOAB is utilising the best practices from AOSE, Agile methodology, Software engi-

neering methodology and other strategies and techniques.

• The characteristics of game development are unique and require more research. There-

fore, we are leaving some provision for future work.

• GDD in AOAB should be easy to use and filled by Indie and expert game developers.

5.5 Agent Oriented Agile Based Game Development Methodology

(AOAB)

In AOAB, we use systematic and formal development processes in game design. It is impor-

tant for game design novices to structure work around a preconceived pattern, taking time

to plan and consider the design and overall structure of the game before undertaking the

task of actually coding and building it.

Formal development models can facilitate learning by providing an evenly rounded devel-

opment process, such as by allowing time for analysis, planning, development (coding) and

78

evaluation. They are also used to guide uninitiated designers so that they do not jump

straight to coding and omit the overarching lessons that the other stages can teach about

game design. [70].

Agile methodology is usually used to address dynamic changes and requirement specifica-

tions by the customer, and to deal with customer involvement in the development phases.

For flexibility in adding new requirements prior to game release, which does not add extreme

cost to the project, Agile game development methodology will be adapted to AOAB as an

adaptive model.

AOSE provides such intelligence through agents. The agent may perform tasks individually.

In complex and distributed system, Agents can be used to monitor the interactions among

components and interact in the same manner as humans. MaSE will be adapted to our

suggested game development methodology as a predictive model, which depends on linear

processes and has good GDDs [100]. AOAB methodology consists of many development

phases. Figure 5.5 illustrates the suggested game development methodology, showing how it

functions as a hybrid methodology using both adaptive and predictive models.

Management is important in the game industry. Poor management can negatively affect the

best of teams. While complexity in the game world, and the number of teams increases, good

communication in a company is essential for success. Agile methodology achieves quality and

productivity through iteration and communication with customers, as part of the methodol-

ogy deals with management. Agile methodology typically depends on daily Scurm meeting

to assure good communication, but on many occasions there is no need to discuss this daily

because it is only a waste of time for teams. In AOAB, we have suggested that a meeting

is not necessary to save time on a daily basis. This should only be done when important

issues arise from multidisciplinary teams such as artists, musicians, developers and clients.

Furthermore, a group may have a sub-group, such as the AI team or a textures team. An

example would be a unit composed of two programmers, a texture artist and an animator.

Combining groups does seem to enhance communication across disciplines. Bringing diverse

79

groups together can enhance understanding and communication between teams [78].

AOAB methodology attempts to provide an adaptive and predictive development methodol-

ogy. Sometimes a combination of more than one model may be the most suitable option[99].

The MaSE life cycle from Figure 4.5 are used in the Sprint phase which is the main part

of Agile methodology from Figure 4.1. Both Agile and MaSE methodology has been ex-

plained in details in Chapter four. The Figure 5.4 illustrate how we will hybrid the two

methodologies.

Figure 5.4: AOAB Designed From Hybrid Agile and MaSE Methodology.

While Figure 5.5 illustrate the final AOAB Methodology. Each iteration includes analysis,

design, implementation, testing and evaluation of MaSE. The reason to adapt MaSE in the

core of Agile, is that in complex systems and distributed systems such as games, it is difficult

to trace a single point of control, since objects are distributed [99].

80

Figure 5.5: Agent Oriented Agile Based Development Methodology

81

5.6 AOAB Features

AOAB has many features, the main focus of which is to cover industry requirements. The

two key features are a clearly defined duration, and the team collaboration policy. The

following two sections will explain these features in detail.

5.6.1 Game Development Duration

AOAB is an iterative methodology that focuses on delivering features. Planning, documenta-

tion and development activities are repeated in every iteration, and the number of iterations

is based on the scope of the project. The aim of iteration is to deliver many working versions

of a game after a short iteration period. The feedback obtained from customers in relation

to each iteration will help to solve many problems at an early stage and, as a result, the

game development time will be reduced. The AOAB has the ability to begin working on

new features prior to completing a current feature. In which case, the duration of the game

development period will be reduced, as no time is wasted on waiting. In the planning stage,

the customer and developer will typically cooperate to select new features, which are then

added to the Sprint Backlog to discuss whether they are high priority. The main effort in

using AOSE alone is mainly expended in the preparation of the documentation, as shown

in Figure 5.6 [99]. AOAB reduces documentation by creating GDDs and dividing these in

Sprint.

82

Figure 5.6: Duration for AOSE [99].

Game documentation is important, and is required for the analysis and design phases, as

those details are needed to maintain games or to create new versions of a game. The over-

heads incurred through communicating with large teams, and the cost of longer development

efforts, have led to a demand for certainty from the stakeholders. Large detailed design doc-

uments attempt to create that certainty [80].

5.6.2 Team Collaboration

A game development team is different to a traditional software development team. The pri-

mary distinction between the two is that for games, the development groups consist of people

with different fields of expertise. In the initial stage of game development, a scriptwriter is

required and presents documents, usually known as a “Concept Paper”. [27]. The concept

paper will be converted to a GDD by a game designer, and the GDD will guide the game

development process.

Game companies usually employ a group of programmers including, for example, an engine

83

programmer, graphics programmer, AI programmer, sound programmer and tool program-

mer. Furthermore, the game company might collaborate with a musician and sound effects

technician. In addition, the artwork for the game will be created by 2D or 3D graphic

artists. Prior to game’s release, the game company will hire testers to play and evaluate the

games, find bugs and to suggest solutions to problems or recommend changes to game play

[115] [127]. There are advantages to multidisciplinary teams, for example, they create an

environment that encourages creativity; however, there is also a need to ensure cooperation

between teams.

The main objective of game creation is to ensure players are satisfied and enjoy the experi-

ence of playing the game. Interaction between the customers and developers leads to greater

customer satisfaction, and an understanding of dynamic changes in customer requirements.

When using Agile, the communication between the developer and customer is typically on

a daily basis, whereas in AOAB, communication between the customer and developer takes

place on a ‘needs only’ basis, as it is not easy to facilitate a daily meeting with all teams.

5.7 AOAB Methodology Life Cycle Description

5.7.1 Requirement Phase

The first step of the requirement phase is preparing the GDD based on concept paper, which

is divided to Sprint Backlog. From the Sprint Backlog, it is possible to estimate the number

of iterations that the Sprint phase will cover.

Game Design Document (GDD)

In this phase, prior to creating the GDD, the developer must determine the objective of the

game, identify the ‘fun factor’ and decide on the types of people who will play game. The

creation of a GDD is an important step to accomplish in the first phase of developing the

game, as it is responsible for determining the scope of the project, and thus also affects the

84

development and testing phases of the game. A poor GDD may result in feature creep and

consequently result in delays and possibly missed milestones. [65].

There is no standard way to build a GDD, although it requires a comprehensive description

of all aspects of the game. It must also describe the objects and characters of the game, their

effects, how they interact, and their role and behavior in the game. The GDD will go through

many changes and will also have additional requirements. The risks of any changes should

also be evaluated, as and whether deadlines can still be met. Later in the requirement phase,

GDD will be translated into a Sprint Backlog, for small games, as it may be optional when

translating any requirements directly as a Product Backlog. This can save time, but may

also increase the risk of feature creep, or lead to a game that is not adequately entertaining

[23] [65].

If the GDD is designed carefully, the project manager will be able to plan the iteration of

Sprint Backlog so that the game is playable at the conclusion of each iteration. This has

several benefits; first, testers can check the game for errors in a playable state that mimics

what the end user would encounter. Beginning a playable game as early as possible helps the

team to see the potential of the end product, and is therefore beneficial in game publication

prior to final release. Included in the Appendix A.1 is a GDD template for GDD that is

easy to use and follow. The main aim when dealing with a GDD template is to provide a

standard, generic GDD that can be used for different game genres, as is the goal of AOAB.

The Appendix A.2 also includes another version of the GDD, following participant workshop

feedback. Participants suggested creating a GDD that is easy to fill in, particularly for Indies

developer. This part of the work will be presented in detail in Chapter Eight.

Sprint Backlog

During the Sprint planning stage, all teams are tasked with dividing the large GDD, if it is

too large, into a Product Backlog. However, if the GDD is not too large, this task is not

required. The team invested a significant amount of time in analysing the requirements and

85

consequences of supporting network game play. At the end of the Sprint, they expressed

a desire to replace this feature, as implementing it in a sufficiently balanced quality would

threaten the overall quality of the game [121].

At the end of each Sprint, the team is able to update the Sprint Backlog and drive the

necessary activities for the next Sprint. For the final presentation, the team were expected

to successfully deliver a fully playable, feature complete prototype. They could easily pin-

point problematic phases or crucial moments, and were eager to analyse their progress. In

conclusion, they perceived Scrum as very supportive throughout all phases of the project,

with a single exception [121]. At this stage, once the GDD is complete, the game idea, in

other words what the game is really about, the project scope and what actually needs to

be done should become clear to the developers and customers. The GDD should then be

translated into the Sprint Backlog.

In each iteration of the game lifecycle, the most important backlog should be addressed first

and divided into smaller tasks. AOAB uses the same techniques as Agile, as suggested by

Keith [80] and shown in Figure 4.2. This means that at the end of a Sprint phase, some

work can still be under development. A new iteration can begin using a new Sprint Backlog.

The goal is to achieve a continuous flow of content creation.

Sprint Phase

A development team usually treats the Sprint phase as a mini waterfall, with small design

documents written at the start and working code not coming together until completion.

This is superior to the traditional Waterfall model, although coaching the team to keep

them communicating with each other and to ensure that the construction is ongoing, rather

than writing documents, will further improve performance. One of the main differences be-

tween the Scrum and Waterfall methods is the idea that the product is kept in a state of

near-completion in every Sprint, and that the features added in every Sprint have a level of

completeness that improves the value of the final game. The goal is to prove the value of

86

the feature in every Sprint. Design, coding, debugging, testing and assets are all taken into

consideration [81].

In AOAB the MaSE methodology is used to cover the sub-phases of a Sprint, such as anal-

ysis, design, implementation and evaluation. The purpose of working this way is to show

customers the value of a feature every two to four weeks, to show how it improves Sprint by

Sprint and, at the same time, acquire documentation that will be useful in the evaluation or

creation of a new version of the game [22].

5.7.2 Analysis Phase

The Analysis phase includes three steps: capturing goals, applying use cases, and refining

roles [48]. In AOAB, the first part of the analysis, capturing goals, is already defined and

added to the GDD. Using the GDD, use cases can be identified, and the initial set of roles

can be refined and extended.

Model Goal

The objective of the model goal is to transfer the GDD from a system requirement to a set of

standard goals for the game. The goal model is used in many agent-oriented methodologies.

There are two steps to capturing goals: identifying and structuring the goals. The analyst

identifies goals by analysing whatever requirements are available [51]. In a goal hierarchy

diagram, goals are organised by importance. The model goal is based on AND/OR decom-

position, which converts the overall goal of the game into a set of sub-goals. The AND

is defined by whether all sub-goals must be achieved in order to achieve the parent goal.

While the OR is defined by whether the sub-goal represents an alternative way to achieve

the parent goal. However, the purpose of the goal hierarchy diagram used in MaSE is to

identify the main system level goals, not individual agent goals. The goal model creates a

high level specification regarding what the system should do.

87

Applying Use Cases

The use cases step is important in translating goals into roles and associated tasks. Use cases

are drawn from the system requirements and are narrative descriptions of a sequence of events

that define the desired system behavior [51]. To help determine the actual communications

required in MAS, the use cases are converted into sequence diagrams. MaSE sequence

diagrams are similar to standard UML Sequence Diagrams, except they are used to depict

sequences of events between roles in order to explain the communication that must take

place. The roles identified in this step form the initial set of roles used to fully define the

system roles in the next step, and the events identified are also used later to help define tasks

and required conversations.

Role and Task Model

The model roles’ task identifies all the roles in the organization as well as their interactions

with each other and external actors. The result of the role models task is a role model. The

goal of role modeling is to assign each sub-goal of the organization goal model to a specific

role. Roles are identified from the use cases as well as the system goals. All system goals are

accounted for by associating each goal with a specific role that is eventually performed by

at least one agent in the final design. Each goal is usually mapped to a single role; however,

there are many situations in which it is useful to combine multiple goals in a single role,

for convenience or efficiency. Role definitions are captured in a standard Role Model [51].

Once roles have been identified, detailed tasks that define how a role accomplishes its goals

are defined and assigned to specific roles. A set of concurrent tasks provides a high level

description of what a role must entail to satisfy its goals; including how it should interact

with other roles. This step is documented in an expanded role model.

88

5.7.3 Design Phase

In the design phase, analysis models are transformed into constructs that are useful for game

creation. The design phase has three steps: creating agent classes, constructing conversations

and assembling agent classes. In AOAB, the focus is mainly on creating an agent class

diagram, which is the most important part of the design phase. Constructing conversations

and assembling agent classes are nominated due to a need to focus on the diagrams that will

be helpful either in later stages of game creation, or after the game has been released.

Model Agent Class

The model agent class identifies the types of agents that may participate in the organisation.

Agent classes can be designated specific roles, or they may be defined in terms of capabilities,

which implicitly define the types of roles to be played. An agent class is a template for a

type of agent in the system; each agent class identifies the capabilities that it possesses, or

the roles it can play, or both [50]. As with goals and roles, a one to one mapping between

roles and agent classes can be defined; however, it is possible to combine multiple roles in

a single agent class, or map a single role to multiple agent classes. Since agents inherit

the communication paths between roles, any paths between two roles become conversations

between their respective classes.

5.7.4 Implementation Phase

Code generation is achieved during the implementation phase. The game is implemented in

an incremental way and is the result of a Sprint. A base can be implemented in one or more

programming language. The purpose of the generate code task is to take all of the design

models created during the development phase and convert them into a code that correctly

implements the models. There are numerous approaches to code generation, depending on

the chosen runtime platform and implementation language [50].

89

Deployment Diagram

The diagram relating to the implementation phase is a deployment diagram. Deployment

diagrams define the configuration of the actual system to be implemented; furthermore, they

define the overall system architecture to show the number, type and location of agents within

a system.

5.7.5 Evaluation Phase

Game development companies have strong competition, and the gaming experience has be-

come an important factor in differentiating similar kinds of game titles. If the gaming expe-

rience is not optimal, players can easily switch to another game. The gaming experience can

be evaluated once a prototype is implemented and ready for beta testing. At this point, the

correction of any problems will be too expensive, or the project schedule will not allow any

delays, for marketing reasons. As a result, there is a need for an evaluation method that can

identify these problems prior to the commencement of beta testing, thus providing adequate

time for corrections to take place [86].

The evaluation process, known as formative evaluation, is conducted to detect problems

[107]. These are usually identified at an early stage of the development processes of the

game and can be used to improve and enhance the game at each iteration before it is ready

for release.

In game development methodology, the evaluation phase is carried out by two types of eval-

uator, expert evaluators and real users. Expert evaluators has are individuals who have

both knowledge and experience of conducting evaluations using various expert evaluation

methods. Meanwhile, real users are a group of target users, for whom the game is being de-

veloped. These users will be the respondents in an evaluation using different user evaluation

methods. Furthermore, the process will be repeated and the results of the current iteration

compared with results of previous iterations, prior to game release. In order to address the

evaluation problem, different protocol sets are proposed, based on different points of view.

90

The first step in the creation of an evaluation protocol s set requires an understanding of

how the protocol s are developed and identifying the criteria previously used by authors.

In 1990, Nielsen and Mack offered a protocol evaluation, which was used to evaluate the

user interface of software productivity [105]. These protocol s are useful, in the development

phase, to obtain design guidelines. Several authors have subsequently noted that games

require protocol s of their own [61] [85] [108]. Usability protocol s address issues concerning

playability; playability, unlike usability, does not have a standard definition. For this reason,

several authors provide a definition and protocol set in relation to playability [86][53][85]

[103]. Federoff’s thesis [61] presents a protocol s model that could be considered the first

specific protocol s model, due its structure and design methods. Federoff presents 40 pro-

tocol sets, divided into the following sub-criteria: the game interface, game mechanics and

gameplay.

Desurvire [53] presents Protocol for Evaluating Playability (HEP) based on Federoff’s sub-

criteria, using game play and game mechanics, and adding usability and game story as part

of the 43 protocol sets. Likewise, Korhonen and Koivisto [85] present playability protocol

that focus on mobility games, using Desurvire game play and usability and adding the sub-

criteria mobility, which consists of 29 protocol. However, Schaffer [120] suggests protocol

based on the researcher’s expertise in HCI fields, so divided protocol into five categories: gen-

eral, graphical user interface, game play, control mapping and level design, with 21 protocol.

Finally, Pinelle [113] introduces ten usability protocol designed for multi player games.

Game Evaluation Protocol Framework (GEPF)

Special attention is required to specifying the methods that evaluate games. Game evaluation

is still ongoing and the protocol sets are quite different, but do include some common issues

[86]. Multiple protocol sets are available, and it is important to select carefully the variables

to be measured, as well as the correct methods for collecting the data [30]. Some protocol

are proposed that have not been validated, whilst others are targeted towards specific game

91

genres, or do not cover all of the evaluation needs. This leads to an important question,

”What aspects of games can be evaluated?”

It can be a challenging task to define the protocol that are able to capture the essential

aspects of game evaluation. Therefore, it is important to select protocol sets of a high

level suite to different game genres without losing power to guide evaluators during the

evaluation phase. At the same time, all evaluation aspects should be covered in order to

obtain a measurement that is suitable for enhancing the next iteration of game development

methodology. Furthermore, the correct methods for collecting and comparing the results

must also be used.

This work aims to achieve clarity, generality and usefulness of protocol sets in order to

evaluate the majority of the game genre. The suggested framework for evaluating games

has standard requirements for facilitating the work in game development companies. Rather

than using different evaluation sets for each game type, the protocol sets used in this research

cover all important aspects of high level game protocol. The evaluation task inspects the

game for any problems arising at any time. The purpose of the protocol sets is to guide the

evaluation phase and remind the evaluators to pay attention to certain important aspects,

which will be explained in detail. The initial high level protocol framework for games that

will be used in AOAB will be presented.

For the above reasons, the proposed evaluation sets contain 100 protocol organised into

four categories; first, game playability (42 protocol), which deals with three main issues:

game story, game play, and game mechanics, as shown in Table B.1. Second, game usability

(26 protocol), which deals with two major issues: game interface and game control, as

shown in Table B.2. Third, game quality (12 protocol), made up of three key concepts:

game functionality, game efficiency and game adaptability, as shown in Table B.3. Finally,

game enjoyment (20 protocol), which covers enjoyment elements not contained in previous

protocol sets, as shown in Table B.4. Meanwhile, the user evaluation methods will cover

similar protocol sets to those used by expert evaluators, except game mechanics, which deals

92

with techniques [21]. User evaluation is typically carried out using a questionnaire, interview

or scenario as shown in Figure 5.7.

Figure 5.7: Game Evaluation Criteria

The Game Evaluation Process

An initial step in the game evaluation process is the explanation of the overall process.

