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Abstract: Due to the technological advancement in cellular networks, massive data traffic appends to
the existing digital technologies. These emerging digital technologies face quality of service (QoS)
challenges, particularly when it comes to maintaining the tradeoffs between customers and service
providers. The cellular service providers are trying to meet the needs of end users by handling
four substantially different types of data, i.e., Real Time, Video, Audio, and Text, with each type
having its own requirements. To achieves an efficient QoS, different incentive-based algorithms were
proposed. However, these schemes do not ensure a fair distribution of profit among the mobile
network operator and access points. Furthermore, these schemes do not provide efficient QoS to
the end user and cannot ensure a fair distribution of channels in crowning time. We propose an
incentive-based scheme using game theory and two-stage Stackelberg approach for integrated data,
offloading the decision-making process in a heterogeneous network. A single mobile base station and
some integrated access points in a crowded metropolitan area are modeled in our proposed scheme.
This station offers an economic incentive based on traffic types, and access points compete with each
other to earn incentives for offload traffic. A mathematical game is derived to analyze the real-world
scenario through simulation. The experimental method is applied to validate the numerical outcomes
by comparing the results with other models.

Keywords: cellular networks; digital technologies; game theory; Stackelberg approach; Nash equilibrium

1. Introduction

The world has seen an unprecedented data increase in the last two decades due to the
realization of both wired and wireless networks. The formation of these small and medium-
sized enterprises (SMEs) networks has been considered a significant contribution to the
field of science and technology. These networks are being utilized worldwide, experienced
by billions of users any time around the world, which frames the world as a global village
for efficient decision-making processes. Wireless networking procured more attention from
users due to mobility both in personal and corporate computing in different SMEs [1].

Wireless and mobile communication has affected networking enormously in the last
two decades due to excessive usage of emerging digital technologies, such as smartphones,
tablets, laptops, and other portable gadgets used for convenience in our daily lives. Suffi-
cient wireless communication has been established, especially in terms of cellular networks.
These cellular networks have become a fundamental part of our daily lives, and they have
served us with a persistent supply of internet services for different SMEs [2].
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The Cisco index mentioned in its statistics that there were 18 billion global mobile
devices in 2017, out of which 58 percent were smartphones. It has been estimated that in
2022, the ratio of the emerging digital mobile devices will grow to 28.5 billion [3].

The diurnal activities of the emerging digital technology have been influenced by the
usage of the latest smart devices utilizing the fastest 4/5G LTE networks. Due to an expo-
nential increase in the emerging digital technology in mobile data traffic, the management
of data overload has grown into a challenge for the mobile network operators (MNOs) in
these SMEs. Smart devices, social networking, live streaming, and sharing of audio and
videos have made an abnormal contribution to the flow of network traffic [4]. According to
statistics of the Cisco index, sevenfold global mobile data traffic can be observed from 2017
to 2022, which is twofold the fixed IP traffic for the mentioned period [5].

An exceptional solution is required to address these issues of massive traffic, especially
mobile data traffic, which has worsened the smooth provision of data services to the end
users of different SMEs. To manage network traffic, mobile network operators (MNOs)
may consider scalability, optimization, or data offloading as possible solutions. However,
the former two approaches are expensive, may cause an extra burden, and decrease profit,
while the third one is adopted by the MNOs all over the world to address the issue of
mobile data offloading [6]. Mobile data offloading (MDO) can be achieved through Wi-Fi,
femtocells, IP flow mobility, etc. However, due to the easy deployment of Wi-Fi hotspots
and the availability of Wi-Fi interface in smartphones, mobile data offloading through Wi-Fi
is considered as one of the realistic solutions to the current issue [7].

Statistics show that sixty percent (60%) of global mobile data traffic was offloaded
through Wi-Fi up to 2016, and a 63 percent increase was expected in this offloaded traffic up
to 2021. Research works revealed that customer experience measured in terms of high data
rates and improved quality of service (QoS) is enhanced by mobile data offloading through
Wi-Fi [8]. The QoS is the main expectation of a customer from an MNO to maintain the
efficient operation of the network [9].

