
Innovations Syst Softw Eng (2007) 3:17–31
DOI 10.1007/s11334-006-0017-5

ORIGINAL PAPER

Building and implementing policies in autonomous
and autonomic systems using MaCMAS
A case study based on a NASA concept mission

Joaquin Peña · Michael G. Hinchey · Roy Sterritt ·
Antonio Ruiz-Cortés

Received: 15 September 2006 / Accepted: 1 December 2006 / Published online: 1 February 2007
© Springer-Verlag London Limited 2007

Abstract Autonomic Computing, self-management
based on high level guidance from humans, is increas-
ingly being accepted as a means forward in designing
reliable systems that both hide complexity from the
user and control IT management costs. Effectively, AC
may be viewed as policy-based self-management. We
look at ways of achieving this, with particular focus on
agent-oriented software engineering. We propose uti-
lizing MaCMAS, an AOSE methodology for specifying
autonomic and autonomous properties of the system
independently. Later, by means of composition of these
specifications, guided by a policy specification, we con-
struct a specification for the policy and its subsequent
deployment. We illustrate this by means of a case study

This work has been partially supported by the European
Commission (FEDER) and Spanish Government under CICYT
project Web-Factories (TIN2006-00472) and grant
TIC2003-02737-C02-01, by NASA Software Engineering
Laboratory and NASA office of Safety and Mission Assurance
Software Assurance Research Program (SARP), and at
University of Ulster by the Computer Science Research Institute
(CSRI) and the Centre for Software Process Technologies
(CSPT), funded by Invest NI through the Centres of Excellence
Programme, under the EU Peace II initiative.

J. Peña · A. Ruiz-Cortés
University of Seville, Seville, Spain
e-mail: joaquinp@us.es

A. Ruiz-Cortés
e-mail: aruiz@us.es

M. G. Hinchey
Loyola College, Baltimore, MD, USA
e-mail: mike.hinchey@usa.net

R. Sterritt (B)
University of Ulster, Ulster, Northern Ireland
e-mail: r.sterritt@ulster.ac.uk

based on a NASA concept mission and describe future
work on a support toolkit.

Keywords Autonomic computing · Policy-based
management · Agent-oriented software engineering

1 Introduction and motivation

Autonomic Systems (encompassing both autonomic
computing and autonomic communications) is an emer-
ging field [1] for the development of large-scale, self-
managing, complex distributed computer-based systems.

As in all emerging fields, there are many fruitful areas
for concern, that are worthwhile targets for research
and development. Many issues are yet to be addressed,
such as, for example, how should autonomic managers,
who together with the component being managed make
up an autonomic element, be defined such that they
can exist in a collaborative autonomic environment and
ultimately provide self-management of the system.

The long term strategic vision of Autonomic Com-
puting (AC) highlighted an overarching self-managing
vision where the system would have such a level of “self”
capability that a senior (human) manager in an orga-
nization could specify business policies—such as profit
margin on a specific product range or system quality
of service for a band of customers—and the computing
systems would do the rest themselves.

It has been argued that for this vision to become
a reality, we would require AI completeness, software
engineering completeness, and so on [2]. What is clear
in this vision is the importance of some form of policy
that is then translated to all levels in the system in order
to achieve self-direction and self-management.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287019145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

18 J. Peña et al.

In introducing the concept of autonomic computing,
IBM’s Paul Horn likened the needs of large scale sys-
tems management to that of the human autonomic ner-
vous system (ANS). The ANS, through self-regulation,
is able to effectively monitor, control and regulate the
human body without the need for conscious thought
[8]. This self-regulation and separation of concerns pro-
vides human beings with the ability to concentrate on
high level objectives without having to micro-manage
the specific details involved. The vision and metaphor
of autonomic computing is to apply the same principles
of self-regulation and complexity-hiding to the design
of computer-based systems, in the hope that one day
computer systems can achieve the same level of self-
regulation as the human ANS [8,28]. In his talk, Horn
highlighted that the autonomic computing system must
“find and generate rules for how best to interact with
neighboring systems” [8].

We propose to use a methodology called MaCMAS
(methodology fragment for analyzing complex multi-
agent systems,1) which provides the models and tech-
niques for adding policies at runtime. We propose
creating isolated definitions of the features that we want
to use in policies using MaCMAS models. Later, when
we specify a policy, we deploy these models over the
running system using MaCMAS model composition.

In addition, to illustrate our approach, we use an
example from the NASA ANTS concept mission
(described in Sect. 5). This mission involves the use of
a swarm of pico-class spacecraft to explore and collect
data from the asteroid belt, and exhibits both autono-
mous and autonomic properties.

2 Policy-based management

Policies have been described as a set of considerations
designed to guide decisions of courses of action [15], and
policy-based management (PBM) may be viewed as an
administrative approach to systems management that a
priori establishes rules for dealing with situations that
are likely to occur.

From this perspective, PBM works by controlling
access to and setting priorities for the use of ICT
resources,2 for instance, where a (human) manager may
simply specify the business objectives and the system
will achieve these in terms of the needed ICT [14]. For
example: (1) “The customer database must be backed

1 see http://www.james.eii.us.es/MaCMAS/ for further details.
2 Whatis.com, online computer and internet dictionary and
encyclopedia, 2005.

up nightly between 1 a.m. and 4 a.m.” (2) “Platinum
customers are to receive no worse than 1-s average
response time on all purchase transactions.” (3) “Only
management and the HR senior staff can access per-
sonnel records.” and (4) “The number of connections
requested by the Web application server cannot exceed
the number of connections supported by the associ-
ated database.” [10]. These examples highlight the wide
range and multiple levels of policies, the first concerned
with system protection through backup, the second with
system optimization to achieve and maintain a level
of quality-of-service for key customers; while the third
and fourth are concerned with system configuration and
protection.

