
Web Engineering for

Workflow-based Applications:

Models, Systems and Methodologies

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
der Universität Fridericiana zu Karlsruhe (TH)

genehmigte

Dissertation

von

Patrick Freudenstein

aus Ludwigsburg

Tag der mündlichen Prüfung: 14.07.2009

Erster Gutachter: Prof. Dr. Wilfried Juling

Zweiter Gutachter: Prof. Dr. Hartmut Schmeck

Acknowledgements

Working towards this thesis, I received manifold support for which I am very grateful
and would like to express my appreciation for.

First of all, I would like to thank my supervisor Prof. Dr. Wilfried Juling for giving me
the great opportunity to join his research group at the Karlsruhe Institute of
Technology’s (KIT) Institute of Telematics as well as for leaving me valuable freedom
and scope for my research. Furthermore, I would like to thank Prof. Dr. Hartmut
Schmeck for his work and assistance as second referee as well as Prof. Dr. Andreas
Oberweis and Prof. Dr. Sebastian Abeck for acting as examiners in my disputation.

During my time at the KIT, I had the luck to work with excellent and highly motivated
colleagues and students in a friendly and inspiring atmosphere, for which I am
particularly grateful. I would like to thank my colleagues Jan Buck, Prof. Dr. Martin
Gaedke, Frederic Majer, Dr. Johannes Meinecke and Dr. Martin Nußbaumer from the
IT Management and Web Engineering Research Group (MWRG) for the numerous
stimulating discussions and fruitful joint work. I would also like to thank Ina Dvorak
for assisting me with administrative work and for her cheerful way of resolving
problems. I am thankful to Martin N. for managing the group’s transition so
smoothly as well as for his continuous helpfulness and support, proficient advice and
our successful collaboration throughout the years. I am particularly thankful to
Frederic who stood by my side throughout all the hard work and made it much more
enjoyable. Being my best friend, he has also been a great mentor, always available
for discussing questions and a unique source of creativity.

Furthermore, I am thankful to my graduate students Florian Allerding, Christoph
Augenstein, Marko Böttger, Jan Buck, Thorsten Höllrigl, Kristina Jochim, Leila
Karademir, Nikolay Orozov, Frank Schell, Denny Setiawan and Frédéric Wenzel for
their high enthusiasm, commitment and valuable contributions to my research.

The project ‘Karlsruhe’s Integrated InformationManagement (KIM)’ and the people
involved therein presented a central pillar of my work at the KIT. As a dynamic and
motivated team, we have succeeded numerous ambitious accomplishments, often
beyond the team member’s actual responsibilities. As representatives for the entire
team, I would like to thank Jan Buck, Thorsten Höllrigl, Stefan Link, Lei Liu, Frederic
Majer, Axel Maurer, Christof Momm, Daniel Ried, Frank Schell, Wilhelm Sievers and

vi Acknowledgements

Marek Šiller for the great time, the joint efforts and the friendly atmosphere in the
KIM Labs.

Moreover, I am thankful to all my friends and former colleagues who have supported
me in my personal development and encouraged me in my decision to take the path
towards doing a PhD. In this regard, I would like to particularly thank Dr. Dietger
Bansberg, Dr. Stefan Feyrer and Sabine Schnarrenberger for their great sponsorship,
mentoring and deep friendship.

Finally, I would like to express my particular gratitude to my parents Jutta and Gerd
for conveying me the values and principles which made my path of life and this
thesis possible in the first place. They, together with my brother Moritz and my
grandparents, have always and unconditionally supported and encouraged me and
enriched my life with kindness and happiness. I have special thanks for my
grandfather Werner who sparked my interest in programming already in my early
childhood and thus laid the foundation for my development as a computer scientist.
I learnt so much from him and he will always be a great role model for me.

Above all, I would like to thank my fiancée Dana for her unique and unlimited
understanding during these intense years. She has always supported and encouraged
me and infected me with her happiness. Thank you so much, Dana!

Zusammenfassung

Workflowbasierte Web Anwendungen stellen eine eigenständige, stark an Bedeu-
tung gewinnende Generation von Anwendungen dar, die auf den Technologien und
Standards des World Wide Web Consortiums (W3C) aufbauen sowie Dienste und
Inhalte über den Browser anbieten. Zu deren Evolution haben primär drei Faktoren
beigetragen: Erstens, die weitreichende, durch erfolgreiche Standardisie-
rungsbemühungen getriebene Akzeptanz und Etablierung des Konzepts der service-
orientierten Architektur (SOA). Zweitens, die unter dem Schlagwort „Web 2.0“
subsummierte neue Generation hochgradig interaktiver Web Anwendungen und
Basistechnologien. Drittens, der aus Sicht von Unternehmen dringende Bedarf einer
durchgängigen und flexiblen IT-basierten Geschäftsprozessunterstützung über
System- und Organisationsgrenzen hinweg. Vor diesem Hintergrund bieten
workflowbasierte Web Anwendungen eine homogene, integrative und plattform-
unabhängig verfügbare Benutzungsschnittstelle zur effektiven Abwicklung von
Geschäftsprozessen.

Aus technischer Sicht ergeben sich hierdurch vielfältige Anforderungen, die zur
Erzielung einer effizienten und effektiven Entwicklung workflowbasierter Web An-
wendungen zu adressieren sind. Dies betrifft insbesondere die Bereiche der Prozess-
steuerung und der Benutzungsschnittstelle sowie weitere, aus den spezifischen Cha-
rakteristika von Web Anwendungen resultierende Herausforderungen. Hierzu zählen
beispielsweise kurze Entwicklungs- und Evolutionszyklen, die zunehmende Bedeu-
tung von Ästhetik und Benutzungsfreundlichkeit, die Vielfalt an Zugriffskanälen
sowie die ausgeprägte Heterogenität der zukünftigen Nutzer und der an der Ent-
wicklung beteiligten Personen (engl. „Stakeholder“). Des Weiteren stellen die Viel-
zahl unterschiedlicher Entwicklungs-Artefakte sowie die inhärente Dokumentenzen-
triertheit des Web grundlegende Spezifika von Web Anwendungen dar.

Neben den genannten Problemstellungen kommt aus einer kommunikations- und
kollaborationsorientierten Sichtweise der intensiven und effektiven Einbindung von
Stakeholdern eine zentrale Bedeutung zu. In verschiedenen Studien wurde die man-
gelhafte Einbindung und Kommunikation mit allen relevanten Personengruppen als
einer der Hauptgründe für das Scheitern von Softwareprojekten identifiziert. Dies gilt
insbesondere im Kontext workflowbasierter Web Anwendungen, für die eine effek-
tive Kommunikation bezüglich der abzubildenden Geschäftsprozesse und Aktivitäten

viii Zusammenfassung

wesentlich ist. Darüber hinaus kann der dabei relevante Personenkreis entsprechend
der Komplexität zu betrachtender Geschäftsprozesse hochgradig heterogen sein.

Vor diesem Hintergrund präsentiert die vorliegende Dissertation einen modellgetrie-
benen Ansatz zur Konstruktion workflowbasierter Web Anwendungen mit besonde-
rem Fokus auf die effiziente und effektive Einbindung von Stakeholdern. Aufbauend
auf einer systematischen Analyse der Problemdomäne wurden neuartige Konzepte,
Modelle, Systeme und Methodiken entwickelt und evaluiert, die einen wesentlichen
Beitrag zum aktuellen Stand der Technik darstellen. Im Einzelnen liefert die Arbeit
folgende Beiträge:

Web Engineering DSL Rahmenwerk: Als konzeptionelle Grundlage für eine intensi-
vere und effektivere Zusammenarbeit mit Stakeholdern bei der Entwicklung von
Web Anwendungen wird ein neuartiger modellgetriebener Konstruktionsansatz
präsentiert, der auf domänenspezifischen Sprachen (DSLs) fußt. Ziel ist es,
Stakeholder in die Lage zu versetzen, eigenständig Teile der Lösung validieren,
modifizieren und auch spezifizieren zu können. Das Rahmenwerk sieht die
Verwendung verschiedener, stark fokussierter DSLs für die einzelnen Aspekte einer
Web Anwendung vor. Dabei erlaubt die DSL-Spezifikation die Integration auf
bestimmte Stakeholdergruppen und Prozessphasen zugeschnittener Notationen und
Werkzeuge. Dadurch kann deren Erlernbarkeit und Anwendbarkeit sowohl für
Entwickler als auch für Stakeholder mit geringen IT-Kenntnissen signifikant
verbessert werden. Der vorgestellte Ansatz bietet eine neuartige Alternative zu den
existierenden schwergewichtigen und monolithischen Modellierungsansätzen im
Web Engineering, die primär für die Verwendung innerhalb von Entwicklerteams
entworfen wurden. Web Anwendungen werden somit evolutionär durch
Komposition spezifischer Softwarekomponenten und deren Konfiguration durch DSL-
Programme in Form von Stakeholder-orientierten Modellen konstruiert und
weiterentwickelt.

Der „Workflow-DSL“-Ansatz: Eine Anwendung des DSL-Konzepts zur Stakeholder-
orientierten und vollständig modellgetriebenen Konstruktion workflowbasierter Web
Anwendungen stellt die Workflow DSL dar. Durch den Ansatz wird eine holistische
Spezifikation von Workflow-Aspekten und webbasierten Benutzungsschnittstellen
für die effiziente und effektive Abwicklung von Workflow-Aufgaben möglich. Das der
DSL zugrunde liegende formalisierte Schema stellt eine neuartige, auf weitverbreite-
ten Standards und deren nativen Erweiterungsmechanismen basierende, konzeptio-
nelle Grundlage zur integrierten Spezifikation dieser Aspekte dar. Die Workflow DSL
erlaubt die iterative Modellierung workflowbasierter Web Anwendungen mittels
verschiedenster bekannter Notationen und Werkzeuge in Abhängigkeit des Ent-
wicklungsfortschritts und der Bedürfnisse der jeweiligen Stakeholdergruppe. Für die
einfache Modellierung einzelner Workflow-Aktivitäten wird ein Katalog webspezifi-
scher Aktivitätsbausteine wie zum Beispiel dialogbasierte Interaktion, Datenpräsen-
tation oder Web Service Kommunikation eingeführt. Für jeden dieser hochgradig
wiederverwendbaren Bausteine wird die minimal benötigte, typspezifische Konfigu-
rationsmenge allgemeingültig und implementierungsunabhängig definiert.

Zur Erzielung eines neuartigen Grads an Modellkontinuität und -konsistenz wird ein
neues Konzept zur Überwindung der Heterogenität existierender Geschäftsprozess-

Zusammenfassung ix

modellierungssprachen vorgestellt. Dieses bisher ungelöste Problem wird durch eine
wohldefinierte Menge allgemeiner Geschäftsprozess- und Workflow-Konzepte
adressiert, die von individuellen Notationen und Sprachen abstrahiert und die
Grundlage zur Erzielung semantischer Kongruenz darstellt. Obwohl dadurch nicht
alle theoretisch möglichen Konstrukte einbezogen werden, bestätigen umfangreiche
empirische Evaluationen eine ausreichende Abdeckung von in der Praxis auftreten-
den Geschäftsprozessmodellen. Darauf aufbauend wird ein erweiterbares Rahmen-
werk für verlustfreie, bilaterale Modelltransformationen präsentiert, wodurch
schließlich ein notationsübergreifender Modellierungsansatz erzielt wird.

Die technische Unterstützungsplattform verwirklicht die vollständig automatisierte
Konstruktion workflowbasierter Web Anwendungen auf Basis eines gegebenen
Workflow DSL-Modells. Das dabei realisierte Architekturkonzept ist dienstorientiert
ausgelegt, wodurch die Grundlage zur Realisierung föderativer Szenarien sowie mul-
timodaler Partizipation geschaffen wird. Der automatisierte Konstruktionsprozess,
die konsistente Propagierung von Änderungen sowie die Möglichkeit eines detaillier-
ten, DSL-basierten Entwurfs der webbasierten Benutzungsschnittstelle zur Laufzeit
fördern eine agile und evolutionsorientierte Entwicklungsmethodik.

Der „Dialog-DSL“-Ansatz: Effektive dialogbasierte Benutzerinteraktion stellt den
zentralen Baustein des oben genannten Katalogs zur webbasierten Unterstützung
von Geschäftsprozessaktivitäten dar. Die Dialog DSL stellt neuartige Modelle, Werk-
zeuge und ein Vorgehensmodell zur vollständig modellgestützten Entwicklung kom-
plexer und hochgradig dynamischer Dialogkomponenten bereit. Dabei stehen As-
pekte der Benutzungsfreundlichkeit sowie die effektive Einbindung von Stakeholdern
im Vordergrund. Während existierende Lösungen immer noch eine traditionelle,
überwiegend präsentations- und technikgetriebene Entwicklungsmethodik verfol-
gen, lenkt die Dialog DSL bereits zur Entwurfszeit den Fokus auf die Berücksichtigung
und Integration von Aspekten der Benutzungsfreundlichkeit und insbesondere dy-
namischem Verhalten. Dadurch werden die Potenziale webbasierter Dialoge effekti-
ver genutzt und eine kognitive Überlastung zukünftiger Nutzer vermieden. Ein
weiterer wesentlicher Fortschritt zum gegenwärtigen Stand der Technik stellt die
hervorragende Anwendbarkeit des Ansatzes für Stakeholder mit wenig oder keinen
IT-Kenntnissen dar, die durch formale empirische Experimente nachgewiesen wurde.
In diesem Kontext wurden auch signifikante Effizienzsteigerungen gegenüber existie-
renden Ansätzen nachgewiesen. Die resultierenden Dialogmodelle sind plattform-
unabhängig und werden zur Laufzeit dynamisch entsprechend den Charakteristika
der anfragenden Clients transformiert. Zur Unterstützung einer agilen und evolu-
tionsorientierten Entwicklungsmethodik unterstützt der Ansatz die automatische
Generierung webbasierter Dialoge, beispielsweise entsprechend des W3C XForms-
Standards, sowie die durchgängig modellbasierte Spezifikation mit Hilfe eines web-
basierten Editors.

Der „Web Engineering Reuse Sphere“-Ansatz: Besonders modell- und komponen-
tenbasierte Ansätze, wie die in dieser Arbeit vorgestellten, können von einer effekti-
ven Wiederverwendungsunterstützung profitieren. Um Wiederverwendungspotenzi-
ale nicht wie bisher nur auf eine bestimmte Art von Artefakten oder Entwick-
lungsmethodik zu beschränken, stellt die Web Engineering Reuse Sphere einen holis-
tischen, artefakt- und methodenübergreifenden Ansatz für die stark heterogene

x Zusammenfassung

Web Engineering-Domäne dar. Ein an Prinzipien aus dem Bereich Enterprise Applica-
tion Integration (EAI) angelehnte Referenzarchitektur unterstützt neben der geplan-
ten auch die spontane Wiederverwendung, wodurch Artefakte während ihres
gesamten Lebenszyklus zur Wiederverwendung nutzbar werden. Zur semantischen
Verknüpfung und Homogenisierung der verschiedenen Artefakt-Typen und Web
Engineering-Methodiken wurde auf Basis von Semantic Web-Standards eine Ontolo-
gie für die Problemdomäne entwickelt. Dabei wird die Berücksichtigung von Stake-
holder-Fähigkeiten als Schlüsselfaktor für die Effektivität der Wiederverwendung
aufgefasst, d.h. die Befähigung wiederverwendbare Artefakte zu verstehen, zu eva-
luieren und ggf. anzupassen und zu verwenden. Demzufolge werden auf Basis der
Ontologie neuartige wissensbasierte Suchstrategien realisiert, die auch Stakeholder
ohne Expertenwissen in die Lage versetzen, effizient geeignete Methodiken und Ar-
tefakte für gegebene Probleme und in Übereinstimmung mit ihren individuellen
Fähigkeiten zu finden. In Anbetracht aktueller Konsolidierungs- und Interoperabili-
tätsinitiativen im Web Engineering stellt der Ansatz einen wertvollen Beitrag zur
tatsächlichen Verwirklichung methodenübergreifender Wiederverwendung dar.
Darüber hinaus bildet er auch eine ideale Ergänzung des Web Engineering DSL
Rahmenwerks, indem er Stakeholder beim Finden individuell geeigneter DSLs,
Modellierungsnotationen, Werkzeuge und assoziierter Artefakte unterstützt.

Die in dieser Dissertation vorgestellten neuartigen Konzepte, Modelle, Systeme und
Methodiken stellen einen wesentlichen Fortschritt zur effizienten und effektiven
Entwicklung workflowbasierter Web Anwendungen mit Stakeholdern dar. Sie adres-
sieren erfolgreich die identifizierten Anforderungen und bislang ungelösten Prob-
leme. Die vorgestellten Ansätze wurden erfolgreich implementiert und in verschie-
denen Szenarien evaluiert. Dies geschah sowohl durch formale empirische Studien
und Experimente als auch durch den Einsatz in realen Projekten. In beiden Fällen
konnten deutliche Verbesserungen hinsichtlich der Effizienz und Effektivität der Ent-
wicklung sowie der intensiven Einbindung von Stakeholdern festgestellt werden.
Darüber hinaus konnten die Ergebnisse durch zahlreiche Publikationen auf interna-
tionalen Konferenzen, Workshops und Zeitschriften mit Forschern aus der Web
Engineering Disziplin und angrenzenden Gebieten diskutiert werden.

Contents

Acknowledgements ... v

Zusammenfassung ... vii

Contents ... xi

1 Introduction .. 1

1.1 RESEARCH QUESTIONS AND CONTRIBUTIONS .. 2

1.2 RESEARCH CONTEXT AND SCOPE .. 7

1.3 THESIS STRUCTURE .. 8

2 Problem Scope .. 11

2.1 STAKEHOLDER COLLABORATION IN THE WEB ENGINEERING FIELD 11

2.2 WORKFLOW-BASED WEB APPLICATIONS .. 12

2.2.1 Technical Challenges ... 14

2.2.2 Stakeholder Collaboration for Workflow-based Web Applications 17

2.2.3 Requirements Catalog for the Dimension Workflow .. 21

2.3 WEB-BASED DIALOGS AS PRIMARY INTERACTION MEDIUMS 22

2.3.1 Requirements Catalog for the Dimension Dialog .. 25

2.4 EFFECTIVE REUSE .. 26

2.4.1 Requirements Catalog for the Dimension Reuse .. 28

3 State of the Art .. 29

3.1 DIMENSION WORKFLOW .. 29

3.1.1 Object-Oriented Hypermedia Design Method (OOHDM) .. 29

3.1.2 Web Modeling Language (WebML) .. 31

3.1.3 UML-based Web Engineering (UWE) .. 32

3.1.4 IBM WebSphere Suite ... 34

3.2 DIMENSION DIALOG .. 37

3.2.1 Object-Oriented Hypermedia Design Method (OOHDM) .. 37

xii Contents

3.2.2 Web Modeling Language (WebML) .. 38

3.2.3 UML-based Web Engineering (UWE) .. 39

3.2.4 IBM Lotus Forms Designer .. 40

3.3 DIMENSION REUSE .. 42

3.3.1 Scientific Reuse Approaches for the Web Engineering Domain 42

3.3.2 Commercial Solutions ... 44

3.4 EVALUATION RESULTS AND CONCLUSION ... 45

4 Web Engineering for Workflow-based Applications – A DSL Approach 51

4.1 THE WEB ENGINEERING DSL FRAMEWORK .. 51

4.1.1 DSLs – Evolutionary Web Development for and with Reuse ... 52

4.1.2 Technical Platform .. 56

4.2 OVERVIEW OF SOLUTION ELEMENTS ... 57

5 Constructing Workflow-based Web Applications with Stakeholders 61

5.1 THE WORKFLOW DSL AT A GLANCE .. 62

5.1.1 Elements of the Workflow DSL .. 62

5.1.2 Evolutionary Process Model .. 63

5.2 THE DSM – PROCESS INTERMEDIATE LANGUAGE .. 65

5.2.1 The XML Process Definition Language as Foundation for the DSM 66

5.2.2 Catalog of Activity Building Blocks (ABBs) .. 68

5.2.3 Extending XPDL towards Web-specific Concerns .. 72

5.3 THE DIMS – MULTI-NOTATIONAL MODELING WITH STAKEHOLDERS 76

5.3.1 Simple Sequence Only (SSO) with Microsoft Word ... 78

5.3.2 Business Process Modeling Notation (BPMN) with Microsoft Visio 79

5.3.3 UML Activity Diagrams with IBM Rational Software Architect 82

5.3.4 Petri Nets with INCOME2010 .. 86

5.4 MODEL TRANSFORMATION FRAMEWORK ... 91

5.4.1 Strategy for Efficient and Effective Model Transformations ... 91

5.4.2 The Core Elements Set (CES) Concept ... 95

5.4.3 Horizontal Model Transformations – The Petri net DIM ... 99

5.4.4 Vertical Model Transformations – The XOML Workflow Language 106

5.4.5 Complete Catalog of DIM Mappings ... 113

5.5 TECHNICAL PLATFORM ... 115

5.5.1 Technical Platform for the Model Transformation Framework 116

5.5.2 Workflow Execution Platform ... 120

5.5.3 Automated Application Construction: From Modeling to Execution 126

5.5.4 Support for Federative Scenarios .. 129

Contents xiii

5.6 SUMMARY ... 131

6 Constructing Advanced Web-based Dialogs .. 135

6.1 THE DIALOG DSL AT A GLANCE .. 135

6.1.1 Elements of the Dialog DSL ... 136

6.1.2 Evolutionary Process Model .. 137

6.2 THE DOMAIN-SPECIFIC MODEL (DSM) ... 138

6.3 THE DOMAIN INTERACTION MODEL (DIM) .. 140

6.3.1 Partitions & Transitions Modeling Tier ... 141

6.3.2 Appearance Modeling Tier .. 142

6.4 MODEL TRANSFORMATIONS .. 143

6.4.1 User-Agent-related Model Adaptations ... 143

6.4.2 Model-to-Code Transformations .. 144

6.5 TECHNICAL PLATFORM ... 145

6.5.1 The Web-based DIM Editor ... 146

6.5.2 The Solution Building Block (SBB) ... 149

6.6 SUMMARY ... 151

7 The Web Engineering Reuse Sphere ... 153

7.1 THE SPHERE CONCEPT .. 154

7.2 THE SEMANTIC CORE: THE WEB ENGINEERING REUSE ONTOLOGY 155

7.2.1 Overview of the Web Engineering Reuse Ontology .. 156

7.2.2 The Concepts Knowledge and Stakeholders ... 158

7.2.3 The Concepts Artifact, Methodology, Process and Product .. 159

7.2.4 The Concepts Resolution Strategy, Modeling Technique & Software 160

7.3 EFFECTIVE SEARCH AND INTEGRATION ... 162

7.4 STORING ARTIFACTS WITH RICH METADATA ... 163

7.5 REFERENCE ARCHITECTURE FRAMEWORK ... 165

7.6 CROSS-METHODOLOGICAL REUSE WITH STAKEHOLDERS IN PRACTICE 168

7.6.1 Finding Stakeholder-Tailored Resolution Strategies and Artifacts 168

7.6.2 Stakeholder-Oriented Facetted Search and Browsing Facilities 171

7.7 SUMMARY ... 174

8 Evaluation .. 177

8.1 EMPIRICAL EVALUATION OF WORKFLOW DSL CONCEPTS .. 178

8.1.1 Expressiveness of the CES in Real-World Process Models ... 178

8.1.2 Coverage of Real-World Process Activities by the ABB Catalog 182

8.2 WORKFLOW DSL CONCEPTS APPLIED IN THE KIM PROJECT 183

xiv Contents

8.2.1 FSM-based Modeling of User Interaction Workflows using ABBs 185

8.2.2 Technical Framework for Executing UI Workflows in Web Portals 186

8.2.3 Experiences ... 188

8.3 FORMAL EMPIRICAL EVALUATION OF THE DIALOG DSL ... 189

8.3.1 Experimental Evaluation of Development and Change Efficiency 189

8.3.2 Survey-based Evaluation of Stakeholder Adequacy .. 196

9 Conclusion and Outlook ... 203

List of Figures ... 209

List of Tables .. 213

Bibliography .. 215

1 Introduction

Since its inception in 1991, the World Wide Web has evolved rapidly from a
decentralized information medium to a platform for complex and distributed
applications. Likewise, the requirements and expectations for Web-based
applications have increased substantially. The first genre of Web applications
initiated the Web’s transition from static hypertext documents (the “Static Web”) to
dynamically generated Web pages based on content stored in databases (the
“Dynamic Web”) (Rossi, Pastor, Schwabe et al. 2008). This allowed for simple
customization-related features and limited user interactivity, whereby the Web
application itself was the only access channel to the information available therein.

The continuous adoption of the Service-Oriented Architecture (SOA) paradigm and
Web 2.0 technologies in the last few years resulted in a new class of Web-based
applications (O'Reilly 2005; Phifer 2006). Such applications are highly interactive and
user-centered, provide a rich user interface and are constructed based on SOA
concepts and standards. At the same time, companies started to take advantage of
maturing SOA-related standards and technologies in order to realize integrated end-
to-end business processes spanning a great diversity of heterogeneous systems,
organizations, and job roles. Today’s companies vision of increased business agility
results in Business Process Management Suites being one of the fastest growing
software infrastructure markets with an estimated annual growth rate of 25%
(Cantara, Biscotti and Raina 2007). In this regard, key challenges lie not only in the
correct design and execution of business processes or the integration of
heterogeneous systems and identities, but also in providing an adequate user
interface (Hill, Sinur, Flint et al. 2006). The efficiency and effectiveness of human
tasks and thus of the overall business process is strongly influenced by the quality of
such a user interface (Nielsen 2005; Wroblewski 2008).

To this end, Web-based Enterprise Portals serving as uniform and integrated
interfaces to content, business applications and processes have proved to be an ideal
foundation of a “high-performance workplace” (Gootzit, Phifer, Valdes et al. 2008).
Depending on the scenario, they serve diverse target audiences including employees,
customers and business partners. By providing a personalized overview of available
and running business processes as well as high-quality user interfaces for completing
associated tasks, they promise to empower users to directly contribute to business
processes in an efficient and effective way. Several studies underline the current and

2 Chapter 1 – Introduction

future importance of Enterprise Portals to companies as they rank among the top
five spending priorities of CIOs (Merrill Lynch 2006; Alter 2007). Forrester found out
in a recent study among companies in Europe, Middle East and Africa, that nearly
every tenth of the surveyed companies is planning to establish a new Enterprise
Portal (Lucas, Adrian, Wang et al. 2007). The worldwide market for Enterprise Portals
is estimated to grow approximately nine percent annually for the next several years
(Cantara, Biscotti and Raina 2007). The significant attention assigned to this field can
be particularly attributed to the strong need for integrating business processes and
heterogeneous application landscapes as well as exposing them to larger and
external audiences (BEA Systems 2007).

From the technical point of view, such portals represent a unique genre of Web-
based applications named Workflow-based Web Applications (Kappel, Pröll, Reich et
al. 2006). While naturally placing high demands regarding workflow execution, rich
user interaction and Web service integration, they also share special characteristics
inherent to Web-based applications in contrast to conventional applications
(Freudenstein, Buck, Nussbaumer et al. 2007). These comprise, among others, fast
evolution cycles, an increased importance of usability and aesthetic aspects, a great
variety of user interfaces including mobile devices, shorter development timeframes,
strong significance of standards, difficulties in achieving effective reuse, and a great
variety of involved stakeholders (Deshpande, Murugesan, Ginige et al. 2002; Mendes
and Mosley 2006). Facing the immense complexity resulting from these
characteristics, a dedicated engineering approach providing models, systems and
methodologies for this new class of workflow-based Web applications is required.

Besides the unique characteristics and challenges mentioned above, one key factor
arising from a communication and collaboration perspective deserves particular
attention: strong stakeholder involvement. Evaluations on reasons of software
project failures highlight that factors like stakeholder involvement and
communication as well as clear business objectives are crucial for a project’s success
(The Standish Group International 1994-2008; Charette 2005). This holds true
particularly in the context of workflow-based Web applications. As they are
constructed according to business processes, which naturally encompass a great
variety of stakeholders, efficient and effective communications among all
participants including the development team are vital. Consequently, a suitable
engineering approach should provide dedicated concepts, methodologies and tools
in order to establish successful stakeholder collaboration.

1.1 Research Questions and Contributions

In the following, the research questions addressed by this thesis as well as its
corresponding contributions are presented. While this section is only intended as an
overview, a detailed analysis of the problem domain is conducted in Chapter 2.

The main question that drove the research presented in this dissertation is:

1.1 Research Questions and Contributions 3

Main Question: How can workflow-based Web applications be
constructed in close collaboration with stakeholders in an efficient and
effective way?

In this context, efficiency addresses the dimension of time which is of interest
regarding various aspects like duration of development cycles, preparation or
learning times for involved stakeholders or the required time span for adopting
changes. On the other hand, effectiveness concerns the qualitative dimension
focusing on aspects like compliance with stakeholder requirements, reducing the
potential for misunderstandings, the usability of user interfaces or enabling
successful reuse of existing artifacts by improving search quality.

Obviously the above cited main question is rather abstract and covers a very
comprehensive range of distinct research areas and problems. In order to convey an
overview of the problem scope addressed by this thesis, it will be refined into several
more specific questions. Each of these questions addresses a particular research
problem either related to unique characteristics of workflow-based Web applications
themselves or the associated development and evolution process.

The first question concerns the construction and evolution of workflow-based Web
applications:

Research Question Q1: How can Web applications supporting the
distributed execution of long-running workflows by controlling the
process flow and providing adequate user interfaces be efficiently
constructed and evolved?

This comprises several aspects ranging from a dedicated engineering methodology to
an adequate architecture model. Moreover, it covers the efficient modeling and
development of components controlling, persisting, and managing the process flow
as well as the way of linking it to corresponding actions and Web-based user
interfaces. Beyond that, natural characteristics of Web-based solutions like short
evolution cycles, platform- and device-independency and their high degree of
distribution have to be addressed.

To this end, a novel engineering methodology, the Workflow DSL approach,
combining model-driven with component-based software engineering concepts is
presented (Freudenstein, Buck, Nussbaumer et al. 2007). It is founded on a
standards-based Domain-Specific Language (DSL) for the continuous and iterative
modeling of workflow-based Web applications. The DSL’s modeling notations allow
for specifying the process flow and for mapping process activities to a catalog of
logical Web-specific Activity Building Blocks, e.g. Web service communication, rich
dialog interaction (cf. Research Question Q2) or data presentation (Freudenstein,
Nussbaumer, Majer et al. 2007). Each of these building blocks is again realized as a
DSL requiring only a minimal configuration set, thereby complementing the strong
focus on modeling instead of programming and allowing for rapid evolution cycles.
The architectural model of the resulting applications is fully service-oriented, thus
supporting federative scenarios. In conclusion, the Workflow DSL approach allows

4 Chapter 1 – Introduction

for the efficient construction and evolution of distributed and platform-independent
workflow-based Web applications on a pure model basis.

The second question addresses the important aspect of a workflow-based Web
application’s user interface which mainly consists of complex Web-based Dialog
components:

Research Question Q2: How can complex Web-based dialogs be
efficiently constructed and evolved using a methodology that inherently
addresses these dialog’s high demands on usability aspects?

For end-users, advanced dialogs represent the main means for work in the context of
workflow-based Web applications. Corresponding to the complexity of the task they
are designed for, they are usually based on rather comprehensive data models with
complex internal dependencies. As they often replace forms that were originally
paper-based, most of today’s dialog engineering approaches and tools suggest a
design methodology similar to those for paper-based forms. As a consequence, both
the potentials and the special requirements of dialogs in the Web are often
neglected. This in turn results in cognitive overload, low usability and ultimately in
poor task and process performance.

The model-driven Dialog DSL approach presented in this thesis provides a modeling
notation, a technical support system and an engineering methodology that
inherently address these challenges (Freudenstein and Nussbaumer 2008a;
Freudenstein, Nussbaumer, Allerding et al. 2008). Thereby, complex device-
independent dialogs with rich behavior and appearance can be efficiently
constructed and evolved. The empirical evaluation of the Dialog DSL approach
showed that advanced dialogs can be constructed and evolved in considerably less
time compared to today’s Web development frameworks. In the experiment, the
participants had no previous knowledge about the Dialog DSL approach, its notation
and editor. Even stakeholders without any technical background were able to
successfully employ the approach.

The third question refers to the problem domain of reuse in the Web Engineering
discipline in general and regarding the construction of workflow-based Web
applications in particular:

Research Question Q3: How can effective reuse across the wide range of
heterogeneous artifacts and methodologies in the Web Engineering
domain be realized?

Particularly model- and component-based engineering approaches like those
presented in this thesis can benefit considerably from an adequate reuse support,
thus improving, amongst others, development efficiency and software quality.
However, the efficient realization of reuse should not be considered exclusively for
the problem domain of workflow-based Web applications or even only a particular
engineering methodology. In fact, to fully utilize the great potentials of reuse, a more
holistic perspective, spanning all kinds of artifacts and unifying the existing variety of
heterogeneous Web Engineering methodologies is required.

1.1 Research Questions and Contributions 5

Facing these challenges, the Web Engineering Reuse Sphere approach facilitates the
efficient and effective reuse across today’s Web Engineering methodologies
(Freudenstein, Boettger and Nussbaumer 2008). A well-defined ontology for the
Web Engineering domain forms its core and allows for innovative and holistic search
strategies. To unfold the full potential of reuse, the approach covers both planned
and spontaneous reuse, thereby extending reuse to the complete lifecycle of an
artifact. Moreover, the approach represents an important contribution to current
consolidation activities in the Web Engineering research community. On the one
hand, its ontology of the Web Engineering domain enables the unification of diverse
methodologies on a conceptual level. On the other hand, it establishes a shared
foundation for real cross-methodological reuse.

The fourth question focuses on the strong involvement of stakeholders throughout
the process of constructing and developing workflow-based Web applications. Thus,
it represents a cross-cutting concern affecting all of the presented research questions
and contributions.

Research Question Q4: How can models and methodologies in the
context of workflow-based Web applications be designed stakeholder-
oriented, thus allowing for continuous, intensified and much more
effective stakeholder collaboration?

As already mentioned in the previous section, the strong involvement of
stakeholders throughout all phases of the development process is crucial for a
project’s success. This holds true particularly for the construction of workflow-based
Web applications as the great variety of future end-users knows the concerned
business processes and the tasks performed therein best. Thus, enabling
stakeholders to contribute actively or even autonomously to the development effort
by understanding, validating and specifying parts of the solution being built, is
desirable.

Against this background, a new stakeholder-oriented development approach, named
DSL-based Web Engineering (Nussbaumer, Freudenstein and Gaedke 2006c), is
presented. It is based on the idea of employing distinct Domain-Specific Languages
(DSLs) for the model-driven specification of a Web application’s various aspects, with
each DSL being highly focused on a particular problem domain. Existing model-driven
Web Engineering methodologies are usually developer-oriented and provide rather
heavy-weight and complex modeling approaches. A DSL, however, is designed in a
stakeholder-oriented way with strong emphasis on simplicity and employing well-
known concepts, abstractions and notations from the problem domain. By
incorporating various graphical notations and accompanying editors, a DSL can be
tailored to the characteristics and requirements of individual stakeholder groups
(Nussbaumer, Freudenstein and Gaedke 2006a). Thus, DSLs are easy to understand,
learn and use – both for developers and stakeholders (Nussbaumer, Freudenstein
and Gaedke 2006b). Each DSL provides a dedicated software component being able
to interpret the models developed with a DSL at runtime. Hence, Web applications
can be rapidly constructed and evolved by composing DSL-specific software
components and configuring them with DSL programs in terms of models. The

6 Chapter 1 – Introduction

immediate availability of a running application based on a model presents an
additional contribution to the effective collaboration with stakeholders.

The DSL-based engineering approach forms the foundation for all models, systems
and methodologies related to the three research questions stated above, thus
deeply integrating stakeholder-orientation into each of them.

Consequently, the Workflow DSL approach, for example, allows the multi-notational
modeling of workflows with an extensible set of established and standardized
modeling notations and tools. These include, for example, the Business Process
Modeling Notation (BPMN) using Microsoft Visio, UML Activity Diagrams designed
with IBM Rational Software Developer, Petri Nets employing INCOME2010 or even
simple task lists created with Microsoft Word. Thus, stakeholders can specify
workflow-based Web applications by using their own languages, i.e. the notations
and tools they know best.

Regarding the Dialog DSL approach, stakeholder orientation is expressed in terms of
a very simple and intuitive modeling notation for highly dynamic and complex
dialogs, a supplemental easy-to-use editor and an engineering methodology enabling
rapid evolution cycles. As a result, stakeholders can participate in and contribute to
the development effort much more intensively than with traditional engineering
approaches.

The Web Engineering Reuse Sphere finally closes the gap between the set of
available DSLs and reusable artifacts on the one side, and stakeholders in need of
performing development tasks on the other side. Therefore, it provides advanced
ontology-based search facilities which – due to their simplicity – enable stakeholders
to search autonomously for adequate resolution strategies (e.g. a DSL) and related
artifacts for a given development task. In contrast to existing reuse approaches,
stakeholders can thus find appropriate DSLs, modeling notations and reusable
artifacts not only according to conventional search dimensions like the given
problem domain or keywords but also corresponding to their individual skills and
knowledge.

In conclusion, the solutions presented in this thesis represent a significant
advancement for the efficient and effective construction of workflow-based Web
applications with stakeholders. They have been successfully implemented and
evaluated in different scenarios including both formal experimental evaluations and
real-world applications, for example in the context of the project “Karlsruhe
Integrated InformationManagement (KIM)” (Juling 2005). In either case, substantial
improvements in terms of efficiency and effectiveness throughout the development
process were observed. Furthermore, large parts of this thesis were published in
numerous papers at international conferences, workshops and journals and
intensely discussed with researches from the Web Engineering discipline and
adjacent research areas.

1.2 Research Context and Scope 7

1.2 Research Context and Scope

Workflow-based Web applications are mature and complex software systems,
representing an own class of Web applications. Like Web applications in general,
they use the World Wide Web, i.e. its technologies, standards and paradigms, both
as a development platform and as a user platform, leading to the following
definition:

Definition 1.1: A Web application is a software system based on
technologies and standards of the World Wide Web Consortium (W3C)
that provides Web-specific resources such as content and services
through a user interface, the Web browser. (Kappel, Pröll, Reich et al.
2006)

Compared to traditional software applications, the unique characteristics of Web
applications require dedicated approaches, methodologies, tools, techniques and
guidelines (Ginige and Murugesan 2001). This particularly affects differences
regarding the people involved in the development process, the intrinsic
characteristics of Web applications and the audience for which they are developed.
The Web Engineering research discipline addresses these needs:

Definition 1.2: Web Engineering is the establishment and use of sound
scientific, engineering and management principles and disciplined and
systematic approaches to the successful development, deployment and
maintenance of high quality Web-based systems and applications.
(Murugesan, Deshpande, Hansen et al. 1999)

While Web Engineering adopts and encompasses numerous principles and
methodologies from the software engineering domain, there are many significant
differences posing additional challenges and therefore requiring novel Web-specific
approaches (Kappel, Pröll, Reich et al. 2006). Beyond that, Web Engineering is a
much more multidisciplinary field and encompasses contributions from distinct
disciplines such as hypermedia engineering, requirements engineering, usability
engineering, information engineering, graphics design, network management, and of
course software engineering (Deshpande, Murugesan, Ginige et al. 2002; Mendes
and Mosley 2006).

Considering the research questions given in the previous section, this thesis clearly
represents a contribution to the Web Engineering research discipline. It promotes
the discipline’s current state of the art by novel approaches, models, systems, and
methodologies for the investigated problem domains. Most of them were presented
and discussed with researchers from the Web Engineering discipline and adjacent
research fields on international conferences, e.g. the International Conference on
Web Engineering (ICWE) 2006-2008 or the World Wide Web Conference (WWW)
2006-2008.

Due to its focus on Web applications supporting the execution of workflows, the
discipline of Business Process Management (BPM) seems to be very close to this

8 Chapter 1 – Introduction

thesis. As defined in (van der Aalst, ter Hofstede and Weske 2003), BPM covers the
support of business processes using methods, techniques, and software to design,
enact, control, and analyze operational processes involving humans, organizations,
applications, documents and other sources of information. Certainly, some aspects
of this thesis overlap with this area, e.g. the homogenization of diverse business
process modeling notations in order to allow for multi-notational modeling or the
efficient transformation of process models into software components. However, this
thesis considers itself mainly focused on Web-specific research questions related to
the Web application itself and its user interface as well as methodologies for their
efficient development and evolution.

1.3 Thesis Structure

An overview of the structure of this thesis is given in Figure 1-1. Following this
introduction, in Chapter 2, a detailed analysis of the thesis’ problem domain based
on example scenarios from real-world projects is performed. Thereby, a universally
valid set of well-defined requirements for an adequate solution is elaborated.
Chapter 3 presents existing scientific and commercial approaches related to the
given problem scope. Each of these approaches is evaluated against the
requirements catalog defined in the preceding chapter, thus highlighting their
benefits and drawbacks for this thesis’ problem scope and ultimately underlining the
need for novel, innovative approaches and methodologies.

The subsequent five chapters contain the main contributions of this thesis. First of
all, Chapter 4 gives an overview of the overall solution presented in this thesis as well
as its core pillars and their interrelations. This includes the introduction of the DSL-
based Web Engineering framework which represents a key foundation for the
following two chapters. Based on this overview, each of the solution elements is
presented in a separate chapter.

Chapter 5 introduces the Workflow DSL approach for the model-driven construction
of workflow-based Web Applications with stakeholders. In Chapter 6, the Dialog DSL
approach covering the model-driven and stakeholder-oriented engineering of
advanced Web-based dialogs – whether as integral components of a workflow-based
Web application or as stand-alone means of user interaction – is presented. The Web
Engineering Reuse Sphere, a holistic and stakeholder-oriented approach for effective
reuse in the Web Engineering domain in general and in the context of workflow-
based Web applications in particular, is described in Chapter 7.

Chapter 8 addresses the evaluation of the presented solutions based on real-world
scenarios and formal empirical studies and experiments. Finally, Chapter 9
summarizes the contributions and results of this thesis and gives an outlook on
future research directions.

1.3 Thesis Structure 9

Figure 1-1: Structure of the Thesis

2 Problem Scope

As adumbrated by the research questions in Section 1.1, the problem domain
covered by this thesis comprises various aspects. From a technological perspective,
workflow-based Web applications impose a great variety of challenges, particularly
concerning dimensions like workflow design and execution, application construction
and evolution, user interfaces and reuse. On the other hand, significant problems
concerning the efficient and effective involvement of stakeholders throughout the
development process arise from a communication and collaboration perspective. As
they are deeply interrelated with all other, more technological and methodological
aspects, they form a cross-cutting requirement dimension.

In this chapter, a systematic and detailed analysis of the problem scope addressed by
this thesis will be performed. After a short introduction of general challenges
regarding stakeholder collaboration in the Web Engineering domain, the analysis is
split into three problem areas, whereby the strong involvement of stakeholders as a
cross-cutting concern is examined from a holistic viewpoint for each of these areas.
Throughout this chapter, illustrative real-world scenarios are introduced and serve as
running examples throughout this thesis. Each section concludes with a summarizing
requirements catalog which forms the foundation for the assessment of the current
state of the art as well as the design and evaluation of the presented contributions.

2.1 Stakeholder Collaboration in the Web Engineering Field

In the development of complex Web-based solutions, challenges in the
communication and collaboration between all involved stakeholders make up a
second major problem area besides technical problems and requirements
(Nussbaumer, Freudenstein and Gaedke 2006a). Compared to traditional software
development projects, both the amount and the heterogeneity of stakeholders in
Web application development projects are significantly higher (Escalona and Koch
2004). In the most cases, stakeholders belong to completely diverse departments,
have different professional and educational backgrounds and possess various skills
and knowledge. Consequently, each group uses its own “language” when talking
about aspects of the solution to be built. This becomes obvious especially in the

12 Chapter 2 – Problem Scope

phases related to requirements management and conceptual design when
understanding the various languages of the particular stakeholders is decisive and
misunderstandings must be avoided as far as possible. Agreeing on and learning a
common language as a potential solution to this, is usually not feasible because of
the stakeholders’ very limited availability.

Over the last years, a lot of languages and modeling approaches for the (mostly
model-based) specification of distributed Web-based solutions have been
established (cf. Chapter 3). Most of them attempt to cover their problem domain as
exhaustive as possible and therefore include concepts and notations for almost
every aspect of the problem domain. This often leads to very expressive and
powerful modeling languages, being a good means of conceptual and logical design
within the developer team. However, regarding the communication and
collaboration with stakeholders, these heavy-weight approaches are too complex
and thus not appropriate. For stakeholders being predominantly non-programmers,
it would cost too much time and effort to learn these extensive modeling languages
and notations.

The crucial influence of strong stakeholder involvement on a project’s success was
proved in comprehensive studies (The Standish Group International 1994-2008;
Charette 2005) and taken on in agile software development methods (Cockburn
2006). Thus, also the Web Engineering discipline needs more stakeholder-oriented
approaches intensifying the collaboration and supporting efficient and effective
communication throughout all phases of the development process (Nussbaumer,
Freudenstein and Gaedke 2006c). The vision should be to provide languages and
notations tailored to the characteristics and needs of individual stakeholder groups
and thus enabling them to directly contribute to the development effort by
understanding, validating, and even autonomously specifying aspects of a Web-
based solution.

2.2 Workflow-based Web Applications

Over the last decades, the nature of a company’s business processes as well as its IT
landscape has transformed tremendously. Whereas previously competitive
advantage was often considered from a product-oriented perspective,
differentiation in a service-oriented world like today is predominantly based on the
uniqueness of services and business processes (Heskett, Sasser and Schlesinger
1997). Likewise, the IT landscape has evolved significantly from a rather centralized
and homogeneous to a highly distributed and heterogeneous structure (Bieberstein,
Bose, Fiammante et al. 2006).

Consequently, business processes today are more complex, they span a great variety
of roles, organizational units and even companies, they suffer from media-
discontinuity issues, and they involve diverse heterogeneous and distributed IT
systems and applications. Moreover, agility in terms of the flexibility to rapidly meet
changed or new business demands represents one of the most valuable assets for

2.2 Workflow-based Web Applications 13

companies. Whereas in the past, business processes changed once a year, they now
change once a month or sometimes even once a week (Carter 2007). As a
consequence, business process performance often turns out to be rather poor and
error-prone.

To this end, companies started to adopt business process management suites for
realizing integrated and controlled end-to-end business processes. Such systems
allow for modeling, controlling and monitoring business processes in form of
workflows across diverse roles, organizations and IT systems. Prominent examples
include the IBM WebSphere Suite, the Oracle BPM Suite, or the SAP NetWeaver BPM
Suite.

As indicated by the previous sentence, there is a clear separation between the terms
“business process” and “workflow”, even though they are often used as synonyms.
The Workflow Management Coalition (WfMC) defines these terms as follows
(Workflow Management Coalition 1997):

Definition 2.1 - Business Process: A set of one or more linked procedures
or activities which collectively realize a business objective or policy goal,
normally within the context of an organizational structure defining
functional roles and relationships.

Definition 2.2 - Workflow: The automation of a business process, in
whole or part, during which documents, information or tasks are passed
from one participant to another for action, according to a set of
procedural rules.”

Hence, the main difference between these terms lies in the fact that the term
“workflow” emphasizes the aspect of software-based enactment of a business
process which is supported by a “workflow management system”.

Gartner Research predicts that, by 2009, 20% of business processes of Global 2000
companies will be supported by workflow management systems. Unlike prevailing
system- and application-oriented processes without human interaction, these
processes will predominately involve a considerable amount of human work that
differentiate the company from its competitors and that is poorly supported by
established IT systems (Hill, Sinur, Flint et al. 2006). This growing importance of
human tasks within workflows leads to the question of adequate user interface
concepts and dedicated methodological solutions.

To this end, Web-based applications and portals as uniform and integrated access
channels for initiating and interacting with such workflows have recently gained
significant attention (Gootzit, Phifer, Valdes et al. 2008). Based on the WfMC
definition for “workflow application”, i.e. “software programs that interact with a
workflow enactment service and handle *…+ the processing required to support a
particular activity or activities” (Workflow Management Coalition 1997), and
considering that they are Web applications in the sense of Definition 1.1, they are
termed “Workflow-based Web Applications”. As such, they combine the potentials
and benefits of both fields.

14 Chapter 2 – Problem Scope

Consequently, the main benefits which can be realized by workflow-based Web
applications – provided that they can be implemented in an efficient and effective
way - comprise (Puschmann and Alt 2004; Phifer 2006; BEA Systems 2007; Gootzit,
Phifer, Valdes et al. 2008):

 increased efficiency and quality of business processes and individual tasks

 integrated provision of previously siloed applications, systems and processes

 consistent and improved user experience

 replacement of multiple application-specific user interfaces and accounts

 ubiquitous access and availability

 reduction of paper-based or manual processes

 reduced maintenance efforts

 increased business flexibility

Depending on the business processes they support, workflow-based Web
applications can serve a great variety of target audiences. These include employees
in a Business-to-Employee (B2E) context (often referred to as “Enterprise Portals”),
customers in Business-to-Consumer (B2C) portals as well as business partners within
Business-to-Business (B2B) Web sites.

These great potentials and expectations towards workflow-based Web applications
come along with a significant, multi-faceted complexity regarding their construction
and evolution. In the following subsection, specific challenges arising from a
technical perspective will be analyzed, whereas Section 2.2.2 examines challenges in
the context of collaborating and communicating with stakeholders throughout the
development process.

2.2.1 Technical Challenges

In the following, the specific technical challenges arising in the construction and
evolution of workflow-based Web applications will be elaborated based on an
example scenario. The scenario deals with a workflow-based Web application for the
handling of an exemplary “business trip” process which could be found in a
company’s intranet. The scenario and its characteristics were chosen in a way that
ensures the universal validity of the resulting challenges and requirements an
adequate solution should address.

Figure 2-1 shows a simplified excerpt from the current “business trip” process at the
Karlsruhe Institute of Technology (KIT) focusing on the reimbursement process after
the employee has returned from the trip. In this context, a variety of roles and
departments from all over the university is involved, e.g. the employee, the travel
department, the traveler’s institute director or manager and the accounts
department. In earlier phases of the business process, also external organizations
like partner travel agencies could be included. The example starts with the employee
creating a travel expense report, which is currently done using a paper-based form
(Karlsruhe Institute of Technology 2009). Next, the filled form is sent per internal

2.2 Workflow-based Web Applications 15

mail to the travel department, which processes it, creates a refund statement and
sends it back to the employee via internal mail (potential follow-up-inquiries by the
travel department and associated replies by the employee were left out in this
example). Next, the employee checks the refund statement and could possibly have
objections. In this case, an objection handling process, again paper-based and via
internal mail, follows. Afterwards, the employee’s institute director or manager
receives a payment statement in order to approve it (the sub-process in case of a
rejection was left out in this example). Subsequently, the accounts department
processes the payment and the employee receives a payment notification.

Figure 2-1: Simplified Excerpt from the “Business Trip” Business Process

A major technical challenge in the context of the development of workflow-based
Web applications lies in the technical implementation of the business process to be
realized. This comprises the construction of a workflow component according to the
given business process model or an enhanced workflow model respectively. Such a
component should allow for instantiating new workflow instances as well as
controlling and ensuring the exact process flow and the correct distribution of tasks
to roles. Moreover, with respect to long-running workflows with possibly long time
spans between activities, it must be capable of making the current state of the
workflow persistent and resuming at a later point in time. In addition, the workflow
component is in charge of responding to queries about the current status of a
workflow instance or the available tasks for a given user as well as supplying and
receiving data objects as input or output parameters of tasks.

The implementation of such a workflow component can be supported by a workflow
engine, e.g. Microsoft Windows Workflow Foundation (Microsoft Corp. 2006c) or
IBM WebSphere MQ Workflow (IBM 2006); however, a significant amount of work
and complexity remains for constructing a workflow program as input for the
workflow engine as well as integration challenges regarding the Web application as a
whole and its user interface in particular – both for the enactment of human tasks as
well as for consuming infrastructure services provided by the engine.

Analyzing the particular tasks of the “business trip” example process above, various
activity types to be supported by a workflow-based Web application can be
identified. A great majority of tasks, e.g. “Create Expense Report”, “Process Expense

16 Chapter 2 – Problem Scope

Report” or “Check Refund Statement”, requires rich dialog-based human interaction
(cf. Section 2.3). Others consist of presenting data to a user, e.g. “Receive Payment
Notification”. Some tasks, e.g. “Process Payment”, rely on data to be retrieved from
or stored in heterogeneous backend systems or even services from external
providers. Such scenarios are usually realized via Web service communications, which
can occur either in the context of autonomous system activities or in combination
with the mentioned activity types. In advanced workflow scenarios, e.g. in supply
chain management, there could also be physical activities like shipping a package or
having an in-person meeting. In order to realize an end-to-end support for business
processes, these tasks need also to be considered and realized as some kind of
completion confirmation dialog.

Besides such tasks requiring only a completion confirmation, there are tasks which
also take place outdoors or at least away from a desktop or notebook computer and
which could be better supported by one of the aforementioned activity types. In
such cases, process participants should be able to collaborate using other devices,
e.g. PDAs or smart phones. This raises the requirement for mobile and device-
independent access, which is a common, primarily user interface-related,
requirement for advanced Web-based applications (World Wide Web Consortium
2007).

Beyond that, some tasks are more efficiently conducted in dedicated, task-specific
client applications, e.g. a spreadsheet application (Kotoric 2007). Thus, even though
trying to offer one integrated, browser-based user interface is a desirable objective,
a workflow-based Web application should also supply the technical foundation for
completing tasks off the browser. Thus, the architectural model of the application
should be designed in a way that allows for additional workflow interaction channels
besides the Web-based user interface.

This represents also a crucial requirement for workflow-based Web applications in a
B2B context as they span not only diverse organizational roles and departments, but
also multiple companies. The fact that the workflow application is a Web application
already entails the potential to make it available to a global audience. Sometimes,
however, in such scenarios, external organizations prefer to have their employees
participate in the workflow from within their own portal applications. In this respect,
apart from federation-related security challenges (Menzel, Thomas, Wolter et al.
2007), these external portal applications can be considered like non-browser client
applications as described before.

For the technical realization of a business process’ particular tasks by a workflow-
based Web application, an adequate approach should provide activity building blocks
for the aforementioned human- and system-oriented activity types. In addition, the
workflow-based Web application’s architecture model as well as its user interface
should be prepared for access using mobile devices as well as internal and external
client applications. The demand for a workflow-based Web application’s full
coverage of all occurring tasks within a business process holds great benefits in
terms of process efficiency and quality as well as solving media-discontinuity issues,
but also reveals a great amount of development effort and technical complexity

2.2 Workflow-based Web Applications 17

which in turn underlines the necessity of adequate models, systems and
methodologies.

A further problem area concerns the aspects of agility and evolution. Web
applications in general and workflow-based Web applications in particular underlie a
continuous evolution due to frequent changes (Roger S. Pressman 2005), e.g.
adjustments in the business process’ structure, integration of new partners or
changes in dialogs or presentation design. For example, in the presented “business
trip” scenario, various types of changes and extensions like changed responsibilities,
integration of new travel agencies or external partner services, modifications to
business rules, extensions to forms or the integration of new backend systems are
imaginable, particularly in the context of the current merger of the University of
Karlsruhe (TH) and the Forschungszentrum Karlsruhe towards the Karlsruhe Institute
of Technology (KIT) (Karlsruhe Institute of Technology 2007). Furthermore,
compared to traditional software projects, the development timeframes of Web
applications are in most cases significantly shorter (McDonald and Welland 2001).

Thus, agility in terms of supporting short revision lifecycles and the efficient adoption
of such changes is essential. To this end, a model-driven software development
approach seems to be a promising option as it allows for comparatively easy changes
in the models which then need to be – ideally automatically - propagated to the
actual implementation (Stahl and Völter 2006). However, achieving a continuous
model-based approach throughout all phases of the development process as well as
assuring consistency between the various models and the implementation represent
challenging requirements.

With respect to the great diversity of artifacts produced during the development and
evolution of Web applications and particularly workflow-based Web applications as
well as facing requirements like strong support for agility and evolution,
development efficiency and software quality, effective reuse strategies become a key
factor. On the one hand, an adequate approach for the construction and evolution of
workflow-based Web applications should explore the potentials of component-based
software engineering (Sommerville 2007b). An analysis of the various task types as
outlined above could represent a starting point for the definition of highly generic
and reusable software components for the implementation of workflow tasks. On
the other hand, the systematic reuse of all kinds of artifacts throughout the
development process should be examined (cf. Section 2.4).

2.2.2 Stakeholder Collaboration for Workflow-based Web Applications

Considering the construction and evolution of workflow-based Web applications,
particular challenges regarding the efficient and effective collaboration with
stakeholders arise. During the specification of the envisioned solution, a multitude of
stakeholders has to be involved. For the presented example process excerpt, one or
more representatives from each of the participating roles, i.e. traveling employees,
the travel department, institute directors and the accounts department, have to be

18 Chapter 2 – Problem Scope

included. As the example shows a small part of the process only, the amount and
heterogeneity of concerned stakeholders are much higher for the complete business
process. The effective communication with these groups is crucial, as they know the
business process best and, unlike other types of Web applications, there is very few
room for specifications based on assumptions.

The specification process for workflow-based Web applications can be differentiated
into business process modeling and workflow modeling. The former focuses on the
underlying business process, its structure and exact control flow, whereas the latter
addresses its technical realization by the workflow-based Web application.

During business process analysis and specification, business process models
represent the main design artifact and different stakeholders contribute to different
sections of the process. A first step in the requirements analysis usually lies in the
elicitation of tasks and corresponding roles of the considered section. According to
the presented example scenario, Table 2-1 shows a result of this early elicitation
activity in form of a – usually pen and paper-based - table.

Table 2-1: Table-based Elicitation of Tasks and Roles of a Business Process Excerpt

Task Role

Create Expense Report Employee

Process Expense Report Travel Department

Check Refund Statement Employee

Check Objection Travel Department

Approve Payment Institute Director

Receive Payment Notification Employee

Process Payment Accounts Department

Depending on the background and skills of the interviewed stakeholder, this can be
an important pre-stage to analyzing the detailed process flow in order to reduce the
complexity and to achieve a step-by-step specification process. The table-based
specification also abstracts from a concrete business process modeling notation,
thus minimizing the stakeholder’s required prior knowledge. For the succeeding
specification activities, a member of the development team has to transfer the
gathered information into a graphical model which can be rather time-consuming
and already leaves room for mistakes.

The subsequent specification of the business process’ detailed structure and control
reveals additional problems. To date, there is still no widely-accepted standard
notation for business process modeling (Hill, Sinur, Flint et al. 2006). This holds true
also for business process management suites and related tools where many vendors
still employ proprietary notations. However, particularly in such a diversified context,
the adherence to existing standards – where possible - becomes even more
important. Thus, stakeholders might already know or even use a notation and
corresponding existing tools, which is not the fact for proprietary approaches.

2.2 Workflow-based Web Applications 19

This heterogeneity further aggravates the collaboration with stakeholders as they
are confronted with diverse notations and tools from project to project. Hence, their
experiences, knowledge and skills in these fields are likewise very heterogeneous. As
a result, when specifying business processes with stakeholders across an
organization, e.g. in the project “Karlsruhe’s Integrated Information Management
(KIM)” (Juling 2005), some of them prefer Petri nets as a means of communication as
they play a major role in their research context (Klink, Li and Oberweis 2008). Others,
for example, favor the Business Process Modeling Notation (BPMN) (White 2006) or
the Unified Modeling Language (UML) (Object Management Group 2005b) for the
same reason or due to prior project experiences with this notation and related tools.
And people without any prior experiences or with a non-technical background, e.g. in
humanities and social sciences, often like a notation in natural language better.
Figure 2-2 illustrates these differences by showing the “business trip” example
process excerpt in four different notations and tools: BPMN with Microsoft Visio,
Petri Nets with INCOME2010, UML Activity with IBM Rational Software Architect and
a text-based notation (cf. Table 2-1) with Microsoft Word.

Figure 2-2: Various Business Process Modeling Notations and Tools

Considering the fact that different stakeholders contribute to different sections of
one business process model, agreeing on a common language, notation and tool
seems inevitable. Some business process modeling notations appear to some extent
similar for experienced process analysts and can be classified into process modeling
language families (Recker and Dreiling 2007). However, stakeholders are usually
rather low experienced and the challenge of multi-notational modeling across these

20 Chapter 2 – Problem Scope

families still remains. This in turn results in high learning efforts and inefficient
communications, raises the probability of misunderstandings as well as hinders long-
term efficiency gains. Moreover, the potential of reusing already existing business
process models, which were created e.g. for documentation purposes, is significantly
constrained to models that were created with the same notation and the same tools.

A consolidated view of the presented challenges indicates the necessity of a
stakeholder-oriented approach throughout all stages of the business process
modeling phase. Such an approach should support stakeholders in collaboratively
validating, modifying and even creating shared business process models by allowing
each stakeholder to use her preferred notation and tool. Likewise, model consistency
must be persevered across notations, tools and process phases. An ideal approach
should not be limited to specific notations or tools, but rather provide well-defined
extension points and corresponding processes.

The subsequent workflow specification focuses on the technical implementation of
the modeled business process by means of a workflow-based Web application. In
this regard, the realization of each task in the business process has to be clarified and
designed in close collaboration with the relevant stakeholder groups. Besides a high-
level mapping of tasks to technical activity building blocks like e.g. dialog-based
interaction, data presentation or Web service communication as described in Section
2.2.1, a detailed design for each of these has to be conducted. In the case of a dialog-
based interaction, for example, developers and stakeholders have to collaboratively
specify the detailed dialog design in a way which assures a maximum efficiency and
effectiveness for future users. The strong technical nature of these specification
tasks further aggravates efficient and effective communications and entails the risk
of misunderstandings.

Against this background, hiding technical complexity becomes a key factor. As the
business process model is already known from the business process modeling phase
and thus still serves as a reference point for stakeholders, it is desirable to continue
to use it as a key artifact also in the workflow design. While usually the logical and
physical design of a Web-based solution is performed employing developer-oriented
modeling notations including lots of technical details, a stakeholder-oriented
approach should aim at preserving the stakeholder’s business perspective. Thus, it
should provide a much higher abstraction level and should include technical details
only where necessary. For example, when designing the technical implementation of
tasks in a business process, it is desirable that one activity from a business
perspective can be realized by one technical activity building block and has not to be
split up into several activities from a system perspective. Thereby, the business
process model’s structure can be kept throughout all stages of the development
process, easing the understanding and orientation for stakeholders. Furthermore,
the potentials of minimizing and hiding as much technical details as possible should
be explored thoroughly. By exploiting automation potentials and component-based
construction strategies, a stakeholder-oriented approach should strive for reducing
the required initial design set to a minimum.

