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ABSTRACT: Simulation Optimization (SO) provides a structured approach to the system design and configuration 
when analytical expressions for input/output relationships are unavailable. Several excellent surveys have been written 
on this topic. Each survey concentrates on only few classification criteria.  This paper presents a literature survey with 
all classification criteria on techniques for SO according to the problem of characteristics such as shape of the response 
surface (global as compared to local optimization), objective functions (single or multiple objectives) and parameter 
spaces (discrete or continuous parameters). The survey focuses specifically on the SO problem that involves single per-
formance measure. 
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1 INTRODUCTION 

Many real world problems in management and manufac-
turing are very complex and mathematically intractable 
so that simulation is the appropriate tool for system 
analysis and performance evaluation. Computer simula-
tion requires developing a program that mimics the be-
havior of a system as it evolves over time and records the 
overall system performance. As the technology of com-
puter hardware and software advances, simulation has 
emerged as an essential tool in research and real world 
applications. With the continuing developments in com-
puter technology, simulation is receiving increasing atten-
tion as a decision-making tool.  
 
Therefore, computer simulation is frequently used in 
evaluating complex systems and optimizing responses. 
However, simulation is not without pitfalls. Simulation 
output is subject to random errors and requires proper 
statistical analysis. Furthermore, simulation models are 
“run” rather than solved. It is traditionally viewed as a 
tool for performance evaluation instead of decision mak-
ing or optimization. In recent years researchers have at-
tempted to combine simulation and optimization proce-
dures to provide a complete solution. However, Simula-
tion is merely a tool for problem solving; by itself, it can-
not provide an answer. In addition to a good model, one 
also needs a sound technique to utilize the information 
from a simulation to make a decision. One such technique 
is optimization via simulation.  
 
Simulation Optimization (SO) provides a structured ap-
proach to system design and configuration when analytic 
 

cal expressions for input/output relationships are unavail-
able. According to (Carson and Maria, 1997) SO can be 
defined as the process of finding the best input variable 
values from among all possibilities without explicitly 
evaluating each possibility and the objective of SO is to 
minimize the resources spent while maximizing the in-
formation obtained in a simulation experiment. There has 
been a great deal of work on SO in the research literature. 
Many comprehensive reviews of literature have been 
written on this topic. (Fu, 1994) contributes a general 
review of techniques for optimizing stochastic discrete-
event systems via simulation, focusing on the techniques 
for optimization from a finite set: multiple-comparison 
procedures and ranking-and-selection procedures. (Car-
son and Maria, 1997) provide knowledge about the area 
of SO, with an extensive reference list pointing to de-
tailed treatment of specific techniques. (Andradottir, 
1998) presents a review of methods for optimizing sto-
chastic systems using simulation. The focus is on gradi-
ent-based techniques for optimization with respect to 
continuous decision parameters and on random search 
methods for optimization with respect to discrete decision 
parameters. (Paul & Chanev, 1998) present an attempt to 
apply genetic algorithms (GA) to the problem of optimis-
ing an existing simulation model. They demonstrate the 
capability of GA to solve hard inverse problems even in 
the area of complex simulation model optimisation. 
(Swicher & Hyden, 2000) provides a brief survey of the 
literature on discrete-event SO over the past decade (1988 
to 2000). (Swisher and al, 2003) present a survey of the 
literature on discrete-event SO published in recent years 
(1988 to 2003), with a particular focus on discrete in put 
parameter optimization.   (Tekin and Sabuncuoglu, 2004) 
presented a comprehensive survey on techniques for 
simulation optimization. They classified the existing 
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techniques according to the characteristics of the prob-
lems such as objective functions (single or multiple ob-
jectives) and parameter spaces (discrete or continuous 
parameters) and shape of the response surface (global as 
compared to local optimization). They also discussed 
major advantages, drawbacks and, comparisons of these 
techniques in the paper. 
 