Policy-based management has been the subject of
extensive research in its own right. The Internet engi-
neering task force (IETF) has investigated policy-based
networking as a means for managing IP-based multi-
service networks with quality-of-service guarantees.
More recently, PBM has become extremely popular
within the telecommunications industry, for next gener-
ation networking, with many vendors announcing plans
and introducing PBM-based products. This is driven by
the fact that policy has been recognized as a solution for
managing complexity, and for guiding the behavior of a
network or distributed system through high-level user-
oriented abstractions [16]. A PBM tool may also reduce
the complexity of product and system management by
providing a uniform cross-product policy definition and
management infrastructure [4].

With one definition of autonomic computing being
self-management based on high level guidance from
humans [12] and considering IBM’s high-level set of
self-properties (self-CHOP: configuration, healing, opti-
mization and protection) against the types of typical
policies mentioned previously (optimization, configu-
ration and protection), the importance and relevance
of polices for achieving autonomicity becomes clear
[29].

3 Using AOSE for policy modelling

The field of agent-oriented software engineering
(AOSE) has arisen to address methodological aspects
and other issues related to the development of complex
multi-agent systems. AOSE is a new software engineer-
ing paradigm that augurs much promise in enabling the
successful development of more complex systems than
is achievable with current object-oriented approaches
which use agents and organizations of agents as their
main abstractions [9].

Building and implementing policies 19

The organizational metaphor has been proven to be
one of the most appropriate tools for engineering
multi-agent systems (hereafter, MAS). The metaphor
is used by many researchers to guide the analysis and
design of MASs, e.g., [19,21,31].

A MAS organization can be observed from two differ-
ent point of view [31]:

Acquaintance point of view: shows the organization as
the set of interaction relationships between the roles
played by agents.

Structural point of view: shows agents as artifacts that
belong to sub-organizations, groups, teams. In this
view agents are also structured into hierarchical
structures showing the social structure of the system.

Both views are intimately related, but they show the
organization from radically different viewpoints. Since
any structural organization must include interactions
between their agents in order to function, it is safe to
say that the acquaintance organization is always con-
tained in the structural organization. Therefore, if we
first determine the acquaintance organization and we
define the constraints required for the structural orga-
nization, a natural map is formed between the acquain-
tance organization and the corresponding structural
organization. This is the process of assigning roles to
agents [31]. Thus, we can conclude that any acquain-
tance organization can be modeled orthogonally to its
structural organization [11].

We use this separation to specify policies at the
acquaintance organization level and deploy them over
the structural organizational of the running system. The
scope of policies usually implies features of several
acquaintance sub-organizations. In such cases, we must
first compose the acquaintance sub-organizations, this
process being guided by the policy specification, to
deploy it later.

4 Overview of MaCMAS/UML

MaCMAS is the AOSE methodology that we use to
specify and deploy policies [22]. It is specially tailored
to model complex acquaintance organizations [26]. Its
main advantages can be observed from three aspects:
in the modeling aspect, the main advantage consists in
providing an interaction abstraction to enable the mod-
eling of unpredictable behaviors and provide a notation
which, to the best of our knowledge, is the unique UML
2.0-based approach dedicated to modeling the acquain-
tance organization abstractly; in the techniques aspect,

we provide semi-automatic techniques for decomposing
and composing models basing on goal-oriented require-
ments and on dependencies, which are unique in the
field; and in the software process aspect, we provide a
software process that covers top–down and bottom–up
development approaches providing criteria for decid-
ing between them. To the best of our knowledge, our
approach is the first to address such criteria.

We use this approach for several reasons. First, it
provides UML-based models which are the de-facto
standard in modeling, and which will decrease the learn-
ing-curve for engineers. Second, it allows modeling at
different levels of abstraction, which allows us to spec-
ify policies at whichever level of abstraction we need.
Third, it provides techniques to compose acquaintance
models, which are needed for policies that imply several
system-goals and for deploying an acquaintance model
that specifies a policy over a structural organization, that
is to say, a composition of roles.

In Fig. 1, we summarize the main software process
engineering metamodel (SPEM) work definitions and
models of the methodology. In the following, we detail
the most important features for our purposes in this
paper.

The MaCMAS/UML modeling process is focused on
interactions/acquaintance organization since they are
the main source of complexity. In order to represent
interactions abstractly, we use multi-role interactions
(mRI) [23,24]. mRIs are first class modeling elements
in our models and are used as the minimum building
block for modeling. Their use is crucial for performing
an incremental layered modeling approach since mRIs

System Analyst

Build Intial Acq. Org. ()
Layer Completion ()
Reuse ()
Traceability maintenance ()

 Analysis

Role Plan Role Model
Plan

Resources
Dependecies

Model

Role Model Ontology

Static Acquaintance
Organization Models

Traceability
Model

Complexity
Domain

Guidelines

Decomp.
Guidelines

Comp.
Guidelines

Reuse
Guidelines

Dynamic Acquaintance
Organization Models

Parameterized
Role Model

Open Systems
Guidelines

Relating
Role Models

Top-down vs.
Bottom-up
Guidelines

Fig. 1 Acquaintance analysis discipline

20 J. Peña et al.

can be described internally by means of finer-grain mRIs
or several of them can be abstracted by a coarser-grain
one.

An mRI is an institutionalized pattern of interaction
that abstractly represents the fulfillment of a system goal
without detailing how this is achieved. Thus, using mRI
as the minimum modeling element, we do not have
to take into account all of the details required to ful-
fill a complex system goal nor the messages that are
exchanged at stages where these details have not been
identified clearly, are not known, or are not even nec-
essary. This allows us to have abstract models where
intelligent behavior is carried out by means of neural
networks, fuzzy logic, etc., (as, for example, is required
in ANTS, cf. Sect. 5), without the necessity of dealing
with all the details. In addition, the direct correlation
between system goals and mRIs allows us to establish
a clear traceability between goal-oriented requirement
documents and analysis models. This is also important
for our goal in this paper, since policies usually verse
about system goals. Having this kind of model helps in
simplifying the way in which policies are specified and
deployed in the system at runtime.

mRIs are represented with UML 2.0 collaborations
[20, p. 132] as are all the models we use. We use three
views of the acquaintance organization: two for repre-
senting the static and dynamic aspects of the organiza-
tion, and a third for representing the relation between
models in different abstraction layers. We use the fol-
lowing models:

a) Static acquaintance organization view: This shows
the static interaction relationships between roles in
the system and the knowledge processed by them.
It comprises the following UML models:
Role models: These show an acquaintance

sub-organization as a set of roles collaborat-
ing by means of several mRIs. As mRIs allow
abstract representation of interactions, we can
use these models at whatever level of abstrac-
tion we desire. We use role models to represent
autonomous and autonomic properties of the
system at the level of abstraction we need.