To this end, principles and techniques from the model-driven software development
field can be a possible solution (Hailpern and Tarr 2006). On the one hand,

2.2 Workflow-based Web Applications 21

stakeholder and developers can continue to specify the design based on a model of
the business process throughout all phases of the development process. On the
other hand, models raise the level of abstraction and are a good means for hiding
complexity. However, model-driven software development can also pose additional
problems if not applied maturely. First of all, a problem termed “model-code gap”,
i.e. the semantic distance between a model artifact and its code representation, has
to be considered (Warmer and Kleppe 2003). This common disparity requires
developers to transfer specifications on a model basis into executable program code,
which leaves room for interpretation and misunderstandings as well as poses
challenges regarding model redundancy and consistency. This also can result in
roundtrip engineering problems occurring in the case of evolution. A further means
for supporting efficient and effective stakeholder collaborations is the provision of
evolutionary prototypes of the application from the very beginning of the
development process (Wiegers 2003). For stakeholders, they represent an ideal basis
for clarifying and completing requirements, exploring design alternatives and
visualizing development progress.

Facing these challenges, a stakeholder-oriented solution should provide adequate
modeling support for all phases of the development process and all relevant
stakeholder groups. At the same time, it should assure model consistency and
preferably achieve a direct, lossless and complete mapping of models into running
applications and services.

2.2.3 Requirements Catalog for the Dimension Workflow

The following catalog briefly summarizes the identified requirements for the
problem dimension Workflow:

 R-WF-01 – Workflow Management and Execution: Workflow-based Web
applications should be capable of managing and executing long-running
workflows comprising diverse roles.

 R-WF-02 – Continuous, Rich Web-based User Interface: Besides the
realization of system-oriented process activities, an adequate engineering
approach should support the efficient construction of a continuous, rich Web-
based user interface for all human workflow tasks.

 R-WF-03 – Multimodal Participation: In addition to the Web-based user
interface, process participants should be able to collaborate using various
client devices and applications across diverse platforms.

 R-WF-04 – Federation-Enabled and Component-Based Architecture Model:
A workflow-based Web application’s architectural model should be designed
with respect to federative scenarios as well as explore the potentials of
component-based software engineering for realizing workflow activity
building blocks.

22 Chapter 2 – Problem Scope

 R-WF-05 – Agility and Evolution: A suitable approach should support agility
in terms of short revision lifecycles as well as efficient adoption of
evolutionary changes.

 R-WF-06 – Multi-Notational Modeling: Stakeholders should be able to
understand, validate, modify and create shared business process and
workflow models using various notations and tools at the same time.
Extensibility for new notations and tools should be assured in a non-invasive
way.

 R-WF-07 – Complete Model Continuity and Consistency: Models should be
the primary means of analysis and design as well as automate development
throughout all phases of the development process. At the same time,
continuous model consistency has to be assured.

 R-WF-08 – Lightweight Modeling Approach: In contrast to existing heavy-
weight modeling approaches, the models, notations and methodology for
specifying workflow-based Web applications should be stakeholder-oriented,
i.e. hiding technical complexity and focusing on the essentials, thus fostering
simplicity and usability.

 R-WF-09 – Use of Standards: Existing standards in the fields of modeling
notations, process and workflow languages, interchange formats as well as
existing tools should be incorporated where possible.

2.3 Web-based Dialogs as Primary Interaction Mediums

Complex dialogs with comprehensive underlying data models as well as a high
intensity and complexity of user interaction aspects are gaining increasing
importance in today’s Web applications (O'Reilly 2005; Phifer, Gootzit, Sholler et al.
2007). Particularly in workflow-based Web applications, Web-based dialogs
represent the primary means for work. For example, in the presented “business trip”
process excerpt (cf. Figure 2-1), the great majority of tasks, e.g. “Create Expense
Report”, corresponds to dialog-based user interaction within a workflow-based Web
application. Considering the significant complexity of most of these tasks as well as
the comprehensive underlying data models, highly dynamic dialogs reducing
cognitive overload and offering guidance to the users are required.

In the following, universally valid challenges and requirements for the construction
and evolution of such advanced Web-based dialogs will be elaborated based on the
“Travel Expense Report” dialog, (e.g. (Karlsruhe Institute of Technology 2009)). The
travel expense report includes personal data, the detailed travel itinerary as well as
all incurred expenses. Thus, the associated data model is quite comprehensive and
includes several context-dependent elements. For example, the required
information differs depending on the travel destination (national / international) and
the used means of transport (e.g. train, plane, car).

2.3 Web-based Dialogs as Primary Interaction Mediums 23

As the Web-based dialog’s usability is strongly interrelated to the user’s efficiency
and effectiveness in completing the task (Nielsen 2005), the integration of usability
factors in a development methodology becomes a success factor (Matera, Rizzo and
Carughi 2006). Beyond that, several studies proved that the general consideration of
usability aspects during the development process can lead to significant cost savings
by decreasing the amount of later changes (Nielsen and Landauer 1993; Madsen
1999). The most widely adopted definition of the term “Usability” was introduced by
Nielsen (Nielsen 1993):

Definition 2.3 - Usability: Usability is a quality attribute that assesses
how easy user interfaces are to use. *…+ Usability is defined by five quality
components: Learnability, Efficiency, Memorability, Errors, and
Satisfaction.”

In this context, learnability refers to how easy it is for users to accomplish basic tasks
the first time they encounter the design. Efficiency addresses how quickly users can
perform tasks once they have learned the design. Memorability means how easily
and quickly occasional users can reestablish proficiency after a period of not using it.
Errors concerns the number and severity of errors made by users as well as how
good the system supports users both in preventing and correcting them. Satisfaction
covers how pleasant it is for users to use the design.

To this end, guidelines and best practices for the usability-oriented design of Web-
based dialogs have been developed (Nielsen 2005; Preciado, Linaje, Sanchez et al.
2005; Wroblewski 2008):

 Reducing cognitive overload by semantic partitioning
 Selection-dependent inputs
 In-context help and hints
 Immediate feedback and meaningful error indication
 Consistent form layout
 Clear path to completion
 Visual continuity

However, the implementation of such usability features still remains complex and
error-prone. Above all, developers have actually to be aware of such usability
principles and best practices. The fact that a large amount of Web sites still ignores
well-documented usability guidelines and best practices (Nielsen and Loranger 2006)
highlights the necessity of integrating usability aspects already in the dialog design
and development. Existing Web Engineering methodologies and commercial form
development tools leave the enforcement of usability factors to the attention and
perception of designers and developers. Even worse, many of them implicitly suggest
a rather static form design known from paper-based forms, thus neglecting the
potentials and expectations for Web-based dialogs.

A significant proportion of improvements could already be implemented at
development time instead of being recognized in later usability tests. This often
results – depending on the time of identification - in additional development cycles
or even costly redesign projects, e.g. (Herman 2004). Consequently, models, tools
and methodologies should inherently address usability aspects and provide guidance

24 Chapter 2 – Problem Scope

to the developer. In this regard, user interaction patterns can be helpful (Welie and
Trætteberg 2000).

Beyond these usability aspects, Web-based dialogs should be usable platform- and
device-independently, whereby each device can possess different characteristics such
as screen resolution. With respect to the travel expense report, travelers might want
to fill out parts of the expense report during their journey using a mobile device (e.g.
a PDA). An adequate engineering methodology as well as an associated technical
framework should be capable of adapting a dialog to the characteristics of
requesting client devices at runtime. In this context, design models should allow for
specifying rule-based guidelines on how a dialog may be adapted in order to
preserve its usability, e.g. regarding logical partitioning.

Besides these dialog-specific requirements, further challenges arising from a
development- and project management perspective exist (Freudenstein and
Nussbaumer 2008b). As already mentioned in Section 2.2, Web applications in
general and workflow-based Web applications in particular underlie a continuous
evolution due to frequent changes. This holds true especially for their dialogs, e.g.
due to adaptations in the data model, design or layout changes, or completely new
requirements (Pressman 2005b). Thus, a suitable dialog engineering approach should
be agile in terms of supporting short revision cycles and the efficient adoption of
changes.

From the technical point of view, the integration of Web service communication for
retrieving updates of the dialog’s data model or for submitting the final user input is
a common requirement found in service-oriented and workflow-based Web
applications. Regarding the travel expense report example, Web service
communication could be required to submit the expense report to a legacy backend
system or to provide auto-completion features using external Web services. Hence,
data models in form of XML Schema specifications (Thompson, Beech, Maloney et al.
2004) or integrated in Web Service Description Language documents (Christensen,
Curbera, Meredith et al. 2001) usually form a starting point for the dialog design.
With respect to requirements related to development efficiency and rapid
prototyping, the automated generation of running, Web service-enabled dialogs
based on such data models is desirable.

An additional requirement arising from a technical perspective concerns the
resulting dialog’s implementation language. As powerful standardized markup
languages for the technical implementation of Web-based dialogs have been
introduced in the last few years, e.g. XForms by the W3C (Boyer, Dubinko, Leigh L.
Klotz et al. 2007) or XAML by Microsoft (MacVittie 2006), their potentials should be
leveraged in an engineering approach for advanced Web-based dialogs. Thereby, on
the one hand, the extensibility and reusability of the resulting dialogs can be
improved. On the other hand, the engineering approach’s applicability and utility can
be increased as well as the dissemination of these new markup languages can be
supported.

Throughout the development processes of the various Web-based dialogs within a
workflow-based Web application, a multitude of stakeholders from different
organizational units with diverse professional backgrounds and skill levels has to be

2.3 Web-based Dialogs as Primary Interaction Mediums 25

involved. In order to improve the efficiency and effectiveness of the collaboration,
the employed modeling notations have to be as simple and intuitive as possible and
should focus on relevant dialog-specific aspects while hiding unwanted complexity.
Furthermore, an associated, easy-to-use editor for creating and adapting dialog
models is desirable. Such an editor would ideally be Web-based, thus easing
location- and platform-independent development. Assuming the existence of
effective approval processes, stakeholders could thereby autonomously perform
modifications and extensions to existing dialog models or even design new ones.

Evolutionary prototypes or the completely automated transformation of dialog
models into running dialogs respectively, can help to achieve a common
understanding and to identify discrepancies between requirements and their
realization (Wiegers 2003). Design alternatives, e.g. targeting usability aspects, can
be explored and misunderstandings can be resolved at an early, yet cost-efficient
point of time.

Considering the immense number of Web-based dialogs being developed at a
university over time, the strong integration of reuse in all phases of the development
process is desirable. The systematic reuse of various artifacts, e.g. data models,
dialog models (in part or whole), as well as software components contributes
particularly to development efficiency and software quality (cf. Section 2.4).

2.3.1 Requirements Catalog for the Dimension Dialog

The following catalog briefly summarizes the identified requirements for the
problem dimension Dialog:

 R-D-01 – Usability: An adequate engineering methodology should treat
usability aspects as vital features of advanced dialogs. Thus, it should provide
guidance and strong support for the efficient implementation of highly usable
Web-based dialogs.

 R-D-02 – Device Independence: The resulting dialogs should be accessible
and usable device-independently. Therefore, they should be reasonably
adapted to client characteristics at runtime.

 R-D-03 – Web Service Support: Web service endpoints should be considered
as an important submission channel for completed dialogs. Thus, the
automated generation of running Web service-enabled dialogs according to
WSDL-based or XML Schema-based data models should be supported.

 R-D-04 – Agility and Evolution: A dedicated dialog engineering approach
should be agile and evolution-oriented in terms of supporting short revision
lifecycles and the efficient adoption of changes. Therefore, it should allow for
efficiently constructing and evolving advanced Web-based dialogs on a pure
model basis.

26 Chapter 2 – Problem Scope

 R-D-05 – Stakeholder Involvement: The modeling notation should be
stakeholder-oriented in terms of harnessing technologically complex dialog
aspects with strong emphasis on simplicity. A supplemental editor should be
easy to access and use, also for stakeholders without technical background.

 R-D-06 – Standardized Markup Language: Regarding the automated
transformation of dialog models into executable code, standardized dialog
markup languages should be supported.

2.4 Effective Reuse

Reuse has been identified very early as an important software engineering principle
being able to significantly improve development efficiency and quality (Mcllroy
1968). In fact, reuse can lead to greater schedule and effort savings than any other
rapid-development practice – if implemented as a systematic and dedicated long-
term strategy and supported by an effective framework (McConnell 1996). Likewise,
the preceding analysis mentioned effective reuse strategies as an important
requirement an adequate engineering approach for workflow-based Web
applications or Web-based dialogs respectively should address.

In the Web Engineering research field, aspects of reuse have primarily been
examined in the context of a particular Web Engineering method and focusing on
specific artifact types like models or components, e.g. OOHDM (Schwabe, Esmeraldo,
Rossi et al. 2001), WebComposition (Gaedke and Rehse 2000) or WebML (Ceri,
Fraternali and Matera 2001). While most of the Web Engineering approaches
describe their modeling methodology’s adequacy for reuse, the efficient and
effective realization of reuse when developing Web applications still remains
nontrivial.

Beyond that, consolidation efforts like the “Model-Driven Web Engineering Initiative
(MDWEnet)” (Vallecillo, Koch, Cachero et al. 2007) or research papers, e.g. (Selmi,
Kraiem and Ghezala 2005), strive for achieving interoperability between common
Web Engineering methodologies and their tools. Thereby, not only the significance
of a unifying reuse approach is emphasized, but also the immense potential of reuse
in interoperable, cross-methodological Web Engineering scenarios is underlined.
Consequently, a reuse strategy should be independent from the development
methodology used. An adequate reuse approach should therefore provide positive
impact on any Web Engineering methodology and should establish a common basis
for cross-methodological reuse. Especially in the context of the above-mentioned
consolidation efforts, a unifying approach unfolding the power of cross-
methodological reuse is desirable.

To date, the integration of stakeholders and their specific characteristics and
demands have not been considered in reuse-related Web Engineering research yet.
However, the goal of enabling stakeholders to directly contribute to the
development process also requires their strong consideration and dedicated support

2.4 Effective Reuse 27

regarding reuse aspects. On the one hand, adapting existing artifacts is in the most
cases much easier than creating new artifacts from scratch - especially for people
with few technical skills. On the other hand, assuming a cross-methodological
context, the choice of the Web Engineering methodology used for the realization of
a particular feature depends, amongst others, on the given stakeholders’ skills and
the qualifications required by the methodologies. Thus, empowering stakeholders to
find reusable artifacts, methodologies and tools suitable both for the given problem
and their individual knowledge and skills, is crucial - irrespective from the Web
Engineering methodology used.

As the positive effects of reuse are not restricted to particular types of artifacts, a
systematic Web Engineering reuse approach should be generic in terms of
supporting any type of artifact occurring in the development process (Freeman
1983). In this regard, it is desirable to non-invasively build on existing artifact stores,
e.g. document repositories, model databases, component repositories or version
control systems.

When developing with reuse, efficiently and effectively finding suitable reuse assets
is crucial (Krueger 1992). The common way of searching on a keyword or full-text
basis is usually not sufficient though. In fact, an appropriate search mechanism
should strongly incorporate the current context (Tracz 1990), e.g. the project and
application type, the given task and process phase, the involved stakeholders, the
feature’s associated business domain, the Web-specific concern etc. Such complex
context-dependent search queries are often not directly resolvable, but rather
require knowledge-based resolution strategies. Thus, powerful semantic inference-
enabled search capabilities tailored to the Web Engineering domain should be
provided. Especially for users having little experience in searching for suitable
artifacts, it can be difficult to determine good search parameters. To this end,
enabling users to browse through the registry space can further increase efficiency
and effectiveness (Frakes and Pole 1994).

Having found a suitable artifact, reusing and integrating it should be very efficiently.
Therefore, finding and retrieving artifacts should be possible within the specific
proprietary tools and applications where they are used in. For example, business
process models and templates should be directly searchable and retrievable from
within the associated business process modeling tool. In the context of reusing
software components, it is desirable to have direct installation and integration
capabilities at runtime, ideally augmented by safe preview facilities for integration
testing (Pressman 2005a).

In large projects or organizations or particularly in a global context, it happens quite
often that a particular artifact is needed by several parties but does not exist in the
repository. Then, each party individually starts with developing for reuse, which in
turn leads to a considerable amount of redundant development effort. Supported by
an effective coordination mechanism which indicates ongoing development efforts
and allows for spontaneous ad-hoc reuse at an early point in time, such parallel
developments could be efficiently aligned (Yongbeom and Edward 1998). In this
regard, challenges concerning the automated derivation of basic metadata from the
current context have to be considered (Boldyreff, Nutter and Rank 2002).

28 Chapter 2 – Problem Scope

2.4.1 Requirements Catalog for the Dimension Reuse

The following catalog briefly summarizes the identified requirements for the
problem dimension Reuse:

 R-R-01 – Generality and Homogenization: An adequate reuse approach
should be generally applicable to today’s Web Engineering methodologies,
artifacts and frameworks and establish a homogenizing basis for cross-
methodological reuse.

 R-R-02 – Stakeholder Orientation: Stakeholder characteristics should be
treated as an important context parameter for storing and finding artifacts.
From a usability perspective, performing such core operations should be
rather intuitive, requiring only little technical knowledge.

 R-R-03 – Semantic Search: Advanced semantic context-dependent search
capabilities tailored to the Web Engineering domain should be provided. In
addition, facilities for browsing through the registry space should be offered.

 R-R-04 – Integrative Reference Architecture: A holistic reuse approach
should include a reference architecture providing patterns and guidance to
existing Web Engineering approaches on how to integrate their
heterogeneous applications and stores.

 R-R-05 – Coordination: Besides supporting planned reuse, the approach
should provide coordinative support reducing redundant efforts in
development for reuse.

3 State of the Art

Since Web Engineering constitutes a comparatively young research discipline, a
multitude of approaches has been proposed and, according to new requirements
emerging from the rapid evolution of the World Wide Web and its applications,
continuously been extended. Consequently, established Web Engineering
methodologies have been extended with respect to the new generation of workflow-
based Web applications as well as specialized approaches for particular aspects have
been introduced. Likewise, commercial solutions, particularly in the fields of business
process management, have emerged. Altogether, these scientific and commercial
approaches represent the current state of the art for this thesis.

In this chapter, the current state of the art will be evaluated based on the
requirements catalog presented in the previous chapter. As an adequate solution
could not only consist in a single comprehensive methodology, but also be achieved
by a combination of aspect-specific approaches, the analysis is again divided into the
three dimensions Workflow, Dialog and Reuse. For each dimension, established
scientific and commercial approaches are representatively evaluated, highlighting
their strengths and weaknesses for the concerned problem domain. The chapter
concludes with an integrated overview of the evaluation results underlining the
necessity for novel models, systems, and methodologies for the construction of
workflow-based Web applications.

3.1 Dimension Workflow

3.1.1 Object-Oriented Hypermedia Design Method (OOHDM)

The Object-Oriented Hypermedia Design Method (OOHDM) is one of the first model-
based approaches to design and develop Web applications (Schwabe, Rossi and
Barbosa 1996). OOHDM proposes a five-step development process consisting of
requirements gathering, conceptual design, navigational design, abstract interface
design and implementation. Each of these steps focuses on a particular design

30 Chapter 3 – State of the Art

concern and is supported by a specific modeling approach. As indicated by the
methodology’s name, the modeling notations are predominantly derived from
object-oriented modeling techniques like the Unified Modeling Language (UML). The
approach is partly supported by a dedicated technical development framework
named HyperDE (Nunes and Schwabe 2006).

In (Rossi, Schmid and Lyardet 2003; Schmid and Rossi 2004), extensions to the
OOHDM approach towards workflow-aspects was presented. The authors point out
the importance of conceptually differentiating between navigation and stateful
business process as well as examining semantics regarding the transitions between
those. However, the aspect of business processes in Web applications is mainly
considered from a navigational perspective, albeit enriched by state- and context-
related semantics. Consequently, important characteristics of workflow-based Web
applications like various roles participating in a business process or the integration of
backend systems are not considered.

With respect to a suitable modeling-support for processes, activities and control
flow, the authors propose to integrate activities in the conceptual and navigational
schema models of OOHDM as well as to capture control flow in separate UML
activity diagrams. Thus, activities can be reused in various process contexts.
However, an abstraction regarding particular generic activity types is not taken into
account. Furthermore, the important aspect of model consistency resulting from this
threefold separation is not discussed.

The user Interface design is not specifically covered for workflow-based Web
applications. Thus, it can be assumed that the general approach of OOHDM for user
interface modeling, which is based on Abstract Data Views (Cowan and Lucena
1995), should be applied. Hence, device independency regarding the Web-based
user interface is at least considered on a conceptual level by separating the abstract
interface from its implementation via one or multiple concrete interface widgets.
The interaction via external task-specific applications or portals though is not
addressed.

The transition from models to technical implementation is not covered by the
authors; they solely refer to a particular state-machine framework, but leave the
actually very complex implementation of the model semantics as well as
architectural design decisions unconsidered. Thus, according to this approach, the
implementation has to be performed manually, which in turn hinders agility and
evolution.

The authors clearly state developers as their target audience. The modeling notation
adheres mainly to UML, whereby class diagrams serve for specifying OOHDM
conceptual and navigational schema models as well as constrained activity diagrams
for specifying the control flow. For stakeholders collaborating in the specification of
the business process and the realization of its tasks, the distribution of processes and
activities to multiple models may be less intuitive. Guidance on how to derive the
required OOHDM models from existing business process diagrams is missing. Beyond
that, due to the missing abstraction regarding various generic activity types, the
concrete design of each process activity requires considerable specification and
implementation effort.

3.1 Dimension Workflow 31

3.1.2 Web Modeling Language (WebML)

The Web Modeling Language (WebML) is a model-driven Web Engineering
methodology which focuses on so-called data-intensive Web applications (Ceri,
Fraternali and Bongio 2000). Since its inception, WebML has been very actively
promoted and is today one of the most prominent Web Engineering methodologies.
WebML is supplemented by a comprehensive development framework named
WebRatio 5, which is fully integrated into the Eclipse framework (Acerbis, Bongio,
Brambilla et al. 2007).

To date, several extensions to WebML supporting lightweight Web-enabled
workflows have been proposed (Brambilla, Ceri, Comai et al. 2003; Brambilla 2006;
Brambilla, Ceri, Fraternali et al. 2006; Brambilla, Comai, Fraternali et al. 2008). Thus,
the WebML modeling framework is extended in several ways. First, a business
process modeling dimension is introduced in the methodology. Second, the existing
data model is augmented with process tracking-relevant objects required for logging
and constraints evaluation purposes. Third, the existing hypertext model is extended
by constructs for specifying the business activity boundaries and workflow-
dependent navigation links. Beyond that, a workflow-driven hypertext generator for
transforming business process models into WebML hypertext skeletons was
developed.

Figure 3-1: Overview of Steps, Tools and Results of the WebML Methodology for
Lightweight Web-enabled Workflows. Taken from: (Brambilla 2006)

The resulting WebML development process for lightweight Web-enabled workflows
is outlined in Figure 3-1. A proprietary Eclipse-based visual business process
modeling tool serves for modeling the business process based on the Business
Process Modeling Notation (BPMN). The resulting business process model is
translated into skeletons of the WebML hypertext model, data model and workflow
metadata, providing support for major control flow patterns, i.e. sequence, AND-,
OR-, XOR-splits and joins as well as basic loops. Based on the skeletons, members of
the development teams have to perform a comprehensive and detailed design of the
so far empty activity structures as well as specify data queries related to workflow
constraints. Thus, the user interface and the business logic have to be manually
designed using the general WebML modeling methodology for data-intensive Web
applications and the WebRatio tool support. With respect to short development
lifecycles, considerable modeling effort remains before a first version of a running
application is available.

The architectural model of the WebRatio runtime environment uses a component-
based approach for realizing so-called “WebML units” which represent common
data-oriented operations and which form the core elements for modeling pages.

32 Chapter 3 – State of the Art

Even though there is no conceptualization or componentization of typical generic
workflow activity types, such activity types could be realized by a combination of
existing units and newly-developed units. The requirement of device-independency
is only covered at implementation level by providing different page templates for
different markup languages. The page-orientation at design level aggravates this
problem.

Beyond that, the WebML approach weaves the workflow enactment logic into its
various models. The process control flow, for example, is translated into navigation
and associated constraints. Thus, there is no distinct separation of workflow
enactment from other aspects of the Web application, both on the model layer and
the implementation. Although WebML addresses the publishing of modeled
operation chains via Web service interfaces, this intermixture hinders the exposure
of workflow enactment-related services for federative workflow participation
scenarios. The realization of federative process scenarios though is not completely
impossible with WebML; however, a significant amount of implementation-oriented
modeling and development work is required which could be avoided by inherently
addressing this requirement on an architectural level.

Furthermore, this missing separation aggravates the adoption of changes which in
turn also impedes an iterative development approach. There is no reverse
transformation from the refined WebML data and hypertext models back to the
business process model. Once the forward transformation has been performed,
changes to the process structure within the hypertext model are not propagated
back. Moreover, the pure process structure embodied in the hypertext model is
hardly visible as it is modeled as some type of enriched navigation and mixed up with
page and navigation design.

Since the first version of WebML, a lot of appealing and relevant extensions have
been introduced, resulting in a very comprehensive and expressive modeling
approach for a developer audience. However, as a downside of the resulting small
set of very comprehensive models, the approach became increasingly heavy-weight
with lots of details and special symbols. Furthermore, except the business process
modeling via BPMN, WebML defines completely proprietary notations. Regarding
business process modeling and workflow implementation aspects, no technical
standards are employed.

3.1.3 UML-based Web Engineering (UWE)

The UML-based Web Engineering (UWE) methodology (Hennicker and Koch 2000) is
a model-driven Web Engineering approach which particularly stands out due to its
strong foundation on the Unified Modeling Language (UML) as well as its extensive
incorporation of related standards. UWE proposes at least one dedicated UML
diagram type according to various development stages, Web application concerns
and structural versus behavioral views. The UWE methodology aims at a continuous
model-driven development approach based on the Object Management Group’s

3.1 Dimension Workflow 33

Model-Driven Architecture approach (Mukerji and Miller 2003). The comprehensive
and strongly formalized metamodel underlying the UWE approach is defined as an
extension to the UML metamodel (Koch and Kraus 2003) and can be represented by
an UML profile. Consequently, the UWE development framework ArgoUWE (Knapp,
Koch, Moser et al. 2003) is based on a general open-source UML modeling tool.

The UWE methodology is continuously evolving and proposed various extensions
concerning the modeling of business processes in Web applications (Koch, Kraus,
Cachero et al. 2003; Knapp, Koch, Zhang et al. 2004; Kraus, Knapp and Koch 2007).
Thereby, the UWE approach is extended by additional models, development steps,
model transformations and a technical workflow interpreter component. To date,
however, full support is only provided for single-person, non-persistent processes,
which are often referred to as “page flows”. Hence, concepts like workflow
persistence or task assignment are not covered yet.

The conceptual design regarding process aspects starts with the specification of the
business process in form of an UML activity diagram. Then, the process is integrated
as an entity in the UWE navigation model and connected with other navigation
classes to model entry and exit points from and to other navigational entities.
Thereby, the process model itself and the navigation model remain separated.
Afterwards, a so-called “structural process model” containing process-related data
objects in terms of an UML class diagram has to be developed. Furthermore, the
conceptual process model from the beginning has to be translated and enriched into
a so-called “process flow model”. For each user interaction step in the process, a
separate presentation model has to be developed. The method supports only
structural presentation aspects whereas more detailed layout and design aspects as
well as special characteristics of mobile devices remain unconsidered. Throughout
the complete modeling process, the designer is supported by automatically
generated model skeletons as well as consistency checks.

The model-based generation of a platform-specific Web application is based both on
a transformational and an interpretational approach. Regarding the content,
navigation and presentation models, model-to-code transformations are applied,
whereas the platform-independent process flow diagram is translated into a
configuration document which in turn is executed by a proprietary interpreter. This
interpreter offers a limited coverage of possible control flow constructs only. The
fact that the current design and integration of this interpreter component in the
UWE runtime platform allows at most one active process per user session underlines
the focus on “page flows” instead of real workflows.

In a model-driven development approach like UWE, architectural decisions can
either be integrated in the transformations or explicitly modeled in dedicated
architecture models. To date, UWE mainly follows the former approach but
mentions the possibility of supplementing the current transformation concept by
architecture models. Presently, neither component-based nor federation- or service-
related concepts have been incorporated yet. Regarding the latter, neither the
integration of external Web services nor the exposure of an application’s data or
business logic via Web service-enabled endpoints is covered by UWE. Due to this as

34 Chapter 3 – State of the Art

well as considering the “page flow”-oriented view of business processes in UWE, no
additional access channels beyond the Web browser are envisioned.

UWE’s long-term vision of achieving a purely model-based approach and thus solving
consistency issues between platform-specific models and code has not yet been
realized. Due to the existing model-code gap and missing reverse-engineering
concepts, manual changes on the implementation-level get lost when the code is
regenerated due to changes on the model-level. This represents a major roadblock
to the efficient adoption of changes and thus to iterative development approaches.
Beyond that, UWE still requires a lot of modeling effort besides the business process
model and is not capable to generate a running prototype without manual coding
work.

Considering factors like the required modeling effort, the partly unintuitive modeling
guidelines imposed by the strong adherence to UML, or the necessity of manual
implementation work, UWE represents a methodology which is primarily tailored to
a developer audience.

3.1.4 IBM WebSphere Suite

The IBM WebSphere suite offers various applications and server products for
modeling, implementing and monitoring end-to-end business processes (Wahli,
Avula, Macleod et al. 2007). Figure 3-2 shows the WebSphere suite’s various
products tailored to different aspects of business process management, whereby
only the first three correspond to this thesis’ problem scope. According to a recent
study of the Butler Group, these IBM solutions belong to the top three suites for
SOA-based business process management (Hailstone, Illsley, Jones et al. 2007). Thus,
they constitute representative candidates for the evaluation of the state of the art
from a commercial perspective.

Figure 3-2: Overview of IBM Business Process Management Products.
Taken from: (IBM Corp. 2006)

Within the IBM WebSphere product family, the WebSphere Process Server
constitutes the runtime platform for workflows, thereby providing process
orchestration, business rules execution, human task management and process state

3.1 Dimension Workflow 35

management. Thus, it naturally provides support for long-running workflows
comprising diverse roles and systems.

The WebSphere Integration Developer (WID), an Eclipse-based integrated
development environment, is used for the model-based development of workflows.
Using the WID, developers can visually design the workflow’s control flow as well as
assign predefined or custom developed service components to each process activity.
Besides components for realizing system-oriented tasks, e.g. Web Service
invocations, a dedicated component can be used to indicate human tasks. The
construction of rich Web-based user interfaces supporting the completion of such
human tasks, however, is only poorly supported. On the one hand, the Web Sphere
Process Server is capable of generating a very simple task interface which shows the
input message for the current task and allows for entering a corresponding output
message. Such an interface can only serve developers for testing purposes. On the
other hand, custom developed Java Server Pages (JSPs) can be manually
implemented and attached to human tasks. To this end, WID provides developers
with the automatically generated JSPs which can then be refined. The realization of
device-independently accessible user interfaces is likewise left to the developer. This
comparatively low methodological and technical support for the efficient
construction of continuous and rich Web-based user interfaces is typical for business
process management suites. To date, such suites focus primarily on workflow
modeling, integration, enactment and monitoring and consider the construction and
provision of Web-based user interfaces solely as add-ons.

The IBM WebSphere Process Server offers comprehensive interfaces for integration
and federation scenarios. Thereby, custom client applications can access and interact
with the workflow engine. Furthermore, the Web Sphere Process Server provides
wide-ranging support for workflows comprising multiple systems via diverse ways of
integration as well as for distributed participation scenarios. The so-called “Service
Component Architecture (SCA)” approach forms the foundation for constructing
composite workflows by wiring process flow with service components. Regarding
human tasks, only a single, very abstract “human task” service component is
available. A more detailed specification with respect to various activity types would
be desirable.

Figure 3-3 depicts an overview of the suggested development process based on the
IBM software development platform and its various products. The process starts
with creating a business process model using the WebSphere Business Process
Modeler. Then, using the WebSphere Integration Developer, the business process’
technical realization in form of a workflow is modeled. Simultaneously, the
development of new components as well as the Web-based user interface is
performed based on the Rational Software Architect platform. Finally, both the
workflow model and the developed components are deployed and executed on the
WebSphere Process Server. While, according to this process model, the modeling of
workflows turns out to be rather efficiently and agile, the construction of workflow-
based Web applications still requires a considerable amount of manual
implementation effort. For most real-world Web applications, none of the generated
user interface components can be actually used. This in turn presents a major
roadblock to the requirement of short development timeframes.

36 Chapter 3 – State of the Art

Figure 3-3: Overview of the Development Process based on the IBM Platform.
Taken from: (Brown, Johnston, Larsen et al. 2005)

While the intention of providing various tools for different audiences seems
reasonable, the multitude of tool-specific models aggravates model exchange and
consistency, which is crucial for an iterative, evolution-oriented development
process. While there is a forward propagation of changes from the Business Modeler
to the Integration Developer (Fasbinder 2007b), the backward direction is only
supported by indicating changes within the Business Modeler. Their adoption on the
business process model has to be performed manually (Fasbinder 2007c). Regarding
the transition from the Business Modeler to the Rational Software Architect (RSA),
changes to the initial process model cannot be propagated to the RSA platform. To
this end, one shared model, at least between the Business Modeler and the
Integration Developer, would be advantageous.

IBM positions the WebSphere Business Modeler as a business process modeling tool
primarily tailored to a role termed “business analyst” which resides within the
project team. The employed graphical modeling notation is similar to the Business
Process Modeling Notation (BPMN). Although, multi-notational modeling is not
supported, plugins for importing process diagrams from Microsoft PowerPoint, ARIS
or Microsoft Visio are available. This highlights that also industry has recognized the
need for multi-notational modeling and is undertaking first steps towards this
direction. However, there is neither the possibility to work on a shared process
model using various notations nor concepts for assuring consistency between
various notations once a model has been imported.

The WebSphere Business Modeler supports the design of business processes using
multiple hierarchical layers and two different levels of detail. While this contributes
to a rather lightweight modeling of business processes, there is no model-based
support at all for Web-related aspects, particularly regarding the user interface.

3.2 Dimension Dialog 37

IBM pursues, unlike most of its competitors, the integration of and adherence to
standards very actively and continuously. For example, the WebSphere products
adopt standards in the field of business process management like the Business
Process Modeling Notation (BPMN), the XML Process Definition Language (XPDL) or
the Business Process Execution Language (BPEL) (Fasbinder 2007a). Furthermore, the
IBM Rational Software Architect, which is used for the development of new services
and components, relies strongly on UML and related standards, e.g. the XML
Metadata Interchange (XMI) format.

3.2 Dimension Dialog

3.2.1 Object-Oriented Hypermedia Design Method (OOHDM)

The Object-Oriented Hypermedia Design Method (OOHDM) originally employs
Abstract Data View (ADV) models for the specification of dialogs and their dynamic
behavior (Cowan and Lucena 1995). In the context of their Semantic Web-oriented
version of OOHDM named “Semantic Hypermedia Design Method (SHDM)”, a
revised approach for presentation design was presented (Moura and Schwabe 2004).
This approach introduces a so-called “Abstract Widget Ontology” which defines
abstract interface widgets representing various types of functionalities a user
interface element can embody (cf. Figure 3-4).

Figure 3-4: Abstract Widget Ontology of OOHDM/SHDM.
Taken from: (Moura and Schwabe 2004)

Based on this vocabulary, a software designer specifies the abstract interface design.
At first, only functional aspects are regarded, whereas the concrete user interface is
specified in a second step. Therefore, based on a “Concrete Widget Ontology” for a
particular runtime environment, each abstract interface widget has to be mapped on
a concrete interface widget, e.g. text box, radio buttons, check boxes or buttons.

The presented approach covers only the abstract and concrete interface design
regarding structural aspects of a dialog. The concrete implementation concerning
design and usability aspects for a specific platform, however, is not addressed.
Device-independent access can be supported by providing various concrete widget
ontologies for various target platforms. Web service support is neither considered by

38 Chapter 3 – State of the Art

OOHDM in general nor with respect to the construction of dialogs in particular. The
missing model continuity aggravates short iteration cycles as well as the efficient
adoption of changes. Beyond that, the methodology is fully developer-oriented; the
first phase of abstract interface design already requires a software designer with an
understanding of the functional logic associated with the employed terms. The
concrete interface widget is translated into a raw HTML-based serialization. Thus,
the potentials of advanced markup formats are not leveraged.

Recently, the OOHDM group proposed an interesting approach towards enriching
hypermedia application interfaces by animating navigational transitions and thereby
emphasizing semantically important information (Fialho and Schwabe 2007).
Although this idea is not particularly tailored to the characteristics of advanced Web-
based dialogs, it represents an interesting direction towards improved Web usability.

3.2.2 Web Modeling Language (WebML)

The Web Modeling Language (WebML) recently presented dedicated extensions
towards Rich Internet Applications (RIA), augmenting the existing WebML modeling
notation by means for modeling RIA-specific data, business logic and particularly
presentation aspects (Bozzon, Comai, Fraternali et al. 2006; Preciado, Linaje, Comai
et al. 2007). Similarly to OOHDM, the dialog design is differentiated into abstract and
concrete interface design. The abstract interface specification comprises device- and
platform-independent aspects like data mapping, abstract media elements, e.g. text,
image or video, as well as logical views for grouping simultaneously visible elements.
The concrete interface design focuses on specific user interfaces for particular
devices concerning spatial, temporal and interaction concerns. Based on the
concrete interface specification, the final interface for a specific platform can be
generated. Therefore, predefined mappings from concrete interface elements to
platform-specific components are evaluated. Presently, the model serialization into
HTML supported by various JavaScript-based AJAX frameworks is described, whereby
more powerful markup languages like XAML are mentioned as future candidates.

While this separation enables the manual modeling of device-specific interfaces,
automated adaptations according to the requesting client device and their
instrumentation are not addressed. Beyond that, it is questionable if the
specification of simultaneously visible elements already in the abstract interface
design is reasonable.

To date, as WebML is a methodology addressing particularly data-intensive Web
applications, the focus of the presented RIA-oriented extensions consequently lies
on common requirements of data-intensive RIAs, e.g. like dynamic filtering or
ordering of data in response to a user’s input. However, due to the proposed
combination of WebML and the Rich User Experience (RUX) Method, some usability
patterns of advanced Web-based dialogs, e.g. the separation into multiple views, can
be efficiently realized (Linaje, Preciado and Sánchez-Figueroa 2007). A particular

3.2 Dimension Dialog 39

consideration of dialog-specific characteristics and challenges as well as design time
assistance regarding related usability aspects has not been covered so far.

While WebML provides modeling techniques regarding the communication with
Web services, the construction of rich Web service-enabled dialogs starting from
data schemas or Web service specifications still requires considerable manual
modeling effort. The presented WebML development process for RIAs can almost
completely be performed on a model-basis. However, the modeling process
comprises multiple tools, is rather time-consuming and does not provide support for
rapid prototyping. Beyond that, some dialogs might require changes or extensions to
the generated markup or JavaScript code. To this end, the approach presently does
not provide concepts for assuring backward consistency between the platform-
specific code and the platform-independent models. This in turn aggravates an
iterative, evolution-oriented development approach.

The RUX tool supporting the presentation modeling is tailored to a Web designer or
developer audience. The modeling notation both for the abstract interface design
and the concrete interface design seem rather unintuitive and confusing to
stakeholders having a dialog’s final structure, behavior and appearance in mind. An
increased separation of concerns supplemented by corresponding, more simple and
stakeholder-oriented views would be advantageous.

3.2.3 UML-based Web Engineering (UWE)

The UML-based Web Engineering methodology (UWE) allows for the model-driven
construction of Web-based dialogs using dedicated UML stereotypes (Hennicker and
Koch 2001). Regarding the modeling of a dialog’s dynamic behavior, first ideas based
on UML state charts were proposed (Baumeister, Koch and Mandel 1999), but seem
not to have been pursued in more detail so far. Further usability aspects are not
explicitly addressed and the efficient realization of usability-improving patterns is not
adequately addressed either.

Due to the implementation-independent modeling approach, dialogs for diverse
platforms could be modeled and generated via dedicated model transformations;
how exactly this could be realized remains open though. Moreover, runtime
adaptations of dialog models according to requesting devices as well as their model-
based instrumentation have not been addressed yet as well. UWE presentation
models are serialized into Java Server Pages or HTML; advanced markup languages
have not been considered yet. Furthermore, as mentioned in the Workflow
dimension-related analysis of UWE, the approach does not provide support for
modeling Web service communications. Thus, the realization of Web service-enabled
dialogs requires comprehensive manual implementation effort.

Concerning the requirement of agility, i.e. short evolution cycles and flexible
adoption of changes, UWE presentation models cannot be directly transformed into
running applications as there is still manual source code development required.

40 Chapter 3 – State of the Art

Besides model consistency issues, this also hinders stakeholders without
development skills to perform lightweight modifications on existing dialogs.

The UWE notation for structural presentation modeling appears rather intuitive;
however, the resulting multitude of distinct UML state-chart models for each
dynamic behavior might be rather confusing. Beyond that, UWE omits modeling
support concerning the concrete and final user interface design.

Recently, a combination of the UWE and RUX methodologies targeting the
construction of Rich Internet Applications (RIA) was proposed (Preciado, Linaje,
Morales-Chaparro et al. 2008). Thereby, similar to the combined approach of
WebML and RUX analyzed above, at least some usability patterns can be realized
more efficiently. Beyond that, the aspect of device independency becomes more
manifest, integrating advanced markup languages more tangible and manual
development effort is reduced.

3.2.4 IBM Lotus Forms Designer

IBM Lotus Forms Designer 3.5, released at the end of 2008, is a visual design tool for
the construction of electronic (Web) forms (IBM Corp. 2008a). As Forrester Research
rated IBM as a leading vendor in the e-Forms market (Murphy 2006), this product
denotes a representative candidate for evaluating the commercial state of the art
with respect to the development of Web-based dialogs.

The IBM Lotus Forms Designer stores forms based on the Extensible Forms
Description Language (XFDL) format (Boyer, Bray and Gordon 1998). Thus, for
accessing them from a Web browser, either a dedicated browser plugin or a
supplemental product named “Lotus Forms Server 3.5 – Webform Server”, acting as
a translator from XFDL to HTML and Java Script, is required (IBM Corp. 2008b).

Figure 3-5 depicts a screenshot of the Lotus Forms Designer application which is
based on the Eclipse platform. The user interface is similar to today’s integrated
development environments and comprises a visual design pane, a toolbox containing
dialog components, a comprehensive property editor as well as further windows
providing detailed information concerning various aspects. The user interface is
available in a standard view and an advanced view, whereas the former does not
cover all tasks required for the construction of usability-oriented Web-based dialogs.

Concerning the important factor of dialog usability and related user interface
patterns, Lotus Forms Designer offers means for their rather efficient
implementation. While some of these features can be realized on a drag-and-drop
basis, others, e.g. the selection-dependent visibility of form areas, require the
manual creation of formulas. Explicit guidance towards the consideration and
incorporation of usability aspects is missing though. An important usability pattern
addressing the problem of cognitive overload advises to show only relevant fields to
a user by incorporating selection-dependent visibility of form areas. In complex
business forms, a multitude of such selection-dependent inputs is usually required.
While Lotus Forms Designer allows developers to implement them based on

3.2 Dimension Dialog 41

formulas (cf. Figure 3-5), these dependencies are not perceivable in the visual design
pane. Thus, the actual dialog behavior is not visible to both developers and
stakeholders, which in turn hinders the collaborative design process. The same
perception issues arise in the distribution of a dialog on multiple pages, whereby the
dynamic transitions between these pages lack a visual representation. Such
problems can probably be attributed to the inherent paper-oriented design
approach pursued by the great majority of commercial form design applications.

Figure 3-5: Screenshot of IBM Lotus Forms Designer

Regarding device-independent access and use of forms, the IBM Lotus Forms suite
does not provide native support. However, by extending the Lotus Forms Webforms
Server by a dedicated, custom developed component, runtime adoptions according
to various requesting devices could be achieved. The partial foundation of forms on
the device-independent XForms standard provides at least a starting point for that.

Lotus Forms Designer allows the specification of Web service invocations. However,
this requires a rather comprehensive procedure, a sound technical understanding
and even XForms programming skills. A more abstract, ideally model-based support
for integrating Web service invocations would be preferable. Furthermore, Lotus
Forms Designer is capable of parsing XML Schema and WSDL documents and
supports form composition via drag-and-drop operations on elements from the
derived XML Schema tree.

The IBM Lotus Forms Designer allows for a rather agile and evolution-oriented
development process. Potentials for improvement lie in the initial generation of
dialogs. When creating a new form, only PDF documents can be supplied for the
generation of a form. Thus, in most cases designers will start with an empty page. To

42 Chapter 3 – State of the Art

this end, the direct generation of form prototypes based on a given XML Schema or a
combination of a WSDL document and an operation identifier, would be desirable.

With respect to the requirement of strong stakeholder involvement, Lotus Forms
designer rather addresses a developer audience. On the one hand, the what-you-
see-is-what-you-get-based design mode is rather beneficial to stakeholder
understanding and communication in terms of design and layout aspects. On the
other hand, however, the lack of a visual illustration of a dialog’s dynamic behavior
mentioned before presents an obstacle. Beyond that, a process model guiding
stakeholders in how to analyze, design and implement a rich Web-based dialog,
particularly regarding early stages, is missing.

Recently, IBM released a dedicated Web-based form design tool for non-technical
users named “Lotus Forms Turbo” (IBM Corp. 2008c). Lotus Forms Turbo supports
both the design and deployment of Web forms as well as provides analysis features
for evaluating submission results. The form’s underlying data model is implicitly
defined by the created form elements and cannot be modified; neither can a given
data model be used as a starting point. While Lotus Forms Turbo definitely
represents a considerable step towards stakeholder empowerment, the tool
presently supports only very basic forms which are not sufficient for the considered
problem scope.

As highlighted in Section 3.1.4, IBM generally places emphasis on the incorporation
of open standards where possible. Consequently, also the Lotus Forms suite adheres
to various standards including XForms and XFDL. While XFDL is used for declaring
presentational aspects, XForms is employed for specifying a dialog’s data model,
validations, and form control types. Although this separation generally seems
reasonable, it was conducted in an inapt way at some points. As XFDL has not been
actively pursued by the W3C since 1998, employing means from the XForms
standard where possible and only transferring actually uncovered aspects to a
presentation-oriented language would have been a preferred way. The XForms
export function from Lotus Forms Designer underlines this problem, as too much
information that is actually covered by the XForms standard gets lost.

3.3 Dimension Reuse

3.3.1 Scientific Reuse Approaches for the Web Engineering Domain

In the Web Engineering discipline, reuse-related research primarily focuses on the
adequacy of models and software components for reuse. Due to the overall poor
coverage of Web Engineering-specific reuse aspects, the analysis of the state of the
art regarding this dimension is not performed separately for particular
methodologies. A rather holistic evaluation comprising various relevant approaches
and reaching also beyond methodology-specific concepts and solutions better
satisfies the comprehensive nature of reuse.

3.3 Dimension Reuse 43

As an example for methodology-specific reuse concepts, the OOHDM research group
introduces the concept of “OOHDM Frames”, i.e. Web design frameworks for
specifying common design schemas and their variation points, thus fostering reuse
on design level (Schwabe, Esmeraldo, Rossi et al. 2001). A similar idea called ‘WebML
skeletons’ is presented in (Ceri, Fraternali and Matera 2001). Such skeletons specify
abstract and simplified versions of recurring structural and hypertext schemas for
being instantiated and reused. In conclusion, these approaches provide interesting
insights on how reuse on a model level could be improved by identifying and
modeling recurring abstractions and reusing them by instantiation for a particular
application. While the similar goals of both approaches awake the desire for a
unifying, cross-methodological reuse approach for models, this has not been
addressed yet.

With respect to reusing Web components and their code, the WebComposition
approach presents its dedicated WebComposition Repository in (Gaedke and Rehse
2000). It aims at facilitating the storage and retrieval of components, thereby
allowing for incorporating various metadata representation methods as postulated
by Frakes and Pole in (Frakes and Pole 1994). Efficiently finding reusable components
and code is a key factor, not only for Component-based Web Engineering, but also
for other Web Engineering methodologies. However, a generalization of the
WebComposition reuse approach establishing a basis for reuse both on model and
component level has not been pursued.

Similarly, the realization of reuse support on a technical level has only been taken
into account in the context of method-specific development environments such as
WebML’s WebRatio (Acerbis, Bongio, Brambilla et al. 2007). Some Web Engineering
frameworks integrate generic version control systems, thus allowing for storing
diverse artifact types across methodologies. However, this only covers pure data
storage and disregards metadata aspects.

In (De Medeiros, Schwabe and Feijo 2005), the authors present the “Kuaba
Ontology” - an ontology-based approach for reusing Design Rationales, i.e. the
reasons and justifications for design decision, and associated artifacts. Although the
approach addresses a different problem domain, the idea of establishing a unifying,
methodology-independent foundation in form of an ontology seems to be a
promising approach for the reuse domain as well.

Beyond that, the Web Engineering community presently strives for realizing the
hitherto untapped potential of interoperability and model interchange across today’s
Web Engineering methodologies. In (Selmi, Kraiem and Ghezala 2005), a generic
framework defining a common denominator and enabling the comparability of these
methods is proposed. Such research forms a vital initial step towards achieving
interoperability and thus also presents an important input for a cross-
methodological reuse approach. Beyond that, consolidation efforts like the Model-
Driven Web Engineering initiative MDWEnet (Vallecillo, Koch, Cachero et al. 2007)
strive for achieving practical interoperability between common model-driven Web
Engineering methodologies. Thus, the potential of a unifying reuse approach
becomes even more obvious, as it is not only applicable across today’s Web
Engineering methods, but also enables real cross-methodological reuse. As these

44 Chapter 3 – State of the Art

consolidation efforts are still in an early stage, reuse-related research in this
direction has not been presented yet.

Similarly, reuse-related stakeholder-orientation and coordinative support concerning
development for reuse have not been addressed yet. While the former can be
attributed to the poor consideration of stakeholder aspects already in the
development process, the latter should be aligned with concepts for planned reuse
which therefore have to be addressed first. The only coordinative support offered by
advanced development environments so far consists in the use of centralized artifact
stores in addition to the local file system.

3.3.2 Commercial Solutions

Internal software reuse programs have been ongoing in IBM for over twenty years
(Yglesias 1998). Consequently, IBM offers a mature product named “Rational Asset
Manager 7.1” supporting reuse in the software engineering domain (IBM Corp.
2008d). The product is part of IBM’s federated metadata management strategy
(Schmidt and Larsen 2007). Gartner Research considers IBM’s strategy to be
“visionary” and denotes IBM as an industry leader in this area (Blechar 2007). Thus,
the IBM strategy in general and the Rational Asset Manager in particular constitute
representative candidates for evaluating the commercial state of the art for the
dimension Reuse.

Over the last years, IBM has introduced three tool- and community-specific
repositories: The “Tivoli Change and Configuration Management Database”
addresses system-related assets. Assets concerning data architecture, data
warehousing or enterprise information integration are covered by the “WebSphere
Metadata Server”. SOA-related assets are addressed by the “WebSphere Service
Registry and Repository”. With Rational Asset Manager, IBM introduces a fourth,
more generic repository for all further kinds of assets. The product offers both a
Web-based and an Eclipse-based user interface. Rational Asset Manager employs
OMG’s Reusable Asset Specification standard (Object Management Group 2005a) as
metadata format and allows for configuring custom artifact types and corresponding
metadata schemas based on the standard’s extension mechanisms. Thus, specific
metadata schemas and categorization taxonomies tailored to the Web Engineering
domain and its artifacts could be realized; however, in order to realize sophisticated
cross-methodological reuse support, more powerful semantic description facilities
are required.

IBM states the goal of supporting heterogeneous and globally dispersed
communities and their specific stores and tools. This can be valued as a first step
towards stakeholder-orientation; however, stakeholder characteristics, e.g. skills or
knowledge, have not been addressed as a context parameter for storing and finding
artifacts yet.

While IBM pursues the long-term vision of a fully federated metadata strategy across
diverse registries and repositories, the current focus lies on the pragmatic

3.4 Evaluation Results and Conclusion 45

integration of the Rational Asset Manager and the WebSphere Service Registry and
Repository. Federated searches across repositories, presently only spanning these
two products, are a core feature of Rational Asset Manager. This is achieved by
synchronizing asset metadata, which can lead to problems regarding coordination
and integrity though. Thus, federated searches are actually executed on a single,
combined metadata store and are limited to name-, keyword-, tag- and category-
based queries. More powerful semantic search capabilities are not provided.
However, filtering and browsing facilities along asset relationships are offered.

The need for integrating further, already existing repositories was recognized by IBM
and included in its long-term strategy for federated metadata management. So far,
however, this is not covered yet. Coordinative support for aligning redundant
development efforts is not explicitly addressed. The possibility of integrating multiple
WebSphere repositories and registries, thus covering not only production-oriented
instances, as well as their transparent background synchronization into Rational
Asset Manager present first steps towards this direction.

3.4 Evaluation Results and Conclusion

The results of the evaluation of the state of the art conducted in this chapter are
summarized in Table 3-1 for the dimensions Workflow and Dialog and in Table 3-2
for the dimension Reuse. The leading acronyms in each row stand for the
requirements elaborated in the previous chapter and recapitulated in Table 3-4. A
legend explaining the employed rating symbols is provided by Table 3-3.

Based on the performed evaluation, the following major problem areas of current
scientific and commercial approaches can be pointed out:

 No holistic consideration of workflow and user interface aspects: Today’s
established Web Engineering approaches still consider workflows as some
kind of advanced navigation, thus predominantly covering at most two out of
six relevant workflow perspectives (Weske, Vossen and Puhlmann 2005).
Consequently, with respect to workflow modeling and execution, they
neglect important characteristics and requirements of long-running
workflows comprising multiple roles and systems. Furthermore, the
dedicated support for constructing workflow-based Web applications does in
the most cases not reach beyond basic Web process modeling and concepts
for weaving workflow models into existing, usually navigation- and data-
related, models. Hence, important architectural concerns, like support for
multimodal participation and federative scenarios as well as leveraging the
potentials of component orientation, remain unconsidered. On the other
hand, commercial solutions provide comprehensive support for workflow
specification and execution but disregard Web-related requirements.
Therefore, an adequate Web Engineering approach should pursue a holistic
perception of both Web- and workflow-related requirements. As mature
commercial workflow platforms exist, such an approach should allow for their

46 Chapter 3 – State of the Art

smooth integration, thereby delegating the technical workflow execution and
rather focusing on their adequate instrumentation.

 Insufficient support for advanced Web-based dialogs: Although present Web
Engineering approaches naturally address interaction design, their dialog
design methodologies are limited to rather basic dialogs. Thus, they neglect
the specific requirements of advanced, highly interactive dialogs, particularly
regarding usability-oriented design and efficient implementation of usability-
related features. Similarly, only WebML provides modeling support for the
important aspect of Web service integration. Even though powerful user
interface-related markup languages like XForms have emerged over the last
years, today’s Web Engineering methodologies still ignore their benefits and
rather transform dialog models into an HTML-based markup representation.
In contrast to model-driven Web Engineering methodologies, commercial
approaches like IBM’s Lotus Forms are characterized by what-you-see-is-
what-you-get-oriented dialog editors. As such, they enable a predominantly
visual, paper-like form design supplemented by technical-oriented property
editors. However, due to their constraining focus on direct editing of the final
dialog, they lack more abstract modeling support as well as a systematic
engineering process. Besides hindering an overall design of a dialog’s dynamic
behavior, this missing abstraction also aggravates device-independency.

 Constricted, proprietary reuse approaches: Both scientific Web Engineering
approaches and commercial solutions provide reuse support only within the
boundaries of their specific methodologies and products. However, both have
recognized the need for more generic, cross-methodological reuse strategies.
Adequate concepts and methodologies for integrating heterogeneous
repositories and registries along with their diverse metadata schemas are still
in their infancies though. Similarly, advanced semantic search capabilities
have, if at all, been covered only peripherally in other scientific, non-reuse-
related contexts. This is probably due to the fact that the Semantic Web
constitutes a comparatively young field of research. Thus, how to adopt
related standards and technologies in order to provide sophisticated
solutions for domain-specific real-world problems still remains non-trivial and
of great interest also for other research communities (Dean and Paolucci
2008; Feigenbaum and Heath 2009).

 Heavy-weight, inflexible development methodologies: Although the model-
driven nature of today’s Web Engineering methodologies actually fosters
agility and the efficient adoption of changes, they still suffer from model-code
gaps and resulting consistency problems. Thus, with respect to agile
characteristics like short, iterative development cycles, continuous evolution
and the early availability of running versions of the envisioned solution, their
suitability is rather limited. This holds true in a similar way for commercial
solutions, particularly in the context of model-based approaches like the IBM
WebSphere suite. As an exception, Lotus Forms supports a rather agile and
evolution-oriented development process. This can be attributed to its low
abstraction level as it directly manipulates the final dialog’s code. While such

3.4 Evaluation Results and Conclusion 47

an approach inherently prevents such problems like model inconsistency, its
missing abstraction implies severe weaknesses as mentioned above, e.g.
missing capability of modeling overall dialog aspects or supporting device-
independency by separating abstract, concrete and final dialog design.

 Restrictive developer-centricity: Concerning their suitability for strongly
involving stakeholders throughout all phases of the development process,
both scientific and commercial approaches have turned out to be - either
implicitly or explicitly - tailored to a developer audience. Regarding business
processes or workflow modeling, for example, all approaches require the use
of a fixed, rather developer-centric set of notations and corresponding
development environments. Only the IBM WebSphere suite allows for
initially importing models from stakeholder-oriented tools like Microsoft Visio
or PowerPoint. Beyond that, in order to achieve a running application or to
adopt changes, all approaches require a considerable amount of technical-
oriented modeling and development effort, which presents a further
roadblock towards effective stakeholder engagement. These problems apply
similarly both to the construction of workflow-based Web applications in
general and advanced Web-based dialogs in particular. As an alternative to
today’s established Web Engineering methodologies, first approaches
towards End-User Development (EUD) in the Web Engineering domain, e.g.
(Rode, Rosson and Quinones 2006; Silva and Ginige 2007) are emerging.
While aiming at universal and effective stakeholder enablement, they are
presently still in their beginnings and suffice only for rather basic Web
applications, far from this thesis’ problem scope. The consideration of
stakeholders, i.e. their characteristics, knowledge and tools, in scientific and
commercial reuse approaches has received little attention so far. However, in
order to achieve a continuous and effective involvement of stakeholders,
their ability to find resolution strategies and related artifacts in accordance
with their individual characteristics and skills presents a crucial first step.

48 Chapter 3 – State of the Art

Table 3-1: Evaluation of State of the Art Approaches against
the Presented Requirements Catalog – Dimensions Workflow and Dialog

 OOHDM WebML UWE IBM

R-WF-01 - ++ - ++

R-WF-02 + + + -

R-WF-03 + - -- +

R-WF-04 -- - -- +

R-WF-05 - - - -

R-WF-06 -- -- -- -

R-WF-07 - + + -

R-WF-08 -- - - -

R-WF-09 + - ++ ++

R-D-01 - - - -

R-D-02 + + + -

R-D-03 -- + -- +

R-D-04 - - - +

R-D-05 -- -- - -

R-D-06 -- - - +

Table 3-2: Evaluation of the State of the Art against
the Presented Requirements Catalog – Dimension Reuse

 Scientific WebE Approaches Commercial Solutions (IBM)

R-R-01 + +

R-R-02 -- -

R-R-03 - -

R-R-04 - -

R-R-05 - -

3.4 Evaluation Results and Conclusion 49

Table 3-3: Legend of Rating Symbols

Symbol Meaning

++ Requirement satisfied / addressed

+ Requirement rather satisfied / rather addressed

- Requirement rather not satisfied / rather not addressed

-- Requirement not satisfied / not addressed

Table 3-4: Overview of the Requirements Catalog from Chapter 2

Req.-Abbr. Name

R-WF-01 Workflow Management and Execution

R-WF-02 Continuous, Rich User Interface

R-WF-03 Multimodal Participation

R-WF-04 Federation-Enabled and Component-Based Architecture

R-WF-05 Agility and Evolution

R-WF-06 Multi-Notational Modeling

R-WF-07 Complete Model Continuity and Consistency

R-WF-08 Lightweight Modeling Approach

R-WF-09 Use of Standards

R-D-01 Usability

R-D-02 Device Independence

R-D-03 Web Service Support

R-D-04 Agility and Evolution

R-D-05 Stakeholder Involvement

R-D-06 Standardized Markup Language

R-R-01 Generality and Homogenization

R-R-02 Stakeholder Orientation

R-R-03 Semantic Search

R-R-04 Integrative Reference Architecture

R-R-05 Coordination

4 Web Engineering for Workflow-based
Applications – A DSL Approach

The preceding evaluation of the current state of the art arrived at the conclusion that
neither a single existing approach nor a combination achieves a sufficient fulfillment
of the stated requirements. Consequently, novel solutions for the construction of
workflow-based Web applications which satisfy the elaborated requirements and
overcome the problems discovered in the current state of the art are required. To
this end, this thesis presents several solutions which both individually and combined
present significant contributions to the Web Engineering research discipline.

In this chapter, a brief overview of the particular solution elements and their
interplay for the construction of workflow-based Web applications in close
collaboration with stakeholders is given. First of all, in Section 4.1, a novel approach
for the evolutionary construction of Web applications based on Domain-specific
Languages (DSLs) is introduced. This framework establishes the foundation for the
domain-specific languages, namely the Workflow DSL and the Dialog DSL, presented
in this thesis. Afterwards, Section 4.2 conveys an overview of this thesis’
contributions and outlines their interrelations and cooperation in the course of the
construction of workflow-based Web applications with stakeholders. A detailed
description of each solution element follows in the subsequent chapters.

4.1 The Web Engineering DSL Framework1

The overall vision behind the requirement of strong and continuous stakeholder
involvement is to enable domain experts to directly contribute to the development
effort by understanding, validating, modifying and even autonomously specifying
parts of the solution. As discussed in Section 2.1, this requires specification
languages and corresponding notations to be easy to learn, understand and use,
both for developers and stakeholders. Consequently, simplicity presents a key factor

1 Parts of this section have been published in (Nussbaumer, Freudenstein and Gaedke 2006a)

52 Chapter 4 – Web Engineering for Workflow-based Applications – A DSL Approach

to a language’s usability and effectiveness. The inclusion of a problem domain’s high-
level abstractions and concepts further eases learning, understanding and using a
language for domain experts. Against this background, Domain-specific Languages
(DSLs) present an interesting alternative to existing, heavy-weight modeling
approaches in the Web Engineering domain. A DSL can be defined as follows:

Definition 4.1 - Domain-Specific Language (DSL): A programming
language or executable specification language that offers, through
appropriate notations and abstractions, expressive power focused on,
and usually restricted to, a particular problem domain. (Deursen, Klint
and Visser 2000).

Due to their limited scope and their level of abstraction tailored to the problem
domain, DSLs are easy to understand and use, especially for domain experts and
non-programmers. By the use of various graphical notations and accompanying
editors, each of them being as intuitive as possible for a particular stakeholder
group, the usability of a DSL can be further improved (Fowler 2005).
Like programs developed with general purpose languages, e.g. Java or C#, DSL
programs can also be transformed into executable code or interpreted using a
dedicated DSL compiler or interpreter respectively. The advantages of using DSLs do
not only affect domain experts and non-programmers; they also comprise potentials
for increased productivity, reliability and maintainability (Kieburtz, McKinney, Bell et
al. 1996) as well as efficient reuse (Batory, Lofaso and Smaragdakis 1998).

