46 research outputs found

    Advances in Information Security and Privacy

    Get PDF
    With the recent pandemic emergency, many people are spending their days in smart working and have increased their use of digital resources for both work and entertainment. The result is that the amount of digital information handled online is dramatically increased, and we can observe a significant increase in the number of attacks, breaches, and hacks. This Special Issue aims to establish the state of the art in protecting information by mitigating information risks. This objective is reached by presenting both surveys on specific topics and original approaches and solutions to specific problems. In total, 16 papers have been published in this Special Issue

    An Efficient Collaboration and Incentive Mechanism for Internet-of-Vehicles (IoVs) with Secured Information Exchange Based on Blockchains

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordWith the rapid development of Internet-of-Things (IoT), mobile crowdsensing, i.e., outsourcing sensing tasks to mobile devices or vehicles, has been proposed to address the problem of data collection in the scenarios such as smart city. Despite its benefits for a wide range of applications, mobile crowdsensing lacks an efficient incentive mechanism, restricting the development of IoT applications, especially for Internet-ofVehicles (IoV) – a typical example of IoT applications; this is because vehicles are usually reluctant to participate these sensing tasks. Moreover, in practice some sensing tasks may arrive suddenly (called an emergent task) in the IoV environment, but the resources of a single vehicle may be insufficient to handle, and thus multi-vehicles collaboration is required. In this case, the incentive mechanisms for the participation of multiple vehicles and the task scheduling for their collaborations are collectively needed. To address this important problem, we firstly propose a new model for the scenario of two vehicles collaboration, considering the situation of emergent appearance of a task. In this model, for a general sensing task, we propose a bidding mechanism to better encourage vehicles to contribute their resources, and the tasks for those vehicles are scheduled accordingly. Secondly, for an emergent task, a novel time-window based method is devised to manage the tasks among vehicles and to incent the vehicles to participate. Finally, we develop a blockchain framework to achieve the secured information exchange through smart contract for the proposed models in IoV.National Key Research and Development Program of ChinaNational Natural Science Foundation of China (NSFC)Purple Mountain Laboratory: Networking, Communications and SecurityAcademician Expert Workstation of Bitvalue Technology (Hunan) Company Limite

    Failure Analysis in Next-Generation Critical Cellular Communication Infrastructures

    Full text link
    The advent of communication technologies marks a transformative phase in critical infrastructure construction, where the meticulous analysis of failures becomes paramount in achieving the fundamental objectives of continuity, security, and availability. This survey enriches the discourse on failures, failure analysis, and countermeasures in the context of the next-generation critical communication infrastructures. Through an exhaustive examination of existing literature, we discern and categorize prominent research orientations with focuses on, namely resource depletion, security vulnerabilities, and system availability concerns. We also analyze constructive countermeasures tailored to address identified failure scenarios and their prevention. Furthermore, the survey emphasizes the imperative for standardization in addressing failures related to Artificial Intelligence (AI) within the ambit of the sixth-generation (6G) networks, accounting for the forward-looking perspective for the envisioned intelligence of 6G network architecture. By identifying new challenges and delineating future research directions, this survey can help guide stakeholders toward unexplored territories, fostering innovation and resilience in critical communication infrastructure development and failure prevention

    A secure and intelligent framework for vehicle health monitoring exploiting big-data analytics

    Get PDF
    This is an accepted manuscript of an article published by IEEE in IEEE Transactions on Intelligent Transportation Systems on 04/01/2022. Available online: https://doi.org/10.1109/TITS.2021.3138255 The accepted version of the publication may differ from the final published version.The dependency on vehicles is increasing tremendously due to its excellent transport capacity, fast, efficient, flexible, pleasant journey, minimal physical effort, and substantial economic impact. As a result, the demand for smart and intelligent feature enhancement is growing and becoming a prime concern for maximum productivity based on the current perspective. In this case, the Internet of Everything (IoE) is an emerging concept that can play an essential role in the automotive industry by integrating the stakeholders, process, data, and things via networked connections. But the unavailability of intelligent features leads to negligence about proper maintenance of vehicle vulnerable parts, reckless driving and severe accident, lack of instructive driving, and improper decision, which incurred extra expenses for maintenance besides hindering national economic growth. For this, we proposed a conceptual framework for a central VHMS exploiting IoE-driven Multi-Layer Heterogeneous Networks (HetNet) and a machine learning technique to oversee individual vehicle health conditions, notify the respective owner driver real-timely and store the information for further necessary action. This article transparently portrayed an overview of central VHMS and proposed the taxonomy to achieve such an objective. Subsequently, we unveiled the framework for central VHMS, IoE-driven Multi-tire HetNet, with a secure and trustworthy data collection and analytics system. Finally, anticipating this proposition’s outcome is immense in the automotive sector. It may motivate the researcher to develop a central intelligent and secure vehicular condition diagnostic system to move this sector towards Industry 4.0.The authors would like to thank University Malaysia Pahang for providing the laboratory facilities and financial support under the University FLAGSHIP Research Grants (Project number RDU192203), International Matching Grant (No. RDU192704), and Postgraduate Research Scheme Grant (No. PGRS200325)