(Piera and al, 2004) described a new approach to inte-
grate evaluation (simulation) methods with search meth-
ods (optimization) based not only on simulation results 
but also information from the simulation model. (Fu, 
2006) develop a simulation optimization algorithm for 
determining the traffic light signal timings for an inter-
section of two one-way street traffic flows modelled as 
single-server queues. The system performance is esti-
mated via stochastic discrete-event simulation, and gradi-
ent-based search based on stochastic approximation is 
applied. (Rosen and al, 2007) propose a SO method that 
involves a preference model, specifically adapted for de-
cision making with simulation models. The proposed SO 
method is evaluated against two SO methods with em-
bedded deterministic, multiple criteria decision making 
strategies. (Almeder and Preusser, 2007) presented a new 
approach that combines the advantages of complex simu-
lation models and abstract optimization models. More 
recently (Fu and al, 2008) give a tutorial introduction to 
SO,  beginning by classifying the problem setting accord-
ing to the decision variables and constraints, putting the 
setting in the simulation context, and then summarize the 
main approaches to SO. (Alrefaei and Diabat, 2009) have 
focused on simulated annealing algorithm for solving 
multi-objective SO problems. The algorithm is based on 
the idea of simulated annealing with constant tempera-
ture, and uses a rule for accepting a candidate solution 
that depends on the individual estimated objective func-
tion values.  For more comprehensive studies on this 
topic, the reader can referred to some others reviews pa-
pers including (Glynn, 1989), (Metketon, 1987), (Azadi-
var, 1992), (Fu, 1994), (Kleijnen, 1995) and references 
therein. 
 
Applications of the SO approach exist in many fields. 
With respect to operations research problems we mention 
above all inventory models (Kochel and Nielander, 
2005), logistic systems (Kochel and al, 2003; Yoo and al, 
2010), and manufacturing systems (Kochel and Nie-
lander, 2002; Kampf and Kochel, 2006). 
 
 As a result of this literature survey, there are several 
ways SO problems can be classified.  We can classify SO 
problems regarding their input variables (quantitative 
variables and qualitative variables), output variables (a 
single objective SO problems or multi-objective 
problems), parameter spaces (discrete or continuous 
parameters), the shape of the response surface (global as 
compared to local optimization) or by their Optimization 
Procedure. Our main contribution in this paper is to 
provide a literature survey with all classification criteria 
and to propose a global classification scheme of SO 
methods. 

The remainder of the paper is organized as follows: Sec-
tion 2 we establish a common framework for simulation 
optimization problems and present the notation to be 
used. Section 3 presents a literature survey with all classi-
fication criteria on techniques for simulation optimiza-
tion. Finally Section 4 draws conclusions. 

2. PROBLEM DESCRIPTION   

SO refers to the process for finding optimal system de-
sign whose performance is estimated by simulation 
(Kabirian and Ólafsson, 2007), and the problem setting 
thus contains the usual optimization components: 
 

 Decision variables, 
 objective function, and 
 Constraints. 

 
The SO can be defined as the latter case: repeated analy-
sis of the simulation model with different values of de-
sign parameters, in an attempt to identify best simulated 
system performance. The design parameters of the real 
system are set to the ‘optimal’ parameter values deter-
mined by the SO exercise, rather than in an ad hoc man-
ner based on qualitative insights gained from exercising 
the simulation model. A very general formulation of the 
above SO problem is to minimize the expected value of 
the objective function with respect to its constraint set as:  
The general SO problem setting is as follows: 
 

)Min
Θ θ

f(θ
∈

,         (1) 
  

where θ is a p-dimensional vector of all the decision vari-
ables, Θ is the feasible region and R: →Θf  is the 
objective function. If f(θ) is a one-dimensional vector, the 
problem is single objective optimization, whereas if its 
dimension is more than one, the problem becomes mul-
tiobjective. The optimum is denoted by θ*. Without loss 
of generality, we will consider the minimization problem 
throughout the paper. 
 
We assume that the system under consideration is com-
plex enough that the expected performance f(θ) of each 
system design Θθ∈  cannot be determined exactly, but 
is instead estimated through simulation. The optimization 
model response function is represented by f(θ) which is 
usually the expected value (long-term average) of some 
simulated system performance measure Y as a function of 
the design parameter vector θ. That is 
 

)),(E() εθYf(θ =             (2) 
 
where ε represents the stochastic effects in the system. 
The form of f is not known. Its value is estimated using n 
runs of the simulation model under the design scenario 
specified by θ. 
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Frequency Domain Analysis (FDA) 
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Figure 1: Proposed classification scheme of simulation optimization methods 
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In Eq. (3) the dependence of Y on the value of θ has been 
suppressed. While f(θ) is deterministic, its estimate is 
stochastic, since the simulation run time must be finite 
(so n < ∞). 
 