Different existing techniques, including artificial intelligence (AI) techniques, on mo-
bile data offloading are proposed. For example, game-based solutions are used for network
resources sharing in device to device communication. To find the optimal solution, the Nash
bargaining solution has been used [10]. In Ref [11], the author proposed an optimal pricing
method between a service provider and service request based on the Stackelberg approach.
Weak aspects of the related literature demonstrate the drawbacks of these approaches,
which are related to the need to (i) ensure a fair distribution of profit among the MNO
and APs; (ii) provide improved quality of service (QoS) to the end user; (iii) ensure a fair
distribution of channels in peak time and off-peak time to eliminate congestion; (iv) obtain
maximum throughput by utilizing an optimal number of APs.

To handle these problems, we propose a scheme that is different from these techniques
by examining mobile data offloading through Wi-Fi and focusing on designing a fair
economic incentive mechanism based on AI techniques to be applied by the MNO to obtain
its benefit, as well as to benefit its partner APs. We present an incentive-based scheme
with three different traffic types that are considered, including Video, Audio, and Text
data. Each traffic type has a different scheme of incentives. When using them, the APs
are required to maximize their profit, while, on the other hand, the MNO will obtain the
benefit of maximum data to offload in a congested situation, especially during peak times.
In off-peak times, the MNO may utilize its resources to maximize its payoff when data
offloading is not required due to congestion. The main novelties and contributions of our
work are as follows:

1. We consider an MNO and multiple APs to model the scenario, and an essential
economic incentive mechanism between the MBS and APs for mobile data offloading
decision making. Among the different data offloading AI techniques, such as fuzzy
logic, neural networks, game theory, etc., we use the game theory based on the
Stackelberg approach. The type of game theory used is non-cooperative game theory.



Sustainability 2022, 14, 10163 3 of 20

2. The two-stage Stackelberg game determines the incentives on a traffic-type basis,
which will be awarded to the APs, and the APs will compete with each other by
offloading more data to maximize their profit. We consider a single mobile base
station (MBS) and multiple access points (APs) in a metropolitan environment to
model for optimum results. Two players are involved in the game: one is a leader;
that is, MBS, while the other is a follower; that is, APs. The leader offers incentives,
while the follower competes for these incentives and offloads more and more data.
Our model also optimizes strategies for both players.

3. The mathematical game set develops to apply various analytical and experimen-
tal procedures to assess the possible outcomes. It further shows that the proposed
game achieves the optimal incentives distribution for optimum offloading, attaining
a maximum offloading ratio. Peak-time and off-peak-time usage of the channels,
the throughput of existing cellular networks, and the designed heterogeneous net-
works were also studied. The comparisons with other models show the maximum
profit achieved by the players, improved throughput, and achievement of a total
unique equilibrium.

4. The experimental performance is evaluated in MATLAB concerning various QoS
parameters and compared with the existing techniques.

This paper addresses how to enhance the QoS in 5G and 6G networks. To achieve
high QoS, we use the non-cooperative game algorithm. The non-cooperative game Nash
equilibrium proved the maximum net profit for the mobile network operator and the
enhancement of QoS for mobile users.

In this manuscript, we study the issue of integrated mobile data offloading (IMDO)
via Wi-Fi. Unambiguously, we consider an offloading scenario where multiple mobile users
use a primary channel, such as 5/6G networks, to upload and download various types
of applications during peak time and off-peak time. When the primary channel faces a
congestion issue due to high data traffic, then the mobile network operator transfers the
traffic from the primary channel to the secondary channel (Wi-Fi) for offloading. In this
scenario, we study the issue of integrated mobile data offloading (IMDO) via Wi-Fi in terms
of maintaining the QoS services on the mobile users’ level and maximum revenue on the
MNO level. To handle this issue of integrated mobile data offloading (IMDO) via Wi-Fi,
we model and analyze the integrated mobile data offloading (IMDO) via Wi-Fi problem
by using the non-cooperative game theory model. The proposed game model offers an
incentive based on the traffic types, and access points use this incentive to offload the traffic.
Additionally, a theoretical investigation establishes the existence of the Nash equilibrium.