Ontology: This shows the ontology shared by roles
in a role model. It is used to add semantics to the
knowledge owned and exchanged by roles. We
do not show it in this paper, but, as we show later,
they are also important for deploying policies.

b) Behavior of acquaintance organization view: The
behavioral aspect of an organization shows the
sequencing of mRIs in a particular role model. It
is represented by two equivalent models:

Plan of a role: separately represents the plan of
each role in a role model showing how the mRIs
of the role sequence. It is represented using
UML 2.0 ProtocolStateMachines [20, p. 422]. It
is used to focus on a certain role, while ignoring
others.

Plan of a role model: represents the order of mRIs
in a role model with a centralized description.
It is represented using UML 2.0 StateMachines
[20, p. 446]. It is used to facilitate easy under-
standing of the whole behavior of a sub-organi-
zation.

c) Traceability view: This model shows how models
in different abstraction layers relate. It shows how
mRIs are abstracted, composed or decomposed by
means of classification, aggregation, generalization
or redefinition. Notice that we usually show only
the relationship between interactions because they
are the focus of modeling, but all the elements that
compose an mRI can also be related. Finally, since
an mRI presents a direct correlation with system
goals, traceability models clearly show how a certain
requirement system goal is refined and material-
ized.

5 ANTS case study and some of its models

In this section, we briefly introduce ANTS, a NASA
concept mission, that illustrates properties of several
potential exploration missions. We show two models of
an autonomous and autonomic property of the system.

5.1 ANTS mission overview

The Autonomous Nano-Technology Swarm (ANTS)
mission [3,30] is a concept mission that involves the

Fig. 2 ANTS encounter with an asteroid

Building and implementing policies 21

RM Protect from
solar storms

RM orbit &
measure

MoveInform
Orbit

Adjust
Orbit

Prospecting
Asteroid Belt

Explore
and

Discover
ApproachOrbit

Search
new

asteroid

Inform
asteroid

Evaluate

Avoid
Crashing

Avoid run
out of power

Avoid loss
of

connection

Recover
from loss of
connection

Protect
from solar

storms

Measure
(image)

Measure (distance)
Measure (form)

Measure (GForces)

Decide If
Abort

Measure
(X-ray)

Measure
(form)

Measure
(GForce)

Measure
(image)

Measure
(GForce)

Measure
(image)

Send
Earth

Self-
Protection

AUTONOMIC
PROPERTIES

AUTONOMOUS
PROPERTIES

A
b

st
ra

ct
io

n

L
ay

er
 1

A
b

st
ra

ct
io

n

L
ay

er
 2

A
b

st
ra

ct
io

n

L
ay

er
 4

A
b

st
ra

ct
io

n

L
ay

er
 3

Measure
solar

storms

Switch
off sub-
sytems

Use sail
as a

shield

MeasureEscape
Orbit

Inform
Measures

...

...

...
...

...

... ...

Fig. 3 Traceability model of ANTS

use of swarms of autonomous pico-class (approximately
1 kg) spacecraft that will search the asteroid belt for
asteroids that have specific characteristics. The mission
is envisioned to consist of approximately 1,000 space-
craft launched from a factory ship. As shown in Fig. 2,
the swarm is envisioned to consist of several types of
spacecraft. Many of these spacecraft (called specialists)
will have a specialized single instrument for collecting
particular types of data. To examine an asteroid, sev-
eral spacecraft will have to form a sub-swarm, under
the control of a ruler and collaborate to collect data
from asteroids of interest, based on the properties of
that asteroid. This will be achieved using an insect anal-
ogy of hierarchical social behavior with some spacecraft
directing others.

5.2 Autonomic properties of ANTS

The ANTS system may be viewed as an autonomic sys-
tem as it meets four key requirements: self-configura-
tion, self-healing, self-optimization and self-protection,
as illustrated in [30]. Here we focus on self-configuration
properties as these are illustrated in our case study.

ANTS is self-protecting: The self protecting behavior
of the team will be interrelated with the self-protecting
behavior of the individual members. The anticipated
sources of threats to ANTS individuals (and
consequently to the team itself) will be collisions and
solar storms.

Collision avoidance through maneuvering will be lim-
ited because ANTS individuals will have limited abil-
ity to adjust their orbits and trajectories, due to thrust
for maneuvering powered by solar sails. Individuals will
have the capability of coordinating their orbits and tra-
jectories with other individuals to avoid collisions with
them. Given the chaotic environment of the asteroid
belt and the highly dynamic trajectories of the objects in
it, occasional near approaches of interloping asteroidal
bodies (even small ones) to the ANTS team may present
threats of collisions with its individuals. Collision-avoid-
ance maneuvering for this type of spacecraft presents
a great challenge and is currently under consideration.
The main self-protection mechanism for collision avoid-
ance is achieved through the process of planning. The
plans involve constraints that will result in acceptable
risks of collisions between individuals when they carry
out their observational goals. In this way, ANTS exhibits
a kind of self-protection behavior against collisions.

Another possible ANTS self-protection mechanism
could protect against the effects of solar storms, which
is the basis of the case study we use later in this paper.
Charged particles from solar storms could subject indi-
viduals to degradation of sensors and electronic compo-
nents. The increased solar wind from solar storms could
also affect the orbits and trajectories of the ANTS indi-
viduals and thereby could jeopardize the mission. Spe-
cific mechanisms to protect ANTS spacecraft against the
effects of solar storms have not yet been determined. A

22 J. Peña et al.

A)

 Plan Model

Orbiting
After

Measure

[Dist(relativePos,Astero-
idRelativePos)<dist]

Measure

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

[not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)]

AdjustOrbit

InformOrbit

Inform
Measures

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

Asteroid

Orbiter

1..n

<<Environment>>
Asteroid

relativePos: Pos
pData:Data

Measure
Goal: Measure Asteroid
Pattern: Environmental Int.