Figure 5.8 illustrates the overall process, which must be followed in each iteration of the

game development methodology. The results of each iteration are compared with the results

from the previous iteration to ensure that all encountered problems are solved. In each of

the evaluated games, a significant amount of criteria are measured, and correlations made

between them. Those criteria are broken down into a number of more measurable factors,

defined on the basis of current gaming literature [60]. The data from the overall correla-

tion highlights users’ views, expert evaluations and comments to develop a prototype, and

identifies specific elements that need to be enhanced. In the tables, two columns are added

that are deemed useful for obtaining accrued results for statistical correlation. In column

number 5, a score for each protocol set is given, from 1 to 5, 1 being worst, 5 being best,

in order to compare every iteration with the previous iteration. Furthermore, in column 6,

priorities from 1 to 3 are stated, 1 being the highest priority, 3 being the lowest priority,

93

which is useful for ensuring the importunity of protocol , depending on the game genre and

the evaluators’ points of view.

Figure 5.8: Game Evaluation Process

Expert Evaluation Methods

The game developers’ perception of expert evaluation methods is interesting, as it can mea-

sure different aspects that help in the evaluation and testing of games. The use of expert

evaluation criteria allows many game issues to be identified and evaluated in-depth [134].

The protocol sets used in this research are general purpose, which means they are applicable

to evaluating the majority of game genres, covering playability, quality, mobility, enjoyment

and usability. These criteria are selected because they are common to all games; they cover

most aspects needed in the evaluation of games and are easy to use.

The appendix B includes all required tables for each evaluation criteria and sub criteria,

with full descriptions.

94

Playability

What is playability and what are the criteria that affect playability? This section will answer

the above questions. Games have good playability if they are easy to use, are challenging

and fun. According to the protocol set, playability is a combination of game play, game

story and game mechanics, as shown in Table B.1. Game usability is related to playability,

and is an important concept covering game control and the game interface. For the above

reason, usability is treated as a main criteria, and not as a part of playability.

• Game play: This is the set of problems and challenges a user must face to win a

game [53]. When evaluating game play, the evaluators must have some game design

experience, they should understand the goal and know the target players [85].

• Game story: This usually includes all plot and character development [53].

• Game mechanics: These are tested by Quality Assurance (QA) personnel in game com-

panies to ensure that no broken games get shipped [61]. This involves the programming

which provides the structure through which units interact with the environment [53].

Game Usability

Game usability covers aspects of game control and game interface, through which the player

interacts with the game, as shown in Table B.2. Good usability of a game ensures that

the player will have a fun and enjoyable session [85]. The majority of the existing game

usability protocol sets are based on the ten usability protocol detailed by Molich [105],

which are used to perform protocol evaluations of software engineering and websites. The

game interface should allow the player to control the game fluently, and should display all

necessary information regarding the game status and any possible actions [85].

95

Game Quality

One of important measurement throughout the game development life cycle is quality. The

quality evaluation process begins with a careful planning phase, which includes the purpose

of the evaluation, the timing of the evaluation and the people involved in conducting the

evaluation process [58]. The quality protocol was used to assess not only the final versions

of the games, but also quality throughout the game development life cycle, which enables

developers to prevent the majority of game failures.

In this research, the Quality Evaluation Framework (QEF) form is adopted [58]. The QEF

is divided into three criteria, and each criterion aggregates a set of factors. A factor is a

component that represents the system performance from a particular point of view. The

dimensions of the criterion of this research in the quality space are: efficiency, adaptability

and functionality, as shown in Table B.3.

• Efficiency: This measures the system’s ability to present different views of its content

with minimum effort.

• Adaptability: This measures the effect of the extended scenario and system contents

and presents different instructional design theories and different learning environment

on a common platform

• Functionality: This reflects the characteristics of the games related to its operational

aspects.

Enjoyment

Research in psychology and neuroscience most often uses the term “pleasure” to describe

agreeable reactions to experiences in general. In computer game, they used the terms fun

factor, entertainment, enjoyment and engagement to measure the player satisfactions. More

specific notion is that since video games are designed with the primary purpose of entertain-

ment, and since they can demonstrably motivate users to engage with them with unparalleled

96

intensity and duration, game elements should be able to make more enjoyable and engaging

as well [54].

Player enjoyment is an important goal for all games; if players do not enjoy the game then

they will not play again [134]. A piece of research conducted by Sweetser focuses on game

enjoyment [134] in relation to game flow. Game flow is a model for evaluating player enjoy-

ment of games, and consists of eight elements, which are as follows: concentration, challenge,

player skills, control, clear goal, feedback, immersion and social interaction [21]. In Table

B.4, duplicate protocol that are included earlier in the table are identified, such as control,

which falls under usability. Whereas, when clear goals are set, the challenge is covered by

playability. Finally, feedback is also covered in usability.

5.7.6 Testing Evaluation Protocol sets

The game industry is broad and has continued to grow dramatically over time. The Telecom-

munication Regulatory Authority has organised a competition between undergraduate uni-

versity students in the Sultanate of Oman, a country in the Middle East. The evaluation

protocol of this research use a weighted-average of scores and priority of values obtained

from protocol sets to help identify the best game in the competition.

Competition Overview

The competition is structured to cover different areas, such as audio, posters, games and

short films. Appendix C contains the competition poster detailing the competition area and

prizes. The participating students are required to submit creative work that must contain

the competition logo, the objective of the game section of the competition being to design

a game that reflects the theme of ”my address is Omani”. The competition poster has been

sent to all Oman universities and colleges, and the competition itself dictates a period of

four months during which to submit the work. The participants must be university students,

who can submit their work individually or as a group. For the game competition section, the

97

Telecommunication Regulatory Authority asked for permission to use the evaluation method

detailed above, and for the researcher to head up the game community judges, made up of

five members. Three of these members have an academic background and two an industry

background. The prizes are subject to a final evaluation score; first prize is approximately

3,000 US Dollars, second prize is approximately 2,500 US Dollars, third prize is around 2,000

US Dollars and there is an encroaching prize of approximately 1000 US Dollars.

Results of the Industry Competition

The judges received a great deal of usable gaming software through being involved in the

competition, some of which was not nominated due to not embodying the competition con-

cept. The protocol sets detailed previously were used to evaluate the games submitted, and

each game received a score out of 100 based on the evaluation criteria. With regard to the

games having been created by undergraduate students, it was noted that as such they could

be classified as having a ‘simple’ game design and are in that sense unlike commercial games.

For this reason, it was decided that the judging committee would reduce the number of eval-

uation criteria required in order to fit more appropriately the competition concept and the

quality of the students’ work.

5.8 Critical Analysis of AOAB Methodology

For AOAB, it is suggested that daily meetings are not necessary, to save time. Meetings

should only occur on a daily basis when important issues arise from within the multidisci-

plinary teams, such as artists, musicians, developers and clients. These groups may contain

a sub-group, such as an AI team or a textures team, as AOAB creates functional combina-

tions of specialties. Regarding the problem of project scope, AOAB is used for prototype

techniques and the GDD to cover the important aspect of games. Iteration in AOAB enables

the designer to evolve features and reduce the amount of feature creep in the game.

98

Regarding project management and team organisation, AOAB offers rigorous processes un-

derlying feedback on a project and communication between teams. In relation to project

scope and feature creep, many situations in the entertainment industry reflect multiple fea-

tures discovered during game development, which are relevant to game success.

AOAB is not a linear, but an iterative process. Thus, if an interesting feature is discovered,

it must be analysed in terms of its risk and, if viable, it should be added to the project

schedule [111]. It is noted that the cost of changes in traditional software increased in the

late of the project times to solve any problems and a late change to the system will incur

extra time and cost. Whereas, in the case of Agile, these will also increase, but typically at

the end of the project, as the nature of Agile is such that it can accept additional require-

ments and updates at later stages of the project [135]. Keith [80] suggests that at the end of

the Sprint, some work may still be under development. The goal is to achieve a continuous

flow of content creation, as shown in Figure 4.2, a core concept of AOAB.

When AOAB uses Agile concepts, it improves on the quality and efficiency of large, complex

game projects. Furthermore, this strengthens the communication between the developer and

the end user. The data from the evaluation protocol and the comments on the developed

prototype identify elements that need to be enhanced in the next methodology iteration.

In order to obtain quantitative results, an extra two columns were added, one scoring the

protocol and others to set priorities for the protocol based on the game genre and the eval-

uators’ points of view.

As the protocol for this research use a critical review of games to identify problems and to

develop a set of design requirements for the games, it is argued that this general methodology

is a new approach that can be used by researchers and designers to understand design issues

in most game genres. The research aims to clarify the different aspects of protocol sets and

their usefulness in the game evaluation phase. Most of the protocol sets can be used in the

early development phase; in which case, solving problems will not incur additional costs or

time, and will enhance the games.

99

5.9 Summary

The AOAB proposed in this research solves most of the previous problems in game develop-

ment by considering suitability for researchers and professionals in the industry. Adaptive

models encourage change and thus do not usually allow for all aspects of a game to be

planned in unison, which allows a game’s final project to be a direct response to its devel-

opment process and the lessons learned in that process [70].

The use of Agile concepts by AOAB leads to the improvement of the quality and efficiency

of large, complex game projects. Furthermore, it strengthens the communication between

the developer and the end user. Furthermore, Using MaSE in AOAB ensures the consistency

of games and facilitates complete and easy documentation that will be understandable for

different teams, useful for when a new generation of a game is required. The iterative nature

of AOAB is important for game development as although perfect game scope will never be

achieved, the main goal is to develop a solid scope that will help to guide the project to its

conclusion and achieve its goals.

Several studies have suggested that one of the benefits of using protocol evaluation is that it

helps designers to identify important classes of problems that are not always found through

user testing [114][74]. In this chapter, the life cycle of AOAB is discussed, with detail de-

scriptions. The next chapter of the research will focus on selecting a suitable evaluation

method to evaluate AOAB methodology.

Chapter 6

Evaluation Methods Selection For

AOAB

100

101

6.1 Chapter Overview

Evaluations are always difficult. However, one of the most difficult items to evaluate is a

methodology [84]. The goal of the evaluation of the AOAB methodology is first, to de-

velop a methodology by drawing on different evaluation methods, and second, to validate

the methodology through feedback from professional individuals. The AOAB Evaluation

Framework (AEF) will provide a comprehensive evaluation tool for many criteria. The hi-

erarchical evaluation criterion enhances the usability of the framework and provides enough

detail to evaluate different game development methodologies.

A critical analysis is presented alongside a clear description and justification of the best

evaluation method for evaluating AOAB methodology. This will demonstrate that the pro-

cedures for collecting data were carefully and systematically planned, allowing the reader to

assess the quality of the data collection procedure. Furthermore, it documents the research

methods by providing a framework for the evaluation, which could easily be used in another

methodology evaluation. The AEF will focus on three main evaluation methods; first, a

survey will facilitate comparisons between different game development methodologies, and a

workshop will be conducted. These workshops will help the research to receive feedback from

expert individuals who will complete a questionnaire. Second, is an academic experiment.

Third, an industry case study of a game development company will be presented. At the

end of this chapter, the AOAB evaluation framework procedure and evaluation time scales

are presented.

6.2 Purpose of Evaluation

Before beginning an evaluation, certain decisions must be made: ”what evaluation method

should be used?” And ”what is the purpose of AOAB evaluation?” Among the evaluation

methods community [31] [73] [82], there is agreement that the first and most important step

of any evaluation process is to identify its purpose, as no rational comparison is possible

102

without defining the purpose of the exercise. Depending on the purpose, the method of

carrying out an evaluation and the results may vary significantly. As the development of

game methodologies is still in the early stages, the aims and purpose of evaluating AOAB

are:

• Better understand the nature of AOAB methodologies, including their philosophies,

objectives, features and so on.

• Identify their strengths and weaknesses as well as the commonalities and differences in

order to perform classifications and to improve future game development methodolo-

gies.

• Conduct an evaluation with the aim of adopting a new methodology for the existing

development process

• The selected methodology must be best suited to the game development needs and

must require no significant changes to the current practice process.

One important fact that must be understood is that different methodologies are appropri-

ate for different situations; thus, a methodology should be selected by considering various

different issues. These influencing factors might include the context of the problem being

addressed, the domain, the organization and its culture. However, it is expected that evalu-

ation will also assist in practical matters such as identifying the domains of applicability for

each evaluated methodology [46].

6.3 Evaluation Context

The evaluation framework is context-dependent, which means that AOAB is not expected

to be the best in all circumstances. It is possible that one of the game developers might

identify AOAB as superior while another developer comes to a different conclusion. Hence,

differences in the results of the evaluation may be due to the properties of the game developer

103

that performs the evaluation, and not the methodologies themselves. For this reason our

evaluation framework will be as general as possible, and will try to cover the most important

criterion to help obtain results. Furthermore, AEF deals with game developers and designers

with different backgrounds, such as academic experts, industry experts and Indies people.

6.4 AOAB Evaluation Framework Process

The AOAB Evaluation Framework (AEF) is a multi-step method to define each part of the

framework using sets of criteria. Each criterion set defines the characteristics and main ele-

ments of the AOAB. AEF requires improvement to remove inconsistencies, conflicts, overlap

and the addition of criteria that cover more than one aspect. In the case of a particularly

complex system or game “ making a choice from the apparently very wide range of methods

and tools available can itself be a complex and costly process” [90] it is necessary to define a

systematic evaluation framework in order to identify a suitable evaluation method. According

to [143], there are three main methods that used to evaluate new techniques, methodolo-

gies and tools, which are: surveys, case studies and experiments. A short definition and

description of each of these is provided in Figure 6.1.

Figure 6.1: Evaluation Methods [143].

104

From [28], the Figure 6.2 describes a comparison between the evaluation methods employed

in game engineering. The domains of the comparison are selected as follows: (a) Game

software engineering is a subcategory of conventional software engineering. (b) traditional

software engineering is a mature scientific area. (c) Agile software development is selected

because it is a young domain and consequently complements traditional software engineering,

with respect to area maturity.

The results of the study suggest that case studies are most frequently employed in Agile

software development research. In addition, surveys are most frequently employed in game

development research and finally, experiments are more frequently conducted in software

engineering research. The AEF procedure will include surveys, case studies and experiments,

as shown in Figure 6.3.

Figure 6.2: Comparison Between Evaluation Methods [28].

Most popular software engineering methodologies are created to be generic and suitable for

many kinds of projects. The evaluation methods for the AEF are divided into two types:

qualitative and quantitative evaluation.

105

Figure 6.3: AOAB Evaluation Process

6.4.1 Survey Approach

This approach does not involve the practical use of evaluation. The survey can be used in

many ways; sometimes, an organization or individual with experience is asked to use the

methodology and then provide information about the methodology. This information can

then be analysed using standard statistical techniques [82].

This technique is used in the present AOAB evaluation by conducting workshops in the

academic and industrial sectors. This part of the research will be described in detail in

the chapter Eight and Nine. Another form of evaluation survey is to compare the new

methodology with similar existing methodologies. Methodology evaluation is a complex issue

that is subject to various different points of view. The results of AOAB have already been

compared in terms of development time, project management and the benefit of adapting two

methodologies to create new hybrid methodology. In the evaluation methodology process,

the following methodologies are selected to be compared with AOAB methodology:

1. DeLoach et al. [50] present an enhanced version of MaSE, called an Organisation-based

Multi Agent Software Engineering (O-MaSE) methodology, to address a lack of indus-

trial strength methods and tools to support multi agent development. Management

and deployment issues are initially covered in O-MaSE, but not in a way that involves

the customer in the process or accepts any change in development time, as used with

106

AOAB. Furthermore, the testing and evaluation phase is not included in the O-MaSE

life cycle. The O-MaSE methodology framework is based on two meta-models: SPEM

2.0 and the O-MaSE meta-model. The SPEM meta-model defines methodology-related

concepts, while the O-MaSE meta-model describes product related concepts [50].

2. Chella et al [41] present a hybrid methodology named PASSIAgile, to be used in

robotics, the main idea of which is similar to AOAB, a hybrid between AOSE and

Agile methodologies. Chella uses PASSI for the named code generation phase. This

phase is largely supported by (Agent Factory) to automatically compile agent structure,

patterns reuse and code generation [40]. For AOAB, the reason for selecting MaSE is

its ability to define the agent goal in the initial phase. Furthermore, MaSE is able to

add a new goal to an agent in any phase.

3. Jamont et al.[72] present a DIAMOND multi agent methodology that focuses on the

hardware and software requirements of the system. The implementation phase consists

of partitioning the system hardware and software parts to produce the code and the

hardware synthesis. On the other hand, AOAB focuses only on the software require-

ments part of game creation, although both use an iterative process.

According to [84], DESMET is a method for evaluating software engineering methods, and

tools are mentioned the advantage and disadvantage of survey as follows:

Advantages of Survey

• They make use of existing experiences (i.e. existing data).

• They can confirm that an effect generalises to many projects/organisations.

• They make use of standard statistical analysis techniques.

• They require less time and effort than the formal experimental approach.

107

Disadvantages of Survey

• They rely on different projects/organizations keeping comparable data.

• They only confirm association, not causality.

• They can be biased due to differences between those who respond and those who do

not respond.

• The difficulty of finding the right people to ask to participate in the survey, particular

if the evaluated methodologies are not popular

Several tasks are associated with this survey, such as choosing the type of survey, for example

a web-based survey or personal interview, building the survey documentation, such as a

questionnaire, and identifying people to participate in the survey. Finally, the evaluators

will run the survey and collect and analyze the responses according to the survey design [46].

In Chapters Eight and Nine, the workshop process will be covered in detail, from building

the questionnaire, inviting participants, collecting data and, finally, analyzing the participant

feedback.

6.4.2 Formal Experiment Approach

A formal real world experiment involves asking real companies to perform a task or play a

game using the new methodology. The results will be analyzed using standard statistical

techniques. For the AOAB methodology, a formal experiment has been conducted with

undergraduate students completing a game design and implementation assignment. This

part of the work will be covered in detail in Chapters Eight and Nine. Formal experiments

are appropriate for exploring relationships; this approach is likely to produce the most reliable

results, as it seems to reduce the influence of single assessor differences. It is, however, the

most costly and time consuming approach [46].

108

6.4.3 Case Study Approach

The case study is similar to an experiment, but the level of control is lower in the sense

that they are mostly observation-based studies [143][83]. Case studies is easier for a game

developer organization to perform as there is no replication; the only limitation relates to the

confidence that case study will allow an assessment of the true effect of the methodology. For

AOAB, a case study approach is used to create a test drive game. The industry case study

required approximately three months of work with an interested company who collaborated

on the research free of charge as they are interested in improving their work and knowledge.

The number of participants involved in the case study was four individuals, including the

researcher. This part of the evaluation will be covered in detail in Chapters Seven and Nine,

in the critical analysis of the research results.

According to [84], DESMET is an appropriate method for evaluating software engineering

methods and tools are mentioned the advantage and disadvantage of case study as follows:

Advantages of Case Studies

• They can be incorporated into normal software development activities.

