1,111 research outputs found

    Maths, Computation and Flamenco: overview and challenges

    Full text link
    Flamenco is a rich performance-oriented art music genre from Southern Spain which attracts a growing community of aficionados around the globe. Due to its improvisational and expressive nature, its unique musical characteristics, and the fact that the genre is largely undocumented, flamenco poses a number of interesting mathematical and computational challenges. Most existing approaches in Musical Information Retrieval (MIR) were developed in the context of popular or classical music and do often not generalize well to non-Western music traditions, in particular when the underlying music theoretical assumptions do not hold for these genres. Over the recent decade, a number of computational problems related to the automatic analysis of flamenco music have been defined and several methods addressing a variety of musical aspects have been proposed. This paper provides an overview of the challenges which arise in the context of computational analysis of flamenco music and outlines an overview of existing approaches

    Automatic music transcription: challenges and future directions

    Get PDF
    Automatic music transcription is considered by many to be a key enabling technology in music signal processing. However, the performance of transcription systems is still significantly below that of a human expert, and accuracies reported in recent years seem to have reached a limit, although the field is still very active. In this paper we analyse limitations of current methods and identify promising directions for future research. Current transcription methods use general purpose models which are unable to capture the rich diversity found in music signals. One way to overcome the limited performance of transcription systems is to tailor algorithms to specific use-cases. Semi-automatic approaches are another way of achieving a more reliable transcription. Also, the wealth of musical scores and corresponding audio data now available are a rich potential source of training data, via forced alignment of audio to scores, but large scale utilisation of such data has yet to be attempted. Other promising approaches include the integration of information from multiple algorithms and different musical aspects

    Polyphonic music generation using neural networks

    Get PDF
    In this project, the application of generative models for polyphonic music generation is investigated. Polyphonic music generation falls into the field of algorithmic composition, which is a field that aims to develop models to automate, partially or completely, the composition of musical pieces. This process has many challenges both in terms of how to achieve the generation of musical pieces that are enjoyable and also how to perform a robust evaluation of the model to guide improvements. An extensive survey of the development of the field and the state-of-the-art is carried out. From this, two distinct generative models were chosen to apply to the problem of polyphonic music generation. The models chosen were the Restricted Boltzmann Machine and the Generative Adversarial Network. In particular, for the GAN, two architectures were used, the Deep Convolutional GAN and the Wasserstein GAN with gradient penalty. To train these models, a dataset containing over 9000 samples of classical musical pieces was used. Using a piano-roll representation of the musical pieces, these were converted into binary 2D arrays in which the vertical dimensions related to the pitch while the horizontal dimension represented the time, and note events were represented by active units. The first 16 seconds of each piece was extracted and used for training the model after applying data cleansing and preprocessing. Using implementations of these models, samples of musical pieces were generated. Based on listening tests performed by participants, the Deep Convolutional GAN achieved the best scores, with its compositions being ranked on average 4.80 on a scale from 1-5 of how enjoyable the pieces were. To perform a more objective evaluation, different musical features that describe rhythmic and melodic characteristics were extracted from the generated pieces and compared against the training dataset. These features included the implementation of the Krumhansl-Schmuckler algorithm for musical key detection and the average information rate used as an estimator of long-term musical structure. Within each set of the generated musical samples, the pairwise cross-validation using the Euclidean distance between each feature was performed. This was also performed between each set of generated samples and the features extracted from the training data, resulting in two sets of distances, the intra-set and inter-set distances. Using kernel density estimation, the probability density functions of these are obtained. Finally, the Kullback-Liebler divergence between the intra-set and inter-set distance of each feature for each generative model was calculated. The lower divergence indicates that the distributions are more similar. On average, the Restricted Boltzmann Machine obtained the lowest Kullback-Liebler divergences

    A Convolutional Approach to Melody Line Identification in Symbolic Scores

    Get PDF
    In many musical traditions, the melody line is of primary significance in a piece. Human listeners can readily distinguish melodies from accompaniment; however, making this distinction given only the written score -- i.e. without listening to the music performed -- can be a difficult task. Solving this task is of great importance for both Music Information Retrieval and musicological applications. In this paper, we propose an automated approach to identifying the most salient melody line in a symbolic score. The backbone of the method consists of a convolutional neural network (CNN) estimating the probability that each note in the score (more precisely: each pixel in a piano roll encoding of the score) belongs to the melody line. We train and evaluate the method on various datasets, using manual annotations where available and solo instrument parts where not. We also propose a method to inspect the CNN and to analyze the influence exerted by notes on the prediction of other notes; this method can be applied whenever the output of a neural network has the same size as the input

    Melodic track identification in MIDI files considering the imbalanced context

    Get PDF
    In this paper, the problem of identifying the melodic track of a MIDI file in imbalanced scenarios is addressed. A polyphonic MIDI file is a digital score that consists of a set of tracks where usually only one of them contains the melody and the remaining tracks hold the accompaniment. This leads to a two-class imbalance problem that, unlike in previous work, is managed by over-sampling the melody class (the minority one) or by under-sampling the accompaniment class (the majority one) until both classes are the same size. Experimental results over three different music genres prove that learning from balanced training sets clearly provides better results than the standard classification proces

    Music Information Retrieval Meets Music Education

    Get PDF
    This paper addresses the use of Music Information Retrieval (MIR) techniques in music education and their integration in learning software. A general overview of systems that are either commercially available or in research stage is presented. Furthermore, three well-known MIR methods used in music learning systems and their state-of-the-art are described: music transcription, solo and accompaniment track creation, and generation of performance instructions. As a representative example of a music learning system developed within the MIR community, the Songs2See software is outlined. Finally, challenges and directions for future research are described

    A computational framework for sound segregation in music signals

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200
    • …
    corecore