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1 Introduction

Model-Driven Software Engineering investigates how models, as abstract represen-
tations, can support and enhance the authoring of software systems. In particular,
Domain-Specific Modeling Languages (DSMLs) aim at providing software devel-
opers with dedicated languages and tools specifically created for their business
domain. DSMLs usually leverage an Object-Oriented software API, generated
from a metamodel, facilitating the authoring and exchange of domain-specific
concepts between several tools, applications and stakeholders. This API can for
example support graphical or textual editors to edit models, or specific load and
save algorithms to serialize and exchange models. The primary focus of DSMLs
was to ease the comprehension and manipulation of concepts during the design
phase of an application. In this area, the Eclipse Modeling Framework (EMF) has
rapidly become the defacto standard in the MDSE for building DSMLs and asso-
ciated tools using generative techniques. As the boundaries between design-time
and runtime become more and more blurry, DSMLs are increasingly embedded at
runtime to monitor, manage, maintain and evolve running applications, leading
to the emerging Models@Runtime paradigm [2].

However, the integration and use of EMF APIs and tools in a Models@Runtime
context reached several limitations. For example, when applied to the domain of
the Internet of Things [7], the execution environments are usually constrained
in terms of memory and computational power, making it difficult to embed the
DSML tools generated by EMF. When applied to the Cloud Computing domain,
the models created with a specific DSML for cloud are extensively exchanged,
cloned and compared in order to manage the maintenance and adaptation of
large-scale distributed applications. These operations call for very efficient means
to clone and access model elements, which EMF fails at providing. Also, the
dynamic adaptation of a software system (e.g. to manage the scalability of Cloud-
based system), requires efficient search and validation techniques to maximize the
continuity of service, and minimize the downtime when reconfiguring the system.

This paper originates from the application track of MODELS’12 [8]. Our main
contribution is to integrate best development practices, largely accepted in the
Software Engineering community and largely disregarded in the MDSE commu-
nity, in order to get improved performances on the generated code, compared to
standard modeling tools and frameworks (and EMF in particular). This contribu-
tion is integrated into the Kevoree Modeling Framework (KMF), an alternative
to EMF still compatible.

This paper extends our previous work in three main aspects:

i) It elicits the requirements and the state of practice in using DSLs and models
during the execution of a software, in three domains.

ii) It highlights the last improvements made in KMF to improve efficiency. In
particular it focuses on the new features introduced to decrease the memory
footprint, to decrease the time required to load or save models, to support a
partial clone operator and to query a find model elements in a model using
“KMF Query Language - Path Selector”.
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iii) It evaluates KMF and EMF against the properties identified as required to
use models during runtime in several domains.

The outline of this paper is the following. Section 2 presents use cases in
three different domains, in order to illustrate the requirements raised by the use
of models as first-class entities at run-time. Section 3 gives a state of practice
of using design-time tools like EMF for runtime manipulations of models. The
contribution of this paper, the Kevoree Modeling Framework(KMF), is described
in Section 4. Section 5 evaluates our alternative implementation in comparison to
EMF. Section 6 concludes this work and presents future work.

2 Requirements for using models at runtime

This section introduces briefly three domains in which models are used during the
system runtime. For each domain, a specific DSL is used and highlights differ-
ent requirements for the object-oriented API and the associated tools generated.
Then, several properties are identified and listed as mandatory to enable a con-
sistent use of models during runtime.

2.1 Use cases
We present in this section three cases in which the use of models during runtime,
for different purposes, requires some properties to be guaranteed by the tools
generated for the DSL.

Internet of Things
The domain of the Internet of Things relates to the interconnection of commu-
nicating object. The variability and heterogeneity of devices to be considered in
this domain challenges the possibilities of interoperate the devices and the devel-
opment of software systems to offer new services. In this domain, models are used
during the software execution to reflect the configuration of devices, their links to
siblings or services. Also, the sporadic presence of devices requires dynamic adap-
tations of the running system to install and remove pieces of software to control
each specific device present in the range of control. The models are very useful in
this context to describe what are the services available on each device, where are
the binaries to connect it, etc. In addition, model structures are useful to express
composition of services operations, inherently necessary to compose data collected
asynchronously.

The main concern here is about the memory restrictions and time of adapta-
tions. Indeed, the kind of execution environment used in this domain are usually
constrained in terms of memory and computational power. Thus, attention has
to be paid to the size of the generated code and the memory necessary for its
execution, as long as to the time necessary to read (load) models.

Cloud Computing
Cloud computing is characterized by a dynamic provisioning of services on com-
putation resources. Also called elasticity, this intelligent process must dynamically
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place several software to adapt the computation power to the real consumption of
customers’ software. However, costs limits imposed by cloud customers force the
elasticity mechanism of cloud to perform some choices, sometime contradictory.
For instance, cost and power can not be optimize at same time, because of their
intrinsic dependency. This leads to multi-objective optimisations, which consider
lot of information to compute a placement of software offering the best tradeoff.

In this context, models are perfect candidates to represent the state of the
cloud infrastructure and ease the work of these optimisation algorithms. Starting
from the model reflecting the current state of the cloud infrastructure, these algo-
rithms explore and evolve lot of configurations to find the most suitable tradeoffs
between all cloud metrics. In this process, the high number of models (configu-
rations as used by Ferry and al [6]) created and dropped calls for very efficient
mechanisms for allocation, deletion, clone and mutation, because they constitute
the basic operations of evolutionary algorithms [11].

Software systems self-adaptation using Models@Runtime
Models@runtime is an emerging paradigm aiming at making the evolution process
of applications more agile and dynamic, still leveraging the key benefits of mod-
eling: simplicity, efficiency and safety. It is inspired by solid research in reflective
software engineering [24] (e.g. Meta-Object Protocol [14]) and makes available,
at runtime, an abstraction of the system for the system itself or for external
human/programmatic actors. This abstraction helps in supporting efficient deci-
sions related to the adaptation or evolution of the system by hiding (simplifying)
irrelevant details.