In contrast to today’s complex and monolithic Web modeling languages, the Web
Engineering DSL Framework suggests the use of a multitude of DSLs for the various
aspects of a Web application. Thereby, each DSL is tailored to a small, clear problem
domain and provides abstractions and notations dedicated to the individual
characteristics of relevant stakeholder groups. In Section 4.1.1, the different
components making up a DSL as well as their evolutionary character in the course of
development for and with reuse are described. Furthermore, the approach’s
cornerstones addressing the systematic evolution of the emerging variety of DSLs are
presented. Following that, Section 4.1.2 briefly introduces the approach’s underlying
technical platform.

4.1.1 DSLs – Evolutionary Web Development for and with Reuse

Figure 4-1 depicts the elements of the DSL-based Web Engineering approach which is
based on the principles of evolution and reuse (Nussbaumer, Freudenstein and
Gaedke 2006d). The approach differentiates between two phases in the course of a
DSL’s continuous evolution: Development for Reuse comprises the design and
development of a DSL and Development with Reuse covers the usage of a DSL for the
specification and development of a particular aspect of a Web application. The
experiences gained in using the DSL as well as the continuous evolution of the Web,
its standards and technologies serve as input for adapting or improving the DSL
during the next evolution cycle.

4.1 The Web Engineering DSL Framework 53

Figure 4-1: Overview of the Evolutionary and Reuse-Oriented
DSL-based Web Engineering Approach

4.1.1.1 Development for Reuse

According to the Web Engineering DSL Framework presented here, a DSL consists of
three components which are initially developed during the first Development for
Reuse phase:

 Domain-Specific Model (DSM): The DSM embodies the conceptualization of
the DSL’s respective problem domain in terms of a formalized schema.
Usually, the DSM is specified in form of an XML Schema Document (XSD)
(Thompson, Beech, Maloney et al. 2004); however, the approach poses no
limitations so that other formats are viable as well. As the DSM presents the
formal foundation for all solutions that can be specified with the DSL, it has to
be designed in strong accordance with the concerned problem domain,
thereby taking into account the characteristics of already existing solutions
and collaborating with domain experts. To this end, existing approaches from
the research fields domain analysis and domain engineering can be adopted,
e.g. (Neighbors 1984; Arango 1989; Czarnecki and Eisenecker 2000)

 Domain Interaction Model (DIM): A DSL can provide one or more (graphical)
notations, termed DIM, whereby each of them is designed as intuitive and
appropriate as possible for a particular stakeholder group. By using a DIM,
stakeholders can actually employ the DSL, i.e. understand, validate, modify
and even create DSL programs, without being confronted with complicated
source code. Instead, the DIM should provide concepts and notations derived
from the problem domain and thereby should be easy to understand and use.
The usability and effectiveness of a DIM can be further improved by providing
accompanying DIM-specific editing tools. To this end, preferably tools already
known and used by the respective stakeholders should be leveraged. As the

54 Chapter 4 – Web Engineering for Workflow-based Applications – A DSL Approach

great majority of today’s tools and applications provide XML-based export
facilities, their integration can be achieved in a straightforward way. The
mapping between DIMs and the schema defined by the DSM is realized by
dedicated model transformations. In this regard, particularly in the case of
multiple DIMs, assuring semantic integrity and consistency is crucial. To this
end, Section 5.4 presents an adequate model transformation framework.
A DIM is tightly coupled to the DSM; however, it needs not to cover all of its
aspects. The DSM can be projected onto various DIMs, each of them
corresponding to a particular level of abstraction and a specific stakeholder
audience (cf. Figure 4-3). Hence, for a given problem domain, a taxonomy of
DIMs can be spanned, thus providing adequate support for all audiences and
process stages. For example, in the figure, DIM1 represents a very basic,
cross-audience DIM for early requirements engineering activities, thus
covering only a small fraction of the DSM. DIM2 and DIM3 could be notations
which cover most of the problem domain and are tailored to different
stakeholder groups. Regarding, for example, a DSL addressing workflow
aspects, each of these two DIMs could adhere to a different business process
modeling notation. Finally, DIM4 offers full coverage of the problem domain
and thus, due to its expressiveness and the resulting complexity, rather
addresses a developer audience.

Figure 4-2: Projection of the Domain-Specific Model (DSM) onto
the Domain Interaction Model (DIM) Taxonomy

 Solution Building Block (SBB): For the execution of DSL programs developed
using one or more DIMs and based on the DSM, each DSL provides a
dedicated SBB. Unlike the majority of today’s model-driven software
development approaches, the Web Engineering DSL Framework does not
pursue a model-to-code transformation conception, but rather conceives DSL
programs as instrumentation for a SBB. Consequently, a SBB is considered as

4.1 The Web Engineering DSL Framework 55

a domain-specific software component which is capable of adapting its
behavior in accordance with a given, usually XML-based, DSL program.

4.1.1.2 Development with Reuse

Once a DSL comprising a DSM, one or more DIMs and a SBB has been initially
developed and stored in the reuse repository, it can be retrieved and employed in
the Development with Reuse phase. In this phase, a DSL program termed Domain
Abstract Representation (DAR) specifying a concrete solution within the DSL’s
problem domain is developed. Consequently, it is based on the DSM and created by
using one or more DIMs. As the DSM is usually specified in terms of an XML Schema,
the DAR is likewise serialized and stored in form of an XML document based on the
DSM. Ideally, and in contrast to today’s integrated development environments, the
editing process using DIM notations is not performed on this serialized form.
Modifications are rather carried out directly on the abstract model itself. Thus, DSL
programs can be edited in a more powerful way than it would be possible if
interacting with the DAR’s serialized form.

After having developed a DAR, it is passed – usually in form of an XML document - to
an instance of the DSL’s associated SBB which in turn adapts its behavior accordingly
and thus implicitly executes it. SBBs run on a technical platform which allows their
composition and configuration with DSL programs at runtime. In this regard, the
Web Engineering DSL Framework approach could be basically applied to most of
today’s portal platforms, e.g. Microsoft Office SharePoint Server or IBM WebSphere
Portal Server. The minimum requirements such a portal system must fulfill lie in
supporting the integration of custom Web components and their configuration at
runtime. In this thesis’ research context, the technical implementation was
performed based on the WebComposition Service Linking System (WSLS) and is
briefly described in Section 4.1.2.

Summarizing the Development for Reuse phase, Web application development can
be performed in an evolutionary manner by composing SBBs and configuring them
with DARs. These are in turn developed in strong collaboration with stakeholders
using one or more DIMs and supplementing DIM editors.

4.1.1.3 Systematic Evolution

Domain-Specific Languages are subject to continuous evolution. Their lifecycle starts
with the identification of the need for a DSL for a particular, presently uncovered
problem domain. This is followed by the specification of a new DSL, consisting of a
Domain-Specific Model, one or more Domain Interaction Models and dedicated DIM-
specific editor support. The new DSL is then employed in various scenarios and in
collaboration with different kinds of stakeholders. Thereby, new experiences are
gained permanently and eventually result in requests for change. For example, such
improvements could concern the modification of a DIM, the development of a new
DIM for a particular stakeholder group or extensions to the DSM due to hitherto
uncovered aspects of the problem domain. Thereupon, the DSL enters a new
evolution cycle and the required adaptations and extensions are performed in the
Development for Reuse phase.

56 Chapter 4 – Web Engineering for Workflow-based Applications – A DSL Approach

Hence, the set of available DSLs for building Web applications underlies a continuous
evolution through variation and selection: new DSLs are added, existing DSLs are
improved, and DSLs that have turned out to be dispensable are removed. Beyond
that, also the focus on a multitude of highly-focused DSLs for concise problem
domains requires an efficient reuse management approach. To this end, the Web
Engineering DSL Framework suggests two main concepts: A DSL Reuse Repository for
the systematic management of DSLs from the technical point of view and a team role
called DSL Librarian being responsible for their efficient management and usage
from the process perspective.

The DSL Reuse Repository is the central place for organizing, storing, managing and
accessing DSLs and their components as well as associated metadata. Moreover, the
repository should provide versioning features in order to cope with the continuous
evolution of the stored components. With respect to assuring efficient storage and
retrieval of DSLs, a sophisticated classification scheme supporting context-based
searches is necessary. For example, it should be possible to find DSLs according to
parameters like the problem domain, the application type, the kind of stakeholders
etc. Against this background, Chapter 7 presents an adequate reuse repository
approach termed The Web Engineering Reuse Sphere. Even though the Web
Engineering Reuse Sphere has a much more comprehensive and generic focus than
required in this context, it presents an ideal supplement providing excellent support
for the DSL-based Web Engineering framework.

Facing challenges like effectively creating and maintaining such a repository as well
as psycho-social impediments to software reuse, e.g. the “not invented here”
syndrome (Sommerville 2007a), the explicit promotion of an reuse-oriented
approach like the Web Engineering DSL Framework also from an organizational
perspective becomes important. To this end, the DSL Librarian team role
accompanies the entire DSL lifecycle and promotes their usage. During the
specification of new DSLs, it advocates the project team and is responsible for the
avoidance of duplicate or badly reusable DSLs. Similarly, it fosters the reuse of
existing DSLs and related artifacts where possible and therefore supports the team in
finding and evaluating appropriate DSLs. Furthermore, the role is in charge of
effective maintenance of the repository which includes tasks like adding and
removing components, updating the classification scheme as well as monitoring
successful and unsuccessful searches and adoptions.

4.1.2 Technical Platform

The Web Engineering DSL Framework approach can be adequately supplemented by
the WebComposition Service Linking System (WSLS) (Gaedke, Nussbaumer and
Meinecke 2005) which emerged in the context of Martin Nussbaumer’s PhD thesis
(Nussbaumer 2008) and serves as technical platform for SBBs. Similarly, other
commercial portal systems could be adopted as technical platforms for the Web
Engineering DSL Framework.

4.2 Overview of Solution Elements 57

WSLS aims at facilitating the systematic evolution of Web applications by reusing
software artifacts, particularly software components, and emphasizing the
“configuration instead of programming” paradigm. The WSLS framework suggests a
two-layered perception of Web applications and their construction by differentiating
between an application level and a configuration level. On the application level, a
Web application’s various sites and their structure are defined by referencing and
composing atomic units termed domains. Domains are the primary conceptual units
which serve for specifying a Web application’s structure and composition. On the
configuration level, a domain is assigned with a desired behavior type from a
repository of available behavioral building blocks. Such behavioral building blocks
can be, amongst others, SBBs as defined by the Web Engineering Framework
approach. The concrete behavior of such a building block in the context of a
particular domain is configured by a dedicated configuration set. The configuration is
based on typed name-value pairs, termed properties, which represent very fine-
grained atomic units of configuration and which are categorized into six Web-specific
concern dimensions, i.e. data, navigation, interaction, presentation, process and
communication.

In contrast to the available multitude of very fine-grained properties, a DSL program
represents a more coarse-grained configuration document, influencing multiple
properties from various concern dimensions. Hence, from a conceptual perspective,
configuring a SBB with a DSL program equals the configuration of multiple properties
across the various concern dimensions. WSLS allows for evolving a Web application
both on the application and the configuration level at runtime. Thus, it is perfectly
suitable for a highly agile and evolutionary DSL-based construction approach: Web
applications are built and evolved by assembling SBBs for their various concerns and
configuring them with DSL programs at runtime. These DSL programs in turn are
developed and evolved in strong collaboration with stakeholders using (graphical)
DIM notations and related editors. Thus, in the most cases, no manual development
of source code is required. In conclusion, the Web Engineering DSL Framework
approach and the WSLS platform thereby realize the “modeling instead of
programming” paradigm.

4.2 Overview of Solution Elements

As pointed out in the previous section, the Web Engineering DSL Framework is
adequately supplemented by two additional approaches, namely the Web
Engineering Reuse Sphere and a dedicated Model Transformation Framework. With
regard to this thesis’ problem scope, i.e. the efficient and effective construction of
workflow-based Web applications in strong collaboration with stakeholders, further
solution elements based on this foundation are required. In this regard, Figure 4-3
illustrates the various elements and contributions for the stakeholder-oriented
construction of workflow-based Web applications which are presented in this thesis.
It inherently combines the visualization of the individual solution elements and their
interrelations with an assignment to the high-level process model as suggested by

58 Chapter 4 – Web Engineering for Workflow-based Applications – A DSL Approach

the Workflow DSL. In the following, each solution element is briefly introduced,
thereby pointing out interrelations with other elements and conveying an impression
of their interplay in the course of constructing workflow-based Web applications.

Figure 4-3: Complete Overview of the Presented Contributions for
the Stakeholder-Oriented Construction of Workflow-based Web Applications

 The Workflow DSL: The Workflow DSL presents the central solution element
for the model-driven construction of workflow-based Web applications. It is
realized as a Domain-specific Language following the specification introduced
by the Web Engineering DSL Framework. The Workflow DSL suggests an
evolutionary, high-level process model which ranges from initial
requirements engineering activities to obtaining a fully functional workflow-
based Web application from the constructed models and consists of three
phases: Business Process Modeling, Workflow Modeling and UI Modeling and
Execution. The DSL adopts various modeling notations as Domain Interaction
Models (DIMs) and supports common tools, thus covering various
stakeholder groups and levels of detail. These notations include a simple text-
based notation for early requirements engineering activities termed Simple
Sequence Only, and more detailed notations like the Business Process
Modeling Notation (BPMN), Petri Nets or UML Activity Diagrams. Beyond
that, the DSL defines systematic extension facilities for incorporating further

4.2 Overview of Solution Elements 59

notations and tools. The DSL’s Domain-Specific Model (DSM) serves as
Process Intermediate Language, capturing all relevant concepts of the
respected problem domain and thus representing the formalized foundation
for the fully model-based construction process as well as for integrating the
variety of modeling notations. To this end, a dedicated Model Transformation
Framework supports the systematic development and execution of bilateral
model transformations between (almost) arbitrary modeling notations (DIMs)
and the Process Intermediate Language (DSM). With respect to the technical
realization of workflow activities, the Workflow DSL employs a set of so-
called Activity Building Blocks (ABBs). The Workflow DSL is described in detail
in Chapter 5.

 Activity Building Blocks (ABBs): ABBs are autonomous Domain-Specific
Languages that are loosely integrated by the Workflow DSL for realizing
various common workflow activities like dialog-based user interaction, data
presentation or Web Service communication. Thus, an ABB type is assigned to
each workflow activity and configured with a minimal set of properties.
Thereupon, due to their advanced automation concepts, ABBs are already
capable of implementing the desired behavior type. Like any DSL based on
the Web Engineering DSL Framework, they allow for conducting a more
comprehensive, detailed design at runtime and in strong collaboration with
stakeholders. In summary, ABBs foster the efficient Web-based realization of
workflow activities and contribute to keeping the focus on the business
process or workflow model respectively instead of losing the overview in a
multitude of models. Besides being employed by the Workflow DSL, ABBs can
also be used autonomously in other contexts, e.g. for the sole realization of a
Web-based dialog. The catalog of ABBs is introduced in Section 5.2.2

 The Dialog DSL: Due to the particular importance of complex Web-based
dialogs in workflow-based Web applications, the Dialog DSL presents the
main Activity Building Block. Like all DSLs presented in this thesis, it follows
the DSL specification of the Web Engineering DSL Framework. The Dialog DSL
allows for the automated generation of device-independent and Web
Service-enabled dialogs from data schemas or Web Service specifications.
Furthermore, it provides an intuitive modeling notation focusing on dynamic
behavior and usability and includes a supplemental Web-based model editor.
Like the Workflow DSL, it is purely model-driven, thus not requiring any
manual coding for the great majority of dialogs. Hence, it enables the rapid
development and evolution of advanced Web-based dialogs, even by
stakeholders without programming skills. This was successfully verified in the
course of a comprehensive empirical evaluation described in Section 8.3. An
in-depth presentation of the Dialog DSL itself is given in Chapter 6.

 The Model Transformation Framework: Particularly in the context of the
Workflow DSL, model transformations play an important role. While
horizontal model transformations address the transformation of a business
process or workflow model respectively between various notations and tools,
vertical model transformations accomplish the transformation of a workflow
model to an executable workflow specification used as input for a workflow

60 Chapter 4 – Web Engineering for Workflow-based Applications – A DSL Approach

engine. In this context, the Workflow DSL’s Domain-Specific Model (DSM)
acts as intermediate schema, thus fostering extensibility and efficiency with
regard to the envisioned multitude of supported modeling notations, tools,
execution formats and platforms. With respect to the development and
execution of adequate transformations, the Model Transformation
Framework assures key factors like semantic integrity and consistency. Its
supplemental technical platform allows for specifying, managing and
executing model transformations as well as their seamless integration into
existing tools and platforms. The Model Transformation Framework is
presented in Section 5.4.

 The Web Engineering Reuse Sphere: A comprehensive, cross-methodological
and stakeholder-oriented reuse framework for the Web Engineering domain
forms a fundamental complement to the approaches presented in this thesis.
On the one hand, as described in the previous section, it can be adopted as
DSL reuse repository as required by the Web Engineering DSL Framework. As
such, it enables efficient and effective storage and retrieval of DSLs including
their various components as well as DSL programs. On the other hand, it
enables stakeholders to find resolution strategies and related artifacts for a
given problem and a specific set of individual skills across the great diversity
of Web Engineering methodologies. Therefore, the Web Engineering Reuse
Sphere defines an ontology which conceptualizes the domain reuse in the
Web Engineering discipline based on Semantic Web standards and
technologies. Based on this semantic, homogenizing foundation, it provides
advanced knowledge-based, cross-methodological search facilities. The
technical integration of existing heterogeneous artifact stores is guided by a
reference architecture. Thereby, besides explicit reuse repositories, also
application-specific stores are covered in order to support both planned and
spontaneous reuse strategies. The Web Engineering Reuse Sphere is
presented in Chapter 7.

5 Constructing Workflow-based Web
Applications with Stakeholders2

In this chapter, the Workflow DSL as central solution element for the efficient and
effective construction of workflow-based Web applications with stakeholders is
presented. The Workflow DSL adheres to the Domain-Specific Language specification
as introduced by the Web Engineering DSL Framework in the previous chapter and
explicitly addresses the requirements identified in Chapter 2. Consequently, after a
brief overview of the Workflow DSL, its elements and a complementary evolutionary
process model in Section 5.1, a detailed presentation of each DSL element is given.
Section 5.2 describes the DSL’s Domain-Specific Model (DSM) serving as formalized
conceptualization of the considered problem domain and thereby acting as Process
Intermediate Language for the various modeling notations. In this context, the
catalog of Activity Building Block (ABB) DSLs used for specifying the technical
realization of workflow activities is introduced. The various Domain Interaction
Models (DIMs) enabling multi-notational modeling of workflow-based Web
applications in strong collaboration with stakeholders and throughout all phases of
the development process are presented in Section 5.3. The Model Transformation
Framework supporting the systematic development and execution of the required
horizontal and vertical model transformations, i.e. between various DIMs and the
DSM as well as from the DSM to executable workflow specifications, is described
thereafter in Section 5.4. Finally, Section 5.5 contains an in-depth presentation of the
Workflow DSL’s Solution Building Block (SBB), the underlying technical reference
architecture as well as the automated application generation methodology. A brief
summary including a short evaluation against the identified requirements from
Chapter 2 is given in Section 5.6.

2 Parts of this chapter have been published in (Freudenstein, Nussbaumer, Majer et al. 2007)

62 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

5.1 The Workflow DSL at a Glance

According to the specification of the Web Engineering DSL Framework, the Workflow
DSL is an executable specification language tailored to the domain of Web-based
workflow execution and interaction. It allows the simultaneous use of various
graphical modeling notations known from the Business Process Modeling field and
supplemental editing tools, thereby focusing on process aspects instead of technical
details as well as easing continuous involvement and participation of various
stakeholder audiences. The Workflow DSL enables an evolutionary, completely
model-based development process with short iteration cycles. Based on the DSL’s
technical framework, service-oriented and federation-enabled workflow-based Web
applications can be fully automatically derived from model-based DSL programs.

5.1.1 Elements of the Workflow DSL

Corresponding to the Web Engineering DSL Framework, the Workflow DSL consists
of three core elements:

 Domain-Specific Model (DSM): The DSM represents the formal schema for all
DSL programs or Web-based workflows respectively that can be specified
with the DSL. With respect to supporting various business process modeling
notations, the DSM can also be seen as Process Intermediate Language,
embodying the common denominator of the multitude of existing process
modeling languages. Besides constructs covering a business process’
functional, behavioral, informational or organizational perspective, the DSM
also includes dedicated modeling constructs enabling the transition from a
pure business process model to a running workflow-based Web application.
As basis for the DSM, the standardized XML Process Definition Language
(XPDL) (Shapiro, Marin, Brunt et al. 2005) was chosen. XPDL was originally
designed both as an interchange format for process definitions and as a
definition language for executable workflow specifications. Thus, it forms an
ideal foundation for the Workflow DSL. Based on the extensibility
mechanisms provided by XPDL, dedicated concepts, primarily concerning
Web-specific user interface concerns, were integrated. Due to these well-
defined extensions, the expressive power of the XPDL standard was extended
towards a full coverage of Web-based workflows, thus making it an ideal DSM
for the Workflow DSL.

 Domain Interaction Models (DIMs): According to the Web Engineering DSL
Framework, multiple DIMs tailored to various stakeholder groups and levels
of detail can be defined. With respect to the considered problem domain, a
DIM could either be derived from a well-known business process modeling
notation or be defined from scratch embodying a custom notation.
Accompanying editors, e.g. business process modeling tools as well as

5.1 The Workflow DSL at a Glance 63

everyday office applications well-known by stakeholders, can be integrated in
order to support stakeholders in creating DSL programs based on a DIM
notation. In the context of this thesis, various DIMs were designed and
realized based on the DSM and according to the following standards: The
Business Process Modeling Notation (BPMN), UML Activity Diagrams, Petri
Nets as well as a custom text-based notation named Simple Sequence Only.
To model DSL programs using these notations, the following tools were
exemplarily integrated (same order as notations): Microsoft Visio, IBM
Rational Software Architect, INCOME2010, and Microsoft Word. While the
latter DIM covers only basic process structure aspects, the three former DIMs
comprise also technical, Web-related workflow aspects. Dedicated model
transformations realize the consistent and semantically lossless horizontal
transformation of the shared model between various notations and tools.
According to the Web Engineering DSL Framework and based on a unique
model transformation concept, the set of available notations and tools can be
efficiently and systematically extended.

 Solution Building Block (SBB): The Workflow DSL’s SBB represents the central
component of the approach’s technical framework. The SBB can be
configured with an XML-based specification of a Web-based workflow, i.e. a
Workflow DSL program adhering to the DSM. Thereupon, the SBB constructs
an associated Web-based workflow at runtime. Therefore, part of the DSL
program is extracted and transformed into an adequate instrumentation for a
workflow engine which is in charge of controlling the process flow. On the
other hand, with respect to the Web-based user interface and the realization
of workflow activities, instances of various SBBs belonging to a catalog of so-
called Activity Building Block DSLs are composed. These serve for the
realization of workflow activities like Web-based dialogs, data presentation or
Web service communication and are initialized with a minimum configuration
set derived from the DSL program. While this is sufficient for their correct
operation, their configuration can be refined at runtime by using their
respective DSL’s DIMs and associated editors.

5.1.2 Evolutionary Process Model

The process model depicted in Figure 5-1 guides the application of the Workflow DSL
within an evolutionary development process for workflow-based Web applications. It
consists of three phases in a continuous evolution and involves various roles. Due to
its openness, it can be smoothly integrated into existing development methodologies
as a concern-specific process model for Web-based workflows. In the following, the
process model’s three incremental phases as well as the activities performed therein
and the involved roles are described. It should be noted that, throughout all phases,
one single DSL program is created and consistently evolved, even though various
DIMs covering different levels of detail are employed. Beyond that, the process can
be mostly performed on a pure model-basis without requiring manual coding.

64 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

Figure 5-1: Overview of the Evolutionary Workflow DSL Process Model

Business Process Modeling: In this initial phase, the business process to be realized
by the workflow-based Web application is modeled using pure business process
modeling constructs. While in a first step, the focus usually lies on eliciting and
modeling process activities and roles, the model is incrementally refined by more
detailed constructs including control and data flows. In doing so, stakeholders
representing the involved process participants and knowing the business process
best as well as a Process Analyst role supporting the modeling process itself are
involved. Depending on the comprehensiveness of the business process, different
stakeholder groups contribute to different sections of the process and on various
levels of abstraction. According to the involved stakeholder group and the
considered level of detail, various DIM notations and model editors can be
employed. Adequate model transformations serve for automatically transforming
the shared process model from one DIM into another. The Reuse Librarian role
advises the modeling team regarding possibilities for reusing existing process models
in whole or part as well as assures the effective storage of developed artifacts in the
repository (cf. the Web Engineering Reuse Sphere in Chapter 7). A business process
model in form of a DSL program represents the output of this phase.

Workflow Modeling: In this phase, the business process model from the previous
phase is augmented with information addressing the technical realization of the
business process in form of a Web-based workflow. As this particularly implies well-
known Web-specific concerns (Schwinger and Koch 2006) like data, presentation,
interaction, communication or process, this set is termed Concern Configuration. In
the course of this phase, first of all, to each activity in the business process model a
corresponding Activity Building Block (ABB) is assigned. Thereby, the realization of
the activity is determined from a conceptual perspective. Subsequently, each ABB is
configured with a minimum set of properties according to its respective domain-
specific schema. These tasks can be performed in strong collaboration with

5.2 The DSM – Process Intermediate Language 65

stakeholders: On the one hand, the conceptual mapping of activities to ABBs
requires a rather low technical understanding. On the other hand, throughout this
phase, the focus still remains on the business process model which is solely
augmented by the property-based Concern Configuration. Thereby, usually DIMs and
accompanying editors known from the previous phase can be used. The difference of
these DIMs lies only in an extension in order to specify the Concern Configuration,
whereas the DIM’s individual notation for the business process itself remains
identical. The involved stakeholders are supported by an Application Designer role
and the Reuse Librarian role. The application designer is experienced in workflow
modeling and knows the activity building blocks and the associated DSLs. The reuse
librarian advises the team concerning the reuse of existing Concern Configurations
and Activity Building Blocks from the reuse repository. If no suitable ABB or DSL
respectively exists, the Developer role initiates the design and implementation of a
new one which is not covered any further by this process model. The result of this
phase is a valid Workflow DSL program in form of an XML document, wherein
process structure information and Concern Configuration are loosely coupled, thus
easing reuse and evolution.

Physical Design & Execution: In this phase, the developed DSL program is passed to
an instance of the Workflow DSL’s SBB, which thereupon fully automatically supplies
a corresponding Web-based workflow. Subsequently, the obtained Web-based
workflow both be modeled in detail by means of the Activity Building Blocks DSLs
and directly be used in production for creating and processing workflow instances.
For example, the Activity Building Block used for the realization of Web-based
dialogs, i.e. the Dialog DSL (cf. Chapter 6), provides a Web-based model editor. Thus,
dialogs or their models respectively, which were generated based on the minimum
configuration set provided in the Workflow Modeling phase, can be comprehensively
refined in-place and at runtime. Similar to the previous phases, stakeholders can
strongly participate in this phase, again assisted by the Application Designer role.

Evolution: In the case of changing or new requirements, the Workflow DSL provides
strong support for adopting changes, either in the business process model or the
Concern Configuration or both. Changes in the business process can easily be
performed in the Business Process Modeling Phase while keeping the Concern
Configuration in the Workflow Modeling phase unchanged. Changes in the Concern
Configuration can either be performed by modifying the minimum configuration set
in the Workflow Modeling phase or at runtime in the Physical Design & Execution
phase by means of the respective DSLs. Both the DSL approach itself and the
technical platform preserve model consistency throughout all phases.

5.2 The DSM – Process Intermediate Language

An adequate Domain-Specific Model (DSM) for the Workflow DSL approach should
satisfy various requirements. Firstly, considering the multitude of existing
standardized specification languages in this domain, it should be preferably based on
such a standard. Secondly, besides covering functional, behavioral, informational and

66 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

organizational workflow aspects, it should also provide support for specifying (Web-)
user interface-related aspects in the context of human tasks. Thirdly, it should
provide a sufficient coverage of relevant workflow patterns, i.e. abstract, language-
independent patterns which potentially arise from a business perspective and thus
should be supported by a workflow specification language (Van der Aalst, ter
Hofstede, Kiepuszewski et al. 2003; Russell, ter Hofstede, Van der Aalst et al. 2006).
Fourthly, with respect to the goal of supporting various existing process modeling
notations in form of Domain Interaction Models (DIMs) based on the DSM, it should
be sufficiently universal and embody a common foundation, i.e. a Process
Intermediate Language. Lastly, it should provide explicit extension points and
mechanisms for incorporating missing concepts, e.g. regarding Web-specific
concerns. Facing these requirements, the XML Process Definition Language (XPDL)
was identified as an ideal foundation for the Workflow DSL’s DSM.

5.2.1 The XML Process Definition Language as Foundation for the DSM

The XML Process Definition Language (XPDL) is an XML-based workflow specification
language standard by the Workflow Management Coalition (WfMC) (Shapiro, Marin,
Brunt et al. 2005). Originally intended as a file format for the visual Business Process
Modeling Notation (BPMN) (White 2006), it has been adopted by more than 80
different products yet (Workflow Management Coalition 2009).

In the context of workflow specification languages, often questions regarding the
difference between XPDL and the well-known Business Process Execution Language
(BPEL) (Jordan and Evdemon 2007) arise. XPDL and BPEL are entirely different yet
complimentary standards. BPEL was designed as an execution language for Web
services orchestrations, thus focusing only on the executable aspects of a process
thereby exclusively dealing with Web services and XML-based data. However, the
BPEL standard does not cover aspects concerning the graphical diagram, human
oriented processes, sub-process, and many other aspects of a modern business
process. Thus, instead of being competing standards, XPDL and BPEL should rather
be considered as mutual complements forming a value chain (Palmer 2006).

Figure 5-2 illustrates the formal high-level metamodel for process definitions based
on XPDL 2.0 which is also available as detailed specification in form of af XML
Schema document. The root element Workflow Process comprises a workflow
specification including Type Declarations, Data Fields, Participants, Activity Sets,
Activities, and Applications. Transitions represent sequential control flow between
Activities, which in turn can be Tasks or control flow-related constructs (Route /
Gateway with different types like AND, OR, XOR etc.), amongst others. To an Activity,
a Participant and an Application can be assigned, thereby specifying which activity is
to be performed by whom and based on which application definition. Participants
can be of various types including systems and humans. Similarly, several application
types are defined by the standard including both system-oriented and human-
oriented application types. Regarding the former, predefined types for calling
Enterprise JavaBeans (EJB), methods on local Java classes (POJO), Extensible

5.2 The DSM – Process Intermediate Language 67

Stylesheet Language Transformations (XSLT), expressions (Script), Web Services
(WebService) or invoking business rules (BusinessRule) are available. With regard to
human-oriented tasks, one predefined application type representing form-based
user interaction (Form) is provided.

With respect to the above-stated requirements a DSM should satisfy, XPDL presents
an eminently suited choice: Firstly, as already mentioned, XPDL is a widely-adopted
standard and is actively advanced by the WfMC. Secondly, it provides basic coverage
for human tasks, even though major extensions are required in order to achieve
sufficent support for Web-specific concerns and thus for Web-based workflows in
general. Thirdly, XPDL in its second version offers broad coverage of relevant
workflow patterns (Workflow Patterns Initiative 2007). Fourthly, both this broad
coverage of workflow patterns, particularly in comparison with common modeling
notations, as well as its intention as process interchange format, even though the
original vision hereby was restricted to interchanging BPMN models across various
tools, qualify XPDL as a well-suited Process Intermediate Language. Lastly, the XPDL
specification includes various explicit extension points in its XML Schema definition
as well as the possibility to integrate namespace-qualified extensions to all XPDL
elements.

The Application construct and the predefined application types as well as the
extension mechanisms provided by XPDL form the primary starting point for
integrating Web-specific concerns into the DSM or the XPDL standard respectively.
These extensions mainly address the integration of concepts and constructs in order

Figure 5-2: Overview of the XPDL Process Definition Metamodel.
Taken from: (Shapiro, Marin, Brunt et al. 2005)

68 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

to specify the Web-based realization of workflow activites. Thus, first of all, the
catalog of Activity Building Blocks (ABBs) is introduced in the next section, whereas
Section 5.2.3 describes their formalization and integration into the XPDL standard.

5.2.2 Catalog of Activity Building Blocks (ABBs)3

In the following, a catalog of three major Activity Building Blocks (ABBs) is presented.
These ABBs are realized as DSLs according to the DSL specification of the Web
Engineering DSL Framework and are used for the Web-based realization of workflow
activities. A major design goal for the ABBs was that one activity from a business
perspective can be realized by one ABB and must not be split up into several
activities from a system perspective. Thus, the business process model’s structure
can be kept throughout the construction process, easing the collaboration with
stakeholders.

A second important goal was to design the ABBs and particularly their respective
SBB’s in a way that requires minimal initial configuration but still yields the desired
behavior. After a workflow-based Web application has been fully-automated set up
by the Workflow DSL’s SBB via composing instances of the respective SBBs and
configuring them with this minimum configuration set, a detailed design addressing
more fine-grained aspects can be performed at runtime. Therefore, the DIM(s) and
associated editor(s) belonging to a workflow activity’s respective ABB can be used. In
the context of this chapter, the required initial minimum configuration set is of
particular interest as it has to be integrated into the Workflow DSL’s DSM and DIMs
in order to support the specification and configuration of ABBs during the Workflow
Modeling phase. Consequently, the following presentation of each ABB concentrates
on a short description and the minimal physical configuration aspects representing
this minimum configuration set. This specification for each ABB presents an
interesting contribution also beyond the scope of the Workflow DSL: Based
thereupon, highly reusable and generic Web-based software components
embodying the respective behavior type can be designed and implemented. The
applicability of such components extends far beyond the Workflow DSL approach to
the development of Web-based solutions in general.

The presented ABBs cover activity types like Dialog-based User Interaction, Data
Presentation and Web Service Communication, whereas the Web Service
Communication ABB can be used as a supplement to other building blocks. Hence,
for example, the Dialog-based User Interaction ABB can submit a filled form to a
Web service via delegation to the Web Service Communication ABB.

3 Parts of this section have been published in (Freudenstein, Nussbaumer, Majer et al. 2007)

5.2 The DSM – Process Intermediate Language 69

5.2.2.1 Dialog-based User Interaction – The Dialog DSL

This ABB represents dialog-based user interaction activities via Web forms and is
described in detail in Chapter 6. The Dialog DSL’s SBB is capable of automatically
creating a basic, but fully operational Web-based dialog from a data schema. This
can either be provided in form of an XML Schema document (Thompson, Beech,
Maloney et al. 2004) or automatically extracted for a particular Web service method
from a Web service specification in form of a Web Service Description Language
(WSDL) document (Christensen, Curbera, Meredith et al. 2001). In the latter case,
the generated dialog is already fully Web service-enabled, thus being capable of
submitting the filled dialog to the Web service and processing the result. Beyond
that, the SBB is able to perform runtime adaptations on the dialog according to the
requesting client device’s characteristics, thus fostering device-independent access.

With respect to the interaction of the Dialog DSL’s SBB with the workflow, the SBB
can receive an instance of its associated data model at runtime whereupon the
associated dialog fields are assigned with the corresponding data instance values.
Similarly, the SBB returns the submitted form back to the workflow.

Minimal physical configuration aspects:

 Dialog ID: Instead of generating a new dialog, an existing dialog from the
dialog repository can be referenced via this property.

 Generation Basis: Used to specify whether the dialog should be based on an
XML Schema document or according to a Web service method and the
related specification.

 XML Schema Document: In the case of XML Schema-based generation, this
property can be used for providing a URL to an XML Schema document.

 XPath Selector: Per default, the complete schema is used as generation basis
for the dialog whereby the generation starts with the root element’s
associated type and then recursively parses the schema tree. However, if only
a particular type defined in the XML Schema document shall be used as
generation basis, a corresponding XPath expression (Berglund, Boag,
Chamberlin et al. 2007) can be supplied in this property.

 Web Service Interface Description: In the case of Web service-based dialog
generation, this property serves for specifying a URL to the Web Service
Description Language (WSDL) document.

 Web Service Operation Name: In addition to the interface description, the
name of the Web service operation the generated dialog should be capable
to communicate with has to be supplied in this property. Based on these two
properties, the data schema required for the generation can be extracted in
form of an XML Schema from the WSDL document.

5.2.2.2 Commit

The Commit ABB presents a specialized form of dialog-based user interaction. It is
used to indicate the completion of a physical workflow activity which can actually

70 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

not be supported by an application. Examples of such activities could be shipping a
package or holding a face-to-face meeting. Such workflow activities are represented
by the Commit ABB which renders a Web-based dialog containing solely a checkbox
or button enabling the confirmation of the activity’s completion. Consequently, it
requires no configuration and thus does not define any physical configuration
aspects. Regarding the interaction with the workflow, the Commit ABB’s SBB
receives no input parameters from the workflow and returns a token indicating the
commit of the respective workflow activity back to the workflow.

5.2.2.3 Data Presentation

The Web-based presentation of XML-based data to a user is covered by this ABB.
This type of ABB is suitable for all workflow activities which require the sole
presentation of data without having users to interact with it, e.g. displaying
notifications, receipts or confirmations. As already mentioned, by coupling this ABB
with the Web Service Communication ABB, also data retrieved from Web services
can be rendered. The transformation of XML data into markup in a desired output
format is achieved based on appropriate Extensible Stylesheet Language
Transformations (XSLT) (Clark 1999) which are applied to the given XML data at
runtime.

The ABB’s SBB is capable of automatically generating a XSL transformation realizing a
basic rendering of the given XML data into XHTML. This is achieved by analyzing and
traversing the tree-based structure of the given XML document and performing a
pattern-based translation of XML sections into XHTML markup. Besides structural-
oriented patterns addressing the presentation layout, also patterns concerning the
individual representation of particular elements can be employed. For example,
values in the XML document matching a regular expression-based pattern for URLs
of pictures or video can be translated into corresponding type-specific markup tags
which directly render the image or video instead of displaying the URL. The algorithm
can be further improved by reusing and composing existing transformation snippets
for specific XML elements which can be identified and assigned based on their XML
namespaces. Therefore, the SBB has to be connected to a reuse repository for
storing and retrieving XSL snippets.

Beyond that, the pattern-based translation algorithm assigns adequate predefined
Cascading Style Sheets (CSS) (Bos, Çelik, Hickson et al. 2007) classes to the XHTML
markup. Thus, the foundation for a more detailed design based on CSS is established.
To this end, the Data Presentation DSL is ideally supplemented by a browser-based
DIM editor named “Lyra” which facilitates a detailed, reuse-oriented presentation
design based on CSS at runtime and was developed in the context of Martin
Nussbaumer’s PhD thesis (Nussbaumer 2008).

With respect to device-independent access, the Data Presentation SBB can perform
two types of runtime adaptations: On the one hand, a pagination algorithm can be
integrated in the XSL transformation and distribute the data on various interlinked
client-specific display units. Such an algorithm is also described in the context of the
Dialog DSL in Chapter 6. On the other hand, different CSS definitions, each of them

5.2 The DSM – Process Intermediate Language 71

tailored to a specific class of client devices, can be defined and dynamically linked at
runtime.

Concerning the interaction of the Data Presentation ABB’s SBB with the workflow,
the SBB receives XML-based data to be presented from the workflow and returns a
token indicating the completion of the activity back. Hence, as the activity type
actually consists in pure data presentation or, from a user’s perspective, in data
viewing respectively, the SBB provides a dedicated user control allowing the user to
confirm the completion of the workflow activity.

Minimal physical configuration aspects:

 XSL Transformation Document: This optional property serves for referencing
an existing XSLT document from the reuse repository. If no value is provided,
the SBB performs a fully automated presentation of the XML data received
from the workflow at runtime.

5.2.2.4 Web Service Communication

This ABB represents the communication with a Web service, i.e. sending a request
message to a Web service, i.e. invoking an operation of the Web service, and
receiving the returned response. The Web Service Communication ABB can be used
autonomously for the realization of system-oriented workflow activities, e.g. in order
to retrieve data from a legacy system and evaluate it in a subsequent route node,
thereby influencing the further control flow of the workflow. On the other hand, the
ABB can be combined with other ABB’s, thereby adding Web service communication
facilities to them. Hence, for example, a workflow activity embodying the
presentation of data which is retrieved via a Web service interface can thus be
technically implemented by a combination of the Web Service Communication ABB
and the Data Presentation ABB.

If required, the communication can be secured based on the WS-Security standard
(Lawrence, Kaler, Nadalin et al. 2006) using encryption and digital signatures. The
configuration of these security parameters can be achieved via the WS-Policy
(Vedamuthu, Orchard, Hirsch et al. 2007) or WS-Security Policy (Lawrence, Kaler,
Nadalin et al. 2007) standards respectively. According to a given configuration
including at least the Web service endpoint URL, a reference to the Web service’s
interface description and the name of the operation to be called, the ABB’s SBB
generates a corresponding SOAP message, sends it to the Web service and receives
the response.

With respect to the interaction between the Web Service Communication ABB’s SBB
with the workflow, the SBB can receive an XML document from the workflow and
returns the response received from the Web service in form of an XML document
back. The former XML document is optional and serves as basis for extracting values
and integrating them as parameter values in the Web service request. Thus, both
static and dynamic requests can be realized. The latter XML document does not
contain the complete received SOAP message, but rather the unwrapped result as
returned by the invoked Web service operation. Thus, it can directly be used in
subsequent workflow activities.

72 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

Minimal physical configuration aspects:

 Web Service Endpoint: This property is used to specify the URL of the Web
service endpoint to be called.

 Web Service Interface Description: A URL to the Web service’s interface
description in form of a WSDL document is supplied in this property.

 Web Service Operation Name: In this property, the name of the Web service
operation to be invoked has to be provided.

 Input Parameters Mapping Document: If the operation to be called requires
input parameters, this property can be used for specifying corresponding
values. These values can either be static or be dynamically extracted from the
XML document which is passed from the workflow to the SBB at runtime.
Therefore, a mapping has to be defined which assigns to each parameter
name as defined by the Web service interface either a static value or an
XPath expression referencing a value from the above-mentioned input XML
document. The complete mapping is specified in form of a simply-structured
XML document and its URL is supplied in this property.

 Security Policy Source: If a secured Web service communication is required,
this property serves for declaring whether the WS-SecurityPolicy-based
specification is contained in the Web service’s WSDL document or supplied
via the subsequent configuration aspect.

 Security Policy Document: If the security policy specification which should be
applied to the Web service communication is stored externally, this property
allows for supplying a URL to a WS-SecurityPolicy-based specification
document.

5.2.3 Extending XPDL towards Web-specific Concerns

The XPDL 2.0 standard provides basic constructs for specifying applications to be
used for processing individual workflow activities. Therefore, it defines an
Application construct and various application types as specializations of an abstract
ApplicationType concept. However, the specification of the available specializations
is rather basic and incomplete. This can be attributed to the fact that in this regard,
XPDL has conceived itself only as rudimentary framework leaving the concrete
specialization to tool-specific extensions. In order to assure universal validity, generic
extensions which can be adopted across various modeling tools and notations are
preferable though.

The presented catalog of Activity Building Blocks (ABBs) provides the foundation for
extending the XPDL 2.0 standard towards coverage for such generic Web-specific
application types. Thus, in the context of this thesis, the XPDL standard was
extended in order to capture the presented ABBs and their physical configuration
aspects. Therefore, the provided extension mechanisms of XPDL were employed.
Figure 5-3 depicts a schematized overview of the relevant XPDL application types

5.2 The DSM – Process Intermediate Language 73

Form, WebService and Xslt and their attributes as defined by the XPDL standard
(indicated by the xpdl: namespace tag). In addition, the figure shows the extensions
introduced by the Workflow DSL approach which enable the complete specification
of fully functional Web-based Activity Building Blocks (indicated by the wc:
namespace tag).

Figure 5-3: Schematized Overview of Relevant XPDL Application Types and
the Web-Specific Extensions Introduced by the Workflow DSL

The performed extensions are twofold: On the one hand, a new application type
specialization named wc:Commit_AppType representing the Commit ABB was
introduced. On the other hand, in order to provide full specification coverage for the
ABBs Dialog-based User Interaction, Web Service Communication, and Data
Presentation, extensions to the existing XPDL application types Form, WebService
and Xslt were defined. In doing so, existing XPDL types and attributes were reused
where possible. Consequently, the wc:Dialog_Extension refers via its attribute
DataTypeReference to the identifier of a xpdl:TypeDeclaration element which in turn
specifies the location of the XML Schema and a type selector which were defined as
required attributes for the respective ABB in the previous section. Similarly, for the
case of a WSDL-based dialog generation and Web service submission of the filled
dialogs, the xpdl:WebService type and the corresponding wc:WebService_Extension
are employed to specify the configuration aspects required by the Dialog-based User
Interaction and Web Service Communication ABBs.

The resulting extended XML Schema specification for XPDL serves as Domain-Specific
Model (DSM) for the Workflow DSL. Based thereupon, the modeling of Web-based
workflows can be fully supported both in the Business Process Modeling phase and
the Workflow Modeling phase. The integrated concepts and attributes are sufficient
for generating a fully-operational Web-based workflow. The detailed specification of
ABBs in the Physical Design & Execution phase is performed on the basis of the ABB’s
individual DSMs which represent a superset of the specification aspects integrated in
the Workflow DSL’s DSM. In order to still achieve permanent model consistency and

74 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

to support smooth roundtrip engineering, these full specifications are referenced
within a Workflow DSL program. Thus, the detailed design performed in the Physical
Design & Execution phase is preserved throughout subsequent evolution cycles.

Due to the specification of the Workflow DSL’s DSM in form of an XML Schema
document, concrete specifications of Web-based workflows, i.e. Workflow DSL
programs, are hence XML documents. For a better understanding of their structure
and elements as well as the interplay of the XPDL standard and the introduced
extensions, some excerpts are presented. They belong to a Workflow DSL program
corresponding to the ‘business trip’ example process depicted in Figure 2-1 and
illustrate particularly the realization of the Create Expense Report activity.

Figure 5-4 shows an excerpt containing an xpdl:TypeDeclaration for the
ExpenseReportType based on an external XML Schema document as well as a
workflow variable named ExpenseReport in form of a xpdl:DataField for storing an
instance of this type.

1 <xpdl:TypeDeclarations>

2 <xpdl:TypeDeclaration Id="ExpenseReportType">

3 <xpdl:ExternalReference location="http://../ExpenseReportType.xsd" />

4 </xpdl:TypeDeclaration>

5 </xpdl:TypeDeclarations>

6

7 <xpdl:DataField Id="ExpenseReport">

8 <xpdl:DataType>

9 <xpdl:DeclaredType Id="ExpenseReportType" />

10 </xpdl:DataType>

11 </xpdl:DataField>

Figure 5-4: XPDL Type Declaration and Data Field Specification
within a Workflow DSL Program

The XPDL-based specification of the CreateExpenseReport workflow Activity within
the Workflow DSL program is depicted in Figure 5-5. It refers to a TaskApplication
definition named CreateExpenseReport_App which embodies the activity’s execution
at runtime and is described in the next paragraph. Furthermore, a mapping of the
application’s input and output parameters to workflow variables is defined. In this
example, the input parameter is left empty and the value returned from the
application is stored in the above-mentioned ExpenseReport data field. Finally, the
role Employee is defined as eligible performer for this activity.

1 <xpdl:Activity Id="CreateExpenseReport" Name="CreateExpenseReport">

2 <xpdl:Implementation>

3 <xpdl:Task>

4 <xpdl:TaskApplication Id="CreateExpenseReport_App">

5 <xpdl:ActualParameters>

6 <xpdl:ActualParameter />

7 <xpdl:ActualParameter>ExpenseReport</xpdl:ActualParameter>

8 </xpdl:ActualParameters>

9 </xpdl:TaskApplication>

10 </xpdl:Task>

5.2 The DSM – Process Intermediate Language 75

11 </xpdl:Implementation>

12 <xpdl:Performer>Employee</xpdl:Performer>

13 </xpdl:Activity>

Figure 5-5: Workflow Activity Definition within a Workflow DSL Program

The most interesting aspect with respect to the introduced Web-specific ABBs and
corresponding extensions to the XPDL standard is illustrated in Figure 5-6. The
excerpt shows an XPDL Application definition named CreateExpenseReport_App
which is referenced as TaskApplication by the above CreateExpenseReport Activity
definition. As the workflow activity for which this application shall be used consists in
an employee filling out her expense report, the ABB Dialog-based User Interaction
presents the adequate choice. As shown in Figure 5-3, the introduced extensions
related to this ABB are based on the XPDL application type Form. Hence, in the
application definition, at first the application type xpdl:Form is declared. Thereupon,
the further specification based on the introduced extension container element
wc:Dialog_Extension follows.

In this example, the dialog shall be generated based on an XML Schema definition
(wc:GenerationBasis). The corresponding schema was defined in the context of a
xpdl:TypeDeclaration (cf. Figure 5-4) whose identifier ExpenseReportType is
referenced via the element wc:DataTypeReference. Following the specification of the
Dialog-based User Interaction ABB, these two statements already suffice as
minimum configuration set for obtaining a fully-operational Web-based dialog.

The second part of the application definition addresses the application’s interface
description enclosed by the xpdl:FormalParameters tag. As specified by the ABB, an
input and an output parameter of the ExpenseReportType type are defined. The
former can be used to provide a data instance for the initialization of the dialog
whereas the latter serves for returning the filled dialog. These parameter
declarations are used by activity definitions (cf. Figure 5-5) to pass and receive values
to and from the application. Hence, it is quite intuitive to reference the
ExpenseReportType also as generation basis (wc:DataTypeReference) for the dialog
itself.

1 <xpdl:Application Id="CreateExpenseReport_App"

 xmlns:wc="http://www.wsls.net/2006/04/workflow.XPDL2">

2 <xpdl:Type>

3 <xpdl:Form>

4 <wc:WebCompositionExtensions />

5 <wc:Dialog_Extension>

6 <wc:GenerationBasis>XSD</wc:GenerationBasis>

7 <wc:DataTypeReference>ExpenseReportType</wc:DataTypeReference>

8 </wc:Dialog_Extension>

9 </xpdl:Form>

10 </xpdl:Type>

11 <xpdl:FormalParameters>

12 <xpdl:FormalParameter Id="Send" Name="Send" Mode="IN">

13 <xpdl:DataType>

14 <xpdl:DeclaredType Id="ExpenseReportType" />

15 </xpdl:DataType>

76 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

16 </xpdl:FormalParameter>

17 <xpdl:FormalParameter Id="Receive" Name="Receive" Mode="OUT">

18 <xpdl:DataType>

19 <xpdl:DeclaredType Id="ExpenseReportType" />

20 </xpdl:DataType>

21 </xpdl:FormalParameter>

22 </xpdl:FormalParameters>

23 </xpdl:Application>

Figure 5-6: Application Definition for a Web-based Expense Report Dialog
within a Workflow DSL Program

5.3 The DIMs – Multi-Notational Modeling with Stakeholders

Enabling stakeholders to use the modeling notation and tools they already know and
thereby lowering the threshold for effective collaboration is particularly in the
business process modeling domain of great interest (cf. Section 2.2.2). Furthermore,
the requirement of continuity, i.e. preserving one shared workflow specification
across various notations and throughout the development lifecycle, from initial
requirements engineering to the fully-operational workflow-based Web application,
exists (Havey 2006).

According to the Web Engineering DSL Framework, various modeling notations for
different stakeholder groups and levels of detail can be defined on top of a DSL’s
DSM. Consequently, in the context of this thesis, multiple business process modeling
notations were integrated as Domain Interaction Models (DIMs) for the Workflow
DSL. Thus, stakeholders can collaborate in the specification of a Web-based
workflow, i.e. a Workflow DSL program, by using the business process modeling
notation and tool they know best. Thereby, throughout all phases and across all
DIMs, one shared DSL program is edited. Thus, problems concerning model
consistency as well as misunderstandings or mistakes occurring in the context of
manual translation activities can be minimized.

Figure 5-2 illustrates the Workflow DSL’s multi-notational modeling approach. It
allows the incremental, model-based specification of Workflow DSL programs from
initial requirements engineering to business process modeling to workflow modeling
and enables stakeholders to use their preferred notations and tools. In the context of
this thesis, four DIMs and corresponding tools were exemplarily integrated. For
initial requirement engineering activities, a custom, list-based notation termed
Simple Sequence Only (SSO) was developed and incorporated with Microsoft Word
2007 as editor. The phases Business Process Modeling and Workflow Modeling from
the Workflow DSL’s process model are supported by three additional standard
business process modeling notations and supplemental tools: The Business Process
Modeling Notation (BPMN) and Microsoft Visio, UML 2.0 Activity Diagrams and IBM
Rational Software Architect, as well as Petri Nets and INCOME2010.

5.3 The DIMs – Multi-Notational Modeling with Stakeholders 77

Figure 5-7: Multi-Notational Modeling of a Shared Workflow DSL Program

The model transformation framework presented in Section 5.4 realizes lossless
model transformations between all DIM notations and tools on the one hand and the
shared Workflow DSL program on the other hand. According to the Web Engineering
DSL Framework and the open conception of the model transformation framework,
new DIMs can be easily integrated.

Especially the automated transformation from a very intuitive but coarse-grained
DIM notation into a more fine-grained notation, i.e. for example from SSO to BPMN
or Petri Nets, helps stakeholders in learning the semantics and symbols. This holds
particularly true if stakeholders themselves developed a process model using the
former and immediately can obtain a semantically equivalent model in another
notation. The backward direction, i.e. from BPMN, UML or Petri Nets back to SSO, is
reasonably not intended. This is due to the fact that the former notations cover a
much broader part of the DSM than the SSO DIM does. Thus, a Workflow DSL
program containing more advanced (control flow-related) constructs than sole tasks
and roles cannot be rendered in the SSO notation in a meaningful way. This would
rather confuse stakeholders instead of presenting an actual facilitation. As the other
three DIMs offer sufficient expressiveness, bilateral transformations are fully
supported, independently from the Workflow DSL program’s complexity and level of
detail.

In the following subsections, the incremental specification of the ‘business trip’
example process (cf. Chapter 2, Figure 2-1) will be exemplarily described using the
various DIM notations and tools. The supporting model transformation framework is
subsequently presented in detail in Section 5.4. A complete overview of all DIM
elements and their mapping on the DSM concepts can be found in Section 5.4.5.

78 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

5.3.1 Simple Sequence Only (SSO) with Microsoft Word

The Simple Sequence Only (SSO) DIM is a custom notation which was designed in
order to enable stakeholders without business process modeling skills to
autonomously collaborate in initial requirements engineering activities. This
intention also resulted in the selection of a word processor, namely Microsoft Word
2007 which is assumed to be available to the great majority of stakeholders, as DIM
editor. In addition, the notation shall contribute to the goal of model continuity by
extending the model-based development process to these early activities and related
specification documents. As SSO is a regular DIM of the Workflow DSL, manual
redrawing or translation of initial elicitation documents into more advanced
modeling languages can be substituted by automated model transformations.

The SSO DIM consists in a table-based notation as illustrated in Figure 5-8. The table
comprises two-columns, whereby the first column serves for listing process activities
and the second column contains the respective role. By adding rows, an arbitrary
amount of activities and corresponding roles can be easily captured. In order to
facilitate the usage of the SSO DIM, a corresponding Word document template
containing an initial table with some default values was developed. Thus,
stakeholders can start process modeling by creating a new Word document based on
the SSO document template and filling out the table.

Figure 5-8: Initial Draft of the Business Process using the
Simple Sequence Only (SSO) DIM and Microsoft Word 2007

The saved Word 2007 document, which is based on the Office Open XML standard
(Ecma International 2006; ISO/IEC 29500:2008 2008), directly serves as source
document for model transformations as presented in the next section. Thus, the so

5.3 The DIMs – Multi-Notational Modeling with Stakeholders 79

far specified business process can immediately be translated and further elaborated
using more advanced DIM notations like BPMN, UML Activity Diagrams or Petri Nets.

Obviously, the coverage of the Workflow DSL’s DSM by the DIM notation is rather
low as it only provides modeling constructs for the domain concepts workflow
process, start node, end node, sequence flow, activity and participant (cf. Section
5.4.5). However, for its intended use, e.g. the gathering of activities during early
elicitation sessions where the focus lies exactly on these concepts, the SSO DIM is
sufficient. The incorporation of further concepts, e.g. parallel activity flows or XOR
routes, represented by indentation, use of key words, cell merging etc. was
investigated (Setiawan 2009). However, the evaluation arrived at the conclusion that
this would lead to ambiguous and rather unintuitive visual representations. As a
result, the original intention and strong focus of simplicity would get lost. Beyond
that, the SSO DIM should not be considered as an alternative but rather as a
reasonable complement to the existing multitude of business process modeling
notations.

5.3.2 Business Process Modeling Notation (BPMN) with Microsoft Visio

This DIM allows stakeholders to specify Workflow DSL programs based on the
Business Process Modeling Notation (BPMN) standard (White 2006) and Microsoft
Visio. Visio is part of the Microsoft Office product line and supports a broad audience
of office workers in creating diverse diagram types from different fields (e.g.
business, engineering, facility management, project management, software
development etc.). According to a recent study, Visio is also the most commonly
used software for BPMN modeling (Recker 2008), even though it does not natively
include BPMN shapes in its release version.

The BPMN-based DIM notation was defined in a rather straight-forward way since
XPDL, the standard on which the Workflow DSL’s DSM is based on, was originally
intended as XML-based serialization format for the solely visual BPMN symbols.
Thus, the mapping rules between the DSM concepts and the BPMN DIM symbols
could be derived from the XPDL specification (Shapiro, Marin, Brunt et al. 2005) and
are summarized in Section 5.4.5.

Concerning the incorporation of Microsoft Visio as DIM editor, a so-called Visio
stencil in accordance with the BPMN standard, i.e. a collection of graphical shapes
representing the various BPMN symbols, was developed. Therefore, the graphical
symbols defined by BPMN were redrawn with Visio’s native drawing tools, named
according to the BPMN standard, and saved into the BPMN stencil. Visio allows the
definition of shape data for a shape, i.e. a set of properties that can be configured
individually for each shape instance. This feature was used for enriching the purely
visual BPMN shapes by configuration properties in accordance with the Workflow
DSL’s DSM. Besides few properties required by the XPDL standard, this concerns
primarily the Web-specific physical configuration aspects which were introduced in
the previous section. Based on the resulting BPMN stencil, stakeholders can visually

80 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

compose Workflow DSL programs in form of BPMN diagrams in the Business Process
Modeling phase and configure execution-relevant, Web-specific concerns, i.e. the
Concern Configuration, in the Workflow Design phase.

Figure 5-9 depicts a screenshot of BPMN-based modeling with Microsoft Visio. In the
figure, the left panel contains the BPMN 1.0 stencil. On its right, the main drawing
area containing the BPMN diagram adjoins. Shapes from the stencil can be dragged
and dropped on the drawing area, whereby an instance of the shape is created.
Below the drawing area, the shape data panel is located. It allows the configuration
of instance-specific properties as defined by the type of the currently selected shape.

In the running example, the initial SSO-based draft of business process activities and
associated roles as shown in Figure 5-8 was transformed into its BPMN DIM
representation. The result is depicted in Figure 5-9 and was achieved by fully
automated model transformations which are presented in the next section. The
diagram exactly reflects the tasks and roles modeled with the SSO DIM; only the
representation of the Workflow DSL program has changed to the BPMN DIM.

Figure 5-9: Transformed BPMN Representation of Workflow DSL Program

Stakeholders familiar with BPMN and Microsoft Visio can now further refine, extend
and modify the business process or Workflow DSL program respectively, i.e. insert
activities, add participants, specify the control flow as well as modify or remove
existing constructs. Similarly, in the Workflow Modeling phase, they can specify the
Concern Configuration by configuring the shape-specific properties in the shape data
panel. In the example, the business process was extended with respect to the case
that an employee has an objection when checking the refund statement. Therefore,
a new activity Check Objection, a XOR-based Split Gateway and a corresponding XOR-
based Join Gateway as well as a Conditional Flow, a Default Flow and two Sequence

5.3 The DIMs – Multi-Notational Modeling with Stakeholders 81

Flows were inserted. As a result, if the employee indicated in the Check Refund
Statement activity that she has an objection to the refund statement, the workflow
links to the new Check Objection activity which is assigned to the Travel Department
role. Otherwise, the workflow directly links to the Approve Payment activity. Figure
5-10 illustrates the inserted process section which is indicated by the dotted line. It
also highlights the mapping of the added modeling elements in the BPMN DIM
representation to corresponding XML excerpts of the Workflow DSL program which
has to be realized by adequate model transformations. The figure also again conveys
the Web Engineering DSL Framework’s general concept of editing a single
(Workflow) DSL program using various DIM notations - assuming that adequate
model transformations between DIM notations and the DSM exist. Which concrete
graphical symbols represent the generic concepts of the DSL’s respective domain,
e.g. whether a XOR gateway is represented like in BPMN by a rhombus with an ‘X’ in
it or by a completely different symbol, remains only a question of adequate model
transformations.

Figure 5-10: Added Process Section in the BPMN DIM Representation and
the Corresponding Workflow DSL Program’s XML Representation

In this regard, Microsoft Visio provides export and import facilities for an XML-based
exchange format named DatadiagramML (Microsoft Corp. 2006b). Based thereupon,
bilateral model transformations between the BPMN DIM or the DatadiagramML

82 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

format respectively and the Workflow DSL’s DSM were developed (cf. Section 5.4).
Thus, with the Workflow DSL’s DSM as intermediary format and similar
transformations for other DIMs, a Workflow DSL program in its BPMN DIM
representation can be transformed into arbitrary DIM representations.

Models created with the BPMN DIM have to comply with some basic modeling rules
which assure their well-formedness and, related to that, the correct function of
associated model transformations. This has also been identified as a general problem
in the business process modeling and transformation field (Murzek and Kramler
2007). The focus of the guidelines lies primarily on enforcing an explicit, formalizable
and block-structured, i.e. a well-formed nesting of control flow constructs, modeling
approach. Regarding the latter, the XPDL standard as well as most of today’s
business process modeling notations support a less constraining graph-oriented
model structure, whereas a block-oriented structure is inherent to the great majority
of today’s technical workflow execution languages like BPEL (Jordan and Evdemon
2007) or XOML (Microsoft Corp. 2007). A complete overview of these rules can be
found in (Orozov 2008). The evaluation of real-world business process models
presented in Section 8.1 showed that these guidelines present no significant
restriction in practice. It turned out that, in the most cases, missing adherence can
be recovered by simple pattern-based remodeling.