The contribution of the model in the field of data offloading is its achievement of a QoS
approach to the flow of the network, making traffic flow congestion free by maximizing
offloading through a game-theory-based approach. Various results of the proposed model
superseded its predecessors by showing the overall best results in this regard. The proposed
model provides an efficient way to curb traffic congestion and minimize response delay
for a better experience for the end user, and thus provides a state-of-the-art solution for
such problems.

2. Related Works

Recently, mobile data offloading has gained great attention regarding proper manage-
ment of this huge amount of traffic. MDO can be categorized into three technologies, such
as small cell, Wi-Fi, and opportunistic communication [12]. In [10], the author takes the
issue of degrading QoS due to traffic congestion and no fear mechanism for load balancing.
The author designed a game-based algorithm using the NBS scheme. The simulation result
shows that the proposed game achieves a high offloading ratio, improves throughput, and
shows high fairness in the network compared to other existing techniques.

In [11], the author considers the mobility issue in the offloading scheme. The vehicular
ad hoc networks method for offloading was proposed as a solution with which to overcome
the overload problem. The author designed an algorithm based on the Stackelberg game.
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The experimental results show that the proposed game effectively reduced the downloading
time with high throughput and reduced delay.

In [13], the author takes the issue of QoS parameter energy efficiency in task offloading.
To solve the issue, the author designed a scheme based on Lagrangian Suboptimal Conver-
gent Computation Offloading Algorithm (LSCCOA), which works in cooperative mode.
The analytical and experiential results show that the proposed algorithm achieves high
QoS performance in terms of reduced delay, high throughput, and better energy efficiency.

In [14], the author studies the 5G architecture for communication service performance
and found that traffic delay is the key issue for a requirement of 5G. The author considers
game theory as an optimal solution for this issue and developed a game based on the
auction model. The utilization of Wi-Fi and cellular network resource simultaneously due
to huge traffic is a big issue for MNO, as discussed in [15]. To manage proper utilization,
the author designed a scheme based on a bid-based Heterogeneous Resources Allocation
(HRA) framework using the auction model. The analytical calculation and experimental
results show that the proposed framework achieves maximum profit compared to the
existing framework. The reader may be referred to a detailed study of action theory for a
computer network in [16].

The resource limitation in a wireless mobile network is a key issue. Mobile data of-
floading is a novel technique used to overcome this issue. The author designed a distributed
optimization-based algorithm that uses the concept of a modified alternating direction
method of multipliers (ADMM) algorithm. The experimental result shows high utility
achievements [17]. Mobile data offloading is an efficient technology used to alleviate the
overload problem in the cellular network. The co-channel interference is a big issue in this
process, as discussed in [18].

To allocate resources in an optimal way, the author designed an algorithm based
on uplink traffic offloading through joint optimization. The numerical and experimental
results show that the proposed scheme reduced computational time up to 90% compared to
the existing scheme. The reader may refer to slides game theory for resource allocation [19].
To provide better QoS in the 5G network, unlicensed spectrum sharing between users is a
key issue in the 5G network discussed in [20].

To fairly manage the unlicensed spectrum management, the author proposed a scheme
that is the combination of a virtual coalition formation game (VCFG) and Q-learning
algorithms. The experimental results show good fairness management for Wi-Fi. The MNO
faces a great challenge of overload due to huge traffic and media-hungry applications, but
the mobility issue in the vehicular ad hoc network wireless channel is a great challenge for
MNO, as discussed in [21]. To address this issue, the author developed an algorithm based
on the Q learning, reinforcement, and Intelligent Access Network Discovery and Selection
Function (I-ANDSF). The simulation results show that the proposed algorithm achieves
high QoS performance and optimal network selection.

In [22], the spectral efficiency issue between D2D users and cellular users is discussed.
The author proposed an algorithm called dynamic Resource Block (RB) using a repeated
game concept. The evolution performance showed remarkable improvement compared
to other techniques. This paper presents the security and data tracking in vehicle commu-
nication. The issue is solved through the framework Directed Acyclic Graph enabled IoV
(DAGIoV) [23]. The reader may refer to a detailed study of cooperative and non-cooperative
computational offloading in [24].