Kevoree [16,10] is an open-source project leveraging the Models@Runtime
(M@RT) paradigm to support the continuous design of complex, distributed, het-
erogeneous and adaptive systems. The overhead implied by this advanced reflec-
tion layer (Models@Runtime) has to be minimized to reduce as much as possible
the resources (computation and memory) mobilized, and should enable the ef-
ficient dissemination of models among nodes [9], to manage the widest possible
types of node (including Android, Java Embedded). If the M@RT overhead is too
heavy, the process tends to be centralized, impacting the overall resilience of the
software system (single point of failure, etc).

Current MDE tools were however designed and engineered without any consid-
eration for runtime constraints, since they were originally thought for design-time
use only, where time and resource constraints are much softer. The following sec-
tion gives a more detailed description of the properties to comply with when
targeting a use at runtime.

2.2 Generic requirements for using models at runtime

In the three domains presented in 2.1, applications need to perform common op-
erations on models, where performance and safety are critical issues. The memory
footprint is the first performance concern. Indeed, the generated Object-Oriented
API and all its dependencies must be compatible with the hosting device in terms
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of memory footprint, to enable the inclusion on low-resource IoT nodes. Secondly,
models should come with efficient (un)-marshaling techniques to enable the rapid
exchange of models between distributed cloud nodes. Also, model cloning and
concurrent, yet safe, manipulations of models should be supported by the frame-
work to enable distributed reasoning, e.g. based on exploratory techniques such as
genetic algorithms for cloud management. Finally, models should be traversable
efficiently to enable rapid computation on already known elements, for compar-
ison or merge of models for instance, which are basic operations. Each of these
key requirements for M@RT is further described in the following sections.

Reduced memory footprint
The memory overhead introduced by models at runtime has to be considered from
both static and dynamic point of view.

The static memory footprint basically depends on the complexity (size) of
the metamodel that defines the concepts and relationships among these concepts
to be manipulated in the models. Basically, the more complex a metamodel is, the
bigger the generated Object-Oriented(OO) API is. Also, metamodels themselves
conform to a meta-metamodel (M3), such as Executable Meta-Object Facility
(EMOF)[20] or ECORE, which can also participate in the static memory footprint.
However, the footprint of the M3 remains stable independently of the size of the
metamodels.
The number and size of the dependencies required by the generated OO API have
to be minimized, because each device must provision these dependencies to be
able to run the API. Heavy dependencies would indeed increase the initialization
or update time of a device and reduce the memory space available for the models.

The dynamic memory footprint required to manipulate a model using
the generated OO API is linked to the size of the manipulated model. Thus,
the number and size of the objects required to instantiate a model element (i.e.
the concept and its relationship) have to be watched, because of their impact on
the number of model elements that can be kept in memory. If this footprint is
too high for a device, the model will be swapped (i.e. unloaded from memory
to disk), consuming a lot of resources to perform this operation. All this implies
that the memory used to create a model element has to be controlled to allow the
manipulation of big models on devices with limited resources.

Efficient models (un)marshalling
The efficiency of marshaling and unmarshaling operations is a key criteria for
models@runtime, because they are the basic input/ouput operations on a model
at runtime, and should not “freeze” the system while they are serialized or loaded.
Models are used in memory for validation, verification and system manipulation.
They are also extensively exchanged across local processes and remote nodes
to disseminate decisions, and stored to disk for later use (e.g. system restore,
post mortem analysis as with a flight data recorder (black box)). To describe
this requirement, the Figure 1 depicts two critical use cases of models I/Os (i.e.
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(un)marshalling operations) in Kevoree. The first is the exchange of models across
nodes (1) to build a shared reflexive layer; the second concerns backup and restore
operations of models (2).

Runtime process

Model

Runtime process

Model

Model

(1) sync

(2) save/load
Model

Fig. 1: Model@Runtime (un)marshalling operation case study illustration

Concurrent read/write usage of models
When used at runtime, models are generally at the centre of a highly concurrent
environment. In the IoT domain for instance, different probes integrated in several
devices can update a shared context model. Obviously, this shared model must
offer safe and consistent read and write operations. Like shared memory [3], the

Runtime process

Model

Reasoner Reasoner

(1) concurrent read

Runtime process

Model

causal link

Reasoner Reasoner

M’ M’’ M’’’
clone

causal link

apply

(2) concurrent write
concurrent 

read

Clone and Apply

(1) (2)

Atomic Read (Write)

Fig. 2: Shared Model@Runtime protection strategies

generated OO API must implement a protection strategy in order to offer safe and
efficient concurrent read or concurrent read-and-write operations for the various
producers writing in the model and consumers of these data.

In case of a concurrent read strategy, the generated API must ensure that
the multiple threads can reliably, independently and consistently access and it-
erate over model elements. Similarly in case of a concurrent write strategy, the
framework must ensure the atomicity of each modification. This is depicted on
the left side (Atomic Read/Write) of Figure 2 where Reasoners components are
both producers and consumers.

The cloning of models is at the centre of this concurrency problem. It acts as a
concurrent protection for each producer/consumer, which works on its own clone
of the current model, as presented in Figure 2 that depicts a Cloud management
use case where search-based algorithms use small mutations as basic operations
to explore a space of potential configurations. The memory and computational
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efficiency of the cloning strategies are thus key requirements for the generated
API.