5.3.3 UML Activity Diagrams with IBM Rational Software Architect

The Unified Modeling Language (UML) (Object Management Group 2005b) is
increasingly seen as de-facto standard for software modeling and design. In
consideration of this level of familiarity among a developer-oriented stakeholder
audience, the Workflow DSL consequently provides a DIM notation which allows the
use of the UML 2.0 Activity Diagram notation for specifying Workflow DSL programs.
Their applicability to the business process modeling domain in a general sense is not
immediately evident and was examined in a comprehensive evaluation (Russell, van
der Aalst, ter Hofstede et al. 2006). Similar to other business process modeling
languages, UML was confirmed sufficient coverage particularly for the control-flow
and data perspective, whereas limitations for other perspectives were identified.

Consequently, in order to leverage UML 2.0 Activity Diagrams as DIM for the
Workflow DSL, a UML 2.0 Profile defining the required extensions was developed
and is illustrated in Figure 5-11. A UML Profile is a semantically cohesive group of
stereotypes, constraints and tagged values which extends the UML metamodel for a
particular modeling domain (Pender 2003). Within UML Profiles, stereotypes play an
important role. A stereotype is a type which can be applied to any UML element in
order to extend its properties and slightly alter its semantics. By applying a
stereotype to an UML element, the attributes defined by the stereotype become
available for the UML element.

5.3 The DIMs – Multi-Notational Modeling with Stakeholders 83

Figure 5-11: UML 2.0 Profile for the Workflow DSL’s UML 2.0 Activity DIM

Within the presented UML Profile, the classes in the left column and marked with
the metaclass tag present elements from the UML 2.0 Activity Diagram specification.
As such, they present the linking points for the introduced extensions.
Correspondingly, the associated classes marked with stereotype tags represent the
introduced extensions. They augment the UML 2.0 Activity Diagram specification by
concepts required for achieving a full coverage of the Workflow DSL’s DSM and thus

84 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

for specifying Web-based workflows respectively. The introduced extensions are
two-fold: On the one hand, the stereotypes wbcApplication, wbcDialog,
wbcDataPresentation wbcWebServiceCommunication, and wbcCommit support the
modeling of Web-specific concerns and applications as described in the context of
the Workflow DSL’s DSM in Section 5.2.3. On the other hand, extensions for
specifying more general workflow concerns in accordance with the Workflow DSL’s
DSM or the XPDL standard respectively are embodied by the stereotypes Participant,
DataObject, Transition, Loop, and Message. An overview of the complete mapping
between the concepts of the Workflow DSL’s DSM and the UML 2.0 Activity DIM is
given in Section 5.4.5.

Due to the specification of the extensions in form of the presented UML Profile, all
standard UML tools which support UML profiles, i.e. UML’s native extension
mechanisms, can be employed as model editors for the UML 2.0 Activity DIM. To this
end, the XML Metadata Interchange (XMI) serves as XML-based interchange format
across the great variety of today’s UML modeling tools, both for exchanging UML
Profiles and individual UML models (Object Management Group 2007). Regarding
the latter, XMI captures both model information and diagrammatic information, e.g.
symbols, layout, colors and fonts. Beyond that, the XMI format presents also the
basis for the bilateral model transformations between the Workflow DSL’s DSM and
the UML 2.0 Activity Diagram DIM which are presented in the next section.

With respect to the running example, the ‘business trip’ process, the Workflow DSL
program in its BPMN DIM notation (cf. Figure 5-10) was transformed by means of
these model transformations into its UML 2.0 Activity DIM representation as
depicted in Figure 5-12.

Figure 5-12: Extending the Business Process using the UML 2.0 Activity DIM
and IBM Rational Software Architect

5.3 The DIMs – Multi-Notational Modeling with Stakeholders 85

Using the UML 2.0 Activity DIM, an AND-based Split Gateway and a corresponding
AND-based Join Gateway, enclosing the process activities Receive Payment
Notification and Process Payment, were inserted (as indicated by the dotted
rectangle). The UML Activity Diagram representations of these gateway DSM
concepts are a Fork Node and a Join Node respectively (cf. the complete mapping
overview in Section 5.4.5). Thereby, the parallel execution of these two activities is
specified. Beyond that, Figure 5-12 also illustrates the use of the introduced
stereotypes Participant and Transition. Their application to particular elements of
the UML 2.0 Activity Diagram is indicated by displaying the stereotype’s name
enclosed by guillemets next to the respective element.

The specification of the Concern Configuration in the Workflow Modeling phase can
similarly be performed by applying stereotypes and configuring their respective
properties. For example, the wbcApplication and wbcDialog stereotypes could be
applied to the CreateExpenseReport activity and subsequently be configured with
regard to their properties, thereby assigning and configuring an instance of the
Dialog-based User Interaction ABB to the activity. In the context of this thesis, IBM
Rational Software Architect 7.0 (IBM RSA) was used as modeling tool for this DIM.
Detailed instructions on constructing Web-based workflows using the UML 2.0
Activity DIM and IBM RSA can be found in the diploma thesis of Denny Setiawan
(Setiawan 2008).

The XMI excerpts corresponding to the graphical UML Fork and Join Nodes, to the
Process Payment Action Node as well as to the Control Flow between the Fork Node
and this Action Node are depicted in Figure 5-13.

Figure 5-13: Excerpts from the XMI-based Serialization corresponding to the
Business Process Section Added using the UML 2.0 Activity DIM

86 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

On the one hand, as mentioned above, such an XMI-based serialization of a UML 2.0
Activity Diagram can be retrieved via export facilities available in the great majority
of UML modeling tools. On the other hand, the XMI markup presents the basis for
model transformations between the UML 2.0 Activity DIM and the DSM. The
mapping of UML shapes or XMI excerpts respectively to the DSM-based Workflow
DSL program is similar to Figure 5-10. An xpdl:Transition represents the UML Control
Flow, two xpdl:Activity elements refined as AND Gateway-typed xpdl:Route stand for
the UML ForkNode and JoinNode, and a xpdl:Activity refined as xpdl:Task
corresponds to the UML OpaqueAction.

5.3.4 Petri Nets with INCOME2010

Petri nets were originally invented by Carl Adam Petri as a formal graphical modeling
language for the description and analysis of concurrent processes in distributed
systems (Petri 1962). To date, due to their formal semantics, graphical nature, high
expressiveness, analyzability and vendor-independence, Petri nets have been widely
adopted for the domain of business process modeling (Van der Aalst 1998; Klink, Li
and Oberweis 2008). Beyond that, Petri nets are also considered as an ideal
foundation for analyzing and even mining process models (Van der Aalst 2007).
Consequently, the Workflow DSL includes also a Petri net-based DIM allowing
stakeholders to specify Web-based workflows based on the Petri net notation.

In contrast to other business process modeling notations, the graphical visualization
of Petri nets comprises only three different symbols: Places, transitions and directed
arcs. The latter connect places and transitions whereby the direction of the arc
indicates whether a place presents a pre- or post-condition for the transition.
Consequently, the modeling of common business process constructs has to be
performed on a pattern-basis instead of a symbol-basis. For example, while BPMN
and UML 2.0 Activity Diagrams individually define particular graphical symbols for
typical control-flow constructs like parallel routing, conditional routing or iterative
routing, their counterparts in a Petri net notation consist in composite patterns of
the above-mentioned three core symbols. Section 5.4.3 shows the complete
mapping between the workflow concepts defined by the Workflow DSL’s DSM and
their Petri net representation.

With respect to enabling model interchange for Petri nets across the variety of
existing modeling tools, the XML-based Petri Net Markup Language (PNML) was
introduced and is currently in the course of becoming an ISO/EIC standard (Kindler
2006; Kindler 2007). PNML captures both structural and graphical information of a
Petri net and provides concepts for tool-specific extensions. These extension
mechanisms were used to leverage Petri nets as a DIM for the Workflow DSL. Hence,
in order to achieve a full coverage of the Workflow DSL’s DSM, dedicated extensions
were introduced. The required extensions are reasoned by the DSM concepts
xpdl:Participant, xpdl:Application, xpdl:Transition, xpdl:TypeDeclaration and
xpdl:DataField. While the extensions associated to xpdl:Transition target the PNML
concept Arc, all other extensions were assigned to the PNML concept Transition.

5.3 The DIMs – Multi-Notational Modeling with Stakeholders 87

The introduced extensions are congruent to the extensions presented for the UML
2.0 Activity DIM (cf. Figure 5-11). However, some minor additional aspects, which
were natively available in UML 2.0 Activity Diagrams, but were missing in Petri nets
or PNML respectively, had to be incorporated: Firstly, the ability to assign roles
(xpdl:Participant, xpdl:Performer) to Petri net Transitions had to be introduced. Petri
nets originally define no concept for this. Secondly, as Petri nets have no counterpart
for the UML Object Node or xpdl:DataField respectively, the possibility to define data
objects was integrated. In the context of this thesis, the XML-based PNML format is
not only considered as interchange format for various modeling tools but also serves
as basis for bilateral model transformations between the Workflow DSL’s Petri Net
DIM and the DSM (cf. Section 5.4) Thus, via the DSM as intermediate schema, Web-
based workflows can be transformed from arbitrary DIM notations into the Petri Net
DIM notation and vice versa.

In the context of this thesis, the Petri net modeling tool INCOME2010 v.0.2.3 was
adopted as model editor for the Workflow DSL’s Petri Net DIM (Klink, Li and
Oberweis 2008; Oberweis 2008). INCOME2010 is still under development and
currently comprises no generic extension mechanisms yet. However, the tool’s full
source code is available under the Eclipse Public License (EPL) whereby the required
extensions could be integrated on a code-basis. In this way, extensions to
INCOME2010’s user interface as well as to the PNML-based diagram import and
export were developed. In this regard, existing configuration dialogs were extended
in order to support the configuration of Petri net transitions and arcs according to
the extensions described above. Furthermore, the integration and extraction of
these configuration properties in the context of the PNML-based export and import
features was implemented. In this context, the extensions to PNML were also
formalized in form of an XML Schema (Setiawan 2009). In summary, by using the
extended version of INCOME2010, stakeholders can employ Petri nets as DIM
notation to conveniently model Web-based workflows.

In the running example of the ‘business trip’ workflow, the Petri Net DIM was used in
the Workflow Modeling phase for specifying the Concern Configuration, i.e. the set
of workflow execution-relevant concerns bridging the gap between a business
process and its technical realization in form of a Web-based workflow. Figure 5-14
shows the ‘business trip’ process model in its Petri Net DIM representation and a
configuration dialog for the CreateExpenseReport activity within INCOME2010. This
configuration dialog for Petri net transitions was extended by the sections
Application, Data Object, and Role, whereby each section comprises dedicated
properties allowing the configuration of these aspects. The Application section, for
example, was designed according to the minimal configuration sets required by the
Web-specific Activity Building Blocks (ABBs) which are part of the Workflow DSL’s
DSM (cf. Figure 5-3). Thus, as shown in the figure above, the dialog allows selecting
an ABB type and entering the corresponding required minimal configuration.

88 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

Figure 5-14: Workflow Modeling using the Petri Nets DIM and INCOME 2010

In the example, the Application Type “Dialog Construction” corresponding to the
Dialog-based User Interaction ABB, was selected from the drop-down list.
Furthermore, the ExpenseReport Data Object was referenced as XSD-based
generation basis for the dialog. The resulting PNML representation of this application
configuration is shown in lines 6-12 of Figure 5-15, whereby lines 8-11 contain the
Dialog ABB-specific information. By means of adequate model transformations
between the Workflow DSL’s Petri Net DIM and the DSM, this excerpt is translated
into a DSM-based xpdl:Application definition as shown in Figure 5-6.

1 <transition id="CreateExpenseReport">[…]

2 <toolspecific tool="INCOME2010_Extension" version="v 0.2.3_Extension"

3 xmlns:wbc="http://www.wsls.net/2006/04/workflow.XPDL2">

4 <wbc:swimlane>[…]</wbc:swimlane>

5 <wbc:dataObject>[…]</wbc:dataObject>

6 <wbc:wbc xmlns:wbc="http://www.wsls.net/2006/04/workflow.XPDL2">

7 <wbc:application>CreateExpenseReport_App</wbc:application>[…]

8 <wbc:WebComp_Dialog_Extension>

9 <wbc:GenerationBasis>XSD</wbc:GenerationBasis>

10 <wbc:DataTypeReference>ExpenseReportType</wbc:DataTypeReference>

11 </wbc:WebComp_Dialog_Extension>

12 </wbc:wbc>

13 </toolspecific>

14 </transition>

Figure 5-15: PNML Excerpt resulting from the Application Configuration
for the CreateExpenseReport Activity

5.3 The DIMs – Multi-Notational Modeling with Stakeholders 89

Beyond configuring an application type and its associated concerns, a complete
Concern Configuration for a workflow activity also comprises role- and, if necessary,
data-specific information. Regarding the former, Figure 5-16 depicts the Role section
from the transition configuration dialog in INCOME2010. There, the Role Name for
the selected activity can be entered, a Role Type selected and – for the case of cross-
organizational workflows with multiple autonomous workflow processes – an
Organization name be supplied. This set of properties is fully compliant with the
XPDL 2.0 standard serving as foundation for the Workflow DSL’s DSM.

Figure 5-16: Workflow Modeling: Role Assignment in INCOME 2010

Figure 5-17 depicts the corresponding PNML excerpt of the role configuration shown
above. The excerpt matches the wbc:swimlane tag in line 4 of Figure 5-15. Both the
role assignment dialog and the PNML excerpt are completely based on extensions to
PNML or INCOME2010 respectively introduced by the Petri Net DIM. This is due to
the fact that Petri nets do not provide native support for assigning roles to
transitions. In the course of model transformations from the Petri Net DIM to the
DSM, the PNML excerpt has to be transformed into the xpdl:Performer tag within the
xpdl:Activity definition (cf. Figure 5-5, line 12) and a global xpdl:Participant
definition.

1 <wbc:swimlane xmlns:wbc="http://www.wsls.net/2006/04/workflow.XPDL2">

2 <wbc:organization>KIT</wbc:organization>

3 <wbc:roleName>Employee</wbc:roleName>

4 <wbc:roleType>HUMAN</wbc:roleType>

5 </wbc:swimlane>

Figure 5-17: Role Assignment in PNML

With regard to specifying input- and output parameters of workflow activities and
applications as well as defining workflow variables, the Data Object section of the
transition configuration dialog depicted in Figure 5-18 is used. In the example of the
CreateExpenseReport activity, an output parameter named ExpenseReport and
specified in terms of an external schema reference is declared. Internally, the output
parameter is mapped to a workflow variable of the same name. Thus, the
ExpenseReport variable has to be declared only once and can subsequently be

90 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

referenced via its name. The set of configurable properties corresponds to the
xpdl:TypeDeclaration and xpdl:DataField specifications which are part of the
Workflow DSL’s DSM.

Figure 5-18: Workflow Modeling: Data Object Specification in INCOME 2010

The corresponding PNML excerpt to the data object configuration shown above is
depicted in Figure 5-19. It matches the wbc:dataObject element in line 5 of Figure
5-15. Again, due to the missing native support of Petri nets for data-related
concerns, both the dialog section and the PNML excerpt are completely based on
extensions introduced by the Workflow DSL’s Petri Net DIM. By means of the model
transformations presented in the next section, this excerpt is transformed into a
global xpdl:TypeDeclaration, a global xpdl:DataField, an xpdl:ActualParameter
element within the xpdl:Activity definition and a xpdl:FormalParameter definition
within the xpdl:Application definition. The resulting Workflow DSL program excerpts
are depicted in Figure 5-4, Figure 5-5, and Figure 5-6.

1 <wbc:dataObject xmlns:wbc="http://www.wsls.net/2006/04/workflow.XPDL2">

2 <wbc:parameterIDOUT>ExpenseReport</wbc:parameterIDOUT>

3 <wbc:dataTypeOUT>DECLARED</wbc:dataTypeOUT>

4 <wbc:declaredTypeOUT>ExpenseReportType</wbc:declaredTypeOUT>

5 <wbc:externalReferenceOUT>

6 http://localhost/ExpenseReportSchema.xsd

7 </wbc:externalReferenceOUT>

8 </wbc:dataObject>

Figure 5-19: Data Object Specification in PNML

The Workflow Modeling phase is not only supported by the Petri Net DIM, but also
by the BPMN DIM and the UML 2.0 Activity DIM. As described in the respective
sections, both DIM notations and their corresponding tools offer the ability to
specify the Concern Configuration in an analog way as presented here.

Besides the goal of fostering stakeholder involvement, the Petri Net DIM enables
formal analysis and simulation of Workflow DSL programs. This can be conducted
either based on the simulation features available in INCOME2010 or by importing
them via the PNML format into comprehensive analysis and simulation suites like

5.4 Model Transformation Framework 91

Woflan (Verbeek and Van der Aalst 2000) or ProM (Van der Aalst, Van Dongen,
Günther et al. 2007). Therefore, the Workflow DSL’s model transformation
framework presented in the next section enables the transformation between
arbitrary DIM notations and the Petri Net DIM.

5.4 Model Transformation Framework

In the context of the Web Engineering DSL Framework, model transformations
inherently play an important role for the mapping between a DSL’s Domain
Interaction Models (DIMs) and the Domain-Specific Model (DSM). This holds equally
true for the Workflow DSL and its various DIM notations and associated serialization
formats. During the description of the SSO, BPMN, UML 2.0 Activity Diagram and
Petri Net DIMs in the preceding section, the necessity of adequate bilateral model
transformations between their respective serialization format and the formal
schema defined by the DSM was repeatedly pointed out. Besides these horizontal
model transformations, vertical transformations are required in order to realize the
mapping to an executable workflow language which in turn enables the adequate
instrumentation of a workflow engine.

Against this background, this section presents a novel model transformation
framework. Sections 5.4.1 and 5.4.2 introduce the approach’s transformation
strategy and core concepts. These are exemplified in the course of the design and
implementation of a horizontal (cf. Section 5.4.3) and a vertical (cf. Section 5.4.4)
model transformation. The section concludes with a complete overview of the
mappings between the Workflow DSL’s various DIMs and the DSM (cf. Section 5.4.5).

5.4.1 Strategy for Efficient and Effective Model Transformations

From a conceptual perspective, different model transformation strategies between
multiple formats are conceivable, e.g. a peer-to-peer strategy, a ring strategy, or a
strategy based on an intermediate format (cf. Figure 5-20). While the Web
Engineering DSL Framework implicitly suggests the latter strategy for
transformations between various DIMs, a multi-faceted study of various
transformation strategies substantiates this approach (Wüstner, Hotzel and
Buxmann 2002). With respect to the requirement of efficiency, the overall costs of a
transformation strategy, determined by various cost factors, have to be considered:

𝐶𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = 𝐶𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐶𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 + 𝐶𝐸𝑟𝑟𝑜𝑟𝑠

While 𝐶𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 comprises the costs for developing the transformations,

𝐶𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 stands for the costs incurred by the execution of the

transformations and 𝐶𝐸𝑟𝑟𝑜𝑟𝑠 represents costs originating from information losses and
associated correction efforts.

92 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

Figure 5-20: Model Transformation Strategies between various DIMs:
(a) Peer-to-Peer, (b) Ring, (c) Strategy based on an Intermediate Schema

Considering the expected multitude of DIM notations for the Workflow DSL, the
third strategy, i.e. transformation via an intermediate schema, turns out to be the
most efficient. Comparing the transformation implementation costs in this strategy
𝐶𝐼𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 = 𝐶𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐼𝑚𝑝𝑙 + 𝐶𝑆𝑐𝑒𝑚𝑎𝐼𝑚𝑝𝑙 with other strategies,

additional costs occur for the definition of the intermediate schema. Within the
Workflow DSL approach, the DSM forms this intermediate schema and is based on
the XPDL 2.0 standard and supplemental Web-specific extensions. Thus, the costs for
the intermediate schema consist only in the specification of these extensions. The
costs for developing bilateral transformations between the intermediate schema and
a DIM are comparable to the other strategies; however, in the case of adding or
removing a DIM, no additional costs emerge as existing transformations remain
unaffected. Given a set of DIMs D1…Dn, only 2n transformations have to be
developed.

The costs for the actual transformation process, 𝐶𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 , are comparatively

low since only two transformation steps, i.e. from the source DIM to the DSM and
from the DSM to the target DIM, have to be executed. Furthermore, as the great
majority of transformations presented here were implemented as Extensible
Stylesheet Language Transformations (XSLT) (Clark 1999), no special transformation
applications are required. XSLT is supported by all of today’s programming languages
and can even be natively executed by established Internet browsers.

The potential costs originating from errors or particularly from information losses,
𝐶𝐸𝑟𝑟𝑜𝑟𝑠 , are strongly correlated with the heterogeneity of the DIMs and their
coverage through the intermediate schema, i.e. the DSM. This issue corresponds to
the widely discussed and still unsolved research question of how to integrate
heterogeneous business process modeling schemas. In this regard, the model
transformation framework proposes a novel approach which is presented in the next
subsection. Beyond that and in contrast to the ring strategy, this strategy has the
advantage that possible information losses do not influence the results of other
transformations. This can be of interest if DIM notations shall be introduced which
are not capable of sufficiently covering the intermediate schema.

D1

 D2

D5

D4

D3

D8

D7

D6

INT

(c)

D1

 D2

D5

D4

D3

D8

D7

D6

(b)

D1

D2

D5

D4

D3

D8

D7

D6

(a)

5.4 Model Transformation Framework 93

5.4.1.1 Horizontal and Vertical Transformations for the Workflow DSL

Hence, based on the insight that a transformation strategy via an intermediate
schema is the most efficient for the Workflow DSL, Figure 5-20 gives a corresponding
overview of the required model transformations.

Figure 5-21: Overview of the Workflow DSL’s Model Transformations
following the Intermediate Schema-based Model Transformation Strategy

The figure shows two types of model transformations occurring in the context of the
Workflow DSL: Horizontal model transformations between the various DIMs and
vertical transformations from the DIMs to various workflow execution languages. In
this context, the Workflow DSL’s DSM acts as Process Intermediate Schema. In either
case, two transformation steps are required: One transformation from a DIM to the
DSM, and one transformation from the DSM either back to another DIM or to a
workflow execution language. Thus, in order to enable cross-notational modeling,
two bilateral transformations to and from the DSM have to be developed for each
DIM. In this regard, effectiveness in terms of avoiding information loss and thus
assuring semantic integrity is crucial. This requirement applies to all DIMs covering a
particular level of detail. Thus, in the context of this thesis, lossless, bilateral
transformations were specified and developed for the BPMN DIM, the UML 2.0
Activity DIM and the Petri Net DIM (cf. Section 5.4.3). The SSO DIM aims at early
requirements engineering activities and consequently covers a much smaller fraction
of the problem domain; hence, only a forward transformation from the SSO DIM to
the DSM was designed and implemented (Setiawan 2009).

With regard to transformations from the DSM to workflow execution languages, only
forward transformations are necessary. These executable workflow specifications
are used by the Workflow DSL’s Solution Building Block (SBB) for the instrumentation
of a workflow engine (cf. Section 5.5). As they are not modified on this level at any
time, no backward transformations aiming at the preservation of model consistency

94 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

are required. In the context of this thesis, a transformation to the XOML format
serving as input for the Microsoft Windows Workflow Foundation (WF) was defined
and implemented (cf. Section 5.4.4).

5.4.1.2 Determining Composite End-to-End Transformations

Due to the opted transformation strategy based on an intermediate schema, a
considerable amount of transformations for the expected multitude of DIMs and
workflow execution languages (WLs) emerges. As bilateral transformations are
defined between the DIM and the DSM, the set of available transformations
between various DIMs is not immediately apparent. Similarly, direct transformations
from a DIM to WLs can only be achieved by transitive combinations. However, given
a Workflow DSL program in a particular DIM representation, the set of available
transformations to other DIMs and WLs is of great interest, e.g. to integrate direct
conversion facilities in existing tools.

Thus, in order to foster effective utilization of the set of available transformations,
the transitive closure of the corresponding transformation graph is calculated. Figure
5-22 depicts an exemplary graph of model transformations for a scenario with
bilateral transformations for three DIMs and one forward transformation to a
workflow language (WL). By calculating the graph’s transitive closure, additional
transitive transformations as indicated by the dotted arcs can be determined.

Figure 5-22: Transitive Closure of the Model Transformation Graph

If 𝑭 is the set of formats, either DIM or WL formats, then the set of implemented
transformations 𝑻 forms a binary relation 𝑻 ⊆ 𝑭 × 𝑭. The transitive closure 𝑻+of
this relation is accordingly defined as the smallest transitive relation on 𝑭 that
contains 𝑻. It can be formally defined as follows:

 𝒙, 𝒚 𝝐𝑻+ ⇔ 𝒙, 𝒚 𝝐𝑻 ∨ ∃𝒏𝝐ℕ:

 ∃𝒕𝟏, … , 𝒕𝒏: 𝒙, 𝒕𝟏 , 𝒕𝟏, 𝒕𝟐 , … , 𝒕𝒏−𝟏, 𝒕𝒏 , 𝒕𝒏, 𝒚 𝝐𝑻

The obtained set of transitive composite transformations 𝑻∗ = 𝑻+ ∖ 𝑻 is of particular
interest as it skips the auxiliary intermediate schema and contains the actual

5.4 Model Transformation Framework 95

transformations between individual DIMs as well as from DIMs to workflow
execution languages. In the example, this evaluates to:

𝑻∗ =

 𝐷𝐼𝑀1 , 𝐷𝐼𝑀2 , 𝐷𝐼𝑀2 , 𝐷𝐼𝑀1 ,
 𝐷𝐼𝑀1 , 𝐷𝐼𝑀3 , 𝐷𝐼𝑀3 , 𝐷𝐼𝑀1 ,

 𝐷𝐼𝑀2 , 𝐷𝐼𝑀3 , 𝐷𝐼𝑀3 , 𝐷𝐼𝑀2

 𝐷𝐼𝑀1 , 𝑊𝐿1 ,

 𝐷𝐼𝑀2 , 𝑊𝐿1 ,

 𝐷𝐼𝑀3 , 𝑊𝐿1

The transitive closure of the model transformation graph can be calculated by means
of the Warshall algorithm which is based on the graph’s representation in form of an
adjacency matrix (Warshall 1962). In the context of this thesis, the computation of
the transformation graph’s transitive closure was integrated in the model
transformation framework’s technical support platform (Orozov 2008). Thus, it is
capable to expose and realize the composite transformations contained in the set
difference 𝑻∗ to external applications and users.

5.4.2 The Core Elements Set (CES) Concept

Achieving lossless model transformations for the great variety of conceivable DIMs,
e.g. BPMN, UML 2.0 Activity Diagrams, Petri nets, amongst others, is a decisive
requirement in order to support multi-notational modeling of Web-based workflows.
To this end, several approaches aiming at the definition of an integrated superset for
heterogeneous business process modeling languages have been proposed, e.g.
(Mendling, Laborda and Zdun 2005; Mendling, Neumann and Nüttgens 2005;
Hornung, Koschmider and Mendling 2006). Yet there is doubt whether schema
integration as a bottom-up methodology combined with basic refactoring activities is
a sufficient solution. The majority of presented integration approaches consider only
the case of two schemas to be integrated. This might be due to the fact that the
presented methodologies become increasingly complex with the number of
integrated schemas. Moreover, guidance on how to define and realize bilateral and
lossless transformations between such an integrated schema and individual business
process languages is missing. Similarly, in a bottom-up schema integration-based
approach, existing transformations are likely to require modifications when a new
schema is added.

Thus, in consideration of the existing multitude of business process modeling
languages and notations, a generic, efficiently extensible and more comprehensive
solution is required. This holds true particularly in the context of the Workflow DSL in
order to enable multi-notational modeling of Web-based workflows. To this end, a
novel approach founded on the idea of a Core Elements Set concept was developed
in the context of this thesis and carried on in several theses and publications (Buck
2007; Freudenstein, Buck, Nussbaumer et al. 2007; Orozov 2008; Setiawan 2008;
Setiawan 2009). The Core Elements Set (CES) forms a set of common business
process and workflow concepts which abstracts from an individual notation or

96 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

language. In contrast to the above-mentioned methodologies, the CES is not
intended to provide full coverage for all theoretically possible modeling constructs. It
rather pursues an approach similar to the Pareto principle, also referred to as “the
vital few and the trivial many” (Joran 1954). Accordingly, the CES focuses on few core
concepts which establish sufficient support for the great majority of scenarios
occurring in practice. At the same time, the introduction of the CES concept enables
the adequate resolution of the above-mentioned key challenges, which remain
unsolved by alternative approaches.

The restriction of the rather large set of possible concepts to few core concepts
included in the CES does actually not present a significant limitation to the Workflow
DSL’s applicability in practice. Recently, researchers began to survey and analyze the
actual usage distribution of business process modeling constructs in practice, e.g.
(Recker 2008; Zur Muehlen and Recker 2008). It turned out that in the most cases,
less than 20% of the available modeling constructs are actually used. For example, in
the case of BPMN, nine core modeling elements out of fifty elements defined in the
BPMN specification proved to be sufficient. Similarly, it was shown that adding
further symbols to a well-defined core set adds little expressiveness at the expense
of considerably decreased ontological clarity (Zur Muehlen, Recker and Indulska
2007). Although the CES concept was envisioned before these empirical findings, it
presents a consequent next step towards their utilization. In the context of this
thesis, a comprehensive study of the Core Elements Set’s applicability for real-world
process models was conducted and is presented in Section 8.1. The study’s positive
results further confirm the assumption that the CES’s restrictive nature does actually
pose only very few limitations in practice.

5.4.2.1 CES-based Model-to-Model Transformation Strategy

Figure 5-23 illustrates the CES-based model transformation concept. In this context,
the CES is considered as quasi-meta-metamodel. When defining a model
transformation for the Workflow DSL, either the source or the target metamodel
corresponds to the Workflow DSL’s DSM, whereas the other corresponds to a DIM or
workflow execution language respectively.

Figure 5-23: CES-based Model-to-Model Transformation Strategy

5.4 Model Transformation Framework 97

For each abstract concept in the CES, the respective counterparts from the source
and target metamodel have to be identified. Subsequently, mapping rules between
the identified metamodel elements are defined. By applying these mapping rules in
form of an automated model transformation, a model instance conforming to the
source metamodel is transformed into a model instance of the target metamodel.

In the context of the Workflow DSL, bilateral transformations for DIMs or workflow
execution languages are always defined between the respective notation or format
and the DSM. The DSM itself can be considered as a formalized XML-based
representation of the CES. Once the projection of the CES to corresponding DSM
concepts and associated markup has been defined (cf. Section 5.4.5), it remains
constant for all newly developed transformations. Thus, when integrating a new DIM
or workflow specification language, only the new format’s mapping to the CES
concepts needs to be identified. To this end, an incremental approach focusing first
on the graphical notation and abstracting from its serialization in a particular (XML-
based) interchange format is advisable. Having thus identified the mapping on a
schematized pattern basis, detailed transformations between each CES concept’s
markup representation in the new format and its DSM-based counterpart have to be
specified and implemented.

In this way, the CES’s restriction to core business process and workflow modeling
concepts is projected onto the source or target metamodel respectively as well as
onto the transformation between them. Consequently, when defining a DIM for the
Workflow DSL, the CES provides guidance on which DIM-specific modeling concepts
to integrate into the DIM. Due to the thereof resulting semantic congruence
between all DIMs, the DSM, and workflow execution languages, lossless multilateral
transformations are achieved. Furthermore, due to the decoupled arrangement
based on the DSM and the CES, the autonomy of existing transformations is
preserved when new DIMs and workflow execution languages are added.

5.4.2.2 Overview of the Core Elements Set

The CES and its particular concepts categorized along the five workflow perspectives
are shown in Table 5-1. While the concepts from the behavioral perspective
correspond to selected Workflow Control-Flow Patterns (Russell, ter Hofstede, Van
der Aalst et al. 2006), the Workflow Data concept corresponds to the Workflow Data
Pattern ‘Case Data’ (Russell, Ter Hofstede, Edmond et al. 2004a) and the Participant
/ Role-based Distribution concept relates to the similarly termed Workflow Resource
Pattern (Russell, Ter Hofstede, Edmond et al. 2004b). An overview of the Core
Elements Set’s mapping to the DSM and the DIMs can be found in Section 5.4.5.

Table 5-1: The Core Elements Set (CES)

Core Elements Set (CES)

Functional Perspective

Workflow Process
Constitutes the root container element for the workflow
specification.

Activity The atomic unit of work within a Workflow Process.

98 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

Behavioral Perspective

Concept Description

Start Node Marks the start of a Workflow Process.

End Node Marks the end of a Workflow Process.

Sequence Defines a sequential execution of Activities.

AND-Split
Divergence of a branch into two or more subsequent
branches which are executed concurrently.

AND-Join
Convergence of two or more concurrently executed
branches into a single subsequent branch whereby all
incoming branches have to be enabled for the transition.

XOR-Split
Divergence of a branch into two or more branches whereby
the thread of control is passed to exactly one branch based
on an associated condition.

XOR-Join
Convergence of two or more branches into a single
subsequent branch whereby only one incoming branch has
to be enabled for the transition.

OR-Split
Divergence of a branch into two or more branches whereby
the thread of control is passed to one or more outgoing
branches based on an associated condition.

OR-Join
Convergence of two or more branches which have been
activated by a prior OR-SPLIT whereby all active branches
have to be enabled for the transition.

Structured Loop

Encapsulates a set of Activities which shall be executed
repeatedly. An associated condition determines whether
the loop shall be continued or terminated and is either
evaluated at the beginning (While-Do-Loop) or the end (Do-
While-Loop) of the loop.

Informational Perspective

Workflow Data
Typed variables for storing data to be accessible to all
components within an instance of the Workflow Process.

Organizational Perspective

Participant / Role-based
Distribution

Serves for defining process participants in form of roles, i.e.
groups of resources with similar characteristics, and assign
Activities to them.

Operational Perspective

Application
Specification of an application and its interface which is
assigned to one or more Activities and supports or fully
automates their processing.

5.4 Model Transformation Framework 99

5.4.3 Horizontal Model Transformations – The Petri Net DIM

In this section, the CES-based model transformation concept is exemplified by the
Petri Net DIM and can be analogically adopted for other horizontal DIM
transformations. For a detailed description of the transformations for the BPMN
DIM, please refer to (Orozov 2008). A detailed presentation of the transformations
for the UML 2.0 Activity Diagram DIM is available in (Setiawan 2008). The
transformations for the SSO DIM can be found in (Setiawan 2009).

For the Petri Net DIM and the related transformations, a block-structured modeling
approach is assumed. That is, a Petri net model should be decomposable into non-
overlapping blocks. For example, in a branch between an AND-Split and an AND-
JOIN, no arcs leading outside this branch should exist. Furthermore, SPLIT constructs
of a particular type (AND, OR, XOR) should always have a corresponding JOIN
construct of the same type and on the same hierarchical level.

In the following, according to the introduced model transformation development
approach, the mapping of Petri net modeling patterns to CES concepts is presented.
As Petri nets, in contrast to other business process modeling notations, are
composed of only three symbols, the focus lies on the composite, pattern-based
representation of the CES concepts as well as associated special cases. Due to the
same reason, the serialization of the presented patterns in the PNML format is
composed only of three corresponding elements (pnml:place, pnml:transition,
pnml:arc) and can be derived straightforwardly from the presented patterns. Hence,
it is not further discussed here. Instead, more challenging aspects of the
transformation’s technical implementation like an automated diagram layout
algorithm or the transformation’s underlying traversing algorithm are briefly
described. A complete in-depth description can be found in (Setiawan 2009).

5.4.3.1 Mapping CES Concepts on Petri Net Patterns

 Workflow Process:
The Workflow Process concept corresponds to one Petri net diagram.

 Activity and Sequence:
A named Petri net transition corresponds to the Activity concept. Hence, a
transition can be linked with other concepts like Application, Participant or
Workflow Data. In order to sustain a block-structured modeling approach as
described above, for some model patterns the introduction of a silent
transition, i.e. a transition labeled “*silent+”, is required. Such a transition has
no influence on or meaning to the workflow, it is only required from a
structural perspective. Thus, silent transitions are either modeled manually
due to the block-oriented modeling guidelines or created in the context of a
transformation from the DSM to the Petri Net DIM. Regarding
transformations from the Petri Net DIM to the DSM, they are ignored.

The CES concept Sequence is represented by a linear, non-conditional
sequence of a transition, a place and a transition. Thereby, the first transition
may have only one outgoing arc, the place only one incoming and one

100 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

outgoing arc and the second transition only one incoming arc. Figure 5-24
illustrates the described CES concepts in their Petri net representation.

Figure 5-24: The CES Concepts Activity (a) / Silent Activity (b) and Sequence (c)

 Start Node and End Node:
The CES concept Start Node is represented as a place without incoming arcs.
Correspondingly, the concept End Node is expressed by a place without
outgoing arcs. Figure 5-25 shows the Petri net representation of these CES
concepts.

Figure 5-25: The CES Concepts Start Node (a) and End Node (b)

 AND-Split and AND-Join:
The CES concept AND-Split is represented by a transition with two or more
outgoing non-conditional arcs. Accordingly, the AND-Join concept
corresponds to a transition with two or more incoming non-conditional arcs.
Such transitions represent not necessarily Activities. In some cases, when the
semantic concept prior to the AND-Split or after the AND-Join concept
respectively is not an Activity, a silent transition is required. Examples could
be an immediate sequence of AND-Joins, an AND-Join directly after the Start
Node or a new AND-Split after the AND-Join. Figure 5-26 shows the Petri net
representation of these CES concepts.

Figure 5-26: The CES Concepts AND-Split (a) and AND-Join (b)

 XOR-Split and XOR-Join:
The CES concept XOR-Split is represented by a place with two or more
outgoing conditional arcs. Thereby, one arc marks the default branch and is
thus labeled Otherwise. For all other arcs, exclusive conditions which evaluate
to at most one particular branch have to be defined. Accordingly, the XOR-
Join concept corresponds to a place with two or more incoming non-
conditional arcs. The transitions succeeding after the XOR-Split place or prior
to the XOR-Join place may either be Activities or silent transitions. The latter

5.4 Model Transformation Framework 101

are used for cases where the semantic concepts after the XOR-Split or before
the XOR-Join construct respectively do not correspond to the CES concept
Activity. Example scenarios requiring silent transitions after the XOR-Join
could be nested, immediately succeeding XOR-Splits or an immediately
succeeding AND-Split. Similarly, examples requiring silent transitions before
the XOR-Join could be other directly preceding XOR-Joins or AND-Joins. Figure
5-27 shows the Petri net representation of the XOR-Split and XOR-Join CES
concepts.

Figure 5-27: The CES Concepts XOR-Split (a) and XOR-Join (b)

 OR-Split and OR-Join:
The CES concept OR-Split is represented by a composition of an AND-Split and
two or more XOR-Split constructs. Each XOR-Split construct includes only one
conditional branch and the default branch includes solely a silent transitions.
In this way, the OR-Split semantics, i.e. the concurrent activation of one or
more branches according to branch-specific conditions, can be realized.
Accordingly, the OR-Join concept is composed of an AND-Join and several
preceding XOR-Join constructs. Figure 5-28 depicts the resulting composite
Petri net representation of the OR-Split and OR-Join CES concepts.

Figure 5-28: The CES Concepts OR-Split and OR-Join as Composition of an
AND-Split/–Join as well as multiple XOR-Split/-Join structures nested therein

102 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

 Structured Loop (While-Do-Loop and Do-While-Loop)
The CES concept Structured Loop can occur in two variants depending on
whether the loop condition shall be tested at the beginning (While-Do-Loop)
or at the end of the loop (Do-While-Loop). The former is represented by a
While-Do-Loop-typed place with a conditional arc leading to the loop body, a
default arc to be followed after the termination of the loop and marked with
Otherwise, as well as an incoming arc returning from the loop body. Similarly,
the Do-While-Loop variant is represented by a Do-While-Loop-typed place
with an analog set of arcs. A silent transition is inserted between the loop
place and the loop body in order to achieve a Petri net-conforming
representation. Figure 5-29 illustrates the Petri net representation of the CES
concept Structured Loop in form of a While-Do-Loop and a Do-While-Loop.

Figure 5-29: The CES Concept Structured Loop
as While-Do-Loop (a) and Do-While-Loop (b)

 Workflow Data, Participant / Role-based Distribution and Application:
For these CES concepts, no visual representation is defined. They are rather
specified in form of properties attached to a Petri net transition. The
incorporation of adequate means for configuration in form of a transition
property editor was exemplarily shown for the Petri net modeling tool
INCOME2010 in Section 5.3.4. There, also the introduced extensions to PNML
and the mapping of the configured property values onto their extended
PNML serialization were presented.

5.4.3.2 Technical Implementation

The model-to-model transformations developed in the context of this thesis were
mostly specified in form of Extensible Stylesheet Language Transformations (XSLT)
(Clark 1999). By applying such a transformation, a source XML document is
transformed into a new target XML document. All transformations are founded on a
traversal algorithm which was designed for efficiently traversing the source
document’s corresponding model graph. The algorithm ensures that all nodes
between the start and end node are traversed exactly once. At the time of a node’s
traversal, it is transformed on a pattern basis and inserted into the target document.

Figure 5-30 illustrates the traversal and transformation algorithm in a pseudo code
representation. The transformation starts with identifying the start node and
creating a corresponding node in the target document. Then, the subsequent node is
searched. Depending on the type of the found node, adequate transformation
strategies are applied. For the cases of a branching node or a loop node, a stack-
based technique ensuring the correct and unique traversal of model elements was

5.4 Model Transformation Framework 103

designed. For each branching node type as well as for loops, a corresponding stack
variable is declared. For example, if a branching node is found, it is pushed on the
stack and all branches are traversed from the split node to the corresponding join
node. After the last branch has been traversed (which is also determined based on
the stack), the join node is transformed and inserted into the target document and
the split node is popped from the stack. The algorithm ends when the model graph’s
end node is reached.

1 PROGRAM WorkflowDSL_ProcessModel_Transformation_Algorithm

2 stack and_stack, or_stack, xor_stack, loop_stack;

3

4 findStartElement()

5 IF startElement was found

6 THEN

7 and_stack = new stack;

8 or_stack = new stack;

9 xor_stack = new stack;

10 loop_stack = new stack;

11 traverse(startElement);

12 END_IF

13

14 FUNCTION traverse(element)

15 BEGIN

16 CASE element OF

17 START-Element:

18 transform(element);

19 /* transform() creates a corresponding element in the target

20 document */

21 traverse(findNextElement(element));

22 /* findNextElement() returns the successor of the

23 given element */

24

25 END-Element:

26 /* Finish traversal and create end element in target document */

27 transform(element);

28

29 Activity-Element:

30 transform(element);

31 traverse(findNextElement(element));

32

33 AND-Split, OR-Split, XOR-Split:

34 transform(element);

35 PUSH(element) in appropriate stack;

36 FOR all branches

37 PUSH branch position (intermediate or last) on stack

38 traverse(findNextElement(element));

39 END_FOR

40

41 AND-Join, OR-Join, XOR-Join:

42 POP branch position from stack

43 IF current branch is last branch

44 THEN

104 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

45 transform(element);

46 POP corresponding split element from appropriate stack;

47 traverse(findNextElement(element));

48 END_IF

49

50 LOOP-Element:

51 IF TOP(loop_stack) != element

52 THEN /* IF avoids duplicate traversal of loop node */

53 transform(element);

54 PUSH(element) in loop_stack;

55 traverse(findConditionalArc(element));

56 /* findConditionalArc() finds the loop element’s associated

57 conditional arc leading to the loop body and returns its

58 first element */

59

60 POP(element) from loop_stack;

61

62 traverse(findOtherwiseArc(element));

63 /* findOtherwiseArc() finds the loop element’s associated

64 default exit arc typed Otherwise and returns the first

65 succeeding element */

66 ELSE

67 /* TOP(loop_stack) = element Do nothing */

68 END_IF

69 END_CASE

70 END_FUNCTION

71 END_PROGRAM

Figure 5-30: Pseudo Code of the Model Traversal and Transformation Algorithm

The XSLT-based implementation of the described stack technique is rather non-
trivial. The Extensible Stylesheet Language provides the element xsl:variable for
declaring variables and setting their value. However, once a value has been set, it
cannot be modified anymore. Furthermore, XSL includes no stack-like variable types.
These problems were solved by passing the variable’s value plus a string-based
extension to recursive function calls. For extending and evaluating the string-based
stack, the XSL string operations xsl:concat(…) and xsl:substring-after(…) are used.
Figure 5-31 shows an example XSLT excerpt illustrating the XSLT-based realization of
the stack technique.

1 <xsl:template name="traverseNode"> <!-- Main function -->

2 <!-- Parameter definition for LIFO stack for and-constructs -->

3 <xsl:param name="and_stack"/>

4 […]

5 <xsl:call-template name="traverseNode"> <!-- Recursive function call-->

6 <xsl:with-param name="varDecisionNr" <!-- Push ‘notlast’ on stack-->

7 select="concat('notlast', $and_stack)"/>

8 […]

9 </xsl:call-template>

10 […]

11 </xsl:template>

Figure 5-31: XSLT-based Implementation of the Stack Technique

5.4 Model Transformation Framework 105

When transforming a Web-based workflow from its DSM-based representation to its
Petri Net DIM representation, the introduced concepts and methodologies assure
semantic correctness and integrity. However, the obtained transformation result still
lacks graphical layout information. To this end, a pragmatic layout algorithm was
designed which reuses the layout facilities contained in the API of Microsoft Visio
2007 (Microsoft Corp. 2006a). To this end, an adequate Visio stencil containing the
target DIM notation’s shapes has to be provided. This is used by the algorithm to
invisibly rebuild the model, perform an automated layout by using the Visio API and
extract the coordinates from the layouted model.

The algorithm can analogically be applied for the other DSM-to-DIM transformations
as well. Figure 5-32 briefly describes the layout algorithm for the Petri Net DIM. It
was implemented with C# and the .NET Framework in form of a plugin for the
employed transformation engine which allows the sequential execution of XSLT- and
.NET-based transformation plugins on a source document (cf. Section 5.5).

1 PROGRAM Auto_Layout_for_PetriNet_DIM

2 Hashtable XmlElement2VisioShape;

3

4 VisioAPI.invisiblyCreateEmptyVisioDiagram();

5

6 FOR all notation symbol types(place, transition, directed arc)

7 FOR all symbol instances in Xml Document to be layouted

8 IF (currentSymbolType != directedArc) THEN

9 addCorrespondingShapeToVisioDrawing();

10 ELSE

11 connectSourceAndTargetShapeByDirectedArc();

12 END_IF

13 XmlElement2VisioShape.Add(instance, shapeId); /* Remember mapping*/

14 END_FOR

15 END_FOR

16

17 VisioAPI.moveModelToPageCenter();

18 VisioAPI.performAutomatedLayout(shapeLayoutMode,

19 connectorLayoutMode,

20 spacing);

21 /* Visio supports various layout modes, e.g. Flowchart/Tree, Left-to-

22 Right for shapes and Center-to-Center for connectors. */

23

24 VisioAPI.adjustPageToDrawingContents();

25

26 FOR all shapes in Visio diagram

27 positionInfo = VisioAPI.getShapePosition();

28 xmlElement = symbolInstances.findXmlElement(currentShape.Id);

29 targetDocument.selectElement(xmlElement).addLayoutInfo(positionInfo);

30 END_FOR

31 END_PROGRAM

Figure 5-32: Pseudo Code of the Layout Algorithm for the Petri Net DIM

106 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

5.4.4 Vertical Model Transformations – The XOML Workflow Language

Vertical model transformations bridge the gap between the DSM and the workflow
execution languages supported by workflow engines, e.g. the Business Process
Execution Language (BPEL) (Jordan and Evdemon 2007) or the Extensible Application
Markup Language (XAML). The latter is a declarative XML-based application
specification language which was introduced by Microsoft and covers a
comprehensive set of concerns including presentation and workflow aspects. In
order to ease the differentiation, the acronym XOML is used when the workflow-
specific parts of the language are meant (Microsoft Corp. 2007). In the context of this
thesis, the Microsoft Windows Workflow Foundation (WF) (Microsoft Corp. 2006c)
was adopted as workflow execution framework. Hence, in this section, the
transformation between the Workflow DSL’s DSM and the XOML language used by
the Workflow Foundation is exemplarily presented. This is of particular interest as no
transformation between XPDL and XOML has been presented yet, neither by science
nor industry. Thus, the presented approach presents a valuable contribution,
especially against the background of the WF’s increasing relevance and free
availability as part of the .NET 3.0 Framework. The presented approach can similarly
be applied for other workflow execution languages like BPEL as well. The detailed
integration of the presented transformation and the WF in the Workflow DSL’s
technical framework is explained in Section 5.5.

5.4.4.1 Mapping CES Concepts to XOML Language Elements

The XOML language supports state-machine-based and sequential workflows,
whereby the latter forms the adequate type for the Workflow DSL. It is represented
by the root element xoml:SequentialWorkflowActivity within the XML namespace
http://schemas.microsoft.com/winfx/2006/xaml/workflow. XOML is a block-
structured language, i.e. transitions between elements are implicitly described by
their subsequent appearance within a control-structure-typed block. For example,
activities occurring after the SequentialWorkflowActivity root node implicitly form
the CES concept Sequence. The same applies for activities within all other control
structure-typed blocks. Thus, the explicit XOML concept SequenceActivity presents
only an optional, explicit representation of the CES concept Sequence. Similarly, no
explicit counterparts for the CES concepts Start Node and End Node exist. They are
rather implicitly represented by the encapsulating SequentialWorkflowActivity root
node within a XOML-based workflow specification. Furthermore, XOML provides no
direct complements for the CES concepts OR-Split and OR-Join. Therefore, as
presented in the previous section for the Petri Net DIM (cf. Figure 5-28), they have to
be mapped onto a combination of an AND-Split and –Join and several encapsulated
XOR-Split and –Joins.

With regard to representing the CES concept Activity, the WF offers various
predefined activity types. However, like in other workflow execution languages,
these activities are completely system-oriented and do not address human
interaction. Thus, a dedicated human interaction-oriented activity type had to be
introduced. Therefore, an extension mechanism of the WF allowing the development

5.4 Model Transformation Framework 107

of specialized Custom Activities and their referential usage within XOML-based
workflow specifications was adopted. The custom activity is named WslsActivity
(following the name of the WSLS platform, cf. Sections 4.1.2 and 5.5) and represents
external tasks which are performed outside the workflow engine. The activity defines
a property for specifying eligible roles (CES concept Participant) as well as realizes
the sending of input and receiving of output parameters to external clients and their
mapping on workflow variables (CES concept Workflow Data). The Concern
Configuration within a Workflow DSL program specifying the Web-based realization
of human tasks is not intended to be transformed to a workflow execution language.
It is rather evaluated by Web-based clients in order to realize the specified behavior
and provide a corresponding user interface. Thus, the WslsActivity serves only as
mediator between the workflow and such client applications. A detailed description
of the WslsActivity’s implementation can be found in (Buck 2007).

As explained earlier, in the case of vertical model transformations, only unilateral
mappings from the DSM to the workflow execution language have to be defined.
Thus, for each CES concept, a XOML language concept which is either semantically
equivalent or which subsumes the CES concept has to be identified. To this end, the
following notations are used:

𝑪𝑪𝑬𝑺 ≡ 𝑪𝑿𝑶𝑴𝑳
′

𝑇𝑒 𝐶𝐸𝑆 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝐶𝐶𝐸𝑆 𝑖𝑠 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜 𝑡𝑒 𝑋𝑂𝑀𝐿 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑪𝑿𝑶𝑴𝑳
′

While semantic equivalency between a CES concept and its counterpart in the target
format is a necessary requirement for bilateral transformations, the subsumption of
a CES concept by a target concept is viable if only unilateral transformations are
desired:

𝑪𝑪𝑬𝑺 ⊆ 𝑪𝑿𝑶𝑴𝑳
′

𝑇𝑒 𝐶𝐸𝑆 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝐶𝐶𝐸𝑆 𝑖𝑠 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑢𝑏𝑠𝑢𝑚𝑒𝑑 𝑏𝑦 𝑡𝑒 𝑋𝑂𝑀𝐿 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑪𝑿𝑶𝑴𝑳
′

Table 5-2 shows the identified mappings of CES concepts to XOML language
elements as well as their semantic relations based on the introduced notations. In
order to achieve a more fine-grained comparison, the CES concepts in their DSM
representation present the basis for determining the semantic relationship.

108 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

Table 5-2: Mapping of CES Concepts to XOML Elements

CES Concept XOML Element Semantic Relation

Workflow Process SequenceActivity dsm_xpdl:WorkflowProcess ≡

xoml:SequenceActivity

Activity WslsActivity
(CustomActivity)

dsm_xpdl:TaskActivity ≡

xoml:WslsActivity

Sequence SequenceActivity Sequence ≡ xoml:SequenceActivity

AND-Split / AND-Join ParallelActivity dsm_xpdl:AND-Split RouteActivity

xoml:ParallelActivity,

dsm_xpdl:AND-Join RouteActivity
xoml:ParallelActivity,

[(dsm_xpdl:Activity + dsm_xpdl:Route +
dsm_xpdl:Split + dsm_xpdl:Type=AND) + ... +
(dsm_xpdl:Activity + dsm_xpdl:Route +
dsm_xpdl:Join + dsm_xpdl:Type=AND)] ≡
xoml:ParallelActivity

XOR-Split / XOR-Join IfElseActivity dsm_xpdl:XOR-Split RouteActivity

xoml:IfElseActivity,

dsm_xpdl:XOR-Join RouteActivity

xoml:IfElseActivity,

[(dsm_xpdl:Activity + dsm_xpdl:Route +
dsm_xpdl:Split + dsm_xpdl:Type=XOR) + ... +
(dsm_xpdl:Activity + dsm_xpdl:Route +
dsm_xpdl:Join + dsm_xpdl:Type=XOR)] ≡

xoml:IfElseActivity

OR-Split / OR-Join ParallelActivity +
IfElseActivity

dsm_xpdl:OR-Split RouteActivity

(xoml:ParallelActivity +
xoml:IfElseActivity),

dsm_xpdl:OR-Join RouteActivity

(xoml:ParallelActivity +
xoml:IfElseActivity),

[(dsm_xpdl:Activity + dsm_xpdl:Route +
dsm_xpdl:Split + dsm_xpdl:Type=OR) + ... +
(dsm_xpdl:Activity + dsm_xpdl:Route +
dsm_xpdl:Join + dsm_xpdl:Type=OR)] ≡
(xoml:ParallelActivity+xoml:IfElseActivity)

Structured Loop WhileActivity dsm_xpdl:LoopStandard-Activity ≡

xoml:WhileActivity

Workflow Data DependencyProperty xpdl:DataField + xpdl:TypeDeclaration

 xoml:DependencyProperty

Participant WslsActivity
(CustomActivity)

xpdl:Participant xoml:WslsActivity

Application WslsActivity
(CustomActivity)

xpdl:Application ⊇ xoml:WslsActivity

5.4 Model Transformation Framework 109

5.4.4.2 Technical Implementation: From Graph-Structured XPDL to Block
Structured XOML

While business process modeling languages like BPMN, UML 2.0 Activity Diagrams,
Petri Nets, amongst others, as well as the XML Process Definition Language (XPDL)
are usually graph-oriented languages, workflow execution languages like BPEL or
XOML follow a block-structured specification style. Thus, a transformation from the
Workflow DSL’s predominantly XPDL-based DSM to the workflow execution language
XOML has to deal with additional challenges originating from the different structural
styles. Figure 5-33 illustrates these differences by depicting a single process model
both in a graph-structured and a block-structured representation.

Figure 5-33: Graph-Structured vs. Block-Structured Specification Styles

Hence, the main challenge lies in mapping graph sections onto nested block
structures. To this end, a two-staged, fully XSLT-based transformation process was
developed. In the first stage, structural patterns are identified and extracted from
the DSM-based source document, whereby the control flow order is sustained.
Thereupon, the second stage conducts the syntactic transformation of the extracted
block structures into the XOML target format. Due to the two-staged transformation
procedure, other workflow execution languages could be flexibly incorporated by
adapting the format-specific transformation codes in the second stage. The
transformations in the first stage are language-independent and can be retained.

In the following, selected mappings from graph-structured XPDL patterns to block-
structured XOML statements are schematically illustrated. The complete mapping
and its implementation via XSLT is described in detail in (Orozov 2008). Each figure
shows on the left the BPMN-based visual representation of the XPDL patterns as well
as the associated XPDL markup. On the right, a block structured representation and
the corresponding XOML markup is depicted.

Figure 5-34 depicts the Parallel pattern in XPDL and XOML. A set of statements
between an XPDL AND-Split-Activity and an XPDL AND-Join-Activity is mapped onto
several nested blocks within a XOML ParallelActivity.

110 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

Figure 5-34: The Parallel Pattern in XPDL and XOML

Figure 5-35 illustrates the Decision pattern. The statements between an XPDL XOR-
Split-Activity and an XPDL XOR-Join-Activity are mapped onto individual XOML
IfElseBranchActivity blocks within an XOML IfElseActivity. For each XPDL Transition
with a condition, a XOML RuleExpressionCondition has to be created and referenced
by the corresponding IfElseBranchActivity.

Figure 5-35: The Decision Pattern in XPDL and XOML

5.4 Model Transformation Framework 111

Such declarative XOML-based rule expressions are stored in a separate rules
specification file and can then be referenced from within the workflow specification
(cf. Figure 5-36).

Figure 5-36: Referencing Separately Defined Declarative Rule Conditions

In order to transform a XPDL Transition Condition into a XOML-based
RuleExpressionCondition, the condition has to be parsed and mapped onto a
declarative hierarchical XOML representation. For example, a simple less-than-based
condition is mapped onto an enclosing CodeBinaryOperatorExpression element with
the attribute Operator="LessThan". Inside this element, both sides of the expression
are separately defined (CodeBinaryOperatorExpression.Left|Right). Therefore, either
a CodeMethodInvokeExpression element allowing the access to workflow variables as
well as invoking functions or a CodePrimitiveExpression element for providing a
comparison value can be used. Within these elements, several other elements are
required for specifying types, objects, properties and methods. A detailed example
can be found in (Orozov 2008).

Figure 5-37 depicts the Structured Loop pattern. The elements within the XPDL loop
body are nested as block within the XOML WhileActivity. The XPDL Transition
Condition for the loop is mapped onto a XOML-based RuleExpressionCondition and
referenced by the XOML WhileActivity.

Figure 5-37: The Structured Loop Pattern (variant: While-Do-Loop) in XPDL and XOML

112 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

Besides transforming control-flow and transition conditions, also mappings for the
CES concept Workflow Data have to be performed. In this regard, XPDL DataFields
and TypeDeclarations have to be mapped on XOML DependencyProperties. In Figure
5-4, the xpdl:TypeDeclaration for the ExpenseReportType and an associated
xpdl:DataField acting as workflow variable were shown. Figure 5-38 shows the
corresponding C#-based representation as required by the Windows Workflow
Foundation. The XSLT-based transformation is performed on a template-basis
whereby the bold marked terms are variable and have to be filled according to the
XPDL specification while the non-bold sections remain constant.

1 public partial class BusinessTripWorkflow : SequentialWorkflowActivity

2 {

3 public static DependencyProperty ExpenseReportProperty =

4 DependencyProperty.Register("ExpenseReport",

5 typeof(System.Xml.XmlElement),

6 typeof(KIT.BusinessTripWorkflow));

7

8 [System.ComponentModel.DesignerSerializationVisibilityAttribute(

9 DesignerSerializationVisibility.Visible)]

10 [System.ComponentModel.BrowsableAttribute(true)]

11 [System.ComponentModel.CategoryAttribute("Parameters")]

12 public System.Xml.XmlElement ExpenseReport

13 {

14 get

15 {

16 return ((System.Xml.XmlElement)(base.GetValue(

17 KIT.BusinessTripWorkflow.ExpenseReportProperty))); }

18 set

19 {

20 base.SetValue(

21 KIT.BusinessTripWorkflow.ExpenseReportProperty, value); }

22 }[…]

23 }

Figure 5-38: XOML DependencyProperty for XPDL TypeDeclaration and DataField

In summary, the transformation results in three separate parts within a single XML-
based result document: The XOML-based workflow specification, the XOML-based
rules declarations as well as the C#-based data representation. Each of these is
stored in a separate file with the extension .xoml, .rules, and .cs respectively and
automatically passed to the Workflow Foundation’s workflow compiler. The resulting
workflow library can then be directly used for the instrumentation of the Workflow
Foundation’s workflow engine. Thereupon, workflow instances based on this library
can be immediately instantiated and executed.

In conclusion, human interaction-enabled workflows can thus be constructed on a
pure model basis. The automated construction of complementary Web-based user
interfaces based on the Application specifications contained in the DSM as well as
their interaction with the workflow engine is presented in Section 5.5. There, also
the model transformation framework’s technical support framework is described.

5.4 Model Transformation Framework 113

5.4.5 Complete Catalog of DIM Mappings

This section gives an overview of the mappings between all presented DIMs and the
Workflow DSL’s DSM which is mainly founded on XPDL 2.0.

Table 5-3: Complete Overview of Mappings between DIMs and the DSM (Part 1/2)

114 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

Table 5-4: Complete Overview of Mappings between DIMs and the DSM (Part 2/2)

5.5 Technical Platform 115

5.5 Technical Platform

The Workflow DSL’s technical platform comprises various layers covering different
aspects and is depicted in Figure 5-39. These include business process and workflow
modeling tools, the model transformation framework’s technical platform as well as
the workflow execution platform. The various modeling tools and their associated
standardized serialization formats have already been presented in the previous
sections and are thus not further discussed here. It may be noted though that, based
on the introduced model transformations, any modeling tool supporting one of
these standardized serialization format could be adopted. In the following, the other
layer’s components as well as the process for the automated construction of Web-
based workflows will be presented.

Figure 5-39: The Technical Platform of the Workflow DSL

116 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

5.5.1 Technical Platform for the Model Transformation Framework

The technical support platform for the model transformation framework contains
two core components: The Transform Web Service, an XSLT-based Transformation
Engine, and the Transformation Manager Web Application. The former enables the
integration of model transformation management and execution facilities in external
applications and systems, e.g. modeling tools. Furthermore, it allows the integration
of various transformation engines and acts as mediator between requesting clients
and these engines. The Transformation Manager Web Application uses the
Transform Service and provides a user interface for administrating and executing
model transformations.

5.5.1.1 Transform Web Service

Figure 5-40 shows an excerpt of the Transform Web Service’s public interface which
provides operations for managing formats and associated transformations as well as
for executing transformations. A detailed description of the interface can be found in
(Orozov 2008). The first set of operations addresses the creation
(CreateCoreElementsSet), retrieval (GetCoreElementsSets, GetCoreElementsSetBy
Name), modification (UpdateCoreElementsSet) and deletion (DeleteCoreElementsSet)
of formats. As indicated by the operation names, the focus lies thereby on a format’s
mappings to the introduced Core Elements Set (CES). Similarly, the second set of
operations covers the creation (CreateTransformation), retrieval
(GetTransformations, GetTransformationByName), modification (Update
Transformation) and deletion (DeleteTransformation) of model transformations
between formats. Thereby, the operation GetTransformations return both direct and
automatically computed transitive transformations based on the model
transformation graph’s transitive closure as described in Section 5.4.1.2. Finally, the
Transform operation allows for executing transformations on a given XML-based
input document and returns the result again in form of an XML document.