• If they are performed on real projects, they are already “scaled-up” to life size.

• Provide a practical evaluation performed by an actual user of the methodology.

• They allow the researcher to determine whether or not expected effects apply in specific

organizational and cultural circumstances.

Disadvantages of Case Studies

• With little or no replication, they may yield inaccurate results.

• There is no guarantee that similar results will be found in other projects.

109

• There are few agreed standards or procedures for undertaking case studies. Different

disciplines have different approaches and often use the term to mean different things.

6.5 AOAB Evaluation Framework Procedure

The evaluation framework procedure is the way in which the evaluation is organised. A well

developed structure for the evaluation framework allows the results to be considered in terms

of what AOAB methodology adds to existing methodologies. Most evaluation frameworks

can be quantitative, qualitative or a hybrid evaluation. The suggested evaluation framework

for this research consists of three main steps, which are as follows:

1. Define the parameter needs for the evaluation

In this section the main criteria must be identified, which are necessary for the eval-

uation. Those criteria are based on the following three roots: game, Agile and agent

root.

2. Define the methods used for the evaluation framework

The evaluation aims to explain how well AOAB fits the needs and culture of an or-

ganisation. The most popular evaluation methods are: Case Studies, Survey, Formal

Experiment, Feature Analysis and Bench Marking. Generally, the evaluation frame-

work applied in this research will use survey, case study and formal experiment, which

will be explained in detail in Chapters Seven, Eight and Nine.

3. Critical analysis of results and suggestions

This part of the evaluation framework will critically analyse the results of the previous

steps and make suitable suggestion regarding AOAB. The critical analysis of the AOAB

methodology will be discussed at length in Chapter Nine.

110

6.6 AOAB Evaluation Time Scales

As there are many different evaluation methods, the methods are ranked in order of the

likely time scale required to perform an evaluation. The relative time scales are divided into

the following types:

First: Long, for projects over three months. The evaluation methods addressing long term

projects take the form of academic experiments, as the assignment preparation and submis-

sion process takes 14 weeks.

Second: Medium, several months. Industry case studies are generally used.

Third:Short, several weeks; the workshops take just one day to present, and several weeks

of preparation [84].

It is important to ensure that the choice of evaluation method conforms to external time

scales constraints. AEF covers all of the discussed timescale types.

6.7 Summary

The evaluation of the methodology is a tool that helps facilitate a better understanding of the

steps required to carry out a quality evaluation. An overview of the evaluation methodology

plan is presented in this chapter, based on the AOAB evaluation criteria. The goal of

the evaluation is to reach decisions and make the necessary enhancements to the AOAB

methodology. This can be achieved and documented with confidence when a systematic,

well-planned evaluation process is applied. The degree of confidence in the results obtained

through a quality evaluation process clearly justifies the effort involved in performing the

process systematically.

Chapter 7

Evaluation by Applying AOAB

Methodology to Industry

111

112

7.1 Chapter Overview

This chapter evaluates the AOAB methodology in the industry sector. A game company

name”3D Design” with medium size projects is selected for use in the study. This game

company principally provides multimedia and gaming for medium size projects in the area of

television and learning games. The industry case study covers the whole life cycle of AOAB

methodology, from requirement specification to game release. First, the concept paper and

GDD is defined, then the analysis and design phases are addressed. In those phases, the

QSEE software is used to create the required AUML diagrams. In the implementation phase,

the 3Duninty game engine is used for game implementation. The game is a serious game,

which is based on imitating a driving test exam. This chapter includes a discussion of how

AOAB can be evaluated according to AEF. At the end of this chapter, a critical analysis is

presented, as well as an evaluation of the results of current work.

”3D design” is a game development company showing a strong interest in adapting AOAB

to implement a serious game, using Agile methodology for the game creation. A serious

game genre is selected for the game idea of this research; the game is mainly designed to

help people who want to obtain a driver’s license.

7.2 Serious Game

Serious games are useful for teaching peoples how to interact with each other and with their

environment. The best serious games are simulations that have the appearance of a game,

but whose events or processes are real. Usually they include business domains or military

operations; many popular entertainment games are based on business and military opera-

tions, but with simpler rules [66].

Mike Zyda [151] provides a definition of a ‘serious’ game, which is”a mental contest, played

with a computer in accordance with specific rules that uses entertainment to further gov-

ernment or corporate training, education, health, public policy, and strategic communication

113

objectives.”

The relation between serious games and the AOAB proposed in this research is that the

agent can play the roles of adversary and collaborator in a serious game. The serious games

can entertain, but its primary goal is to educate, investigate or advertise. In particular, this

research is oriented to a category of serious games called game-learning, the main objective

of which is training [66]. Many commercial applications, including IBM INNov8 a [8] have

built different games. The important question is what methodology underlying their develop-

ment is used. As mentioned by [66], the processes and methodologies followed are based on

old and rigid processes and methodologies that do not consider the development of a serious

game as anything remarkable.

Games have been used for educational purposes for many years [141]. Games can be inte-

grated into higher education in three main ways. First, traditional exercises can be replaced

with games motivating students to put extra effort into exercises, giving course staff the

opportunity to monitor how students complete the exercises in real-time [124] [63]. Second,

games can be used within a traditional classroom lecture environment to improve the partic-

ipation and motivation of the students through knowledge-based multi player games, played

by the students and the teacher [140][139]. Third, game development projects can be used

in computer science (CS) or software engineering (SE) courses to acquire specific CS or SE

skills [57] [148].

7.3 Drive Test Game

The main aim of using an experimental study for “Drive Test game” is to demonstrate

how the actors, scenes, context and game environment could simulate, specified, design and

development using the AOAB. The agent needs to be informed about player characteristics

and use them in the game play control, and the simulation must feature engaging comments

that will motivate the player to play and learn [79].

The driving test game is an educational game with a graphic format. The player controls the

114

character and this character interacts with different environments and situations and must

make decisions. The game is made up of several scenarios, or locations, based on the Oman

learn driving centre website [12], where the driver must perform certain actions correctly to

pass the three parts of the driving exam.

7.4 Requirement Specification

The first step of the game creation is to write the requirements scripts. This script is usually

called a concept paper [27]. The game designer will convert the information from the concept

paper to a GDD, which will serve as a guide throughout the development process. The last

steps of the requirement specification are to create a Sprint Backlog based on the GDD,

which should provide an estimation of the number of iterations needed prior to game release.

7.4.1 Game Concept Paper

The driving test game is a serious game. The goal of the game is to simulate the environment

of the driving test that must be passed to obtain a driving license for an automatic or manual

car. The environment of the game will be split over three areas, based on information from

[12], which contains basic information required to know and understand how to drive safely,

particularly for the road test, drum test or parking test and, finally, the traffic sign test.

The current web page [12] includes most of the scenarios that a driver could face. The

proposed game will be more useful and understandable than any PDF file or web page.

Furthermore, the language of the web page is in English only, which, in the Sultanate of

Oman, many people do not understand well. In the game proposed by this research, both

the Arabic and English languages will be used.

The first environment of the game is the traffic sign test. Usually, the test presents 5 to 8

signs. The game will ask for 5 signs at random, with an option to view all signs and their

meanings. The second environment is the parking test or drum test, which deals with how

115

to park a car between two rows of drums, or between two cars. When the driver parks in a

handicapped parking space, or touches a drum or another car, the game will highlight the

incorrect parking. The third environment is the road environment, where the driver is sitting

with an examiner and following their orders on a real road. This is the hardest part of the

driving test, as the examiners sometimes give the driver incorrect orders to follow. The real

test takes approximately 15 minutes and the same time limitations will apply in the game.

The driver will sometimes need to refuse the examiner if wrong orders are given, for example

if the examiner asks the driver to park in handicapped parking; if the driver accepts this

order then they will fail the test.

7.4.2 Game Design Document (GDD)

For most designers, GDD is a fun and interesting activity, as they are able to apply the vision

that was presented in the concept paper. The complete GDD is not an easy piece of work

[34]. A poorly elaborated GDD can lead to a need for reworking and loss of investment in

game development phases. Therefore, this research will analyse several available GDDs found

in existing literature, comparing the findings to propose an improved general GDD placed

alongside a commercial GDD. Most authors agree that there is no established structure for a

GDD, as there are significant differences between games. However, there is a set of common

elements of game design [117]. These common elements are used to create a general GDD

as a template that is easy to use and can be applied to different game genres. Appendix A.1

includes a template with an explanation of GDD elements. Et. Jesse Schell [76] suggests

creating more than one document to serve all necessary purposes. Schell defines six groups,

which need to remember and communicate different things, as shown in Figure 7.1.

116

Figure 7.1: Game Design Document Elements [76].

The GDD template is constituted of one document divided into multiple subsections. Ap-

pendix D.1 includes the GDD template completed to cover the requirements of the driving

test game.

7.4.3 Sprint Backlog

In this research, a full GDD is created. The final step in the requirement specification of the

AOAB is to translate the GDD into a Sprint Backlog. The workload was distributed among

the team during the Sprint planning meeting. In this meeting, it was decided to divide the

work into four iterations, where each iteration would cover one environment of the game. In

the first Sprint, a full prototype will be created, as well as the functions of the traffic sign

test environment.

Table 7.1: Time Plan of Our Game

Phase Activity Deliverables Week

Requirement phase
Idea creation, Sprint

Backlog, Capture goal

GDD, Sprint

iteration
1- 3

117

Table 7.1: Time Plan of Our Game

Phase Activity Deliverables Week

Analysis phase (Sprint 1)

Use Case, Sequence

Diagram, Define tasks and

role

Apply Use Case

and role diagram
4

Design phase (Sprint 1)
Agent classes, Agent

Architecture

Creating Agent

class diagram
5

Implementation phase (Sprint 1) Deployment Diagram Create prototype 1 6

Analysis phase (Sprint 2)

use case, Sequence

Diagram, Define tasks and

role

Apply use case and

role diagram
7

Design phase (Sprint 2)
Agent classes, Agent

Architecture

Creating Agent

class diagram
8

Implementation phase (Sprint 2) Deployment Diagram Create prototype 2 9

Analysis phase (Sprint 3)

use case, Sequence

Diagram, Define tasks and

role

Apply use case and

role diagram
10

Design phase (Sprint 3)
Agent classes, Agent

Architecture

Creating Agent

class diagram
11

Implementation phase (Sprint 3) Deployment Diagram Create prototype 3 12

Testing and evaluation phase

(Sprint 4)

Integrate game iterations,

user evaluation, expert

evaluation

Code review, final

game release
13-15

118

In the second Sprint, a full prototype, as well as the functions, of the drum or parking test

environment will be created. In the third Sprint, the full prototype and functions of the

road test environment will be completed. In the fourth Sprint, all of the environments must

be integrated, and the final game version tested and evaluated prior to game release. Table

7.1 shows the time schedule for the game following the Sprint planning meeting. Appendix

D.2 shows all the required diagrams for the analysis phase, Appendix D.3 contains those for

the design phase, and Appendix D.4 covers the implementation phase and is divided into

subsections that cover all the required figures for implementation, in detail, as shown in

Appendices D.4.1, D.4.2, D.4.3, D.4.4 and D.4.5 .

7.5 Analysis Phase

7.5.1 Model Goal (Goal Hierarchy Diagram)

The analysis phase is a very fruitful period; it depends mainly on what is collected in the

requirement specification phase. The first step in the analysis phase is capturing goals, which

usually depends on the requirement specifications phase and transforms into a structured set

of system goals, depicted using a goal hierarchy diagram for the drive test game. In the goal

hierarchy diagram, the main goal is defined, which is less likely to change than detailed steps

and activities. The goals are organized by importance. Sub-goals are assigned to specific

parent goals, and state what must done to accomplish the parent goal. Briefly, the goal

model for this work is divided into four. Appendix D.2 illustrates all of the analysis phase

diagrams. The first model, as shown in Figure 7.2, is the main goal model, which is made

up of three sub-goals. Each sub-goal is presented in a separate diagram. The work plan

is divided into three main Sprints, as shown previously in Table 7.1. Sprint four is usually

integrates the three prototypes produced after each iteration.

119

Sprint 1

Figure D.2 shows the goal hierarchy for the first part of the driving test. The first part is

typically the traffic sign test. The main goal is to pass the multiple-choice test, whereby the

player must read and identify different traffic signs.

Sprint 2

Figure D.3 represents the goal model for the second part of the driving test game, which deals

with the drum test. In order to pass the drum or parking test, the player must select the

gear type needed for the test, which could be manual or automatic. Furthermore, the player

should achieve the goal of controlling the car, and be able to drive forwards and backwards.

Figure 7.2: Main Goal Hierarchy

120

Sprint 3

Figure D.4 shows the goal model of the third part of the driving test game, the road test.

This is the hardest part of the real world test, because the goal is full control over the car,

and the ability to analyse the examiner’s orders. The player should ignore incorrect orders

and follow only correct ones. Furthermore, the player should have knowledge regarding road

rules and instructions.

7.5.2 Apply Use Case and Sequence Diagram

The use case diagram determines the actual communications required within games. A

sequence diagram is used to depict a sequence of events across multiple roles and defines

the minimum communication that must take place between roles. The sequence diagram

shows the events that occur when an agent plays the game. Each goal is typically mapped

to single role, with associated tasks. To create the sequence diagram, the QSEE software is

used. Four sequence diagrams are created; the main sequence diagram, Figure 7.3 illustrates

the main part of the work, which is divided into three sub-sequence diagrams covering three

Sprints. Appendix D.2 contains the three sub-sequence diagrams.

Figure 7.3: Main Sequence Diagram

121

Sprint 1

Figure D.6 shows the sequence diagram of the first Sprint, which covers the steps of the

traffic sign test from the start of the test until informing the driver of the final result.

Sprint 2

Figure D.7 represents the sequence diagram of the second Sprint, which covers the drum or

parking test steps from the start of the test until informing the driver of the result.

Sprint 3

Figure D.8 shows the sequence diagram of the third Sprint, covering the steps of the road

test from starting the test to informing the driver of the result. In Figure D.7 and Figure

D.8, new roles are added that deal with car control, to be sure that the driver has the ability

to drive and control the car. Furthermore, another additional option is to select the gear

type, either automatic or manual. This is because, in many countries, including Oman, there

are two types of driving license, one for automatic cars only, the other for both automatic

and manual cars.

7.5.3 Role and Task Model

The third activity in the analysis phase is the role and task model. The developer must

ensure that all the necessary roles are identified, and develop tasks that define role behavior

and communication. The same classification is used to divide the work into three Sprints.

Figure 7.4 shows the main role diagram.

122

Figure 7.4: Main Role Diagram

Sprint 1

Figure D.10 relates to the traffic sign test; it has more detail, showing the result, giving a

score mark and adding a database that contains most of the traffic signs with their description

and usage.

Sprint 2

Figure D.11 covers the drum or park test. In this part, the driver must drive a car, control

the car, select a parking spot and, finally, park the car successfully. The job of the examiner

is to check the parking steps and decide whether the driver will pass or fail the test.

123

Sprint 3

Figure D.12 covers the road test. This part is the hardest for the driver in the real life test,

and also in the game, as the examiner will give driver both right and wrong orders. In this

case, the driver should analyse the orders according to their experience, and then follow the

correct ones, ignoring the wrong orders. At the end of the test, the examiner will inform the

driver of the final result.

7.6 Design Phase

7.6.1 Creating Agent class

The agent class diagram plays a specific role. In each agent diagram, the capability of the

agent is defined. In this research, three agent diagrams are provided, one for each of the

three Sprint phases. Each Sprint will cover one game level. Appendix D.3 contains the three

sub-sequence diagrams.

Sprint 1

Figure 7.5 represents the first level of the game, which is the traffic sign test. For this stage,

three agents are created: an examiner, player and decision maker.

Sprint 2

Figure D.14 shows the second level of the game, the drum test. In this part of the research,

the previous agents from Sprint one are used. Additional agents, such as car control and car

parking, are also created.

Sprint 3

Figure D.15 shows the third level of the game, the road test. Again, the same agents from

previous sprints are used, with some additional roles.

124

Figure 7.5: Agent Diagram (Sprint 1)

7.7 Implementation Phase

7.7.1 Deployment Diagram

In the implementation phase, a deployment diagram is used as shown in Appendix D.4.1.

Figure D.16 illustrates the deployment diagram for this work, which contains a drum or park

examiner, a traffic sign examiner, a road examiner; the driver will select one part at a time,

it is not necessary to sequence.

7.7.2 Implementation Section

This section will discuss the actual implementation, using 3Dunity as a game engine.

125

Appendix D.4 relates to the implementation section and has been divided into subsections

according to the game layout in Appendix D.4.2, the communication messages that appear

to the player in Appendix D.4.3, the Java Script code used in the game in Appendix D.4.4

and finally, a screen shot of the sequence of the game in Appendix D.4.5.

The next sections will explain the implementation section, according to two directions: The

first direction is divided into three categories: game layout and graphics, the animation

added to the game and, finally, the programming language and Java code used in the game.

The second direction shows how the actual game was implemented based on the previous

design, which was divided into four Sprint phases.

Game Layout and Graphic

The initial step is to import the car model to the 3DUnity working area, as shown in Figure

D.17 which will appear in 3Dunity as in Figure D.18

The car model is an important part of the game design. In this work, some traffic sign images

are imported to form part of the traffic sign test, as shown in Figure D.19. Furthermore, in

Figure D.20 some sample traffic signs are included with their Arabic and English descriptions.

As the game has different levels, different images are used for the scenery and background,

seen in Figures D.21, D.22, D.23 and D.24 in Appendix D.4.2.

Multiple messaging scenes are used to communicate with the player and explain how to pass

the driving test, which can be seen in the following Figures D.25, D.26, D.27, D.28, D.29

and D.30 in Appendix D.4.3. Figures D.31, D.32 and D.33 illustrate the results of certain

actions, if they are correct or if they are wrong, and also provides the results of the test.

Game Animation

To achieve a perceptible representation of the dynamical movement of a car, the car control

Java script is added to the car model to provide movement for the car. Two box Colliders

are used for the car, as well as a wheel Collider to the four car wheels. A simple way to

126

check collisions using unity is by adding a Rigidbody component. Rigidbodies are physically

simulated objects that can be used as marks. A way of using Colliders is to mark them as

a trigger. For this research, it is useful for triggering a specific event in game. Furthermore,

a second camera is added to follow the car’s movements. As a first step, another camera

is created and imported using a package named Script to use the Smooth follow Java file,

and link it with our car. To achieve a better viewing experience for the player, the distance

between the camera and the car is minimised.

Game Programming

As described earlier, 3DUnity has the ability to deal with Java Script, C sharp and Boo

programming languages within the same project. Appendix D.4.4 illustrates the Java Script

code. Java Script, as shown in Figure D.34, is used to move from one scene to another within

the 3DUnity project. Each time the game moves between scenes, the scene name appears in

the last line of Figure D.34. Figure D.35 is a Java script imported from the scripts package.