Efficient navigation across model elements The purpose of a DSL is to
offer a simple way to represent and manipulate domain specific models. Models
can create very complex graph structures in which the navigation is complicated.
So complicated, that iterating over relations and model elements in order to find
a specific element create serious issues on performance and code complexity. To
exemplify this problem, we consider a small excerpt of the Kevoree meta-model
(Fig. 3a) which is used to organize the placement of components and hosted nodes,
on execution nodes. With this meta-model one can easily build the Kevoree model

(a) Kevoree Metamodel exerpt (b) Kevoree Model example

Fig. 3: Illustration of the case with Kevoree

presented in figure 3b, where a component instance is hosted on a node called
’node4’ itself hosted on ’node8’, hosted on ’node7’, hosted on ’node6’.
Let now imagine the software system is trying to place this component instance
on a node according to several constraints. To perform this task, several threads
are running different algorithms on clones of the model. The need for an efficient
navigation becomes obvious when the system has to compare, select and merge
the solutions from all threads.

7



3 State of the practice: Using EMF to generated DSLs for
runtime usage

A natural way to create a DSL is to rely on tools and techniques well established
in the MDE community, and in particular, the de facto EMF standard. This
section provides a brief overview of EMF and then discusses the suitability of this
modeling framework to generate a Object-Oriented API usable at runtime, with
respect to the requirements identified in the previous section.

3.1 Overview

EMF is a Java-based EMOF implementation and code generation facility for build-
ing languages, tools and other applications based on a structured data model.
From a metamodel conforming to the Ecore meta-metamodel (which is largely
inspired by/aligned with the EMOF meta-metamodel), EMF provides tools and
support to create Domain Specific Languages (DSLs) on top of the Eclipse IDE.
Additional languages and tools like EMFText or GMF make it possible to rapidly
define textual or graphical syntaxes for these DSLs.

Fig. 4: Finite State Machine Metamodel used for Experiments

In order to evaluate the code generated by EMF, we consider one of the sim-
plest well known meta-model within the MDE community: the Finite State Ma-
chine (FSM). This metamodel (Fig. 4) is composed of four meta-classes: FSM,
State, Transition and Action. A FSM contains the States of the machine and
references to initial, current and final states. Each State contains its outgoing
Transitions, and Transitions can contain Actions.

To measure the dynamic memory usage and time consumption on the different
requirements, we use the code generated by EMF to programmatically create a flat
FSM (each state has exactly one outgoing transition and one incoming transition,
except the initial and final states) model composed of 100,000 State instances,
99,999 transitions and an action for each transition. The experimentations have
been performed on a Dell Precision E6400 with a 2.5 GHz iCore I7 and 16 GB of
memory.

The following sections discuss the position of EMF w.r.t. the identified re-
quirements.
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3.2 Memory aspects

For this evaluation, we first generate the modeling API (source code) of the FSM
metamodel with the EMF genmodel tool, in a project called testemfdependencies.

Fig. 5: Dependencies for each new metamodel generated code

Figure 5 shows the dependencies needed for the generated modeling API to
compile and run. The analyse of these dependencies shows that the generated
code is tightly coupled to the Eclipse environment and to the Equinox runtime
(Equinox is the version of OSGi by the Eclipse foundation). Although this is not
problematic when the generated API is used in the Eclipse environment, these
dependencies are more difficult to resolve and provision in a standalone context
outside Eclipse.

In the case of the FSM, the business code generated from the FSM metamodel
is only 55 KB, but requires 15 MB of dependencies when packed in a standalone
executable JAR. This represents an overhead of 99,6%. Moreover, the reflexive
calls extensively used in the generated API makes it difficult to reduce the size with
tools like ProGuard4. Beyond the technical for memory optimization at runtime,
we can extract the following generality: by introducing dynamic reflexive call (e.g
dynamic because came from dynamically created string) we forbid to use dead
code analyser and shrinker, then we introduce a runtime overhead.

As for the dynamic memory, the creation of the experimental FSM model lasts
for 376 ms and uses 104 MB of the heap memory.

4 ProGuard is a code shrinker (among other features not relevant for this paper) for Java
bytecode: http://proguard.sourceforge.net/
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This overhead is one of the main limitations of EMF when the generated API
must be embedded at runtime.

3.3 Load and Save operations

EMF uses the XMI format[19] as default serialization strategy to allow any tool
supporting this interchange format (e.g. Xtext [15,5], EMFText [13], GMF [23] or
ObeoDesigner 5) to load/save the models.

EMF provides a generic loader that uses reflexive mechanisms. It navigates
the metamodel and makes reflexive calls to classes and methods of the generated
API to load a model. This loader is not generated, which limits the size of the
generated code, but its genericness and reflexive approach have several drawbacks.
First, both the model and the metamodel have to be parsed and loaded in memory,
which is consuming a lot of time and memory. The reflexive calls are also very
costly.6 To hide and avoid some of this algorithmic complexity, the EMF loader
implements a lazy loading mechanism which actually loads the attributes and
references of model elements only if the model element is actually accessed.

As for the marshaling (save) operation, the EMF standard serializer works in
two steps. It first transforms the model to be serialized into a Document Object
Model (DOM). The size of this temporary DOM structure is directly linked to
the size of the model. Then it prints this DOM in a file.

The serialization of our experimental FSM model to a file lasts 7021 ms and
the loading of the model from this file lasts 5868 ms, which is a lot considering
the power of the computer used for the experimentation.

3.4 Concurrency in the generated code

Many runtime platforms used to support dynamic software architectures imple-
ment their own class loaders to keep control of resources. It is the case in OSGi,
Frascati or Kevoree for instance. Then, software running on these platforms must
use these class loaders in order for the platform to offer an efficient and reli-
able dynamic class loading. However, the use of static registries in EMF leads to
incompatibilities with runtime platforms using multi-class loaders.

Moreover, EMF provides no guarantee of thread safety of the generated code 7.
Even worse, when a collection on a model element is accessed by two threads in
parallel, the iterator on the collection may be shared.

Nevertheless, this need for a proper concurrency management is essential,
because several IoT sensors may access the model at the same time or several
cloud-management threads may put their results in the model concurrently. EMF
is thus not adapted for this kind of use.