In:
 Orbiter.aste-
 roidRelativePos

Out:
 pMeassu-
 rer.astModel

1..n

OrbitModeller

astData:AteroidData
orbitM: OrbitModel

CalculateOrbit(AsteroidData)::
OrbitModel

Role Goal: Calculate orbits
mRI Goals: send orbit models

Report Orbit
Goal: Report Orbit

Pattern: Collaboration
In:
 OrbitMo-

deller.orbitM

Out:
Orbiter.orbitM

Postcondition :
Orbiter .astModel <> empty

Instantiation Rule:
(Orbiter.allInstances -> forAll (c |
SWARM.pMeasureMeasurers .includes (c))

Guard:
Dist(relativePos,Asteroid
RelativePos)<dist

 Measurer

Orbiter

Orbiter

orbitM: OrbitModel
relativePos: Pos
asteroidRelativePos: Pos
astData: AstData
astModel: AstModel

AdjustOrbit(relativePos,orbitM)
PProcessData(m:Measure)::Model
PMeasureX(input)::pMeasure
AmIInsideOrbit(Pos,OrbitModel)::Bool
MeasureFinished(AstModel)::Bool

Role Goal: Maintain Orbit and
Measure
mRI Measure Goal: GetModel
mRI Orbits Goal: Get the Orbit Model

Receiver

listOfModels:Model
listOfSenders:Sender

Role Goal: Know Model
mRI Goals: get Model

Orbiter
Report Measures

Goal: Distribute results

Pattern: Collaboration
In:
 Orbiter.astModel

Out:
Receiver.astModel

Receiver

1..n

1..nAdjustOrbit

Goal: Distribute results

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:
Receiver.astModel

Orbiter

EscapeOrbit

Goal: Escape an Orbit

Pattern: self-procedure
In:
 Orbiter.orbitM

Out: Orbiter

Postcondition :
not (Orbiter.AmIInsideOrbit (Orbi-
ter.relativePos ,Orbiter .orbitM)

guard:
not (Orbiter .AmIInsideOrbit(Orbi -
ter.relativePos ,Orbiter.orbitM)

guard:
Orbiter .MeasureFi -
nished (astModel)

B)

 Role Model

Fig. 4 Orbiting and measuring an asteroid autonomous property

potential mechanism might, for example, provide space-
craft with a solar storm sensing capability through on-
board, direct observation of the solar disk. When the
spacecraft recognize that a solar storm threat exists, they
would invoke their goal of protecting themselves from
the harmful effects of a solar storm. Part of the protec-
tive response might be to orient solar panels and sails
to minimize the impact of the solar wind. An additional
response might be to power down unnecessary subsys-
tems to minimize disruptions and damage from charged
particles.

5.3 Example of models of autonomous and autonomic
properties of ANTS

After applying MaCMAS to the ANTS system, we
obtain the traceability diagram of Fig. 3. This diagram
summarizes the mRIs in the system structured by layers
of abstraction. In this diagram, the top layer is the most
abstract. As each node represents a system-goal also,

we can see here the division of tasks necessarily under-
taken to develop the system. As each mRI is inside a role
model, we can also see which roles we have determined
to carry out by observing the role models. In the model
shown, we have depicted several sub-regions. Horizon-
tal subdivisions depict layers of abstraction, while the
vertical line denotes the distinction between the parts
of the system that represent autonomic and the parts
of the system that represent autonomous behaviors. In
addition to mRIs, MaCMAS also uses UML packages
to represent role models that contain several mRIs. In
Fig. 3 we identify two of these packages, which group
the mRIs used in the example that follows.

To foster reuse, to model an autonomous or an auto-
nomic property in a sufficiently generic and generalized
way and to enable a policy to be deployed at runtime,
properties must be independent of the concrete agents
over which they will be deployed. As we have shown,
the features required to have an appropriate description
correlates with the features of an acquaintance sub-orga-

Building and implementing policies 23

nization. As we have also shown, to represent this kind
of organization, MaCMAS proposes two kind of mod-
els—one for showing the relationships between roles,
that is, role models, and another to show how these rela-
tionships evolve over time, that is to say, plan models.

For example, showing the autonomous process of
orbiting an asteroid to take a measurement requires
at least two models–its role model and its plan model.
Figure 4b shows the role model for this case. We show
here the models from the third layer of abstraction of
Fig. 3. In this model there are two kinds of elements:
roles, which are represented using interface-like icons,
and mRIs, which are represented as collaboration-like
icons. In this model, roles show which is their general
goal and their particular goals when participating in a
certain interaction with other roles or with some part
of the environment (represented using interfaces with
the <<environment>> stereotype). Roles also repre-
sent the knowledge they manage (middle compartment)
and the services they offer (bottom compartment). For
example, the goal of the orbiter is to “maintain the orbit
and measure [the asteroid]”, while its goal when partici-
pating in the report orbit interaction is to get a model of
the orbit it must follow. In addition to roles, mRIs also
show us some important information. They must also
show the system goal they achieve when executed, the
kind of coordination that is carried out when executed,
the knowledge used as input to achieve the goal, and
the knowledge produced. For example, the goal of the
mRI Report Orbit is to “Report the Orbit”. It is done
by taking as input the knowledge of the OrbitModeler
regarding the orbit and producing as output the model
for the orbit (orbitM) in the orbiter role.

Continuing with the example, in Fig. 4a, we show the
plan model of this role model where the order of execu-
tion of all its mRIs is shown. As can be seen, the orbiter,
while it is in orbit, is adjusting its orbit and measur-
ing and reporting measures. And when it has completed
constructing a model of the asteroid, it escapes the orbit
using its knowledge of the orbit model (orbitM).