A Smooth follow Java file allows a second camera to follow the car and enable a clear view

for the player. The Java script in Figure D.36 shows a case in which the player selects the

correct option on traffic sign test; his/her final score will increase by one. In the case of an

incorrect selection, the score will not increase, as seen in Figure D.37. Figure D.38 illustrates

the final score for the player after answering all questions in the traffic sign test.

The Java script is imported from Scripts with name car control to add control to the car,

as shown in Figure D.39. Each of the previous Java Scripts must be linked with a scene

or a component of a scene in order to work perfectly. Usually, if the component details are

selected, the name of the linked Java file can be found. The next section will discuss the

actual steps for implementing the game, based on the previous analysis and design section.

The sequence of the game appears as presented in Appendix D.4.5

127

7.7.3 Implementation of Sprint 1

Sprint 1 is principally focused on implementing the traffic sign part of the game, and five

Figures D.44, D.45, D.46, D.47, D.48 will appear to the player. If the player selects the

right answer, their score will increase by one, otherwise the score will not increase. After

answering all questions, the player is shown Figure D.49, the final score. The player then

has two options, return to main menu, or start the next level.

7.7.4 Implementation of Sprint 2

Sprint 2 is related to how to park a car, and covers three types of parking. Initially, Figure

D.50 explains the rules of this part of the game. The player is instructed to park the car

within the red lines, as shown in Figure D.51 Once the player parks the car successfully,

Figure D.52 will appear. The player has the option to progress to the next level or return to

the main menu. In the second part of the game, Figure D.53 explains the rules to the player.

The player is instructed to park the car within the red lines between two cars, as shown in

Figure D.54 Once the player has parked the car successfully, Figure D.55 will appear. The

player has the option to progress to the next level or return to the main menu. In the third

part of the game, Figure D.56 explains the rules. The player is told to avoid parking the

car under the ‘no parking’ sign, as shown in Figure D.57 If the player parks the car in the

prohibited area, Figure D.58 will be shown. The player has the option to proceed to the

next level or return to the main menu.

7.7.5 Implementation of Sprint 3

This section is under construction; Figure D.59 explains the rules to the player. At this

stage, the player can drive freely, as shown in Figure D.60. The driving test game is under

construction with a game development company. There is a plan to simulate Muscat Road,

128

simulate car locations if Oman Government funding can be secured for this project. Many

of EU and UAE countries use simulation driving games to help drivers get a license.

7.7.6 Implementation of Sprint 4

Sprint 4 is used to integrate all parts of the game into a complete game. The main screen, as

shown in Figure D.40, us divided into five sections. Figure D.41 explains to the player the

rules of this level of the game. The player has the option to take the test in either Arabic

or English, seen in Figure D.42. There was a problem, initially, with the selection of Arabic

language, as it is not supported by 3DUnity. It is possible to write in Arabic, but not in the

standard way; 3DUnity does not mix the letters, as is seen in Figure D.43. Finally, there is

a section added into the game that explains to the player the goals of the game and how to

act in a real world test, as shown in Figure D.61.

7.8 Critical Review

The case study evaluation provides a complete test and evaluation of AOAB in the indus-

try section. The first step in this case study was to find a games company interested in

collaborating on the project. This was a big challenge, because in Middle Eastern country

companies are interested in the gaming field from a commercial perspective. The company

contributing to this research, however, showed an interest in enhancing their work. This is an

interesting experiment from the perspective of teamwork and knowledge sharing. The team

is small and the communication excellent. The company were happy to create a detailed

GDD that saved a lot of time at the implementation stage. Furthermore, the analysis and

design diagrams gave team members a clear view of what needed to be done, how it should be

done, and by whom. This company is now in communication with the government, making

plans to simulate parts of the exam in the official test drive. Finally, it is clear that AOAB

enhanced the progress of the game in relation to the final game release. AOAB provides

129

powerful documentation, which is useful for the game evaluation and the creation of new

versions of the game.

7.9 Summary

This case study is mainly designed to evaluate the proposed AOAB in the industry sector.

The company involved were glad to have access to our AOAB as it allowed consideration

of the management section. The schedule, budget and user satisfaction are the main goals

of any commercial game company, and AOAB deals with all of these important points in a

clear and systematic way. Most games companies avoid dealing with complex methodology;

they typically use clear steps and easy to follow phases, which appear clearly in the AOAB

methodology. Furthermore, one of the main and critical problems in the industry sector

is feature creep; AOAB provides a solution to this problem by including the customer in

each game iteration, as well as complete analysis and design for games, covering all game

requirements and needs.

Chapter 8

Evaluation AOAB Methodology by

User Perspective

130

131

8.1 Chapter Overview

This chapter will discuss and evaluate AOAB from a user perspective by using AOAB in

an academic experiment and conducting workshops to explain and evaluate AOAB with

experts in the games field. Regarding the academic sector, a group of undergraduate mobile

computing students have been selected to complete a game creation assignment using AOAB

methodology. Other students are using Agile methodology as a course descriptive.

Regarding workshops, two workshops will be conducted, the first in a Middle Eastern country,

Jordan, with participants who are industry experts. The second will be conducted in the UK,

Lincoln, with academic expert participants. In order to obtain direct feedback on AOAB

methodology from the different participants, they will be asked to fill in a questionnaire after

the workshop. The main goal of this chapter is to present AOAB methodology to different

types of game developers. According to their feedback, any weaknesses and problems with

AOAB, such as creating a new GDD template, can be addressed according to the developer

feedback. The new version of the GDD template is easier to use and more suitable for

different game developers.

8.2 Academic Game Design Experiment

This part of the work describes an academic experiment regarding how AOAB methodology

could be used to create a game for a “Further Programming for Mobile Devices and Handheld

Devices” course. In this course, students have to construct, design and implement game

using Agile methodology and Android software. For this experiment, the methodology for

a selection of students will be AOAB instead of Agile methodology. The results of this

experiment will be based on feedback from the course staff, the students’ project reports

and a mandatory course evaluation.

132

8.2.1 Course of Mobile Computing

The Further Programming for Mobile Devices and Handheld Devices course is an under-

graduate course offered to Mobile Computing (MC) students as a mandatory course, and to

CS, Information System (IS) and Computing Science (CIS) as an optional course, at Gulf

College, Oman, which is affiliated with Staffordshire University, in the UK. The course is

taught every semester for level 6 semester 2, the last semester before students graduate;

between 15 and 20 students attend each semester. This study focuses on game development,

which is part of a project introduced in the course to teach students mobile computing

skills. Many students are happy to create their own game, and the course allows students

to create their own games as part of the assessment method. One of the main objectives

of the mobile computing course specification is to teach students about mobile technologies,

game user interfaces and game or software development methodologies. For students to pass

“Further Programming for Mobile Devices and Handheld Devices”, they must understand

how to develop a mobile game, publish the game and how to approach game development

methodology. The course contents, requirements, assignment contents and how the marking

criteria are used are explained in the Appendix E.

8.2.2 How the Course Changed

This section will outline the changes made to the course in order to integrate AOAB method-

ology within the course contents. Those changes are the following:

1. Changes to the Syllabus and Course Contents

It is difficult to change the syllabus of the course due to the affiliation with Staffordshire

University. Therefore, rather than change the syllabus, there is an additional option

to select either Agile or AOAB methodology for the game development section. The

opportunity to use the Agile methodology was not removed.

133

2. Changes the Assignment

The course staff preferred not to make any changes to the assignment requirements and

evaluation criteria. The only change to the assignment is the methodology selection

section, and how the methodologies are used in game creation.

3. Changes of the Staff and Schedule

The change in staffing will be covered by two staff members; one of whom will deal

with students in group A, and the researcher, as an invited teacher, will deal with

students in group B. Group A will implement their games using Agile methodology,

while group B will use AOAB methodology. The main changes made to the course

schedule for group B students are:

• An extra bounce mark for group B that covers assignment methods as an extra

features section.

• Adding a two hours introductory lecture to explain AOAB and AOSE method-

ologies.

• Adding an extra two lectures as technical support to give students in group B an

introduction to using the AUML modeling language to create diagrams, such as

the role diagram, agent class diagram and so on.

• The students have the option to register for the course as either group A or group

B.

8.3 Workshops Conducted

AOAB is evaluated by conducting two workshops. Appendix F, includes full details re-

lating to those workshops, such as the description, workshop materials and questionnaire

template. Appendix F.7 provides some of the positive and negative feedback received from

the participants.

134

8.3.1 Workshop Aims and Outlines

One of the priorities of the workshops is to present the concept and ability of using AOAB

methodology for game creation. Furthermore, the feedback from the expert game partici-

pants will help to identify and resolve any lack of confidence or misunderstanding.

The general outline of each workshop is as follows:

1. At the end of the workshop, the participants will complete the questionnaire shown in

Appendix F.3.

2. AOAB is introduced and demonstrated in detail.

3. The participants use AOAB in the case study. Furthermore, they work as a group and

learn how to distribute the work as a team.

4. The participants gain knowledge of AUML diagrams, as shown in Appendix F.5 by

using Agenttool3 software.

5. The participants gain knowledge of UML diagrams, as shown in Appendix F.6 by using

QSEE software.

6. The participants share their knowledge. In a roundtable discussion, the facilitator

insists that each group should be mix of academic, industry and Indie people, as seen

in the workshop pictures in Appendix F.4.

7. The participants gain knowledge of how to create and build a GDD by using a GDD

template, as shown in Appendix A.

8.3.2 Workshop Activities’

Two workshops were conducted, both following the same schedule. Each workshop was

divided into three parts, as follows:

1. First part, theory is explained, followed by a 15 minute break.

135

2. Second part, begin to explain the AOAB life cycle in detail. The white board is used

to show students how to create AUML and UML diagrams. In this part, a hard copy

of QSEE, AgentTool and GDD templates are distributed. Finally, before the session

ends, it is explained to the participants that the case study is about how to pass a

driving test exam. The driving test exam has three parts. For the AOAB concept,

this requires three iterations. Before the completion of this stage, the participants

are divided into four groups; the last group is instructed to complete the GDD in a

professional way, and each group is responsible for part of the game. Each participant

is given a number to ensure a good mix of groups, where each group should contain

individuals from industry, Indie and academia. Participants are then given a 15 minute

break.

3. Third part, The participants begin creating their game, according to AOAB phases.

At this time, each group is visited individually to discuss different issues. At the end

of this stage, a general note of each group is taken and the questionnaire is distributed;

participants are asked to write their feedback and suggestions individually.

8.3.3 Workshop Evaluation Process

The end of the workshop is an activity based on the participants’ feedback, where partici-

pants work as a team. According to the participants, they received good knowledge of AOAB

and how to work as a team. At the end of the workshop, the participants were asked to

complete the questionnaire in Appendix F.3. Comments included:

The workshop was very formative about new techniques and methods for the game and for

project management.

The strong point was about an agent that has its own rules and goals to determine the final

or correct solution.

AOAB has many diagrams that can explain the game idea better than plain text.

AOAB makes the work flow faster and game updates are easier for the developer.

136

Helps a lot in the case of maintenance and improvement of development

Drawing on the questionnaires collected following the workshops, the next chapter will

present both a qualitative and quantitative evaluation. A quantitative evaluation aims to

establish different measurements, such as participant age, experience, gender and preferred

game genres. Many kinds of metrics are depended on for measurements from different roots,

as shown in Figure ??. Quantitative evaluation is not as flexible as qualitative evaluation.

Qualitative evaluation, in this research, aims to explain how well AOAB fits the needs and

culture of industry organizations and game researchers. The qualitative evaluation identifies

the expected benefit of the methodology, and feedback helps to deduct any limitations to

the work. The next chapter will analyse and discuss in more detail the outcome of both

workshops.

8.4 Critical Review

This chapter focuses on the user perspective and feedback, in two specific ways: First, by

dealing with undergraduate students creating games for an assignment. When the course

was introduced to the students at the beginning of the semester, they were told that this

was the first time AOAB methodology was being used, and students were informed that

they would receive extra lectures in order to explain the AOSE concept, a new trend in

software engineering. Most of the students were interested in the new concept, particularly

as it dealt with games. Game creation is a popular form of assignment among students;

AOAB provides them with clear steps that are easy to follow, and allows them the time to

add extra features, as they will not face huge problems in the implantation stage, unlike

group A. It was observed that the performance of group B was a little higher than group A.

These issues are considered in the final game release and the final marking evaluation. The

documentation produced by group B is good quality, consistent and sufficiently describes

the system. It is also noted that this documentation saves time in the coding and evaluation

phase, on which students from group B spent less time than group A. This is fewer problems

137

were identified that needed solving than were by group A. Every effort was made to obtain

accurate results that facilitate the work and provide a comparative view. Different types of

data were collected and will be analysed in details in Chapter Nine.

Second, by dealing with experts from different backgrounds, who were invited to both work-

shops. Each workshop took place in a different country and participants with different in-

terests were invited to both. For the first workshop, most participants are from the industry

sector and Indie, The second workshop was held in parallel with the GAMEON conference,

and therefore most of those participants are from the academic sector. In each workshop,

the facilitator was present and participated in the group discussion.

One of the pieces of negative feedback regarding the workshop itself, received from partic-

ipants in the first workshop, is that the workshop would be better if it were carried out

over two days, in order to get an extra explanation of the Agent concept and to provide

more time to work on and finalise the case study. On the other hand, participants of the

second workshop asked the facilitator to present the workshop as a conference session, as

they already had knowledge of Agile and AOAE methodologies. The other conflict between

users’ points of view relates to GDD. The expert developers prefer a complete and detailed

GDD, as presented in Appendix A.1, while Indie and small teams prefer a small and concise

GDD, as presented in Appendix A.2.

8.5 Summary

This chapter describes how AOAB is evaluated based on AEF, which is presented in the pre-

vious chapter. The structure of this chapter consists of two parts: academic and workshop

evaluation experiments. The next chapter will provide a critical analysis of those experi-

ments, in full detail. One challenge discovered in this chapter is the need to conduct more

than one workshop. Only expert people from academia, industry and Indies were invited,

in order to make the experiment more professional. The first workshop was conducted in a

Middle Eastern country, and the second in the UK country in order that the experiment be

138

international and to get different feedback. By contrast, finding a suitable academic module

was not a challenge, as this could be selected from current modules.

Chapter 9

Critical Analysis of AOAB

Methodology

139

140

9.1 Chapter Overview

This chapter comprises the critical analysis and the findings of the previous evaluations of

AOAB. The evaluation method covers both industry and academic perspectives, and takes

into consideration the participant questionnaires from the workshops. The first part is based

on the results of the industry case study, and the second part is based on the results of the

academic experiment. The third part is based on the results of both workshops, and the

final part, deals with the final AOAB critical analysis and the general evaluation of results,

discussing the strength and weaknesses of AOAB methodology.

9.2 Part One : Industry Results

In the games industry, the creation and development process is not an easy task. The

general sense from the industry case study is that the game idea is the core element of game

creation, whereas the design and implementation of the idea makes a game successful in

terms of marketing. Otherwise, the game will face a lot of problems and will fail to be fun

for the player to use again.

It was observed that the game engine considerably increased the productivity of the game

design, and 3DUnity was adequate for the project’s development needs. It is easy to create

executable files for desktop computer platforms; furthermore, 3DUnity does not require much

effort to work with multiple platforms.

One of the research aims was to use the AOAB methodology in the industry sector and

increase the quality of the game prior to final release, but there are still some limitations

highlighted by the industry case study. It was required, after each iteration, to integrate

the work, but this can sometimes create a problem if certain steps are not performed in the

correct way. In some cases, there were problems regarding diagrams in new game iteration.

A positive of AOAB is that it is possible to estimate the time for game creation accurately,

and users are happy with the management of AOAB, which involves customers and end

141

users in each iteration to solve problems early and get feedback to enhance the game prior to

release. The final release of the game was obtained after four iterations, and each iteration

provided a running prototype. For reasons explained earlier, industry staff consider AOAB

to be a good methodology for multilevel games.

9.3 Part Two: Academic Results

This section presents experiences and results derived from running the course. The results

were collected from course staff interviews and notes, the final course evaluation, the project

reports submitted by students and feedback during and at the end of the course. The students

created a ”Catch a coin” game and this showed the game mechanics worked effectively for

both groups. Group A used Agile methodology and group B used AOAB methodology for

their game creation.

1. Staff Experience

Two academic staff members were involved in the experiment: the module leader, and

the researcher, who was an invited teacher for some lectures explaining AOAB method-

ology concepts and requirements. The result was that five students opted to work in

group B and nine students opted for group A, as shown in Figure 9.1.

Figure 9.1: Register Students Percentage in Groups

142

Figure 9.2 shows a comparison between the two groups in relation to final assignment

results. The final exam results were not taken into consideration. The results of the

two groups are similar, with no significance difference between them.

Figure 9.2: Students Assignment Results

2. Students Evaluations

In the first week of the semester, students were given the option to choose between the

groups. Group B were given extra lectures, as explained previously, in order to explain

the AOAB methodology in detail. Students in group A already had a background in

Agile methodology from a previous course, titled ”User Centre System Development”.

The students from group B mentioned that they spent more time working on games

than group A. Group B added extra features, such as sounds and saved scores; they

were able to do this because they completed the analysis and design of their work,

which positively affected the quality of the implementation phase.

Figure 9.3, produced during the experiment, shows how group A and group B divided

their time prior to game release. The abbreviations used in Figure 9.3 are listed below

:

143

• Requirement Specification (RS)

• Game Design Document (GDD)

• Goal Hierarchy (GH)

• Sequence Diagram (SD)

• Role Model (RM)

• Agent Class Diagram (ACD)

• Class Diagram (CD)

• Deployment Diagram (DD)

• Evaluation Phase (EP)

• Game Release (GR)

Figure 9.3: Students Assignment Percentage Time Spent on Different Phases

It can be seen that a few Agile or AOAB phases and steps took no time because they

are not supported. In this case, a zero percentage is reported.

Some activities took more time in group A than in group B, and vice versa. This is

144

clearly seen in the requirement phase, where group B students needed more time to

complete this phase. On the other hand, in the implementation phase, group A needed

more time, because Agile is based on documentation over coding. Furthermore, the

evaluation phase took group B less time to complete, with fewer problems, whereas

group A needed more time to solve the many problems that appeared in the final stage

of their work. It is worth noting that group A spent most of their time coding, which

is the nature of Agile, where the focus is more on coding and evaluation than design.

3. Feedback from staff and students after the course

At the end of course, all students from both groups completed a course evaluation, a

standard form for modules, in order to get official feedback from students at the end

of each course. The students in group B were happy with AOAB, as the time line

is broken down perfectly for them, whereas group A mention that they were busy at

the end of the semester solving problems, more so than group B. On the other hand,

group B students mention that it was challenging to work with AOSE, which was a

new idea for them, and the course schedule is heavy in theoretical presentations in the

first part of the semester. Group A students did not have a similar problem with Agile

methodology, as they had already used it in another course.