As for the clone of models, we used the EcoreUtil to clone the FSM experi-
mental model, and the process took 3588 ms, which is not optimal.
5 http://www.obeodesigner.com/
6 See the Java tutorial on reflection, in particular the discussion on the performance overhead:

http://docs.oracle.com/javase/tutorial/reflect/
7 http://wiki.eclipse.org/EMF/FAQ#Is EMF thread-safe.3F
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3.5 Navigation in models

The code generated by EMF provides an embedded visitor pattern and an observer
pattern [12]. Nevertheless, the navigation through model elements and the lookup
of a specific known element can be very costly. To illustrate that, we consider
the previously defined Kevoree component lookup example detailed in section 2.2
(Figure 3b), and use the plain Java API generated by EMF. The code required to
access the component instance element in the model is presented in Listing 1.1.

Let consider n the number of nodes at the root of the model, o the number of
nodes hosted by ’node6’, p the number of nodes in ’node7’, q the number of ’node8’,
r the number of component instance in ’node4’; the algorithmic complexity of that
piece of code is O(n× o× p× q× r) which creates a combinatorial explosion with
the growth of nodes at each level, and the depth of nested nodes.

Listing 1.1: Collect of the FakeConsole component instance in plain Java.

for ( ContainerNode node : model . getNodes ( ) ) {
i f ( node . getName ( ) . equa l s ( ”node6” ) ) {

for ( ContainerNode node2 : node . getHosts ( ) ) {
i f ( node2 . getName ( ) . equa l s ( ”node7” ) ) {

for ( ContainerNode node3 : node2 . getHosts ( ) ) {
i f ( node3 . getName ( ) . equa l s ( ”node8” ) ) {

for ( ContainerNode node4 : node3 . getHosts ( ) ) {
i f ( node4 . getName ( ) . equa l s ( ”node4” ) ) {

for ( ComponentInstance i : node4 . getComponents ( ) ) {
i f ( i . getName ( ) . equa l s ( ”FakeConso380” ) ) {

fConso le = i ;break ;
}

[ . . . ]
}

Functional languages (e.g. Scala), or languages dedicated to model query/-
transformations (e.g. OCL, QVT) can of course be used instead of a plain Java
approach to facilitate the writing of this code, but come with additional integra-
tion costs and worse performances, typically due to the use of an interpreter.

A common workaround for this performance issue is the creation of cache or
similar buffer approaches. Such techniques introduce new problems like eventual
consistency, which are often in opposition with multi-thread access. As a conse-
quence, common modeling projects use helpers with high computational complex-
ity to index and search model elements, which has serious performance penalty
at runtime.

3.6 Synthesis

This section shows that MDE tools, initially developed for design-time activities
can be used to create proof-of-concept Models@Runtime platforms. However, sev-
eral limitations (in terms of memory and time efficiency) and drawbacks (thread
safety not guaranteed) make their use sub-optimal or even impossible at runtime.

In order to improve MDE tools for a runtime usage, and make them generally
more efficient, we focus the work described in this paper on four questions:

1. How to reduce the number of dependencies and intermediate objects created,
to reduce the memory requirements ?
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2. How to take advantage of the information available in the metamodel to gen-
erate more efficient loaders and serializers?

3. How to offer an efficient support for concurrent access to models at runtime?

4. How to efficiently access a specific model element?

In the next section, we describe the Kevoree Modeling Framework which im-
plements our contributions to address these questions.

4 The Kevoree Modeling Framework

This section presents the Kevoree Modeling Framework (KMF), an alternative to
the Eclipse Modeling Framework to address the requirements on the generated
code listed in section 2, imposed by the use of models at runtime . This section is
divided into four subsections according to the four key requirements.

As an introduction to the contribution, the section 4.1 gives an overview of the
main principles that drove our work. Section 4.2 then describes how we reduced the
memory footprint of the generated code. Section 4.3 presents the improvements
made on I/O operations (load and save) for models. The mechanisms to manage
concurrency are explained in Section 4.4. Finally, Section 4.5 introduces the KMF
Query Language (KMFQL) to efficiently reach a specific known element in a
model.

4.1 General approach

We followed several principles and guidelines during the development of KMF in
order to meet the performance requirements. Here is the list.

A) Avoid the creation of temporary objects as much as possible. While the creation
of objects in the Java virtual machine is not very costly, their destruction by
the garbage collector8 is a more complex and costly operation9. We optimize
the memory by reusing objects already loaded instead of creating temporary
objects.

B) Sharing immutable objects. In Java, several collections10 and primitive objects
can define an immutable state. Leveraging immutability, we automatically
apply a flyweight pattern [12] to share these immutable objects among several
models to reduce the overall memory footprint.

C) Flat reflexivity. By relying on a sound generative approach, any modification
of the metamodel implies a regeneration of all the tools, but it also allows using
the closed world assumption [22]. Thus, model manipulations at runtime rely
on a finite and well-defined set of types. This allows generating a flat reflexive
layer, composed of a finite set of matching functions, avoiding costly reflexive
calls at runtime.

8 responsible for freeing the memory of not referenced objects
9 See http://www.oracle.com/technetwork/java/gc-tuning-5-138395.html

10 See http://docs.oracle.com/javase/tutorial/essential/concurrency/immutable.html
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D) No fancy dependency. To be embeddable in the wider range of hosting nodes,
the modeling framework must limit its dependencies. The code generated with
KMF depends only on no third-party library.

E) Direct Memory Access for models I/O. KMF uses as much as possible Direct
Memory Access to load and save models from the network or the disk to the
local memory. This principle reduces the need for buffering during model I/O
operations.

4.2 Reduction of the memory footprint

The static footprint reduces the memory available for the dynamic creation of
objects necessary for business processing. It is thus important to watch both
static and dynamic memory requirements of the generated code.