Autonomic properties can be also modeled in this
way. As role models can be used at any level of abstrac-
tion, we can use them for specifying autonomic prop-
erties that concern a single agent, or even a group of
agents when dealing with autonomic properties at the
swarm level. Thus, as shown in the traceability model, we
have a role model at abstraction layer 2 that shows the
swarm autonomic behavior, while at layer 4, we show
autonomic properties at the level of individual space-
craft.

Here we illustrate a model at abstraction layer 4 for
a self-protection autonomic property: protecting from
solar storms. The role model for this property is shown

A)

 Plan Model
B)

 Role Model

Measure
risk of solar

storms
Protecting

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

SailAsShield

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

offSubSys
MeasureStorms

Space

<<Environment>>
Space

stormVector: Vector3
stormIntensity:Real

SelfProtecSC

StormVector: Vector3
stormIntensity : Real
asteroidRelativePos: Pos
stormType: StormTypes

Role Goal: Self-protection
mRI Measure Storms Goal:
Protect from solar storm
mRI offSubSys Goal: Protect
from solar storm
mRI SailAsShieldGoal: Protect
from solar storm

SelfProtecSC

SelfProtecSC

SelfProtecSC

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

In: Out:
 SelfProtecSC.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

SelfProtecSC.stormVector
 SelfProtecSC.stormIntensity

MeasureStorms
Goal: Measure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:
 SelfProtecSC.stormIntensity

SelfProtecSC.stormVector

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

In: Out:

Fig. 5 Self-protection from solar storms autonomic property
model

in Fig. 5b, and, as can be seen, as it is a property at
the individual level, a single role is shown (SelfProtect-
SpaceCraft). Its plan model is shown in Fig. 5a. As all
the spacecraft can be affected by solar storms, this role
is applied to all the spacecraft in the swarm, thus adding
this autonomic property to all of them.

6 Adding policies to the system

As shown previously, for building a structural organiza-
tions, used at runtime, we have to compose role mod-
els. Since the MaCMAS methodology proposes several
methods for composition, we can use them to modify
the policies taken into account in the system at runtime
or at design-time.

As shown in Fig. 6, the process is illustrated in the
following steps:

1. Specify policy: Specify the policy using a sub-set of
the natural language and the acquaintance models
available.

2. Determine involved models: Analyze it to find out
which role models or interactions, and consequently
which autonomic and autonomous properties, are
involved in it.

3. Compose roles and plans: Compose these role mod-
els, both static and dynamic aspects (Fig. 7 and Fig. 8).

24 J. Peña et al.

Deploy using
composition

Policy

Policy
Specify Determine

Involved
Models

Fig. 6 Software process overview

Fig. 7 Software process of role composition

4. Deploy using composition: Deploy the changes in
the system using role model composition. That is
to say, the running system has a set of role mod-
els mapped over its structural organization; thus,
adding a new policy consists of composing the cur-
rent role models with the one that describes the new
policy.

We have to take into account that when composing
several role models, we find the following:

Emergent roles: Roles that appear in the composition
yet they do not belong to any of the initial role
models.

Emergent mRIs: Those that are not present in any of
the initial role models.

Composed roles: The roles in the resultant models
that represent several initial roles as a single
element.

Composed mRIs: mRIs in the resultant model that rep-
resents several initial mRIs as a single element;

Building and implementing policies 25

Fig. 8 Software process of plan composition

Unchanged roles: Those that are left unchanged and
imported directly from the initial role models.

Unchanged mRIs: Those left unchanged and imported
directly.

Once relationships between elements have been
established by analyzing the policy, we must complete
the composite role model. Importing an mRI or a role
requires only adding it to the composite role model.
The following shows how to compose plans and role
models.

6.1 Composing roles

When several roles are merged in a composite role
model, their elements must be also merged:

1. Goal of the role: The new goal of the role is to
abstract all the role goals of the role to be composed.
This information can be found in requirements hier-
archical goal diagrams or we can add it as the and

(conjunction) of the goals to be composed. In addi-
tion, the role goal for each mRI can be obtained
from the goal of the initial roles for that mRI.

2. Cardinality of the role: It is the same as in the initial
role for the corresponding mRI.

3. Initiator(s) role(s): If mRI composition is not per-
formed, as in our case, this feature does not
change.

4. Interface of a role: All elements in the interfaces
of roles to be merged must be added to the com-
posite interface. Notice that there may be common
services and knowledge in these interfaces. When
this happens, they must be included only once in the
composite interface, or renamed, depending on the
composition of their ontologies, as we show below.

5. Guard of a role/mRI: The new guards are the and
(conjunction) of the corresponding guards in ini-
tial role models if roles composed participate in the
same mRI. Otherwise, guards remain unchanged.

6. Ontologies of an mRI: The new ontology must cover
all the terms described in all the ontologies of roles
to be composed (cf. [5,17,18]). This procedure also

26 J. Peña et al.

Space

<<Environment>>
Space

stormVector: Vector3
stormIntensity:Real

SelfProtecSC

SelfProtecSC

SelfProtecSC
Guard :
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

 SelfProtecSC.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

In: Out:

SelfProtecSC.stormVector
 SelfProtecSC.stormIntensity

MeasureStorms
Goal: Measure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:

SelfProtecSC.stormIntensity
SelfProtecSC.stormVector

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

Asteroid

Orbiter

1..n

<<Environment>>
Asteroid

relativePos: Pos
pData:Data

Measure
Goal: Measure Asteroid
Pattern: Environmental Int.