    On the Integration of Blockchain and SDN: Overview, Applications, and Future Perspectives

    Get PDF
    Blockchain (BC) and software-defined networking (SDN) are leading technologies which have recently found applications in several network-related scenarios and have consequently experienced a growing interest in the research community. Indeed, current networks connect a massive number of objects over the Internet and in this complex scenario, to ensure security, privacy, confidentiality, and programmability, the utilization of BC and SDN have been successfully proposed. In this work, we provide a comprehensive survey regarding these two recent research trends and review the related state-of-the-art literature. We first describe the main features of each technology and discuss their most common and used variants. Furthermore, we envision the integration of such technologies to jointly take advantage of these latter efficiently. Indeed, we consider their group-wise utilization—named BC–SDN—based on the need for stronger security and privacy. Additionally, we cover the application fields of these technologies both individually and combined. Finally, we discuss the open issues of reviewed research and describe potential directions for future avenues regarding the integration of BC and SDN. To summarize, the contribution of the present survey spans from an overview of the literature background on BC and SDN to the discussion of the benefits and limitations of BC–SDN integration in different fields, which also raises open challenges and possible future avenues examined herein. To the best of our knowledge, compared to existing surveys, this is the first work that analyzes the aforementioned aspects in light of a broad BC–SDN integration, with a specific focus on security and privacy issues in actual utilization scenarios

    Achieving cybersecurity in blockchain-based systems: a survey

    Get PDF
    With The Increase In Connectivity, The Popularization Of Cloud Services, And The Rise Of The Internet Of Things (Iot), Decentralized Approaches For Trust Management Are Gaining Momentum. Since Blockchain Technologies Provide A Distributed Ledger, They Are Receiving Massive Attention From The Research Community In Different Application Fields. However, This Technology Does Not Provide With Cybersecurity By Itself. Thus, This Survey Aims To Provide With A Comprehensive Review Of Techniques And Elements That Have Been Proposed To Achieve Cybersecurity In Blockchain-Based Systems. The Analysis Is Intended To Target Area Researchers, Cybersecurity Specialists And Blockchain Developers. For This Purpose, We Analyze 272 Papers From 2013 To 2020 And 128 Industrial Applications. We Summarize The Lessons Learned And Identify Several Matters To Foster Further Research In This AreaThis work has been partially funded by MINECO, Spain grantsTIN2016-79095-C2-2-R (SMOG-DEV) and PID2019-111429RB-C21 (ODIO-COW); by CAM, Spain grants S2013/ICE-3095 (CIBERDINE),P2018/TCS-4566 (CYNAMON), co-funded by European Structural Funds (ESF and FEDER); by UC3M-CAM grant CAVTIONS-CM-UC3M; by the Excellence Program for University Researchers, Spain; and by Consejo Superior de Investigaciones Científicas (CSIC), Spain under the project LINKA20216 (“Advancing in cybersecurity technologies”, i-LINK+ program)

    Integrating Edge Computing and Software Defined Networking in Internet of Things: A Systematic Review

    Get PDF
    The Internet of Things (IoT) has transformed our interaction with the world by connecting devices, sensors, and systems to the Internet, enabling real-time monitoring, control, and automation in various applications such as smart cities, healthcare, transportation, homes, and grids. However, challenges related to latency, privacy, and bandwidth have arisen due to the massive influx of data generated by IoT devices and the limitations of traditional cloud-based architectures. Moreover, network management, interoperability, security, and scalability issues have emerged due to the rapid growth and heterogeneous nature of IoT devices. To overcome such problems, researchers proposed a new architecture called Software Defined Networking for Edge Computing in the Internet of Things (SDN-EC-IoT), which combines Edge Computing for the Internet of Things (EC-IoT) and Software Defined Internet of Things (SDIoT). Although researchers have studied EC-IoT and SDIoT as individual architectures, they have not yet addressed the combination of both, creating a significant gap in our understanding of SDN-EC-IoT. This paper aims to fill this gap by presenting a comprehensive review of how the SDN-EC-IoT paradigm can solve IoT challenges. To achieve this goal, this study conducted a literature review covering 74 articles published between 2019 and 2023. Finally, this paper identifies future research directions for SDN-EC-IoT, including the development of interoperability platforms, scalable architectures, low latency and Quality of Service (QoS) guarantees, efficient handling of big data, enhanced security and privacy, optimized energy consumption, resource-aware task offloading, and incorporation of machine learnin

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives
    corecore