/* Part 1: Operations for Managing Formats and their CES Mappings */

public void CreateCoreElementsSet(XmlElement coreElementsSet);

public XmlCollection GetCoreElementsSets();

public XmlElement GetCoreElementsSetByName(string coreSetName);

public void UpdateCoreElementsSet(XmlElement coreElementsSet);

public void DeleteCoreElementsSet(string coreSetName);

/* Part 2: Operations for Managing Transformations */

public void CreateTransformation(XmlElement transformation);

public XmlCollection GetTransformations();

public XmlElement GetTransformationByName(string transformName);

public void UpdateTransformation(XmlElement transformation);

public void DeleteTransformation(string transformName);

/* Part 3: Operation for Executing Transformations */

public XmlElement Transform(string name, string type, XmlElement inputXML);

Figure 5-40: Excerpt of the Transform Web Service’s Public Interface

5.5 Technical Platform 117

Thus, based on this interface, all kinds of applications and systems can use the
Transform Web Service for managing and executing transformations. In order to
preserve interface continuity for existing clients in the case of modifications or
extensions, the Web service uses the generic type XmlElement for parameters which
are likely to be subject to evolution (Nussbaumer 2008). Thus, based on the same
interface definition, new clients can consume extended functionalities while existing
clients continue to use earlier versions. Systematic versioning is achieved based on
XML namespaces.

Against the background of the emerging multitude of model transformation
languages (Czarnecki and Helsen 2003), the Transform Web Service supports the
flexible incorporation of transformation engines based on the Strategy design
pattern (Gamma, Helm, Johnson et al. 1995). According to the Strategy pattern, a
family of algorithms can be specified, encapsulated and flexibly interchanged at
runtime. Hence, the Transform Web Service encapsulates the common
characteristics of transformation engines in an interface definition which can then be
implemented by various engines. Thus, the particular engine used for a
transformation can be selected at runtime. Furthermore, new engines can be
integrated without requiring code-based modifications to the Transform Service.

Figure 5-41 illustrates the adoption of the Strategy design pattern for the Transform
Web Service based on a simplified class diagram excerpt. The class TransformService
represents the relevant part of the Transform Web Service. The interface definition
TransformEngine specifies the methods a transform engine has to implement. These
address the retrieval of the set of available transformations as well as their execution
on a given XML-based source document.

Figure 5-41: Achieving Interchangeable Transformation Engines based on
the Strategy Design Pattern

118 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

The TransformService class contains a reference to a particular engine which can be
interchanged at runtime by invoking the method SetTransformationEngine. Thus,
depending on a requested transformation’s type, the Transform Web Service selects
the appropriate engine. In this regard, the figure exemplarily depicts two possible
implementations of the TransformEngine interface. The XSLTransformEngine realizes
XSLT-based model transformations (cf. Section 5.5.1.2) and the ATLTransformEngine
processes transformations based on the Atlas Transformation Language (ATL)
(Jouault and Piers 2009). Figure 5-42 illustrates the interaction between the
TransformService and various implementations of the TransformEngine interface for
processing different types of transformations requested by a client. Thereby, the
TransformService acts as mediator between clients and various TransformEngines,
thus enabling transparent management and execution of transformations across
multiple engines and transformation languages. New engines can be flexibly
incorporated by adding their name, type and URL to the Transform Service’s
configuration file.

Figure 5-42: Interaction between Clients, the Transform Service and Various Engines

5.5 Technical Platform 119

5.5.1.2 The XSLT Transformation Engine

The XSLT-based transformation engine was used for all model transformations
presented in this thesis. It was originally developed in the context of a study thesis
(Schmid 2006) and allows the specification and execution of composite
transformations. Based on a declarative XML-based configuration language, a
sequence of multiple XSLT-based transformations can be defined. Beyond that, also
code-based transformations in form of plugins can be integrated as pre- or post-
processing steps. The transformation engine realizes the sequential execution of
plugins and XSL transformations and ensures the correct transfer of input and output
documents.

In the context of this thesis, the engine was extended by a Web service endpoint
according to the previously described TransformEngine interface. Furthermore, a
plugin for transformations from Microsoft Visio’s DatadiagramML format was
developed. As this format does not include graphical composition-related
relationships between shapes, the plugin is used as a preprocessing step and
computes hierarchical is-contained-in relationships based on shape coordinates
(Orozov 2008). Furthermore, post-processing plugins computing an adequate layout
for business process diagrams were implemented (Setiawan 2009). They are based
on the algorithm presented in 5.4.3.2 and are required for transformations from the
DSM to a DIM. By adopting this engine for the Workflow DSL’s model transformation
framework, the criticism that XSL transformations cannot be developed in a modular
and thus comprehensible way was effectively met.

5.5.1.3 Transformation Manager Web Application

The Transformation Manager was implemented as a Web application supporting the
management and execution of model transformations. It presents an alternative to
the direct integration of model transformations into existing tools and systems via
the Transform Web Service. Hence, the Transformation Manager provides a Web-
based user interface for the operations offered by the Transform Web Service. Thus,
users can view the set of available formats and their associated mappings to the
Core Elements Set (CES). New formats can be added and their CES mapping specified
as well as the available model transformations be viewed, whereby both direct and
transitive transformations are listed (cf. Figure 5-43). The application also guides
users through the design and implementation process for new model
transformations. Finally, the Transform Manager allows users to execute model
transformations by selecting the desired transformation, providing the source
document and receiving the transformation result. An in-depth presentation of the
so-called Poseidon Transformation Manager can be found in the diploma thesis of
Nikolay Orozov (Orozov 2008).

120 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

Figure 5-43: List of Available Transformations in the Transformation Manager

5.5.2 Workflow Execution Platform

The Workflow Execution Platform comprises various components for the
management and execution of workflow-based Web applications. On the one hand,
this includes the Workflow Web Service which enables external applications and
systems to manage and execute workflow instances and definitions. To this end, it
integrates a Workflow Engine and is capable of performing its correct
instrumentation based on a Workflow DSL program. Therefore, it uses the Transform
Web Service in order to transform the Workflow DSL program into the workflow
execution language required by the Workflow Engine.

On the other hand, one or more Web portal frameworks provide adequate Web-
based user interfaces based on the Workflow DSL program and realize the
communication with the Workflow Web Service. These user interfaces support the
management of workflows and open tasks for the current user and particularly the
Web-based processing of workflow activities.

5.5 Technical Platform 121

5.5.2.1 Workflow Web Service

Figure 5-44 shows the public interface of the Workflow Web Service which comprises
operations for managing workflow definitions and instances as well as operations
supporting the distributed execution of workflow activities by external client
applications.

The CRUDS methods Create, Read, Update, Delete and Search support the
management of workflow definitions and instances. As suggested by the canonical
CRUDS interface concept (Nussbaumer 2008), the XML namespace of the submitted
parameter indicates whether the operation shall work on a workflow definition or a
workflow instance. Workflow definitions are Workflow DSL programs which are
stored in the Workflow Repository and can thus be submitted, updated, deleted and
retrieved.

When a new or modified workflow definition is submitted, it has to be transformed
into a Workflow Assembly embodying the executable workflow specification in the
format required by the Workflow Engine. The current implementation uses the
Windows Workflow Foundation’s Workflow Engine which expects workflow
specifications in the XOML format (cf. Section 5.4.4). Hence, when the Workflow
Web Service’s Create operation is invoked with a Workflow DSL program as
parameter, the service calls the Transform Web Service and requests a
transformation of the Workflow DSL program into XOML. Then, the Workflow Web
Service passes the received XOML document to the Workflow Foundation’s workflow
compiler and stores the resulting Workflow Assembly in a dedicated repository.

Based on such a Workflow Assembly, new workflow instances can be instantiated via
the Workflow Web Service’s Create method. Therefore, the method’s
implementation triggers the Workflow Engine to create a new instance of the
specific workflow type. The Delete method enables the termination of a running
workflow instance. The Workflow Web Service stores basic metadata for each
workflow instance including its name, description and associated workflow assembly
type. This metadata is provided via the Create method, can be retrieved via Search
and modified via the Update method.

The second set of operations provided by the Workflow Web Service supports the
communication with task-specific (Web-based) client applications in the course of
processing workflow activities. Similar to the operations described above, the
Workflow Web Service acts again as mediator between requesting clients and the
Workflow Engine. Thus, different workflow engines could be transparently
integrated or the existing infrastructure seamlessly scaled out. Regarding the
communication sequence between clients and the Workflow Web Service, usually
the first step lies in requesting a list of active tasks for a given workflow type or
instance and a given user (GetTaskList). Based thereupon, a task is selected for
processing on the client side which results in requesting the corresponding input
parameters from the workflow (GetTaskData). After the task has been completed on
the client side, the output of the task is sent back to the workflow and the task is
marked as completed (CommitTaskData). A subsequent call of the GetTaskList
operation returns a new set of active tasks which reflects the completion of the
previous activity and potential data-related control-flow branchings. Thus, diverse

122 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

and possibly distributed clients can navigate through the workflow based on the
described operations sequence. Therefore, the Workflow Engine transparently
ensures the correct control-flow and role-based task distribution. Furthermore, it
ensures that idle workflow instances are persisted to the Persistence Database and
are resumed when needed. A detailed description of the Workflow Web Service’s
implementation for the integration of the Windows Workflow Foundation’s engine
can be found in (Buck 2007).

/* Part 1: Operations for Managing Workflow Definitions and Instances*/

public Status Create(XmlElement prototype);

public XmlElement Read(XmlElement readContext);

public Status Update(XmlElement updateContext, XmlElement element);

public Status Delete(XmlElement deleteContext);

public XmlCollection Search(XmlElement searchContext);

/* Part 2: Operations related to the Execution of Workflow Activities */

public XmlCollection GetTasklist(string InstanceID,

 string WorkflowType,

 string Identity);

public XmlElement GetTaskData(string InstanceID,

 string Activity,

 string Identity);

public XmlElement CommitTaskData(string InstanceID,

 string Activity,

 string Identity,

 XmlElement Data);

Figure 5-44: Public Interface of the Workflow Web Service

The operation GetTaskList returns the list of active tasks for the given Identity,
whereby the scope lies either on a particular workflow instance (InstanceID) or on all
active instances of a particular type (WorkflowType). Therefore, based on the Users
& Roles directory, the service performs a mapping between the given Identity and a
set of predefined roles. Depending on the determined roles, the Workflow Engine’s
Tracking Database is queried and returns the set of active workflow activities. This
rather basic identity mapping concept was designed open towards adopting existing,
more comprehensive authentication and authorization concepts. Particularly in the
context of cross-organizational workflow scenarios, federative security concepts
seem promising (Meinecke, Nussbaumer and Gaedke 2005).

The operation GetTaskData provides requesting clients with information required for
the processing of a particular Activity within a specific workflow instance
(InstanceID). The Identity parameter serves as basis for adequate authorization
strategies preventing unauthorized users from retrieving workflow data. The
returned data corresponds to the workflow activity’s input parameters as specified
in the workflow model.

The completion of a workflow activity and the submission of corresponding output
data are realized via the CommitTaskData operation which receives, besides the

5.5 Technical Platform 123

XML-based Data, the InstanceID of the workflow instance as well as the identifier of
the respective Activity and Identity as parameters.

5.5.2.2 Core Portal Component: Workflow DSL Solution Building Block (SBB)

According to the Web Engineering DSL Framework, each DSL comprises a dedicated
Solution Building Block (SBB) being capable of executing the DSL’s programs. Hence,
the Workflow DSL’s SBB forms the central technical component which can be
configured with a Workflow DSL program at runtime. Thereupon, it submits the
Workflow DSL program to the Workflow Web Service in order to store the new
workflow definition in the repository and having an associated Workflow Assembly
generated. Furthermore, it constructs corresponding Web-based user interfaces as
specified by the Application declarations in the Workflow DSL program. Finally, the
SBB realizes the communication with the Workflow Web Service for managing and
executing workflows and particularly for processing workflow activities. The
Workflow DSL SBB was developed in form of a software component for the
WebComposition Service Linking System (WSLS), i.e. the Web Engineering DSL
Framework’s technical platform (cf. Section 4.1.2). However, implementations for
other Web portal frameworks, e.g. Microsoft Office SharePoint Server 2007 or IBM
WebSphere Portal Server, are conceivable in an analog way.

For the SBB’s sufficient configuration, only two properties have to be configured: The
URL of a Workflow Web Service instance as well as a Workflow DSL program
conforming to the Workflow DSL’s DSM. Concerning the construction of Web-based
user interfaces, the SBB parses the Application specifications contained in the
Workflow DSL program and instantiates a corresponding Activity Building Block (ABB)
for each application. Each ABB instance is provided with an initial configuration set
which is also derived from the Application specification in the DSL program. In
addition, an instance of a Workflow List component and an instance of an Activity
List component are created. All of these dynamically created instances are
considered subordinate to the Workflow SBB, both from a visibility and lifecycle
perspective. Figure 5-45 illustrates this assembly process.

Figure 5-45: Assembly of Application Building Blocks According to the
Application Specification in the Workflow DSL Program

124 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

In the course of a workflow’s execution, the SBB sets the ABB instance corresponding
to the current workflow activity visible. By default, the Workflow List is visible. This
component shows all available workflow instances to a user. Therefore, it performs a
Search operation on the Workflow Web Service. Furthermore, the Workflow List
enables the creation, deletion and modification of workflow instances or their
metadata respectively – provided that the user has sufficient privileges. This
functionality is likewise realized via the Workflow Web Service’s corresponding
operations Create, Delete and Update. When a user selects a workflow instance in
the Workflow List, an instance-specific task list, realized by the Activity List
component, is presented. Therefore, the Workflow Web Service’s GetTaskList
operation is used. Similarly, the Activity List component allows users to view their
active tasks across all workflow instances. These two components, Workflow List and
Activity List, are accessible via corresponding hyperlinks at any time as shown in
Figure 5-46. The figure depicts a screenshot of a Workflow SBB instance for the
‘business trip’ example scenario. The marked Presentation Places (indicated by
dashed or dotted rectangles) illustrate the above-mentioned concept of dynamically
presenting subordinated components in an Inner Presentation Place encapsulated by
the Workflow SBB. In the screenshot, the Workflow List component displaying active
workflow instances is currently set to visible.

Figure 5-46: Screenshot of the Workflow List in the Business Trip Example Scenario

The communication between the Workflow SBB and the subordinated components
which have been created and configured in the initial setup procedure is founded on
a generic token-based event mechanism. Tokens contain a type identifier as well as
data payload. Based on a generic token-specific event handler, the Workflow SBB in
its role as Token Container receives tokens which were raised by a subordinated
component. Depending on the token type and the contained data payload, the
Token Container performs corresponding actions. In the most cases, this includes

Workflow SBB
Presentation Place

Inner Presentation
Place for Subordi-
nate Components

5.5 Technical Platform 125

replacing the currently visible component by another subordinated component.
Before the Token Container sets a component visible, it informs the component by
raising a corresponding event named PreToken and passing data payload used for
the component’s initialization. Accordingly, after the component was set visible, the
Token Container raises the PostToken event. The set of possible states and the
token-type-based transitions between them could be formalized in form of a finite
state machine.

In the following, the application of this generic token-based event mechanism to the
communication between the Workflow SBB and its subordinated components is
exemplarily described:

 When a user selects a workflow instance in the Workflow List (cf. Figure
5-46), it raises a token with the type identifier WorkflowSelected and the
workflow instance ID stored in the token’s payload.

 The token is received by the Token Container, i.e. the Workflow SBB, which
evaluates the type identifier and accordingly requests the current task list for
this instance via calling the GetTaskList operation of the Workflow Web
Service. If the returned task list contains more than one active task, the
Workflow SBB removes the Workflow List from its Inner Presentation Place
and instead inserts the Activity List. Before setting it visible, the Workflow
SBB raises the PreToken event on the Activity List and passes the set of active
tasks received from the Workflow Web Service as payload. If the returned
task list contains only a single activity, the Activity List is skipped and the
procedure continues with the step after the next.

 The Activity List renders this list and thereby allows the user to select a
particular activity for processing. Upon selection, the Activity List raises a
token with the type identifier ActivitySelected and the identifiers of the
selected activity and the associated workflow instance as payload.

 The Token Container either extracts the identifiers of the activity and its
associated workflow instance from the payload of the token raised in the
previous step or, in the case of a single active task where the Activity List was
skipped, uses the values of this single activity. Thereupon, according to the
token’s type identifier, it invokes the Workflow Web Service’s operation
GetTaskData and receives the input parameters for the respective activity.
Then, based on the Workflow DSL program, the Workflow SBB determines
the corresponding subordinated component which is assigned as application
for the considered activity and inserts it into the Inner Presentation Place. It
passes the received input parameters via the PreToken event to the
component and subsequently sets it visible.

 Based on this activity-specific application component, e.g. an instance of the
Dialog-based User Interaction ABB, the user can now process the workflow
activity, e.g. fill out a dialog. Upon completion, the component raises a token
with the type identifier Update and the task output data, e.g. a filled data
model, as payload.

126 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

 The Token Container receives the token, evaluates its type identifier, and
accordingly invokes the Workflow Web Service’s operation CommitTaskData,
whereby it passes the received output data. Subsequently, it requests the
new task list for the current workflow instance via the Workflow Web
Service’s GetTaskList operation. Then, the procedure continues as described
above in step two.

Figure 5-47 illustrates the described transitions between the subordinated
components within the Workflow SBB’s Inner Presentation Place in form of a finite
state machine graph. The state machine’s active state indicates the currently visible
subordinated component. The ABB Instance state represents all subordinated
components which are instances of an ABB and serve as applications for the Web-
based realization of one or more activities. Hence, the transition from the ABB
Instance state to itself should be (in the most cases) interpreted as a transition
between two different ABB instances.

Figure 5-47: Transitions between the Currently Visible Subordinated Components
within the Workflow SBB’s Inner Presentation Place

5.5.3 Automated Application Construction: From Modeling to Execution

Based on the preceding presentation of the various technical components, this
section describes their interplay in the course of a workflow-based Web application’s
automated construction ranging from modeling to workflow execution. The
described steps are also marked by corresponding numbers in Figure 5-39. The
presentation uses the running example of this thesis, the ‘business trip’ scenario.

5.5 Technical Platform 127

 Phase 1 – DIM-to-DSM Transformation: Having completed an iteration of the
business process and workflow modeling activities, the resulting model is
transformed into its DSM-based representation. This can be achieved either
directly from within the modeling tool via an integration of the Transform
Web Service or manually using the Transform Manager Web Application. The
result of this phase is a DSM-based Workflow DSL program. Figure 5-48
shows a screenshot of the Transform Manager Web Application with the
obtained transformation result, i.e. the Workflow DSL program. This can now
be copied to the clipboard or saved into a file.

Figure 5-48: DIM-to-DSM Transformation via the Transform Manager

 Phase 2 – Workflow SBB Instantiation and Configuration: In this phase, a
new instance of the Workflow SBB is added to a Web page and configured
with the Workflow Web Service’s URL and the Workflow DSL program
obtained from the previous phase. Figure 5-49 shows the configuration
properties for a Workflow SBB instance within the WSLS Web Portal
Framework. The property named Configure is used to explicitly initiate a new
automated application construction process which is described in the
subsequent phases.

128 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

Figure 5-49: Configuring a Workflow SBB Instance in the WSLS Framework

 Phase 3 – Registration at the Workflow Web Service: The Workflow SBB
invokes the Workflow Web Service’s Create operation and passes the
configured Workflow DSL program. Thereupon it is stored in the Workflow
Repository, thus being retrievable for other clients.

 Phase 4 – Instrumentation of the Workflow Engine: Subsequently, the
Workflow Web Service invokes the Transform operation of the Transform
Web Service, thereby requesting a transformation of the Workflow DSL
program into the workflow execution language required by the Workflow
Engine. The received transformation result is automatically compiled into a
Workflow Assembly and stored in the corresponding repository. Finally, a
manual mapping of existing users and roles to the roles specified in the
workflow may be necessary in some cases.

 Phase 5 – Application Assembly: On the Web Portal Framework side, the
Workflow SBB parses the application specifications contained in the
Workflow DSL program and assembles corresponding Activity Building Blocks
(ABB) as subordinated components. Each ABB is provided with an initial
configuration set according to the respective application specification. If a
matching ABB instance already exists, only the changed properties are
adopted. In addition, the Workflow SBB instantiates the Workflow List and
Activity List components serving for the management of workflow instances
and displaying a personalized list of active tasks to the current user
respectively. Therewith, the automated application construction process is
completed and users can start to create new workflow instances and process
them. Figure 5-50 exemplarily shows a part of the Web-based dialog which
was automatically generated by the Dialog-based User Interaction ABB and
which supports the Create Expense Report activity of the ‘business trip’
example process.

5.5 Technical Platform 129

Figure 5-50: Workflow Execution – The Create Expense Report Activity

 Detailed Design of ABB Instances: Although the automatically constructed
Web-based workflow is fully functional, a detailed design of the ABB
Instances supporting the Web-based processing of workflow activities is
desirable. For example, the dialog shown in the figure above enables entering
the required information and submitting it back to the workflow. However, it
could be improved regarding usability and aesthetical aspects. To this end,
the Workflow DSL approach allows the detailed design of ABB Instances at
runtime using the ABB-specific DIMs and associated editors. Such changes
apply directly to both new and already running workflow instances. An
example showing the detailed design of the above Expense Report dialog
based on the Dialog-based User Interaction ABB, i.e. the Dialog DSL, is
presented in Chapter 6.

5.5.4 Support for Federative Scenarios

In advanced scenarios, workflows do not stay within the boundaries of an
organization but may rather span multiple organizations including their respective
systems and employees. Against this background, Web Service-orientation was
identified as a crucial requirement for the workflow execution platform in order to
establish a foundation for such federative scenarios (cf. Section 2.2.1). Hence, in the
following, the presented workflow execution platform’s federation enablement shall
be briefly outlined.

130 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

Figure 5-51 illustrates possible cross-organizational usage patterns of the Workflow
DSL approach’s workflow execution platform. In this context, federation can be
considered from two perspectives: On the one hand, integrating systems from
diverse external organizations and, on the other hand, enabling participants from
various organizations to collaborate in the workflow using various client applications.

Figure 5-51: Support for Cross-Organizational Web-Based Workflow Scenarios

With respect to the integration of external Web Service-enabled systems, the Web
Service Communication ABB can be employed. It can be mapped to workflow
activities, either in combination with other ABBs or solely, and allows the secured
communication with Web Service endpoints according to a given WS-SecurityPolicy
specification. Based on that, also specialized federative security concepts, e.g.
according to the WS-Federation standard, could be integrated into the Web Service
Communication ABB (Meinecke, Nussbaumer and Gaedke 2005; Lockhart, Andersen,
Bohren et al. 2006).

Concerning the cross-organizational collaboration of distributed participants, the
Workflow Web Service forms the central solution element. Besides being used by a
Workflow SBB running on the WSLS framework as presented in the previous
sections, it can analogically serve arbitrary client applications or portal frameworks
respectively. Thus, particular activities can also be processed using specialized task-
specific applications, e.g. a spreadsheet application. Via the Workflow Web Service,
such heterogeneous clients can retrieve workflow specifications, i.e. Workflow DSL
programs, and accordingly construct adequate user interfaces. In this regard, they
benefit from the fact that the Workflow DSL’s formalized schema, i.e. the DSM, was
founded on a widely-adopted standard. Furthermore, clients can consume all of the
Workflow Web Service’s operations for managing and executing workflows. Thus,
from a technical perspective, workflow client applications as well as the

5.6 Summary 131

corresponding users can reside in different organizational realms. Similar to the
integration of systems described above, the incorporation of specialized federated
security concepts could be necessary also in this context and is inherently supported
by the platform’s service-oriented architectural design.

5.6 Summary

This chapter presented the Workflow DSL, a novel approach for the fully model-
based construction of workflow-based Web applications. It was designed in
accordance with the previously introduced Web Engineering DSL Framework and
places strong emphasis on the effective and continuous involvement of stakeholders.
In the following, the approach’s unique solution elements as well as the fulfillment of
the requirements elaborated in Chapter 2 are briefly summarized.

The Workflow DSL approach bridges the gap between existing commercial workflow
execution platforms on the one hand and the need for Web-based user interfaces for
the efficient and effective processing of human tasks on the other hand. Therefore,
the Workflow DSL’s Domain-Specific Model (DSM) was founded on the XML Process
Definition Language (XPDL) standard and well-defined extensions towards specifying
Web-based user interface aspects were introduced. Regarding the latter, a catalog of
generic Activity Building Blocks (ABBs) was presented. An ABB embodies a certain
type of Web-based support for the realization of workflow activities like Dialog-
based User Interaction, Data Presentation or Web Service Communication. For each
ABB, the minimal configuration set required for executing the desired type of
behavior was described. The ABBs and their minimal configuration sets constituted
the basis for the Web-specific extensions mentioned above. Moreover, they
represent a valuable contribution also beyond the scope of the Workflow DSL
approach. As they form the basis for the implementation of highly reusable and
generic Web-based software components embodying the respective behavior type,
their applicability and utility extends to the development of Web-based solutions in
general. The ABBs were designed in accordance with the Web Engineering DSL
Framework. Thus, their detailed design can be conducted at runtime, i.e. after a
basic but already fully functional Web-based workflow has been set up. In summary,
the resulting DSM forms a novel, standard-based foundation for a holistic and
continuous specification of workflow execution and Web-based user interface
aspects.

The Workflow DSL allows the incorporation of various Domain Interaction Models
(DIMs) and associated editors for the model-based specification of Workflow DSL
programs. Thus, learning efforts can be reduced and stakeholders can employ the
modeling notation and tools they already know. As all DIMs work on a single shared
Workflow DSL program, a novel degree of model continuity and integrity throughout
the complete development lifecycle is achieved. Thus, the presented approach
allows the incremental, completely model-based specification of Workflow DSL
programs from initial requirements engineering to business process and workflow
modeling to workflow execution. In this chapter, four DIMs and corresponding tools

132 Chapter 5 – Constructing Workflow-based Web Applications with Stakeholders

were exemplarily presented. First, a custom table-based notation named Simple
Sequence Only (SSO) supported by Microsoft Word and tailored at initial
requirement engineering activities. Furthermore, three additional standard business
process modeling notations and supplemental tools supporting the phases Business
Process Modeling and Workflow Modeling were presented: The Business Process
Modeling Notation (BPMN) and Microsoft Visio, UML 2.0 Activity Diagrams and IBM
Rational Software Architect, as well as Petri Nets and INCOME2010. The adoption of
these notations and tools as DIMs for the Workflow DSL was based on extensions to
standardized (notation-specific) model interchange formats. Thus, other tools
adhering to these standards could be used as well.

The modeling of Web-based workflows using these DIMs was designed in a
stakeholder-oriented way, thus focusing on the business process structure and hiding
unwanted technical complexity. The minimal technical specification sets required by
the ABBs combined with the ability to perform a detailed design at runtime present a
lightweight alternative to existing heavy-weight, developer-oriented modeling
approaches.

The emerging multitude of DIMs and associated serialization formats allowing the
cross-notational specification of a single DSM-based Workflow DSL program leads to
the necessity of adequate bilateral model transformations. To this end, a novel
model transformation framework was introduced. Facing the so far unsolved
challenge of integrating heterogeneous business process modeling languages, the
approach strikes a new path by introducing the Core Elements Set (CES) concept. The
CES defines a set of common business process and workflow concepts which
abstracts from an individual notation or language. Although the CES is not intended
to provide full coverage for all theoretically possible modeling constructs, it
establishes sufficient support for the great majority of scenarios occurring in
practice. This was confirmed by an own empirical evaluation of business process
models presented in Section 8.1.1 as well as by similar recently published empirical
studies on usage distributions of business process modeling concepts. Based on the
CES concept, semantic congruence between heterogeneous business process
modeling languages can be achieved and thus lossless, bilateral model
transformations be realized. In this chapter, two challenging examples for a
horizontal and a vertical model transformation were described. While the former
concerns bilateral transformations between the Petri Net DIM and the DSM, the
latter addresses the transformation from the DSM into the workflow execution
language XOML. In both cases, the notation-specific mappings to the CES as well as
the transformation’s technical realization were discussed. Based on these examples
and the presented solutions, further transformations for new DIM notations and
tools can be systematically and non-invasively realized. Finally, a complete mapping
catalog between the Workflow DSL’s various DIMs and the DSM was presented.

The Workflow DSL’s technical platform comprises the technical support platform for
the model transformation framework as well as the workflow execution platform.
The former supports the management and execution of model transformations both
by external systems and humans respectively. It supports the flexible incorporation
of transformation language-specific engines and transparently provides both direct
and transitive transformations.

5.6 Summary 133

The workflow execution platform realizes the automated construction and Web-
based execution of fully operational long-running workflows spanning diverse roles
and systems. It was designed in a strongly service-oriented way, thus providing
proficient support both for multimodal participation and federative scenarios. It
encapsulates a state-of-the-art Workflow Engine and exposes management- and
execution-related operations via a well-defined Web Service-based endpoint. The
Workflow DSL’s Solution Building Block (SBB) serves as central solution component
within Web portal frameworks and manages the fully automated application
construction process according to a Workflow DSL program. During the execution of
workflow instances, it mediates between the Web service endpoint encapsulating
the Workflow Engine on the one hand and activity-specific Web-based user
interfaces on the other hand. The latter are set up by assembling and configuring
Activity Building Block (ABB) instances during the automated construction process.
Due to their inherent characteristics as DSLs, their detailed design, e.g. regarding
usability and aesthetical aspects, can be performed at runtime.

The presented solutions provide a sound basis for an agile and evolution-oriented
development process as presented at the beginning of this chapter. On the one hand,
the completely model-based and fully automated construction approach enables
rapid development cycles. On the other hand, lossless model transformations as well
as the unique degree of model continuity preserve consistency throughout all
phases. Thus, changes can be efficiently adopted on a model basis and propagated to
the existing application or directly performed at runtime using the ABB’s respective
DSLs.

All of the presented solution elements of the Workflow DSL approach were
implemented and used for the practical realization of various workflow-based Web
applications. Some of the Workflow DSL’s key concepts were also adopted in the KIM
Project (Juling 2005) for the efficient model-driven construction of page-flow-based
portal features. More information about the Workflow DSL’s empirical and practical
evaluation is presented in Chapter 8.

6 Constructing Advanced Web-based Dialogs4

The efficient and effective construction of advanced dialog-based user interfaces
plays an important role in the development of workflow-based Web applications.
Consequently, the Dialog DSL presented in this chapter forms a central pillar of the
previously introduced Activity Building Blocks (ABBs) supporting the Web-based
processing of workflow activities. The Dialog DSL was designed according to the Web
Engineering DSL Framework and comprises models, tools and an evolutionary
methodology for the model-based construction of complex and highly interactive
dialog components. It explicitly addresses the requirements identified in Chapter 2
and places particular emphasis on usability aspects and effective stakeholder
involvement. The Dialog DSL enables considerable efficiency gains and is excellently
applicable by both developers and stakeholders. This was successfully confirmed by a
formal empirical evaluation presented in Chapter 8.

6.1 The Dialog DSL at a Glance

The Dialog DSL is an executable specification language tailored to the domain of
dialog-based user interaction in the Web. It comprises a two-tiered Petri net-based
Domain Interaction Model (DIM) and an associated Web-based model editor, both
strongly focusing on simplicity and hiding technical complexity. Its Solution Building
Block (SBB) is capable of automatically generating fully operational dialogs based on
given data schemas or Web service specifications. Furthermore, it supports runtime
model adaptations according to characteristics of requesting client devices as well as
renders models into executable dialog-specific markup languages such as the W3C
XForms standard (Boyer, Dubinko, Leigh L. Klotz et al. 2007). An agile and evolution-
oriented development methodology complements the Dialog DSL approach.

4 Parts of this chapter have been published in (Freudenstein and Nussbaumer 2008a; Freudenstein
and Nussbaumer 2008b; Freudenstein, Nussbaumer, Allerding et al. 2008)

136 Chapter 6 – Constructing Advanced Web-based Dialogs

6.1.1 Elements of the Dialog DSL

According to the Web Engineering DSL Framework, the Dialog DSL consists of three
core elements:

 Domain-Specific Model (DSM): According to the Web Engineering DSL
Framework, the DSM embodies the formalized schema for all dialogs that can
be specified with the Dialog DSL. Accordingly, the Dialog DSL’s DSM
comprises two groups of core concepts: On the one hand, concepts for
describing Interaction Elements, which were specified based on the W3C
XForms standard. On the other hand, concepts for specifying dynamic
behavior of a dialog, so-called Interaction Structures. Dialog Partitions serve
as container elements for semantically cohesive Interaction Elements and
provide the basis for modeling Interaction Structures between them. The
DSM provides well-defined extension points for systematically incorporating
additional Interaction Elements or Interaction Structures.

 Domain Interaction Model (DIM): So far, the Dialog DSL provides a two-
tiered, Petri net-based DIM notation in accordance with the DSM. On the first
tier, the elements from the data model or associated Interaction Elements
respectively are distributed on various Dialog Partitions and dynamic
behavior between them using Interaction Structures is modeled. Dialog
Partitions are represented by Petri net places containing Interaction Elements
which are bound to the data model. Petri net transitions correspond to the
performed user interaction, i.e. changing a value in the dialog’s data model or
triggering an action. Interaction Structures are represented by predefined
graphical Petri net templates. On the second tier, the concrete appearance of
each partition based on Interaction Elements is specified. With respect to
device-dependent model adaptations at runtime, dedicated symbols allow
for marking partitions and groups of Interaction Elements as non-dividable.
This two-tiered modeling approach fosters reuse and allows for separation of
concerns - thus improving its usability and simplicity. A supporting Web-
based DIM editor allows for the comfortable creation and adaptation of
dialog models.

 Solution Building Block (SBB): The Dialog DSL’s SBB forms the core of the
technical platform. It communicates with a Dialog Web Service for initiating
the generation of raw dialog models based on a given data schema or for
reusing dialogs. Moreover, it links to the Web-based model editor for creating
and adapting dialogs. Finally, the SBB identifies requesting user agents at
runtime and performs corresponding dialog adaptations as well as ultimately
transforms dialog models into executable markup, e.g. according to the W3C
XForms standard.

6.1 The Dialog DSL at a Glance 137

6.1.2 Evolutionary Process Model

Figure 6-1 illustrates the Dialog DSL’s associated process model for the construction
of advanced Web-based dialogs. It consists of three phases in the course of a
continuous evolution.

Figure 6-1: Overview of the Evolutionary Dialog Engineering Methodology

 Data Design: In this phase, the data model for the dialog being constructed is
developed. This can be achieved in several ways: Firstly, a suitable data
model can be retrieved via the Web Engineering Reuse Sphere (cf. Chapter 7).
Therefore, sophisticated search mechanisms considering criteria from the
development context, e.g. the type of application being developed or the
workflow context the dialog is part of, could be employed. Secondly, if the
data entered in the dialog shall be submitted to a Web service, the target
data schema can be extracted from the Web service’s WSDL document.
Thirdly, the data schema can be elaborated from scratch in strong
collaboration with the involved stakeholders, ideally supported by an
elicitation tool. The output of this phase is an XML Schema document
specifying the dialog’s data schema. Based on this schema, the Dialog DSL’s
technical framework is already able to construct a fully operational dialog
that can be directly used in production or further refined using the Web-
based editor at runtime.

 Partition Design: This phase addresses the modeling of Dialog Partitions and
dynamic behavior based on Interaction Structures. Therefore, in the first step,
the elements from the dialog’s data schema are distributed on several Dialog

138 Chapter 6 – Constructing Advanced Web-based Dialogs

Partitions, each of them representing a semantically cohesive dialog unit, e.g.
personal data, travel itinerary or expenses. Then, employing predefined
Interaction Structures like Sequence or Choice, dynamic transitions between
these partitions are defined. Due to this template-based modeling approach,
this phase is ideally supported by a visual drag & drop editor, thereby again
emphasizing simplicity and enabling the strong participation of stakeholders.

 Appearance Design: In this phase, the concrete appearance of each Dialog
Partition is designed, again supported by the Web-based editor. Therefore, a
concrete Interaction Element is assigned to each element from the data
model. Based on the type of a data element, a possible Interaction Element
was already assigned at dialog generation time (e.g. input for string, select1
for enumerations etc.) and can be modified. This can be done by either
selecting the appearance, i.e. how shall the interaction element be rendered
(e.g. select1 either as radio buttons or dropdown list) or switching to a
different Interaction Element type. Considering the final rendering for diverse
clients with possibly smaller screen sizes, a Dialog Partition may be split up
into several smaller partitions. To this end, partitions as well as groups of
elements therein can be marked as non-dividable. In order to provide
additional guidance to users, input validations or dynamic features like hints
or calculations can be defined. Due to the visual editor, this phase can also be
performed in strong collaboration with stakeholders.

 Evolution: In the case of extensions or modifications in the Data Design
phase, new or modified data elements can be designed in detail with respect
to partition membership, dynamic behavior and appearance in the
succeeding phases. For changes not affecting the data model, the Data
Design phase can be skipped.

6.2 The Domain-Specific Model (DSM)

The Dialog DSL’s DSM specifies the formal schema for all dialogs that can be
designed with the DSL. Thus, it is tailored to the problem domain, not the solution
domain, i.e. it abstracts from the final implementation. Although DIM notations
serve for simplifying and tailoring a DSL to a specific stakeholder group, choosing
well-known concepts and abstractions from the problem domain already in the DSM
is advisable. Exploring the domain of dialog-based user interaction in the Web, two
necessary groups of concepts to be integrated in an appropriate DSM were
identified: Concepts for describing Interaction Elements and concepts for specifying
dynamic behavior of a dialog, so-called Interaction Structures. Figure 6-2 depicts a
simplified excerpt from the Dialog DSL’s DSM.

6.2 The Domain-Specific Model (DSM) 139

Figure 6-2: Simplified Excerpt from the Dialog DSL’s Domain-Specific Model

A Dialog Partition presents a semantically cohesive part of a dialog and encapsulates
one or more Interaction Elements. The design of the concept Interaction Element is
founded on the specification of interaction elements in the W3C XForms standard
(Boyer, Dubinko, Leigh L. Klotz et al. 2007). These present a good basis for expressing
interaction elements within a DSL as they are based on high-level user interaction
primitives instead of presentation- or platform-dependent user controls (Raman
1997). Thus, the DSM achieves a separation of a user control’s underlying intent
from its presentational and implementation aspects. Hence, the DSM comprises
Interaction Elements for entering values (Input), secret information (Secret), and
larger texts (TextArea), for uploading files (Upload), for selecting one (Select1) or
multiple (Select) values from a given set or from a sequential range of values
(Range), for displaying data (Output), for triggering actions (Trigger) as well as for
submitting (Submit) and resetting (Reset) a form. The abstract Interaction Element
concept already defines a common set of properties which can be extended by its
specialized child concepts. These properties serve for specifying aspects related to
the Interaction Element’s appearance, accessibility (accessKey) and navigation order
(navIndex), event-handling (action), data computation (calcExpression) and
validation (constraintExpression, requiredExpression) as well as the possible
interaction mode (readOnly). The DSM can be extended by additional Interaction
Elements as indicated by the corresponding extension point.

An Interaction Structure represents dynamic behavior between a source Dialog
Partition and one or multiple target Dialog Partitions. So far, an extensible core set
of Interaction Structures representing common dynamic behaviors in dialogs was
incorporated. The Sequence Interaction Structure represents a wizard-like sequence
of dialog partitions, each of them being presented to the user one at a time and

140 Chapter 6 – Constructing Advanced Web-based Dialogs

connected via previous / next navigation facilities. Thus, a dialog’s complexity can be
reduced by semantically grouping Interaction Elements into Dialog Partitions and
interconnecting them via the Sequence Interaction Structure. The Choice Interaction
Structure represents the dynamic display of a Dialog Partition in response to a
selection made by the user (Nussbaumer 2001). Therefore, a source Interaction
Element as well as a set of transition conditions associated with the set of target
Dialog Partitions has to be specified. Furthermore, it can be differentiated between
an InPlace- and a Replace-typed transition, i.e. whether the target partition is
displayed in addition to the source partition or replaces it. As indicated in the figure
by the corresponding extension point, this initial set of Interaction Structures can be
systematically extended as well.

6.3 The Domain Interaction Model (DIM)

The Dialog DSL’s Domain Interaction Model (DIM), i.e. the modeling notation, defines
graphical notations corresponding to the concepts defined in the DSM. Hence, it has
to cover two major groups of concepts: Interaction Elements and Interaction
Structures.

With regard to Interaction Elements, employing well-known dialog user controls
turned out to be a good choice. For example, an Input Interaction Element is
represented by an input field, a Select1 Interaction Element by a dropdown list
control, and a Trigger Interaction Element by a button. This way, a graphical symbol
was defined for each Interaction Element in the DSM. As a result, almost all symbols
in the DIM notation are already known to stakeholders, thus making it rather
intuitive and fostering the modeling approach’s learnability and simplicity.

Concerning the modeling of dynamic behavior based on Interaction Structures, the
DIM introduces predefined Petri net constructs. Petri nets provide a sound
foundation for modeling dynamic behavior, parallelism and the state of a system.
These characteristics can all be found in advanced dialogs as well, thus making Petri
nets a good choice. In order to reduce complexity which could arise in complex Petri
nets, a transition template for each Interaction Structure was predefined, thereby
simplifying the modeling process.

With the aim of achieving a sound separation of concerns, the modeling notation is
divided into two tiers: The first tier addresses the modeling of Partitions and
Transitions by means of the Petri net transition templates mentioned above. The
second tier focuses on the Appearance Design of a partition. This marks a significant
improvement compared to existing model-based dialog construction approaches and
commercial tools. While these strongly focus on a paper-like, single-page-centric
form development methodology where dynamic aspects are hidden behind property
dialogs, the Dialog DSL’s two-tiered modeling approach inherently moves the focus
to semantic grouping and dynamic behavior. The Appearance Design, being at the
center of attention in existing approaches, follows only afterwards in a second step.

6.3 The Domain Interaction Model (DIM) 141

This considerably contributes to the resulting dialog’s usability and particularly helps
avoiding cognitive overload. Thus, the Dialog DSL’s modeling notation naturally
encourages the adoption of usability best-practices introduced in Section 2.3, i.e.
“Reducing Cognitive Overload by Semantic Partitioning” and “Selection-Dependent
Inputs” as well as, to some extent, “Clear Path to Completion”. The idea of focusing
dynamic behavior and lifting it on an own modeling layer on top of a dialog’s
appearance design could be rather straightforwardly transferred to other dialog
construction methodologies and tools as well. By making dynamic behavior explicitly
visible to designers and stakeholders, its recognition as well as related
communication can be significantly improved.

6.3.1 Partitions & Transitions Modeling Tier

On this tier, semantically cohesive elements from the dialog’s data model are
grouped into Dialog Partitions which are represented by Petri net places. At runtime,
if a Petri net place is marked, its encapsulated Interaction Elements are visible.
Subsequently, the transitions between these Dialog Partitions are defined using
predefined Petri net transition templates according to the Dialog DSL’s Interaction
Structures.

Figure 6-3 illustrates the Petri net representation of a Choice Interaction Structure. In
this context, elements in a Petri net place are again considered as Petri net places,
thus resulting in hierarchical Petri nets. Accordingly, the Choice transition template is
connected to the data element whose value decides on which transition is fired and
to the various target places. The transitions are labeled with the various values the
data element in the source place can take. To this end, it is advisable to map such an
element to an Interaction Element with a discrete value range (e.g. Select1), which
can be done on the Appearance Modeling Tier.

Figure 6-3: The Choice Interaction Structure as Petri Net Transition Template

At runtime, if a place becomes marked, all contained data elements, or their
associated Interaction Elements respectively, become marked. When the user
changes the value of an element connected with a Choice transition, the mark of the
element flows to the target partition, thus making it and its elements visible. The
source partition’s mark, however, is still there, meaning that both partitions are

142 Chapter 6 – Constructing Advanced Web-based Dialogs

visible. If this is not the desired behavior, i.e. the source partition should become
invisible and only the target partition become visible, the transition would have to be
connected to the source partition instead of the concrete element. For the sake of
simplicity though, a Choice transition is always connected to the respective element.
If the source partition shall become invisible when a transition fires, the transition
can be annotated with a [Replace] tag. It should be mentioned that when a partition
becomes invisible, its state is preserved by the marking of its encapsulated elements
and thus is inherently restored when the partition becomes visible again.

The Petri net representation of a Sequence Interaction Structure is depicted in Figure
6-4. Here, the transitions are always connected to the Petri net places as this
Interaction Structure is independent from the data model. It rather represents a
wizard-like navigation through a linear space of Dialog Partitions. When the model is
rendered into an executable dialog, corresponding Interaction Elements (e.g.
Triggers) allowing the activation of a transition are added to the source and target
partition. To this end, the labels annotated at the transitions are taken as labels for
the Interaction Elements.

Figure 6-4: The Sequence Interaction Structure as Petri Net Transition Template

6.3.2 Appearance Modeling Tier

Based on the Dialog Partitions defined on the superordinate tier, this tier focuses the
concrete Appearance Design of each of these partitions. Figure 6-5 illustrates a core
set of the possible modeling options.

Figure 6-5: Binding Interaction Elements via Corresponding User Control Symbols to
Data Elements and Defining Semantic Groups

6.4 Model Transformations 143

First of all, an Interaction Element represented by a corresponding graphical user
control symbol has to be assigned to each data element. Moreover, labels can be
defined for each interaction element and additional markup, e.g. for headings, be
inserted. With regard to the requirement of device-independency, a partition can be
semantically tagged as ‘not dividable’, indicated by a black corner. This means that
possible runtime model adaptations for clients with small displays should attempt to
keep the elements of the partition together. For partitions which are generally
considered dividable, a more fine-grained specification of cohesive groups can be
achieved based on Interaction Elements. Therefore, groups of coherent Interaction
Elements can be marked by a dotted rectangle. This pen-and-paper-like modeling
approach can be augmented by a corresponding editor allowing the detailed
configuration of Interaction Elements according to the DSM.

6.4 Model Transformations

In the context of the Dialog DSL approach, two kinds of model transformations are
required. On the one hand, model transformations are applied for runtime
adaptations of the dialog model according to the capabilities of the requesting user
agent. On the other hand, the dialog model has to be transformed into executable
markup, e.g. XForms code.

6.4.1 User-Agent-related Model Adaptations

The Dialog DSL suggests modeling of dialogs and their decomposition into partitions
with regard to a regular desktop terminal. Considering the requirement of device-
independency and the variety of device-specific screen characteristics though,
dialogs may have to be further decomposed into suitable client-specific partitions,
also referred to as pagination. This is particularly necessary if either no device-
independent markup formats are used as final model serialization formats or client
applications are not capable of performing such device-specific adaptations. For
example, some XForms-enabled browsers for mobile devices natively perform
screen-specific dialog adaptations whereas others only realize a direct rendering of
the received markup.

Figure 6-6 exemplifies the model adaptation strategy for decomposing Partition A
into several smaller partitions, i.e. Partition A.1-A.3. The pagination algorithm
receives the characteristics of the requesting client as input (cf. Section 6.5) and fills
a partition with controls until their combined estimated size on the user agent
exceeds the given maximum screen size. In that case, an additional partition is
created and filled. As far as possible, semantic groupings like the grouping of Control
3 and Control 4 are preserved. Similarly, Dialog Partitions which have been marked
as non-dividable on the Appearance Design tier remain unchanged as well. The

144 Chapter 6 – Constructing Advanced Web-based Dialogs

interconnection of the resulting micro-partitions is realized via the Sequence
Interaction Structure.

Figure 6-6: Pagination of a Dialog Partition via the Sequence Interaction Structure

6.4.2 Model-to-Code Transformations

Transformations between the DSM and one or more executable markup formats are
required for two reasons: On the one hand, after potential client-specific model
adaptations have been conducted, the dialog model has to be translated into
executable markup to be rendered by the client. On the other hand, backward
transformations enabling the import of existing markup code from third parties and
its subsequent editing using the Web-based model editor have to be provided. In the
context of this thesis, bilateral transformations to and from the W3C XForms
standard were developed and integrated in the Dialog DSL’s technical platform.
Thereby, the transformation strategy’s underlying idea was adopted from
(Nussbaumer 2001).

Table 6-1 illustrates the multi-step transformation process. In the first step, a DSM-
based model element (1) is mapped to a context-free grammar-based expression (2).
Then, this expression is extended by a term-algebraic operation (3) in order to
enable its processing by a term rewriting-based compiler. In the last step, term
rewriting rules are applied to translate the expressions into the final markup code
(4). The shown mapping corresponds to the XForms language. However, by providing
different term rewriting rules to other markup languages in this fourth step,
additional markup languages, e.g. XAML, could be flexibly and rather
straightforwardly incorporated.

6.5 Technical Platform 145

Table 6-1: Multi-Step Transformation of Dialog Models into Executable Markup

(1)

DSM-based Pattern

(2) Context-Free
Grammar Rule

Sequence:=P1 P2

(3) Extended Rule Sequence:=seq(P1, P2)

(4) Term Rewriting Rule seq(t1,t2)

 <switch>

 <case id=”t1”>eval(t1)</case>

 <case id=”t2”>eval(t2)</case>

 </switch>

6.5 Technical Platform

The Dialog DSL’s technical platform comprises the Solution Building Block (SBB) as
central solution component running on a Web portal framework, e.g. the WSLS
Framework, as well as the Dialog Web Service and the Web-based DIM Editor. Figure
6-7 gives an overview of these components and their interplay for generating and
evolving dialogs, serving requesting clients and integrating external Web Services to
send or receive data.

Figure 6-7: Overview of the Dialog DSL’s Technical Platform

Sequence

P1 P2

146 Chapter 6 – Constructing Advanced Web-based Dialogs

6.5.1 The Web-based DIM Editor

In order to support the model-driven construction and evolution of dialogs using the
Dialog DSL’s Domain Interaction Model (DIM), i.e. the modeling notation, a
supplemental Web-based editor was developed. Hence, it can be made immediately
available from running dialog instances, thus facilitating rapid roundtrip engineering
and making it easily accessible for all audiences. The main design principles driving
the development of the editor were simplicity and encouraging a usability-oriented
dialog design.

Figure 6-8 shows a screenshot of the editor’s Web-based user interfaces supporting
the modeling phase Partition & Transition Design. In the Toolbar at the top, graphical
buttons for adding new Dialog Partitions and defining Sequence or Choice Interaction
Structures are available. Once a new partition has been added to the drawing pane,
it can be moved via drag and drop, renamed and deleted. Defining a Sequence
transition is performed via clicking the associated button and subsequently selecting
the source and target partitions as well as providing labels for the transition-enabling
Interaction Elements. Similarly, a Choice transition is defined by clicking on the
respective button, selecting the source element and one or more target partitions,
entering transition conditions and selecting the type of the transition (InPlace or
Replace). In both cases, the editor draws the transition in the model panel and allows
its later modification via clicking on it. The Interaction Structure definition process is
simplified by immediate textual and visual feedback, thus further enhancing the
dialog editor’s simplicity and ease of use for all kinds of stakeholders.

The figure depicts the Partitions & Transitions view of the Expense Report Dialog
from the ‘business trip’ example scenario. Therein, several Sequence Interaction
Structures, e.g. between the partitions Start and Itinerary as well as between
Itinerary and Car Expenses, were defined. Furthermore, Choice Interaction Structures
between the element DepartureFrom and the partition Home Address, between the
element TravelIncludedCar and the partition Type of Car as well as between the
element RentalOrPrivateCar and the partitions Rental Car Expenses and Private Car
Expenses are visible. While the former are InPlace-typed Choice transitions, i.e. the
target transition is shown in addition to the source partition, the latter is marked as
Replace-typed Choice transition, i.e. the target partition replaces the source
partition. The type of Choice transition is indicated by an empty (InPlace) or filled
(Replace) transition symbol.

Beyond that, a button serves for encapsulating all unassigned data elements in a
new Dialog Partition and the last button saves the model and redirects the user to
the corresponding running dialog instance. In the left panel, the editor displays a list
of elements from the data model that have not yet been assigned to a Dialog
Partition. The assignment of such an element can be performed via dragging it and
dropping it onto a Dialog Partition. In the same way, an element can be moved to
another partition, whereby integrity, e.g. when the element is connected to a Choice
Interaction Structure, is observed by the editor.

6.5 Technical Platform 147

Figure 6-8: Partitions & Transitions Design in the Web-Based DIM Editor

As depicted in the figure, each partition contains a button labeled Appearance
Design, which leads the user to the Appearance Design view of the respective
partition. Figure 6-9 shows this view for the Dialog Partition Itinerary.

Figure 6-9: Usability-Oriented Appearance Design in the Web-Based DIM Editor

Unassigned
Elements
from the Data
Model

Toolbar

148 Chapter 6 – Constructing Advanced Web-based Dialogs

The Appearance Design view of the Web-based editor supports the appearance
modeling of a Dialog Partition and its contained Interaction Elements. The user
interface comprises three areas: At the top, two buttons for editing the dialog model
in its serialized markup representation (Edit XForms Code) and for returning to the
Partitions & Transitions view (Back to Partitions & Transitions Design) are available.
At the left, three different panes are provided for configuring Partition Settings, Field
Settings and Adding a Field. The Partition Settings tab allows providing a title and an
introductory text for the partition being currently edited. The Field Settings tab
supports the configuration of the currently selected Interaction Element and contains
type-specific configuration properties. Thereby, the editor explicitly fosters the
incorporation of usability best practices by focusing on corresponding configuration
facilities.

In the figure, the Field Settings tab for the currently selected Interaction Element
‘Start of Travel’ is shown. The contained configuration facilities allow for changing
the Interaction Element’s type, its label, providing hint and help texts and specifying
its abstract appearance size. Furthermore, input validations can be defined, e.g.
marking a field as required, providing an XSL-based expression which determines if a
field is read-only, or specifying value constraints and specifying meaningful error
messages. Furthermore, the value of a field can be automatically calculated at
runtime based on a XSL-based expression. Finally, the Interaction Element’s
navigation index as well as an access key can be defined. For other Interaction
Element types, additional type-specific properties are available. The question mark
symbols next to each configuration property lead to help texts and examples, which
further improve the editor’s simplicity and usability for all kinds of stakeholders.

While existing dialog editors predominantly focus on technical details, this set of
configuration facilities for Interaction Elements explicitly draws the designer’s
attention to usability best practices as introduced in Section 2.3. Thus, the adoption
of best practices like “In-Context Help and Hints”, “Immediate Feedback and
Meaningful Error Indication” as well as “Clear Path to Completion” is considerably
eased and their recognition improved.

In the preview pane on the right, the relative layout of the dialog’s Interaction
Elements can be modified via drag and drop. Thus, the editor natively ensures a
consistent and uniform dialog layout, thereby inherently adopting the usability best
practices “Consistent Form Layout” and “Visual Continuity”.

The Web-based dialog editor was implemented based on the Microsoft .NET
Framework using ASP.NET 2.0 and the ASP.NET AJAX Extensions 1.0 (Microsoft Corp.
2009). Thus, it offers a rich, highly interactive behavior known from desktop
applications which significantly eases its usage. Page reloads are avoided by
asynchronous background communication with the server.

Due to the presented bilateral model transformations from and to the W3C XForms
standard, the editor’s applicability is not restricted to the Dialog DSL context. It
rather enables a global audience to create and modify arbitrary XForms documents
based on the Dialog DSL’s modeling notation. Therefore, it is publicly available on the
research homepage of the IT Management and Web Engineering Research Group
(MWRG 2009b).

6.5 Technical Platform 149

6.5.2 The Solution Building Block (SBB)

The Solution Building Block forms the central technical solution component of the
Dialog DSL and runs on a Web portal framework. In the context of this thesis, an
implementation for the WSLS Framework was performed. The SBB is in charge of
various functions during the development and execution process. In the beginning, a
SBB instance can be either configured with a data schema and a submission target or
with an URL to a WSDL file and the name of the operation the dialog shall be
submitted to (cf. Figure 6-10).

Figure 6-10: Initial Configuration of a Dialog SBB Instance

Thereupon, the SBB instance passes the respective data schema to the Dialog Web
Service which automatically generates a corresponding basic dialog model and
returns it to the SBB instance. At generation time, an appropriate Interaction
Element is assigned to each element of the data model depending on its data type. If
requested, a decomposition of the dialog into Dialog Partitions derived from the
data model’s structure is performed. A detailed description of the generation
process and methodology can be found in (Allerding 2007). Alternatively, an existing
dialog model from the Dialog Repository can be searched and reused based on
advanced semantic context-dependent search mechanisms (cf. the Web Engineering
Reuse Sphere presented in Chapter 7). From that moment on, a fully operational
Web-based dialog is already available, without having performed any manual
modeling. The dialog can now either be modeled in detail using the Web-based DIM

150 Chapter 6 – Constructing Advanced Web-based Dialogs

editor presented in the previous section or directly used in production. In either
case, no (re)compilation or (re)deployment is required. Changes made in the dialog
editor are directly visible in the running dialog, thus enabling an agile and
evolutionary development approach.

A figure of the automatically generated Expense Report Dialog was already included
in the previous chapter (cf. Figure 5-50). Figure 6-11 shows the Car Expenses section
of the Travel Expense Report Dialog which embodies the dynamic behavior specified
on the Partitions & Transitions modeling tier as depicted in Figure 6-8. The depicted
dialog section consists of three Dialog Partitions: Car Expenses, Car Type (2) and
Rental Car Expenses (4). By selecting the value ‘Yes’ at the Interaction Element
marked with (1) the Choice Interaction Structure to the Dialog Partition Car Type is
activated and results in showing the respective partition within the Car Expenses
partition. Similarly, selecting the value ‘Rental Car’ at the Interaction Element marked
with (3) results in activating an associated Choice Interaction Structure and in
dynamically making the partition Rental Car Expenses visible within the partition Car
Type. The buttons marked with (5) serve for triggering Sequence Interaction
Structures between the Dialog Partitions Itinerary and Car Expenses as well as Car
Expenses and Accommodation Expenses.

Figure 6-11: Rendered Web-based Travel Expense Report Dialog Incorporating
Choice (1, 3) and Sequence (5) Interaction Structures

Beyond that, if a client requests a Web page containing a Dialog SBB instance, the
SBB identifies the client’s screen characteristics based on the user agent string
contained in the HTTP request or, in case of a mobile device, by evaluating the User
Agent Profile (UAProf) (Wireless Application Forum 2001) which is supplied based on
the W3C Composite Capability Preferences Profile (CC/PP) standard (Kiss 2007).
Thereupon, by initiating the presented model transformations, the SBB adapts the

6.6 Summary 151

dialog model accordingly, translates it into executable markup, e.g. XForms, and
returns it to the client. In order to achieve an adequate performance, the final
markup is cached until the dialog model gets changed and can thus be reused for
identical requests. With regard to rendering XForms-based markup in browsers
providing an insufficient coverage of the standard, the FormFaces Framework
(Progeny Systems 2007) was adopted and slightly extended. FormFaces is a
completely JavaScript-based XForms rendering engine supporting a broad range of
today’s browsers and is integrated via simply referencing the FormFaces JavaScript
library from a Web page. Thus, the actual rendering is performed at client side
whereby the XForms markup is dynamically transcoded into XHTML.

Finally, the Dialog DSL’s SBB acts as mediator between a dialog and submission
endpoints. Thus, submissions of the dialog’s data model instance in whole or part are
received by the SBB and processed, e.g. in the context of a workflow, or forwarded
to a Web service the dialog asynchronously communicates with. In the latter case,
the SBB receives the response from the Web service and forwards it to the
corresponding client.

6.6 Summary

This chapter presented the Dialog DSL, a novel engineering approach for the fully
model-based construction and evolution of advanced Web-based dialogs. The
approach is based on the previously introduced Web Engineering DSL Framework
and places strong emphasis on simplicity, thus enabling stakeholders to intensely
participate in the development process by validating, modifying and creating dialogs
or their models respectively. In the following, the Dialog DSL’s unique solution
elements as well as the fulfillment of the requirements elaborated in Chapter 2 are
briefly summarized.

The Dialog DSL’s two-tiered Domain Interaction Model (DIM), i.e. the modeling
notation, strongly focuses on usability and dynamic behavior in particular. On the
Petri net-based Partitions & Transitions modeling tier, semantic groupings in terms
of Dialog Partitions and dynamic behavior based on Interaction Structures are
modeled. On the Appearance Design tier, the appearance of each Dialog Partition
and its contained Interaction Elements is specified. This approach marks a significant
improvement to the current state of the art as the Dialog DSL inherently moves the
focus away from technical implementation details and towards usability aspects and
best practices. The Appearance Design, being at the center of attention in existing
approaches, is considered only after that in a second step. The Dialog DSL’s unique
modeling approach could be transferred to other dialog construction methodologies
and tools as well. The supplemental Web-based DIM editor further encourages and
facilitates a usability-oriented design, also for non-programmers.

The requirement for supporting device-independent access and usage of Web-based
dialogs is considered both in the DIM and the technical framework. In this regard,
the main focus lies on the pagination of a dialog according to the screen

152 Chapter 6 – Constructing Advanced Web-based Dialogs

characteristics of a requesting client. To this end, the DIM allows for marking Dialog
Partitions as non-dividable as well as defining semantically cohesive groups of
Interaction Elements within a partition. At runtime, the Dialog DSL’s Solution Building
Block (SBB) identifies the characteristics of requesting clients and applies model
transformations for adapting the dialog model accordingly.

The Dialog DSL’s technical platform provides strong Web service support. The Dialog
Web Service is capable of automatically generating a basic but fully operational
dialog for a Web service-based submission endpoint. At runtime, the SBB mediates
the asynchronous communication between external Web services and dialog
instances. Beyond that, a systematically extensible model transformation strategy
realizes the transformation of dialog models into standardized dialog markup
languages, e.g. the W3C XForms standard.

Due to the automated dialog generation facilities as well as the rapid, fully model-
based roundtrip engineering, the Dialog DSL enables an agile and evolutionary
development methodology. Having generated a basic dialog model, the Web-based
DIM editor supports its easy yet detailed refinement and modification, also by
stakeholders without software development skills. Performed modifications are
immediately applied and visible in the running dialog, which further eases
stakeholder involvement and allows for short evolution cycles.

Due to the simple modeling notation and the intuitive Web-based DIM editor, the
Dialog DSL is excellently applicable by both developers and stakeholders.
Furthermore, the purely model-based construction approach results in significant
efficiency gains. These factors were evaluated and successfully confirmed in a formal
empirical evaluations presented in Section 8.3. In combination with the Dialog DSL’s
unique focus on usability and dynamic behavior, these factors present the key
improvements compared to the current state of the art. Thus, the Dialog DSL gained
widespread attention during its presentation at international conferences, e.g. the
17th World Wide Web Conference (WWW’08).

