2,220 research outputs found

    A coordination protocol for user-customisable cloud policy monitoring

    Get PDF
    Cloud computing will see a increasing demand for end-user customisation and personalisation of multi-tenant cloud service offerings. Combined with an identified need to address QoS and governance aspects in cloud computing, a need to provide user-customised QoS and governance policy management and monitoring as part of an SLA management infrastructure for clouds arises. We propose a user-customisable policy definition solution that can be enforced in multi-tenant cloud offerings through an automated instrumentation and monitoring technique. We in particular allow service processes that are run by cloud and SaaS providers to be made policy-aware in a transparent way

    Challenges for the comprehensive management of cloud services in a PaaS framework

    Full text link
    The 4CaaSt project aims at developing a PaaS framework that enables flexible definition, marketing, deployment and management of Cloud-based services and applications. The major innovations proposed by 4CaaSt are the blueprint and its lifecycle management, a one stop shop for Cloud services and a PaaS level resource management featuring elasticity. 4CaaSt also provides a portfolio of ready to use Cloud native services and Cloud-aware immigrant technologies

    Cloud service localisation

    Get PDF
    The essence of cloud computing is the provision of software and hardware services to a range of users in dierent locations. The aim of cloud service localisation is to facilitate the internationalisation and localisation of cloud services by allowing their adaption to dierent locales. We address the lingual localisation by providing service-level language translation techniques to adopt services to dierent languages and regulatory localisation by providing standards-based mappings to achieve regulatory compliance with regionally varying laws, standards and regulations. The aim is to support and enforce the explicit modelling of aspects particularly relevant to localisation and runtime support consisting of tools and middleware services to automating the deployment based on models of locales, driven by the two localisation dimensions. We focus here on an ontology-based conceptual information model that integrates locale specication in a coherent way

    A NOvel radio multiservice adaptive network architecture for 5G networks

    Get PDF
    Proceeding of: 2015 IEEE 81st Vehicular Technology Conference (VTC Spring)This paper proposes a conceptually novel, adaptive and future-proof 5G mobile network architecture. The proposed architecture enables unprecedented levels of network customisability, ensuring stringent performance, security, cost and energy requirements to be met; as well as providing an API-driven architectural openness, fuelling economic growth through over-the-top innovation. Not following the 'one system fits all services' paradigm of current architectures, the architecture allows for adapting the mechanisms executed for a given service to the specific service requirements, resulting in a novel service- and context-dependent adaptation of network functions paradigm. The technical approach is based on the innovative concept of adaptive (de)composition and allocation of mobile network functions, which flexibly decomposes the mobile network functions and places the resulting functions in the most appropriate location. By doing so, access and core functions no longer (necessarily) reside in different locations, which is exploited to jointly optimize their operation when possible. The adaptability of the architecture is further strengthened by the innovative software-defined mobile network control and mobile multi-tenancy concepts

    Evolving multi-tenant SaaS cloud applications using model-driven engineering

    Get PDF
    Cloud computing promotes multi-tenancy for efficient resource utilization by sharing hardware and software infrastructure among multiple clients. Multi-tenant applications running on a cloud infrastructure are provided to clients as Software-as-a-Service (SaaS) over the network. Despite its benefits, multi-tenancy introduces additional challenges, such as p artitioning, extensibility, and customizability during the application development. Over time, after the application deployment, new requirements of clients and changes in business environment result application evolution. As the application evolves, its complexity also increases. In multi-tenancy, evolution demanded by individual clients should not affect availability , security , and performance of the application for other clients. Thus, the multi- tenancy concerns add more complexity by causing variability in design decisions. Managing this complexity requires adequate approaches and tools. In this paper, we propose modeling techniques from software product lines (SPL) and model-driven engineering (MDE) to manage variability and support evolution of multi-tenant applications and their requirements. Specifically, SPL was ap p lied to define technological and concep tual variabilities during the application design, where MDE was suggested to manage these variabilities. We also present a process of how MDE can address evolution of multi-tenant applications using variability models
    corecore