172 research outputs found

    Proximity as a Service via Cellular Network-Assisted Mobile Device-to-Device

    Get PDF
    PhD ThesisThe research progress of communication has brought a lot of novel technologies to meet the multi-dimensional demands such as pervasive connection, low delay and high bandwidth. Device-to-Device (D2D) communication is a way to no longer treat the User Equipment (UEs) as a terminal, but rather as a part of the network for service provisioning. This thesis decouples UEs into service providers (helpers) and service requesters. By collaboration among proximal devices, with the coordination of cellular networks, some local tasks can be achieved, such as coverage extension, computation o oading, mobile crowdsourcing and mobile crowdsensing. This thesis proposes a generic framework Proximity as a Service (PaaS) for increasing the coverage with demands of service continuity. As one of the use cases, the optimal helper selection algorithm of PaaS for increasing the service coverage with demands of service continuity is called ContAct based Proximity (CAP). Mainly, fruitful contact information (e.g., contact duration, frequency, and interval) is captured, and is used to handle ubiquitous proximal services through the optimal selection of helpers. The nature of PaaS is evaluated under the Helsinki city scenario, with movement model of Points Of Interest (POI) and with critical factors in uencing the service demands (e.g., success ratio, disruption duration and frequency). Simulation results show the advantage of CAP, in both success ratio and continuity of the service (outputs). Based on this perspective, metrics such as service success ratio and continuity as a service evaluation of the PaaS are evaluated using the statistical theory of the Design Of Experiments (DOE). DOE is used as there are many dimensions to the state space (access tolerance, selected helper number, helper access limit, and transmit range) that can in uence the results. A key contribution of this work is that it brings rigorous statistical experiment design methods into the research into mobile computing. Results further reveal the influence of four factors (inputs), e.g., service tolerance, number of helpers allocated, the number of concurrent devices supported by each helper and transmit range. Based on this perspective, metrics such as service success ratio and continuity are evaluated using DOE. The results show that transmit range is the most dominant factor. The number of selected helpers is the second most dominant factor. Since di erent factors have di erent regression levels, a uni ed 4 level full factorial experiment and a cubic multiple regression analysis have been carried out. All the interactions and the corresponding coe cients have been found. This work is the rst one to evaluate LTE-Direct and WiFi-Direct in an opportunistic proximity service. The contribution of the results for industry is to guide how many users need to cooperate to enable mobile computing and for academia. This reveals the facts that: 1, in some cases, the improvement of spectrum e ciency brought by D2D is not important; 2, nodal density and the resources used in D2D air-interfaces are important in the eld of mobile computing. This work built a methodology to study the D2D networks with a di erent perspective (PaaS)

    Enable Reliable and Secure Data Transmission in Resource-Constrained Emerging Networks

    Get PDF
    The increasing deployment of wireless devices has connected humans and objects all around the world, benefiting our daily life and the entire society in many aspects. Achieving those connectivity motivates the emergence of different types of paradigms, such as cellular networks, large-scale Internet of Things (IoT), cognitive networks, etc. Among these networks, enabling reliable and secure data transmission requires various resources including spectrum, energy, and computational capability. However, these resources are usually limited in many scenarios, especially when the number of devices is considerably large, bringing catastrophic consequences to data transmission. For example, given the fact that most of IoT devices have limited computational abilities and inadequate security protocols, data transmission is vulnerable to various attacks such as eavesdropping and replay attacks, for which traditional security approaches are unable to address. On the other hand, in the cellular network, the ever-increasing data traffic has exacerbated the depletion of spectrum along with the energy consumption. As a result, mobile users experience significant congestion and delays when they request data from the cellular service provider, especially in many crowded areas. In this dissertation, we target on reliable and secure data transmission in resource-constrained emerging networks. The first two works investigate new security challenges in the current heterogeneous IoT environment, and then provide certain countermeasures for reliable data communication. To be specific, we identify a new physical-layer attack, the signal emulation attack, in the heterogeneous environment, such as smart home IoT. To defend against the attack, we propose two defense strategies with the help of a commonly found wireless device. In addition, to enable secure data transmission in large-scale IoT network, e.g., the industrial IoT, we apply the amply-and-forward cooperative communication to increase the secrecy capacity by incentivizing relay IoT devices. Besides security concerns in IoT network, we seek data traffic alleviation approaches to achieve reliable and energy-efficient data transmission for a group of users in the cellular network. The concept of mobile participation is introduced to assist data offloading from the base station to users in the group by leveraging the mobility of users and the social features among a group of users. Following with that, we deploy device-to-device data offloading within the group to achieve the energy efficiency at the user side while adapting to their increasing traffic demands. In the end, we consider a perpendicular topic - dynamic spectrum access (DSA) - to alleviate the spectrum scarcity issue in cognitive radio network, where the spectrum resource is limited to users. Specifically, we focus on the security concerns and further propose two physical-layer schemes to prevent spectrum misuse in DSA in both additive white Gaussian noise and fading environments