The staff member in group A was happy with the experiment and attended all of

the extra classes made available to the students, and observed that the students felt

challenged because they knew that the results of both groups would be compared. This

had the positively effect of increasing students’ interest and motivation in relation to

the course assignment. The overall lessons for both students and staff were a mixture

of positive and negative observations.

General comments offered by the research are to advise the module leader to communicate

with Staffordshire University to change from individual submissions to group submissions,

as Agile mostly uses team work.

For future work, the research team plan to examine AOAB methodology as implemented in

145

final year projects, which is loaded as three courses, where the student spends one academic

year finalising the project, and should cover all methodological phases perfectly.

9.4 Part Three: Workshops Results

Two workshops were conducted. Table 9.1 contains brief details for each workshop; fur-

ther details are included in Appendix F such as workshop details in Appendix F.1 and the

workshop invitation in Appendix F.2.

Table 9.1: Workshop Details.

No. of Par-

ticipant

Location County Duration Date

Workshop

1

25 GameLab Jordan 6h 26/07/2014

Workshop

2

8 University

of Lincoln

UK 4.5h 11/09/2014

9.4.1 Workshop 1

The first workshop was held in GameLab. GameLab is supported by the government of

Jordan, and is designed to meet the needs of the developer and companies involved in game

design and development. The game laboratory can be used for gaming business meetings

and workshop activities [4]. The workshop was 6 hours in duration and was attended by

academic, industry and Indie participants. ‘Indie’ people are independent developers who

may choose to work with one or more game publisher, or to self-publish their titles. Most

Indie participants were aged between 15-22, and some of them were already dealing with

the game company. In each workshop, emphasis was placed on allowing participants to

gain experience of using the AOAB methodology in their game development and design.

146

Initially, the game development methodology was explained, and then the knowledge of

AOAB methodology transferred through using a case study to create a game.

9.4.2 Workshop 2

The second workshop was held at Lincoln University, in the UK, in parallel with the

GAMEON conference, which is organized by EUROSIS conferences. The workshop took

place on the third day of the conference and eight participants attended the workshop. The

participants expected to complete the workshop within one conference session of approxi-

mately two hours. For this reason, the facilitator reduced the time required to deliver the

material. The participants of this workshop had good knowledge of AOSE methodology,

Agile and current game development methodology.

9.4.3 Workshops Evaluation

To complete the experiment perfectly, it is necessary to analyze the data and the feedback

from the participants. The iteration process of AOAB is composed of a clear number of

steps, and customers are heavily involved in each iteration. This is one of the main strengths

highlighted by participants in the questionnaire. The reaction of Indie participants was

surprising, most of whom were undergraduate students; they much prefer systematic game

creation as they need to submit strong documentation for their game idea to international

games companies.

There was limited experience of dealing with agent concepts in general, as agents are sup-

posed to be autonomous and proactive and should achieve the goals of the game without any

supervision. By contrast, this lack of agent understandability was not evident in the second

workshop, where most of the participants came from the academic sector.

Agile methodology is used in AOAB; most participants stated that they are already using

Agile and thus have a strong background. They are pleased to see improvements to Agile,

particularly in regards to documentation. It can be observed that AOAB is well suited to

147

team work, medium or large game size and different developer types. The participants ap-

preciate efforts to create a template with standard requirements of a GDD. Furthermore,

participants mention that replacing daily Agile meetings with only necessary meetings is

more suitable for the real industry sector.

The documentation produced with AOAB methodology is high quality, consistent and suf-

ficiently describes the game. One of the issues that emerged from observing the workshops

was that participants prefer to work individually; following a roundtable discussion, the

team work is able to work in an organized and helpful way, and ideas and information can

be shared easily by brainstorming ideas for the game.

Many of the participants felt positively about the sequence diagram, which describes the

sequence of the game using an easy and understandable figure. Participants observe that

iterative design is a very effective method of game design and provides an easy way to inte-

grate all game levels. The participants of both workshops state that AOAB is not suitable

all of the time, for instance for a small team or a small sized game. Participants would

prefer the GDD template to be redesigned and structured according to team and game size.

On this point, lengthy documentation is not preferred by programmers; expert programmers

mention that if documentation is good, and not necessarily large, there will be fewer missing

parts or errors cropping up during game creation.

For this reason, and because the methodology aims to be generic and cover different perspec-

tives and points of view, the GDD has been updated to create a second version, as shown

in Appendix A.2. The new version is designed to be just like an electronic form designed

for small size games or teams; it covers the main requirements and features to be included

in game design. Furthermore, in each GDD section, there is an extra optional section to

include any additional extra details the designer may need.

148

9.4.4 Qualitative and Quantitative Questionnaire Analysis

This section comprises an analyses of the results of the workshop questionnaire, containing

both qualitative and quantitative analyses of data. The first part will discuss the direct

results of the questionnaire, and will mainly focus on quantitative results. The second part

will deal with interviews and feedback from interviews, and will mainly focus on qualitative

results. A total of 33 workshop participants completed the questionnaire, which was divided

into three parts. The first section is designed to obtain general information about the

participant. The second section is for the game developer, and the third section is designed

for a normal player as shown in Appendix F.3. Most of the participants are game developers,

as participants were mainly sourced through invitation. For this reason, we will not take the

third section of the questionnaire into consideration.

Some of the data gathered through the questionnaire is subject to a frequency count, which

means similar answers are counted to identify their frequency of occurrence, as shown in

Table 9.2. From Table 9.2, it can be seen that most participants are under 40 years of

age. Typically, younger game developers care more about implementation than creating

professional work. It is also noted that there are more males in attendance than females, as

shown in Figure 9.4 .

Table 9.2: Participants’ age distribution.

Age Total

16-23 yrs 12

24-30 yrs 9

31-40 yrs 11

More than 40 yrs 1

Total 33

149

Figure 9.4: Attendance Classified by Gender Category

Figure 9.5 shows the background of participants, which is divided into three categories:

industry, academic and Indies.

Figure 9.5: Attendance Classified by Background Category

The previous results are based on a quantitative analysis of data obtained from the workshop

questionnaire. Table F.7 shows the qualitative feedback regarding the workshops. Each

answer to the questionnaire questions is divided into positive and negative viewpoints. Not

all comments are included in the table; the total number includes the final results. Some of

the participants did not complete the questionnaire; in those cases, a column is added for

‘no comment’.

150

9.5 AOAB Evaluation Results

The evaluation of methodology is a complex issue, from several points of view [41]. When the

experiment was set up, the expectation was to receive either positive or negative feedback.

The AOAB process is composed of a number of phases, and various steps within each phase.

These vary depending on game design, and provide both qualitative and quantitative evalua-

tion results. Regarding the qualitative element, the focus is on definition, using quantitative

metrics where possible. Regarding the qualitative element, efforts are focused on providing

a discrete value, to enhance the comprehensibility of the results.

An important question is, what are the characteristics that are needed to provide a generic

game development methodology? AOAB provides the following characteristics:

1. Flexibility: Game design cannot always follow the same structure and standardiza-

tion. AOAB provided general steps and offers the possibility to add any required extra

steps in the main Sprint phase.

2. Standardized: Standard material and procedures needed for game design are pro-

vided. Furthermore, a GDD template is given that facilitates data collection for the

game developer.

3. Comparative: AOAB is comparative, particularly in the evaluation phase, where

expert and user evaluations are compared to solve all possible problems prior to game

release.

4. Triangulated: A mixed method approach is taken, using a predictive and adaptive

approach in AOAB.

5. Multilevel: Industry requirements are met by paying attention to team, management

and customer satisfaction. Furthermore, academic requirements are met by using stan-

dard models and diagrams to provide a complete and comprehensive document.

151

6. Expandable: As explained earlier, AOAB provides developers with the approacha-

bility to add an extra step, requirements, data measurable in the AOAB methodology.

7. Multi Purpose: AOAB is currently designed to be a game development methodology.

Future work might use AOAB in many distributed systems, or in MAS applications.

8. Coverage the life cycle: AOAB coverage of the development process in relation to

software development life cycle. Furthermore, all steps of the development activities

are understandable.

9.5.1 AOAB Strengths and Limitations

From the AEF, it is deduced that no evaluation methods are consistently superior. The

most appropriate evaluation method depends on the different circumstances. The following

points summarize the observed strengths and limitations, based on AEF results:

Strength Points

1. A high level model is provided with generic concepts that can be used to create different

game genres.

2. Each phase and sub-phase of AOAB is described, to make it easy to use. Furthermore,

AOAB is used in the academic and industry sector, and feedback and comments have

been obtained from workshop participants.

3. AOAB pays much attention to the evaluation phase of the game design. At this phase,

any problems are identified and solved, prior to game release.

4. AOAB provides guidelines for the developer, beginning with the early game require-

ments through to analysis, design implementation and evaluation, in order to build

successful games.

5. AOAB has the ability to dynamically create agents to achieve the goal of the game.

Furthermore, the developer is able to add any extra steps to facilitate the game creation.

152

6. Using AOAB, there is no restriction regarding the agent type or game genre, which

means the developer can use AOAB in many cases.

7. AOAB provides a generic template for GDD, which is a good starting point in game

creation, to make it easy and standard.

In practice, and observed in many years of experience working on methodologies, there is

no general methodology that fits all game design requirements. However, it is possible to

address the general interests of designers, players, programmers and other stakeholders, to

make the methodology standard and generic, and usable by all developers.

Limitation Points

AOAB provides a significant advantage in creating games; however, it is not without weak-

nesses:

1. The main weakness identified in the workshop feedback include that AOAB is not

suitable for small game sizes, or for small teams.

2. The developers must have knowledge regarding the agent in general in order to receive

the benefit of the methodology.

3. The AOAB uses agent diagrams that some developers have not dealt with before. This

can either be a strength, as it provides a new experience, or weakness, as users must

learn and download additional software.

9.6 Summary

The overall experience of running AOAB game development methodology in different sectors

was very positive. In all of the experiments, an increasing interest was noted, and positive

feedback was received from game developers. Following the evaluation of AOAB, the main

positive point is that it is a standard methodology that covers most requirements of game

design as well as industry sector requirements, in an understandable and systematic way.

153

The main negative point is that it is not suitable for small games or for individual work.

However, this is not a major issue, as most games are implemented through teamwork.

Chapter 10

Conclusion and Future Work

154

155

Several game development methodologies have been proposed by previous researchers. Un-

like existing methodologies, AOAB formulates the requirement of game design and translates

this into a general game development methodology suitable for different game genres. In this

research, we have answered the following questions to conclude our work:

What I have done?

A new game development methodology has been created for both academic and industry

sectors. AOAB has the ability to function in generic game genres. AOAB methodology

based on adaptive and predictive approach.

Why New Methodology?

Game development has evolved to incorporate large multidisciplinary projects employing

hundreds of people and a development time measured in years. Furthermore, a major issue

negatively affecting the game development industry is that many companies adopt existing

enterprise system development methodologies that do not fully match the requirements of

gaming systems.

Why I have done it?

Most famous commercial games have more than one version, and it is for this reason that

AOAB is presented. The current GDM are designed to solve specific problems and mostly

suitable for specific game genres. Current GDM focuses on design and implementation phase

and finally, to close the gap between in the existing GDM.

What I have found and what are the implications of these?

It is not easy to find a “ common solution for common problem in games” AOAB facilitate

the game creation by following sequential and standard steps. Actually, AOAB make easier

to incorporate extra team members in short notice and make communication between devel-

opers easier. Furthermore, documentation more understandable, easy to follow and covering

all the game elements.

AOAB is proposed as a hybrid methodology combining an adaptive and predictive approach.

156

This combination is generic and systematic, and generates complete and consistent docu-

mentation and implementation for games. Chapter Five of this thesis details the full life

cycle of and guidelines for AOAB. The research includes a full textural example describ-

ing each phase in details. This is supported by unique sets of diagrams relating to the

MaSE methodology that facilitates the work. In Chapters Six, Seven and Eight, the work

is demonstrated and evaluated using a case study, experiment and workshops. Throughout

the research period, every effort has been made to create a systematic, generic and standard

methodology to offer an easy starting point for game developers across different sectors. As

AOAB is configured based on MaSE and Agile methodology, it is easy to integrate with

another type of application, such as robotics or a distributed system.

10.1 Thesis Contribution

This section will consider the original contributions discussed in Chapter One, and address

them individually.

• Create a novel game development methodology which is a hybrid of adaptive and

predictive approaches.

• Evaluate AOAB using different evaluation methods to arrive at a general and standard

methodology.

• AOAB should be suitable for industrial and academic use.

• AOAB must cover the full game creation life cycle and pay greater attention to the

evaluation phase of the methodology.

• Create a generic GDD template that is suitable for different game genres and for all

game developers.

The primary aim of this research is to fill the game development methodology gap between

the industry and academic sectors. The research outcome is a set of steps, processes and

157

diagrams to guide game developers and designers throughout the game design process. This

thesis enhances current game development methodology by providing a generic methodology

that meets most game requirements. Furthermore, a GDD template is provided that covers

the mandatory and majority of requirements for different game genres. A heavier focus is on

the evaluation phase, as this is an important part of game creation and helps to solve any

problems early in the process, before final game release. Furthermore, the game development

life cycle provides all required Agent-UML (AUML) diagrams in order to facilitate the work,

as well as easy documentation, which is needed for game updates or the creation of new

versions of games.

The agent structure of AOAB can behave in an autonomous mode, and the game goal for

each agent is easily defined. This research represents a new trend in the field, which opens

the door to integrating and implementing more agent features within the games field. The

proposed AOAB game development methodology is evaluated in many ways, in order to

determine its strength and weaknesses. The results provide a possible outline for future

work.

10.2 Future Work

In regards to future work, we have planned to do the following:

1. An extended version of AOAB is planned, to be used not only for game creation, but

for the creation of different distributed systems that deals with agents.

2. To work in detail with agents and game metrics, which is a new field and requires more

research. Metrics could provide a quantitative measurement, which is important to

achieve accurate results, as is mentioned in the evaluation phase of AOAB.

3. Further research regarding game evaluation should also be carried out, as currently

there is a need to compare games to identify games with the highest fun factor, as well

158

as many other issues. Most famous commercial games have more than one version,

and it is for this reason that AOAB is presented.

4. Further research regarding re-engineering concepts, which could be implemented in the

games field.

Appendix A

Game Design Document Template

A.1 GDD Template First Version

1. General Information: This area should present information about the game, the

person who authored the document and for what company.

• Game name

• Game Genre: Describe the Genre for example: Role-play, Adventure, Strategy,

Simulator...etc.

• Version Number :

• Created Date

• Last Update

• Organization Name

• Game Team Members

– Job

– Information

– Contact

2. Engineering

159

160

• Hardware Requirements

• Software Requirements

• Network Requirements

• Game Platform: need to decide first the development language to decide then the

development environment and game engine such as Java, C++

• Game Engine: such as XNA, Untity3, SDk

3. Design

• Story overview (Gameplay)

– Combat: If there is combat or even conflict, how is this specifically modeled

?

– Game Levels: This is where information pertaining to level design and visuals

of the level design goes.

– Score

– Power Up

– Replay and Saving

• Functional Requirements (Game Mechanics)

– Game Rules: What are the rules to the game, both implicit and explicit.

Think of it as a simulation of a world, how do all the pieces interact? This

actually can be a very large section.

– Game Movements

• Game Level Overview(s)

4. Game World (Environment)

• General Look and Feel of World

• Area 1

161

– General Description

– Physical Characteristics

– Levels that use area

– Connections to other areas

• Area 2

– General Description

– Physical Characteristics

– Levels that use area

– Connections to other areas

• Area N

– General Description

– Physical Characteristics

– Levels that use area

– Connections to other areas

5. Interface

• Sound

– Music

– Sound Effected in Game

• Graphics

– Sprites: consist of anything which can move

– Tiles: Make up the rest of the graph such as font type and size of players in

the game

– Plot

• Menu

162

• Camera: Describe the way the camera will work and then go into details

• Screen Flow: A graphical description of how each screen is related to every other

and a description of the purpose of each screen.

• Game Control: How does the player control the game? What is the specific

commend.

• Help System

6. Management

• Game Budget

• Organization Size

• Production Size

– Number of Locations

– Number of Levels

– Number of Non-Player Character

– Number of Weapons

– etc.

• Project Schedule

• Risk Analysis

• Test Plan

7. Writing

• Script

• Tutorial and Manual

8. player (Character)

• Number of Player: The Number players that can play the game at once

163

• Player Details (Target Audience):. Each character should include the back story,

personality, appearance, animations, abilities, relevant to the story and relation-

ship to other characters.

– Genres

– Age

– Qualification

• Non-Player Character

9. Artificial Intelligence (AI) : This is where visuals and written description(s) of the

antagonistic element’s behaviors.

• Opponent and Enemy AI: The active opponent that plays against the game player

and therefore requires strategic decision making

• Non-combat and Friendly Characters

• Support AI: Player and Collision Detection, Path finding

164

A.2 GDD Template Second Version

165

166

167

168

169

Appendix B

Game Evaluation Criteria Sets

Table B.1: Playability Evaluation Sets

Criteria No. Sub-

Criteria

Description Score

(1-5)

Pri-

ority

(1-3)

Playability
1 Game

Play

The game has varying activities and pacing during game

play.

2
The game provides clear goals or supports player-created

goals.

3
The game provides consistency between the game elements

and the overarching setting and story to suspend disbelief.

4
There is an interesting and absorbing tutorial that mimics

game play.

5 The game is fun for the player and enjoyable to replay.

6 Game play should be balanced with multiple ways to win.

170

171

Table B.1: Playability Evaluation Sets

Criteria No. Sub-

Criteria

Description Score

(1-5)

Pri-

ority

(1-3)

7
Player is taught skills early that you expect the players to

use later, or right before the new skill is needed.

8
Players discover the story as part of game play and holds

interest.

9 The games should change strategy for same failure of player.

10

The game should give rewards that immerse the player more

deeply in the game by increasing their capabilities (power

up), and expanding their ability to customize.

11
There are variable levels of difficulty and an unexpected

outcome.

12 There are multiple goals on each level.

13
Players are able to save games in different states and resume

them later.

14 The game gives hints, , but not too many.

15
Game can be played multiple times using different paths

through the game.

16
Challenges are positive experiences rather than negative

ones.

17
The player sees the progress in the game and can compare

the results.

18 The player is in control.

18 There are no repetitive or boring tasks.

172

Table B.1: Playability Evaluation Sets

Criteria No. Sub-

Criteria

Description Score

(1-5)

Pri-

ority

(1-3)

20 The game supports different playing styles.

21 It allows players to build content.

22 There must not be any single optimal winning strategy.

23 Game

Story

Player understands and interest in the story line as a single

consistent vision.

24
The Player spends time thinking about possible story

outcomes.

25
The Player feels as though the world is going on whether

their character is there or not.

26
The Player has a sense of control over their character and is

able to use tactics and strategies.

27 Player experiences fairness of outcomes.

28

Player is interested in the characters because (1) they are

like me; (2) they are interesting to me, (3) the characters

develop as action occurs.