In:
 Orbiter.aste-
 roidRelativePos

Out:
 pMeassu-
 rer.astModel

1..n

OrbitModeller

astData:AteroidData
orbitM: OrbitModel

CalculateOrbit(AsteroidData)::
OrbitModel

Role Goal: Calculate orbits
mRI Goals: send orbit models

Report Orbit
Goal: Report Orbit

Pattern: Collaboration
In:
 OrbitMo-

deller.orbitM

Out:
Orbiter.orbitM

Postcondition :
Orbiter .astModel <> empty

Instantiation Rule:
(Orbiter .allInstances -> forAll (c |
SWARM.pMeasureMeasurers .includes (c))

Guard:
Dist(relativePos,Asteroid
RelativePos)<dist

 Measurer

Orbiter

SelfProtectingOrbiter

orbitM: OrbitModel
relativePos: Pos
asteroidRelativePos: Pos
astData: AstData
astModel: AstModel

StormVector: Vector3
stormIntensity : Real
stormType: StormTypes

AdjustOrbit(relativePos,orbitM)
PProcessData(m:Measure)::Model
PMeasureX(input)::pMeasure
AmIInsideOrbit(Pos,OrbitModel)::Bool
MeasureFinished(AstModel)::Bool

Role Goal: Maintain Orbit and
Measure and self protection
mRI Measure Goal: GetModel
mRI Orbits Goal: Get the Orbit Model

mRI Measure Storms Goal: Protect
from solar storm
mRI offSubSys Goal: Protect from
solar storm
mRI SailAsShieldGoal: Protect from
solar storm

Receiver

listOfModels:Model
listOfSenders:Sender

Role Goal: Know Model
mRI Goals: get Model

Orbiter
Report Measures

Goal: Distribute results

Pattern: Collaboration
In:
 Orbiter.astModel

Out:
Receiver.astModel

Receiver

1..n

AdjustOrbit

Goal: Distribute results

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:
Receiver.astModel

Orbiter

EscapeOrbit

Goal: Escape an Orbit

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:

Orbiter

Postcondition :
not (Orbiter.AmIInsideOrbit (Orbi-
ter.relativePos ,Orbiter .orbitM)

guard:
not (Orbiter .AmIInsideOrbit (Orbi-
ter.relativePos,Orbiter.orbitM)

guard:
Orbiter .MeasureFi -
nished(astModel) or
(SelProtecSC.stormIntensity >
RiskForSystemsFactor)

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

Fig. 9 Composed role model

shows how to deal with repeated knowledge in the
interface of roles to be composed. That is to say, if
as a result of ontology composition, a knowledge
entity that is repeated in several roles is shown as
the same element in the composed ontology, we can
include it once; if it results in different elements in
the composed ontology, we must rename them.

6.2 Composing plans

The composition of plans consists of setting the order
of execution of mRIs in the composite model, using the
role model plan or role plans. We provide several algo-
rithms to assist this task: extraction of a role plan from
the role model plan and vice versa, and aggregation of
several role plans; see [23] for further details of these
algorithms.

Thanks to these algorithms, we can keep both plan
views consistent automatically. Depending on the num-
ber of roles that have to be merged we can base the

composition of the plan of the composite role model on
the plan of roles or on the plan of the role model.

Several types of plan composition can be used for role
plans and for role model plans:

Sequential: The plan is executed atomically in sequence
with others. The final state of each state machine is
superposed with the initial state of the state machine
that represents the plan that must be executed,
except the initial plan that maintains the initial state
unchanged and the final plan that maintains the final
state unchanged.

Parallel: The plan of each model is executed in parallel.
It can be documented by using concurrent orthogo-
nal regions of state machines (cf. [20, p. 435]).

Interleaving: To interleave several plans, we must build
a new state machine where all mRIs in all plans
are taken into account. Notice that we must usually
preserve the order of execution of each plan to be
composed. We can use algorithms to check behav-
ior inheritance to ensure that this constraint is pre-

Building and implementing policies 27

Analyzing
risk of solar

storms
Protecting

SailAsShield

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

offSubSys
MeasureStorms

Orbiting
After

Measure

[Dist(relativePos,Astero-
idRelativePos)<dist]

Measure

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

[not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)]

AdjustOrbit

ReportOrbit

Report
Measures

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

Analyzing
risk of solar

storms

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

EscapeOrbit

Fig. 10 Composed plan

served, since to ensure this property, the composed
plan must inherit from all the initial plans [13].

As depicted in Fig. 8, the composition of role model
plans has to be performed following one of the plan com-
position techniques described previously to later, if we
are interested in the plan of one of the composed roles,
as it is needed to assign the new plan to the composed
roles; we can extract it using the algorithms mentioned
previously.

We can also perform a composition of role plans fol-
lowing one of the techniques to compose plans described
previously. Later, if we are interested in the plan of the
composite role model, for example for testing, we can
obtain it using the algorithms mentioned previously.

7 Example of applying a new policy to the ANTS case
study

We use the following fictitious scenario to document our
example: It has been discovered that several spacecraft
have collided with an asteroid as a result of self-protec-
tion from a solar storm. As a result, it has been decided to
avoid protection from solar storms while orbiting, send-
ing the following policy to the system, which is shown
graphically in Fig. 11.

If a spacecraft is orbiting and measuring an asteroid
and it determines that there exists risk of a solar storm,

Fig. 11 Policy for protecting from solar storms when orbiting

the spacecraft must first escape the orbit and later power
down subsystems and use its sail as a shield.

Notice that we have limited the policy to two role
models to simplify the example, but in the real world we
must also take into account the rest of the autonomic
properties and associated role models involved in orbit-
ing an asteroid.

The first part of the policy shows the context where
it is applied, determining the role models that should
be taken into account. Notice that although the second
element denotes an interaction, in the traceability dia-
gram we can find out easily the role model it belongs
to, namely Protect from Solar Storms. The second part

28 J. Peña et al.

Fig. 12 MaCMAS screenshot

shows a modification of the plans where a new order for
the interaction is specified.

If a spacecraft is orbiting and measuring an
 Role Model

asteroid and it measures that there exists risk ofa solar storm,
Interaction

the spacecraft must first escape the orbit and later
Interaction

power down subsystems and use its sail as a shield
Interaction Interaction

As a result, we must compose both models and their
plans following the constraints imposed by the policy.

The composition of both role models is shown in Fig. 9.
As we can see, the roles Orbiter and SelfProtectSC have
been composed into a single role called SelfProtectin-
gOrbiter following the prescription shown in Sect. 6.1.
We can observe that the rest of roles have been left
unchanged and that all mRIs have been also added with-
out changes.