7 The Web Engineering Reuse Sphere5

Reuse has been identified very early as an important software engineering principle
being able to significantly improve development efficiency and quality (Mcllroy
1968). In fact, reuse can lead to greater schedule and effort savings than any other
rapid-development practice – if implemented as a systematic and dedicated long-
term strategy and supported by an effective framework (McConnell 1996). This holds
equally true for the Web Engineering discipline in general and particularly for the
Web Engineering DSL Framework. Against this background, this chapter introduces
the Web Engineering Reuse Sphere, a novel reuse framework for the Web
Engineering domain. It explicitly addresses the requirements identified in Chapter 2
and thus establishes a sound foundation for effective, cross-methodological reuse
and strong stakeholder involvement. Based on the insight that the understanding of
an artifact is strongly correlated to its utility and thus directly influences a reuse
approach’s effectiveness, the Web Engineering Reuse Sphere treats the inherent
consideration of stakeholder skills as a key factor.

To this end, the Web Engineering Reuse Sphere introduces an ontology which
conceptualizes the Web Engineering reuse domain based on Semantic Web
standards and technologies (cf. Section 7.2). Based on this semantic, homogenizing
foundation, the approach provides advanced knowledge-based, cross-
methodological search facilities (cf. Section 7.3) as well as efficient implicit and
explicit registration mechanisms (cf. Section 7.4). The technical integration of
existing heterogeneous artifact stores is guided by a reference architecture
framework (cf. Section 7.5). In conclusion, the Web Engineering Reuse Sphere
provides a novel degree of strongly stakeholder-oriented support for the following
cross-methodological search scenarios (cf. Section 7.6): On the one hand, finding
adequate Resolution Strategies, i.e. methodologies, and related artifacts for a
particular Task Type and a particular Stakeholder audience or Skill Set respectively.
On the other hand, finding existing Artifacts based on various contextual parameters,
again including the respective Stakeholder audience or Skill set respectively.

5 Parts of this chapter have been published in (Freudenstein, Boettger and Nussbaumer 2008)

154 Chapter 7 – The Web Engineering Reuse Sphere

7.1 The Sphere Concept

The Web Engineering Reuse Sphere is based on the idea of several spheres of
distributed, ad-hoc- and infrastructure-based repositories and a semantic registry in
their core as depicted in Figure 7-1. The spheres are divided into various areas
representing the different types of artifacts occurring in the Web Engineering
domain, e.g. documents, models, components etc. Each area contains type-specific
repositories for its reusable artifacts.

Figure 7-1: The Web Engineering Reuse Sphere

The Web Engineering Reuse Sphere approach defines two sphere levels. The
infrastructure level contains one dedicated reuse repository per area serving for
planned reuse. Therein, sufficiently mature and stable artifacts are explicitly
published for being reused. As indicated by the term ‘infrastructure’, such
repositories are specifically set up for systematic long-term storage of artifacts
including versioning.

The ad-hoc level is optional for an area and contains repositories for spontaneous
reuse. Such ad-hoc repositories are usually already in use and are rather application-
specific data stores than actual reuse repositories. In the models area, for example, a
local database containing current models could be such an ad-hoc repository.
Another example would be the data store of a Web application development
environment running on a developer’s computer and representing the current state
of development. Consequently, artifacts are available in the ad-hoc level from the
moment on when they are saved for the first time until they are deleted.

7.2 The Semantic Core: The Web Engineering Reuse Ontology 155

A central ontology-based registry forms the core of the sphere. It registers all
artifacts in all repositories – both on the infrastructure and the ad-hoc level – along
with their semantic metadata and provides holistic registration and search
functionalities. When searching for artifacts, results can encompass both artifacts
that were explicitly published in a repository on the infrastructure level and artifacts
from a repository on the ad-hoc-level being still under development. Reuse can thus
be performed in a peer-to-peer style on the ad-hoc-level and in a planned way on the
infrastructure level, whereby both mechanisms contribute to the approach’s
efficiency and effectiveness. The former allows for discovering and exchanging work
in progress between local application-specific stores. This in turn results in a
coordinated and efficient collaboration by reducing redundant developments and
avoiding consolidation efforts.

An interesting symptom that can be observed on the ad-hoc-level is the correlation
of an artifact’s popularity and its persistency. Artifacts being very popular, e.g. due to
their quality, applicability, generality etc., will be more persistent than others. This is
due to the fact that repository contents on the ad-hoc-level are usually only available
while at least one person uses them for their current project. When a person
removes an artifact from their local repository and the artifact is not contained in
any other repository on the ad-hoc level, i.e. nobody else (re-)uses this artifact, it is
no longer available. Analyzing factors like an artifact’s degree of persistency or its
(re-)usage in various settings can thus help to derive statements about its
characteristics like e.g. its quality, applicability, usefulness etc.

After an artifact was completed and has gained sufficient maturity, e.g. by passing
quality inspections, it can be transferred to a repository on the infrastructure level,
thus being persistently and reliably available for planned reuse.

7.2 The Semantic Core: The Web Engineering Reuse Ontology

The semantic ontology-based registry forming the core of the Web Engineering
Reuse Sphere is in charge of registering all artifacts throughout the repository space
based on semantic metadata. Therefore, a generic Web Engineering Reuse Ontology
which provides the basis for classifying artifacts as well as powerful inference-based
search mechanisms was developed. The ontology was elaborated according to
established ontology engineering methodologies (Uschold and King 1995; Prieto-Diaz
2003) and formalized based on the Web Ontology Language (OWL) in its OWL-DL
variant (Bechhofer, Harmelen, Hendler et al. 2004). Strong emphasis was placed on
generality, i.e. keeping the ontology open for any Web Engineering method and
incorporating well-defined extension points. Furthermore, existing ontologies were
integrated where possible. For example, the FOAF ontology (Brickley and Miller
2007) being related to the concept Stakeholder, the Dublin Core ontology (Dublin
Core Metadata Initiative 2008) defining standardized metadata properties for core
concepts like Artifact or Project or the OntoWeb ontology (Fensel 2003) covering the
concepts Product and Business Domain were incorporated. The resulting Web

156 Chapter 7 – The Web Engineering Reuse Sphere

Engineering Reuse Ontology is publicly available on the research homepage of the IT
Management and Web Engineering Research Group (MWRG 2009b).

The following section gives an overview of the ontology and briefly exemplifies its
application for evaluating skill- and knowledge-based search queries based on
inference. Afterwards, a detailed presentation of selected parts of the ontology
follows in the subsequent sections. Thereby, the systematic integration of
knowledge about existing Web Engineering methodologies by instantiating abstract
concepts of the ontology is exemplified.

7.2.1 Overview of the Web Engineering Reuse Ontology

Figure 7-2 depicts a simplified overview of the ontology’s core concepts and
relations. The ontology defines concepts for Artifacts and their context in terms of
the associated Web Application, Project, Process model, Product, the employed
Modeling Technique etc. Furthermore, the ontology describes the interrelation of
particular Task Types occurring in the development of a Web Application,
corresponding Resolution Strategies, associated Modeling Techniques and Software
as defined by Web Engineering Methodologies as well as the Skills and Knowledge
required therefore. In addition, the ontology allows for describing representative
Stakeholder groups and their Skills.

Figure 7-2: Simplified Overview of the Ontology

7.2 The Semantic Core: The Web Engineering Reuse Ontology 157

Based on the ontology, powerful knowledge-based search queries can be processed.
Besides simple queries like finding existing Artifacts being related to a particular
Business Domain, Concern (i.e. content, navigation, presentation, interaction,
process, communication, amongst others), Web Engineering Methodology or Task
Type, more advanced queries, especially supporting effective stakeholder
involvement can be resolved. This shall be illustrated by the following example.

Figure 7-3 depicts a simplified excerpt from the ontology with concepts and relations
from the core ontology (white ellipses), Web Engineering methodology-independent
instances (grey ellipses in the middle) as well as exemplary instances for the Web
Engineering methodologies UWE and WebML (left and right).

Figure 7-3: Ontology Excerpt with Instances for WebML and UWE

Thus, for the given Task Type instance Design Business Process and the Skills of
Stakeholder B (i.e. BPMN Modeling Skills), appropriate Modeling Techniques can be
determined by inference. In this example, the query result would be the Modeling
Technique WebML Process Modeling which is based on BPMN and supported by the
Software WebRatio. For Stakeholder A having UML Activity Modeling Skills, the result
would be the Modeling Technique UWE Process Modeling which is based on UML
and supported by the Software ArgoUWE.

In addition to determining adequate Modeling Techniques, search results could
directly include existing Artifacts – in this case Modeling Artifacts - created with the
same Modeling Technique in similar Project or Web Application Type contexts.
Furthermore, also Artifacts marked as templates for the determined Modeling
Technique could be supplied.

158 Chapter 7 – The Web Engineering Reuse Sphere

Such cross-methodological scenarios are gaining increasing importance in the
context of current consolidation activities in the Web Engineering research
community like MDWEnet (Vallecillo, Koch, Cachero et al. 2007). To this end, the
Web Engineering Reuse Sphere approach and its associated architectural framework
can serve as a valuable accelerator unfolding the potential of cross-methodological
interchange and collaboration.

7.2.2 The Concepts Knowledge and Stakeholders

Figure 7-4 illustrates a simplified excerpt of the ontology’s concepts and relations
covering the domains Knowledge and Stakeholder. These concepts form a central
part of the ontology as they are used to specify the semantic foundation used for
evaluating inference-based queries concerning the adequacy of Artifacts, Resolution
Strategies, Modeling techniques and Software for given stakeholders. The white
ellipses represent connecting concepts which are out of the current figure’s scope.

Figure 7-4: Ontology Concepts related to Knowledge and Stakeholders
(Simplified Excerpt)

Therefore, the ontology includes the central concept Knowledge which is
differentiated into several types of knowledge like Business Domain Knowledge,
Modeling Knowledge or Software Knowledge. The About relations between these
knowledge types and the subjects of knowledge realize the connection to other
concepts in the ontology, i.e. Modeling Techniques, Business Domain and Software.
The concept Skill realizes the connection between Knowledge and Stakeholders or
Stakeholder Types in the sense of having knowledge as well as with Task Types and
Modeling Techniques in the sense of requiring knowledge. In each case, the relation

7.2 The Semantic Core: The Web Engineering Reuse Ontology 159

is attributed with a Skill Level for classifying the degree of the required or possessed
Knowledge. Furthermore, concepts and relations for expressing that Documentation
can impart missing Skills and that particular Skills imply other Skills are available.

7.2.3 The Concepts Artifact, Methodology, Process and Product

A simplified excerpt of the concepts and relations around Artifact, Web Engineering
Methodology, Process Model and Product is depicted in Figure 7-5. This part of the
ontology primarily provides the foundation for integrating Web Engineering
Methodologies along with their development Process Models, Resolution Strategies
and Artifact Types.

Figure 7-5: Ontology Concepts Related to Artifact, Methodology, Process and Product
(Simplified Excerpt)

By including instances of the concept Web Engineering Methodology, well-known
methodologies like WebML, UWE, OOHDM or OO-H can be included in the ontology.
Each methodology defines or refers to its software development Process Model
which in turn refers to (ideally cross-methodologically shared) Task Types.
Furthermore, each methodology defines one or more Resolution Strategies for every
Task Type; this relation is considered in more detail in the next subsection. Naturally,
the majority of tasks occurring in the development of a Web application, e.g. ‘design
workflows’ or ‘design navigation’ can be found across all Web Engineering
methodologies, even though their names differ amongst them (Selmi, Kraiem and
Ghezala 2005). Thus, in order to support cross-methodological queries, referring to
corresponding existing Task Types should always be preferred to defining new
(redundant) Task Types.

160 Chapter 7 – The Web Engineering Reuse Sphere

Beyond that, refined concepts for diverse Artifact types, e.g. Modeling Artifact or
Product are available. As indicated by the separate area in the figure, specific Artifact
types and Products for each Web Engineering methodology can be integrated here.
In the figure, extensions for a component-based Web Engineering methodology are
exemplarily shown, where Components are subclasses of Product which in turn is an
Artifact. Furthermore, they are configured with Configurations, which in turn are a
special type of Modeling Artifacts. Likewise, for integrating the WebML
methodology, subclasses or instances of the concept Modeling Artifact for its various
model types, e.g. ‘WebML Hypertext Model’, ‘WebML Business Process Model’ etc.
could be defined.

Artifact presents the central concept in the ontology representing all kinds of
reusable artifacts. It incorporates general metadata properties from the Dublin Core
ontology and can be further classified with respect to related Project(s), Web-specific
Concern(s), i.e. content, navigation, presentation, interaction, process,
communication, amongst others), or business domain, e.g. Travel Management,
Procurement etc.

The concept Project is used to indicate in which project(s) an Artifact was created or
reused. Additionally, it can be expressed which Web Engineering Methodologies
were used in a Project.

7.2.4 The Concepts Resolution Strategy, Modeling Technique & Software

The integration of methodology-specific knowledge in the ontology is a crucial factor
for cross-methodological reuse scenarios, e.g. determining Resolution Strategies,
Modeling Techniques and Software along with corresponding Artifacts in accordance
with a given Stakeholder’s Skills across various Web Engineering Methodologies.
Thereby, the strengths of each methodology can be used and, in combination with
initiatives like the MDWEnet activity, the hitherto existing methodological frontiers
be overcome.

Figure 7-6 illustrates a simplified excerpt of the ontology covering the concepts
Resolution Strategy, their Modeling Technique(s) and supporting Software as well as
the resulting Modeling Artifact(s). As before, relations to connecting concepts are
represented by white ellipses on the left.

On the right side, dedicated instances describing the Web Engineering Methodology
WebML and thus integrating it in the ontology are depicted. The shown example
shows instances related to the Task Type ‘Design Navigation’. Therefore, the WebML
methodology proposes the Resolution Strategy Hypertext Design that employs the
Modeling Technique WebML Hypertext Modeling which is supported by the Software
WebRatio and results in the Modeling Artifact type Hypertext Model.

7.2 The Semantic Core: The Web Engineering Reuse Ontology 161

Figure 7-6: Ontology Concepts Resolution Strategy, Modeling Technique & Software
and their Instantiation for the WebML Methodology (Simplified Excerpt)

Another example describing the Web Engineering DSL Framework is shown in Figure
7-7. In this case, the extension is performed by adding new concepts for DSL,
Graphical Notation (DIM), DIM Editor, Domain-Specific Model, DSL Program and
Configuration as subclasses of the core ontology’s concepts. Based on these
concepts, instances for particular DSLs can be defined. Regarding the Workflow DSL
for example, the Graphical DIM Notations BPMN, UML, Petri Nets, SSO and
associated editors, e.g. Microsoft Visio, IBM Rational Software Architect,
INCOME2010 and Microsoft Word, would be integrated. The Workflow DSL would be
associated with the Task Type Design Business Process and the Web Engineering
Methodology DSL-based Web Engineering.

Based on integrating knowledge in form of such methodology-specific ontology
extensions, suitable Artifacts and Resolution Strategies for a given Task Type and
given Stakeholder Skills can be cross-methodologically determined. Moreover,
assumed that cross-methodological model interchange is possible as aspired by the
MDWEnet initiative, artifacts could be cross-methodologically reused.

162 Chapter 7 – The Web Engineering Reuse Sphere

Figure 7-7: Ontology Concepts Resolution Strategy, Modeling Technique & Software
and their Instantiation for the Web Engineering DSL Framework (Simplified Excerpt)

7.3 Effective Search and Integration

In order to ease the process of finding artifacts, search mechanisms should be both
easy to use and effective in terms of finding adequate results very quickly. Common
search engines, e.g. Google, usually offer a simple mode, i.e. one input parameter for
all kinds of search terms, and an advanced mode, i.e. lots of query parameters.
When inexperienced people use such search facilities, it can be observed that for
them the simple mode is easy to use, but leads to unsatisfying search results (Nielsen
2008). A lot of knowledge about adequate search terms and query syntax is required
to achieve good results. The advanced mode offers more guidance regarding search
constraints, but still requires significant knowledge about adequate search terms.

Facing these problems and considering the goal of effective stakeholder
involvement, the Web Engineering Reuse Sphere pursues an extensible, user- and
scenario-based approach for providing search facilities. First, in strong collaboration
with stakeholders – both development team members and domain experts – reuse
scenarios are identified and relevant search parameters elicited. Then, based on the
ontology, a corresponding query template based on the SPARQL Protocol and RDF
Query Language (SPARQL) (Prud'hommeaux and Seaborne 2008) is developed. In
doing so, possibly missing relations or sometimes even concepts could be
determined. In such a case, the ontology is extended following a systematic ontology
evolution process (Haase 2007). Finally, a suitable search dialog for the reuse
scenario is developed using the Dialog DSL (cf. Chapter 6) - again in strong

7.4 Storing Artifacts with Rich Metadata 163

collaboration with stakeholders. In this context, usability aspects in terms of
providing guidance to the user and including dynamic behavior, e.g. in form of multi-
step search dialogs, are key factors. At runtime, the user input from the search dialog
is inserted in the corresponding SPARQL query template which is then executed on
the registry’s triplet store and results in a set of relevant artifacts.

In addition, the Web Engineering Reuse Sphere supports using the search results as a
starting point for browsing through the registry space and performing context
switches following the relations defined in the ontology. For example, for a given
Artifact, all artifacts from the same Project, Web Application Type, Business Domain
etc. or created with the same Modeling Technique or Resolution Strategy could be
retrieved. Beyond that, also more powerful inference-based context switches are
possible. For example, all Artifacts that required similar Stakeholder Skills for their
creation and that were created in the same Task Type and for the same Business
Domain can be identified. Examples for such scenario-based search dialogs and the
described browsing facilities can be found in Section 7.6.

Having found a potentially suitable artifact, it should be easily and safely integrable
in the current development context and artifact-specific tools. Therefore, it is
desirable to perform searches and retrieve suitable artifacts directly from within
artifact-specific tools and editors. To this end, the Web Engineering Reuse Sphere
includes a reference architecture framework (cf. Section 7.5) based on concepts from
the field of Enterprise Application Integration (EAI). By establishing a generic Web
service layer on top of the repositories and the registry and – if required – tool-
specific Web service adapters on top of the registry, proprietary tools can retrieve
search results including URLs from the registry and artifacts from the repositories.

For example, Microsoft applications like Word, Excel, PowerPoint or Visio can
natively interact with external Web services adhering to the Research Interface
(Fransen 2003). Thus, e.g. reusable artifacts in form of documents or models could
be directly searched and retrieved from within Word or Visio. By providing additional
Web service adapters, other tools and applications can be easily integrated. When
performing searches from within a tool, some search parameters could be
automatically derived from the current context, e.g. the artifact type or the software
with which the artifact should be editable. However, such existing facilities for
external data source integration usually allow for single-parameter searches only. In
order to offer comprehensive search dialogs exploiting the full potential of advanced
knowledge-based searches, plugin-based extensions in form of specific search
dialogs can be integrated in most of today’s applications. Alternatively, the proposed
architectural framework contains a generic Web-based search portal for finding and
retrieving artifacts.

7.4 Storing Artifacts with Rich Metadata

While registering an artifact in a repository on the infrastructure level should require
as little manually entered metadata as possible, registering artifacts on the ad-hoc-

164 Chapter 7 – The Web Engineering Reuse Sphere

level should be performed automatically in the background. Therefore, the metadata
provided within the associated application should be used and no additional manual
input should be required. Thus, in order to minimize the amount of manually
provided metadata, approaches for extracting and mapping proprietary metadata
statements to the concepts and properties defined in the ontology are required.
Figure 7-8 summarizes the relations between the concept Artifact and other
concepts and thus illustrates the required metadata for an effective registration.
Beyond that, the Artifact concept comprises metadata according to the Dublin Core
ontology in form of attributes, e.g. Identifier, Title, Publisher, LastModified etc.

Figure 7-8: Overview of an Artifact’s Relations

To this end, on the ad-hoc-repository level, the Web Engineering Reuse Sphere’s
architectural framework introduces observer agents which identify new artifacts,
extract metadata statements and submit them automatically to the registry (cf.
Section 7.5). Thereby, new artifacts become registered automatically only a few
moments after their creation or modification - without requiring modifications or
extensions to the existing tools or repositories. In the future, when tool and
application vendors will have adopted established ontologies which were also
incorporated in the Web Engineering Reuse Ontology (e.g. the Dublin Core ontology),
metadata mapping efforts will significantly be reduced. Beyond that, it would be
desirable that the presented ontology is taken on in the Web Engineering research
community for including methodology-specific extensions and incorporating it in
their associated development frameworks and tools.

On the infrastructure level, artifacts are either again stored and registered from
within artifact-type-specific tools and applications or submitted via the generic reuse
Web portal. In order to allow for submitting artifacts to infrastructure repositories
from within the tools they were created or modified with dedicated extensions for
communicating with registry or repository Web services as well as dialogs for
entering metadata are required. If such extensions are not feasible, the reuse Web
portal can be used to store and register artifacts.

In each case, as much metadata as possible is extracted automatically in the same
way as described above for the ad-hoc-level. However, as registering artifacts on the
infrastructure level is – in contrast to the ad-hoc-level – an explicit task and
metadata quality requirements are much higher, it is reasonable to have the user
complement the automatically derived metadata.

7.5 Reference Architecture Framework 165

In order to gain even more valuable metadata automatically, deriving semantic
information from the artifact’s context or a user’s behavior while working with an
artifact seems to be a promising approach. For example, if a particular stakeholder
registers an artifact that was created using a particular modeling technique, the
stakeholder’s current skill set can be automatically augmented by the skills that were
required for the employed modeling technique, the related business domain and the
used software. Furthermore, similar approaches could be adopted for Web
development frameworks. For example, by measuring how long users have worked
on a component regarding a particular concern (e.g. presentation, interaction etc.),
statements about the major relation of the component to a particular concern could
be derived. Likewise, analyzing a component’s relative location on a page and
thereupon (combined with other aspects) deriving statements about its type, e.g.
content component, satellite, menu, landmark or login seems to be promising.

7.5 Reference Architecture Framework

This section presents the Web Engineering Reuse Sphere’s generic reference
architecture serving as a technical platform for the realization of the presented
concepts. Furthermore, it forms an architectural framework guiding the integrating
of clients and repositories from heterogeneous Web Engineering methodologies.
Figure 7-9 gives an overview of the reference architecture framework which was
designed based on concepts from the fields of Service-oriented Architecture (SOA)
and Enterprise Application Integration (EAI) (Arsanjani 2004; Erl 2005).
Corresponding to the sphere concept presented in Section 7.1, the architecture
defines a Registry Layer for the semantic registry in the sphere’s core, a Repository
Layer for the Ad-Hoc and Infrastructure repositories and a Client Layer.

The Registry Layer comprises a Semantic Web API being able to deal with the
Semantic Web standards Resource Description Framework (RDF) (Klyne and Carroll
2004), OWL and SPARQL, a Triplet Store for storing RDF instances as well as the Web
Engineering Reuse Ontology. The implementation performed in the context of this
thesis uses the Jena Semantic Web Framework (Hewlett-Packard Development
Company 2003). In order to allow for platform-independent storage and retrieval of
RDF data as well as for executing SPARQL queries, a CRUDS-based Registry Web
Service on top of the Jena API was developed. This service forms the central
component of the Registry Layer and enables distributed clients to perform searches
on the triplet store or create, read, update and delete metadata in form of RDF
statements in a platform-independent way. Furthermore, it supplies up-to-date
information about the concepts, relations and attributes defined in the ontology,
thus enabling applications to dynamically extend their metadata registration dialogs
accordingly.

166 Chapter 7 – The Web Engineering Reuse Sphere

Figure 7-9: The Reference Architecture Framework

As the Registry Web Service encapsulates the actual implementation of the Semantic
Web API, any equivalent, possibly already existing framework could be integrated.
Based on the Adapter design pattern (Gamma, Helm, Johnson et al. 1995), Client-
specific Web Service Adapters realizing specific interfaces required by particular
client applications can be provided on top of the Registry Web Service. Due to such
adapters, Clients entailing mechanisms for external data source integration can
communicate with the Registry without requiring modifications to the client
application itself.

The Repository Layer comprises all repositories on the ad-hoc (i.e. local repositories)
and on the infrastructure level (i.e. central repositories), covering all types of
artifacts, e.g. documents, components, models etc. In order to integrate these
heterogeneous repositories into the Web Engineering Reuse Sphere, each of them is
equipped with a dedicated Web Service Wrapper, thus leading to a homogeneous
access layer for the distributed repositories. These wrappers share a uniform CRUDS-
based interface, allowing for storing, retrieving, updating, deleting and searching
versioned artifacts. Beyond that, repositories on the ad-hoc level are equipped with
Observer Agents, being responsible for identifying new or modified artifacts,
extracting metadata and registering them via the Registry Web Service. This way, the
Microsoft Office SharePoint Server 2007 as repository for all kinds of documents and
the component and configuration store of the WSLS Framework (cf. Section 4.1.2)
were exemplarily integrated (Böttger 2008). Thus, the reuse of single configuration
properties, fully-configured components or even complete applications via the Web
Engineering Reuse Sphere is enabled. Besides such database-oriented integration
components, a generic file system-oriented Wrapper and Observer could be used for
integrating file-based development frameworks and modeling tools from other Web
Engineering methodologies on the ad-hoc level.

7.5 Reference Architecture Framework 167

The Client Layer comprises all kinds of client applications participating in the Web
Engineering Reuse Sphere by storing, registering, finding and retrieving artifacts. In
order to integrate such applications, the plugin facilities provided by most of today’s
applications can be used. Alternatively, clients can be integrated based on Adapter
Web Services as described above. As a first step, the Microsoft Office suite including
Microsoft Visio and the WSLS Framework were integrated. While the former was
achieved based on an Adapter Service adhering to the Microsoft Research Interface
(Fransen 2003), the latter integration is based on a plugin.

In this way, a dedicated Reuse View was integrated which supports users in
performing reuse-related operations via the Web Engineering Reuse Sphere from
within the WSLS Framework (cf. Figure 7-10-1). The Reuse View enables creating new
Reuse Projects (Create) or searching and integrating existing Reuse Projects
(Checkout) (cf. Figure 7-10-2). Such a Reuse Project can encapsulate single
properties, components and their configuration, or even complete trees of
configured components. To this end, multi-step dialogs for explicitly registering and
storing Reuse Projects to a repository on the infrastructure level as well as for finding
and retrieving them based on the previously described knowledge-based search
strategies were integrated. Therefore, these dialogs communicate with the Registry
and Repository Web Services. Furthermore, the Reuse View allows for editing a Reuse
Project’s metadata and structure, committing a new version, getting a specific
version or removing it (cf. Figure 7-10-3). Finally, Figure 7-10-4 shows the case of a
domain being part of a superordinate Reuse Project.

Figure 7-10: The Reuse View in the WSLS Framework

A detailed description of the complete technical implementation can be found in
(Böttger 2008). The next step would be the implementation of a generic Web Portal
serving as central access point for interacting with the Web Engineering Reuse
Sphere. This could be used in cases where no client-specific plugins are available as
well as to support management operations by a Reuse Librarian.

168 Chapter 7 – The Web Engineering Reuse Sphere

7.6 Cross-Methodological Reuse with Stakeholders in Practice

In the following, the Web Engineering Reuse Sphere’s application for cross-
methodological reuse with stakeholders is illustrated based on this thesis’ running
example, the ‘business trip’ scenario. The WSLS Framework which also serves as one
possible technical platform for the Web Engineering DSL Framework (cf. Section
4.1.2) is used as a client application.

As shown in Section 7.2, the Web Engineering DSL Framework is – as well as other
Web Engineering methodologies – only a specific extension to the presented
ontology. Likewise, it was shown how other Web Engineering methodologies can be
incorporated. Thus, from the perspective of the Web Engineering Reuse Sphere
approach, the following examples can be directly transferred to other Web
Engineering methodologies. Hence, the achieved improvements are not restricted to
the Web Engineering DSL Framework approach.

7.6.1 Finding Stakeholder-Tailored Resolution Strategies and Artifacts

The first scenario deals with the realization of the Web-based ‘business trip’
workflow. For its specification, a variety of diverse stakeholder types, e.g. travelers,
secretaries, representatives of the travel department, institute directors etc., with
different skills have to be effectively involved. Assuming that a search for existing
‘business trip’ workflows had no satisfying results, the example scenario starts with
an initial conceptual design with a stakeholder from the travel department.
Therefore, a suitable Resolution Strategy for this Task Type has to be determined
first.

Thus, the registry search dialog within WSLS is opened and the search strategy
Search for Resolution Strategy and related Artifacts as depicted in Figure 7-12-1 is
selected. In the next dialog, the current process phase Conceptual Design and
thereupon the desired task type Design Business Process are selected (cf. Figure
7-12-2). The available values in the process phase and task dropdown lists stem
directly from the Web Engineering Reuse Ontology and were retrieved via the
Registry Web Service.

Based on the selection, the Registry Web Service is called which configures a
predefined SPARQL query template with the given task type and executes it,
resulting in a set of possible Resolution Strategies, Modeling Techniques, Software
and the respectively required Skills. The obtained results are not restricted to a
particular Web Engineering methodology, but rather encompass all methodologies
included in the Web Engineering Reuse Ontology. Figure 7-11 shows such an example
SPARQL query for the selected task Design_Business_Process_ModelingTask.

7.6 Cross-Methodological Reuse with Stakeholders in Practice 169

PREFIX atlas:<http://mwrg.tm.uni-karlsruhe.de/atlas#>

SELECT ?knowledge ?ktype ?skill ?skilllevel ?resstrategy ?mtech ?software

WHERE

{

 {

 ?skill rdf:type atlas:Skill.

 ?resstrategy atlas:Solves atlas:Design_Business_Process_ModelingTask.

 ?resstrategy atlas:Employs ?mtech.

 ?software atlas:RequiresSkill ?skill.

 ?software atlas:SupportsTask atlas:Design_Business_Process_ModelingTask.

 ?software atlas:SupportsModelingTechnique ?mtech.

 ?skill atlas:Includes ?knowledge.

 ?knowledge rdf:type ?ktype.

 } UNION {

 ?skill rdf:type atlas:Skill.

 ?resstrategy atlas:Solves atlas:Design_Business_Process_ModelingTask.

 ?resstrategy atlas:Employs ?mtech.

 ?mtech atlas:RequiresSkill ?skill.

 ?skill atlas:Includes ?knowledge.

 ?knowledge rdf:type ?ktype.

 } OPTIONAL {

 ?skill atlas:HasSkillLevel ?skilllevel

 }

}

Figure 7-11: SPARQL Query for Determining all Modeling and Software Skills related
to the Task ‘Design Business Process’ across all Web Engineering Methodologies

Based on the obtained results, the third dialog is constructed (Figure 7-12-3).
Therein, either a predefined skill set corresponding to the given stakeholder type or
an individual skill level for each knowledge type can be selected. Thereby,
stakeholders can restrict the cross-methodological set of available Resolution
Strategies for the given tasks in accordance with their individual Knowledge and
Skills. In the example, the stakeholder states expert skills in BPMN, intermediate skills
in UML Activity Diagrams and novice skills in Petri nets. Regarding software skills,
intermediate skills in Microsoft Word and novice skills in Microsoft Visio are specified.
Thereupon, the selected skills are submitted to the Registry Web Service which
thereupon again configures a corresponding predefined SPARQL query template and
executes it.

The query results in a list of matching Resolution Strategies, Modeling Techniques
and Software as well as related Artifacts. The query also evaluates ontology relations
expressing that particular Skills imply other Skills or that particular Documentation
Artifacts can impart missing Skills. Finally, the results are ranked according to the
matching degree between the specified and inferred skill levels and the required skill
levels.

170 Chapter 7 – The Web Engineering Reuse Sphere

Figure 7-12: The ‘Search for Resolution Strategy’ Wizard

Figure 7-13 shows the search result dialog. The Resolution Strategy ‘Workflow DSL’
with the Modeling Technique ‘BPMN’ and supported by the Software ‘Microsoft
Visio’ was identified as a perfect match for the given stakeholder. In the dialog’s
details panel, the individual elements are listed along with their required skills. As
the stakeholder stated only novice skills in Microsoft Visio, a link to a Documentation
Artifact is provided. Moreover, download links for related Artifacts (e.g. a Microsoft
Visio template for starting the modeling of the workflow) for the selected result are
listed. By clicking on the button labeled ‘Reuse this component’, the Solution
Building Block (SBB) associated with the selected result is inserted in the current
WSLS development project. It has to be configured with a DSL program which could
either be modeled using the downloadable template or searched for by following the
link ‘Reuse selected component and find corresponding artifacts’.

7.6 Cross-Methodological Reuse with Stakeholders in Practice 171

Figure 7-13: The ‘Search for Resolution Strategy’ Wizard

The obtained results as depicted in the figure include only Resolution Strategies
based on the Web Engineering DSL Framework. As mentioned before, this is due to
the fact that the WSLS Framework was used as client application which natively
filters the results to WSLS-compatible Resolution Strategies. However, the same
search performed in a more generic client, e.g. a Web-based Reuse Portal as
mentioned in the previous section, would comprise results across all Web
Engineering methodologies included in the Web Engineering Reuse Ontology. For
example, if WebML was integrated in the ontology as indicated in Figure 7-3ff, the
Resolution Strategy ‘WebML Business Process Design’ with the Modeling Technique
‘WebML Process Modeling with BPMN’ and supported by the Software ‘WebRatio’
along with appropriate templates or documentation would be included. Similarly,
the UWE methodology, whose integration was also illustrated in Figure 7-3, would
be suitable for stakeholders preferring a UML-based notation and associated tools.

7.6.2 Stakeholder-Oriented Facetted Search and Browsing Facilities

The second scenario concerns the Expense Report Dialog within the ‘business trip’
example process. As an adequate or similar dialog could already exist and be used as
starting point for adapting it to the given requirements, a search in the Web
Engineering Reuse Sphere’s registry shall be performed. Therefore, the registry
search dialog in WSLS is opened and the search strategy Search for Existing Artifact
selected (cf. Figure 7-14-1).

172 Chapter 7 – The Web Engineering Reuse Sphere

In the succeeding dialog, various search facets for specifying query parameters are
available (cf. Figure 7-14-2). According to the given scenario, the Artifact Type ‘DSL
Program’ related to the Business Domain ‘Travel’ and the Concern ‘Interaction’ that
can be used for the Task Type ‘Design Dialog’. By selecting a particular Stakeholder
Type, Resolution Strategy or Modeling Technique, the query could already be
constrained according to the knowledge required for the modification of a found
artifact. Beyond that, a Project the artifact was created or reused in could be
selected as well as keywords for a full-text search specified.

Figure 7-14: The ‘Search for Existing Artifact’ Wizard

The supplied query parameters are submitted to the Registry Web Service which
inserts them in a predefined SPARQL template and executes it. The search results
dialog is depicted in Figure 7-15. This result set covers both the Web Engineering
Reuse Sphere’s ad-hoc and infrastructure levels and can be filtered according to a
stakeholder’s knowledge regarding Modeling Techniques and Software. Thereby, it
can be assured that found artifacts are actually understood by stakeholders and can
be reused and modified based on their individual skills.

7.6 Cross-Methodological Reuse with Stakeholders in Practice 173

Figure 7-15: Search Results with Browsing and Filtering Facilities

Beyond that, the result set forms a starting point for browsing through the registry
space. Therefore, most values in the details panel are rendered as hyperlinks
allowing for a context switch. For example, other artifacts which were used in the
same Project or which relate to the same Business Domain or Concern can be
retrieved. Similarly, artifacts created or modified by the same stakeholder or
stakeholder type as well as artifacts sharing the same Modeling Technique could be
explored. Both browsing and filtering facilities are realized by executing
corresponding SPARQL queries via the Registry Web Service; an in-depth description
of these queries can be found in (Böttger 2008).

Potentially adequate artifacts can be directly and safely integrated in the current
WSLS application at runtime. Therefore, a preview mode including rollback
mechanisms was integrated into the WSLS Framework. Thus, the selected artifact
can be safely tested which again improves the communication with stakeholders as
well as the effective understanding of reusable assets.

As described for the previous scenario, artifacts from other methodologies could also
be found here, e.g. WebML or UWE dialog models. This could be achieved without
any modifications to the SPARQL query or the dialogs. Currently, the result set is
being filtered by WSLS so that only compatible results are displayed. However,

174 Chapter 7 – The Web Engineering Reuse Sphere

assumed that dialog models were interoperable as strived for by the MDWEnet
Initiative, e.g. based on adequate model transformations, this filtering mechanism
could be removed and artifacts could be cross-methodologically found and reused.

7.7 Summary

This chapter presented the Web Engineering Reuse Sphere, a novel approach
enabling effective cross-methodological reuse in the Web Engineering domain. The
approach inherently considers stakeholder characteristics and skills as key factors for
reuse effectiveness, i.e. the capability to understand, evaluate and subsequently
modify and use reusable artifacts. In the following, the Web Engineering Reuse
Sphere’s unique solution elements as well as the fulfillment of the requirements
elaborated in Chapter 2 are briefly summarized.

The approach establishes a sphere concept for a distributed, cross-methodological
repository space consisting of two spheres for spontaneous and planned reuse. In its
core, a central ontology-based registry serves for registering all kinds of artifacts
throughout the repository space and provides holistic registration and search
functionalities. Therefore, the Web Engineering Reuse Ontology was introduced as a
generic, homogenizing semantic basis for the strongly heterogeneous Web
Engineering reuse domain. It was formalized based on Semantic Web standards and
technologies and provides well-defined extension points. As a result, the variety of
existing Web Engineering methodologies can be systematically incorporated and
thus effective, cross-methodological search strategies be realized. Besides common
reuse-related concepts, the ontology places particular emphasis on capturing Web
Engineering methodologies’ Resolution Strategies, Modeling Techniques and
Software for particular Task Types as well as the therefore required Knowledge or
Skills respectively.

The Web Engineering Reuse Ontology establishes the foundation for novel
knowledge- and inference-based search strategies which include stakeholder skills as
an integral search facet. Thus, adequate Resolution Strategies and related artifacts
for a particular Task Type and a particular Stakeholder audience or Skill Set
respectively can be found. Furthermore, it enables finding existing Artifacts
according to various contextual parameters, again including the current Stakeholder
audience or required Skill set respectively. Beyond that, facilities for browsing
through the registry space based on the relations specified in the ontology are
provided.

The Web Engineering Reuse Sphere’s architectural reference framework serves as
technical support platform and guides the integration of existing (local and
infrastructure-based) repositories and clients from heterogeneous Web Engineering
methodologies. The non-invasive integration of local ad-hoc repositories combined
with automated metadata extraction methodologies enables the transparent
background registration of artifacts. In this way, artifacts become registered and thus

7.7 Summary 175

findable as soon as they are saved for the first time. Due to the resulting coordinative
support, redundant development efforts can be significantly reduced.

In the context of current consolidation efforts towards interoperability between
today’s Web Engineering methodologies, e.g. the MDWEnet Initiative, the Web
Engineering Reuse Sphere presents an ideal complement as enabler for real cross-
methodological reuse. The presented approach in general and particularly the Web
Engineering Reuse Ontology form a valuable contribution to the Web Engineering
research discipline and received significant attention at the 8th International
Conference on Web Engineering (ICWE’08).

The Web Engineering Reuse Sphere’s cross-methodological nature and sound focus
on stakeholder characteristics and skills makes it also an ideal complement to the
Web Engineering DSL Framework. Stakeholders can autonomously use the advanced
search strategies to determine and retrieve an adequate DSL and corresponding DIM
notation, modeling software and related artifacts in accordance with their current
task and individual skills. Hence, the Web Engineering Reuse Sphere forms the
starting point for stakeholders and facilitates the DSL-based engineering process,
thus making a substantial contribution to its efficiency and effectiveness.

8 Evaluation

Besides the successful theoretical evaluation of the presented solutions against the
identified requirements catalog, their actual utility and adequacy have also been
examined in practice and empirical studies. First of all, comprehensive technical
implementations of the Workflow DSL including the Model Transformation
Framework, the Dialog DSL and the Web Engineering Reuse Sphere were performed
and establish the basis for further studies. Thereupon, they were successfully applied
in various real-world scenarios including

 the collaborative reuse-oriented development of the MWRG Research Site
(MWRG 2009b),

 the currently ongoing re-implementation of the new MWRG Homepage
(MWRG 2009a),

 the implementation of a workflow-based Web application supporting the
MWRG students advising process (Buck 2007; Setiawan 2009),

 various prototypical example implementations of Web-based workflows,
supporting e.g. the application for leave and travel reimbursement processes,

 the construction of advanced Web-based dialogs in the practical course ‘Web
Engineering’ in the winter term 2008/09, and

 the model- and component-based development of page-flow-based portal
features for the KIT Employee Portal and the KIT Students Portal in the
context of the KIM project (cf. Section 8.2).

The experiences gained thereby served as beneficial input for the continuous
improvement of the presented approaches. Furthermore, nineteen publications at
international workshops, conferences and journals allowed for intensive discussions
and valuable feedback by researches from the Web Engineering community and
adjacent research areas.

Beyond that, an empirical evaluation of Workflow DSL core concepts based on real-
world process models from the KIM project was performed (cf. Section 8.1). In
addition, the Dialog DSL approach’s efficiency and effectiveness, particularly with
regard to strong stakeholder involvement, were examined in several formal
empirical experiments presented in 8.3.

178 Chapter 8 – Evaluation

8.1 Empirical Evaluation of Workflow DSL Concepts

The goal of this evaluation was to determine whether the concepts contained in the
Workflow DSL’s Core Elements Set (CES), introduced in Section 5.4.2, achieve a
sufficient coverage of real-world business processes. In addition, the adequacy of the
Activity Building Blocks (ABB) catalog (cf. Section 5.2.2) for the Web-based
processing of real-world business processes was analyzed in this context. The
evaluation should provide quantitative answers to the following questions:

 (Q1): To which extent does the Workflow DSL’s Core Elements Set (CES)
provide sufficient coverage of real-world business process models?

 (Q2): To which extent does the Workflow DSL’s Activity Building Block (ABB)
catalog provide sufficient coverage for realizing real-world business processes
as Web-based workflows?

The evaluation was conducted based on 64 Petri net-based business process models
which originated from the project “Karlsruhe’s Integrated Information Management
(KIM)” (Juling 2005). They cover the domains of event and exam management at the
University of Karlsruhe (TH). The models comprise a combined total of 1479
modeling constructs which results in an average of 23 constructs per model. The
business process models were originally modeled for analysis and documentation
purposes. Thus, they lack formal correctness at some points as well as technical
workflow aspects in general.

8.1.1 Expressiveness of the CES in Real-World Process Models

Regarding (Q1), the available set of business process models was analyzed and each
identified modeling construct classified according to its CES affiliation. Therefore, a
multi-step classification methodology was used (cf. Figure 8-1).

Figure 8-1: Classification Methodology for CES Evaluation

Remodelling

Error Detection

CES Affiliation

Identified Construct Construct

Covered
by CES

Intended Semantics
Covered by CES but

Syntactical Error

Automated

Automated Manual

Manual

Manual

Semantics
not Covered

by CES

Automated Manual

8.1 Empirical Evaluation of Workflow DSL Concepts 179

For each identified construct in a business process model, it is determined whether it
is covered by the CES or not. Due to modeling errors, a construct which is
semantically covered by the CES could require remodeling in order to be syntactically
correct. In this case, it is differentiated whether the modeling error or the actual
semantic intention respectively could be detected automatically or not.
Automatically detectable errors are further classified into automatically resolvable
errors and errors that require human remodeling. For constructs whose semantic is
not covered by the CES, it is analyzed whether their modeling syntax enables their
automated detection or requires manual detection. Manual error detection is
required for cases where the incorrect Petri net-based modeling syntax corresponds
to a different CES concept. Similarly, manual error resolution is required if multiple
ways of resolution exist.

Figure 8-2 illustrates the obtained result after the first classification level. 83.8% of
all modeling constructs in the analyzed business process models are immediately
covered by the Workflow DSL’s CES, 13.7% of the constructs require syntactical
remodeling and 2.5% are not covered by the CES.

Constructs (before Remodeling) Count

Covered by the Workflow DSL’s Core Elements Set 1240

Semantically covered, but syntactically incorrect 202

Not Covered by the Workflow DSL’s Core Elements Set 37

Figure 8-2: CES Evaluation Result before Remodeling

While the directly obtained degree of CES coverage for the analyzed process models
already indicates a good applicability, it is further improved by remodeling the
syntactical incorrect constructs. Their rather high fraction (13.7%) stems from the
fact that the examined models were originally modeled for documentation purposes
and no model verification mechanisms were applied. Analyzing the various
syntactical errors showed that 4 out of 14 error patterns make up 91.85% (185 out of
202). These error patterns are primarily related with the non-compliant modeling of
the Workflow Data concept. As the errors are due to a different modeling variant
than expected by the Workflow DSL, it can be considered very likely that most of

180 Chapter 8 – Evaluation

these errors would not have occurred if the process models were designed in the
context of the Workflow DSL.

After the error resolution via remodeling, 97.5% of the examined business process
model’s constructs are covered by the Workflow DSL’s CES whereas only 2.5%
remain uncovered. Table 8-1 summarizes the frequency distribution of the identified
CES concepts, syntactical modeling errors and not covered modeling constructs.

Table 8-1: Frequency of Workflow Concepts Before and After
the Error Resolution by Remodeling

Identified Constructs
Count (Percentage)

Before Remodeling After Remodeling

Constructs Covered by CES Concepts

Workflow Process 64 (4.33%) 64 (4.14%)

Activity (including hierarchical activities) 393 (26.57%) 429 (27.75%)

Start Node 63 (4.26%) 63 (4.08%)

End Node 58 (3.92%) 58 (3.75%)

Sequence 140 (9.47%) 154 (9.96%)

AND-Split 20 (1.35%) 30 (1.94%)

AND-Join 16 (1.08%) 27 (1.75%)

XOR-Split 10 (0.68%) 13 (0.84%)

XOR-Join 11 (0.74%) 14 (0.91%)

OR-Split 0 (0.00%) 0 (0.00%)

OR-Join 0 (0.00%) 0 (0.00%)

Structured Loop (Do-While-Loop) 4 (0.27%) 17 (1.10%)

Structured Loop (While-Do-Loop) 5 (0.34%) 11 (0.71%)

Workflow Data 0 (0.00%) 173 (11.19%)

Participant 118 (7.98%) 118 (7.63%)

Application 338 (22.85%) 338 (21.86%)

Syntactically Incorrect Constructs

14 different error patterns 202 (13.66%) 0 (0.00%)

Constructs Not Covered by CES Concepts

10 different patterns 37 (2.50%) 37 (2.50%)

The deviation between the concepts Activity and Application originates from
hierarchical activities encapsulating complete sub-processes and thus not being
assigned with an application. The divergence between Start Node, End Node and
Workflow Process is due to irresolvable modeling errors as well as constructs not

8.1 Empirical Evaluation of Workflow DSL Concepts 181

covered by the CES. Beyond that, it should be noted that the occurrence of one
control-flow concept usually implies one Activity, one Application and possibly one
Workflow Data instance. As a consequence, the proportion of non-control flow
concepts is much higher than the proportion of control-flow concepts. This ratio is
even further multiplied by Split- or Join-typed control flow concepts. A detailed
presentation of the particular error patterns and modeling constructs not covered by
the CES can be found in (Setiawan 2009).

The observed frequency distribution of CES-based workflow concepts in the
examined business process models as well as the fraction of uncovered constructs is
illustrated in Figure 8-3. The low percentage of not covered constructs corresponds
with similar studies, particularly if the reasons therefore and the rather unintuitive
ratio between control-flow and non-control-flow concepts explained above are
taken into account. For example, a recent study on the frequency distribution of
BPMN construct usage arrived at the conclusion that average BPMN models use less
than 20% of the available vocabulary, i.e. about nine core concepts or symbols
respectively (Zur Muehlen and Recker 2008).

Figure 8-3: Observed Frequency Distribution of Identified CES Concepts
in the Evaluated Business Process Models

As the examined process models focus primarily on a particular business domain and
were modeled by only a small group of analysts with basic to intermediate modeling
skills, the obtained results cannot be directly generalized. However, regarding the

27,75%

21,86%

11,19%

9,96%

7,63%

4,14%

4,08%

3,75%

2,39%

1,94%

1,75%

1,10%

0,91%

0,84%

0,71%

0,00%

0,00%

0% 5% 10% 15% 20% 25% 30%

Activity

Application

Workflow Data

Sequence

Participant

Workflow Process

Start Node

End Node

Constructs Not Covered by CES Concepts

AND-Split

AND-Join

Structured Loop (Do-While-Loop)

XOR-Join

XOR-Split

Structured Loop (While-Do-Loop)

OR-Split

OR-Join

Frequency Distribution of Identified CES Concepts

182 Chapter 8 – Evaluation

CES’ significant degree of coverage (97.5%) in the examined models as well as the
fact that similar studies point in the same direction, the Workflow DSL’s reasonable
applicability to real-world scenarios can be considered confirmed.

8.1.2 Coverage of Real-World Process Activities by the ABB Catalog

With regard to the evaluation question (Q2), all identified business process activities
were analyzed whether a single or a combination of the defined ABBs could serve for
their adequate Web-based processing. Furthermore, it was analyzed whether
additional ABBs are required and should be incorporated in the catalog.

Figure 8-4 illustrates the found distribution of workflow activity types and their
coverage by the Workflow DSL’s ABB catalog. The results show that 69.5% of the
activities can be effectively supported by Web-based user interfaces or Web Service
communication whereas the remaining 30.5% are performed offline, e.g. marking
and handing out exams or holding a lecture, and were thus mapped to the Commit
ABB. Regarding the remaining ABBs in the Workflow DSL’s catalog, Dialog-based User
Interaction makes up the most frequently used ABB (34.6%). Thereafter, the Data
Presentation ABB follows with 16.9% and the Web Service Communication ABB is
used by 10.1% of all activities. It should be noted that the latter fraction covers only
activities which are exclusively realized by the Web Service Communication ABB. In
fact, this ABB is heavily used in combination with the other two ABBs: 91.5% of the
activities realized by the Dialog-based User Interaction ABB and 98.3% of the
activities realized by the Data Presentation ABB require a preceding and/or
succeeding Web service invocation for retrieving or storing data.

Beyond that, two new ABB candidates were identified. A Distributed Collaboration
ABB could realize Web-based, audiovisual-enabled meetings for distributed
participants. It could be used by 1.5% of the examined activities and could substitute
offline face-to-face meetings which would otherwise be covered by the Commit ABB.
The Auditorium Plan forms a domain-specific specialization of the Data Presentation
ABB and is used for visualizing graphical auditorium plans including detailed
information regarding capacity, equipment etc. It is used by 6.5% of the examined
activities and could be realized by the Data Presentation ABB and a specialized
configuration set.

In summary, the evaluation confirmed that the Workflow DSL’s ABB catalog provides
full coverage for the examined 338 activities. Thus, their high degree of reusability as
well as their generic and well-defined specification was approved. Furthermore, it
was observed that the degree of real Web-based activity processing could be further
increased by incorporating an ABB for Distributed Collaboration. A specialized variant
of the Data Presentation ABB for Auditorium Plans could decrease redundant
development efforts.

8.2 Workflow DSL Concepts Applied in the KIM Project 183

Activity Building Block Type Count

Total Dialog-based User Interaction 117

 Dialog-based User Interaction 10

 Dialog-based User Interaction combined with WS Communication 107

Total Data Presentation 57

 Data Presentation 1

 Data Presentation combined with WS Communication 56

Web Service Communication 34

Commit 103

Distributed Collaboration 5

Auditorium Plan 22

Figure 8-4: Identified Workflow Activity Types and
their Coverage by the Workflow DSL’s Activity Building Block Catalog

8.2 Workflow DSL Concepts Applied in the KIM Project6

The project „Karlsruhe’s Integrated Information Management (KIM)” pursues the
goal of increasing the excellence in teaching at the Karlsruhe Institute of Technology
(KIT) (Juling 2005). Therefore, it strives for a continuous and sound integration of
relevant legacy systems and data as well as for increasing the accessibility and
transparency of related business processes. The KIM project’s technical realization is
based on a Service-Oriented Architecture (SOA) model which was termed ‘KIM
integrated Service Oriented Architecture (KIM iSOA)' (Freudenstein, Liu, Majer et al.

6 Parts of this section have been published in (Freudenstein, Nussbaumer, Majer et al. 2007)

184 Chapter 8 – Evaluation

2006; Freudenstein, Majer and Maurer 2006). Figure 8-5 gives an overview of the
KIM iSOA, its four core layers and cross-cutting concerns.

Figure 8-5: The KIM iSOA

Within the depicted layer model, Web-based portals present central and uniform
access points to relevant information and business processes for diverse audiences.
In the course of the KIM project, a KIT Students portal and a KIT Employee portal
were developed (Allerding, Buck, Freudenstein et al. 2008). As both portals strongly
rely on data and operations encapsulated in Web services located on the Core and
Application Services layers (Freudenstein, Majer, Maurer et al. 2007), a multitude of
Web service integration scenarios had to be implemented. Therefore, portal
components realizing the service communication as well as the rendering of
appropriate interaction and presentation structures were required (Freudenstein,
Majer and Nussbaumer 2008).

Analyzing the various integration scenarios showed that their requirements can be
quite complex and span across a variety of functional aspects: presentation and
interaction aspects as well as aspects in the fields of data and service
communication. While simple integration scenarios comprise only a parameterized
service communication followed by the presentation of the received data, much
more complex user interaction sequences of dialogs, service communication and
data presentation are found in practice. Given this complexity and the emerging
variety of Web services in medium and large SOA-based systems which have to be
made accessible to users, an efficient approach for the integration of services in
portals was required. Developing dedicated portal components for each single
integration scenario turns out to be too cost- and time-consuming, aggravates
operations and maintenance and the enforcement of quality standards.

8.2 Workflow DSL Concepts Applied in the KIM Project 185

8.2.1 FSM-based Modeling of User Interaction Workflows using ABBs

To this end, a novel approach for modeling the user interaction with Web services
including a technological support framework for its application within existing portal
systems was developed. This approach was developed in 2006 and formed a valuable
first step towards the Workflow DSL approach presented in Chapter 5 of this thesis.

The approach considers integration scenarios as user interaction (UI) workflows
composed of generic activity building blocks. Therefore, the Workflow DSL’s catalog
of Activity Building Blocks (ABBs) introduced in Section 5.2.2 was successfully
adopted. UI workflow models can either be derived from business process models
or, due to their simple and intuitive modeling notation, designed from scratch with
strong stakeholder collaboration (Freudenstein, Nussbaumer, Majer et al. 2007). The
resulting models are executed by a generic portal component. Thus, realizing
complex Web service integration scenarios in portals is reduced to composing ABBs
along a UI workflow.

The modeling notation for UI workflows is based on Finite State Machines (FSM).
FSMs were chosen as they are more appropriate for modeling flexible navigational
behavior than more rigid sequence-oriented process modeling approaches. A user
view (e.g. a search form) is thus represented by a state and the user navigation
between views by triggering events (e.g. clicking on a button) corresponds to
transitions. The ABBs are used for specifying entry actions for the particular states.
Figure 8-6 depicts an example model for the ‘Course Registration’ integration
scenario which represents a portal feature supporting students in the process of
searching and registering for courses at the beginning of a semester. In this scenario,
a Web service providing comprehensive course information based on a course
management legacy system and another Web service providing access to course
assignment data, i.e. which student has registered for which courses, are integrated.

Figure 8-6: FSM-based Model of the ‘Course Registration’ Integration Scenario

The two-layered model of the “course registration” UI workflow can be formally
defined in terms of a FSM as 𝑊 = 𝑄, Σ, 𝛿, 𝑞0, 𝐹, 𝐴 with

186 Chapter 8 – Evaluation

 𝑄 = 𝑄0, 𝑄1 , 𝑄2 : Set of user views

 Σ = 𝑂𝑛𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒, 𝑂𝑛𝐵𝑎𝑐𝑘 = Σdefault : Set of events which can be triggered by
a user. Event sets that are likely to recur again in the future are defined as
normalized Σ clusters, thus easing reuse in the implementation phase.

 𝛿: State transition function, i.e. possible navigation paths between the user
views 𝛿: 𝑄 × Σ → Q

 𝑞0 = 𝑄0 : Initial user view

 𝐹 = 𝑄2 : Set of final user views

 A = 𝑎𝑞 ,𝑖 | 𝑞 ∈ 𝑄, 𝑖 ∈ ℕ0 = 𝑎0,0, 𝑎1,0 , 𝑎1,1, 𝑎2,0, 𝑎2,1, 𝑎2,2 : Set of entry actions

to be performed when entering state 𝑞

The set of user views consists of three states: In the first state,𝑄0, a search form for
specifying the parameters for the course search is displayed to the user. Therefore, a
‘ConstructForm’ ABB (which corresponds to the Dialog-based User Interaction ABB)
for generating the search form is executed (𝑎0,0) when entering 𝑄0. Having filled out
and submitted the form, whereby the event Σ0 ‘OnContinue’ is triggered, the user
arrives in state 𝑄1, the search results list. When entering 𝑄1, an ‘InvokeWS’ activity
(which corresponds to the Web Service Communication ABB) is being executed (𝑎1,0)

and runs a search against the course information Web service based on the search
parameters defined in 𝑄0. Afterwards, a ‘RenderMarkup’ activity (which corresponds
to the Data Presentation ABB) renders the Web service response in form of a search
results list (𝑎1,1). Using a corresponding button for activating the event Σ1 ‘OnBack’

in 𝑄1, the user can navigate back to the search form (𝑄0). In 𝑄2, the user has been
registered for the selected course and her personal timetable including the new
registration is being displayed. Therefore, three entry activities have to be executed
when entering the state: First, an ‘InvokeWS’ activity accomplishes the registration
for the selected course by creating a new registration record for the given course
and student via the assignment Web service (𝑎2,0). Subsequently, the current list of

course registrations for the given student is retrieved from the assignment Web
service, again using an ‘InvokeWS’ activity (𝑎2,1). Finally, a ‘RenderPresentation’
activity uses the received assignment data and renders the student’s personal
timetable (𝑎2,2).

Beyond multi-step UI workflows like this, also simple scenarios consisting only of
only one step, e.g. invoking a Web service and rendering the result, can be realized
with this approach.

8.2.2 Technical Framework for Executing UI Workflows in Web Portals

Figure 8-7 gives an overview of the technical framework’s architecture consisting of
four layers: The bottom layer contains the Web services to be integrated in the
portal. Above, the ‘UI Workflow’ layer comprises FSM-based workflow instances as
described in the previous section. The ‘Data Exchange Service (DES)’ layer holds

8.2 Workflow DSL Concepts Applied in the KIM Project 187

mediating components decoupling workflows from the clients executing them.
Therefore, a DES component offers a well defined interface to both parties based on
the set of possible user events Σ, e.g. Σdefault. The top layer contains instances of a
generic portal component which is able to instantiate all kinds of workflows and to
send and receive events to or from them via the DES layer.

 Figure 8-7: The Technical UI Workflow Integration and Execution Framework

The implementation used in the KIM project is based on the Microsoft Windows
Workflow Foundation (WF) as workflow engine. The FSM-based UI workflows as well
as the entry action sequences can be modeled very comfortably using a graphical
editor within Visual Studio 2005 (Figure 8-8, 1+2). The ABBs were implemented as
highly configurable software components, so-called ‘Custom Activities’. In contrast
to the ABB’s implementation for the Workflow DSL, they are not used as
autonomous portal components, but rather act as functional libraries which return
markup to the UI workflow and thus ultimately to the generic portal component.
When modeling an UI workflow, they can be easily integrated and configured via
drag-and-drop and a dedicated property editor. Regarding the portal component
layer, a generic ‘Web Part’ component for the Microsoft Office SharePoint Server
2007 was developed. It is configurable in terms of the UI workflow library to be
executed and the DES component to be used for communicating with the UI
workflow. This portal component is rather simple as its only functionality lies in
receiving markup from the UI workflow via the DES, rendering it and sending back
events triggered by a user, again via the DES. Hence, portal components for other
portal systems could be easily implemented. To this end, e.g. for non .NET-
compatible platforms, the Windows Workflow Foundation supports the automated
encapsulation and exposure of workflows via Web service endpoints.

188 Chapter 8 – Evaluation

 Figure 8-8: UI Workflow Modeling in Visual Studio 2005 (1: FSM, 2: Entry Actions)
and its Execution by an UI Workflow WebPart Instance in the Students Portal (3)

8.2.3 Experiences

To date, numerous portal features were developed using the presented approach,
e.g. features for applying for a business cell phone, changing passwords, registering
an email address, or performing a self-assignment to the KIT’s competence fields.
Thereby, the high efficiency and flexibility when realizing new integration scenarios
or adapting existing ones were identified as the approach’s main advantages. This is
particularly due to the sound combination of model- and component-based concepts
which can also be found in the Workflow DSL approach. In this regard, the catalog of
highly reusable Activity Building Blocks (ABB) presents a core pillar of both
approaches and strongly contributes to development efficiency and effectiveness.

Beyond that, as expected, the UI workflow model’s FSM-based visualization turned
out to be much more comprehensible for new colleagues and stakeholders than
purely code-based developed features. The two-layered modeling approach fosters

8.3 Formal Empirical Evaluation of the Dialog DSL 189

clarity and analogy with the behavior observed in the portal. Similar to the Workflow
DSL approach, the focus lies on the various states and transitions between them and
technical complexity is reduced to the ABB’s configuration facilities. Likewise, as in
the Workflow DSL approach, the process model is graphically visible and rather self-
documenting instead of being weaved into comprehensive code.

Furthermore, only in few cases, special entry actions requiring manual coding were
needed. Thus, the ABBs can reduce the set of required development skills to Web
standards like XSLT and HTML and abstract from programming languages and APIs
specific to a particular portal system. This was particularly beneficial for developers
focusing on other aspects, e.g. Web service development. Due to the presented
modeling approach and particularly the ABB catalog, they were enabled to
autonomously realize Web service-based portal features.

This advantage analogically applies to the Workflow DSL approach which even
enables stakeholders to autonomously contribute to the solution being built by using
notations and tools they are familiar with. In the context of the Workflow DSL
approach, which is a successor of the UI workflow approach presented in this
section, the ABBs were implemented as DSLs including dedicated modeling notations
and editors. For example, due to the Dialog DSL which corresponds to the Dialog-
based User Interaction ABB, advanced Web-based dialogs can be completely
specified on a model basis. Thus, in the great majority of scenarios, no manual
coding is required at all.

8.3 Formal Empirical Evaluation of the Dialog DSL

In order to gain sustainable experiences of the Dialog DSL approach’s efficiency and
adequacy for heterogeneous stakeholders with diverse backgrounds, two empirical
evaluations were conducted. Based on a formal experiment, the Dialog DSL’s
efficiency in developing complex Web-based dialogs and in adopting changes was
analyzed. The Dialog DSL’s modeling notation was evaluated based on a survey
focusing on its applicability for validating, modifying and creating dialog models by
heterogeneous stakeholders.