29 Take other person into account.

30 Games don’t waste the player time.

173

Table B.1: Playability Evaluation Sets

Criteria No. Sub-

Criteria

Description Score

(1-5)

Pri-

ority

(1-3)

31

Game

me-

chan-

ics

Game should react in a consistent, challenging, and exciting

way to the player’s actions (e.g., appropriate music with the

action).

32

Make effects of the Artificial Intelligence (AI) clearly visible

to the player by ensuring they are consistent with the

player’s reasonable expectations of the AI actor.

33
A player should always be able to identify their score/status

and goal in the game.

34
Mechanics/controller actions have consistently mapped and

learnable responses.

35

Controls should be intuitive, and mapped in a natural way;

they should be customizable and default to industry

standard settings

36
Player should be given controls that are basic enough to

learn quickly yet expandable for advanced options.

37 Camera views match the action.

38 Player teaches skills that will be needed later in the game.

39
There are predictable and consistent responses to a user’s

action.

174

Table B.1: Playability Evaluation Sets

Criteria No. Sub-

Criteria

Description Score

(1-5)

Pri-

ority

(1-3)

40
Responses to user’s actions are timely, allowing for

successful interaction.

41 Feedback should be given immediately to display user control

42 Get the player involved quickly and easily

Table B.2: Usability Evaluation Sets

Criteria No.
Sub-

Criteria
Description Score

(1-5)

Pri-

ority

(1-3)

Usability
1

User

Inter-

face

It use sound to provide meaningful feedback or stir a

particular emotion.

2 Players do not need to use a manual to play game.

3
The interface should be as non-intrusive to the Player as

possible.

4 Controls are customizable.

5 Menu layers are minimized, or can be minimized.

6 Screen layout is efficient and visually pleasing.

7 Device UI and game UI are used for their own purposes.

175

Table B.2: Usability evaluation sets

Criteria No.
Sub-

Criteria
Description Score

(1-5)

Pri-

ority

(1-3)

8 The player understands the terminology.

9
Control keys are consistent and follow standard

conventions

10 It provides users with information on game status.

11 It provides instructions, training, and help.

12
It follows the trends set by the gaming community to

shorten the learning curve

13

Game

Con-

trol

Player’s should perceive a sense of control and impact onto

the game world.

14 The game should be easy to learn and hard to master.

15 It provides immediate feedback for user actions.

16
The player can easily turn the game off and on, and be

able to save games in different states.

17
The player should experience the menu as a part of the

game and should contain clear help

18
Upon initially turning on the game, the player has enough

information to get started.

19 There are means for error prevention and recovery.

20 Game controls are convenient and flexible.

21 The player cannot make irreversible errors.

176

Table B.2: Usability evaluation sets

Criteria No.
Sub-

Criteria
Description Score

(1-5)

Pri-

ority

(1-3)

22 The player does not have to memorize things unnecessarily.

23
It allows users to customize video and audio settings,

difficulty and game speed.

24
It provides predictable and reasonable behavior for

computer controlled units.

25 It provides intuitive and customizable input mappings.

26
It provides controls that are easy to manage, and that have

an appropriate level of sensitivity and responsiveness.

Table B.3: Quality Evaluation Sets

Criteria No.
Sub-

Criteria
Description

Score

(1-5)

Pri-

ority

(1-3)

Quality 1 Adapt-

ability

The game is easily integrated with other environments.

2
The game includes an evaluation system, during the

development process.

3 The game allows for new techniques and better learning.

177

Table B.3: Quality Evaluation Sets

Criteria No.
Sub-

Criteria
Description

Score

(1-5)

Pri-

ority

(1-3)

4
The game allows for activities that keep the curiosity and

the interest of the player in the content.

5 The game allows players to take decisions.

6
Effi-

ciency
Is there no extra information?

7
The game has a good program structure that allows easy

access to content and activities.

8
The speed of communication between the program and

the user is adequate.

9
The program execution is efficient and with no

operational errors.

10 The system is developed with originality.

11

Func-

tional-

ity

The information are well structured and does it

adequately distinguish the objectives, context, results,

multimedia resources.

12 The game checks all the alert message.

178

Table B.4: Enjoyment Evaluations Sets

Criteria No.
Sub-

Criteria
Description

Score

(1-5)

Pri-

ority

(1-3)

Enjoyment
1

Games should provide a lot of stimuli from different

sources.

2 Games must provide stimuli that are worth attending to.

3
Games should quickly grab the player’s attention and

maintain their focus throughout the game.

4
The player shouldn’t be burdened with tasks that don’t

feel important.

5

Games should have a high workload, while still being

appropriate for the player’s perceptual, cognitive and

memory limits.

6
Players should not be distracted from tasks that they

want / need to concentrate on.

7 Challenges in games must match the player’s skill level.

8
Games should provide new challenges at an appropriate

pace.

9
Learning the game should not be boring, it should be part

of the fun.

10
Games should include online help so the player doesn’t

need to exit the game.

11 Overriding goals should be clear and presented early.

12
Intermediate goals should be clear and presented at

appropriate times.

179

Table B.4: Enjoyment Evaluation Sets

Criteria No.
Sub-

Criteria
Description

Score

(1-5)

Pri-

ority

(1-3)

13
Players should receive immediate feedback on their

actions.

14 Players should become less aware of their surroundings.

15
Players should become less self-aware and less worried

about everyday life or self.

16 Players should feel emotionally involved in the game.

17 Players should feel viscerally involved in the game.

18
Games should support competition and cooperation

between players.

19
Games should support social interaction between players

(chat etc.).

20
Games should support social communities inside and

outside the game.

Appendix C

Game Competition Poster

Figure C.1: Game Competition Poster

180

Appendix D

AOAB in Industry Section

D.1 GDD For Drive Test Game.

1. General Information:

• Game name : Drive Test Game

• Game Genre: Serious Game

• Version Number : 1

• Created Date: 22/07/2014

• Last Update

• Organization Name: 3D Design

• Game Team Members

– Name: Rula Al-Azawi

– Job: Game Developer, Methodology Developer

– Information

– Contact

– Name: Salim Al-Hajre

– Job: Project Manager

181

182

– Information

– Contact

– Name: Aflah AlBusaidi

– Job : Game Developer, Programmer

– Information

– Contact

– Name: Namariq AlRawahi

– Job: Graphic Designer

– Information

– Contact

2. Engineering

• Hardware Requirements: Processor above Intel Pentium 3800 MHZ, HD 850 MB,

Memory more than 512 MB, Graphic card 2GB

• Software Requirements: C sharp, JDK, 3Dunity, word, graphic s/w, sound s/w

• Network Requirements: No need

• Game Platform: C sharp and Java script

• Game Engine: 3Dunity

3. Design

• Story overview (Gameplay): The player interactive simulation game which

simulates the car drive test. In order to progress in the game, the player must

ensure that he/she could pass all the game levels. The player can move about

freely in the game world and jump to any level as player wish. The game is

organized in levels that correspond to the different stages/roles in the driving test.

The player must at all times ensure that understand and follow the driving rules.

183

The player interacts with other agents through the road test with an examiner

who will check that the player is understood and follow all the rules.

– Combat: No need

– Game Levels: This is where information pertaining to level design and visuals

of the level design goes.

– Score: Score will use in sign test part with the other tests the player has only

two options either pass or fail in test

– Power Up: No need

– Replay and Saving: No need

• Game Level Overview(s): The game will contains three levels. First, for the sign

test. Second, for parking test and third for road test.

• Functional Requirements (Game Mechanics)

– Game Rules:

∗ When the player in park test touches the drum boarder, the player will

fail in the test.

∗ When the player in a road test touches the road boarder, the player will

fail in the test.

∗ When the examiner at the road test ask player to stop in nonstop area

and the player follows the order and stop, players will fail in the test.

∗ When the player drive in the right side of the road and examiner asks to

make a U turn, the player must refuse this order; otherwise the player

will fail in the test.

∗ If there is a sign of no entry to the street, the player must refuse to enter.

∗ The player must not drive faster than the speed limit sign on the street.

∗ The player must not park in the Handicapped parking area even if the

examiner wants.

184

∗ When the examiner in road test ask player to stop in bicycle area and the

player follow the order and stop, player will fail in test.

∗ When the examiner in road test ask player to make left turn and the

player didn’t use the flash sign left, player will fail in test.

∗ When the examiner in road test ask player to make right turn and the

player didn’t use the flash sign right, player will fail in test.

∗ When the player in sign test get score three or greater, player will pass

in test.

∗ When the player in sign test get score less than 3, player will fail in test.

– Game Movements: the player has the right to move between levels freely

4. Game World (Environment)

• General Look and Feel of World

• Area for sign test

– General Description: This area was designed to help the player in two lan-

guages. The player could select either Arabic or English language for test.

Before test start, the player will read a description about how to answer

questions. After finalizing the exam, the player will inform with the final

score.

– Physical Characteristics

– Levels that use area: First level

– Connections to other areas: connection is optional when a player passes this

area or not she/he could go to park test or road test.

• Area for parking test

– General Description: The player must park the car successfully in the parking

area without touching the boarders. The player should also have the ability

185

to park the car between two cars. Finally, if the player park the car in not

allowed park area, she/he will fail in the test.

– Physical Characteristics

– Levels that use area: Second level

– Connections to other areas: Connection is optional when player pass this area

or not could go to sign test or road test

• Area for road test

– General Description: The player must drive the car in the real street and

follow the Wright order from the examiner and ignore the wrong order from

examiner. This part of the game also should provide two language speaking

for examiner either Arabic or English to be selected by player before start

the test.

– Physical Characteristics

– Levels that use area: Third level

– Connections to other areas: connection is optional when player pass this area

or not could go to park test or sign test

5. Interface

• Sound: We will need the following sound: driving sound, crash sound, sound for

wrong selection and sound for right selection

– Music: Is optional in park level and in road level

– Sound Effected in Game: The examiner will speak in two language, Arabic

and English when gave instruction to the driver.

• Graphics

– Sprites: The car need to move and controlled by player

– Tiles: Need to enter a different type of road sign.

186

– Plot

• Menu: The menu will contain five options. first three option for each level and

the player could select any level to start not sequentially, fourth option for about

the system and last option for game exit

• Camera: We could show the driver different view of the road and we need to use

two cameras for forward and backward drive.

• Screen Flow :The sign level will divide into sub-screen related to the number of

signs we will add it. The park level will divide into sub-screen which simulated

from the real world. The road level will simulate the Muscat city road

• Game Control :The payer controls the car by Stearns, gear front, gear back, speed

push, break push, left flash sign, right flash sign, speed measure.

• Help System: Explains to player how to play the game and mention that the

player need to follow only the right order from the examiner.

6. Management

• Game Budget: Will depend on requirements

• Organization Size: Medium size from 3-10 persons

• Production Size: Medium size

– Number of Locations: Three locations

– Number of Levels: Three levels

– Number of Non-Player Character: Two non-player character (car and exam-

iner)

– Number of Weapons: No need

• Project Schedule: Around five months. First month for perpetrations and one

month for each level and last month for testing

187

• Risk Analysis

• Test Plan: We will follow the evaluation phase of AOAB.

7. Writing

• Script

• Tutorial and Manual

8. player (Character)

• Number of Player: Only one player can play the game at once

• Player Details (Target Audience): Each character should include the back story,

personality, appearance, animations, abilities, relevant to the story and relation-

ship to other characters.

– Genres: Both male and female

– Age: Above 18 years

– Qualification: Adult can speak Arabic or English and completed a driving

course.

• Non-Player Character: We have two non-player character car and examiner.

9. Artificial Intelligence (AI): This is where visuals and written description(s) of the

antagonistic element’s behaviors.

• The player must have the ability of decision making by ignoring the wrong order

from the examiner and how the driver could drive in different circumstances.

188

D.2 Analysis Phase Diagrams

Figure D.1: Main Goal Hierarchy

189

Figure D.2: Goal Hierarchy (Sprint 1)

190

Figure D.3: Goal Hierarchy (Sprint 2)

191

Figure D.4: Goal Hierarchy (Sprint 3)

Figure D.5: Main Sequence Diagram

192

Figure D.6: Sequence Diagram (Sprint 1)

Figure D.7: Sequence Diagram (Sprint 2)

193

Figure D.8: Sequence Diagram (Sprint 3)

Figure D.9: Main Role Diagram

194

Figure D.10: Role Diagram (Sprint 1)

195

Figure D.11: Role Diagram (Sprint 2)

196

Figure D.12: Role Diagram (Sprint 3)

197

D.3 Design Phase Diagrams

Figure D.13: Agent Diagram (Sprint 1)

198

Figure D.14: Agent Diagram (Sprint 2)

199

Figure D.15: Agent Diagram (Sprint 3)

200

D.4 Implementation Phase

D.4.1 Deployment Diagram

Figure D.16: Deployment Diagram

D.4.2 Game Layout and Graphics

Figure D.17: Car Model

201

Figure D.18: Unity Car Model

Figure D.19: Traffic Sign Images

202

Figure D.20: Traffic Sign Sample

Figure D.21: Background Sample 1

203

Figure D.22: Background Sample 2

Figure D.23: Background Sample 3

Figure D.24: Background Sample 4

204

D.4.3 Communication Messages of the Drive Test Game

Figure D.25: Communication Message 1

Figure D.26: Communication Message 2

205

Figure D.27: Communication Message 3

Figure D.28: Communication Message 4

206

Figure D.29: Communication Message 5

Figure D.30: Communication Message 6

207

Figure D.31: Final Score

Figure D.32: Well Done Parking

208

Figure D.33: Wrong Parking

209

D.4.4 Java Script Code of the Drive Test Game

Figure D.34: Java Script Code for movement to Scene ”Q1Eng”

210

Figure D.35: Java Script Code for Second Camera Move Follow

211

Figure D.36: Java Script Code for right Selection of Traffic Sign Test

212

Figure D.37: Java Script Code for Wrong Selection of Traffic Sign Test

Figure D.38: Java Script Code for Final Score of Traffic Sign Test

213

Figure D.39: Java Script Code for Car Control

214

D.4.5 Screen Shot of the Drive Test Game

Figure D.40: Main Screen of Drive Test Game

Figure D.41: Description of Traffic Sign Test

215

Figure D.42: Game Language Selection

Figure D.43: Arabic Language Test

216

Figure D.44: First Question in Traffic Sign Test

Figure D.45: Second Question in Traffic Sign Test

217

Figure D.46: Third Question in Traffic Sign Test

Figure D.47: Forth Question in Traffic Sign Test

218

Figure D.48: Fifth Question in Traffic Sign Test

Figure D.49: Traffic Sign Test Final Score

219

Figure D.50: Description of First Part of Parking Game

Figure D.51: First Part of Parking Game

220

Figure D.52: Result of First Part of Parking Game

Figure D.53: Description of Second Part of Parking Game

221

Figure D.54: Second Part of Parking Game

Figure D.55: Result of Second Part of Parking Game

Figure D.56: Description of Third Part of Parking Game

222

Figure D.57: Third Part of Parking Game

Figure D.58: Result of Third Part of Parking Game

223

Figure D.59: Description of Road Test Game

Figure D.60: Road Test Game

Figure D.61: About Game

Appendix E

Mobile Course Details

• Assessment Details

50 percentage examination 2 Hours assessing.

50 percentage assignment with a practical component assessing.

• Learning Strategies

One lecture with two hours per week. The course will be covered with 14 weeks per

semester.

One practice session with one hour per week using application toolkits for Android

software development.

• Indicative Content

This course includes: Games Programming for Mobile Devices, Optimization, Net-

work communication (e.g. Bluetooth and Wi-Fi), Databases and persistence in mobile

systems, SMS programming, Maps and location-based services, and mobile security.

• Prospectus Information

This module will build on the previous game and portable device programming expe-

rience, enabling you to consider more advanced issues and techniques when creating

games for deployment on cellular phones, PDAs and handheld gaming platforms.

224

225

• Resources

Suitable development environment such as ADT, NetBeans or similar IDE with J2ME

development capabilities and device emulators Visual Studio Professional with mobile

development environment PDAs or portable computer devices.

• Special Admissions Requirements

Previous study of programming for mobile or equivalent.

• Text Book

Creating mobile games: using Java ME platform to put the fun into your mobile device

and cell phone, Hamer, Carol, Apress 2007, ISBN 9781590598801

• Assignment Details

The data from course evaluation is based on the student’s responses to the final course

assignment evaluation. The feedback from the hard copy of the assignment submission

by students. We usually submit to the students the marking criteria as shown in

TableE.1 that they need to follow it to create their own game.

226

Table E.1: Marking Criteria for the Further Programming for Mobile Devices and Handheld

Devices Course.

Criteria Mark

Design of the Layout 5

Resource and Strings 5

The character used for the animation 10

Collision Detection 10

Game loop 5

Sound implementation 5

Alert Dialog and Toast 5

Switching between the Activities 5

Coding Style and Comments 5

Clear and concise documentation re-

port, properly referenced where appro-

priate

15

Extra Features 5

Application Deployment 10

Demonstration Six Questions (Each

question carries 2.5marks)

15

– Game Scenario

The following scenario is what we have submitted to the students to create their

own game.

”You will be building a single user “Catch a coin” game for delivery to an Android

Phone. A possible scenario for catch a coin is given below, but this is just for

guidance. Do not stick rigidly to this idea.”

227

– Game Idea

The player will jump for joy (and coins) playing this game. The player will use the

touch screen to move Toto (the game character) around to collect coins. Watch

out for knives (or any other obstacle) that get in the way. Tap the screen to make

Toto jump over obstacles and to save his life. If Toto gets hit by the obstacles,

his health (life) will be drained. In case Toto’s health is drained, stop the game

and display how many coins are collected by Toto.

– From a Programmer’s View.

Toto The game character, can be created with any sprite object.

Coins You can use any kind of coin, same or different to be collected by Toto.

ObstaclesYou can use any bitmap to show the obstacles (it may be a knife,

dagger, a stone or any other object). Background The background of the game

is your choice totally.

You should take care of the following points in your application.

∗ The touch playing capability should be implemented in the game (i.e. The

game character would be moving around the screen using the touch panel).

∗ The coins collected by the user should be displayed in the form of Score or

Points on the screen

∗ The player should be able to turn on or turn off the game sounds.

∗ Any sound should be played whenever the user jumps, collects the coins and

gets hit by the obstacles.

∗ The game should be played in full screen mode.

The game application requires the following:

∗ accelerometer

∗ touch panel

∗ music and video library

228

Consider the advance concepts and techniques that you can adopt in the devel-

opment of the game application mentioned above. Find out the variety of mobile

platforms on which you can deploy this application and discuss in the report how

you will deploy your application available on different mobile platforms.

Appendix F

AOAB Workshops

F.1 Workshop Details

This section includes the full details of the workshop that is provided to the participants

before they decide to attend our workshop.

F.1.1 What is this workshop about?

This workshop about to introduce a new game development methodology and provide a

practical skills in order to ensure the quality and usability of AOAB methodology for both

academic and industry sectors. A basic knowledge and some experience with Agile and

AOSE methodology is provided.