    Mobility models, mobile code offloading, and p2p networks of smartphones on the cloud

    Get PDF
    It was just a few years ago when I bought my first smartphone. And now, (almost) all of my friends possess at least one of these powerful devices. International Data Corporation (IDC) reports that smartphone sales showed strong growth worldwide in 2011, with 491.4 million units sold – up to 61.3 percent from 2010. Furthermore, IDC predicts that 686 million smartphones will be sold in 2012, 38.4 percent of all handsets shipped. Silently, we are becoming part of a big mobile smartphone network, and it is amazing how the perception of the world is changing thanks to these small devices. If many years ago the birth of Internet enabled the possibility to be online, smartphones nowadays allow to be online all the time. Today we use smartphones to do many of the tasks we used to do on desktops, and many new ones. We browse the Internet, watch videos, upload data on social networks, use online banking, find our way by using GPS and online maps, and communicate in revolutionary ways. Along with these benefits, these fancy and exciting devices brought many challenges to the research area of mobile and distributed systems. One of the first problems that captured our attention was the study of the network that potentially could be created by interconnecting all the smartphones together. Typically, these devices are able to communicate with each other in short distances by using com- munication technologies such as Bluetooth or WiFi. The network paradigm that rises from this intermittent communication, also known as Pocket Switched Network (PSN) or Opportunistic Network ([10, 11]), is seen as a key technology to provide innovative services to the users without the need of any fixed infrastructure. In PSNs nodes are short range communicating devices carried by humans. Wireless communication links are created and dropped in time, depending on the physical distance of the device holders. From one side, social relations among humans yield recurrent movement patterns that help researchers design and build protocols that efficiently deliver messages to destinations ([12, 13, 14] among others). The complexity of these social relations, from the other side, makes it difficult to build simple mobility models, that in an efficient way, generate large synthetic mobility traces that look real. Traces that would be very valuable in protocol validation and that would replace the limited experimentally gathered data available so far. Traces that would serve as a common benchmark to researchers worldwide on which to validate existing and yet to be designed protocols. With this in mind we start our study with re-designing SWIM [15], an already exist- ing mobility model shown to generate traces with similar properties of that of existing real ones. We make SWIM able to easily generate large (small)-scale scenarios, starting from known small (large)-scale ones. To the best of our knowledge, this is the first such study. In addition, we study the social aspects of SWIM-generated traces. We show how to SWIM-generate a scenario in which a specific community structure of nodes is required. Finally, exploiting the scaling properties of SWIM, we present the first analysis of the scal- ing capabilities of several forwarding protocols such as Epidemic [16], Delegation [13], Spray&Wait [14], and BUBBLE [12]. The first results of these works appeared in [1], and, at the time of writing, [2] is accepted with minor revision. Next, we take into account the fact that in PSNs cannot be assumed full cooperation and fairness among nodes. Selfish behavior of individuals has to be considered, since it is an inherent aspect of humans, the device holders (see [17], [18]). We design a market-based mathematical framework that enables heterogeneous mobile users in an opportunistic mobile network to compromise optimally and efficiently on their QoS 3 demands. The goal of the framework is to satisfy each user with its achieved (lesser) QoS, and at the same time maximize the social welfare of users in the network. We base our study on the consideration that, in practice, users are generally tolerant on accepting lesser QoS guarantees than what they demand, with the degree of tolerance varying from user to user. This study is described in details in Chapter 2 of this dissertation, and is included in [3]. In general, QoS could be parameters such as response time, number of computations per unit time, allocated bandwidth, etc. Along the way toward our study of the smartphone-world, there was the big advent of mobile cloud computing—smartphones getting help from cloud-enabled services. Many researchers started believing that the cloud could help solving a crucial problem regarding smartphones: improve battery life. New generation apps are becoming very complex — gaming, navigation, video editing, augmented reality, speech recognition, etc., — which require considerable amount of power and energy, and as a result, smartphones suffer short battery lifetime. Unfortunately, as a consequence, mobile users have to continually upgrade their hardware to keep pace with increasing performance requirements but still experience battery problems. Many recent works have focused on building frameworks that enable mobile computation offloading to software clones of smartphones on the cloud (see [19, 20] among others), as well as to backup systems for data and applications stored in our devices [21, 22, 23]. However, none of these address dynamic and scalability features of execution on the cloud. These are very important problems, since users may