It should be noted that, the general formulation (1) sub-
sumes the usual mathematical programming settings 
(which prefers x to θ for its decision variables): 
 
• If f(θ) is a scalar function, the problem is single objec-

tive optimization; whereas if it is a vector, the problem 
becomes multi-objective 

• f(θ) is linear in θ and Θ can be expressed as a set of 
linear equations in θ corresponds to linear program-
ming, or mixed integer linear programming if part of 
the Θ space involves an integer (e.g., {0,1} binary) con-
straint. 

3. THE PROPOSED CLASSIFICATION 

As pointed out by (Tekin and Sabuncuoglu, 2004) the 
existing studies can be classified under two main head-
ings:  local optimization; and global optimization. Local 
optimization techniques are further classified in terms of 
discrete and continuous parameter spaces the discrete 
case can also further classified into finite parameter space 
and infinite parameter space. The main goal of this re-
search is to propose a global classification scheme of SO 
problems. This structure is shown in Figure 1. For more 
details on the major techniques, we have presented, in 
table 1, table 2, and table 3 other SO references 
 
3.1 Local optimization 
 
Local optimization problems are discussed in terms of 
discrete and continuous decision spaces. In a discrete 
space, decision variables take a discrete set of values such 
as the number of machines in the system, alternative loca-
tions of depots, different scheduling rules or policies, etc. 
Several techniques have been developed for simulation 
optimization when the input parameter values (i.e, the 
size of Θ) is discrete. If the set Θ is finite and small, rank-
ing and selection and multiple comparisons procedures 
are appropriate. If the set is infinite but very large, then 
techniques such as ordinal optimization and general 
search strategies, see (Tekin and Sabuncuoglu, 2004), 
(Swisher and al, 2004). On the other hand, in a continu-
ous space, the feasible region consists of real-valued de-
cision variables such as order quantity and reorder quan-
tity in inventory problems, release time of factory orders, 
etc. If Θ is continuous, other search methods can be em-
ployed. Stochastic gradient-based optimization methods 
such as: methods for estimating the gradient of f, Simplex 
search and Metamodel-based optimization methods see 
(Andradottir, 1998), (Swisher and Hyden, 2000). 
 

3.1.1 Discrete input parameter methods 

The discrete input parameter case differentiates tech-
niques appropriate for small and for large numbers of 
feasible input parameter values. As discussed in (Swisher 
and al, 2000) several techniques have been developed. If 
the set Θ is finite and small, ranking and selection and 
multiple comparison procedures are appropriate. If the set 
Θ is infinite or very large, then techniques such as ordinal 
optimization, random search, nested partitions method 
and general search strategies have been adapted for the 
simulation environnement. However in the continuous 
case, gradient-based methods or metamodel based opti-
mization can be used. 
 
Tableau 1: Methods based on discrete input parameter  
 
Optimization 

simulation 
methods 

References 

Finite space 

Ranking 
and  Selection 

(Koenig and Law, 1985), (Chen and al, 
1996; 1997), (Morrice and al, 1998; 1999), 
(Hyden and Schruben, 1999), (Branke and 
al, 2007) 

Multiple 
Comparison 
Procedures 

 (Hsu, 1984), (Hsu and Nelson, 1988), 
 (Yang and Nelson, 1989; 1991), (Golds-
man and Nelson, 1990), (Kolonja and al, 
1993), (Matejeik and Nelson, 1993; 1995), 
(Bofinger and lewis, 1992), (Yuan and 
Nelson, 1993), (Nakayama, 1995; 1996; 
1997; 2000), (Damerdji and Nakayama, 
1996; 1999). (Swisher and al, 2000), (Nel-
son and al, 2001),  

Infinite space 

Ordinal 
Optimization 

(Ho.Sreenivas and Vakili, 1992), (Deng 
and al, 1992, (Ho, 1994), , (Ho and Deng, 
1994), (Dai, 1995), ), (Chen, 1995; 1996), , 
(Ho and Larson, 1995), (Chen and al, 
1996), (Ho and Larson, 1995), (Xie, 1997), 
(Deng and Ho, 1997) (Lau and Ho, 1997), 
(Lee and al, 1999). 