F.1.2 What is the objective of this workshop?

This one day training will introduce you to the fundamental principles of the game de-

velopment methodology and practices of Agent Oriented Agile Base methodology (AOAB).

Attendees will participate in many hands-on activities that will help them practice the theory

they learn, compare and evaluate. In this workshop, the attendees will learn the principles

229

230

and values of AOAB and will explore in detail the AOAB life cycle. During the one day

session, the attendees will share his years of experience in game development methodologies.

F.1.3 Who should participate in this workshop?

This workshop is designed for people who are responsible for specifying, acquiring, develop-

ing, evaluating, supporting and/or managing games, for example:

• Game Development Team Leaders.

• Game Development Academic staff.

• Game Development student.

• Game Developer.

• Game Designer.

• Game Programmers.

• Project Managers of Games in industry area.

• Expert game development evaluator.

• Any person interested in the future of game development trends.

F.1.4 What is the organizer background?

This is our first workshop on the game development methodology. Over the last few years,

we have worked on game development methodologies. This is due to the subject of my PhD

thesis. Rula Khalid is a senior lecturer in software engineering and games. She is in last

year PhD at De-Montfort University, UK. She has many publications on the game devel-

opment methodology and game evaluation. She is currently an award leader of computing

department in gulf college, Oman affiliated with Staffordshire University-UK.

231

F.1.5 What is the workshop goal?

The goal of the workshop contains the following:

• Provides a framework for researchers and practitioners in the field of game development

methodology.

• The thematic focus on the feedback of the researcher and participate regarding the new

game development methodology which is based on Agent Oriented Software Engineer-

ing methodology (AOSE) and Agile methodology as an important design parameter of

our methodology.

• Plan for the future works in game development methodology.

• Assess how professional designers and developments as well as academics and end users

are using the methodology to create and get the professional game in the real world.

At the end of workshop, you will learn how to:

• Manage, design, test and develop any game genres.

• Model requirements and applications using AgentUML models.

• Monitor progress with backlogs.

• Increase quality with user and expert evaluation of the first game prototype.

• Maximize team productivity and communication.

• Become an advocate in your organization of practical methods to improve game project

performance.

• Identify causes of game development problems and drive game design and development

performance improvements.

232

F.1.6 Our full day workshop agenda

Part 1

• Provide an overview of the current game development methodologies and elements.

• Identify the challenges and the academic analysis of these issues.

• Explore the space of difference approach and learn game development principals.

• Explaining the adaptive methodology vs. traditional methodologies.

• Encouraging the team to be adaptive .

• Creating a safe environment in which the team can explore novel solutions.

• Running collaboration games to identify and solve problems.

Part 2

• Developing responses to typical scenarios.

• We present in general the concept of Agile development methodology.

• We present in general the concept of AOSE methodology.

• Compare the difference between an adaptive approach such as Agile methodology and

predictive approach such as MaSE methodology.

• We present the results of recent and ongoing original work.

• Identifying features for development in an iteration.

• Determining ideal iteration length.

• Identifying development tasks in the Sprint Backlog.

• Revising team behavior on the basis of lessons learned.

233

• Identifying Game Design Document (GDD).

• Documenting nonfunctional and system requirements.

• Increasing communication with stand-up meetings, task boards and regular reflection.

• Maximizing team productivity.

• Identify the Agent UML modules such as goal hierarchy diagrams, Agent class diagram,

Role model diagram, use case diagram and deployment diagram.

Part 3

• The workshop will conclude with a round-table discussion, questionnaire and will high-

light open research question and identify new ways in which game development method-

ology can deals and understand these issues.

• Work on small group to design games based on different methodology.

• Measuring work completed with backlogs.

• Identifying best practices for team productivity.

• Writing user stories.

• Prioritizing and estimating work.

• Optimizing Agile teams.

• Creating a Product Backlog as a list of requirements and technical issues.

• Iterating development through cycles.

• Capturing user needs as stories.

• Using capacity-based planning to plan progress.

234

• Measuring estimated effort with story points.

• Utilize UML diagrams.

235

F.2 Workshops Invitation

The first workshop invitation is in the Figure F.1. The second workshop invitation exists on

the main page of the GAMEON conference [5].

Figure F.1: First Workshop Invitation

236

F.3 Workshop Attendees Questionnaire

This questionnaire is for academic purposes only. It forms part of my PhD. All responses

are strictly confidential and for research purposes only.

Please you need to start with part one which includes general information then select either

part two or part three depending on your background and experience.

• Part One: General Information

1. Name (optional):

2. Occupation:

3. Education:

4. Age:

5. Gender:

6. You have strong relation with

A. Industry Sector B. Academy Sector C. Both of them.

7. Are you satisfy of the workshop content? Please provide some com-

ments

• Part Two: Expert Game Designer and Developer

1. What kind of development methodology you prefer with games

237

A. Adaptive B. Predictive C. Hybrid.

2. What is your suggestion to enhance the AOAB Methodology

3. What is the weak point you have found in AOAB Methodology

4. What is the strength point you have found in AOAB Methodology

5. Does the current game development methodology enough with your

work, if not explain why

238

6. What are the attention wait you give to select game development

methodology

7. What are the size of game you have been working on

A. Small B. Medium C. Large.

• Part Three: General Game User

1. Do you care about stories in games?

A. Yes B. No

2. What is your favorite game? (Or general favorite games)

239

3. Do you think games can be educational?

A. Yes B. No

4. Do you think it enhances any learning skills by playing games?

5. Do you prefer learning through games or learning through exercises

and books?

A. Through games B. Through books C. Through exercises D. Others

6. Why do you play games?

7. What games would you like to see more of in the future?

8. Gaming technology in your house is?

A. PC B. Xbox C. Game-boy D. Laptop E. others

9. Approximately what is the average time you play games each week?

A. Three hours B. Four hours C. More than D. Less than

10. What type of games do you like? (genre of the game)

240

11. How do you select games to play?

A. From friend B. From Website C. From Internet friend D. Others

12. Why do you like some games? What are some of the features that

makes you like it?

241

F.4 GameLab and Lincoln Workshop Pictures

Figure F.2: Facilitator Explains AOAB Methodology

Figure F.3: Facilitator Explains AOAB Diagrams

242

Figure F.4: Audience in the Workshop

Figure F.5: Round table Discussion

243

Figure F.6: GameLab Entrance

Figure F.7: Laboratory in GameLab

244

Figure F.8: Audience in the Workshop

Figure F.9: Audience in the Workshop

245

F.5 AgentTool3

Agent Tool3 software downloaded from the following Link: [10]

To install AgentTool III, you must have the following software installed:

1. Java Runtime Environment 1.5.0 or higher

2. Eclipse 3.4.2, or above

Step-1: Open Eclipse and select New Project:

Figure F.10: Step 1

Step-2: Press next , button.

Figure F.11: Step 2

246

Step-3: Print project name then press finish , button.

Figure F.12: Step 3

Step-4: Go to file and select new then select other (Ctrl+ N).

Figure F.13: Step 4

Step-5: Select the required agent diagram then press next , button.

247

Figure F.14: Step 5

Step-6: Select the project name that you have created before, then press finish.

Figure F.15: Step 6

Step-7: You have all the required components. Drug and Drop and change the

names.

248

Figure F.16: Step 7

249

F.6 QSEE Technology

QSEE Superlit software downloaded from the following link [11] and as shown in Figure F.18

to draw the UML Models.

Figure F.17: Install QSEE

Step-1: Open New Project: Click New or Create New Project. It shows following

screen.

Figure F.18: Step 1

250

Step-2: Select UML Model

Figure F.19: Step 2

Step-3: Adding the Entity. Right click on the diagram area and select the UML

diagram option

Figure F.20: Step 3

Step-4: Type name of diagram you prefer and press the OK , button on the

form.

251

Figure F.21: Step 4

Step-5: Adding the Component. Right click on the entity and add Component.

Figure F.22: Step 5

Step-6. Enter the details into the dialogue and press OK.

252

Figure F.23: Step 6

253

F.7 Participants Positive and Negative Feedback

Q1.Are you satisfy of the workshop content? Please provide some comments

Positive Comment Negative Comment No Comment

1. The content of the workshop is very useful 1.It cannot cover some genre of games

2.It is easily to be understandable by developer 2.It is not good for small games

3.It is informative and explored some interesting ideas

4.AOAB has clear steps and phases to follow

Total=22 Total=3 Total=8

Q2. What is your suggestion to enhance the AOAB Methodology

Positive Comment Negative Comment No Comment

1. It is easy and applicable 1.Redesign the GDD

2. Can add intelligent to game 2.Need to deal more with business concept

3.Need more explanation for agent diagrams

4.Provide clear life cycle

5.Facilitate the team work

Total=11 Total=2 Total=20

Q3. What is the weakness and strength point you have found in AOAB Methodology

Positive Comment Negative Comment No Comment

1.It helps to be organized and will reduce the no. of errors 1.Create large documentation

2. It helps to have full idea of game aspect before start implementation 2.Include many diagrams

3. It is deal with agent easily 3. Take more time in create diagram

4.Create complete documentation 4.Developer prefer programming code rather than modeling diagrams

5.Minimize the error in implementation phase

6.Very useful when create new version of game

Total=19 Total=4 Total=10

Q4.Does the current game development methodology enough with your work, if no explain why

Positive Comment Negative Comment No Comment

1.Yes, we deal with adaptive methodology 1.Not enough with large game

2.Enough with small game

3..Yes, when I work individually

Total=13 Total=2 Total=18

Bibliography

[1] Atomic Object LLC. http://spin.atomicobject.com/2012/12/29/game-programming-boo-
unity-engine-part-1/; Last Access: March2012.

[2] Blender orgnazation. http://download.blender.org/documentation/pdf/; Last Access: Oc-
tober 2013.

[3] Create 3D Gasmes. http://create3dgames.wordpress.com/2012/07/03/unity-vs-udk/; Las-
tAccess: July2014.

[4] GameLab; http:gaminglab.jo/jo/about-2/; Last Access:Feb2014.

[5] GAMEON’2014; http://www.eurosis.org/cms/index.php?q=node/2844; Last Access:
July2014.

[6] http://conkerjo.wordpress.com/category/xna/; Last Access: March 2013.

[7] http://rpgmaker.net/engines/gm/; Last Access: April2013.

[8] IBM Innov8 : http: //www-01.ibm.com/software/solutions/soa/innov8; Last Access: April
2013.

[9] Intent Media Ltd; http://www.develop-online.net/tools-and-tech/the-top-10-game-
engines-no-4-unity-3d/0116475 ;Last Access: Feb2013.

[10] Kansas State University; http://agenttool.cis.ksu.edu/; Last Access: Jan2012.

[11] Leed Metropolitan University : http://www.leedsmet.ac.uk/qsee/; Last Access:Feb2014.

[12] Oman Driving License; http://omandrivinglicense.blogspot.com/2013/10/blog-
post.html?m=1; Last Access: Feb2013.

[13] Video Game Industry Statics,http://www.esrb.org; Last Access:March 2013.

[14] Wikipedia. http://en.wikipedia.org/wiki/Game; Last Access: March 2012.

[15] wikipedia. http://en.wikipedia.org/wiki/MicrosoftXNA; Last Access: Feb2013.

254

255

[16] C Abt. Serious games. University Press of America, 1987.

[17] P. S. Adler. The evolving object of software development. In Organization, volume 12,
2005.

[18] Z Akbari. A Survey Of Agent-oriented Software Engineering Paradigm: Towards Its Indus-
trial Acceptance. Journal of Computer Engineering Research, 1:14–28, 2010.

[19] Zohreh Akbari and Ahmad Faraahi. Evaluation Framework for Agent-Oriented Methodolo-
gies. In Proceedings of World Academy of Science (WCSET), volume 35, pages 419–424,
Paris, France, 2008.

[20] Rula Al-Azawi and Aladdin Ayesh. Comparing Agent -Oriented Programming Versus
Object-Oriented Programming. In ICIT 2013 The 6th International Conference on In-
formation Technology, pages 24–29, Jordan, 8-10 May 2013. IEEE Jordan Chapter.

[21] Rula Al-Azawi, Aladdin Ayesh, and Mohaned Al-Obaidi. Generic evaluation framework for
games development methodology. In Third International Conference on Communications
and Information Technology ICCIT 2013, pages 55–60, Lebanon, 19-21 June 2013. IEEE
Computer Society.

[22] Rula Al-Azawi, Aladdin Ayesh, and Mohaned Al-Obaidi. Towards agent-based agile ap-
proach for game development methodology. In WCCAIS’2014 World Congress On Com-
puter Applications and Information Systems,, Hammamet, Tunisia, January 2014. IEEE
Computer Society.

[23] Rula Al-Azawi, Aladdin Ayesh, Ian Kenny, and Khalfan AL-Masrur. Multi agent software
engineering (mase) and agile methodology for game development. In 14th Middle Eastern
Simulation and Modelling Multiconference, MESM 2014 - 4th GAMEON-ARABIA Con-
ference, GAMEON-ARABIA 2014., In The 14th Middle Eastern Simulation and Modelling
Multiconference (MESM) - The 4th GAMEON-ARABIA Conference., pages 116–122, Mus-
cat, Oman, 2014.

[24] Rula Al-Azawi, Aladdin Ayesh, Ian Kenny, and Khalfan AL-Masruria. Analysis of using
intelligent technique in games. In 3rd GAMEON-ARABIA’2012 Conference, pages 83–87,
Oman,Muscat, December 2012. EUROSIS.

[25] Rula Al-Azawi, Aladdin Ayesh, Ian Kenny, and Khalfan AL-Masruria. Towards an aose:
Game development methodology. In Distributed Computing and Artificial Intelligence, 10th
International Conference. Advances in Intelligent and Soft-Computing series of Springer,
volume 217, pages 493–501, Selemenca, Spain, May 2013.

[26] EF Al-Hashel. A Novel Development Methodology for Cooperative, Distributed Multi-
agent Systems. Master’s thesis, Faculty of information science and engineering, University
of Canberra, Australia, 2010.

[27] Apostolos Ampatzoglou and Alexander Chatzigeorgiou. Evaluation Of Object-oriented
Design Patterns In Game Development. Information and Software Technology, 49(5):445–
454, May 2007.

256

[28] Apostolos Ampatzoglou and Ioannis Stamelos. Software Engineering Research For Com-
puter Games: A Systematic Review. Information and Software Technology, 52(9):888–901,
2010.

[29] EF Anderson. Playing Smart-artificial Intelligence In Computer Games. Proceedings of
CON03 Conference on Game Development, ZFX - 3D Entertainment, 2003.

[30] Gustavo Andrade, Geber Ramalho, AS Gomes, and Vincent Corruble. Dynamic Game
Balancing: An Evaluation Of User Satisfaction. In the 2nd Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE06)., pages 3–8. AAAI Press, 2006.

[31] D. Avison and G. Fitzgerald. Information Systems Development: Methodologies, Tech-
niques and Tools. McGraw-Hill, New York, 2nd edition edition, 1995.

[32] R. Basseda, F. Taghiyareh, T. Alinaghi, C. Ghoroghi, and A. Moallem. A Framework For
Estimation Of Complexity In Agent Oriented Methodologies. In Conference on Computer
Systems and Applications, 2009. AICCSA 2009. IEEE/ACS International, pages 645–652,
May 2009.

[33] Reza Basseda and Tannaz Alinaghi. A Dependency Based Framework For The Evaluation
Of Agent Oriented Methodologies. In IEEE International Conference on System of Systems
Engineering, SoSE 2009., 2009.

[34] E Bethke. Game Development And Production. Wordware Publishing, Inc., 2003.

[35] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopoulos.
Tropos: An Agent-Oriented Software Development Methodology. Autonomous Agents
and Multi-Agent Systems, 8(3):203–236, may 2004.

[36] W. Brown Alan and C. Wallnau Kurt. A Framework for Systematic Evaluation of Software
Technologies. IEEE Software, 15213(September), 1996.

[37] Longbing Cao, Chengqi Z, and Ni Jiarui. Agent services-oriented architectural design of
open complex agent systems. In Intelligent Agent Technology, IEEE/WIC/ACM Interna-
tional Conference on. IEEE,, 2005.

[38] L Cernuzzi. On The Evaluation Of Agent Oriented Modeling Methods. In the OOPSLA
(2002) Workshop on Agent-Oriented Methodologies., Seattle, 2002.

[39] Luca Cernuzzi. Profile Based Comparative Analysis For Aose Methodologies Evaluation.
Proceedings of the 2008 ACM symposium, pages 60–65, 2008.

[40] A. Chella, M. Cossentino, L. Sabatucci, and V. Seidita. Agile PASSI: An Agile Process for
Designing Agents. International journal of computer systems science & engineering. special
issue on software, (i):1–6, 2004.

[41] Antonio Chella, Viale Scienze, Massimo Cossentino, Luca Sabatucci, Valeria Seidita, Alte
Prestazioni, and Consiglio Nazionale. From Passi To Agile Passi : Tailoring A Design
Process To Meet New Needs.

257

[42] Chia-En Lin, Krishna M. Kavi and Frederick T. Sheldon and Thomas E. Potok. A Method-
ology To Evaluate Agent Oriented Software Engineering Techniques. In 40th Annual
Hawaii International Conference on System Sciences, HICSS 2007, pages 1–20, Island of
Hawaii,USA, 2007. IEEE Computer Society.

[43] Mark Claypool and Kajal Claypool. Latency Can Kill : Precision and Deadline in Online
Games. pages 215–222, 2010.

[44] G. Costikyan. I have no words & i must design. In In Interactive Fantasy., number 2, 1994.

[45] Chris Crawford. Chris Crawford on game design. New Riders, 2003.

[46] Khanh Dam. Evaluating And Comparing Agent-oriented Software Engineering Method-
ologies. PhD thesis, School of Computer Science and Information Technology, RMIT
University, Australia., 2003.

[47] Michael Dam, Khanh and Winikoff. Comparing Agent-oriented Methodologies. In Pro-
ceedings of the Fifth International Bi-Conference Workshop on Agent-Oriented Informa-
tion Systems (AAMAS). Lecture Notes in Computer Science; Springer, volume 3030, pages
78–93, Melbourn, Australia., 2004. Springer Berlin / Heidelberg.

[48] S DeLoach. Analysis and Design using MaSE and agentTool. In In Proceedings of 12
Midwest Artificial Intelligence and Cognitive Science Conference (MAICS 2001), Miami
University, Oxford, Ohio, pages 1–7, 2001.

[49] S. DeLoach. Multiagent Systems Engineering Of Organization-based Multiagent Systems.
ACM SIGSOFT Software Engineering Notes, 30(4), July 2005.

[50] S DeLoach and J Garcia-Ojeda. O-mase: A Customisable Approach To Designing And
Building Complex, Adaptive Multi-agent Systems. International Journal of Agent-Oriented
Software Engineering, 4(3):244–280, 2010.

