3,986 research outputs found

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Classifying and evaluating architecture design methods

    Get PDF
    The concept of software architecture has gained a wide popularity and is generally considered to play a fundamental role in coping with the inherent difficulties of the development of large-scale and complex software systems. This document first gives a definition of architectures. Second, a meta-model for architecture design methods is presented. This model is used for classifying and evaluating various architecture design approaches. The document concludes with the description of the identified problems

    Software Product Line

    Get PDF
    The Software Product Line (SPL) is an emerging methodology for developing software products. Currently, there are two hot issues in the SPL: modelling and the analysis of the SPL. Variability modelling techniques have been developed to assist engineers in dealing with the complications of variability management. The principal goal of modelling variability techniques is to configure a successful software product by managing variability in domain-engineering. In other words, a good method for modelling variability is a prerequisite for a successful SPL. On the other hand, analysis of the SPL aids the extraction of useful information from the SPL and provides a control and planning strategy mechanism for engineers or experts. In addition, the analysis of the SPL provides a clear view for users. Moreover, it ensures the accuracy of the SPL. This book presents new techniques for modelling and new methods for SPL analysis

    An Adaptive Integration Architecture for Software Reuse

    Get PDF
    The problem of building large, reliable software systems in a controlled, cost-effective way, the so-called software crisis problem, is one of computer science\u27s great challenges. From the very outset of computing as science, software reuse has been touted as a means to overcome the software crisis issue. Over three decades later, the software community is still grappling with the problem of building large reliable software systems in a controlled, cost effective way; the software crisis problem is alive and well. Today, many computer scientists still regard software reuse as a very powerful vehicle to improve the practice of software engineering. The advantage of amortizing software development cost through reuse continues to be a major objective in the art of building software, even though the tools, methods, languages, and overall understanding of software engineering have changed significantly over the years. Our work is primarily focused on the development of an Adaptive Application Integration Architecture Framework. Without good integration tools and techniques, reuse is difficult and will probably not happen to any significant degree. In the development of the adaptive integration architecture framework, the primary enabling concept is object-oriented design supported by the unified modeling language. The concepts of software architecture, design patterns, and abstract data views are used in a structured and disciplined manner to established a generic framework. This framework is applied to solve the Enterprise Application Integration (EM) problem in the telecommunications operations support system (OSS) enterprise marketplace. The proposed adaptive application integration architecture framework facilitates application reusability and flexible business process re-engineering. The architecture addresses the need for modern businesses to continuously redefine themselves to address changing market conditions in an increasingly competitive environment. We have developed a number of Enterprise Application Integration design patterns to enable the implementation of an EAI framework in a definite and repeatable manner. The design patterns allow for integration of commercial off-the-shelf applications into a unified enterprise framework facilitating true application portfolio interoperability. The notion of treating application services as infrastructure services and using business processes to combine them arbitrarily provides a natural way of thinking about adaptable and reusable software systems. We present a mathematical formalism for the specification of design patterns. This specification constitutes an extension of the basic concepts from many-sorted algebra. In particular, the notion of signature is extended to that of a vector, consisting of a set of linearly independent signatures. The approach can be used to reason about various properties including efforts for component reuse and to facilitate complex largescale software development by providing the developer with design alternatives and support for automatic program verification

    Colored model based testing for software product lines (CMBT-SWPL)