In addition, as the self protection must be taken into
account during the whole process of orbiting and
measuring and not in a concrete state, we must per-
form a parallel composition, as it is shown in Fig. 10.
Notice also, that the policy tells us the order of mRIs we
must follow for self-protection, adding the escape orbit

Building and implementing policies 29

Fig. 13 Policy builder tool schema

mRI before protection, which results in the new state
machine shown.

8 Future work: implementing the policy manager

Although this work is still ongoing, since the publication
of our previous paper, i.e., [27], we have implemented
part of the planned tool. This is based on two existing
tools: (i) an ArgoUML extension used to model MaC-
MAS diagrams, called the MaCMAS CASE tool (MaC-
MAS-CT), and (ii) a NASA proprietary prototype tool
called R2D2C, which allows for policies to be specified in
natural language (or a variety of other input notations)
and then generates a provably-correct corresponding
specification (currently in Hoare’s language of commu-
nicating sequential processes, or CSP [7], although other
formal languages may be used) that can be checked and
analyzed.

In Fig. 14, we have sketched how our final tool might
look. As can be seen, the tool will provide information
about the vocabulary that can be used in the policy.
This vocabulary is composed of the role models, mRIs,
etc. in the MaCMAS model of the system, along with
some temporal, conditional, etc., operators, e.g., and, or,
if, etc. It will also provide models of the policy so that
the user can see if the results obtained are correct. This

also allows the user to change the obtained models as
needed and to keep track of these changes in the policy
specification.

Both tools have been developed separately: MaC-
MAS-CT at the University of Seville, and R2D2C in the
NASA Software Engineering Laboratory in collabora-
tion with researchers from Virginia Tech and SAIC.

MaCMAS-CT has been implemented over
ArgoUML, defining an UML profile that extends UML
with a set of stereotypes, e.g., <<role>>, and tagged
values, e.g., RoleGoal. We have also extended this tool
to provide the graphical representation of MaCMAS
models. In Fig. 12, we show a screenshot of this tool.

R2D2C is a tool that allows for the specification
requirements in natural language, use cases, and other
parseable notations. From them, it produces a CSP
model which can be analyzed, adapted, corrected, etc.,
reflecting changes back in the use cases and/or natural
language, or other input notations. It can be also used to
as a basis for sound code generation [6].

In addition, it has been successfully used to spec-
ify policies for autonomic systems using constrained
natural language [29]. In R2D2C, policies are viewed
as scenarios (just as in the example of this paper), and
are used to generate a CSP model that is guaranteed
to be equivalent, and which can then be checked for
various issues of consistency and completeness, along

30 J. Peña et al.

Fig. 14 Policy builder tool working schema

with other problems, which may then be addressed and
rectified.

In Fig. 14, we show how we plan to integrate both
tools, which will required for future enhancement of
both tools. As illustrated in the figure, ArgoUML allows
us to store models using XMI, an OMG standard based
on XML that is primary used for exchanging UML mod-
els, that we plan to use as the exchange format between
MaCMAS-CT and R2D2C. Thus, we plan to enhance
R2D2C in order to accept input as MaCMAS models
represented in XMI. This provides the tool with the
capability to check properties and to generate code.
Another point of integration between R2D2C and the
planned tool will consist of integrating the policy parser
provided by R2D2C, limiting the vocabulary to the ele-
ments present in the XMI model. Finally, MaCMAS-CT
will also need an extension to support the composition
of roles and plans automatically. In this sense, we have
obtained some results applying MDA [25].

Thus the usual steps performed by the planned tool
will be the following:

1. generate the Acquaintance model using MaCMAS-
CT;

2. produce an XMI equivalent of this model using
MaCMAS-CT that will be accepted by R2D2C in
order to obtain the names of role models and mRIs
that we allow in the textual specification;

3. express the policy in the graphical interface of the
tool;

4. R2D2C will analyze the textual description and con-
verts it to an XMI specification with the models that
have to be composed and whose elements will be
imported, composed or deleted modifying the XMI
of our system;

5. MaCMAS will perform the composition when
needed and import/delete the elements prescribed;

6. allow the user to manually perform changes reflect-
ing these changes in the policy;

7. R2D2C will take the last XMI file and the policy in
order to generate the required code.

9 Conclusions

We have presented an AOSE-based approach for mod-
eling autonomous and autonomic properties of the sys-
tem. The approach supports models at different levels
of abstraction. We have also presented a technique for
composing these models in order to obtain a particular
structural organization. We have used this technique to
compose those models involved in a new policy and to
deploy the resultant model on the running system. We
have also shown our first results regarding the imple-
mentation of a CASE tool that implements the tech-
niques described in this paper.

The main advantage of this approach is that, as mod-
els are developed at different levels of abstraction, we
can specify policies for autonomous and autonomic sys-
tems at different levels of abstraction. As these models
allow for the abstraction of “intelligent behaviors” since

Building and implementing policies 31

the procedures carried out inside an interaction can be
described internally by means of neural networks, fuzzy
logic, etc., this allows us to specify policies over these
kinds of implementations. Thus, a human designer, not
expert in the details of the implementation, may easily
modify the system while maintaining its integrity.

References

1. IEEE Task Force on Autonomous and Autonomic Systems
(TFAAS) (2005) Available at http://www.computer.org/tab

2. Babaoglu O, Couch A, Ganger G, Stone P, Yousif M, Kephart
J (2005) Panel: grand challenges of autonomic computing. In:
2nd IEEE international conference on autonomic computing
(ICAC’05), Seattle, WA, 13–16 June 2005

3. Curtis SA, Truszkowski WF, Rilee ML, Clark PE (2003)
ANTS for the human exploration and development of space.
In: Proc IEEE aerospace conference, Big Sky, Montana, 9–16
March 2003

4. Ganek AG (2003) Autonomic computing: implementing the
vision. Keynote presentation at the Autonomic Computing
Workshop, AMS’03, Seattle, WA

5. Heflin J, Hendler J (2000) Dynamic ontologies on the web. In:
AAAI/IAAI, pp 443–449

6. Hinchey MG, Rash JL, Rouff CA (2004) Requirements to
design to code: Towards a fully formal approach to automatic
code generation. Technical Report TM-2005-212774, NASA
Goddard Space Flight Center, Greenbelt, MD