Mobile Data offloading uses many technologies for offloading such as Wi-Fi, small
cell, and D2D. In [25], the author considers D2D technology for offloading, but interference
management is an issue in this offloading, degrading the QoS performance of the users.
The face issue is solved through a joint pricing framework based on the Stackelberg model.
The experimental results show a win–win situation. A detailed study of game theory
for the 5G network may be found in [26]. Offloading through Wi-Fi technology has
gained more popularity due to the built-in capability of smartphones. In [27], the author
discusses the issue of Wi-Fi offloading with uncertain contact durations. The issue is solved
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through online offloading based on a multi-armed bandit (MAB). The higher utility is the
achievement of the proposed scheme.

The details of 5G requirements for communication are discussed in [28]. In [29], the
author discusses the mobile data offloading overview for green wireless networks. The
recent advancement and economy of MDO are discussed briefly, and finally, some open
issues for discussion are outlined. Due to the rapid increase in traffic ratio, the existing
cellular network requires novel network architecture, and the communication model is
discussed in [30].

The author designed the bargaining-based solution for MNO and APs. The model
achieves good economics and an optimal offloading ratio. Offloading through Wi-Fi and
utility through the maximization problem is discussed in detail in [31]. To manage the
economics ratio and optimal offloading, the ratio between cellular and Wi-Fi issue is
discussed in [32]. Stackelberg’s theory is applied to achieve this, and the results show
proper agreement and cooperation between them. For a detailed technical and business
overview of mobile data offloading through various technologies, the reader may refer
to [33,34].

This study also discusses the details of offloading technology through Wi-Fi, and
also future direction [35]. Offloading through Wi-Fi performance quantitative study is
conducted in [36]. The simulation result shows that 65% of traffic is offloaded through
Wi-Fi, and it saves 55% of the battery power. The technical and economic issue of offloading
through Wi-Fi is discussed in [37]. To address this issue, the author uses a famous model of
game theory called the double auction mechanism. To ensure the efficiency of the market
of offloading, the author uses the iterative double auction mechanism [38]. Comparative
analysis of the single and multi-channel for MANETs is discussed in [39,40]. A mathematical
model is designed for channel allotment, and the results show fair performance [41]. In
this paper, a Stackelberg-based algorithm is designed for channel allocation to primary
users and secondary users. The performance results show high data rates and low delay
in high traffics [42], and efficient power management and budget allocation issues are
resolved through the blotto game (SABG) in this paper [43]. In this paper, the authors
review the various previous incentive-based algorithms with merit and demerits. In [44] the
author takes the issue of fear of bandwidth utilization for IoT. The author proposes a smart
architecture-based framework to utilize bandwidth [45]. Wireless data exchange is the key
issue for today’s market. To handle this issue, the author proposed a software-defined
network model based on game theory. The performance results show better performance
compared to previous techniques. In [46], the author takes the issue of efficient computing
resource offloading. The proposed algorithm based on the Stackelberg model calculates the
fear resource price. The simulation results show certain superiority in allocation. Security
and efficient data efficiency are the key issues in mobile edge computing. To address these
issues, the author designed the non-cooperative game. The simulation results were more
effective compared to existing algorithms [47].

In this paper [48], the author discusses the issue of offloading between cellular net-
works and Wi-Fi. To address the arising issue, the author designed an appropriate of-
floading algorithm based on exponential-learning-based minority game (MG) theory. The
simulation results achieve better QoS for different traffic conditions.

The traffic burden issue on the cellular network is discussed in [49]. The author
proposed an algorithm based on a Reverse Auction-based Incentive Mechanism, named
RAIM. Simulation results show that it outperformed in different offloading rates.

Dynamic bandwidth allocation is a key issue in offloading. The author proposed a
Satisfaction-based Dynamic Bandwidth Reallocation (SDBR) scheme that will consider
the user ratio and appropriate revenue factor. Simulation results show fear bandwidth
allocation performance [50].