    Get PDF
    Over the last decade, the software product line domain has emerged as one of the mostpromising software development paradigms. The main benefits of a software product lineapproach are improvements in productivity, time to market, product quality, and customersatisfaction.Therefore, one topic that needs greater emphasis is testing of software product lines toachieve the required software quality assurance. Our concern is how to test a softwareproduct line as early as possible in order to detect errors, because the cost of error detectedIn early phases is much less compared to the cost of errors when detected later.The method suggested in this thesis is a model-based, reuse-oriented test technique calledColored Model Based Testing for Software Product Lines (CMBT-SWPL). CMBT-SWPLis a requirements-based approach for efficiently generating tests for products in a soft-ware product line. This testing approach is used for validation and verification of productlines. It is a novel approach to test product lines using a Colored State Chart (CSC), whichconsiders variability early in the product line development process. More precisely, the vari-ability will be introduced in the main components of the CSC. Accordingly, the variabilityis preserved in test cases, as they are generated from colored test models automatically.During domain engineering, the CSC is derived from the feature model. By coloring theState Chart, the behavior of several product line variants can be modeled simultaneouslyin a single diagram and thus address product line variability early. The CSC representsthe test model, from which test cases using statistical testing are derived.During application engineering, these colored test models are customized for a specificapplication of the product line. At the end of this test process, the test cases are generatedagain using statistical testing, executed and the test results are ready for evaluation. Inxaddition, the CSC will be transformed to a Colored Petri Net (CPN) for verification andsimulation purposes.The main gains of applying the CMBT-SWPL method are early detection of defects inrequirements, such as ambiguities incompleteness and redundancy which is then reflectedin saving the test effort, time, development and maintenance costs

    Web Engineering for Workflow-based Applications: Models, Systems and Methodologies

    Get PDF
    This dissertation presents novel solutions for the construction of Workflow-based Web applications: The Web Engineering DSL Framework, a stakeholder-oriented Web Engineering methodology based on Domain-Specific Languages; the Workflow DSL for the efficient engineering of Web-based Workflows with strong stakeholder involvement; the Dialog DSL for the usability-oriented development of advanced Web-based dialogs; the Web Engineering Reuse Sphere enabling holistic, stakeholder-oriented reuse

    OpenUP/MDRE: A Model-Driven Requirements Engineering Approach for Health-Care Systems

    Full text link
    The domains and problems for which it would be desirable to introduce information systems are currently very complex and the software development process is thus of the same complexity. One of these domains is health-care. Model-Driven Development (MDD) and Service-Oriented Architecture (SOA) are software development approaches that raise to deal with complexity, to reduce time and cost of development, augmenting flexibility and interoperability. However, many techniques and approaches that have been introduced are of little use when not provided under a formalized and well-documented methodological umbrella. A methodology gives the process a well-defined structure that helps in fast and efficient analysis and design, trouble-free implementation, and finally results in the software product improved quality. While MDD and SOA are gaining their momentum toward the adoption in the software industry, there is one critical issue yet to be addressed before its power is fully realized. It is beyond dispute that requirements engineering (RE) has become a critical task within the software development process. Errors made during this process may have negative effects on subsequent development steps, and on the quality of the resulting software. For this reason, the MDD and SOA development approaches should not only be taken into consideration during design and implementation as usually occurs, but also during the RE process. The contribution of this dissertation aims at improving the development process of health-care applications by proposing OpenUP/MDRE methodology. The main goal of this methodology is to enrich the development process of SOA-based health-care systems by focusing on the requirements engineering processes in the model-driven context. I believe that the integration of those two highly important areas of software engineering, gathered in one consistent process, will provide practitioners with many benets. It is noteworthy that the approach presented here was designed for SOA-based health-care applications, however, it also provides means to adapt it to other architectural paradigms or domains. The OpenUP/MDRE approach is an extension of the lightweight OpenUP methodology for iterative, architecture-oriented and model-driven software development. The motivation for this research comes from the experience I gained as a computer science professional working on the health-care systems. This thesis also presents a comprehensive study about: i) the requirements engineering methods and techniques that are being used in the context of the model-driven development, ii) known generic but flexible and extensible methodologies, as well as approaches for service-oriented systems development, iii) requirements engineering techniques used in the health-care industry. Finally, OpenUP/MDRE was applied to a concrete industrial health-care project in order to show the feasibility and accuracy of this methodological approach.Loniewski, G. (2010). OpenUP/MDRE: A Model-Driven Requirements Engineering Approach for Health-Care Systems. http://hdl.handle.net/10251/11652Archivo delegad
    corecore