1,240 research outputs found

    A Practical Example for Model-Driven Web Requirements

    Get PDF
    The number of approaches for Web environments has grown very fast in the last years: HDM, OOHDM, and WSDM were among the first, and now a large number can be found in the literature. With the definition of MDA (Model- Driven Architecture) and the acceptance of MDE (Model-Driven Engineering) techniques in this environment, some groups are working in the use of metamodels and transformations to make their approaches more powerful. UWE (UMLBased Web Engineering) or OOWS (Object-Oriented Web Solutions) are only some examples. However, there are few real experiences with Web Engineering in the enterprise environment, and very few real applications of metamodels and MDE techniques. In this chapter the practical experience of a Web Engineering approach, NDT, in a big project developed in Andalusia is presented. Besides, it shows the usability of metamodels in real environments

    Transformation As Search

    Get PDF
    In model-driven engineering, model transformations are con- sidered a key element to generate and maintain consistency between re- lated models. Rule-based approaches have become a mature technology and are widely used in different application domains. However, in var- ious scenarios, these solutions still suffer from a number of limitations that stem from their injective and deterministic nature. This article pro- poses an original approach, based on non-deterministic constraint-based search engines, to define and execute bidirectional model transforma- tions and synchronizations from single specifications. Since these solely rely on basic existing modeling concepts, it does not require the intro- duction of a dedicated language. We first describe and formally define this model operation, called transformation as search, then describe a proof-of-concept implementation and discuss experiments on a reference use case in software engineering

    Iterative criteria-based approach to engineering the requirements of software development methodologies

    Get PDF
    Software engineering endeavours are typically based on and governed by the requirements of the target software; requirements identification is therefore an integral part of software development methodologies. Similarly, engineering a software development methodology (SDM) involves the identification of the requirements of the target methodology. Methodology engineering approaches pay special attention to this issue; however, they make little use of existing methodologies as sources of insight into methodology requirements. The authors propose an iterative method for eliciting and specifying the requirements of a SDM using existing methodologies as supplementary resources. The method is performed as the analysis phase of a methodology engineering process aimed at the ultimate design and implementation of a target methodology. An initial set of requirements is first identified through analysing the characteristics of the development situation at hand and/or via delineating the general features desirable in the target methodology. These initial requirements are used as evaluation criteria; refined through iterative application to a select set of relevant methodologies. The finalised criteria highlight the qualities that the target methodology is expected to possess, and are therefore used as a basis for de. ning the final set of requirements. In an example, the authors demonstrate how the proposed elicitation process can be used for identifying the requirements of a general object-oriented SDM. Owing to its basis in knowledge gained from existing methodologies and practices, the proposed method can help methodology engineers produce a set of requirements that is not only more complete in span, but also more concrete and rigorous

    A comprehensive literature classification of simulation optimisation methods

    Get PDF
    Simulation Optimization (SO) provides a structured approach to the system design and configuration when analytical expressions for input/output relationships are unavailable. Several excellent surveys have been written on this topic. Each survey concentrates on only few classification criteria. This paper presents a literature survey with all classification criteria on techniques for SO according to the problem of characteristics such as shape of the response surface (global as compared to local optimization), objective functions (single or multiple objectives) and parameter spaces (discrete or continuous parameters). The survey focuses specifically on the SO problem that involves single per-formance measureSimulation Optimization, classification methods, literature survey

    Kevoree Modeling Framework (KMF): Efficient modeling techniques for runtime use

    Get PDF
    The creation of Domain Specific Languages(DSL) counts as one of the main goals in the field of Model-Driven Software Engineering (MDSE). The main purpose of these DSLs is to facilitate the manipulation of domain specific concepts, by providing developers with specific tools for their domain of expertise. A natural approach to create DSLs is to reuse existing modeling standards and tools. In this area, the Eclipse Modeling Framework (EMF) has rapidly become the defacto standard in the MDSE for building Domain Specific Languages (DSL) and tools based on generative techniques. However, the use of EMF generated tools in domains like Internet of Things (IoT), Cloud Computing or Models@Runtime reaches several limitations. In this paper, we identify several properties the generated tools must comply with to be usable in other domains than desktop-based software systems. We then challenge EMF on these properties and describe our approach to overcome the limitations. Our approach, implemented in the Kevoree Modeling Framework (KMF), is finally evaluated according to the identified properties and compared to EMF.Comment: ISBN 978-2-87971-131-7; N° TR-SnT-2014-11 (2014

    An Analysis of Model-Driven Web Engineering Methodologies

    Get PDF
    In the late 1990’s there was substantial activity within the “Web engineering” research community and a multitude of new Web approaches were proposed. However, numerous studies have revealed major gaps in these approaches, including coverage and interoperability. In order to address these gaps, the Model-Driven Engineering (MDE) paradigm offers a new approach which has been demonstrated to achieve good results within applied research environments. This paper presents an analysis of a selection of Web development methodologies that are using the MDE paradigm in their development process and assesses whether MDE can provide an effective solution to address the aforementioned problems. This paper presents a critical review of previous studies of classical Web methodologies and makes a case for the potential of the MDWE paradigm as a means of addressing long-standing problems of Web development, for both research and enterprise. A selection of the main MDWE development approaches are analyzed and compared in accordance with criteria derived from the literature. The paper concludes that this new trend opens an interesting new way to develop Web systems within practical projects and argues that some classical gaps can be improved with MDWE.Ministerio de Educación y Ciencia TIN2010-12312-EJunta de Andalucía TIC-578

    Towards an interoperable metamodel suite: size assessment as one input

    Full text link
    In recent years, many metamodels have been introduced in the software engi- neering literature and standards. These metamodels vary in their focus across, for example, process, product, organizational and measurement aspects of software development and have typically been developed independently of each other with shared concepts being only accidental. There is thus an increasing concern in the standards communities that possible conicts of structure and semantics between these various metamodels will hinder their widespread adoption. The complexity of these metamodels has also increased significantly and is another barrier in their appreciation. This complexity is compounded when more than one metamodel is used in the lifecycle of a software project. Therefore there is a need to have interoperable metamodels. As a first step towards engendering interoperability and/or possible mergers between metamodels, we examine the size and complexity of various meta- models. To do this, we have used the Rossi and Brinkkemper metrics-based approach to evaluate the size and complexity of several standard metamodels including UML 2.3, BPMN 2.0, ODM, SMM and OSM. The size and complexity of these metamodels is also compared with the previous version of UML, BPMN and Activity diagrams. The comparatively large sizes of BPMN 2.0 and UML 2.3 suggest that future integration with these metamodels might be more difficult than with the other metamodels under study (especially ODM, SSM and OSM)

    A Model-Driven Approach for Business Process Management

    Get PDF
    The Business Process Management is a common mechanism recommended by a high number of standards for the management of companies and organizations. In software companies this practice is every day more accepted and companies have to assume it, if they want to be competitive. However, the effective definition of these processes and mainly their maintenance and execution are not always easy tasks. This paper presents an approach based on the Model-Driven paradigm for Business Process Management in software companies. This solution offers a suitable mechanism that was implemented successfully in different companies with a tool case named NDTQ-Framework.Ministerio de EducaciĂłn y Ciencia TIN2010-20057-C03-02Junta de AndalucĂ­a TIC-578
    • …
    corecore