General 
Search 

Strategies 
 

Eglese, 1990), (Fleischer, 1995), (Leipins 
and Hilliard, 1989), (Muhlenbein, 1997), 
(Glover and Laguna, 1997), ( Manz and al, 
1989), ( Haddock and Mittenhall, 1992), ( 
Baretto and al, 1999), ( Zeng and Wu, 
1993), (Yucesan and Jacobson, 1996), ( 
Stuckman and al, 1991), (Brady and Mc 
Garvey, 1998),  (Dummler, 1999), (Fac-
cenda and Tenga, 1992), (Tompkins and 
Azadivar, 1995), (Glover et al, 1996), (Hall 
and al, 1996), ( Hall and Bowden, 1997). 

Random 
Search 

(Andradottir, 2005), (Fu, 2007), (Chen et 
al, 2008). 

Nested 
Partitions 
Methods 

(Shi and Olafsson, 1997), (Shi et al, 1999). 
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3.1.1.1 Finite space 
 
When the optimization involves selecting the best of a 
few alternatives, that is Θ = {θ1, θ2, θm}, where m is 
relatively small, then it may be possible to evaluate every 
solution and compare the performance. The two most 
popular methodologies for the class of the problem are: 
Raking and Selection (R&S) and Multiple Comparison 
Procedures (MCPs). (R&S) focuses on selecting the op-
timal input parameter values.  In MCPs the idea is to run 
a number of replications and make conclusions on a per-
formance measure by constructing confidence intervals. 
MCPs approach the optimization problem as a statistical 
inference problem and, unlike R&S procedures, do not 
guarantee a decision. For excellent review of these tech-
niques, one can refer to (Kim and Nelson, 2006) 

3.1.1.2 Infinite space 

When it is not possible to evaluate every solution using a 
statistical selection procedure, and the set Θ is very large 
different other methods must be applied. Such as Ordinal 
optimization reduces the search for an optimal solution 
from sampling over a very large set of solutions to sam-
pling over a smaller, more manageable set of good solu-
tions. A more detailed treatment of this topic can found in 
(Ho and Deng, 1994), (Lee et al, 1999).  
 
General search strategies such as simulated annealing 
(Eglese, 1990); (Fleischer, 1995), genetic algorithms 
(Leipins and Hlliard, 1989); (Muhlenbein, 1997) and tabu 
search (Glover and Laguna, 1997). (Glover and Laguna 
1997) have been adapted for the stochastic environment 
associated with discrete-event simulation optimization.  
 
Random search (RS) was first developed for deterministic 
optimization, but has been extended to the stochastic set-
ting. (RS) can work on an infinite parameter space. Inputs 
of upper and lower bounds on each of the controllable 
factors define an overall search region. For more details 
on random search methods in simulation, see (Andradot-
tir, 2005) 
 
Nested Partitions (NP) is a randomized method for global 
optimization. The motivation for this method is that some 
parts of the feasible region may be most likely to contain 
the global optima. Hence it is efficient to concentrate the 
computational effort in these regions. The Nested Parti-
tions Method takes a global perspective and combines 
global and local search techniques. For more details, see 
(Shi and Olafsson, 1997), (Shi and al, 1999). 
 
3.1.2 Continuous input parameter methods 
 
The feasible region, Θ, is uncountable and infinite when 
the set of in put parameters are continuous. Continuous 
simulation optimization problems fall into two categories: 
metamodel methods and stochastic gradient estimation.        
 