Static memory footprint
To limit the dependencies and thus the static memory footprint, we decided to
restrict the inheritance relationships of our generated code to sibling classes and
elements from standard libraries only.

In a first attempt [8], the source code generated by KMF already allowed
to save some 8 MB of dependencies, and up to 13 MB with the help of a code
shrinker (ProGuard). Now, KMF generates Kotlin code, with an even lighter
static footprint. On the same FSM metamodel, KMF generates 76 KB of code
(including the core API, as well as model loader/serializer, and a query API) to
be compared to the 55 KB of EMF pure code. Including the dependencies (i.e.
the Kotlin standard library), the standalone generated code grows up to 488 KB,
which can again be reduced to 335 KB by removing unused classes from the
standard Kotlin library. Table 1 summarizes the gain of the successive versions of
KMF w.r.t. EMF.

Tool (Language) Effective
Code (KB)

Standalone
Package (MB)

Reduced
Standalone (MB)

EMF (Java) 55 15 No Data

KMF (Kotlin) 76 0,488 0,335

Table 1: EMF and KMF static memory footprint comparison

Thanks to this drastically reduced footprint, KMF has successfully been used
to generate APIs able to run on a large offer of JVM, including mobile and embed-
ded ones: Dalvik 11, Avian 12, JamVM13 or JavaSE for embedded Oracle Virtual
Machine 14.

11 http://www.dalvikvm.com/
12 http://oss.readytalk.com/avian/
13 http://jamvm.sourceforge.net/
14 http://www.oracle.com/technetwork/java/embedded/downloads/javase/index.html
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Dynamic memory footprint
To further improve the dynamic memory usage, we paid more attention to the
creation of temporary objects. One of the main consequence of that is the dropping
of scala.Option [18] (compared to our previous contribution). The new version of
KMF in Kotlin gets rid of these scala.Option because (1) these objects were among
the most frequently created, generating a huge overhead; and (2) Kotlin does not
support such a mechanism but proposes Nullable variables instead. This nullable
mechanism relies on a static check at compile time introducing then no overhead
at runtime.

Table 2 compares the sizes of heap memory used to create the experimental
FSM model (presented in section 3 in EMF, KMF with Scala [8] and finally, KMF
with Kotlin.

Tool (Language) EMF (Java) KMF (Scala) KMF (Kotlin)

Heap Memory Used 140 MB 61 MB 52,2 MB

Table 2: EMF and KMF dynamic memory footprint comparison

This reduction of the memory used also reduces the need for garbage collection,
because less objects are created and disposed. Since the garbage collection in Java
is a rather costly operation, this also participates to the efficiency of the overall
approach.

4.3 Save and Load

Load and save operations are two of the most used operations when dealing with
models at runtime. Indeed, any change in a model may have to be distributed to
other devices taking part in the software system, or stored for history to be po-
tentially restored later on. The performance of these operations can thus generate
a considerable overhead for little manipulations.

As described in section 3, the reflexivity of loaders and the creation of tempo-
rary structures (objects) are two important bottlenecks.

Flat reflexivity
Thanks to the close world assumption, we decided in KMF to generate domain
specific loaders and serializers. This flat generation removes all reflexive calls from
the loading and saving processes making them more efficient.
Avoid temporary objects creation
Usually, (un)marshalling operations rely on an intermediate structure like a DOM
to simplify the mapping from a structure in memory into a persistent structure
(e.g. XML file). However, this implies the creation of complex temporary struc-
tures in memory.
To avoid this costly temporary structure, the loader works directly from the
stream, and creates the final model elements directly. This is possible because
each element of the stream is predictable (close world). Similarly, KMF generates
serializers that directly print in a stream buffer, to avoid unnecessary creation and
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concatenations of Strings.
Minimize class loadings
Previously [8], for each concept of the metamodel (domain), a specific class provid-
ing specific uniquely named loading/saving methods were generated and merged
at compile time. However, if this kind of generation makes a better organization
of the code and eases the reading by a human being, it creates a lot of classes
and requires, at runtime, many costly class-loading operations. Thus, the new ver-
sion of KMF presented in this paper groups all the loading (respectively saving)
methods in a single file to drastically reduce the class loading time part of these
operations.
Several exchange formats
The generative approach enables the generation of loaders and serializers for sev-
eral standard formats. At this time, KMF can generate I/O tools for the standard
XMI and JSON, from files or streams (easier to load on some resource constrained
platforms). They also provide a rich API to enable marshalling and unmarshalling
in compressed formats.

Efficiency measurement
Table 3 summarizes the time required for loading and saving a model from/to
a serialized formed with classical EMF/Java tools, former KMF version and the
new KMF. Again, the measures presented in the table are the results from the
loading and serialization of the experimental FSM model presented in section 3.

Tool (Language) Loading (ms) Saving (ms)

EMF (Java) 1214 7021

KMF (Scala) 1193 799

KMF (Kotlin) 999 802

Table 3: EMF and KMF load and save time

4.4 Concurrent read/write access

The protection against concurrent accesses can be fine-grained, on each individual
model element, or coarse-grained, on the whole model. This section first details
fine-grained protection mechanisms for concurrent reads, then presents coarse-
grained protection with efficient runtime clone operation for concurrent writes.

Concurrent shared model
To allow concurrent read access to model elements and relationships, the code
generated by KMF (1) only uses standard Java thread-safe collections instead of
ad-hoc EMF EList (or similar), which have issues on concurrent usages, and (2)
exposes cloned immutable lists only via its public methods.

Model clone for independent modifications
To allow modifications of models, a simple strategy consists in providing each
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thread with a copy (clone) of the model, so that it can manipulate it independently
from the other threads, with no need for a fine-grained synchronization.

Cloning is a very costly operation, basically because it duplicates entire struc-
tures in memory. In the Java world, this means that every object from the model
A yields a new equivalent object in the model A’. To optimize the cloning of
models, KMF relies on a flat reflexivity model to implement a very efficient, sin-
gle pass, model-cloning operator. Moreover, all clones share the immutable Java
objects like String resources to avoid duplication of invariant objects.