request different computational power or backup space based on their workload and deadline for tasks. Considering this and advancing on previous works, we design, build, and implement the ThinkAir framework, which focuses on the elasticity and scalability of the server side and enhances the power of mobile cloud computing by parallelizing method execution using multiple Virtual Machine (VM) images. We evaluate the system using a range of benchmarks starting from simple micro-benchmarks to more complex applications. First, we show that the execution time and energy consumption decrease two orders of magnitude for the N-queens puzzle and one order of magnitude for a face detection and a virus scan application, using cloud offloading. We then show that a parallelizable application can invoke multiple VMs to execute in the cloud in a seamless and on-demand manner such as to achieve greater reduction on execution time and energy consumption. Finally, we use a memory-hungry image combiner tool to demonstrate that applications can dynamically request VMs with more computational power in order to meet their computational requirements. The details of the ThinkAir framework and its evaluation are described in Chapter 4, and are included in [6, 5]. Later on, we push the smartphone-cloud paradigm to a further level: We develop Clone2Clone (C2C), a distributed platform for cloud clones of smartphones. Along the way toward C2C, we study the performance of device-clones hosted in various virtualization environments in both private (local servers) and public (Amazon EC2) clouds. We build the first Amazon Customized Image (AMI) for Android-OS—a key tool to get reliable performance measures of mobile cloud systems—and show how it boosts up performance of Android images on the Amazon cloud service. We then design, build, and implement Clone2Clone, which associates a software clone on the cloud to every smartphone and in- terconnects the clones in a p2p fashion exploiting the networking service within the cloud. On top of C2C we build CloneDoc, a secure real-time collaboration system for smartphone users. We measure the performance of CloneDoc on a testbed of 16 Android smartphones and clones hosted on both private and public cloud services and show that C2C makes it possible to implement distributed execution of advanced p2p services in a network of mobile smartphones. The design and implementation of the Clone2Clone platform is included in [7], recently submitted to an international conference. We believe that Clone2Clone not only enables the execution of p2p applications in a network of smartphones, but it can also serve as a tool to solve critical security problems. In particular, we consider the problem of computing an efficient patching strategy to stop worm spreading between smartphones. We assume that the worm infects the devices and spreads by using bluetooth connections, emails, or any other form of communication used by the smartphones. The C2C network is used to compute the best strategy to patch the smartphones in such a way that the number of devices to patch is low (to reduce the load on the cellular infrastructure) and that the worm is stopped quickly. We consider two well defined worms, one spreading between the devices and one attacking the cloud before moving to the real smartphones. We describe CloudShield [8], a suite of protocols running on the peer-to-peer network of clones; and show by experiments with two different datasets (Facebook and LiveJournal) that CloudShield outperforms state-of-the-art worm-containment mechanisms for mobile wireless networks. This work is done in collaboration with Marco Valerio Barbera, PhD colleague in the same department, who contributed mainly in the implementation and testing of the malware spreading and patching strategies on the different datasets. The communication between the real devices and the cloud, necessary for mobile com- putation offloading and smartphone data backup, does certainly not come for free. To the best of our knowledge, none of the works related to mobile cloud computing explicitly studies the actual overhead in terms of bandwidth and energy to achieve full backup of both data/applications of a smartphone, as well as to keep, on the cloud, up-to-date clones of smartphones for mobile computation offload purposes. In the last work during my PhD—again, in collaboration with Marco Valerio Barbera—we studied the feasibility of both mobile computation offloading and mobile software/data backup in real-life scenarios. This joint work resulted in a recent publication [9] but is not included in this thesis. As in C2C, we assume an architecture where each real device is associated to a software clone on the cloud. We define two types of clones: The off-clone, whose purpose is to support computation offloading, and the back-clone, which comes to use when a restore of user’s data and apps is needed. We measure the bandwidth and energy consumption incurred in the real device as a result of the synchronization with the off-clone or the back-clone. The evaluation is performed through an experiment with 11 Android smartphones and an equal number of clones running on Amazon EC2. We study the data communication overhead that is necessary to achieve different levels of synchronization (once every 5min, 30min, 1h, etc.) between devices and clones in both the off-clone and back-clone case, and report on the costs in terms of energy incurred by each of these synchronization frequencies as well as by the respective communication overhead. My contribution in this work is focused mainly on the experimental setup, deployment, and data collection