 
 
 

3.1.2.1 Metamodel Methods 
 
Metamodeling, which was first described by (Blanning, 
1975) is a process of developing a mathematical relation-
ship between a response measure of interest and a set of 
input variables. Metamodels Methods are often con-
structed in two primary stages. The first stage uses a fac-
torial experimental design to collect a structured data set 
that is then used to find the functional relationship be-
tween decision variables and responses. After a meta-
model is constructed, the what-if analysis can be obtained 
without the further consumption of expensive computing 
resources. See (Hurrion and Birgil, 1999), (Kleijnen, 
1987) (Yesilyurt and Patera, 1995), (Barton and Meck-
esheimer, 2006). 
 
3.1.2.2 Stochastic gradient estimation.  
         
The goal of stochastic gradient estimation is to estimate 
the gradient of the performance measure with respect to 
the parameters. An extensive body of research exists for 
SO problems of this type. Input parameter methods may 
be classified as either gradient-based or non gradient-
based. 
 
a) Gradient based Approaches 

 
A considerable amount of research has focused specifi-
cally on techniques for gradient estimation, such as, finite 
difference estimation, perturbation analysis (see Ho, 
1984; Glynn, 1989; Suri, 1989), likelihood ratio estima-
tors (see Glynn, 1987; Rubinstein and Shapiro, 1993) and 
frequency domain experimentation (Schruben and Cogli-
ano, 1991) 
 
Perturbation analysis (PA) estimates all gradients of an 
objective function from a single simulation run (Bettonvil 
1989), (Glasserman 1991), (Ho and Cao, 1991). The idea 
is that in a system, if a decision parameter is perturbed by 
an infinitesimal amount, the sensitivity of the output vari-
able to the parameter can be estimated by tracing its pat-
tern of propagation.  
 
The likelihood ratio (LR), (or the score functions), 
method involves expressing the performance measure as 
an integral involving the product of the densities of the 
underlying random variables. In the (LR) the expressing 
gradient of the expected value of an output variable is 
expressed as the expected value of a function. Since its 
introduction to simulation field a significant volume of 
work on this topic has been reported in the literature. A 
sample of these works can be found in (Glynn, 1989a), 
(Glynn, 1989b), (Reiman and Weiss, 1986), (Glynn 
1987), (Rubinstein 1991), and (Rubinstein and Shapiro 
1993).   
 
As pointed by (Carson and Maria, 1997) Frequency Do-
main Methods is one in which selected input parameters 
are oscillated sinusoidally at different frequencies during 
one long simulation run.  
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Tableau 2: Methods based on continuous input parameter 
 
Simulation 

optimization 
methods 

References 

Metamodel methods 

Response 
surface 

metamodels 

(Daugherty and Turnquist, 1980), (Myers and 
Montgomery, 2002), (Santner et al, 2003), 
(Myers et al, 2004), (Jaluria, 2009), (Jach 
P.C, 2008), (Hachicha et al. 2010), (Barton 
and Meckesheimer, 2006) and (Kleijnen, 
2008),  

Regression 
spline 

metamodels 

(Eubank, 1988), (Breiman, 1991), (Friedman, 
1991). 

Spatial cor-
relation 

(kriging) 
metamodels 

(Sacks and al, 1989), (Simpson and al, 1998), 
(Booker et al, 1999), (Meckesheirmer et al, 
2002), (Mitchell and Morris, 1992), ( Barton, 
1992; 1998), (Kleijnen, 2005), (Santner et al, 
2003). 

Radial basis 
function 

metamodels 

(Franke, 1982), (Tu and Barton, 1997), (Shin 
et al, 2002). 

Neural 
network 

metamodels 

(Masson and Wang, 1990), (Kolmogorov, 
1961), (Netlab, 2005). 

Gradient Approaches 

Perturbation 
analysis 

(Bettonvil 1989), (Glasserman 1991), (Ho 
and Cao, 1991), (Wardi et al, 1991), (Chong 
and Ramadge, 1993), (Fu and Hu, 1994), 
(Donohue and Spearman, 1993)., (Dai, 2000), 

Harmonic 
analysis (Jacobson and Schruben 1999). 

Likelihood 
ratios 

(Glynn, 1989b), (Glynn, 1989a), (Reiman and 
Weiss, 1986), (Glynn 1987), (Rubinstein 
1991), (Rubinstein and Shapiro 1993),, (Fu, 
1994), (Nakayama and Shahabudin, 1998), 
(Nakayama et al, 1994), (Andradottir, 1996), 
(Fu and Hu, 1999). 