Towards immutable models
The KMF framework offers a method to turn individual model elements into read-
only state. The read-only state cannot be reverted to a read/write structure to
ensure that no process will break this assumption while the model is being pro-
cessed. The only way to obtain a mutable structure is to duplicate the model into
a new semantically identical model by cloning.
In addition, if an element is set as read-only, we also set all its contained elements
and their references to read-only. This ensures that no part of the sub-graph
remains mutable when the root is immutable. To do so, the generated API re-
lies on the flat reflexivity and close world assumption to automatically call the
setReadOnly method on each sub element.

Partial clone operator
Cloning is a very costly operation, because it duplicates the graph structure in
memory, similarly to the fork operation on a Linux process. Despite the semantic
of clone design implies this duplication, runtime optimizations can minimize the
memory usage while keeping the right semantics. To this end, KMF proposes a
partial clone operation.
The basic idea is to duplicate only the mutable parts of model, while sharing
immutable parts between the original model and its clones. Such a mechanism
greatly improves the memory usage while leaving a lot of flexibility to the user.
Indeed, mutable and immutable parts can be defined precisely using the readOnly
operation.

Model A Model A’

Model A’’

clone

clone

immutable zone

mutable zone

mutable zone’’

mutable zone’

immutable proxy

immutable proxy

proxy ref

uses

uses

uses

Fig. 6: Partial clone operator illustration
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Figure 6 illustrates the partial clone operator where a model A is cloned twice,
and the immutable zone is shared between the clones A′ and A′′. The cloned
model has a smaller size than the original model, due to the shared memory zone.
Moreover, since the clones reference the immutable zone, they remain consistent
if the garbage collector frees the model A (i.e.: the immutable zone will not be
collected while at least one clone has a reference on it).

Finally the clone operation uses the readOnly flag to prevent from navigating
or cloning model elements that do not need to be duplicated, thus improving the
cloning time.

Experimental validation
In order to evaluate this smart clone, the experiment takes a model A from the
Cloud domain, containing 400 nodes, and tries two strategies:

1. One node is mutable and we perform a very specific modification, for example
searching for component placement inside this node.

2. all the 400 nodes are mutable, but we fix all static information (mainly related
to provisioning).

The hardware used in this experiment is a Macbook Pro (i7 processor 2.6Ghz
and Oracle JVM 7) and results are presented in table 4.

experimental configuration time to clone
(ms)

memory per
model

Full clone (1 mutable node) 18 705kb

Partial clone (1 mutable node) 0.86 <1kb

Full clone (400 mutable nodes) 19 705kb

Partial clone (400 mutable nodes) 5.36 304kb

Table 4: Partial and Full clone comparison

The clone time goes down from 18 ms to 0.86 ms, while the memory used
for each clone drops from 705kb to less than 1kb per clone, which highlights the
significant gain of memory. Also, even if we take a larger zone of mutable elements,
the gain is still significant with a time reduced from 19 ms to 5.36 ms and each
clone takes twice as less memory as the original. Improving clone performance
enables the use of coarse grain strategies (model unit) instead of relying on costly
synchronized model mutators.

4.5 Efficient Model navigation : KMF Path

As illustrated by the example in section 2.2, activities to be carried on mod-
els@runtime need an efficient way to look up and navigate across model elements.
In particular, during the model comparison steps, the merge and check operations
require an efficient tool to reach a specific element in the model. To enable this
efficient research, KMF leverages the notion of Unique Identifier from relational
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databases, which should be declared in the metamodel using the ‘id‘ field, already
present in Ecore.

This section introduces the Path Selector (KMFQL-PS) of the Kevoree Mod-
eling Framework Query Language (KMFQL), which uses the id attribute specified
in the metamodel, as the unique key to find a model element by following model
relationships.

Approach
Directly inspired by the select operator of relational databases and by XPath[4],
KMFQL-PS defines a query syntax aligned with the MOF concepts. The nav-
igation through a relationship can be achieved with the following expression:
relationName[IDAtrributeValue]. This expression defines the PATH of an
element in a MOF relationship. Several expressions can be chained to recursively
navigate the nested models. Each expression is delimited by a /. It is thus possible
to build a unique path to a model element, by chaining all sub-path expressions
needed to navigate to it from the root model element, via the containment rela-
tionships.

In our illustrating example, the “name” attribute is defined as the ID attribute
of NamedElement, and we know precisely where the component instance is hosted
(i.e. the path to the model element in the model). The numerous nested loops
presented in section 3 are now reduced to the piece of code presented in listing 1.2.

Listing 1.2: Collect of the FakeConsole component instance with KMFQL-PS.

ComponentInstance fConso le2 = model . findByPath ( ”nodes [ node6 ] ”
+ ”/ hos t s [ node7 ] / hos t s [ node8 ] / hos t s [ node4 ] ”
+ ”/components [ FakeConso380 ] ” ,
ComponentInstance . class ) ;

Implementation details
KMF generates hash-tables in place of simple collections, for each relationship.
Then, each time a model element is added in/removed from a relationship, it is
stored in this hash-table. Hash keys are computed from the ID attributes, or are
automatically generated if this ID is not defined.

The keys in the hash-tables are equivalent to indexes in noSQL databases.
Also, even if the use of hash-tables introduces a slight memory overhead, it con-
siderably speeds up the resolution of the paths (i.e. the retrieval of a model ele-
ment). Moreover, the hash-tables allow to get rid of the high number of temporary
objects created when looping, which favours the scalability on limited execution
environments such as in the IoT domain.