7. Hoare CAR (1980) Communicating sequential processes. In:
McKeag RM, Macnaghten AM (eds) On the construction of
programs — an advanced course. Cambridge University Press,
pp 229–254

8. Horn P (2001) Autonomic computing: IBM perspective
on the state of information technology. In: Scottsdale AR
(eds) AGENDA’01 (available at http://www.research.ibm.
com/autonomic/)

9. Jennings N (2001) An agent-based approach for building com-
plex software systems. Commun ACM 44(4):35–41

10. Kaminsky D (2005) An introduction to policy for autonomic
computing. white paper, IBM

11. Kendall EA (2000) Role modeling for agent system analysis,
design, and implementation. IEEE Concurrency 8(2):34–41

12. Kephart JO, Walsh WE (2004) An artificial intelligence per-
spective on autonomic computing policies. In: POLICY. IEEE
Computer Society, pp 3–12

13. Liskov B, Wing JM (1993) Specifications and their use in defin-
ing subtypes. In: Proceedings of the eighth annual confer-
ence on object-oriented programming systems, languages, and
applications. ACM Press, pp 16–28

14. Lymberopoulos L, Lupu E, Sloman M (2003) An adaptive
policy-based framework for network services management. J
Network Syst Manage 11(3)

15. Masullo MJ, Calo SB (1993) Policy management: An archi-
tecture and approach. In: IEEE first international workshop
on systems management, Los Angeles, CA, April 14–16

16. Meissner A, Musunoori SB, Wolf LC (2004) MGMS/GML
— towards a new policy specification framework for mul-
ticast group integrity. In: SAINT. IEEE Computer Society,
pp 233–242

17. Mitra P, Wiederhold G (2004) An ontology-composition alge-
bra. In: Staab S, Studer R (eds) Handbook on ontologies,
International Handbooks on Information Systems. Springer,
Heidelberg, pp 93–116

18. Mitra P, Wiederhold G, Jannink J (1999) Semi-automatic inte-
gration of knowledge sources. In: Proc of the 2nd Int Conf on
Information FUSION’99

19. Odell J, Parunak H, Fleischer M (2003) The role of roles in
designing effective agent organisations. In: Garcia A, Lucena-
and C, Zambonelliand F, Omiciniand A, Castro J (eds) Soft-
ware engineering for large-scale multi-agent systems. LNCS,
vol 2603. Springer, Heidelberg, pp 27–28

20. Object Management Group (OMG) (2003) Unified modeling
language: Superstructure. version 2.0. Final adopted specifi-
cation ptc/03–08–02, OMG http://www.omg.org

21. Van Dyke Parunak H, Odell J (2001) Representing social
structures in UML. In: Müller JP, Andre E, Sen S, Frasson
C (eds) Proceedings of the fifth international conference on
autonomous agents, Montreal. ACM Press, pp 100–101

22. Peña J (2005) On improving the modelling of complex
acquaintance organisations of agents. A method fragment for
the analysis phase. PhD thesis, University of Seville

23. Peña J, Corchuelo R, Arjona JL (2002) Towards interaction
protocol operations for large multi-agent systems. In: Pro-
ceedings of the 2nd Int workshop on formal approaches to
agent-based systems (FAABS 2002), LNAI, vol 2699, NASA-
GSFC, Greenbelt. Springer, Heidelberg, pp 79–91

24. Peña J, Corchuelo R, Arjona JL (2003) A top down approach
for MAS protocol descriptions. In: ACM symposium on
applied computing SAC’03, Melbourne, ACM Press, pp 45–49

25. Peña J, Hinchey MG, Sterritt R, Ruiz-Cortés A, Resinas
M (2006) A model-driven architecture approach for mod-
eling, specifying and deploying policies in autonomous and
autonomic systems. In: Second international symposium on
dependable autonomic and secure computing (DASC 2006),
29 September – 1 October 2006, Indianapolis. IEEE Com-
puter Society, pp 19–30

26. Peña J, Levy R, Corchuelo R (2005) Towards clarifying the
importance of interactions in agent-oriented software engi-
neering. Int Iberoamerican J AI 9(25):19–28

27. Pena J, Hinchey MG, Sterritt R (2006) Towards mod-
eling, specifying and deploying policies in autonomous
and autonomic systems using an AOSE methodology. In:
EASE ’06: proceedings of the third IEEE international work-
shop on engineering of autonomic and autonomous systems
(EASE’06), Washington. IEEE Computer Society, pp 37–46

28. Sterritt R (2002) Towards autonomic computing: Effective
event management. In: 27th Annual IEEE/NASA Software
Engineering Workshop (SEW), Maryland, December 3–5.
IEEE Computer Society Press, pp 40–47

29. Sterritt R, Hinchey MG, Rash J, Truszkowski W, Rouff C,
Gracanin D (2005) Towards formal specification and genera-
tion of autonomic policies. In: First IFIP workshop on trusted
and autonomic ubiquitous and embedded systems (TAUES
2005). LNCS, vol 3823

30. Sterritt R, Rouff CA, Hinchey MG, Rash JL, Truszkowski
WF (2006) Next generation system and software architec-
tures: challenges from future NASA space exploration mis-
sions. J Sci Comput Program 61(1):48–57

31. Zambonelli F, Jennings N, Wooldridge M (2003) Develop-
ing multiagent systems: the GAIA methodology. ACM Trans
Software Eng Methodol 12(3):317–370

	Building and implementing policies in autonomousand autonomic systems using MaCMAS
	Abstract
	Introduction and motivation
	Policy-based management
	Using AOSE for policy modelling
	Overview of MaCMAS/UML
	ANTS case study and some of its models
	ANTS mission overview
	Autonomic properties of ANTS
	Example of models of autonomous and autonomic properties of ANTS
	Adding policies to the system
	Composing roles
	Composing plans
	Example of applying a new policy to the ANTS case study
	Future work: implementing the policy manager
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