8.3.1 Experimental Evaluation of Development and Change Efficiency

The experiment’s goal was to analyze the influence of a dialog development
methodology on the efficiency of development and change adoption. As formal
experiments are characterized by a high level of execution and measurement
control, the obtained results can be well generalized within the experimental
conditions (Wohlin, Runeson, Höst et al. 2000). Besides the Dialog DSL, a second
adequate development methodology for Web-based dialogs was used as a basis for
comparison in the experiment. This counterpart should be a widely-used

190 Chapter 8 – Evaluation

development methodology which supports both visual and code-based development
styles. For this reasons, the ASP.NET Framework supported by the development
environment Microsoft Visual Studio 2005 was used. The focus of the evaluation was
exclusively put on implementing dialog behavior including usability best practices
and dialog appearance in terms of user controls and layout. Other aspects like dialog
processing or detailed visual design were explicitly left out due to comparability
reasons. In a preliminary experiment, a significant falsification of results in favor of
the Dialog DSL originating from these factors was observed. For example, the Dialog
DSL provides comprehensive support for automated XML- or Web service-based
dialog processing whereas ASP.NET requires extensive manual implementation.
Considering that specialized frameworks could be possibly adopted in this regard,
these factors were omitted in order to achieve more meaningful and comparable
experimental results.

The experiment was structured based on the Goal/Question/Metric (GQM) approach
(Basili, Caldiera and Rombach 1994) as shown in Table 8-2.

Table 8-2: GQM Plan for the Experimental Evaluation of the Dialog DSL’s Efficiency

Goal 1 Empirical evaluation of the Dialog DSL approach’s efficiency from the
developer perspective

Question Q1.1 How efficiently can complex Web-based dialogs be developed using
the Dialog DSL approach compared to ASP.NET?

Metric M1.1.1 𝒂𝒗𝒈𝑻𝒊𝒎𝒆𝑫𝒊𝒂𝒍𝒐𝒈 𝑫𝑺𝑳

𝒂𝒗𝒈𝑻𝒊𝒎𝒆𝑨𝑺𝑷.𝑵𝑬𝑻

Metric M1.1.2 #Errors: Number of errors in the developed dialogs

Question Q1.2 How efficiently can changes be incorporated into existing, complex
dialogs using the Dialog DSL approach compared to ASP.NET?

Metric M1.2.1 𝒂𝒗𝒈𝑪𝒉𝒂𝒏𝒈𝒆𝑻𝒊𝒎𝒆𝑫𝒊𝒂𝒍𝒐𝒈 𝑫𝑺𝑳

𝒂𝒗𝒈𝑪𝒉𝒂𝒏𝒈𝒆𝑻𝒊𝒎𝒆𝑨𝑺𝑷.𝑵𝑬𝑻

Accordingly, the following hypotheses were formulated:

 Null hypothesis:

𝐻1,0: 𝑎𝑣𝑔𝑇𝑖𝑚𝑒𝐷𝑖𝑎𝑙𝑜𝑔𝐷𝑆𝐿 = 𝑎𝑣𝑔𝑇𝑖𝑚𝑒𝐴𝑆𝑃 .𝑁𝐸𝑇

Alternative hypothesis:

𝐻1,1: 𝑎𝑣𝑔𝑇𝑖𝑚𝑒𝐷𝑖𝑎𝑙𝑜𝑔𝐷𝑆𝐿 < 𝑎𝑣𝑔𝑇𝑖𝑚𝑒𝐴𝑆𝑃 .𝑁𝐸𝑇

 Null hypothesis:

𝐻2,0: 𝑎𝑣𝑔𝐶𝑎𝑛𝑔𝑒𝑇𝑖𝑚𝑒𝐷𝑖𝑎𝑙𝑜𝑔𝐷𝑆𝐿 = 𝑎𝑣𝑔𝐶𝑎𝑛𝑔𝑒𝑇𝑖𝑚𝑒𝐴𝑆𝑃 .𝑁𝐸𝑇

Alternative hypothesis:

𝐻2,1: 𝑎𝑣𝑔𝐶𝑎𝑛𝑔𝑒𝑇𝑖𝑚𝑒𝐷𝑖𝑎𝑙𝑜𝑔𝐷𝑆𝐿 < 𝑎𝑣𝑔𝐶𝑎𝑛𝑔𝑒𝑇𝑖𝑚𝑒𝐴𝑆𝑃 .𝑁𝐸𝑇

8.3 Formal Empirical Evaluation of the Dialog DSL 191

 Null hypothesis:

𝐻3,0: 𝐸𝑓𝑓 𝐷𝑖𝑎𝑙𝑜𝑔𝐷𝑆𝐿 = 𝐸𝑓𝑓(𝐴𝑆𝑃. 𝑁𝐸𝑇)

Alternative hypothesis:

𝐻3,1: 𝐸𝑓𝑓 𝐷𝑖𝑎𝑙𝑜𝑔𝐷𝑆𝐿 > 𝐸𝑓𝑓 𝐴𝑆𝑃. 𝑁𝐸𝑇

Thereby, the total time including development, incorporation of changes as
well as compensation times for errors is considered.

The selection of subjects for the experiment corresponds to a convenience sampling.
Therefore, eight students from the practical course on Web Engineering (winter term
2008/09) at the Karlsruhe Institute of Technology (KIT) served as participants. When
applying for the course, they did not know about the experiment. Their interest in
the Web Engineering discipline and the course itself were the sole aspects for their
inclusion in the experiment. No further selection was performed. The participation in
the experiment was rewarded with a special certification.

Throughout the practical course, all participants received extensive training and
completed exercises in Web standards and technologies and particularly in ASP.NET
and Visual Studio 2005. This included also the development of a comprehensive
Web-based dialog using ASP.NET and Microsoft Visual Studio 2005. Based on their
performance during the first 3 months, the participants were rated by the course
advisors and distributed into two balanced groups which is a proven methodology
(Prechelt 2001). Table 8-3 illustrates the resulting allocation.

Table 8-3: Performance-Based Subject Allocation into Two Balanced Groups

The experiment design was successfully evaluated regarding internal validity,
external validity, construct validity and conclusion validity (Chouchane 2009). Only
minor improvements regarding the selection and rating of the participants by the
advisors were identified and should be considered in subsequent experiments. For
example, a more heterogeneous subject population, not only covering graduate
students but also various types of industry practioners would be desirable. While the

192 Chapter 8 – Evaluation

selected study group enabled high conclusion validity, it results in a reduced external
validity, i.e. the degree to which the results can be generalized for the whole
software industry.

During the execution of the experiment, each participant had to develop an identical
Web-based dialog using the assigned methodology. The dialog was a comprehensive,
multi-step travel booking dialog including selection-dependent inputs, hint and help
texts and input validations. It was precisely specified based on screenshots,
annotations and textual descriptions. In the second part of the experiment, each
participant had to adopt a predefined change in the developed dialog, i.e. a large
dialog unit should be divided into several smaller units which had to be connected by
appropriate navigation facilities. The complete experiment material can be found in
(Chouchane 2009).

Figure 8-9 illustrates the experiment processes for both treatments. In the
beginning, every participant had to fill out a questionnaire regarding relevant skills
and experiences. As the Dialog DSL group had no prior knowledge of the Dialog DSL
approach, a short introduction including a 15 minutes trial period regarding the
usage of the Dialog DSL’s Web-based editor followed. The subsequent experiment
process was identical for both groups. Both experiments were conducted
consecutively on the same day.

 Group 1, Treatment: Dialog DSL Group 2, Treatment: ASP.NET

Figure 8-9: Experiment Processes for the Two Groups or Treatments Respectively

Figure 8-10 and Figure 8-11 illustrate the self-assessment-based skills of both groups
which were derived from the skills questionnaire which was filled out before the
beginning of the experiment. The results reflect the fact that all students received
extensive ASP.NET and Visual Studio training during the practical course.
Furthermore, it turned out that the ASP.NET group stated overall better skills than
the Dialog DSL group. This is partly due to the fact that the ASP.NET group received
an additional ‘Dialog-development with ASP.NET and Visual Studio 2005’ tutorial one

Preparation

(ca. 30 min.)

•Skills & Experiences Questonnaire

•Short Dialog DSL Introduction

•15 min. Trial Usage of the Dialog DSL
Editor

Experiment

(ca. 80 min)

•Part I: Develop Dialog

•Part II: Incorporate Change

Closing

(ca. 10 min.)

•Feedback Questionnaire

Preparation

(ca. 5 min.)

•Skills & Experiences Questionnaire

Experiment

(ca. 105 min.)

•Part I: Develop Dialog

•Part II: Incorporate Change

Closing

(ca. 10 min.)

•Feedback Questionnaire

8.3 Formal Empirical Evaluation of the Dialog DSL 193

and a half day before the experiment which was strongly tailored to the skills needed
for the experiment.

This skill difference forms a good precondition as it further contributes to the
experiment’s validity. The ASP.NET group can thus be considered representatively
skilled whereas the Dialog DSL group corresponds to the Dialog DSL’s goal of
empowering poorly skilled stakeholders as well. To this end, the Dialog DSL group
comprised even an office administrative assistant without an IT or development
background.

 Figure 8-10: Distribution of Skills in Group 1
(Based on Self-Assessment via Initial Skills & Experiences Questionnaire)

 Figure 8-11: Distribution of Skills in Group 2
(Based on Self-Assessment via Initial Skills & Experiences Questionnaire)

Table 8-4 shows the measured dialog development times as well as derived
descriptive statistical measures. Figure 8-12 illustrates the measured development
times of both groups accordingly. Based on the calculated means for both
approaches, the Dialog DSL approach turned out to be 2.6 times more efficient with
respect to dialog development. Furthermore, the standard deviation among the
subjects which used the Dialog DSL is lower which further underlines the achieved
results. Taking into account the lower overall skill level of the Dialog DSL group, this
presents an excellent result for the Dialog DSL approach.

194 Chapter 8 – Evaluation

Table 8-4: Measured Dialog Development Time and Derived Statistical Measures

 Figure 8-12: Dialog Development Times using the Dialog DSL Approach vs. ASP.NET

Table 8-5 shows the measured times for adopting changes to the developed dialog
as well as derived descriptive statistical measures. Figure 8-13 illustrates the
measured times for all subjects of both groups accordingly. Based on the calculated
medians for both approaches, the Dialog DSL approach turned out to be 2.4 times
more efficient with respect to change adoption. Furthermore, the standard deviation
among the subjects which used the Dialog DSL is almost negligible which emphasizes
the Dialog DSL’s superiority. Considering the lower overall skill level of the Dialog DSL
group, this also presents an excellent result in favor of the Dialog DSL approach.

Table 8-5: Measured Change Adoption Time and Derived Statistical Measures

Group /

Treatment Subject

Measured Dev.

Time Median Mean Variance Standard Deviation Variation Coefficient Range

2 00:47

5 00:35

7 00:36

8 00:39 00:39:15 29,58 5,44 13,86% 00:12

1 01:47

3 01:47

4 01:37

6 01:34 45,58 6,75 6,67%

1

(Dialog DSL)

2

(ASP.NET)

00:37:30

Dialog Development Time (hh:mm | m)

01:42:00 00:1301:41:15

Group /

Treatment Subject

Measured

Change Time Median Mean Variance Standard Deviation Variation Coefficient Range

2 00:06

5 00:05

7 00:05

8 00:05 00:05:15 0,25 0,5 9,52% 00:01

1 00:13

3 00:25

4 00:09

6 00:11 51,67 7,19 49,57%

00:05:00

00:12:00 00:14:30 00:14

Change Adoption Time (hh:mm | m)

1

(Dialog DSL)

2

(ASP.NET)

8.3 Formal Empirical Evaluation of the Dialog DSL 195

 Figure 8-13: Change Adoption Time using the Dialog DSL Approach vs. ASP.NET

During the analysis of the developed dialogs, minor errors in the participant’s
deliverables were identified. In order to include these errors into the evaluation,
compensation times for the various error types were defined and added to the
actual measured times (Chouchane 2009). The ratio between the average error rate
of the ASP.NET and the Dialog DSL group evaluates to 3.26. Thus, the Dialog DSL
showed also a positive influence on the error rate in the experiment. Based
thereupon, regarding hypothesis 𝐻3, the effective experiment time was calculated as
sum of the development time, the change adoption time and the error
compensation times. The resulting effective experiment times are shown in Table
8-6.

To conclude this section, the hypothesis 𝐻3 shall be exemplarily tested using a t-test
(Montgomery 1997) which compares the means 𝜇 of the two samples under the
assumption that both originate from normal distributions with similar variances.
Even though these assumptions are rarely satisfied in practice, the t-test is
considered still robust (Briand, Emam and Morasca 1996). The t-test is conducted as
follows.

1. Calculate 𝑡0

𝑡0 =
𝑥 − 𝑦

𝑆𝑝
1
𝑛

+
1
𝑚

with

𝑆𝑝 =
 𝑛 − 1 𝑆𝑥

2 + 𝑚 − 1 𝑆𝑦
2

𝑛 + 𝑚 − 2

and 𝑥 , 𝑦 as means and 𝑆𝑥
2, 𝑆𝑦

2 as individual variances of the samples.

2. The null hypothesis 𝐻0: 𝜇𝑥 ≤ 𝜇𝑦 is rejected in favor of the alternative

hypothesis 𝐻1: 𝜇𝑥 > 𝜇𝑦 if

𝑡0 > 𝑡𝛼 ,𝑛+𝑚−2

196 Chapter 8 – Evaluation

with 𝑡𝛼 ,𝑛+𝑚−2 corresponding to the upper 𝛼 percentage point of the 𝑡
distribution with 𝑛 + 𝑚, −2 degrees of freedom. In this regard, 𝛼
corresponds to the level of statistical significance and 1 − 𝛼 accordingly to
the test confidence. For the following calculation, 𝛼 = 5% was used. The
distribution is tabulated for example in (Montgomery 1997).

Regarding the performed experiment, the alternative hypothesis
𝐻3,1: 𝐸𝑓𝑓 𝐷𝑖𝑎𝑙𝑜𝑔𝐷𝑆𝐿 > 𝐸𝑓𝑓 𝐴𝑆𝑃. 𝑁𝐸𝑇 introduced above can be rewritten
to 𝐻3,1

′ : 𝜇𝑒𝑓𝑓 ,𝐴𝑆𝑃 .𝑁𝐸𝑇 > 𝜇𝑒𝑓𝑓 ,𝐷𝑖𝑎𝑙𝑜𝑔𝐷𝑆𝐿 . Thus, a t-test was conducted to see if the null

hypothesis 𝐻3,0
′ : 𝜇𝑒𝑓𝑓 ,𝐴𝑆𝑃 .𝑁𝐸𝑇 ≤ 𝜇𝑒𝑓𝑓 ,𝐷𝑖𝑎𝑙𝑜𝑔𝐷𝑆𝐿 can be rejected in favor of 𝐻3,1

′ .

Table 8-6 illustrates the calculation of the t-test based on the effective experiment
times which include the dialog development time, change adoption time and error
compensation time. According to its result, i.e.
𝑡0 = 8,90 > 2,447 = 𝑡𝛼 ,𝑛+𝑚−2 , the null hypothesis 𝐻3,0

′ can be rejected in favor

of 𝐻3,1
′ with a confidence of 95%. Thus, the Dialog DSL’s superior efficiency was

successfully confirmed.

Table 8-6: Effective Experiment Times and Calculation of the T-Test

Hypothesis Test for 𝑯𝟑: Effective Time
(Development, Change Adoption, Error Compensation)

Samples ASP: X (n = 4) Dialog DSL: Y (m = 4)

Effective Experiment
Time (in min.)

124,7 138,5 106,7 108 55,5 40 41 44

Mean 𝜇 119,46 45,13

Degrees of Freedom
(n+m-2)

6

Variance 𝑆𝑥/𝑦
2 228,19 50,73

t-Test: 𝒕𝟎 8,90

𝑡𝛼 2 ,6 with 𝛼 = 5% 2,447

8.3.2 Survey-based Evaluation of Stakeholder Adequacy

The Dialog DSL approach pursues the goal of enabling stakeholders to autonomously
understand, validate, modify and even create Web-based dialogs or their
corresponding models respectively. Particularly stakeholders without IT backgrounds
and having sparse or no IT skills at all shall be efficiently addressed and involved.

The degree of achievement of these goals, summarized under the term stakeholder
adequacy, was evaluated based on an empirical survey focusing on the Dialog DSL’s
modeling notation. The study was designed according to the various types of
stakeholder activities and specified in form of a Goal/Question/Metric plan which is
depicted in Table 8-7.

8.3 Formal Empirical Evaluation of the Dialog DSL 197

Table 8-7: GQM Plan for the Evaluation of the Dialog DSL’s Stakeholder Adequacy

Goal 2 Empirical evaluation of the Dialog DSL modeling notation’s
stakeholder adequacy

Question Q2.1 How adequate is the Dialog DSL’s modeling notation for the
autonomous creation of dialog models by stakeholders?

Metric M2.1.1 Corresponding paper-based exercises with objective, score-based
rating.

Metric M2.1.2 Stakeholder Adequacy Scale (SAS) enabling a subjective rating by
participants.

Question Q2.2 How adequate is the Dialog DSL’s modeling notation for the
autonomous incorporation of changes into existing dialog models by
stakeholders?

Metric M2.2.1 Corresponding paper-based exercises with objective, score-based
rating.

Metric M2.2.2 Stakeholder Adequacy Scale (SAS) enabling a subjective rating by
participants.

Question Q2.3 How adequate is the Dialog DSL’s modeling notation for the
autonomous validation of dialog models by stakeholders?

Metric M2.3.1 Corresponding paper-based exercises with objective, score-based
rating.

Metric M2.3.2 Stakeholder Adequacy Scale (SAS) enabling a subjective rating by
participants.

Each question is measured both on an objective and subjective scale. Regarding the
former, the survey contained specific exercises addressing the following areas:

 Verifying statements about a given dialog model

 Incorporating given changes into a given dialog model

 Creating a dialog model according to a textual specification

In order to suppress possible effects originating from the Dialog DSL’s Web-based
editor, the survey was designed and conducted purely paper-based, thus focusing
exclusively on the modeling notation itself.

With the purpose of obtaining also a subjective rating of the Dialog DSL’s modeling
notation by the survey participants after having completed the exercises, a so-called
Stakeholder Adequacy Scale (SAS) was developed and is depicted in Table 8-8. It is
based on the ideas of the System Usability Scale (SUS) (Brooke 1996; Tullis and
Albert 2008) which is widely used for the subjective evaluation of electronic office
systems. The calculation of the SAS score based on the ratings of a participant is
conducted as follows: The ratings of questions 1, 3, 5, 7 and 9 are assigned with the
score 5-s where s is the rating assigned by the participant. Accordingly, the
remaining questions 2, 4, 6, 8 and 10 are assigned with the score s-1. Each score is
multiplied by 2.5 so that the overall SAS score lies between 0 and 100.

198 Chapter 8 – Evaluation

Table 8-8: Stakeholder Adequacy Scale (SAS) for the Subjective Rating of the Dialog
DSL’s Modeling Notation by Survey Participants (translated from German)

1. I have understood all notation elements.

Strongly
agree

 Strongly
disagree

1 2 3 4 5

2. I consider the notation elements to be
unnecessary complex.

Strongly
agree

 Strongly
disagree

1 2 3 4 5

3. I found it easy to employ the notation
elements for solving the exercises.

Strongly
agree

 Strongly
disagree

1 2 3 4 5

4. I was not able to complete the exercises
without frequent questions and support by an
expert.

Strongly
agree

 Strongly
disagree

1 2 3 4 5

5. I consider the various notation elements
reasonable and necessary.

Strongly
agree

 Strongly
disagree

1 2 3 4 5

6. In my opinion, the various notation
elements were difficult to distinguish from
each other.

Strongly
agree

 Strongly
disagree

1 2 3 4 5

7. I consider it easy to remember and employ
the various notation elements, even without
a legend.

Strongly
agree

 Strongly
disagree

1 2 3 4 5

8. The modeling notation’s successful usage
requires a lot of previous knowledge.

Strongly
agree

 Strongly
disagree

1 2 3 4 5

9. I felt very confident in employing the
various notation elements.

Strongly
agree

 Strongly
disagree

1 2 3 4 5

10. I experienced difficulties in using the
various notation elements.

Strongly
agree

 Strongly
disagree

1 2 3 4 5

With respect to the survey’s validity, the involvement of subjects with
heterogeneous, preferably non-IT-related backgrounds presented a key factor. A set
of eight subjects adequately representing this requirement could be won for the
survey. Table 8-9 shows their occupations, educational backgrounds and ages. Only
one participant had few software development skills in PHP and no participant at all
had ever developed a Web site or Web-based dialog. Thus, they formed a well-suited
subject population for the survey.

8.3 Formal Empirical Evaluation of the Dialog DSL 199

Table 8-9: Survey Participants, their Occupation or Educational Background and Age

Subject Occupation / Educational Background Age

1 Undergraduate student of business administration 21

2 Trained retail saleswoman 25

3 Management consultant, diploma in business administration 26

4 Teacher 28

5 Hotline operator, no apprenticeship 46

6 Student of pedagogy with major in early childhood studies 22

7 Graduate student of electrical engineering 26

8 Graduate student of computer science 29

The survey execution process consisted of three parts (cf. Figure 8-14). First, a short
introduction of the Dialog DSL’s modeling notation was given. Subsequently, the
participants worked on five paper-based exercises. The first three exercises
addressed the aspect of model creation, the fourth exercise dealt with the
incorporation of changes into an existing model and the fifth exercise covered the
aspect of model validation. The participants were provided with a one-page legend
of the Dialog DSL’s modeling elements. No participant needed more than 30 minutes
for accomplishing the exercises. In the third step, the participants filled out the
Stakeholder Adequacy Scale (SAS) form described above. The complete survey
material can be found in (Chouchane 2009).

 Figure 8-14: Survey Process

After the survey, the performances of the eight participants in the exercises as well
as their subjective ratings stated in the SAS forms were analyzed. Table 8-10
summarizes the measured results including descriptive statistical measures. For each
subject and exercise type, the achieved absolute score and relative success rate are
given. Furthermore, the table shows each participant’s combined overall score and

Preparation

(ca. 15 min.)

•Introduction of the Dialog DSL Modeling Notation

Exercises

(ca. 30 min)

•Paper-based Exercises

•Auxiliary Material: Legend of Modeling Elements

SAS Form

(ca. 10 min.)

•SAS Questionnaire

200 Chapter 8 – Evaluation

success rate. Besides these objective measures, the table also indicates each
participant’s rating in the SAS form which represents her subjective perception of
the Dialog DSL’s modeling notation’s adequacy.

Table 8-10: Survey Results including Exercise Performances and SAS Rating

Figure 8-15 illustrates the average success rates for the various task types. The
success rates lie over 80 % for all task types which can be considered an excellent
result. While the incorporation of changes was the most successful task type
(95.31 %), the exercises concerning the autonomous creation of models were still in
84.14 % of all cases accomplished correctly. Across all task types, the participants
reached a combined average success rate of 88 %. Taking into account the fact that
the participants had no previous knowledge of the Dialog DSL and of Web
development in general, the obtained results are even more appealing.

 Figure 8-15: Average Success Rates for Various Task Types

The subjective ratings based on the Stakeholder Adequacy Scale (SAS) which was
performed by the participants after the experiment are illustrated in Figure 8-16.

1 160 100 40 100 100 100 300 100,00 100,00

2 120 75 40 100 80 80 240 80,00 85,00

3 155 96,9 40 100 90 90 285 95,00 95,00

4 135 84,4 40 100 80 80 255 85,00 82,50

5 140 87,5 40 100 100 100 280 93,33 92,50

6 105 65,6 30 75 100 100 235 78,33 77,50

7 125 78,1 35 87,5 100 100 260 86,67 82,50

8 137 85,6 40 100 80 80 257 85,67 90,00

134,63 84,14 38,13 95,31 91,25 91,25 264,00 88,00 88,13

136,00 85,00 40,00 100,00 95,00 95,00 258,50 86,17 87,50

325,41 127,37 13,84 86,50 98,21 98,21 508,00 56,44 56,70

18,04 11,29 3,72 9,30 9,91 9,91 22,54 7,51 7,53

13,40 13,41 9,76 9,76 10,86 10,86 8,54 8,54 8,54

55,00 34,40 10,00 25,00 20,00 20,00 65,00 21,67 22,50

Validate Model
(E5)

Success

Rate (%)
Total Score

Success

Rate (%)

Overall Succ.

Rate (%)
SAS (%)

Type of Exercise

Mean

Median

Subject

Create Model
(E1-E3)

Incorporate Changes (E4)

Total Score
Success

Rate (%)
Total Score

Variance

St. Deviation

Var. Coeff. (%)

Range

Overall Score

(max. 300)

8.3 Formal Empirical Evaluation of the Dialog DSL 201

Again, the obtained results are overall very positive. The eight participants rated the
Dialog DSL modeling notation’s adequacy over 75 % which results in an average
rating of 88.13 %.

 Figure 8-16: Stakeholder Adequacy Scale (SAS) Scores Awarded by the Participants

In summary, the Dialog DSL’s modeling notation’s excellent adequacy for enabling
stakeholders to autonomously understand, validate, modify and even create dialog
models could be successfully confirmed in the conducted survey. This was measured
and confirmed both on an objective and subjective scale. The fact that the involved
participants were totally inexperienced in Web and dialog development and had,
with one exception, completely non-IT-related educational backgrounds fosters the
validity of the obtained results. The observed positive trend could be further
confirmed by additional empirical evaluations with more subjects and diverse dialog
types used in the exercises.

9 Conclusion and Outlook

At the beginning of this thesis, the following research question was posed: How can
workflow-based Web applications be constructed in close collaboration with
stakeholders in an efficient and effective way?

In order to clarify this question, a detailed analysis of the considered problem
domain was conducted. First of all, the continuous and strong involvement of
stakeholders throughout the development process was introduced as a cross-cutting
key requirement. While it was identified as a crucial success factor by numerous
empirical studies, it is still not sufficiently addressed by existing scientific and
commercial approaches. Thereafter, the particular characteristics of workflow-based
Web applications were analyzed and key requirements concerning their efficient and
effective construction elaborated. Thus, technical and methodological requirements
as well as key challenges for effective stakeholder collaboration were identified.
Subsequently, the characteristics of Web-based dialogs as a core pillar for the Web-
based processing of workflow activities were examined. Based thereupon, crucial
technological, methodological and stakeholder-oriented requirements an adequate
development approach should address were identified. The preceding analysis
repeatedly highlighted effective reuse as an important factor for the efficient
construction of workflow-based Web applications and Web-based dialogs.
Consequently, a sound elaboration of challenges and corresponding requirements
for effective reuse in the Web Engineering domain followed.

Based on the resulting requirements catalog, a systematic in-depth analysis of the
current state of the art including representative scientific and commercial
approaches was performed. The analysis was structured along the dimensions
workflow, dialog, and reuse and arrived at the conclusion that existing solutions do
not achieve a sufficient fulfillment of the identified requirements. It was found that
the following major problem areas still hinder an efficient and effective construction
of workflow-based Web applications with stakeholders:

 No holistic consideration of workflow and user interface aspects

 Insufficient support for advanced Web-based dialogs

 Constricted, proprietary reuse approaches

 Heavy-weight, inflexible development methodologies

 Restrictive developer-centricity

204 Chapter 9 – Conclusion and Outlook

Against this background, this thesis introduced novel models, systems and
methodologies which explicitly address the identified requirements and open
challenges. The contributions are structured in four core pillars and their evaluation:

Web Engineering DSL Framework: In view of the heavy-weight, monolithic, and
developer-centric modeling approaches in the Web Engineering discipline, the Web
Engineering DSL Framework presents a novel alternative. It establishes the
conceptual foundation for continuously and intensely involving stakeholders
throughout the development process by enabling them to autonomously validate,
modify, and even specify parts of the solution. The framework suggests using a
multitude of highly-focused Domain-Specific Languages (DSLs) for the various
aspects of a Web application. The specification of a DSL allows for providing various
modeling notations and corresponding editors, each of them tailored to the
characteristics of an individual stakeholder audience and process stage. The resulting
DSL programs serve as instrumentation for a DSL-specific software component which
executes them by adapting its behavior accordingly. In conclusion, Web applications
can be constructed in an evolutionary way by composing these DSL components and
configuring them with DSL programs in form of stakeholder-tailored models.

Workflow DSL: Designed in accordance with the Web Engineering DSL Framework,
the Workflow DSL enables the stakeholder-oriented and fully model-based
development of workflow-based Web applications. The Workflow DSL bridges the
gap between existing workflow execution platforms and the need for Web-based
user interfaces for the efficient and effective processing of human tasks. It was
shown how the XML Process Definition Language (XPDL), a widely-adopted workflow
specification standard, can be systematically extended towards capturing the Web-
based realization of workflow activities. To this end, a catalog of highly reusable
Activity Building Blocks (ABBs) addressing the concerns dialog-based user
interaction, data presentation and Web service communication was introduced. For
each ABB, the minimal required configuration set in order to specify the desired
behavior was elaborated and served as conceptual foundation for the metamodel-
based extension of the XPDL standard. The resulting formalized schema of the
Workflow DSL forms a novel, standard-based foundation for the holistic specification
of both workflow execution and Web-based user interface aspects.

The Workflow DSL fosters the effective collaboration with stakeholders by allowing
them to use standardized modeling notations and tools according to their individual
skills and preferences. Thereby, technical complexity is hidden as far as possible and
the modeling focus shifted towards the business process’ structure. In order to
enable such a cross-notational modeling on a single shared Workflow DSL program
and thus achieving a novel degree of model continuity and integrity, the existing
heterogeneity of business process modeling standards has to be overcome. Facing
this so-far unsolved challenge, a novel model transformation framework striking a
new path by introducing the Core Elements Set (CES) concept was presented. The
CES defines a set of common business process and workflow concepts which
abstracts from individual notations and languages. Thus, the CES establishes the
conceptual basis for achieving semantic congruence between heterogeneous
business process and workflow modeling languages. Although the CES cannot
provide full coverage for all theoretical possible modeling constructs, empirical

Chapter 9 – Conclusion and Outlook 205

evaluations showed that it achieves sufficient coverage for the great majority of
scenarios occurring in practice. Based on the CES, a systematically and non-invasively
extensible framework for lossless, bilateral model transformations was presented.
The successful realization of the vision of real cross-notational modeling was
exemplified by four modeling notations, their corresponding standardized
serialization formats and supporting tools: The Business Process Modeling Notation
(BPMN), UML 2.0 Activity Diagrams, Petri Nets and a custom table-based notation
for early requirements engineering activities. Besides these horizontal
transformations, also a vertical transformation to an executable workflow language
was presented.

The Workflow DSL’s technical support platform realizes the execution of model
transformations and the fully-automated construction of workflow-based Web
applications according to a given Workflow DSL program. Its service-oriented design
establishes a sound foundation for federative scenarios and multimodal
participation. The automated construction process and the consistent propagation of
changes as well as the DSL-supported detailed design of the Web-based user
interfaces at runtime foster an agile and evolutionary development process.

Dialog DSL: Complex but nonetheless effective dialog-based user interaction forms a
core pillar for the Web-based processing of workflow activities. To this end, the
Dialog DSL as a novel, fully model-based approach for the efficient and usability-
oriented construction of advanced Web-based dialogs was presented. Simplicity
formed a key principle in the DSL’s design in order to enable stakeholders to
autonomously validate, modify and create dialogs or their models respectively.

Furthermore, the Dialog DSL inherently focuses on usability aspects and related best
practices as core features of advanced dialogs and facilitates their efficient model-
based incorporation. The strong focus on usability already at design time as well as
its excellent adequacy for stakeholders presents a significant advancement of the
current state of the art. While the great majority of today’s solutions still pursue a
paper-like, predominantly technically- and appearance-oriented design approach,
the Dialog DSL shifts the focus to usability and particularly dynamic behavior. Thus,
the potentials of Web-based dialogs are effectively utilized and cognitive overload
avoided.

Due to the automated dialog generation facilities as well as the rapid, fully model-
based roundtrip engineering supported by a Web-based editor, the Dialog DSL
enables an agile and evolutionary development process. Consequently, the Dialog
DSL achieves significant efficiency gains compared to existing approaches. Adequate
model transformations accomplish the client-specific adaptation and rendering of
dialog models according to the W3C XForms standard and allow for the flexible
incorporation of additional markup formats.

Web Engineering Reuse Sphere: Efficient and effective reuse across the diversity of
existing Web Engineering methodologies combined with strong stakeholder
involvement present the main contributions of the Web Engineering Reuse Sphere. It
uniquely considers stakeholder characteristics and skills as key factors for reuse
effectiveness, i.e. the capability to understand, evaluate and subsequently modify
and use reusable artifacts. The introduced Web Engineering Reuse Ontology

206 Chapter 9 – Conclusion and Outlook

establishes a semantic foundation for homogenizing the variety of heterogeneous
Web Engineering methodologies and artifacts. Therefore, it provides well-defined
extension points and was formalized based on Semantic Web standards. The
technical integration of existing artifact repositories and client applications is guided
by a supplemental architectural reference framework. By integrating also local ad-
hoc repositories, both planned and spontaneous reuse scenarios are supported
which in turn improves the coordination of hitherto unrecognized redundant
development efforts.

Due to the ontology-based registry, the Web Engineering Reuse Sphere provides
novel, cross-methodological search strategies which include stakeholder skills as an
integral search facet. Thus, stakeholders are enabled to efficiently find adequate
resolution strategies and artifacts for a given task type and in accordance with their
individual skills and knowledge. In view of current consolidation activities towards
model interoperability in the Web Engineering discipline, the Web Engineering Reuse
Sphere forms a valuable contribution as enabler for real cross-methodological reuse.
Beyond that, it also facilitates the DSL-based Web Engineering process by assisting
stakeholders in finding adequate DSLs, modeling notations, software and related
artifacts.

Evaluation: This thesis presented novel solutions for the efficient and effective
construction of workflow-based Web applications which successfully address the
identified requirements and hitherto unsolved challenges. Comprehensive technical
implementations of the presented approaches allowed for their practical evaluation
in various scenarios. Thus, their applicability and significant benefits for developing
real-world applications could be observed. Furthermore, the achieved results were
published in nineteen publications at international workshops, conferences and
journals and intensely discussed with researchers from the Web Engineering
community and adjacent research areas.

In addition, formal empirical evaluations of the presented core concepts and
methodologies were conducted. Regarding the Workflow DSL, the applicability of the
novel Core Elements Set (CES) concept and the Application Building Blocks (ABB)
catalog were examined based on a comprehensive set of real-world business process
models. The study arrived at the conclusion that the CES achieves 97.5 % coverage of
the occurring modeling constructs and that 100% of the workflow activities could be
realized with the ABB catalog. This confirms the Workflow DSL’s excellent
applicability for the fully model-driven and cross-notational construction of
workflow-based Web applications based on real-world business process models.

The Dialog DSL approach was empirically examined concerning its development
efficiency and stakeholder adequacy. A formal experiment substantiated that the
Dialog DSL achieves significant efficiency gains by a factor of 2.6 compared to
existing approaches. Furthermore, a survey-based evaluation confirmed its modeling
notation’s adequacy for stakeholders with heterogeneous, none-IT-related
educational backgrounds. The participating stakeholders achieved an objective
average success rate of 88% with respect to creating, modifying and validating dialog
models. Their subjective perception of the modeling notation’s stakeholder
adequacy averaged 88.13 %. In summary, the Dialog DSL approach forms a

Chapter 9 – Conclusion and Outlook 207

fundamental contribution to the current state of the art in terms of efficiency and
stakeholder involvement.

The presented models, systems and methodologies establish also a sound basis for
future work. While the Workflow DSL provides sufficient support for basic federative
scenarios, more advanced settings could require additional considerations, e.g.
regarding distributed workflow transaction management (Wenzel 2009; Wenzel,
Freudenstein and Nussbaumer 2009). Furthermore, as the empirical evaluation
showed, domain-specific specializations of the introduced ABBs can further improve
the approach’s efficiency and should thus be further examined. To this end, the Web
Engineering DSL Framework provides an adequate conceptual foundation for their
specification and evolution. The service-oriented and distributed nature of workflow-
based Web applications drives the need for adequate approaches addressing their
operation at a consistent level of quality. In this context, particular emphasis has to
be placed on capturing and evaluating the complex interdependencies between
relevant services, systems and stakeholders throughout their complete lifecycle
(Majer, Nussbaumer and Gaedke 2008; Majer, Nussbaumer and Freudenstein 2009).

The Dialog DSL considers usability as a core feature of advanced Web-based dialogs,
particularly in the context of workflow-based Web applications. In addition to its
inherent accentuation of usability best practices and the facilitation of their model-
based realization, a proactive usability validation at design time would present an
ideal complement. Therefore, usability best practices could be conceptualized as
rules based on the Dialog DSL’s formalized schema and continuously evaluated at
design time. Furthermore, measuring the success of the Dialog DSL’s focus on
usability in term of the approach’s influence on the resulting dialog’s usability could
provide interesting insights for its continuous advancement.

The Web Engineering Reuse Ontology achieves a homogenization of Web
Engineering methodologies not only regarding solely reuse-related aspects, but also
with regard to their respective artifacts, modeling techniques, tools, methodologies
and knowledge. Thus, it presents also a valuable input for consolidation activities in
the Web Engineering discipline like the MDWEnet initiative. Thus, a continuous
alignment would be desirable in order to enable mutual benefits and particularly to
accomplish the long-term vision of cross-methodological interoperability and reuse.

List of Figures

Figure 1-1: Structure of the Thesis ... 9

Figure 2-1: Simplified Excerpt from the “Business Trip” Business Process .. 15

Figure 2-2: Various Business Process Modeling Notations and Tools .. 19

Figure 3-1: Overview of Steps, Tools and Results of the WebML Methodology for Lightweight Web-
enabled Workflows. Taken from: (Brambilla 2006) .. 31

Figure 3-2: Overview of IBM Business Process Management Products. Taken from: (IBM Corp. 2006)
 .. 34

Figure 3-3: Overview of the Development Process based on the IBM Platform. Taken from: (Brown,
Johnston, Larsen et al. 2005) .. 36

Figure 3-4: Abstract Widget Ontology of OOHDM/SHDM. Taken from: (Moura and Schwabe 2004) .. 37

Figure 3-5: Screenshot of IBM Lotus Forms Designer .. 41

Figure 4-1: Overview of the Evolutionary and Reuse-Oriented DSL-based Web Engineering Approach
 .. 53

Figure 4-2: Projection of the Domain-Specific Model (DSM) onto the Domain Interaction Model (DIM)
Taxonomy ... 54

Figure 4-3: Complete Overview of the Presented Contributions for the Stakeholder-Oriented
Construction of Workflow-based Web Applications .. 58

Figure 5-1: Overview of the Evolutionary Workflow DSL Process Model .. 64

Figure 5-2: Overview of the XPDL Process Definition Metamodel. Taken from: (Shapiro, Marin, Brunt
et al. 2005) .. 67

Figure 5-3: Schematized Overview of Relevant XPDL Application Types and the Web-Specific
Extensions Introduced by the Workflow DSL ... 73

Figure 5-4: XPDL Type Declaration and Data Field Specification within a Workflow DSL Program 74

Figure 5-5: Workflow Activity Definition within a Workflow DSL Program .. 75

Figure 5-6: Application Definition for a Web-based Expense Report Dialog within a Workflow DSL
Program .. 76

Figure 5-7: Multi-Notational Modeling of a Shared Workflow DSL Program ... 77

Figure 5-8: Initial Draft of the Business Process using the Simple Sequence Only (SSO) DIM and
Microsoft Word 2007 ... 78

Figure 5-9: Transformed BPMN Representation of Workflow DSL Program ... 80

file://rio/userdata/freudenstein/docs/Promotion/_Diss/Thesis/20090902-RTM-Thesis_fertig.docx%23_Toc239664998
file://rio/userdata/freudenstein/docs/Promotion/_Diss/Thesis/20090902-RTM-Thesis_fertig.docx%23_Toc239664998

210 List of Figures

Figure 5-10: Added Process Section in the BPMN DIM Representation and the Corresponding
Workflow DSL Program’s XML Representation .. 81

Figure 5-11: UML 2.0 Profile for the Workflow DSL’s UML 2.0 Activity DIM ... 83

Figure 5-12: Extending the Business Process using the UML 2.0 Activity DIM and IBM Rational
Software Architect .. 84

Figure 5-13: Excerpts from the XMI-based Serialization corresponding to the Business Process Section
Added using the UML 2.0 Activity DIM ... 85

Figure 5-14: Workflow Modeling using the Petri Nets DIM and INCOME 2010 88

Figure 5-15: PNML Excerpt resulting from the Application Configuration for the CreateExpenseReport
Activity .. 88

Figure 5-16: Workflow Modeling: Role Assignment in INCOME 2010 ... 89

Figure 5-17: Role Assignment in PNML .. 89

Figure 5-18: Workflow Modeling: Data Object Specification in INCOME 2010 90

Figure 5-19: Data Object Specification in PNML .. 90

Figure 5-20: Model Transformation Strategies between various DIMs: (a) Peer-to-Peer, (b) Ring, (c)
Strategy based on an Intermediate Schema .. 92

Figure 5-21: Overview of the Workflow DSL’s Model Transformations following the Intermediate
Schema-based Model Transformation Strategy ... 93

Figure 5-22: Transitive Closure of the Model Transformation Graph .. 94

Figure 5-23: CES-based Model-to-Model Transformation Strategy ... 96

Figure 5-24: The CES Concepts Activity (a) / Silent Activity (b) and Sequence (c) 100

Figure 5-25: The CES Concepts Start Node (a) and End Node (b) .. 100

Figure 5-26: The CES Concepts AND-Split (a) and AND-Join (b) ... 100

Figure 5-27: The CES Concepts XOR-Split (a) and XOR-Join (b) .. 101

Figure 5-28: The CES Concepts OR-Split and OR-Join as Composition of an AND-Split/–Join as well as
multiple XOR-Split/-Join structures nested therein .. 101

Figure 5-29: The CES Concept Structured Loop as While-Do-Loop (a) and Do-While-Loop (b) 102

Figure 5-30: Pseudo Code of the Model Traversal and Transformation Algorithm 104

Figure 5-31: XSLT-based Implementation of the Stack Technique ... 104

Figure 5-32: Pseudo Code of the Layout Algorithm for the Petri Net DIM .. 105

Figure 5-33: Graph-Structured vs. Block-Structured Specification Styles .. 109

Figure 5-34: The Parallel Pattern in XPDL and XOML ... 110

Figure 5-35: The Decision Pattern in XPDL and XOML ... 110

Figure 5-36: Referencing Separately Defined Declarative Rule Conditions ... 111

Figure 5-37: The Structured Loop Pattern (variant: While-Do-Loop) in XPDL and XOML 111

Figure 5-38: XOML DependencyProperty for XPDL TypeDeclaration and DataField 112

Figure 5-39: The Technical Platform of the Workflow DSL .. 115

Figure 5-40: Excerpt of the Transform Web Service’s Public Interface .. 116

Figure 5-41: Achieving Interchangeable Transformation Engines based on the Strategy Design Pattern
 .. 117

Figure 5-42: Interaction between Clients, the Transform Service and Various Engines 118

List of Figures 211

Figure 5-43: List of Available Transformations in the Transformation Manager 120

Figure 5-44: Public Interface of the Workflow Web Service .. 122

Figure 5-45: Assembly of Application Building Blocks According to the Application Specification in the
Workflow DSL Program .. 123

Figure 5-46: Screenshot of the Workflow List in the Business Trip Example Scenario 124

Figure 5-47: Transitions between the Currently Visible Subordinated Components within the
Workflow SBB’s Inner Presentation Place .. 126

Figure 5-48: DIM-to-DSM Transformation via the Transform Manager .. 127

Figure 5-49: Configuring a Workflow SBB Instance in the WSLS Framework 128

Figure 5-50: Workflow Execution – The Create Expense Report Activity... 129

Figure 5-51: Support for Cross-Organizational Web-Based Workflow Scenarios 130

Figure 6-1: Overview of the Evolutionary Dialog Engineering Methodology 137

Figure 6-2: Simplified Excerpt from the Dialog DSL’s Domain-Specific Model 139

Figure 6-3: The Choice Interaction Structure as Petri Net Transition Template 141

Figure 6-4: The Sequence Interaction Structure as Petri Net Transition Template 142

Figure 6-5: Binding Interaction Elements via Corresponding User Control Symbols to Data Elements
and Defining Semantic Groups ... 142

Figure 6-6: Pagination of a Dialog Partition via the Sequence Interaction Structure 144

Figure 6-7: Overview of the Dialog DSL’s Technical Platform .. 145

Figure 6-8: Partitions & Transitions Design in the Web-Based DIM Editor .. 147

Figure 6-9: Usability-Oriented Appearance Design in the Web-Based DIM Editor 147

Figure 6-10: Initial Configuration of a Dialog SBB Instance .. 149

Figure 6-11: Rendered Web-based Travel Expense Report Dialog Incorporating Choice (1, 3) and
Sequence (5) Interaction Structures ... 150

Figure 7-1: The Web Engineering Reuse Sphere .. 154

Figure 7-2: Simplified Overview of the Ontology ... 156

Figure 7-3: Ontology Excerpt with Instances for WebML and UWE ... 157

Figure 7-4: Ontology Concepts related to Knowledge and Stakeholders (Simplified Excerpt) 158

Figure 7-5: Ontology Concepts Related to Artifact, Methodology, Process and Product (Simplified
Excerpt) ... 159

Figure 7-6: Ontology Concepts Resolution Strategy, Modeling Technique & Software and their
Instantiation for the WebML Methodology (Simplified Excerpt) ... 161

Figure 7-7: Ontology Concepts Resolution Strategy, Modeling Technique & Software and their
Instantiation for the Web Engineering DSL Framework (Simplified Excerpt) 162

Figure 7-8: Overview of an Artifact’s Relations .. 164

Figure 7-9: The Reference Architecture Framework .. 166

Figure 7-10: The Reuse View in the WSLS Framework ... 167

Figure 7-11: SPARQL Query for Determining all Modeling and Software Skills related to the Task
‘Design Business Process’ across all Web Engineering Methodologies .. 169

Figure 7-12: The ‘Search for Resolution Strategy’ Wizard .. 170

Figure 7-13: The ‘Search for Resolution Strategy’ Wizard .. 171

212 List of Figures

Figure 7-14: The ‘Search for Existing Artifact’ Wizard .. 172

Figure 7-15: Search Results with Browsing and Filtering Facilities ... 173

Figure 8-1: Classification Methodology for CES Evaluation .. 178

Figure 8-2: CES Evaluation Result before Remodeling ... 179

Figure 8-3: Observed Frequency Distribution of Identified CES Concepts in the Evaluated Business
Process Models ... 181

Figure 8-4: Identified Workflow Activity Types and their Coverage by the Workflow DSL’s Activity
Building Block Catalog .. 183

Figure 8-5: The KIM iSOA .. 184

Figure 8-6: FSM-based Model of the ‘Course Registration’ Integration Scenario 185

Figure 8-7: The Technical UI Workflow Integration and Execution Framework 187

Figure 8-8: UI Workflow Modeling in Visual Studio 2005 (1: FSM, 2: Entry Actions) and its Execution by
an UI Workflow WebPart Instance in the Students Portal (3) .. 188

Figure 8-9: Experiment Processes for the Two Groups or Treatments Respectively 192

Figure 8-10: Distribution of Skills in Group 1 (Based on Self-Assessment via Initial Skills & Experiences
Questionnaire) .. 193

Figure 8-11: Distribution of Skills in Group 2 (Based on Self-Assessment via Initial Skills & Experiences
Questionnaire) .. 193

Figure 8-12: Dialog Development Times using the Dialog DSL Approach vs. ASP.NET 194

Figure 8-13: Change Adoption Time using the Dialog DSL Approach vs. ASP.NET 195

Figure 8-14: Survey Process ... 199

Figure 8-15: Average Success Rates for Various Task Types .. 200

Figure 8-16: Stakeholder Adequacy Scale (SAS) Scores Awarded by the Participants 201

List of Tables

Table 2-1: Table-based Elicitation of Tasks and Roles of a Business Process Excerpt 18

Table 3-1: Evaluation of State of the Art Approaches against the Presented Requirements Catalog –
Dimensions Workflow and Dialog .. 48

Table 3-2: Evaluation of the State of the Art against the Presented Requirements Catalog – Dimension
Reuse .. 48

Table 3-3: Legend of Rating Symbols ... 49

Table 3-4: Overview of the Requirements Catalog from Chapter 2 ... 49

Table 5-1: The Core Elements Set (CES) ... 97

Table 5-2: Mapping of CES Concepts to XOML Elements ... 108

Table 5-3: Complete Overview of Mappings between DIMs and the DSM (Part 1/2) 113

Table 5-4: Complete Overview of Mappings between DIMs and the DSM (Part 2/2) 114

Table 6-1: Multi-Step Transformation of Dialog Models into Executable Markup 145

Table 8-1: Frequency of Workflow Concepts Before and After the Error Resolution by Remodeling 180

Table 8-2: GQM Plan for the Experimental Evaluation of the Dialog DSL’s Efficiency 190

Table 8-3: Performance-Based Subject Allocation into Two Balanced Groups 191

Table 8-4: Measured Dialog Development Time and Derived Statistical Measures 194

Table 8-5: Measured Change Adoption Time and Derived Statistical Measures 194

Table 8-6: Effective Experiment Times and Calculation of the T-Test .. 196

Table 8-7: GQM Plan for the Evaluation of the Dialog DSL’s Stakeholder Adequacy 197

Table 8-8: Stakeholder Adequacy Scale (SAS) for the Subjective Rating of the Dialog DSL’s Modeling
Notation by Survey Participants (translated from German) ... 198

Table 8-9: Survey Participants, their Occupation or Educational Background and Age 199

Table 8-10: Survey Results including Exercise Performances and SAS Rating 200

Bibliography

Acerbis, R., A. Bongio, M. Brambilla and S. Butti (2007). WebRatio 5: An Eclipse-based
CASE Tool for Engineering Web Applications. In Proceedings of 7th
International Conference on Web Engineering (ICWE 2007). Como,
ItalySpringer, Heidelberg, ISBN: 978-3-540-73596-0.

Allerding, F. (2007). Modellgetriebene Entwicklung dynamischer
Benutzerschnittstellen im Web Engineering. Diploma Thesis, Institute of
Telematics, University of Karlsruhe (TH), Karlsruhe, 30.04.2007. 115 pages.

Allerding, F., J. Buck, P. Freudenstein, T. Höllrigl, W. Juling, B. Keuter, B. Klosek, S.
Link, F. Majer, A. Maurer, M. Nussbaumer, D. Ried and F. Schell (2008).
Integriertes Service-Portal zur Studienassistenz. In Proceedings of
INFORMATIK 2008, 38. Jahrestagung der Gesellschaft für Informatik. Munich,
Germany, 08.-13.09.2008. ISBN: 978-3-88579-228-4.

Alter, A. (2007). 50 Technologies: Where CIOs are Spending Their Money, CIO Insight,
14 Februray 2007, from: http://www.cioinsight.com/c/a/Research/50-
Technologies-Where-CIOs-are-Spending-Their-Money/.

Arango, G. (1989). Domain Analysis: From Art Form to Engineering Discipline. ACM
SIGSOFT Software Engineering Notes 14(3): 152-159. ISSN: 0163-5948

Arsanjani, A. (2004). Service-oriented Modeling and Architecture. IBM
developerWorks International Business Machines (IBM) Corporation.
Retrieved 16.04.2009, from http://www-
128.ibm.com/developerworks/webservices/library/ws-soa-design1/.

Basili, V. R., G. Caldiera and H. D. Rombach (1994). Goal Question Metrics Paradigm.
In: Encyclopedia of Software Engineering. J. Marciniak (ed.), John Wiley and
Sons. Vol. 1: 528-532.

Batory, D., B. Lofaso and Y. Smaragdakis (1998). JTS: Tools for Implementing Domain-
Specific Languages. In Proceedings of Fifth International Conference on
Software Reuse. Victoria, British Columbia, Canada, 2-5 June 1998. IEEE
Computer Society Press, ISBN: 978-0818683770.

http://www.cioinsight.com/c/a/Research/50-Technologies-Where-CIOs-are-Spending-Their-Money/
http://www.cioinsight.com/c/a/Research/50-Technologies-Where-CIOs-are-Spending-Their-Money/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design1/

216 Bibliography

Baumeister, H., N. Koch and L. Mandel (1999). Towards a UML Extension for
Hypermedia Design. In Proceedings of UML´99: The Unified Modeling
Language - Beyond the Standard. Fort Collins,USASpringer Verlag

BEA Systems (2007). State of the Portal Market 2007: Portals and the Power of
Participation, White Paper. 42 pages, San Jose, USA, 25 May 2007, from:
http://www.oracle.com/technology/pub/articles/dev2arch/2008/03/state-
of-portal-market.html.

Bechhofer, S., F. v. Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-
Schneider and L. A. Stein (2004). OWL Web Ontology Language Reference,
World Wide Web Consortium (W3C), W3C Recommendation. 10 February
2004, from: http://www.w3.org/TR/owl-ref/.

Berglund, A., S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie and J. Siméon.
(2007, 23 January 2007). XML Path Language (XPath) 2.0. W3C
Recommendation, World Wide Web Consortium (W3C). Retrieved
19.03.2009, from http://www.w3.org/TR/xpath20/.

Bieberstein, N., S. Bose, M. Fiammante, K. Jones and R. Shah (2006). Service-Oriented
Architecture (SOA) Compass: Business Value, Planning, and Enterprise
Roadmap, IBM Press. 232 pages.

Blechar, M. J. (2007). IBM's Federated Metadata Management Strategy, Gartner,
Inc., Research Report. 10 pages, Stamford, CT, USA, G00147616, 16 April
2007

Boldyreff, C., D. Nutter and S. Rank (2002). Active Artefact Management for
Distributed Software Engineering. In Proceedings of Proc. of the 26th
International Computer Software and Applications Conference on Prolonging
Software Life: Development and Redevelopment. IEEE Computer Society

Bos, B., T. Çelik, I. Hickson and H. W. Lie. (2007, 19 July 2007). Cascading Style Sheets
Level 2 Revision 1 (CSS 2.1) Specification. W3C Candidate Recommendation,
World Wide Web Consortium (W3C). Retrieved 19.03.2009, from
http://www.w3.org/TR/CSS21/.

Böttger, M. (2008). Ein ontologiebasiertes Wiederverwendungs-Rahmenwerk für das
kollaborative Web Engineering. Diploma Thesis, Institute of Telematics,
University of Karlsruhe (TH), Karlsruhe, 30.04.2008. 132 pages.

Boyer, J., T. Bray and M. Gordon (1998). Extensible Forms Description Language
(XFDL) 4.0, World Wide Web Consortium (W3C), W3C Note. September 2,
1998, from: http://www.w3.org/TR/NOTE-XFDL.

Boyer, J. M., M. Dubinko, J. Leigh L. Klotz, D. Landwehr, R. Merrick and T. V. Raman.
(2007, 29 October 2007). XForms 1.0 (Third Edition). W3C Recommendation,
World Wide Web Consortium (W3C). from
http://www.w3.org/MarkUp/Forms/specs/XForms1.0.ThirdEdition/index-
all.html.

Bozzon, A., S. Comai, P. Fraternali and G. T. Carughi (2006). Conceptual Modeling and
Code Generation for Rich Internet Applications. In Proceedings of

http://www.oracle.com/technology/pub/articles/dev2arch/2008/03/state-of-portal-market.html
http://www.oracle.com/technology/pub/articles/dev2arch/2008/03/state-of-portal-market.html
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/CSS21/
http://www.w3.org/TR/NOTE-XFDL
http://www.w3.org/MarkUp/Forms/specs/XForms1.0.ThirdEdition/index-all.html
http://www.w3.org/MarkUp/Forms/specs/XForms1.0.ThirdEdition/index-all.html

Bibliography 217

International Conference on Web Engineering 2006 (ICWE 2006). Menlo Park,
USA

Brambilla, M. (2006). Generation of WebML Web Application Models from Business
Process Specifications. In Proceedings of International Conference on Web
Engineering (ICWE) 2006. Menlo Park, California, USA

Brambilla, M., S. Ceri, S. Comai, P. Fraternali and I. Manolescu (2003). Specification
and Design of Workflow-Driven Hypertexts. Journal of Web Engineering (JWE)
1(2): 163-182. ISSN: 1540-9589

Brambilla, M., S. Ceri, P. Fraternali and I. Manolescu (2006). Process Modeling in Web
Applications. ACM Transactions on Software Engineering and Methodology
(TOSEM) 15(4): 360 - 409. ISSN: 1049-331X

Brambilla, M., S. Comai, P. Fraternali and M. Matera (2008). Designing Web
Applications with WebML and WebRatio. In: Web Engineering - Modelling
and Implementing Web Applications. G. Rossi, O. Pastor, D. Schwabe and L.
Olsina (eds.). London, UK, Springer Verlag Ltd.: 221-261. ISBN: 978-1-84628-
922-4

Briand, L., K. E. Emam and S. Morasca (1996). On the Application of Measurement
Theory in Software Engineering. Journal on Empirical Software Engineering
1(1): 61-88. ISSN: 1382-3256

Brickley, D. and L. Miller. (2007). FOAF Vocabulary Specification 0.91. Retrieved
12.02.2008, from http://xmlns.com/foaf/spec/.

Brooke, J. (1996). SUS - A Quick and Dirty Usability Scale. In: Usability Evaluation in
Industry. P. W. Jordan, B. Thomas, B. A. Weerdmeester and A. L. McClelland
(eds.). London, Taylor and Francis: 252. ISBN: 978-0748404605

Brown, A. W., S. K. Johnston, G. Larsen and J. Palistrant (2005). SOA Development
Using the IBM Rational Software Development Platform: A Practical Guide,
International Business Machines (IBM) Corporation, White Paper. 36 pages,
Somers, NY, September 2005, from:
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/G507-0956-
00.pdf.

Buck, J. (2007). Modellgetriebene Entwicklung Workflow-basierter Web
Anwendungen. Diploma Thesis, Institute of Telematics, University of
Karlsruhe (TH), Karlsruhe, 28 February 2007. 114 pages.

Cantara, M., F. Biscotti and A. Raina (2007). Forecast: Portal, Process and Middleware
Software, Worldwide, 2006-2011, Gartner, Inc., Research Report. Stanford,
CT, USA, G00148362, 27 April 2007

Carter, S. (2007). The New Language of Business: SOA & Web 2.0, IBM Press /
Pearson. 299 pages. ISBN: 013195654X

Ceri, S., P. Fraternali and A. Bongio (2000). Web Modeling Language (WebML): A
Modeling Language for Designing Web Sites. In Proceedings of 9th
International World Wide Web Conference (WWW). Amsterdam,
Nethderlands

http://xmlns.com/foaf/spec/
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/G507-0956-00.pdf
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/G507-0956-00.pdf

218 Bibliography

Ceri, S., P. Fraternali and M. Matera (2001). WebML Application Frameworks: a
Conceptual Tool for Enhancing Design Reuse. In Proceedings of WWW10
Workshop Web Engineering. Hong Kong

Charette, R. N. (2005). Why Software Fails. IEEE Spectrum 42(9): 42-49. ISSN: 0018-
9235

Chouchane, L. (2009). Empirische Evaluation der Effektivität der Stakeholder-
Einbindung durch den Dialog DSL-Ansatz. Study Thesis, Institute of
Telematics, University of Karlsruhe (TH), Karlsruhe, 27.03.2009. 146 pages.

Christensen, E., F. Curbera, G. Meredith and S. Weerawarana (2001). Web Services
Description Language (WSDL) 1.1.

Clark, J. (1999). Extensible Stylesheet Language Transformations (XSLT), Version 1.0.
W3C Recommendation, World Wide Web Consortium (W3C). Retrieved
20.03.2009, from http://www.w3.org/TR/xslt.

Cockburn, A. (2006). Agile Software Development, Addison-Wesley Professional.
ISBN: 978-0321482754

Cowan, D. D. and C. J. P. Lucena (1995). Abstract Data Views: An Interface
Specification Concept to Enhance Design for Reuse. Software Engineering,
IEEE Transactions on 21(3): 229-243.

Czarnecki, K. and U. W. Eisenecker (2000). Chapter 3: Domain Engineering and
Object-Oriented Analysis and Design. In: Generative Programming. Methods,
Tools and Applications: Methods, Techniques and Applications. Amsterdam,
Addison-Wesley Longman. ISBN: 0201309777

Czarnecki, K. and S. Helsen (2003). Classification of Model Transformation
Approaches. In Proceedings of OOPSLA’03 Workshop on Generative
Techniques in the Context of Model-Driven Architecture. Anaheim, CA, USA,
27 October 2003.

De Medeiros, A. P., D. Schwabe and B. Feijo (2005). Kuaba Ontology : Design
rationale representation and reuse in model-based designs. In Proceedings of
Proc. of 24th International Conference on Conceptual Modeling. Klagenfurt,
Austria

Dean, M. and M. Paolucci (2008). Proceedings of "Semantic Web in Use" Track. In:
Proceedings of the Seventh International Semantic Web Conference (ISWC
2008). A. P. Sheth, S. Staab, M. Deanet al (eds.). Karlsruhe, Germany, Springer
Verlag, Berlin / Heidelberg. ISBN: 978-3-540-88563-4

Deshpande, Y., S. Murugesan, A. Ginige, S. Hansen, D. Schwabe, M. Gaedke and B.
White (2002). Web Engineering. Journal of Web Engineering 1(1): 3-17.

Deursen, A. v., P. Klint and J. Visser (2000). Domain-Specific Languages: An
Annotated Bibliography. ACM SIGPLAN Notices 35(6): 26-36.

Dublin Core Metadata Initiative. (2008). Dublin Core Metadata Initiative RDF
Schemas. Retrieved 12.02.2008, from http://dublincore.org/schemas/rdfs/.

http://www.w3.org/TR/xslt
http://dublincore.org/schemas/rdfs/

Bibliography 219

Ecma International (2006). Standard ECMA-376: Office Open XML File Formats - First
Edition, Ecma International, ECMA-376, December 2006, from:
http://www.ecma-international.org/publications/standards/Ecma-376.htm.

Erl, T. (2005). Service-Oriented Architecture - Concepts, Technology, and Design,
Prentice Hall. 792 pages. ISBN: 978-0131858589

Escalona, M. J. and N. Koch (2004). Requirements Engineering for Web Applications –
A Comparative Study. Journal of Web Engineering 2(3): 193-212. ISSN: 1540-
9589

Fasbinder, M. (2007a, 24 October 2007). Business Process Standards, Part 2: How the
Standards are Used in WebSphere Products. IBM developerWorks IBM
Corporation. Retrieved 03.03.2009, 2009, from
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_
fasbinder2/0710_fasbinder2.html.

Fasbinder, M. (2007b, 05 December 2007). What's new in WebSphere Integration
Developer V6.1. IBM developerWorks IBM Corporation. Retrieved
03.03.2009, 2009, from
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_
fasbinder_wid/0712_fasbinder.html.

Fasbinder, M. (2007c, 05 December 2007). What’s new in WebSphere Business
Modeler V6.1. IBM developerWorks IBM Corporation. Retrieved 03.03.2009,
2009, from
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_
fasbinder/0712_fasbinder.html.

Feigenbaum, L. and T. Heath. (2009). International Semantic Web Conference 2009 -
Semantic Web In Use Track - Call for Papers. Semantic Web Science
Association. Retrieved 09.03.2009, from
http://iswc2009.semanticweb.org/wiki/index.php/ISWC_2009_Semantic_We
b_In_Use_Track.

Fensel, D. (2003). The OntoWeb Ontology Homepage. Retrieved 08.02.2008, from
http://www.ontoweb.org/Ontology/index.html.