Experimental validation15

We performed an evaluation of this feature on the model presented in Section 2.2
(Figure 3). The APIs have been generated with EMF (2.7) and KMF, and the
XMI model has been loaded prior. Then, as explained in section 2.2, we collected

15 The code and more documentation about this experiment can be found within
the KMF Github repository: https://github.com/dukeboard/kevoree-modeling-
framework/blob/master/doc/kmf path.md
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the “FakeConsole380” model element with both plain Java approach (listing 1.1)
and KMFQL-PS (listing 1.2).

For this resolution, the plain Java approach with EMF takes 954µs to exe-
cute, while the same resolution in KMFQL-PS takes 37µs on the same hardware
(i7 processor 2.6Ghz and Oracle JVM 7). The resolution of already known model
elements with KMFQL-PS is thus 25.7 times faster than the approach using nested
for-loops applied on EMF models. Also the algorithmic complexity has been sig-
nificantly reduces compared to the nested for-loops approach (see section 2.2), to
O(log(n) × log(o) × log(p) × log(q) × log(r)), which confers a better scalability to
the approach.

5 Evaluations

5.1 Overview

Each requirement has previously been evaluated in the dedicated sub-sections of
Section 4. The aim of this section is to provide more insights on the performances
of KMF over different models, from different domains, with different sizes and
features.

5.2 Experimental protocol

The experimental protocol is composed by the following steps, which compose a
standard process when using models at runtime. For each model / domain:

1. The model, previously serialized in the XMI standard format, is loaded from
a file (repeated 10 time),

2. The model is then cloned (100 repetitions) to prepare a search/comparison,

3. One clone and the original model are compared (1 time), element by element,

4. Finally, the clone is serialized (10 repetitions) in a file, in XMI format.

This process is repeated on models of various sizes, conforming to three rep-
resentative metamodels:

1. Kevoree: the platform leveraging Model@Runtime previously detailed in this
paper [9,10]

2. Kermeta: a model-oriented language developed by the Triskell Team to define
the operational semantics of models [17]

3. ThingML: an operational DSL dedicated to the Internet of Thing (embedded
systems connected to the Internet) [7]

All the experiments are run on the same hardware as the one used to evaluate
EMF in the requirements section (i.e. MacBook pro, Intel Core i7 2.6Go, 16Go
RAM and SSD drive). The JVM used is the Oracle standard JVM 7 and all
files and code used during the experiment are publicly available on the project
Github16.

16 https://github.com/dukeboard/kevoree-modeling-framework/tree/master/sosym-evaluations
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5.3 Results

Generalization of performance improvement on different metamodels
The benchmark is executed on a first set of models conforming to Kermeta and
ThingML metamodels. Their sizes span from 100 to 6000 elements, and have
different structures implied by their metamodels.
The results of KMF and EMF when dealing with Kermeta and ThingML models
are graphed in Figure 7 and Figure 8.
It is important to note that the metamodels (as well as the models) of Kermeta
and ThingML are used as-is and have not been modified to leverage the specific
capabilities of KMF (in particular the definition of IDs).

Updated model Loading (ms) Cloning  (ms) Lookup  (ms) Saving   (ms) with path  without path
Class2Rdbms (EMF) elts: 6393, id: 0% 786 822 3639 350 NN NN 5597
Class2Rdbms (KMF) elts: 6393, id: 0% 383 345 3819 270 0 6393 4817

Y Kompren (EMF) elts: 6393, id: 0% 2379 872 4265 791 NN NN 8307
Y Kompren (KMF) elts: 6393, id: 0% 1145 396 4105 709 0 6393 6355

TestHello (EMF) elts: 6393, id: 0% 552 871 3738 353 NN NN 5514
TestHello (KMF) elts: 6393, id: 0% 263 364 3978 476 0 6393 5081

model Loading(ms) Cloning(ms) Lookup(ms) Saving(ms) with path  without path
Kevoree:CloudModel (EMF) elts:33644, id:18% 232 445 65702 633 NN NN 67012
Kevoree:CloudModel (KMF) elts:33644, id:18% 315 150 46260 413 6177 27467 47138
Kevoree:HugeCloud (EMF) elts:24770, id:99% 246 621 33873 368 NN NN 35108
Kevoree:HugeCloud (KMF) elts:24770, id:99% 655 134 1231 461 24537 233 2481
Kevoree:CloudErw (EMF) elts:21644, id:28% 174 127 26634 362 NN NN 27297
Kevoree:CloudErw (KMF) elts:21644, id:28% 276 83 1572 307 6177 15467 2238
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Thingml:Dcrm (KMF) elts: 1472, id: 0% 68 26 360 108 0 1472 562
Thingml:Flood (EMF) elts: 671, id: 0% 64 17 115 149 NN NN 345
Thingml:Flood (KMF) elts: 671, id: 0% 40 15 173 81 0 671 309
Thingml:Helloworld (EMF) elts: 111, id: 0% 13 5 48 111 NN NN 177
Thingml:Helloworld (KMF) elts: 111, id: 0% 12 7 58 34 0 111 111

Fig. 7: Evaluation of KMF and EMF on Kermeta models
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Fig. 8: Evaluation KMF and EMF on ThingML models

Overall, the code generated by KMF tends to be more efficient than the one
with EMF (in addition to other benefits such as thread safety, discussed in Sec-
tion 4), with an average gain of 28% on our benchmarks. This confirms that KMF
is generalizable, even if the metamodels have not been optimized for KMF gener-
ation.
Also, we observe in these experiments that the optimization of the generated API
can not go beyond the limit of 30% of gain, because of the graph complexity of
models. This advocates for the need of new features to reduce more significantly
the algorithmic complexity, such as partial clone and query language which are
evaluated in the next two sections.

Performance evaluation of the KMFQL-PS
The metamodels of Kermeta and ThingML do not define IDs and thus, do not
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leverage KMF optimized paths. A second set of models, describing the topology
of cloud stacks (software, platform and infrastructure), is created. These models
have different size, ranging from 876 to 33644 elements. This second experiment
varies the use of ID definitions and the size of the models in order to evaluate the
impact of the new KFM concepts.