Finite 
difference 

(Fu, 2006), (Pegden and Gately, 1977), (Chen 
et al, 2008), (Fu, 2007). 

Frequency 
domain 
analysis 

(Schruben and Cogliano, 1981), (Hazra et al, 
1997), (Heidergott, 1995), (Morrice and 
Schruben, 1989)  

Non-gradient approaches 

Sample path 
optimization 

(Gurkan et al, 1994), (Robinson, 1996), 
(Plambeck et al, 1996), (Healy and Schruben, 
1991), (Healy and Xu, 1994), (Robinson, 
1996), (Shapiro and Wardi, 1996), (Kley-
wegt et al, 2001), (Hunt, 2005). 

Simplex 
search 
method 

(Azadavir and Lee, 1988), (Haddock and 
Bengu, 1987), (Barton and Ivey, 1991; 1996) 
, (Barton and Ivey, 1996), (Humphrey and 
Wilson, 1998), 

Hooke and 
Jeeves 
method 

(Haddock and Bengu, 1987) 

 
Frequency domain experiments involve addressing three 
questions: how does one determine the unit of the ex-
perimental or oscillation index, how does one select the 
driving frequencies, and how does one set the oscillation 

amplitudes. For more details on this technique, see 
(Schruben and Cogliano, 1981), (Morrice and Schruben, 
1989), (Hazra et al, 1997), (Heidergott, 1995), Harmonic 
analysis (Jacobson and Schruben 1999), have been stud-
ied with the objective of developing efficient gradient 
estimators applicable to a broad class of discrete-event 
simulation models. These gradient estimators are then 
imbedded in optimization algorithms which control the 
step size taken in the gradient direction at each iteration.  
 
b) Non-gradient based approaches 
 
Non-gradient approaches provide an alternative to gradi-
ent estimation-based procedures. These methods include 
the Nelder-Mead (simplex) method, the Hooke and Jeeves 
method and Sample Path Method. The main idea of these 
methods is to take a large enough set of samples so that 
the stochastic problem is basically turned back into a de-
terministic problem to which the tools of nonlinear pro-
gramming could be applied; for more details, see (Had-
dock and Bengu, 1987), (Barton and Ivey, 1991; 1996), 
(Gurkan et al, 1994), (Robinson, 1996), (Humphrey and 
Wilson, 1998), (Kleywegt et al, 2001) 
 
3.2 Global search methods 
 
Different methods can be used, such as evolutionary algo-
rithms, simulated annealing, tabu search, Bayes-
ian/sampling algorithms, and gradient surface method. 
Several of them are iterative. 
 
3.2.1 Evolutionary Algorithms 
 

Evolutionary Algorithms (EAs) are population-based 
metaheuristic optimization algorithms that use biology-
inspired mechanisms like mutation, crossover, natural 
selection, and survival of the fittest in order to refine a set 
of solution candidates iteratively. The most popular (EA) 
are Genetic Algorithms (GAs), Evolutionary Programing 
(EP) and Evolution strategy (ES). For more material on 
the (EAs) see for example: (Back and al, 1997), (Hall et 
al, 1996), (Schwefel, 1995), (Biethahn and Nissen, 1994), 
(Maria, 1995), (Pierraval and Tautou, 1997), (Muhlebein, 
1997), (Pirreval and Paris, 2000), (Cassady et al, 2000), 
(Yuan, 2009), (Farzanegan and Vahidipour, 2009). 
 
3.2.2 Simulated Annealing 
 
Simulated Annealing (SA) is a stochastic optimization 
method analogous to the physical annealing process 
where an alloy is cooled gradually so that a minimal en-
ergy state is achieved. Overviews of this heuristic can be 
found in (Kirkpatrick et al, 1983), (Van Laarhoven and 
Aarts, 1987), (Johnson et al, 1989), (Eglese, 1990) and 
(Koulamas et al, 1994), (Fleischer, 1995), (Alrefaei et al, 
1995). 
 