    Mobility models, mobile code offloading, and p2p networks of smartphones on the cloud

    Get PDF
    It was just a few years ago when I bought my first smartphone. And now, (almost) all of my friends possess at least one of these powerful devices. International Data Corporation (IDC) reports that smartphone sales showed strong growth worldwide in 2011, with 491.4 million units sold – up to 61.3 percent from 2010. Furthermore, IDC predicts that 686 million smartphones will be sold in 2012, 38.4 percent of all handsets shipped. Silently, we are becoming part of a big mobile smartphone network, and it is amazing how the perception of the world is changing thanks to these small devices. If many years ago the birth of Internet enabled the possibility to be online, smartphones nowadays allow to be online all the time. Today we use smartphones to do many of the tasks we used to do on desktops, and many new ones. We browse the Internet, watch videos, upload data on social networks, use online banking, find our way by using GPS and online maps, and communicate in revolutionary ways. Along with these benefits, these fancy and exciting devices brought many challenges to the research area of mobile and distributed systems. One of the first problems that captured our attention was the study of the network that potentially could be created by interconnecting all the smartphones together. Typically, these devices are able to communicate with each other in short distances by using com- munication technologies such as Bluetooth or WiFi. The network paradigm that rises from this intermittent communication, also known as Pocket Switched Network (PSN) or Opportunistic Network ([10, 11]), is seen as a key technology to provide innovative services to the users without the need of any fixed infrastructure. In PSNs nodes are short range communicating devices carried by humans. Wireless communication links are created and dropped in time, depending on the physical distance of the device holders. From one side, social relations among humans yield recurrent movement patterns that help researchers design and build protocols that efficiently deliver messages to destinations ([12, 13, 14] among others). The complexity of these social relations, from the other side, makes it difficult to build simple mobility models, that in an efficient way, generate large synthetic mobility traces that look real. Traces that would be very valuable in protocol validation and that would replace the limited experimentally gathered data available so far. Traces that would serve as a common benchmark to researchers worldwide on which to validate existing and yet to be designed protocols. With this in mind we start our study with re-designing SWIM [15], an already exist- ing mobility model shown to generate traces with similar properties of that of existing real ones. We make SWIM able to easily generate large (small)-scale scenarios, starting from known small (large)-scale ones. To the best of our knowledge, this is the first such study. In addition, we study the social aspects of SWIM-generated traces. We show how to SWIM-generate a scenario in which a specific community structure of nodes is required. Finally, exploiting the scaling properties of SWIM, we present the first analysis of the scal- ing capabilities of several forwarding protocols such as Epidemic [16], Delegation [13], Spray&Wait [14], and BUBBLE [12]. The first results of these works appeared in [1], and, at the time of writing, [2] is accepted with minor revision. Next, we take into account the fact that in PSNs cannot be assumed full cooperation and fairness among nodes. Selfish behavior of individuals has to be considered, since it is an inherent aspect of humans, the device holders (see [17], [18]). We design a market-based mathematical framework that enables heterogeneous mobile users in an opportunistic mobile network to compromise optimally and efficiently on their QoS 3 demands. The goal of the framework is to satisfy each user with its achieved (lesser) QoS, and at the same time maximize the social welfare of users in the network. We base our study on the consideration that, in practice, users are generally tolerant on accepting lesser QoS guarantees than what they demand, with the degree of tolerance varying from user to user. This study is described in details in Chapter 2 of this dissertation, and is included in [3]. In general, QoS could be parameters such as response time, number of computations per unit time, allocated bandwidth, etc. Along the way toward our study of the smartphone-world, there was the big advent of mobile cloud computing—smartphones getting help from cloud-enabled services. Many researchers started believing that the cloud could help solving a crucial problem regarding smartphones: improve battery life. New generation apps are becoming very complex — gaming, navigation, video editing, augmented reality, speech recognition, etc., — which require considerable amount of power and energy, and as a result, smartphones suffer short battery lifetime. Unfortunately, as a consequence, mobile users have to continually upgrade their hardware to keep pace with increasing performance requirements but still experience battery problems. Many recent works have focused on building frameworks that enable mobile computation offloading to software clones of smartphones on the cloud (see [19, 20] among others), as well as to backup systems for data and applications stored in our devices [21, 22, 23]. However, none of these address dynamic and scalability features of execution on the cloud. These are very important problems, since users may