Three cloud models have been selected depending of their percentage of ID
definition (18, 28 and 99%). As a reminder the KMF lookup method reuse ID
information to speed-up the resolution. The results are presented in Figure 9.
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Fig. 9: KMF results on Kevoree models (models@runtime)

This evaluation clearly highlights the benefit of defining ID attributes on model
elements. The code generated with KMF already allows gaining time compared
to the EMF approach, with a very low percentage of ID definition (18%) as illus-
trated by the first grey line in figure 9. This gain is made even more important
as the percentage of model elements that have an ID grows (grey lines 2 and 3
of the figure, with respectively 28% and 99% of elements with IDs). The most
significant gain is clearly on the lookup resolution, extensively used for compar-
ison, merging, composition, etc. From a wider point of view, the global process
of loading, cloning, searching and saving is reduced from 35s, with EMF, to less
than 2.5s with the optimized KMF.

Performance evaluation of the Partial Cloning mechanism
The final experimentation aims at assessing the improvements brought by the
use of partial clones. To highlight the gain, a cloud model is used. In this model,
several nodes are containing other nodes and components. The readOnly option
offered by KMF is progressively applied on 20, 40, 60, 80 and 99% of the model.
For each percentage, the clone in KMF is compared with the clone in EMF.
The results are graphed in figures 10 and 11. We observe that the reduction of
time to clone the model is close to be inversely proportional to the percentage of
readOnly elements(i.e. the more readOnly elements, the less time required).
The Figure 11 presents the result of the same experiment with EMF without any
readOnly optimization. Such results are taken only for reference, because EMF
can only perform a full clone, time is then not impacted by the percentage of
readOnly elements, and remains to a value around 204ms.

The results clearly show that the individual features of KMF presented and
preliminary assessed in Sectionsec:contrib, also significantly improve the perfor-
mances of a complete models@runtime process. The performance gains compared
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to the first experiment clearly emphasize the role of the KMF-specific features
(partial cloning and path) in this performance improvement.

6 Conclusion

This paper discusses the needs for adapting the way of using MDE techniques cre-
ated for design time activities, to support the use of models at runtime. To this
end, several requirements are described, and the de facto standard in the MDE
community, i.e. the Eclipse Modeling Framework (EMF), is evaluated against
these requirements. After this evaluation, this paper presents the Kevoree Mod-
eling Framework (KMF) as an alternative solution to create modeling tools more
suitable for runtime purposes.

This paper has presented the evolutions of the KMF generated code, accord-
ing to what was presented in [8]. The new version of KMF offers better perfor-
mances with a reduced footprint, allowing to embed KMF more easily in resource-
constrained JVM such as Android or Embedded Java.

This new version of KMF also introduces several new features. KMF now
provides a way to handle concurrency at the level of the model, with the ability
to define fragments as read-only. This latter option is particularly useful when
combined with the new clone operator, making it possible to factorize read-only
fragments among model clones (hence saving memory) while the mutable part is
specific to each clone. Finally, KMF also provides a query language to directly
access a model element by providing a path, inspired by well-established work in
the database domain.

This new version of KMF has been compared to EMF and the initial version of
KMF [8]. These evaluations clearly show the gain offered by the KMF generated
API in several domains, with an average gain of 28% in time with respect to the
EMF implementation. Then we highlighted the need to rethink some modeling
operators such as cloning and lookup to make them more efficient at runtime. The
empirical evaluation clearly shows that the use of unique identifiers and KMFQL-
PS saves lots of computation time.

This work finds several application cases in domains like Internet of Things,
Cloud management or dynamic adaptation of software systems. The opportunities
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of application are also augmented by the good performances of the KMF generated
code and the reduction of the memory required compared to EMF generated code.
These good properties should enable a wider use of models at runtime in industrial
scale projects.

In future work, we plan to port KMF to JavaScript, to make the generated
API available directly in web-browsers, making it possible to develop web-based,
massively distributed, collaborative modeling environment. Finally, also plan use
and extend KMF in the context of Big Data models. Because of their particularly
big size, these models cannot be entirely loaded in memory and require seam-
less memory swapping between memory and disk. Based on existing works [21,1],
several approaches are currently being tested to offer MDE WITH seamless ma-
nipulation solutions for these big models, mostly inspired by noSQL database
approaches.
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Jean-Marc Jézéquel. Dissemination of reconfiguration policies on mesh networks. In
12th International IFIP Conference on Distributed Applications and Interoperable Systems
(DAIS’12), Stockholm, Suède, June 2012.
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11. Sören Frey, Florian Fittkau, and Wilhelm Hasselbring. Search-based genetic optimization
for deployment and reconfiguration of software in the cloud. In Proceedings of the 2013
International Conference on Software Engineering, pages 512–521. IEEE Press, 2013.

23



12. Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, 1994.

13. Florian Heidenreich, Jendrik Johannes, Sven Karol, Mirko Seifert, and Christian Wende.
Derivation and refinement of textual syntax for models. In Richard Paige, Alan Hartman, and
Arend Rensink, editors, Model Driven Architecture - Foundations and Applications, volume
5562 of Lecture Notes in Computer Science, pages 114–129. Springer Berlin / Heidelberg,
2009.

14. G. Kiczales, J. Des Rivieres, and D.G. Bobrow. The art of the metaobject protocol. The MIT
press, 1991.

15. Bernhard Merkle. Textual modeling tools: overview and comparison of language work-
benches. In Proceedings of the ACM international conference companion on Object oriented
programming systems languages and applications companion, SPLASH ’10, pages 139–148,
New York, NY, USA, 2010. ACM.

16. Brice Morin, Franck Fleurey, Nelly Bencomo, Jean-Marc Jézéquel, Arnor Solberg, Vegard
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