3.2.3 Tabu Search 

Tabu Search (TS) developed by (Fred Glover, 1989) is 
distinguished by introducing adaptive memory into meta-
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heuristic search, together with associated strategies for 
exploiting such memory, equipping it to penetrate com-
plexities that often confound other approaches. 
  
Tableau 3: Methods based on Global search 
 

Simulation 
Optimization 

methods 
References 

Bayesian 
Sampling  
algorithms 

(Lorenzen, 1985), (Easom, 1990), 
(Stuckman and Easom, 1992)  
 
 

Gradient Sur-
face Methods (Ho et al, 1992), (Fu, 2007). 

Simulated An-
nealing 
 

(Van Laarhoven and Aarts, 1987), (John-
son et al, 1989), (Eglese, 1990), (Koulamas 
et al, 1994), (Stuckman et al, 1991), (Chen 
et al, 2008), Kirkpatrick et al, 1983), 
(Fleischer, 1995), (Alrefaei et al, 1995), 
(Manz et al, 1989), (Brady and McGravey, 
1998), (April et al, 2003), (Barretto et al, 
1998), (Suman and  Kumar, 2006), (Mah-
moud et al, 2009).  

Tabu Search 
 

(Glover, 1989; 1990), (Glover and Laguna, 
1997), (Hu, 1992), (Osman, 1993), (Lutz et 
al, 1998), (Martin et al, 1998), (Dengis and 
Alabas, 2000), (April et al, 2003), (Hedar 
and Fukushima, 2006). 

Evolutionary 
Algorithms 

(Biethahn and Nissen, 1994), (Maria, 1995) 
(Schwefel, 1995), (Hall et al, 1996), (Back 
et al, 1997), , (Pierraval and Tautou, 1997), 
(Muhlebein, 1997), (Pirreval and Paris, 
2000), (Cassady et al, 2000), (April et al, 
2003), (Haupt and Haupt, 2004) (Yuan, 
2009), (Farzanegan and Vahidipour, 2009). 

 

 
TS is an adaptive procedure with the ability to utilize 
many other methods which it directs to overcome their 
limitations of getting stuck in local optima. For more de-
tails for this method the reader can referred to (Osman, 
1993), (Glover and Laguna, 1997), (Hu, 1992), (Osman, 1993), 
(Lutz et al, 1998), (Martin et al, 1998), (Dengis and Alabas, 
2000), (April et al, 2003), (Hedar and Fukushima, 2006). 
 
3.2.4 Bayesian/sampling algorithms 
 
The Bayesian/Sampling (B/S) methodology is a search 
strategy where at each iteration; the next guess is chosen 
to be the point that maximizes the probability of not ex-
ceeding the previous value by some positive constant. 
See (Lorenzen, 1985) and (Easom, 1990) for more de-
tails. 

3.2.5 Gradient surface method 

Gradient surface method (GSM) combines the advan-
tages of response surface methodology (RSM) and effi-

cient derivative estimation techniques like perturbation 
analysis (PA) or likelihood ratio method (LR). In GSM, 
the gradient estimation is obtained by PA (or LR), and 
the performance gradient surface is obtained from obser-
vations at various points in a fashion similar to the RSM. 
Zero points of the successive approximating gradient 
surface are then taken as the estimates of the optimal so-
lution. GSM is characterized by several attractive fea-
tures: it is a single-run method and more efficient than 
RSM; it uses at each iteration step the information from 
all data points rather than just the local gradient; it tries to 
capture the global features of the gradient surface and 
thereby quickly arrives at the vicinity of the optimal solu-
tion. See (Ho et al, 1992) and (Fu, 2007) for more details. 

4. CONCLUSION  

Simulation Optimization (SO) is an optimization itself; it 
is required if one wants to find the best steady-state val-
ues of important process variables. This is an active re-
search area that has sparked as much interest in the aca-
demic world as in practical settings. The most exciting 
developments are usually reported annually in the Winter 
Simulation Conference. In this paper we provide a gen-
eral overview of the different approaches for simulation 
optimization with all classification criteria found in the 
research literature and we propose a global classification 
scheme of SO methods. Comparative studies based on 
performances measure between these approaches will be 
our research perspective. 
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