[51] S. DeLoach, E. Matson, and Y. Li. Applying Agent Oriented Software Engineering To
Cooperative Robotics. Proceedings of the 15th International FLAIRS Conference(FLAIRS
2002). Pensacola, Florida, 2002.

[52] S. DeLoach and J Valenzuela. An agent-environment interaction model. Agent-Oriented
Software Engineering VII. Springer Berlin Heidelberg, 4405:1–18, 2007.

[53] H. Desurvire, M. Caplan, and J. Toth. Using Heuristics to Evaluate the Playability of
Games. In CHI 2004 Late Breaking Results Paper, pages 1509–1512, Vienna, Austria,
24-29 April 2004.

[54] Sebastian Deterding, Dan Dixon, R Khaled, and L Nacke. From game design elements to
gamefulness: defining gamification. Proceedings of the 15th . . . , 2011.

[55] Damien Djaouti, Julian Alvarez, Jean-Pierre Jessel, Gilles Methel, and Pierre Molinier. A
Gameplay Definition through Videogame Classification. International Journal of Computer
Games Technology, 2008:1–7, 2008.

258

[56] S. Easterbrook, J. Singer, and M. Storey. Selecting empirical methods for software engi-
neering research. In Guide to advanced empirical software engineering. Springer., pages
285–311., London, 2008.

[57] M. S. El-Nasr and B. K. Smith. Learning through game modding. Computers in Enter-
tainment, 4(1):45– 64, 2006.

[58] P Escudeiro and Nuno Escudeiro. Evaluation of Serious Games in Mobile Platforms with
QEF: QEF (Quantitative Evaluation Framework). In 2012 Seventh IEEE International
Conference on Wireless, Mobile and Ubiquitous Technology in Education, pages 268–271,
Takamatsu, Kagawa, Japan, 27-30 March 2012.

[59] M. Fasli. Agent Technology for E-commerce. Wiley & Sons, 2007.

[60] A. Febretti and F. Garzotto. Usability, Playability, And Long-term Engagement In Computer
Games. In CHI 2009, pages 4063–4068, Boston, MA, USA, April 4-9 2009. ACM.

[61] M. Federoff. Heuristics and Usability Guidelines for the Creation and Evaluation of Fun in
Video Games. Master of science thesis, Indiana University, 2002.

[62] J. Flynt and O. Salem. Software Engineering for Game Developers. Course Technology
Ptr, November 2005.

[63] B. A. Foss and T. I. Eikaas. Game play in engineering education concept and experimental
results. International Journal of Engineering Education, 22(5):1043–1052, 2006.

[64] A. Gershenfeld, M. Loparco, and C. Barajas. Game Plan: The Insiders Guide To Breaking In
And Succeeding In The Computer And Video Game Business. St. Martins Griffin Press,New
York, 2003.

[65] A Godoy and EF Barbosa. Game-Scrum: An Approach to Agile Game Development. In
Proceedings of SBGames 2010 Computing, pages 292–295, November 8th-10th 2010.

[66] Gomez, A. and Gonzalez, J. and Ramos, D. and Vazquez, L. Modeling Serious Games
Using Aose Methodologies. In 11th International Conference on Intelligent Systems Design
and Applications (ISDA), pages 53–58, 2011.

[67] Paul Guyot and Shinichi Honiden. Agent-Based Participatory Simulations : Merging Multi-
Agent Systems and Role-Playing Games. The Journal of Artificial Societies and Social
Simulation, 9(4):8–20, 2006.

[68] A. Hevner, S. March, J. Park, and S. Ram. Design science in information systems research.
MIS Quarterly, 28(1):75–105, March 2004.

[69] Michael N. Huhns and Munindar P. Singh. Service-oriented computing: Key concepts and
principles. In Internet Computing, IEEE 9.1, pages 75–81, 2005.

[70] LA Hunt. Predictive And Adaptive Game Development A Practical Application Of De-
velopment Models To The Independent Video Game Industry. Master’s thesis, School of
Communications and Arts, 2011.

259

[71] C Iglesias and Mercedes Garijo. Analysis And Design Of Multiagent Systems Using Mas-
commonkads. Intelligent Agents IV Agent, 1365:313–327, 1998.

[72] JP Jamont and Michel Occello. Designing Embedded Collective Systems: The Diamond
Multiagent Method. 19th IEEE International Conference on Tools with Artificial Intelli-
gence, 2:91–94, 2007.

[73] Nimal Jayaratna. Understanding and Evaluating Methodologies: NIMSAD a Systematic
Framework. McGraw-Hill, New York, 2nd edition edition, 1994.

[74] R. Jeffries and J. Miller. User interface evaluation in the real world: A comparison of
four techniques. In Conference on Human Factors in Computing Systems CHI 91, pages
119–124., New Orleans, LA, April 1991. ACM Press.

[75] Sycara-K. Jennings, N.R. and M. Wooldridge. A roadmap of agent research and develop-
ment. Journal of Autonomous Agents and Multi-Agent Systems, 1:7–38, 1998.

[76] Jesse Schell. The Art of Game Design:A Book of Lenses. Morgan Kaufmann, 2008.

[77] Daniel Johnson and Janet Wiles. Computer Games With Intelligence . Australian Journal
of Intelligent Information Processing Systems, 7:61–68, 2001.

[78] C Kanode and M Haddad. Software Engineering Challenges in Game Development. In
2009 Sixth International Conference on Information Technology: New Generations, pages
260–265. IEEE Computer Society, 2009.

[79] Effie Karouzaki and Anthony Savidis. A Framework for Adaptive Game Presenters with
Emotions and Social Comments. International Journal of Computer Games Technology,
2012:1–18, 2012.

[80] C Keith. Agile Game Development With Scrum. Addison-Wesley Signature Series, 2010.

[81] C Keith and TY AGO. Scrum Rising. Agile Development could save your studio. Game
Developer, 14:22–26, 2007.

[82] B. Kitchenham, S Linkman, and D. Law. Desmet: A methodology for evaluating software
engineering methods and tools. Computing and Control Engineering Journal, 8.3:120–126.,
1997.

[83] B. Kitchenham, L. Pickard, and S. Pfleeger. Case studies for method and tool evaluation.
Software Magazine, 4(12):52–62, 1995.

[84] Barbara Kitchenham. Desmet: A method for evaluating software engineering methods and
tools. Technical Report TR96-09, University of Keele, U.K, August 1996.

[85] H. Korhonen and E. Koivisto. Playability Heuristics For Mobile Games. In MobileHCI,
number 9-16, page 9, Helsinki, Finland, September 12-15 2006. ACM Press.

260

[86] H. Korhonen, J. Paavilainen, and H. Saarenpaa. Expert Review Method In Game Eval-
uations: Comparison Of Two Playability Heuristic Sets. In MindTrek 2009, pages 74–81,
Tampere, Finland, September 30-October 2 2009. ACM.

[87] R Kortmann and Casper Harteveld. Agile Game Development: Lessons Learned From
Software Engineering. In Proceedings of the 40th conference of the international simulation
and gaming association, 2009.

[88] J. Laird and M. Van. Human-level ai’s killer application: Interactive computer games. The
AI Magazine, 22:15–25, 2000.

[89] Alexei Lapouchnian. Modeling Mental States in Requirements Engineering : An Agent-
Oriented Framework Based on i * and CASL. Master’s thesis, York University, Toronto,
Canada, July 2004.

[90] D. Law and T. Naem. Desmet: Determining and evaluation methodology for software meth-
ods and tools. In the Science Conference on CASE - Current Practice, Future Prospects,
Cambridge, England, March 1992.

[91] Chris Lewis and Jim Whitehead. The Whats And The Whys Of Games And Software
Engineering. In Proceedings of the 1st International Workshop on Games and Software
Engineering, GAS ’11, pages 1–4, New York, New York, USA, May 2011. ACM Press.

[92] By Craig A Lindley. Game Taxonomies : A High Level Framework for Game Analysis and
Design. Framework, pages 1–10, 2003.

[93] Ashri R. DInverno M Luck, M. Agent-Based Software Development. Artec House Inc,
London, 2004.

[94] Daniel . Macedo, Formico Rodrigues, and Maria A. Experiences With Rapid Mobile Game
Development Using Unity Engine. Computers in Entertainment, 9(3):1–12, November
2011.

[95] I. Magarifto, J. Jorge, and R. Sanz. An evaluation framework for MAS modeling languages
based on metamodel metrics. In Agent-Oriented Software Engineering IX, 9th International
Workshop, AOSE, volume 5386, pages 101–115, Estoril, Portugal, May 12-13, 2008 2009.
Lecture Notes in Computer Science-Springer.

[96] Kevin. Maroney. My entire waking life. The games journal, 5, 2001.

[97] R McGuire. Paper Burns: Game Design With Agile Methodologies. Gamasutra: The Art
and Business of Making Games., pages 1–7, 2006.

[98] Qinghai Miao, Fenghua Zhu, Yisheng Lv, Changjian Cheng, Cheng Chen, and Xiaogang
Qiu. A Game-Engine-Based Platform for Modeling and Computing Artificial Transportation
Systems. IEEE Transactions on Intelligent Transportation Systems, 12(2):343–353, June
2011.

261

[99] M.Nachamai, M.Senthil, and V.Tapaska. Enacted Software Development Process Based
On Agile And Agent. International Journal of Engineering Science and Technology (IJEST),
3(11):8019–8029, November 2011.

[100] A. Molesini and V. Andrea, O. and. Mirko. Environment in agent-oriented software en-
gineering methodologies. Multiagent and Grid Systems - Engineering Environments in
Multiagent Systems, 5:37–57, January 2009.

[101] B. Morse and P. Field. Qualitative research methods for health professionals. In SAGE
Publications London, 1995.

[102] Haralambos Mouratidis. Secure Tropos: An Agent Oriented Software Engineering Method-
ology for the Development of Health and Social Care Information Systems. International
Journal of Computer Science and Security, 3(3):241–271, 2009.

[103] Lennart Nacke. From playability to a hierarchical game usability model. In Conference on
Future Play - FuturePlay ’09, pages 10–11, Vancouver, BC, Canada, 2009. ACM Press.

[104] Brian Mac Namee and P Cunningham. A Proposal for an Agent Architecture for Proactive
Persistent Non Player Characters. In the 12 th Irish Conference on AI and Cognitive Science,
pages 221–232, 2001.

[105] J. Nielsen and R. Mack. Heuristic Evaluation Of User Interfaces. In Proceedings of the
SIGCHI conference on Human factors in computing systems, number April, pages 249–256.
Empowering people. ACM, 1990.

[106] H.S. Nwana. Software agents: An overview. Intelligent Systems Research , Advanced Ap-
plications & Technology Dep. , Cambridge university U.K. Knowledge Engineering Review,
11:1–40, Sept 1996.

[107] HM Omar, Roslina Ibrahim, and Azizah Jaafar. Methodology To Evaluate Interface Of
Educational Computer Game. In 2011 International Conference on Pattern Analysis and
Intelligent Robotics, number 28-29 June, pages 228–232, Putrajaya, Malaysia, 2011. IEEE.

[108] Janne Paavilainen. Critical Review On Video Game Evaluation Heuristics: Social Games
Perspective. In Future Play 2010, pages 56–65. ACM Press, 2010.

[109] L Padgham. Prometheus: A Methodology For Developing Intelligent Agents. Agent-
oriented software engineering III, 2003.

[110] Panagiotis Petridis, Ian Dunwell, David Panzoli, Sylvester Arnab, Aristidis Protopsaltis,
Maurice Hendrix, and Sara Freitas. Game Engines Selection Framework for High-Fidelity
Serious Applications. International Journal of Interactive Worlds, 2012:1–19, June 2013.

[111] Fábio Petrillo and Marcelo Pimenta. Houston, We Have A Problem...: A Survey Of Actual
Problems In Computer Games Development. In In SAC08: Proceedings of the 2008 ACM
symposium on Applied computing, pages 707–711. ACM, 2008.

262

[112] Fabio Petrillo and Marcelo Pimenta. Is Agility Out There?: Agile Practices In Game
Development. SIGDOC ’10 Proceedings of the 28th ACM International Conference on
Design of Communication, pages 9–15, 2010.

[113] D. Pinelle, and Stach T. Wong, N., and Gutwin. Usability Heuristics For Networked
Multiplayer Games. In Proc. of the ACM 2009 International Conference on Supporting
Group Work, pages 169–178, Sanibel Island, Florida, USA., May 10-13 2009.

[114] David Pinelle, Union Street, and Goodwin Hall. Heuristic Evaluation for Games : Usability
Principles for Video Game Design. In SIGCHI Conference on Human Factors in Computing
Systems. ACM, pages 1453–1462, 2008.

[115] G. Pleva. Game programming and the myth in a childs play. Journal of Computing Sciences
in Colleges, 2:125–136, 2004.

[116] Marcb Ponsen and P. Spronck. Improving Adaptive Game AI With Evolutionary Learning.
Computer Games: Artificial Intelligence, Design and Education (CGAIDE 2004), pages
389–396 University of Wolverhampton., 2004.

[117] MG Salazar and HA Mitre. Proposal Of Game Design Document From Software Engineer-
ing Requirements Perspective. In The 17th International Conference on Computer Games,
pages 81–85. IEEE, 2012.

[118] E. Salen and K. Zimmerman. Rules of Play: Game Design Fundamentals. MIT Press,
2003.

[119] Amin Saremi and Mostafa Esmaeili. Evaluation Complexity Problem In Agent Based
Software Development Methodology. Industrial and Information, (August):577 –584, 2007.

[120] N. Schaffer. Heuristics for usability in games. Technical report, Rensselaer Polytechnic
Institute, White Paper., April 2007.

[121] Jonas Schild, Robert Walter, and M Masuch. ABC-sprints: Adapting Scrum To Academic
Game Development Courses. In the Foundations of Digital Games, pages 187–194, 2010.

[122] Tong ShaoPeng and Zhang Jun. A Research on Multi Agent Modeling Language. Procedia
Engineering, 15:1842–1847, January 2011.

[123] Y Shoham. Agent- Oriented Programming. Artificial intelligence, 60.1:51–92, 1993.

[124] G. Sindre, L. Natvig, and M. Jahre. Experimental validation of the learning effect for a
pedagogical game on computer fundamentals. IEEE Transactions on Education, 52(1):10–
18, 2009.

[125] R Sousa, A. da Cunha, L Martins, R. Cysneiros, and L. Werneck. Evaluating MaSE Method-
ology in the Requirements Identification. In the 33nd Annual IEEE Software Engineering
Workshop, IEEE Computer Society Press, Skovde, pages 136–143, October 2010.

[126] Pieter Spronck, Marc Ponsen, and I Sprinkhuizen-Kuyper. Adaptive Game AI With Dynamic
Scripting. Machine Learning, 63(3):1–42, 2006.

263

[127] P. Stacey and J. Nandhakumar. Managing projects in a games factory: Temporality and
practices. In 38th Hawaii Interna- tional Conference on System Sciences, pages 1–10, 2005.

[128] Janusz A. Starzy k and Pawel Raif. Cognitive agent and its implementation in the
blender game engine environment. In Computational Intelligence for Human-like Intelli-
gence (CIHLI), 2013 IEEE Symposium on. IEEE, 2013.

[129] Peter Stone, Park Ave, and Florham Park. Multiagent Systems : A Survey from a Machine
Learning Perspective. Robotics, pages 1–57, 2000.

[130] Arnon Sturm. A Framework For Evaluating Agent-oriented Methodologies. Agent-Oriented
Information Systems, (1):60–67, 2004.

[131] Arnon Sturm and O Shehory. A Framework For Evaluating Agent-oriented Methodologies.
In Agent-Oriented Information Systems, 5th Int. Bi-Conference Workshop, AOIS 2003.
Lecture Notes in Computer Science 3030, Springer-Verlag., pages 94–109, 2004.

[132] Jan Sudeikat and Lars Braubach. Evaluation Of Agent Oriented Software Methodologies
Examination Of The Gap Between Modeling And Platform. In Agent-Oriented Software
Engineering, Lecture Notes in Computer Science, volume 3382, pages 126–141, Berlin,
Germany, 2005. Springer Verlag.

[133] P Sweetser. Current AI in Games: A review. Technical report, School of ITEE, University
of Queensland, 2002.

[134] Penelope Sweetser and Peta Wyeth. Gameflow: A Model For Evaluating Player Enjoyment
In Games. Computers in Entertainment (CIE), 3:1–24, 2005.

[135] Victor Szalvay. An Introduction to Agile Software Development. Danube Technologies,
Inc., Bellevue, (November):1–9, 2004.

[136] H. Takeuchi and I. Nonaka. The new product development game. In Harvard Business
Review, pages 137–146., January- February 1986.

[137] QNN Tran and Graham C. Low. Comparison Of Ten Agent-oriented Methodologies.
Agent-oriented methodologies, pages 341–367, 2005.

[138] I Trencansky and R Cervenka. Agent Modeling Language (AML): A Comprehensive Ap-
proach to Modeling MAS. Informatica, 29:391–400, 2005.

[139] A. Wang, T. Fsdahl, and O. Morch-Storstein. An evaluation of a mobile game concept
for lectures,. In 21st Conference on Software Engineering Education and Training,(CSEET
08), number 197-204, 2008.

[140] A. Wang, O March-Storstein, and T Fsdahl. Lecture quiz mobile game concept for lectures,.
In 11th IASTED International Conference on Software Engineering and Application (SEA
07), November 2007.

[141] Alf Wang and Bian Wu. Using Game Development to Teach Software Architecture. Inter-
national Journal of Computer Games Technology, 4:1–12, 2011.

264

[142] Charles Weddle. Artificial Intelligence and Computer Games. Dissertation, Computer
Science, Florida State University., pages 1–8, 2008.

[143] C. Wohlin. Experimentation in Software Engineering. Springer, Boston/Dordrecht/London,
2012.

[144] Mark Wood and Scott Deloach. An Overview of the Multiagent Systems Engineering
Methodology. Computer, 1957(January):207–221, 2001.

[145] M. Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2002.

[146] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. A Methodology For Agent-
oriented Analysis And Design. Proceedings of the third annual conference on Autonomous
Agents - AGENTS ’99, pages 69–76, 1999.

[147] Michael Wooldridge, Chester Street, M Manchester, Nicholas R Jennings, Mile End Road,
and E London. Intelligent Agents : Theory and Practice. In Electronic Engineering, number
January, pages 1–62, 1995.

[148] B. Wu and A. I. Wang. An evaluation of using a game development framework in higher
education. In 22nd Conference on Software Engineering Education and Training, (CSEET
09), pages 41–44, Hyderabad, India, February 2009.

[149] Bian Wu and Alf Inge Wang. A Guideline for Game Development-Based Learning: A
Literature Review. International Journal of Computer Games Technology, 2012:1–20, 2012.

[150] B Yue. The State Of The Art In Game Ai Standardisation. the international conference
on Game research and development, 223:41–46, 2006.

[151] M. Zyda. From visual simulation to virtual reality to game. In Computer, volume 38, pages
25–32, 2005.