Fialho, A. and D. Schwabe (2007). Enriching Hypermedia Application Interfaces. In
Proceedings of 6th International Workshop on Web-Oriented Software
Technologies (IWWOST'07). Como, Italy

Fowler, M. (2005, 12.06.2005). Language Workbenches: The Killer-App for Domain
Specific Languages? , from
http://www.martinfowler.com/articles/languageWorkbench.html.

Frakes, W. B. and T. P. Pole (1994). An Empirical Study of Representation Methods for
Reusable Sofware Components. IEEE Transactions on Software Engineering
20(8): 617.

Fransen, J. (2003). Customizing the Microsoft Office 2003 Research Task Pane.
Retrieved 12.02.2008, from http://msdn2.microsoft.com/en-
us/library/aa159647(office.11).aspx.

http://www.ecma-international.org/publications/standards/Ecma-376.htm
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_fasbinder2/0710_fasbinder2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0710_fasbinder2/0710_fasbinder2.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_fasbinder_wid/0712_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_fasbinder_wid/0712_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_fasbinder/0712_fasbinder.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0712_fasbinder/0712_fasbinder.html
http://iswc2009.semanticweb.org/wiki/index.php/ISWC_2009_Semantic_Web_In_Use_Track
http://iswc2009.semanticweb.org/wiki/index.php/ISWC_2009_Semantic_Web_In_Use_Track
http://www.ontoweb.org/Ontology/index.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://msdn2.microsoft.com/en-us/library/aa159647(office.11).aspx
http://msdn2.microsoft.com/en-us/library/aa159647(office.11).aspx

220 Bibliography

Freeman, P. (1983). Reusable Software Engineering: Concepts and research
directions. In Proceedings of The Workshop on Reusability in Programming.
Newport, RI, USA

Freudenstein, P., M. Boettger and M. Nussbaumer (2008). Efficacious Reuse Support
as Enabler for Cross-Methodological Web Engineering with Stakeholders. In
Proceedings of 8th International Conference on Web Engineering
(ICWE2008). New York, USA, 14-18 July 2008. Institute of Electrical and
Electronics Engineers (IEEE), ISBN: 978-0-7695-3261-5.

Freudenstein, P., J. Buck, M. Nussbaumer and M. Gaedke (2007). Model-driven
Construction of Workflow-based Web Applications with Domain-specific
Languages. In Proceedings of Third International Workshop on Model-Driven
Web Engineering (MDWE 2007), in conjunction with Seventh International
Conference on Web Engineering (ICWE2007). Como, ItalyCEUR Workshop
Proceedings, ISSN 1613-0073., ISBN: ISSN 1613-0073.

Freudenstein, P., L. Liu, F. Majer, A. Maurer, C. Momm, D. Ried and W. Juling (2006).
Architektur für ein universitätsweit integriertes Informations- und
Dienstmanagement. In Proceedings of Tagungsband zur INFORMATIK 2006 -
Informatik für Menschen, 36. Jahrestagung der Gesellschaft für Informatik.
Dresden, October 2006.

Freudenstein, P., F. Majer and A. Maurer (2006). SOA in der Praxis - eine
Referenzarchitektur. dot.net-magazin(11/2006): 22-27. ISSN: 1619-7933

Freudenstein, P., F. Majer, A. Maurer, D. Ried and W. Juling (2007).
Wiederverwendungsorientierte Dienste für Universitäten. In Proceedings of
INFORMATIK 2007, 37. Jahrestagung der Gesellschaft für Informatik. Bremen,
Germany, September 2007.

Freudenstein, P., F. Majer and M. Nussbaumer (2008). Agile WebPart-Entwicklung.
dot.net-magazin(11/2008): 92-95. ISSN: 1619-7933

Freudenstein, P. and M. Nussbaumer (2008a). Constructing Advanced Web-based
Dialog Components with Stakeholders - a DSL Approach. In Proceedings of 8th
International Conference on Web Engineering (ICWE2008). New York, USA,
14-18 July 2008. Institute of Electrical and Electronics Engineers (IEEE), ISBN:
978-0-7695-3261-5.

Freudenstein, P. and M. Nussbaumer (2008b). The Dialog DSL: Rapid Development of
Advanced Web-based Dialogs with Stakeholders, University of Karlsruhe (TH),
Technical Report. 14 pages, Karlsruhe, Germany, 2008-6 - ISSN: 1432-7864,
from: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000008071.

Freudenstein, P., M. Nussbaumer, F. Allerding and M. Gaedke (2008). A Domain-
specific Language for the Model-driven Construction of Advanced Web-based
Dialogs. In Proceedings of 17th International World Wide Web Conference
(WWW2008). Beijing, China, 21-25 April 2008. Association for Computing
Machinery, ISBN: 978-1-60558-085-2.

Freudenstein, P., M. Nussbaumer, F. Majer and M. Gaedke (2007). A Workflow-
Driven Approach for the Efficient Integration of Web Services in Portals. In

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000008071

Bibliography 221

Proceedings of IEEE International Conference on Services Computing 2007
(SCC 2007). Salt Lake City, Utah, USA, 9-13 July 2007. IEEE Computer Society,
ISBN: 0-7695-2925-9.

Gaedke, M., M. Nussbaumer and J. Meinecke (2005). WSLS: An Agile System
Facilitating the Production of Service-Oriented Web Applications. In:
Engineering Advanced Web Applications. S. C. M. Matera (ed.), Rinton Press:
26-37. ISBN: 1-58949-046-0

Gaedke, M. and J. Rehse (2000). Supporting Compositional Reuse in Component-
Based Web Engineering. In Proceedings of 2000 ACM Symposium on Applied
Computing (SAC 2000). Villa Olmo, Como, Italy, 19.-21.03.2000. ACM

Gamma, E., R. Helm, R. Johnson and J. Vlissides (1995). Design patterns: elements of
reusable object-oriented software. Reading, Mass., Addison-Wesley. xv, 395
pages. ISBN: 0201633612 (acid-free paper)

Ginige, A. and S. Murugesan (2001). Guest Editors' Introduction: Web Engineering: An
Introduction. IEEE MultiMedia 8(1): 14-18. ISSN: 1070-986X

Gootzit, D., G. Phifer, R. Valdes, N. Drakos, A. Bradley, K. Harris, D. Sholler, M.
Pezzini, Y. V. Natis, B. Gassman, D. M. Smith, D. W. Cearley, R. W. Schulte, S.
Prentice, N. Gall, W. Clark and A. Lapkin (2008). Hype Cycle for Web and User
Interaction Technologies, 2008, Gartner, Inc., Research Report. Stanford, CT,
USA, G00159447, 7 July 2008

Haase, P. (2007). Part III - Ontology Evolution. In: Semantic Technologies for
Distributed Information Systems. Karlsruhe, Universitätsverlag Karlsruhe:
226. ISBN: 3866441002

Hailpern, B. and P. Tarr (2006). Model-driven development: The good, the bad, and
the ugly. IBM Systems Journal 45(3): 451-461. ISSN: 0018-8670

Hailstone, R., R. Illsley, T. Jones and A. Kellett (2007). SOA Platforms, Butler Direct
Limited, 322 pages, BG-0041, June 2007

Havey, M. (2006). Keeping BPM Simple for Business Users. BP Trends Business
Process Trends. Retrieved 23.03.2009, from
http://www.bptrends.com/publicationfiles/01-06-ART-KeepingBPMSimple-
Havey.pdf.

Hennicker, R. and N. Koch (2000). A UML-based Methodology for Hypermedia
Design. In Proceedings of Third International Conference on the Unified
Modeling Language (UML'2000). York, UKSpringer Verlag, ISBN: 354041133X.

Hennicker, R. and N. Koch (2001). Modeling the User Interface of Web Applications
with UML. In Proceedings of Practical UML-Based Rigorous Development
Methods Workshop at the UML 2001. Köllen Druck+Verlag

Herman, J. (2004). A process for creating the business case for user experience
projects. In Proceedings of Conference on Human Factors in Computing
Systems. Vienna, AustriaACM, New York, USA, ISBN: 1-58113-703-6

Heskett, J. L., W. E. Sasser and L. A. Schlesinger (1997). The Service Profit Chain. New
York, USA, Free Press. 320 pages. ISBN: 0684832569

http://www.bptrends.com/publicationfiles/01-06-ART-KeepingBPMSimple-Havey.pdf
http://www.bptrends.com/publicationfiles/01-06-ART-KeepingBPMSimple-Havey.pdf

222 Bibliography

Hewlett-Packard Development Company. (2003). Homepage of the Jena Semantic
Web Framework. SourceForge.net. Retrieved 17.04.2009, from
http://jena.sourceforge.net/.

Hill, J. B., J. Sinur, D. Flint and M. J. Melenovsky (2006). Gartner's Position on Business
Process Management (2006), Gartner, Inc., Research Report. 26 pages,
Stanford, CT, USA, G00136533, 16 February 2006

Hornung, T., A. Koschmider and J. Mendling (2006). Integration of heterogeneous
BPM Schemas: The Case of XPDL and BPEL. In Proceedings of The 18th
Conference on Advanced Information Systems Engineering (CAiSE '06), Forum
Proceedings. Luxembourg, 5-9 June 2006. CEUR Workshop Proceedings -
CEUR-WS.org

IBM. (2006). IBM WebSphere MQ Workflow Homepage. Retrieved 08.02.2009,
209, from http://www-306.ibm.com/software/integration/wmqwf/.

IBM Corp. (2006). Making Business Better: Business Process Management with SOA.
IBM Corporation. Retrieved 02.03.2009, 2009, from
ftp://ftp.software.ibm.com/software/websphere/pdf/2007WSB11257-USEN-
00_BPM_brochure_0921.pdf.

IBM Corp. (2008a). IBM Lotus Forms Homepage. International Business Machines
(IBM) Corporation. Retrieved 04.03.2009, from
http://www.ibm.com/software/lotus/forms/.

IBM Corp. (2008b). IBM Lotus Forms Server 3.5 - Webform Server Homepage.
International Business Machines (IBM) Corporation. Retrieved 05.03.2009,
from
http://publib.boulder.ibm.com/infocenter/forms/v3r5m0/index.jsp?topic=/c
om.ibm.form.webform.doc/toc.html.

IBM Corp. (2008c). IBM Lotus Forms Turbo Homepage. International Business
Machines (IBM) Corporation. Retrieved 05.03.2009, from
http://www.ibm.com/software/lotus/products/forms/turbo/.

IBM Corp. (2008d). IBM Rational Asset Manager Homepage. International Business
Machines (IBM) Corporation. Retrieved 06.03.2009, from
http://www.ibm.com/software/awdtools/ram/.

ISO/IEC 29500:2008 (2008). Information technology – Document description and
processing languages - Office Open XML file formats., International
Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC), ISO/IEC 29500:2008, from:
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html.

Joran, J. (1954). Universals in Management Planning and Controlling. The
Management Review 43(11): 748-761.

Jordan, D. and J. Evdemon. (2007). Web Services Business Process Execution
Language Version 2.0. OASIS Standard, Organization for the Advancement
of Structured Information Standards (OASIS). Retrieved 18.03.2009, from
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html.

http://jena.sourceforge.net/
http://www-306.ibm.com/software/integration/wmqwf/
ftp://ftp.software.ibm.com/software/websphere/pdf/2007WSB11257-USEN-00_BPM_brochure_0921.pdf
ftp://ftp.software.ibm.com/software/websphere/pdf/2007WSB11257-USEN-00_BPM_brochure_0921.pdf
http://www.ibm.com/software/lotus/forms/
http://publib.boulder.ibm.com/infocenter/forms/v3r5m0/index.jsp?topic=/com.ibm.form.webform.doc/toc.html
http://publib.boulder.ibm.com/infocenter/forms/v3r5m0/index.jsp?topic=/com.ibm.form.webform.doc/toc.html
http://www.ibm.com/software/lotus/products/forms/turbo/
http://www.ibm.com/software/awdtools/ram/
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Bibliography 223

Jouault, F. and W. Piers. (2009). The Atlas Transformation Language (ATL) - User
Guide. The Eclipse Foundation. Retrieved 07.04.2009, from
http://wiki.eclipse.org/ATL/User_Guide.

Juling, W. (2005). KIM Project Homepage. University of Karlsruhe (TH). Retrieved
12.02.2008, from http://www.kim.uni-karlsruhe.de/.

Kappel, G., B. Pröll, S. Reich and W. Retschitzegger (2006). Web Engineering: The
Discipline of Systematic Development, John Wiley & Sons. ISBN: 0-470-01554-
3

Karlsruhe Institute of Technology. (2007). Karlsruhe Institute of Technology (KIT)
Homepage. Retrieved 09.02.2009, 2009, from http://www.kit.edu.

Karlsruhe Institute of Technology. (2009). Form for requesting and granting business
trips as well as for stating expenses. Retrieved 06.02.2009, 2009, from
http://www.zvw.uni-karlsruhe.de/download/U.KA_0038.pdf.

Kieburtz, R. B., L. McKinney, J. M. Bell, J. Hook, A. Kotov, J. Lewis, D. P. Oliva, T.
Sheard, I. Smith and L. Walton (1996). A software engineering experiment in
software component generation. In Proceedings of 18th International
Conference on Software Engineering. IEEE Computer Society Press

Kindler, E. (2006). The Petri Net Markup Language and ISO/IEC 15909-2: Concepts,
Status, and Future Directions. In Proceedings of Entwurf Komplexer
Automatisierungssysteme (EKA 2006). Braunschweig, Germany, 29-31 May
2006.

Kindler, E. (2007). ISO/IEC 15909-2: Software and Systems Engineering – High-level
Petri Nets – Part 2: Transfer Format, Working Draft Version 1.1.4,
International Organization for Standardization (ISO) / International
Electrotechnical Commission (IEC), 62 pages, ISO/IEC 15909, 2007-01-22,
from: http://www.pnml.org/papers/cd_1.1.4.pdf.

Kiss, C. (2007, 30 April 2007). Composite Capability/Preference Profiles (CC/PP):
Structure and Vocabularies 2.0. W3C Working Draft, World Wide Web
Consortium (W3C). Retrieved 13.04.2009, from http://www.w3.org/TR/CCPP-
struct-vocab2/.

Klink, S., Y. Li and A. Oberweis (2008). INCOME2010 - a Toolset for Developing
Process-Oriented Information Systems Based on Petri Nets. In Proceedings of
First International Conference on Simulation Tools and Techniques for
Communications, Networks and Systems. Marseille, France, ISBN: 978-963-
9799-20-2.

Klyne, G. and J. J. Carroll (2004). Resource Description Framework (RDF): Concepts
and Abstract Syntax, World Wide Web Consortium (W3C), W3C
Recommendation. 10 February 2004, from:
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/.

Knapp, A., N. Koch, F. Moser and G. Zhang (2003). ArgoUWE: A CASE Tool for Web
Applications. In Proceedings of First International Workshop on Engineering
Methods to Support Information Systems Evolution (EMSISE'03). Geneva

http://wiki.eclipse.org/ATL/User_Guide
http://www.kim.uni-karlsruhe.de/
http://www.kit.edu/
http://www.zvw.uni-karlsruhe.de/download/U.KA_0038.pdf
http://www.pnml.org/papers/cd_1.1.4.pdf
http://www.w3.org/TR/CCPP-struct-vocab2/
http://www.w3.org/TR/CCPP-struct-vocab2/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

224 Bibliography

Knapp, A., N. Koch, G. Zhang and H.-M. Hassler (2004). Modeling Business Processes
in Web Applications with ArgoUWE. In Proceedings of 7th International
Conference on the Unified Modeling Language (UML2004). Lisbon,
PortugalSpringer Verlag

Koch, N. and A. Kraus (2003). Towards a Common Metamodel for the Development of
Web Applications. In Proceedings of Third International Conference on Web
Engineering (ICWE'03). Oviedo, SpainSpringer Verlag, ISBN: 3-540-40522-4.

Koch, N., A. Kraus, C. Cachero and S. Melia (2003). Modeling Web Business Processes
with OO-H and UWE. In Proceedings of Third Int. Worskhop on Web-oriented
Software Technology (IWWOST´03). Oviedo, Spain

Kotoric, D. (2007). Usability of Desktop Applications and Rich Internet Applications.
School of Information Systems and Information Technology, Faculty of
Business and Law; Science and Technology, Deakin University, Melbourne,
Australia, 22 November 2007. 163 pages.

Kraus, A., A. Knapp and N. Koch (2007). Model-Driven Generation of Web
Applications in UWE. In Proceedings of 3rd International Workshop on
Model-Driven Web Engineering (MDWE 2007). Como, ItalyCEUR Workshop
Proceedings, ISSN 1613-0073.

Krueger, C. W. (1992). Software reuse. ACM Computing Surveys 24(131): 131-183.

Lawrence, K., C. Kaler, A. Nadalin, M. Goodner, M. Gudgin, A. Barbir and H.
Granqvist. (2007). WS-SecurityPolicy v1.2. OASIS Standard Specification,
Organization for the Advancement of Structured Information Standards
(OASIS). Retrieved 20.03.2009, from http://docs.oasis-open.org/ws-sx/ws-
securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html.

Lawrence, K., C. Kaler, A. Nadalin, R. Monzillo and P. Hallam-Baker. (2006). Web
Services Security: SOAP Message Security 1.1. OASIS Standard Specification,
Organization for the Advancement of Structured Information Standards
(OASIS). Retrieved 20.03.2009, from http://docs.oasis-open.org/wss/v1.1/.

Linaje, M., J. C. Preciado and F. Sánchez-Figueroa (2007). A Method for Model Based
Design of Rich Internet Application Interactive User Interfaces. In Proceedings
of Seventh International Conference on Web Engineering. Como,
ItalySpringer Verlag, Heidelberg, ISBN: 978-3-540-73596-0.

Lockhart, H., S. Andersen, J. Bohren, Y. Sverdlov, M. Hondo, H. Maruyama, A.
Nadalin, N. Nagaratnam, T. Boubez, K. S. Morrison, C. Kaler, A. Nanda, D.
Schmidt, D. Walters, H. Wilson, L. Burch, D. Earl, S. Baja and H. Prafullchandra
(2006). Web Services Federation Language (WS-Federation) v.1.1, BEA
Systems, BMC Software, CA, Inc., IBM, Layer 7 Technologies, Microsoft,
Novell, VeriSign, 124 pages, December 2006, from: http://www-
106.ibm.com/developerworks/webservices/library/ws-fed/.

Lucas, K., M. Adrian, R. Wang and D. Krauss (2007). The State Of Enterprise Software
Adoption In Europe, Forrester Research, 15 pages, Cambridge, USA, 29
January 2007

http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702/ws-securitypolicy-1.2-spec-os.html
http://docs.oasis-open.org/wss/v1.1/
http://www-106.ibm.com/developerworks/webservices/library/ws-fed/
http://www-106.ibm.com/developerworks/webservices/library/ws-fed/

Bibliography 225

MacVittie, L. A. (2006). XAML in a Nutshell, O'Reilly Media. ISBN: 0596526733

Madsen, K. H. (1999). The Diversity of Usability Practices. Communications of the
ACM 42(5). ISSN: 0001-0782

Majer, F., M. Nussbaumer and P. Freudenstein (2009). Operational Challenges and
Solutions for Mashups – An Experience Report. In Proceedings of Second
Workshop on Mashups, Enterprise Mashups and Lightweight Composition on
the Web (MEM 2009), held in conjunction with 18th International World
Wide Web Conference (WWW 2009). Madrid, Spain, 20 April 2009.
Association of Computer Machinery (ACM), ISBN: 978-1-60558-487-4.

Majer, F., M. Nussbaumer and M. Gaedke (2008). A Descriptive Approach for the
Lifecycle Support of Distributed Web-based Systems. In Proceedings of Fourth
International Conference on Web Information Systems and Technologies
(WEBIST 2008). Funchal, Portugal., 4-7 May 2008. INSTICC Press, ISBN: 978-
989-8111-26-5.

Matera, M., F. Rizzo and G. T. Carughi (2006). Web Usability: Principles and
Evaluation Methods. In: Web Engineering. E. Mendes and N. Mosley (eds.).
Heidelberg, Springer: 143-180.

McConnell, S. (1996). Chapter 33: Reuse. In: Rapid Development. Redmond,
Washington, USA, Microsoft Press: 527-538.

McDonald, A. and R. Welland (2001). Web Engineering in Practice. In Proceedings of
4th Workshop on Web Engineering (in conjunction with 10th International
World Wide Web Conference). Hong Kong, May 2001.

Mcllroy, M. D. (1968). Mass Produced Software Components. In Proceedings of
Sofiware Engineering; Report on a conference by the NATO Science
Committee. Garmisch, Germany, October 1968. NATO Scientific Affairs
Division, Brussels, Belgium

Meinecke, J., M. Nussbaumer and M. Gaedke (2005). Building Blocks for Identity
Federations. In Proceedings of Fifth International Conference for Web
Engineering (ICWE2005). Sydney, AustraliaSpringer, ISBN: 3-540-27996-2.

Mendes, E. and N. Mosley, Eds. (2006). Web Engineering. Heidelberg, Springer.ISBN:
3-540-28196-7.

Mendling, J., C. P. d. Laborda and U. Zdun (2005). Towards an Integrated BPM
Schema: Control Flow Heterogeneity of PNML and BPEL4WS. In Proceedings
of Third Conference on Professional Knowledge Management (WM 2005).
Kaiserslautern, GermanySpringer Verlag Heidelberg / Berlin, Germany

Mendling, J., G. Neumann and M. Nüttgens (2005). A Comparison of XML
Interchange Formats for Business Process Modelling. In: Workflow Handbook
2005. L. Fischer (ed.), The Workflow Management Coalition (WfMC) with
Future Strategies Inc., Book Division: 185-198. ISBN: 0970350988

Menzel, M., I. Thomas, C. Wolter and C. Meinel (2007). SOA Security - Secure Cross-
Organizational Service Composition. In Proceedings of Stuttgarter

226 Bibliography

Softwaretechnik Forum (SSF). Stuttgart, Germany, November 2007.
Fraunhofer IRB-Verlag, ISBN: 978-3-8167-7493-8.

Merrill Lynch (2006). Merill Lynch CIO Spending Study - "What Are Your Top Spending
Priorities", July 2006

Microsoft Corp. (2006a). Homepage of the Microsoft Office Visio 2007 Software
Development Kit (SDK). Microsoft Corporation. Retrieved 03.04.2009, from
http://msdn.microsoft.com/de-de/library/ms409183(en-us).aspx.

Microsoft Corp. (2006b). Microsoft Office Visio 2007 XML Schema Reference.
Microsoft Corporation. Retrieved 25.03.2009, from
http://msdn.microsoft.com/en-us/library/aa721908.aspx.

Microsoft Corp. (2006c). Microsoft Windows Workflow Foundation Homepage.
Retrieved 08.02.2009, 2009, from
http://www.microsoft.com/net/WFDetails.aspx.

Microsoft Corp. (2007). MSDN Library - Using Workflow Markup. Microsoft
Corporation. Retrieved 31.03.2009, from http://msdn.microsoft.com/en-
us/library/ms735921.aspx.

Microsoft Corp. (2009). ASP.NET AJAX - The Official Microsoft ASP.NET Site.
Microsoft Corporation, Inc. Retrieved 13.04.2009, from
http://www.asp.net/ajax/.

Montgomery, D. C. (1997). Design and Analysis of Experiments, John Wiley & Sons.
720 pages. ISBN: 978-0471157465

Moura, S. S. d. and D. Schwabe (2004). Interface Development for Hypermedia
Applications in the Semantic Web. In Proceedings of Second Latin American
Web Congress. Ribeirão Preto, BrazilIEEE Computer Society Press, ISBN: 0-
7695-2237-8.

Mukerji, J. and J. Miller (2003). MDA Guide Version 1.0.1, Object Management Group
(OMG), Object Management Group (OMG) Specification. 62 pages, omg/03-
06-01, 12 June 2003, from: http://www.omg.org/cgi-bin/doc?omg/03-06-01.

Murphy, B. (2006). The Forrester Wave: e-Forms Software, Q2 2006, Forrester
Research, Inc., 14 pages, Cambridge, MA, USA, June 16, 2006

Murugesan, S., Y. Deshpande, S. Hansen and A. Ginige (1999). Web Engineering: A
New Discipline for Development of Web-Based Systems In Proceedings of First
ICSE Workshop on Web Engineering, held in conjunction with 21st
International Conference on Software Engineering (ICSE). Los Angeles, USA

Murzek, M. and G. Kramler (2007). Business Process Model Transformation Issues -
The Top 7 Adversaries Encountered at Defining Model Transformations. In
Proceedings of Ninth International Conference on Enterprise Information
Systems (ICEIS 2007). Funchal, Madeira - Portugal, June 2007. INSTICC Press,
ISBN: 978-972-8865-90-0.

MWRG. (2009a). IT Management and Web Engineering Homepage. IT Management
and Web Engineering Research Group, Institute of Telematics, Karlsruhe

http://msdn.microsoft.com/de-de/library/ms409183(en-us).aspx
http://msdn.microsoft.com/en-us/library/aa721908.aspx
http://www.microsoft.com/net/WFDetails.aspx
http://msdn.microsoft.com/en-us/library/ms735921.aspx
http://msdn.microsoft.com/en-us/library/ms735921.aspx
http://www.asp.net/ajax/
http://www.omg.org/cgi-bin/doc?omg/03-06-01

Bibliography 227

Institute of Technology (KIT). Retrieved 19.04.2009, from
http://mwrg.tm.uni-karlsruhe.de.

MWRG. (2009b). IT Management and Web Engineering Research Site. IT
Management and Web Engineering Research Group, Institute of Telematics,
Karlsruhe Institute of Technology (KIT). Retrieved 13.04.2009, from
http://research.tm.uka.de/.

Neighbors, J. M. (1984). The Draco Approach to Constructing Software from Reusable
Components. IEEE Transactions on Software Engineering 10(5): 564-574.

Nielsen, J. (1993). Usability Engineering, Academic Press, Cambridge, MA, USA. ISBN:
0-12-518405-0

Nielsen, J. (2005). Forms vs. Applications. Jakob Nielsen's Alertbox Retrieved
15.04.2009, from http://www.useit.com/alertbox/forms.html.

Nielsen, J. (2008). Bridging the Designer-User Gap. Jakob Nielsen's Alertbox
Retrieved 15.04.2009, from http://www.useit.com/alertbox/designer-user-
differences.html.

Nielsen, J. and T. K. Landauer (1993). A mathematical model of the finding of
usability problems. In Proceedings of INTERACT '93 and CHI '93 conference on
Human factors in computing systems. Amsterdam, The NetherlandsACM,
ISBN: 0-89791-575-5

Nielsen, J. and H. Loranger (2006). Prioritizing Web Usability. Berkeley, CA, USA, New
Riders Press. 432 pages. ISBN: 0321350316

Nunes, D. A. and D. Schwabe (2006). Rapid prototyping of web applications
combining domain specific languages and model driven design. In
Proceedings of 15th International World Wide Web Conference. Edinburgh,
Scotland Association for Computing Machinery, ISBN: 1-59593-323-9.

Nussbaumer, M. (2001). Einsatz von Petri Netzen und Xforms zur Modellierung und
Unterstützung von interaktiven Web-Anwendungen. Diploma Thesis, Institute
of Telematics, University of Karlsruhe (TH), Karlsruhe, 31.12.2001. 125 pages.

Nussbaumer, M. (2008). Entwicklung und Evolution dienstorientierter Anwendungen
im Web Engineering (Dissertation). Karlsruhe, Universitätsverlag Karlsruhe.
212 pages. ISBN: 978-3-86644-208-5

Nussbaumer, M., P. Freudenstein and M. Gaedke (2006a). The Impact of DSLs for
Assembling Web Applications. Engineering Letters 13(2006): 387-396. ISSN:
1816-093X

Nussbaumer, M., P. Freudenstein and M. Gaedke (2006b). Stakeholder Collaboration
- From Conversation To Contribution. In Proceedings of 6th International
Conference on Web Engineering (ICWE). SLAC, Menlo Park, California, 12-14
July, 2006. ACM

Nussbaumer, M., P. Freudenstein and M. Gaedke (2006c). Towards DSL-based Web
Engineering. In Proceedings of 15. International World Wide Web Conference
(WWW). Edinburgh, UKACM

http://mwrg.tm.uni-karlsruhe.de/
http://research.tm.uka.de/
http://www.useit.com/alertbox/forms.html
http://www.useit.com/alertbox/designer-user-differences.html
http://www.useit.com/alertbox/designer-user-differences.html

228 Bibliography

Nussbaumer, M., P. Freudenstein and M. Gaedke (2006d). Web Application
Development employing Domain-Specific Languages. In Proceedings of
International Conference on Software Engineering (SE2006). Innsbruck,
Austria, 14.-16.02.2006. IASTED/ACTA Press, ISBN: 0-88986-574-4.

O'Reilly, T. (2005). What Is Web 2.0 - Design Patterns and Business Models for the
Next Generation of Software. Online Article, Retrieved 18.10.2005, from
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-
web-20.html.

Oberweis, A. (2008). INCOME2010 Homepage. Institute of Applied Informatics and
Formal Description Methods (AIFB), University of Karlsruhe (TH). Retrieved
28.03.2009, from http://www.aifb.uni-
karlsruhe.de/Forschungsgruppen/BIK/income2010/.

Object Management Group. (2005a). Reusable Asset Specification v2.2. OMG
Available Specification, Object Management Group. Retrieved 06.03.2009,
from http://www.omg.org/docs/formal/05-11-02.pdf.

Object Management Group (2005b). Unified Modeling Language (UML) v2.0:
Superstructure, Object Management Group (OMG), OMG Specification. OMG
formal/2005-07-04, August 2005, from:
http://www.omg.org/spec/UML/2.0/Superstructure/PDF.

Object Management Group (2007). MOF 2.0/XMI Mapping, Version 2.1.1, Object
Management Group (OMG), OMG Available Specification. 120 pages, OMG
formal/2007-12-01, December 2007, from:
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm.

Orozov, N. (2008). Ein Transformations-Rahmenwerk zur modellgetriebenen
Entwicklung webbasierter Workflows mit Stakeholdern. Diploma Thesis,
Institute of Telematics, University of Karlsruhe (TH), Karlsruhe, 09.05.2008.
108 pages.

Palmer, N. (2006). Understanding the BPMN-XPDL-BPEL Value Chain. Business
Integration Journal: 54-55.

Pender, T. (2003). Chapter 21 - Customizing UML Using Profiles. In: UML Bible.
Indianapolis, Indiana, USA, Wiley Publishing, Inc. : 687-723. ISBN:
0764526049

Petri, C. A. (1962). Kommunikation mit Automaten. Dissertation, Technischen
Universität Darmstadt, Darmstadt,

Phifer, G. (2006). The Fifth Generation of Portals Supports SOA and Process
Integration, Gartner, Stanford, CT, USA, G00137923, 1 March 2006

Phifer, G., D. Gootzit, D. Sholler, R. Valdes, A. Bradley, N. Drakos, R. W. Schulte, Y. V.
Natis, D. M. Smith, C. Abrams, S. Prentice, W. A. D. A. Filho, D. W. Cearley, R.
E. Knox, N. Jones, N. Gall, B. J. Lheureux and L. F. Kenney (2007). Hype Cycle
for Web and User Interaction Technologies, 2007, Gartner, Inc., Stanford, CT,
USA, G00148212, 13 July 2007

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/BIK/income2010/
http://www.aifb.uni-karlsruhe.de/Forschungsgruppen/BIK/income2010/
http://www.omg.org/docs/formal/05-11-02.pdf
http://www.omg.org/spec/UML/2.0/Superstructure/PDF
http://www.omg.org/spec/XMI/2.1.1/PDF/index.htm

Bibliography 229

Prechelt, L. (2001). Kontrollierte Experimente in der Softwaretechnik - Potenzial und
Methodik, Springer Verlag. 273 pages. ISBN: 3-540-41257-3

Preciado, J. C., M. Linaje, S. Comai and F. Sanchez-Figueroa (2007). Designing Rich
Internet Applications with Web Engineering Methodologies. In Proceedings of
9th IEEE International Workshop on Web Site Evolution (WSE 2007). Paris,
FranceIEEE Computer Society Press, ISBN: 978-1-4244-1450-5.

Preciado, J. C., M. Linaje, R. Morales-Chaparro, F. Sanchez-Figueroa, G. Zhang, C.
Kroiβ and N. Koch (2008). Designing Rich Internet Applications Copmbining
UWE and RUX-Method. In Proceedings of Eighth International Conference on
Web Engineering (ICWE'08). White Plains, New York, USAIEEE Computer
Society, Washington DC, USA, ISBN: 978-0-7695-3261-5.

Preciado, J. C., M. Linaje, F. Sanchez and S. Comai (2005). Necessity of methodologies
to model rich Internet applications. In Proceedings of Seventh IEEE
International Symposium on Web Site Evolution 2005. (WSE 2005). Budapest,
Hungary IEEE Computer Society

Pressman, R. S. (2005a). Chapter 30: Component-based Development. In: Software
Engineering: A Practioner's Approach. New York, McGraw-Hill: 499-626. ISBN:
0071238409

Pressman, R. S. (2005b). Part Three: Applying Web Engineering. In: Software
Engineering: A Practioner's Approach. New York, McGraw-Hill: 499-626. ISBN:
0071238409

Prieto-Diaz, R. (2003). A faceted approach to building ontologies. In Proceedings of
IEEE International Conference on Information Reuse and Integration. Las
Vegas, USA

Progeny Systems. (2007). Homepage of the FormFaces Framework. Progeny
Systems Corporation. Retrieved 13.04.2009, from http://formfaces.com/.

Prud'hommeaux, E. and A. Seaborne. (2008, 15 Januar 2008). SPARQL Query
Language for RDF. W3C Recommendation, World Wide Web Consortium
(W3C). from http://www.w3.org/TR/rdf-sparql-query/.

Puschmann, T. and R. Alt (2004). Process Portals - Architecture and Integration. In
Proceedings of 37th Hawaii International Conference on System Sciences.
Hawaii, USA, 25.01.2004. IEEE Computer Society, ISBN: 0-7695-2056-1

Raman, T. V. (1997). Auditory User Interfaces--Toward The Speaking Computer,
Kluwer Academic Publishers. ISBN: 0-7923-9984-6

Recker, J. (2008). BPMN Modeling - Who, Where, How and Why. BP Trends Business
Process Trends. Retrieved 24.03.2009, from
http://www.bptrends.com/publicationfiles/05-08-ART-BPMN%20Survey-
Recker-JR%20final.pdf.

Recker, J. and A. Dreiling (2007). Does It Matter Which Process Modelling Language
We Teach or Use? An Experimental Study on Understanding Process
Modelling Languages without Formal Education. In Proceedings of

http://formfaces.com/
http://www.w3.org/TR/rdf-sparql-query/
http://www.bptrends.com/publicationfiles/05-08-ART-BPMN%20Survey-Recker-JR%20final.pdf
http://www.bptrends.com/publicationfiles/05-08-ART-BPMN%20Survey-Recker-JR%20final.pdf

230 Bibliography

Proceedings of the 18th Australasian Conference on Information Systems
(ACIS 2007). Toowoomba, AustraliaThe University of Southern Queensland

Rode, J., M. B. Rosson and M. A. P. Quinones (2006). End User Development of Web
Applications. In: End User Development. H. Lieberman, F. Paternò and V. Wulf
(eds.), Springer Verlag Heidelberg / Berlin: 161-182. ISBN: 978-1-4020-4220-1

Roger S. Pressman (2005). Part Three: Applying Web Engineering. In: Software
Engineering: A Practioner's Approach. New York, McGraw-Hill: 499-626. ISBN:
0071238409

Rossi, G., O. Pastor, D. Schwabe and L. Olsina, Eds. (2008). Web Engineering -
Modelling and Implementing Web Applications. London, Springer.ISBN: 978-
1-84628-922-4.

Rossi, G. H., H. A. Schmid and F. Lyardet (2003). Customizing Business Processes in
Web Applications. In Proceedings of 4th International Conference on E-
Commerce and Web Technologies. September 2003. Springer Verlag

Russell, N., A. H. M. Ter Hofstede, D. Edmond and W. M. P. Van der Aalst (2004a).
Workflow Data Patterns, Queensland University of Technology, QUT
Technical report. 75 pages, Brisbane, Australia, FIT-TR-2004-01, from:
http://www.workflowpatterns.com/documentation/documents/data_patter
ns%20BETA%20TR.pdf.

Russell, N., A. H. M. Ter Hofstede, D. Edmond and W. M. P. Van der Aalst (2004b).
Workflow Resource Patterns, Eindhoven University of Technology, BETA
Working Paper Series. 73 pages, Eindhoven, Netherlands, WP 127, from:
http://www.workflowpatterns.com/documentation/documents/Resource%2
0Patterns%20BETA%20TR.pdf.

Russell, N., A. H. M. ter Hofstede, W. M. P. Van der Aalst and N. Mulyar (2006).
Workflow Control-Flow Patterns: A Revised View, BPMCenter.org, BPM
Center Report. BPM-06-22,

Russell, N., W. M. P. van der Aalst, A. H. M. ter Hofstede and P. Wohed (2006). On
the Suitability of UML 2.0 Activity Diagrams for Business Process Modelling. In
Proceedings of Third Asia-Pacific Conference on Conceptual Modelling
(APCCM2006). Hobart, AustraliaAustralian Computer Society, Inc.,
Darlinghurst, Australia

Schmid, A. (2006). Transforming Graphical Models Using XSLT. Study Thesis, Institute
of Telematics, University of Karlsruhe (TH), Karlsruhe, 28 February 2006. 50
pages.

Schmid, H. A. and G. Rossi (2004). Modeling and Designing Processes in E-Commerce
Applications. IEEE Internet Computing 8(1): 19-27.

Schmidt, M.-T. and G. Larsen (2007). Federated Metadata Management with IBM
Rational and WebSphere Software., International Business Machines (IBM)
Corporation, White Paper. 24 pages, Somers, NY, USA, June 2007, from:
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/10709147_R
ational_RAM_WP_ACC.pdf.

http://www.workflowpatterns.com/documentation/documents/data_patterns%20BETA%20TR.pdf
http://www.workflowpatterns.com/documentation/documents/data_patterns%20BETA%20TR.pdf
http://www.workflowpatterns.com/documentation/documents/Resource%20Patterns%20BETA%20TR.pdf
http://www.workflowpatterns.com/documentation/documents/Resource%20Patterns%20BETA%20TR.pdf
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/10709147_Rational_RAM_WP_ACC.pdf
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/10709147_Rational_RAM_WP_ACC.pdf

Bibliography 231

Schwabe, D., L. Esmeraldo, G. Rossi and F. Lyardet (2001). Engineering Web
applications for Reuse. IEEE Multimedia 8(1): 20-31.

Schwabe, D., G. Rossi and S. Barbosa (1996). Systematic Hypermedia Design with
OOHDM. In Proceedings of ACM International Conference on Hypertext' 96.
Washington, USA, March 1996.

Schwinger, W. and N. Koch (2006). Chapter 3: Modeling Web Applications. In: Web
Engineering: The Discipline of Systematic Development. G. Kappel, B. Pröll, S.
Reich and W. Retschitzegger (eds.), John Wiley & Sons: 39-64. ISBN: 0-470-
01554-3

Selmi, S. S., N. Kraiem and H. B. Ghezala (2005). Toward a Comprehension View of
Web Engineering. In Proceedings of 5th International Conference of Web
Engineering (ICWE 2005). Sydney, AustraliaSpringer, ISBN: 3-540-27996-2.

Setiawan, D. (2008). Modellgetriebene Konstruktion workflow-basierter Web-
Anwendungen mit UML 2.0 Aktivitätsdiagrammen. Study Thesis, Institute of
Telematics, University of Karlsruhe (TH), Karlsruhe, 31.01.2008. 156 pages.

Setiawan, D. (2009). Notationsübergreifende Konstruktion webbasierter
Workflowanwendungen - Methodik und Evaluation. Diploma Thesis, Institute
of Telematics, University of Karlsruhe (TH), Karlsruhe, 31.01.2009. 136 pages.

Shapiro, R., M. Marin, J. Brunt, W. Zurek, T. Stephenson, S. Bojanic and G. Gouri.
(2005, 03.10.2005). XML Process Definition Language (XPDL) 2.0 Specification.
Workflow Management Coalition. 2007.

Silva, B. D. and A. Ginige (2007). Meta-Model to Support End-User Development of
Web Based Business Information Systems In Proceedings of Seventh
International Conference on Web Engineering (ICWE 2007). Como,
ItalySpringer Verlag, Heidelberg / Berlin, ISBN: 978-3-540-73596-0.

Sommerville, I. (2007a). Chapter 18: Software Reuse. In: Software Engineering,
Pearson Education Ltd.: 415-438. ISBN: 0321313798

Sommerville, I. (2007b). Chapter 19: Component-based Software Engineering. In:
Software Engineering, Pearson Education Ltd.: 439-461. ISBN: 0321313798

Stahl, T. and M. Völter (2006). Model-Driven Software Development - Technology,
Engineering, Management, John Wiley & Sons. 444 pages. ISBN: 0470025700

The Standish Group International. (1994-2008). CHAOS Research. Research Reports,
from http://www.standishgroup.com.

Thompson, H. S., D. Beech, M. Maloney and N. Mendelsohn. (2004). XML Schema
Part 1: Structures (Second Edition). W3C Recommendation, World Wide
Web Consortium (W3C). 2009, from http://www.w3.org/TR/2004/REC-
xmlschema-1-20041028/.

Tracz, W. (1990). Where does reuse start? ACM SIGSOFT Software Engineering Notes
15(2): 42-46. ISSN: 0163-5948

http://www.standishgroup.com/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/

232 Bibliography

Tullis, T. and B. Albert (2008). Measuring the User Experience : Collecting, Analyzing,
and Presenting Usability Metrics, Morgan Kaufmann. 336 pages. ISBN: 978-
0123735584

Uschold, M. and M. King (1995). Towards a Methodology for Building Ontologies. In
Proceedings of Workshop on Basic Ontological Issues in Knowledge Sharing.
Montreal, Canada

Vallecillo, A., N. Koch, C. Cachero and S. Comai (2007). MDWEnet: A Practical
Approach to Achieving Interoperability of Model-Driven Web Engineering
Methods. In Proceedings of Third International Workshop on Model-Driven
Web Engineering (MDWE'07). Como, Italy

Van der Aalst, W. M. P. (1998). The Application of Petri Nets to Workflow
Management. The Journal of Circuits, Systems and Computers 8(1): 21-66.

Van der Aalst, W. M. P. (2007). Trends in Business Process Analysis - From Verification
to Process Mining. In Proceedings of 9th International Conference on
Enterprise Information Systems (ICEIS 2007). Madeira, PortugalInstitute for
Systems and Technologies of Information, Control and Communication
(INSTICC)

Van der Aalst, W. M. P., A. H. M. ter Hofstede, B. Kiepuszewski and A. P. Barros
(2003). Workflow Patterns. Distributed and Parallel Databases 14(1): 5-51.
ISSN: 0926-8782

van der Aalst, W. M. P., A. H. M. ter Hofstede and M. Weske (2003). Business Process
Management: A Survey. In Proceedings of International Conference on
Business Process Management (BPM) 2003. Eindhoven, The Netherlands, 26-
27 June 2003. Springer

Van der Aalst, W. M. P., B. F. Van Dongen, C. W. Günther, R. S. Mans, A. K. Alves de
Medeiros, A. Rozinat, V. Rubin, M. Song, H. M. W. Verbeek and A. J. M. M.
Weijters (2007). ProM 4.0: Comprehensive Support for Real Process Analysis.
In Proceedings of 28th International Conference on Application and Theory of
Petri Nets and Other Models of Concurrency (ICATPN 2007). Siedlce, Poland,
25-29 June 2007. Springer Verlag, Berlin, Germany, ISBN: 978-3-540-73093-4.

Vedamuthu, A. S., D. Orchard, F. Hirsch, M. Hondo, P. Yendluri, T. Boubez and Ü.
Yalçinalp. (2007). Web Services Policy 1.5 - Framework. W3C
Recommendation, World Wide Web Consortium (W3C). Retrieved
20.03.2009, from http://www.w3.org/TR/ws-policy/.

Verbeek, E. and W. M. P. Van der Aalst (2000). Woflan 2.0: A Petri-net-based
Workflow Diagnosis Tool. In Proceedings of 21st International Conference on
Application and Theory of Petri Nets (ICATPN 2000). Aarhus, Denmark, 26-30
June 2000. Springer Verlag Berlin/Heidelberg, Germany, ISBN: 3-540-67693-7.

Wahli, U., V. Avula, H. Macleod, M. Saeed and A. Vinther (2007). Business Process
Management: Modeling through Monitoring Using WebSphere V6.0.2
Products, International Business Machines (IBM) Corporation. 670 pages.
ISBN: 0738489123

http://www.w3.org/TR/ws-policy/

Bibliography 233

Warmer, J. and A. Kleppe (2003). The Object Constraint Language: Getting Your
Models Ready for MDA. Boston, MA, USA, Addison-Wesley. 240 pages. ISBN:
0-321-17936-6

Warshall, S. (1962). A Theorem on Boolean Matrices. Journal of the ACM 9(1): 11-12.
ISSN: 0004-5411

Welie, M. v. and H. Trætteberg (2000). Interaction Patterns in User Interfaces. In
Proceedings of Seventh Pattern Languages of Programs Conference. Illinois,
USA

Wenzel, F. (2009). Transaction Management Challenges for Federated, Workflow-
based SOA Applications. Diploma Thesis, Institute of Telematics, University of
Karlsruhe (TH), Karlsruhe, 31.03.2009. 106 pages.

Wenzel, F., P. Freudenstein and M. Nussbaumer (2009). Strengths and Weaknesses
of WS-BusinessActivity for Cross-Organizational SOA Applications. In
Proceedings of Workshop on Principles of Engineering Service-oriented
Systems (PESOS 2009), held in conjunction with 31st International
Conference on Software Engineering. Vancouver, Canada, 16-24 May 2009.

Weske, M., G. Vossen and F. Puhlmann (2005). Workflow and Service Composition
Languages. In: Handbook on Architectures of Information Systems. P. Bernus,
K. Mertins and G. Schmidt (eds.), Springer Verlag, Berlin: 369-390. ISBN:
9783540266617

White, S. A. (2006). Business Process Modeling Notation (BPMN) Specification, Object
Management Group (OMG), OMG Final Adopted Specification. 308 pages,
dtc/06-02-01, February 2006

Wiegers, K. E. (2003). Software Requirements, Microsoft Press. 430 pages. ISBN:
0735618798

Wireless Application Forum (2001). User Agent Profile Specification v.2.0, Wireless
Application Forum, Ltd., Wireless Application Protocol. 86 pages, WAP-248-
UAPROF-20011020-a, 20 October 2001, from:
http://www.openmobilealliance.org/tech/affiliates/wap/wap-248-uaprof-
20011020-a.pdf.

Wohlin, C., P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell and A. Wesslén (2000).
Experimentation in Software Engineering - An Introduction, Springer Verlag.
228 pages. ISBN: 978-0-7923-8682-7

Workflow Management Coalition (1997). The WfMC Glossary. In: Workflow
Handbook. P. Lawrence (ed.). New York, John Wiley and Sons: 385-421. ISBN:
0-471-96947-8

Workflow Management Coalition. (2009). XPDL Implementations Overview.
Workflow Management Coalition. Retrieved 18.03.2009, from
http://www.wfmc.org/xpdl-implementations.html.

Workflow Patterns Initiative. (2007). Evaluation Results for XPDL version 2.0 against
the Workflow Control-Flow Patterns. Retrieved 18.03.2009, from
http://www.workflowpatterns.com/evaluations/standard/xpdl.php.

http://www.openmobilealliance.org/tech/affiliates/wap/wap-248-uaprof-20011020-a.pdf
http://www.openmobilealliance.org/tech/affiliates/wap/wap-248-uaprof-20011020-a.pdf
http://www.wfmc.org/xpdl-implementations.html
http://www.workflowpatterns.com/evaluations/standard/xpdl.php

234 Bibliography

World Wide Web Consortium. (2007). Mobile Web Initiative. World Wide Web
Consortium (W3C). Retrieved 27.04.2009, from http://www.w3.org/Mobile/.

Wroblewski, L. (2008). Web Form Design: Filling in the Blanks. New York, USA,
Rosenfeld Media. 226 pages. ISBN: 1-933820-25-X

Wüstner, E., T. Hotzel and P. Buxmann (2002). Converting Business Documents: A
Classification of Problems and Solutions using XML/XSLT. In Proceedings of
Fourth IEEE International Workshop on Advanced Issues of E-Commerce and
Web-Based Information Systems (WECWIS 2002). Newport Beach, California,
USA, 26-28 June 2002. IEEE Computer Society, Washington, DC, USA, ISBN:
ISBN:0-7695-1567-3.

Yglesias, K. P. (1998). IBM's Reuse Programs: Knowledge Management and Software
Reuse. In Proceedings of Fifth International Conference on Software Reuse.
Victoria, BC, Canada, June 2-5, 1998. IEEE Computer Society, Washington, DC,
USA, ISBN: 0-8186-8377-5

Yongbeom, K. and A. S. Edward (1998). Software Reuse: Survey and Research
Directions. Journal of Management Information Systems 14(4): 113-147. ISSN:
0742-1222

Zur Muehlen, M. and J. Recker (2008). How Much Language is Enough? Theoretical
and Practical Use of the Business Process Modeling Notation. In Proceedings
of 20th International Conference on Advanced Information Systems
Engineering (CAiSE 2008). Montpellier, France, 16-20 June 2008. Springer
Verlag, Heidelberg / Berlin, Germany, ISBN: 978-3-540-69533-2.

Zur Muehlen, M., J. Recker and M. Indulska (2007). Sometimes Less is More: Are
Process Modeling Languages Overly Complex? In Proceedings of EDOC2007
Workshops - Third International Workshop on Vocabularies, Ontologies and
Rules for The Enterprise (VORTE 2007). Baltimore, Maryland, USA, 15 October
2007. IEEE Press

http://www.w3.org/Mobile/

Index

A

Activity Building Blocks (ABBs) 59, 63, 64, 68, 72, 123
evaluation 182, 185, 187

Agility ... 17, 46, 126, 150
Application assembly 55, 123, 126
ArgoUWE.. 33, 157

B

Business Process .. 13
Business Process Execution Language (BPEL) . 37, 66,

106, 109
Business Process Management (BPM) 7, 13, 34
Business Process Modeling Notation (BPMN) . 19, 31,

36, 37, 58, 63, 79, 96, 113

C

Commit ABB ... 69
Component-based software engineering 17, 56
Composite Capability Preferences Profile 150
Concern Configuration 64, 80, 85, 87, 107
Core Elements Set (CES) ... 95

CES-based transformation concept See Model
Transformation Framework

evaluation of expressiveness 178

D

Data Presentation ABB ... 70
DatadiagramML ... 81
Device-independent access . 16, 24, 69, 70, 138, 143,

150
Dialog DSL .. 59, 69, 135, 162

Appearance Design 138, 147
Appearance Modeling Tier 142
Domain Interaction Model (DIM) ... 136, 140, 196
Domain-Specific Model (DSM) 136, 138
evaluation of efficiency................................... 189
evaluation of stakeholder adequacy 196
model transformations 143
Partition Design 137, 146
Partitions & Transitions Modeling Tier 141

process model ... 137
reuse ... 137, 149
Solution Building Block (SBB) 136, 149
stakeholder orientation 137, 140, 146
technical platform .. 145
Web-based DIM editor 146

Dialog Partition 136, 139, 141, 142
Dialog-based user interaction 69, 135

challenges ... 22, 46
Dialog-based User Interaction ABB 88

DIM Taxonomy ... 54
Domain Abstract Representation (DAR)................. 55
Domain Interaction Model (DIM) 53
Domain-Specific Language (DSL) 52, See Web

Engineering DSL Framework
Domain-Specific Model (DSM) 53
DSL-based Web Engineering See Web Engineering

DSL Framework

E

End-User Development (EUD) 47
Enterprise Application Integration (EAI) 163, 165
Evaluation .. 177

Dialog DSL ... 189
formal experiment .. 189
survey ... 196
Workflow DSL ... 178, 183

Evolution 17, 46, 52, 55, 65, 138, 150
Evolutionary prototypes 21, 25, 129, 149
Extensible Stylesheet Language Transformations

(XSLT) .. 92, 102, 119

F

Federative scenarios 45, 129
Finite State Machine (FSM) 185

G

Goal/Question/Metric (GQM) 190, 196

H

HyperDE ... 30

236 Bibliography

I

IBM Lotus Forms Designer 40
IBM Lotus Forms Turbo .. 42
IBM Rational Asset Manager 44
IBM Rational Software Architect 19, 63, 82
IBM WebSphere ... 34
IBM’s federated metadata management strategy . 44
INCOME2010 .. 19, 63, 86
Interaction Elements 136, 138, 140, 143
Interaction Structures 136, 138, 140, 141

J

Jena Semantic Web Framework 165

K

Karlsruhe’s Integrated Information Management
(KIM) ... 19, 177, 178, 183
integrated Service Oriented Architecture (iSOA)

 ... 183

M

Microsoft Office SharePoint Server 2007 187
Microsoft Visio ... 19, 63, 79
Microsoft Windows Workflow Foundation (WF) 106,

121, 187
Microsoft Word .. 19, 63, 78
Minimal physical configuration aspects 68
Model consistency 20, 46, 74, 95
Model continuity 76, 81, 126
Model Transformation Framework 59, 77, 91

CES-based transformation concept 96, 99
composite end-to-end transformations 94
DIM mappings catalog 113
graph-structured vs. block-structured 109
horizontal transformation 93, 99
layout algorithm ... 105
technical platform .. 116
transformation algorithm 102
transformation strategies 91
vertical transformation 93, 106

Model-code gap ... 21, 46
Model-Driven Architecture (MDA) 33
Model-driven software development 17, 20
Model-Driven Web Engineering initiative

(MDWEnet) ... 26, 43, 158
Multi-notational modeling 19, 36, 76, 93, 95

O

Object-Oriented Hypermedia Design Method
(OOHDM) .. 26, 29, 37, 43

Office Open XML .. 78

P

Pareto principle .. 96
Petri Net 19, 58, 63, 86, 99, 113, 136, 140, 141
Petri Net Markup Language (PNML) 86

Process Intermediate Language 59, 62, 65

R

Rapid prototyping 24, 126, 149
Requirements engineering 18, 76, 78
Resource Description Framework (RDF) 165
Reuse ... 153

challenges ... 17, 26, 46
context 27, 137, 149, 153, 156, 163, 168
coordination ... 27, 155
cross-methodological ... 26, 43, 60, 158, 159, 160,

168, 171
Dialog DSL ... 137, 149
stakeholder-oriented 60, 157, 158, 160, 162, 168,

171
Workflow DSL ... 64

Rich User Experience (RUX) Method 38, 40

S

Semantic Hypermedia Design Method (SHDM) 37
Semantic Web 37, 46, 60, 165
Service Component Architecture (SCA) 35
Service orientation 12, 24, 62, 129, 131, 165, 183,

185
Simple Sequence Only (SSO) 58, 63, 78, 113
Solution Building Block (SBB) 54
SPARQL Protocol and RDF Query Language 162, 165,

169
Stakeholder Adequacy Scale (SAS) 197, 200
Stakeholder collaboration / involvement 51

challenges 11, 17, 24, 26, 47
dialog development See Dialog DSL
reuse ... See Reuse
workflow development............ See Workflow DSL

State of the Art... 29, 45
System Usability Scale (SUS) 197

T

Transformations
Dialog DSL See Dialog DSL
Workflow DSL See Model Transformation

Framework
t-test .. 195

U

UML Activity Diagrams 58, 63, 82, 113
UML-based Web Engineering (UWE) 32, 39, 157, 171
Unified Modeling Language (UML) 19, 30, 32, 82
Usability ... 23

best practices 23, 148, 190
usability-oriented design 141, 146, 148

User Agent Profile (UAProf) 150
User Interaction Workflows 185

W

Web application ... 7
Web Engineering .. 7, 29

Index 237

Web Engineering DSL Framework 51, 62, 136, 161
Development for Reuse 53
Development with Reuse.................................. 55
DSL components ... 53
DSL Librarian team role 56
DSL Reuse Repository 56
evolution ... 55
model transformations See Model

Transformation Framework
technical platform .. 56

Web Engineering Reuse Ontology See Web
Engineering Reuse Sphere

Web Engineering Reuse Sphere 60, 153
distributed repositories 154
reference architecture framework 165
search and integration 162, 168, 171
semantic registry .. 154
sphere concept ... 154
stakeholder orientation See Reuse
storing and registering 163
Web Engineering Reuse Ontology 155, 165

Web Modeling Language (WebML) 26, 31, 38, 43,
157, 160, 171

Web Ontology Language (OWL) 155, 165
Web Service Communication ABB 71
Web service integration scenarios 184, 185
WebComposition ... 26, 43
WebComposition Service Linking System (WSLS) . 56,

123, 167, 173
WebRatio 31, 43, 157, 160, 171
Web-specific concerns 64, 66, 72, 79
Workflow ... 13

User Interaction Workflow 185
Workflow activity types 15, 68
Workflow application ... 13
Workflow DSL... 58, 62

automated application construction 126
Business Process Modeling 64
Domain Interaction Models (DIMs) 62, 76, 113
Domain-Specific Model (DSM) 62, 65, 73, 113
evaluation 178, 183, 188
evolution ... 65, 74
model transformations See Model

Transformation Framework
modeling notations / editors 62, 76
Physical Design & Execution 65
process model ... 58, 63
reuse ... 64
Solution Building Block (SBB) 63, 123
stakeholder orientation 62, 64, 68, 76
technical platform .. 115
Workflow Modeling 64, 87, 90

Workflow engine 15, 63, 121, 187
Workflow interaction channels 16, 121, 129
Workflow patterns 66, 67, 97
Workflow perspectives 45, 97
Workflow transaction management 207
Workflow-based Web Application 13

challenges ... 12, 45

X

XAML .. 24, 106, 144
XForms 24, 41, 136, 139, 144
XML Metadata Interchange (XMI) 37, 84
XML Process Definition Language (XPDL) .. 37, 62, 66,

113
Web-specific extensions 72

XOML ... 106, 109
XSLT See Extensible Stylesheet Language

Transformations

	Acknowledgements
	Zusammenfassung
	Contents
	Introduction
	Research Questions and Contributions
	Research Context and Scope
	Thesis Structure

	Problem Scope
	Stakeholder Collaboration in the Web Engineering Field
	Workflow-based Web Applications
	Technical Challenges
	Stakeholder Collaboration for Workflow-based Web Applications
	Requirements Catalog for the Dimension Workflow

	Web-based Dialogs as Primary Interaction Mediums
	Requirements Catalog for the Dimension Dialog

	Effective Reuse
	Requirements Catalog for the Dimension Reuse

	State of the Art
	Dimension Workflow
	Object-Oriented Hypermedia Design Method (OOHDM)
	Web Modeling Language (WebML)
	UML-based Web Engineering (UWE)
	IBM WebSphere Suite

	Dimension Dialog
	Object-Oriented Hypermedia Design Method (OOHDM)
	Web Modeling Language (WebML)
	UML-based Web Engineering (UWE)
	IBM Lotus Forms Designer

	Dimension Reuse
	Scientific Reuse Approaches for the Web Engineering Domain
	Commercial Solutions

	Evaluation Results and Conclusion

	Web Engineering for Workflow-based Applications – A DSL Approach
	The Web Engineering DSL Framework
	DSLs – Evolutionary Web Development for and with Reuse
	Development for Reuse
	Development with Reuse
	Systematic Evolution

	Technical Platform

	Overview of Solution Elements

	Constructing Workflow-based Web Applications with Stakeholders
	The Workflow DSL at a Glance
	Elements of the Workflow DSL
	Evolutionary Process Model

	The DSM – Process Intermediate Language
	The XML Process Definition Language as Foundation for the DSM
	Catalog of Activity Building Blocks (ABBs)
	Dialog-based User Interaction – The Dialog DSL
	Commit
	Data Presentation
	Web Service Communication

	Extending XPDL towards Web-specific Concerns

	The DIMs – Multi-Notational Modeling with Stakeholders
	Simple Sequence Only (SSO) with Microsoft Word
	Business Process Modeling Notation (BPMN) with Microsoft Visio
	UML Activity Diagrams with IBM Rational Software Architect
	Petri Nets with INCOME2010

	Model Transformation Framework
	Strategy for Efficient and Effective Model Transformations
	Horizontal and Vertical Transformations for the Workflow DSL
	Determining Composite End-to-End Transformations

	The Core Elements Set (CES) Concept
	CES-based Model-to-Model Transformation Strategy
	Overview of the Core Elements Set

	Horizontal Model Transformations – The Petri Net DIM
	Mapping CES Concepts on Petri Net Patterns
	Technical Implementation

	Vertical Model Transformations – The XOML Workflow Language
	Mapping CES Concepts to XOML Language Elements
	Technical Implementation: From Graph-Structured XPDL to Block Structured XOML

	Complete Catalog of DIM Mappings

	Technical Platform
	Technical Platform for the Model Transformation Framework
	Transform Web Service
	The XSLT Transformation Engine
	Transformation Manager Web Application

	Workflow Execution Platform
	Workflow Web Service
	Core Portal Component: Workflow DSL Solution Building Block (SBB)

	Automated Application Construction: From Modeling to Execution
	Support for Federative Scenarios

	Summary

	Constructing Advanced Web-based Dialogs
	The Dialog DSL at a Glance
	Elements of the Dialog DSL
	Evolutionary Process Model

	The Domain-Specific Model (DSM)
	The Domain Interaction Model (DIM)
	Partitions & Transitions Modeling Tier
	Appearance Modeling Tier

	Model Transformations
	User-Agent-related Model Adaptations
	Model-to-Code Transformations

	Technical Platform
	The Web-based DIM Editor
	The Solution Building Block (SBB)

	Summary

	The Web Engineering Reuse Sphere
	The Sphere Concept
	The Semantic Core: The Web Engineering Reuse Ontology
	Overview of the Web Engineering Reuse Ontology
	The Concepts Knowledge and Stakeholders
	The Concepts Artifact, Methodology, Process and Product
	The Concepts Resolution Strategy, Modeling Technique & Software

	Effective Search and Integration
	Storing Artifacts with Rich Metadata
	Reference Architecture Framework
	Cross-Methodological Reuse with Stakeholders in Practice
	Finding Stakeholder-Tailored Resolution Strategies and Artifacts
	Stakeholder-Oriented Facetted Search and Browsing Facilities

	Summary

	Evaluation
	Empirical Evaluation of Workflow DSL Concepts
	Expressiveness of the CES in Real-World Process Models
	Coverage of Real-World Process Activities by the ABB Catalog

	Workflow DSL Concepts Applied in the KIM Project
	FSM-based Modeling of User Interaction Workflows using ABBs
	Technical Framework for Executing UI Workflows in Web Portals
	Experiences

	Formal Empirical Evaluation of the Dialog DSL
	Experimental Evaluation of Development and Change Efficiency
	Survey-based Evaluation of Stakeholder Adequacy

	Conclusion and Outlook
	List of Figures
	List of Tables
	Bibliography
	Index