The bulk of data transmission is the issue in offloading [51]. The author proposed a
data transmission model based on the Manhattan mobility model. The simulation results
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show that the proposed scheme is better in load and transmission time from the rest of
the schemes.

3. Problem Formulation and Proposed Model

Wireless cellular networks have worldwide acceptance due to their mobile nature,
and currently, the most inhabited area is cellular communication. With the technological
development, the data traffic over cellular networks has also horribly increased. To facilitate
customer, and for the convenience of their data demands, MNOs deploy 4/5G LTE, which
provides the fastest cellular communication.

The latest technology is being introduced by the network service providers, but the
ever-growing traffic still decreases their performance by affecting throughput and response
delay, in addition to other Quality of Service (QoS) parameters. Expensive technologies are
being proved much less capable of fulfilling the requirements of end users. Increasing data
demands of end users, and more bandwidth being utilized for multifarious activities over
the networks, especially cellular networks, make the traffic flow very congested, and the
response is dropping day by day. The proposed incentive-based scheme provides QoS-level
service to end users.

In Figure 1, we deliberate a heaving resident zone where most of the consumers have
smart devices, including smartphones and tablets, for different internet services. The
provision of QoS downgraded due to excessive uses of data services, and a huge number
of users were admitted. An extremely congested environment was established, especially
during peak time, while the situation was different during off-peak time. Video streaming
demand was high during peak time, which is a high data-consuming type of traffic. Taking
these factors into consideration, and implanting offloading over integrated Wi-Fi as a key
to the problem, a simulation of a heterogeneous network comprised of an MBS (Mobile
Base Station) and some APs (access points) formed to practically experience the scenario.

Figure 1. IDO based on Game Model.

MBS has a larger area of coverage, while APs with a smaller area inside the range
of MBS have non-overlapping areas of coverage with each other. In this heterogeneous
network, we consider one MBS and multiple APs for this offloading process to model it in
its true spirit [12].

NMBS = AMBS −
n

∑
k=1

AAP (1)

where
Area covered by MBS = AMBS
Area covered by AP = AAP
The Area of MBS with no offloading option
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Physical areas of the above-covered regions can be determined by the following
equations [2]:

AMBS = πrm
2 (2)

AAP = πra
2 (3)

The above figure shows the 5G and 6G communication model. All the users are
connected and are performing uploading and downloading jobs. To avoid the congestion
issue, we implement the IDO (Integrated Data Offloading)-based game model.

By putting these values in Equation (1), we obtain the area covered by MBS, which is
not reachable by any AP. In Equation (1), NMBS represents the area of the MBS with no
offloading situation; AMBS represents the area covered by MBS, AAP represents the area
covered by APs. Traffic types are differentiated by the following set of types [2]:

TT = {R, V, A, T} (4)

In Equation (4), TT represent traffic types, R represents real-time data, V is used for
video, A for audio, and T represents text data, while the set of APs is given by [2]:

P = {AP1, AP2, AP3, . . . . . . APn} (5)

In Equation (5) [2], P represents a set of players and AP represents the access point
from 1 to n. The Cartesian product of both the mentioned sets represents the distinct types
of data for each AP:

APTT =
{(

AP1R

)
,
(

AP1V

)
,
(

AP1A

)
,
(

AP1T

)
,
(

AP2R

)
,
(

AP2V

)
,
(

AP2A

)
,
(

AP2T

)
, . . . . . .

}
(6)

In Equation (6) [1], APTT shows that in an offloading situation, the access point
offloads different types of traffic, such as real, video, audio, and text. The sum of elements
of function f where any particular AP is taken in this relation will find the total traffic per
AP, which is given as:

APxl =
n

∑
k ∈ TT

APx Tk (7)

In Equation (7) [1], APxl represents the total traffic per AP, where APx T represents the
AP involved in the offloading, and where T represents traffic types. The total traffic load on
this heterogeneous network is given by:

ln =
n

∑
k=1

lk (8)