request different computational power or backup space based on their workload and deadline for tasks. Considering this and advancing on previous works, we design, build, and implement the ThinkAir framework, which focuses on the elasticity and scalability of the server side and enhances the power of mobile cloud computing by parallelizing method execution using multiple Virtual Machine (VM) images. We evaluate the system using a range of benchmarks starting from simple micro-benchmarks to more complex applications. First, we show that the execution time and energy consumption decrease two orders of magnitude for the N-queens puzzle and one order of magnitude for a face detection and a virus scan application, using cloud offloading. We then show that a parallelizable application can invoke multiple VMs to execute in the cloud in a seamless and on-demand manner such as to achieve greater reduction on execution time and energy consumption. Finally, we use a memory-hungry image combiner tool to demonstrate that applications can dynamically request VMs with more computational power in order to meet their computational requirements. The details of the ThinkAir framework and its evaluation are described in Chapter 4, and are included in [6, 5]. Later on, we push the smartphone-cloud paradigm to a further level: We develop Clone2Clone (C2C), a distributed platform for cloud clones of smartphones. Along the way toward C2C, we study the performance of device-clones hosted in various virtualization environments in both private (local servers) and public (Amazon EC2) clouds. We build the first Amazon Customized Image (AMI) for Android-OS—a key tool to get reliable performance measures of mobile cloud systems—and show how it boosts up performance of Android images on the Amazon cloud service. We then design, build, and implement Clone2Clone, which associates a software clone on the cloud to every smartphone and in- terconnects the clones in a p2p fashion exploiting the networking service within the cloud. On top of C2C we build CloneDoc, a secure real-time collaboration system for smartphone users. We measure the performance of CloneDoc on a testbed of 16 Android smartphones and clones hosted on both private and public cloud services and show that C2C makes it possible to implement distributed execution of advanced p2p services in a network of mobile smartphones. The design and implementation of the Clone2Clone platform is included in [7], recently submitted to an international conference. We believe that Clone2Clone not only enables the execution of p2p applications in a network of smartphones, but it can also serve as a tool to solve critical security problems. In particular, we consider the problem of computing an efficient patching strategy to stop worm spreading between smartphones. We assume that the worm infects the devices and spreads by using bluetooth connections, emails, or any other form of communication used by the smartphones. The C2C network is used to compute the best strategy to patch the smartphones in such a way that the number of devices to patch is low (to reduce the load on the cellular infrastructure) and that the worm is stopped quickly. We consider two well defined worms, one spreading between the devices and one attacking the cloud before moving to the real smartphones. We describe CloudShield [8], a suite of protocols running on the peer-to-peer network of clones; and show by experiments with two different datasets (Facebook and LiveJournal) that CloudShield outperforms state-of-the-art worm-containment mechanisms for mobile wireless networks. This work is done in collaboration with Marco Valerio Barbera, PhD colleague in the same department, who contributed mainly in the implementation and testing of the malware spreading and patching strategies on the different datasets. The communication between the real devices and the cloud, necessary for mobile com- putation offloading and smartphone data backup, does certainly not come for free. To the best of our knowledge, none of the works related to mobile cloud computing explicitly studies the actual overhead in terms of bandwidth and energy to achieve full backup of both data/applications of a smartphone, as well as to keep, on the cloud, up-to-date clones of smartphones for mobile computation offload purposes. In the last work during my PhD—again, in collaboration with Marco Valerio Barbera—we studied the feasibility of both mobile computation offloading and mobile software/data backup in real-life scenarios. This joint work resulted in a recent publication [9] but is not included in this thesis. As in C2C, we assume an architecture where each real device is associated to a software clone on the cloud. We define two types of clones: The off-clone, whose purpose is to support computation offloading, and the back-clone, which comes to use when a restore of user’s data and apps is needed. We measure the bandwidth and energy consumption incurred in the real device as a result of the synchronization with the off-clone or the back-clone. The evaluation is performed through an experiment with 11 Android smartphones and an equal number of clones running on Amazon EC2. We study the data communication overhead that is necessary to achieve different levels of synchronization (once every 5min, 30min, 1h, etc.) between devices and clones in both the off-clone and back-clone case, and report on the costs in terms of energy incurred by each of these synchronization frequencies as well as by the respective communication overhead. My contribution in this work is focused mainly on the experimental setup, deployment, and data collection

