136 research outputs found

    Lovelock: Towards Smart NIC-hosted Clusters

    Full text link
    Traditional cluster designs were originally server-centric, and have evolved recently to support hardware acceleration and storage disaggregation. In applications that leverage acceleration, the server CPU performs the role of orchestrating computation and data movement and data-intensive applications stress the memory bandwidth. Applications that leverage disaggregation can be adversely affected by the increased PCIe and network bandwidth resulting from disaggregation. In this paper, we advocate for a specialized cluster design for important data intensive applications, such as analytics, query processing and ML training. This design, Lovelock, replaces each server in a cluster with one or more headless smart NICs. Because smart NICs are significantly cheaper than servers on bandwidth, the resulting cluster can run these applications without adversely impacting performance, while obtaining cost and energy savings

    Efficient and predictable high-speed storage access for real-time embedded systems

    Get PDF
    As the speed, size, reliability and power efficiency of non-volatile storage media increases, and the data demands of many application domains grow, operating systems are being put under escalating pressure to provide high-speed access to storage. Traditional models of storage access assume devices to be slow, expecting plenty of slack time in which to process data between requests being serviced, and that all significant variations in timing will be down to the storage device itself. Modern high-speed storage devices break this assumption, causing storage applications to become processor-bound, rather than I/O-bound, in an increasing number of situations. This is especially an issue in real-time embedded systems, where limited processing resources and strict timing and predictability requirements amplify any issues caused by the complexity of the software storage stack. This thesis explores the issues related to accessing high-speed storage from real-time embedded systems, providing a thorough analysis of storage operations based on metrics relevant to the area. From this analysis, a number of alternative storage architectures are proposed and explored, showing that a simpler, more direct path from applications to storage can have a positive impact on efficiency and predictability in such systems

    An integrated SDN architecture for application driven networking

    No full text
    The target of our effort is the definition of a dynamic network architecture meeting the requirements of applications competing for reliable high performance network resources. These applications have different requirements regarding reli- ability, bandwidth, latency, predictability, quality, reliable lead time and allocatability. At a designated instance in time a virtual network has to be defined automatically for a limited period of time, based on an existing physical network infrastructure, which implements the requirements of an application. We suggest an integrated Software Defined Network (SDN) architecture providing highly customizable functionalities required for efficient data transfer. It consists of a service interface towards the application and an open network interface towards the physical infrastruc- ture. Control and forwarding plane are separated for better scalability. This type of architecture allows to negotiate the reser- vation of network resources involving multiple applications with different requirement profiles within multi-domain environments

    Real-Time Scheduling for GPUs with Applications in Advanced Automotive Systems

    Get PDF
    Self-driving cars, once constrained to closed test tracks, are beginning to drive alongside human drivers on public roads. Loss of life or property may result if the computing systems of automated vehicles fail to respond to events at the right moment. We call such systems that must satisfy precise timing constraints “real-time systems.” Since the 1960s, researchers have developed algorithms and analytical techniques used in the development of real-time systems; however, this body of knowledge primarily applies to traditional CPU-based platforms. Unfortunately, traditional platforms cannot meet the computational requirements of self-driving cars without exceeding the power and cost constraints of commercially viable vehicles. We argue that modern graphics processing units, or GPUs, represent a feasible alternative, but new algorithms and analytical techniques must be developed in order to integrate these uniquely constrained processors into a real-time system. The goal of the research presented in this dissertation is to discover and remedy the issues that prevent the use of GPUs in real-time systems. To overcome these issues, we design and implement a real-time multi-GPU scheduler, called GPUSync. GPUSync tightly controls access to a GPU’s computational and DMA processors, enabling simultaneous use despite potential limitations in GPU hardware. GPUSync enables tasks to migrate among GPUs, allowing new classes of real-time multi-GPU computing platforms. GPUSync employs heuristics to guide scheduling decisions to improve system efficiency without risking violations in real-time constraints. GPUSync may be paired with a wide variety of common real-time CPU schedulers. GPUSync supports closed-source GPU runtimes and drivers without loss in functionality. We evaluate GPUSync with both analytical and runtime experiments. In our analytical experiments, we model and evaluate over fifty configurations of GPUSync. We determine which configurations support the greatest computational capacity while maintaining real-time constraints. In our runtime experiments, we execute computer vision programs similar to those found in automated vehicles, with and without GPUSync. Our results demonstrate that GPUSync greatly reduces jitter in video processing. Research into real-time systems with GPUs is a new area of study. Although there is prior work on such systems, no other GPU scheduling framework is as comprehensive and flexible as GPUSync.Doctor of Philosoph