In Equation (7), ln shows the total traffic load. Among this, traffic offloaded by a
cellular network can be determined as:

lm = ln −
n

∑
k=1

APkl (9)

In Equation (7), the variables lm represent traffic offloaded by a cellular network,
where ln shows the downloading position and APkl show the offloading position. Our
model is based on a game-theoretic mechanism used to obtain maximum offloading through
APs, but the offloading ratio in peak time and off-peak time will be managed through a
traffic-wise offloading mechanism. For this, the instantaneous rate of AP is taken as its
period which is represented by Ra, where the subscript differentiates AP. By using this
instantaneous rate, we can represent the throughput of a given AP as

Rk APkl ≤ Rk Thro (10)
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In Equation (10), Rk show the instantaneous rate of AP, where Thro represents through-
put. The total amount of heterogonous network is the sum of both networks

Throughput (Thr) = ThroughputMBS + ThroughputAPs (11)

In Equation (11), ThroughputMBS shows the throughput of MBS, and ThroughputAPs
represents throughput of APs. In game theory, the building of real-world models and
their interaction are observed through independent decision-making chosen from a set
of strategies. It involves three factors named players, strategies, and payoff. It describes
the action in response and decision taken by players along with variance in position and
cooperation among players.

The payoff function is given by

Pk = ∑
n ∈ TT

βn
ln

∑k ∈P lk
− σknlkn (12)

The variables in Equation (12) [4] represent the different functions: Pk show the payoff
function, βn show the incentive offered, σkn show the cost paid for the offered incentive.
The payoff function is designed to measure the performance of the prototypical founded
on spurs offered by MBS and the amount of traffic offloaded by APs. A non-cooperative
game is one in which all AP strives with its enemy to maximize its profits. The game set
has the subsequent essentials.

Game(G) = {Pl, Sk, Pk} (13)

In Equation (13), k ∈ P, G represents the game, Pl represents players involved in-game
that are MBS and APs and Sk represents the set of strategies to be applied by players to
obtain their maximum payoff, and Pk is the payoff or score function that represents the
earning of the players.

In Equation (14) [5], lk show that Traffic load has a four-dimensional space where Q, R,
S, T are subspaces; the ordered pair given below is used to represent a particular instance
data load:

lk =
(
lQ, lR, lS, lT

)
(14)

where lQ =
{

k1, k2, . . . , kq
}

, lR = {k1, k2, . . . , kr}, lS = {k1, k2, . . . , ks} and lT =
{k1, k2, . . . , kt}

Nash Equilibrium
For the mentioned game set, there is Nash equilibrium if, for every k ∈ P, Pk(lk, l−k) ≥

Pk(lk, l−k) aimed at wholly lk ≥ 0, somewhere, Pk (lk, l −k) remains the subsequent tender
for the k participant, assuming that the additional troupes tender outcomes l − k [6].

Pk is concave in lk, while Sk is convex in given spaces.

S = {(Sk : lk)|k ∈ P ∧ 0 ≤ lk ≤ Rk} (15)

The data are offloaded in a type-based mechanism considering well-defined priority;
for instance, video data can stream on a priority basis compared to textual data.

Proving its wrap, we see that Utlm continues to l, so we take out the second-order
derivative concerning km. The leading derivative is assumed in the next equation:

∂Pk
∂lk

= ∑
n ∈ TT

βn

[
∑m∈p∧m 6=k lm

∑k∈p l2
k

]
− σkn (16)

Equation (16) [7] plays the partial derivative rule to prove its concavity. The variable ∂
show partial derivative, βn show the incentive offered for Wi-Fi, lm show offloaded traffic,
and σkn show the cost paid for that offloading traffic.
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For the second derivative with respect to lm, we have

∂2Pk
∂2lk

= −2

[
∑

n ∈ TT
βn

[
∑m∈p∧ m 6=k lm

∑k∈p l3
k

]]
(17)

In Equation (15) [8], the second-order derivative shows a negative multiplier, and it
transpires that in each case, the result will be negative; therefore, it is proved that Pk is
a concave function. We see that Um is concave in lm, while the Sk is convex; therefore,
the Nash equilibrium exists in the game. The variables have already been discussed in
Equation (15).