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Mobile Crowd Sensing in Edge Computing Environment

    Get PDF
    abstract: The mobile crowdsensing (MCS) applications leverage the user data to derive useful information by data-driven evaluation of innovative user contexts and gathering of information at a high data rate. Such access to context-rich data can potentially enable computationally intensive crowd-sourcing applications such as tracking a missing person or capturing a highlight video of an event. Using snippets and pictures captured from multiple mobile phone cameras with specific contexts can improve the data acquired in such applications. These MCS applications require efficient processing and analysis to generate results in real time. A human user, mobile device and their interactions cause a change in context on the mobile device affecting the quality contextual data that is gathered. Usage of MCS data in real-time mobile applications is challenging due to the complex inter-relationship between: a) availability of context, context is available with the mobile phones and not with the cloud, b) cost of data transfer to remote cloud servers, both in terms of communication time and energy, and c) availability of local computational resources on the mobile phone, computation may lead to rapid battery drain or increased response time. The resource-constrained mobile devices need to offload some of their computation. This thesis proposes ContextAiDe an end-end architecture for data-driven distributed applications aware of human mobile interactions using Edge computing. Edge processing supports real-time applications by reducing communication costs. The goal is to optimize the quality and the cost of acquiring the data using a) modeling and prediction of mobile user contexts, b) efficient strategies of scheduling application tasks on heterogeneous devices including multi-core devices such as GPU c) power-aware scheduling of virtual machine (VM) applications in cloud infrastructure e.g. elastic VMs. ContextAiDe middleware is integrated into the mobile application via Android API. The evaluation consists of overheads and costs analysis in the scenario of ``perpetrator tracking" application on the cloud, fog servers, and mobile devices. LifeMap data sets containing actual sensor data traces from mobile devices are used to simulate the application run for large scale evaluation.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Mobile Big Data Analytics in Healthcare

    Get PDF
    Mobile and ubiquitous devices are everywhere around us generating considerable amount of data. The concept of mobile computing and analytics is expanding due to the fact that we are using mobile devices day in and out without even realizing it. These mobile devices use Wi-Fi, Bluetooth or mobile data to be intermittently connected to the world, generating, sending and receiving data on the move. Latest mobile applications incorporating graphics, video and audio are main causes of loading the mobile devices by consuming battery, memory and processing power. Mobile Big data analytics includes for instance, big health data, big location data, big social media data, and big heterogeneous data. Healthcare is undoubtedly one of the most data-intensive industries nowadays and the challenge is not only in acquiring, storing, processing and accessing data, but also in engendering useful insights out of it. These insights generated from health data may reduce health monitoring cost, enrich disease diagnosis, therapy, and care and even lead to human lives saving. The challenge in mobile data and Big data analytics is how to meet the growing performance demands of these activities while minimizing mobile resource consumption. This thesis proposes a scalable architecture for mobile big data analytics implementing three new algorithms (i.e. Mobile resources optimization, Mobile analytics customization and Mobile offloading), for the effective usage of resources in performing mobile data analytics. Mobile resources optimization algorithm monitors the resources and switches off unused network connections and application services whenever resources are limited. However, analytics customization algorithm attempts to save energy by customizing the analytics process while implementing some data-aware techniques. Finally, mobile offloading algorithm decides on the fly whether to process data locally or delegate it to a Cloud back-end server. The ultimate goal of this research is to provide healthcare decision makers with the advancements in mobile Big data analytics and support them in handling large and heterogeneous health datasets effectively on the move

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects
    • …
    corecore