    Towards Power- and Energy-Efficient Datacenters

    Full text link
    As the Internet evolves, cloud computing is now a dominant form of computation in modern lives. Warehouse-scale computers (WSCs), or datacenters, comprising the foundation of this cloud-centric web have been able to deliver satisfactory performance to both the Internet companies and the customers. With the increased focus and popularity of the cloud, however, datacenter loads rise and grow rapidly, and Internet companies are in need of boosted computing capacity to serve such demand. Unfortunately, power and energy are often the major limiting factors prohibiting datacenter growth: it is often the case that no more servers can be added to datacenters without surpassing the capacity of the existing power infrastructure. This dissertation aims to investigate the issues of power and energy usage in a modern datacenter environment. We identify the source of power and energy inefficiency at three levels in a modern datacenter environment and provides insights and solutions to address each of these problems, aiming to prepare datacenters for critical future growth. We start at the datacenter-level and find that the peak provisioning and improper service placement in multi-level power delivery infrastructures fragment the power budget inside production datacenters, degrading the compute capacity the existing infrastructure can support. We find that the heterogeneity among datacenter workloads is key to address this issue and design systematic methods to reduce the fragmentation and improve the utilization of the power budget. This dissertation then narrow the focus to examine the energy usage of individual servers running cloud workloads. Especially, we examine the power management mechanisms employed in these servers and find that the coarse time granularity of these mechanisms is one critical factor that leads to excessive energy consumption. We propose an intelligent and low overhead solution on top of the emerging finer granularity voltage/frequency boosting circuit to effectively pinpoints and boosts queries that are likely to increase the tail distribution and can reap more benefit from the voltage/frequency boost, improving energy efficiency without sacrificing the quality of services. The final focus of this dissertation takes a further step to investigate how using a fundamentally more efficient computing substrate, field programmable gate arrays (FPGAs), benefit datacenter power and energy efficiency. Different from other types of hardware accelerations, FPGAs can be reconfigured on-the-fly to provide fine-grain control over hardware resource allocation and presents a unique set of challenges for optimal workload scheduling and resource allocation. We aim to design a set coordinated algorithms to manage these two key factors simultaneously and fully explore the benefit of deploying FPGAs in the highly varying cloud environment.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144043/1/hsuch_1.pd

    RDMA is Turing complete, we just did not know it yet!

    Full text link
    It is becoming increasingly popular for distributed systems to exploit offload to reduce load on the CPU. Remote Direct Memory Access (RDMA) offload, in particular, has become popular. However, RDMA still requires CPU intervention for complex offloads that go beyond simple remote memory access. As such, the offload potential is limited and RDMA-based systems usually have to work around such limitations. We present RedN, a principled, practical approach to implementing complex RDMA offloads, without requiring any hardware modifications. Using self-modifying RDMA chains, we lift the existing RDMA verbs interface to a Turing complete set of programming abstractions. We explore what is possible in terms of offload complexity and performance with a commodity RDMA NIC. We show how to integrate these RDMA chains into applications, such as the Memcached key-value store, allowing us to offload complex tasks such as key lookups. RedN can reduce the latency of key-value get operations by up to 2.6x compared to state-of-the-art KV designs that use one-sided RDMA primitives (e.g., FaRM-KV), as well as traditional RPC-over-RDMA approaches. Moreover, compared to these baselines, RedN provides performance isolation and, in the presence of contention, can reduce latency by up to 35x while providing applications with failure resiliency to OS and process crashes.Comment: Updated to NSDI 2022 versio
    • …
    corecore