Unique Nash Equilibrium
The game has Nash Equilibrium, as it has been substantiated prior to vector lk. To

validate its uniqueness, Best Response function R is required to be specified in terms of
standardization, for which it needs to comprehend three conditions, which are positivity,
monotonicity, and scalability. Here, R(lk) represents the Best Response function.

The optimal solution of the Best Response would be such that the total traffic down-
loaded by any AP is limited to the total capacity of the AP. In either situation, the former
would be less satisfactory and unable to exceed the latter. Therefore, this constraint can be
mathematized as shown below [9]:

σk ∑
m 6= k

lm < β (18)

⇒ R (lk) > 0

In Equation (18), the variables σk are the cost paid for offloading, β offers incentive for
traffics, and R (lk) represents the Best Response function. The above relation satisfies the
positivity of the game. To maximize profit, the Best Response function would approach
the instantaneous rate of AP, comprising the factor mentioned in Equation (15). The Best
Response relation can be extended as:

0 ≤

√
β ∑m 6=k lm

σk
− ∑

m 6=k
lm < Rk (19)

Equation (19) shows [10], which shows a monotonical increase, while to show its
scalability, we consider the following situation:

αRk(l) = α

√ β ∑a 6=b la

σk
− ∑

a 6=b
la

 (20)

Rk(αl) =
√

βα ∑a 6=b la
σk

− α ∑
m 6=k

la

=
√

α

[√
β ∑a 6=b la

σk
− ∑

a 6=b
la

] (21)

In Equations (20) and (21), the variables Rk(αl) show the Best Response function for
the cost paid for offloading. la show the offloaded traffic. Combining Equations (17) and
(18) and simplifying them, we obtain α−

√
α as change parameter, which is always greater

than zero; therefore, the Best Response function is also scalable. By satisfying all three
criteria, it is ensured that the Best Response function is a standard function and satisfies the
Nash equation.

Total Unique Equilibrium
Total unique equilibrium in the traffic type set of the game can be estimated as lm∗ =

∑
k ∈ TT

lm(k), where in [10]
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la(b) =

[
βb(M− 1)

∑a (b)∈P σa (b)
×
[

1− (M− 1) σb

∑n∈P σa(b)

]]Ra(b)

0

(22)

where lm∗ is the Best Response value for l in cases when β is subject to the satisfaction of
the conditions given in Equations (18) and (19) together, and exceeding either side will
incline to limits given. This achieves the total unique equilibrium of the game.

The payoff for the MBS can be determined as:

PMBS(k) = (δ− βk) ∑
m∈p

la(k) (23)

where k ∈ TT, δ is unit spectrum rendered congestion-free by utilizing APs for offloading,
and β is an economic incentive for k type traffic. In this non-cooperative game, the MBS
will maximize its utility by optimizing the β incentive to the maximum extent.

Substituting Equation (16), we obtain the maximum utility profit as follows:

PMBS(k) = βk(δ− βk)

 (M− 1)
∑n

a( b) ∈ P σa(b)
× ∑

a(b) ∈ P
(1−

(M− 1)σa(b)

∑n
a(b)∈ P σa(b)

)

 (24)

Subject to β ≤ βmax.
The MBS utility function is subject to maximization; hence, it is convex in nature. To

achieve equity justice offload in between APs, the logarithmic purpose will be effective.
Interchangeably, the MBS utility can be computed as [11]:

PMBS (TT) = δ
n
∑

a∈p
log(la (b))−

(
∑

b ε TT
βb

)
∑

a∈p
la (b)

= δ log( ∏
a(b)∈P

la (b))− ∑
b ε TT

βb
n
∑

a∈p
la(b)

(25)

Substituting Equation (16), we obtain.

= δlog
(

∑
b ε TT

βk

)M
( ∏

a (k) ∈P

[
(M− 1)

∑a (b)∈P σa (b)
×
[

1− (M− 1) σk

∑n∈P σa(b)

]]
)

−( ∑
k ε TT

βk)
2

[
(M− 1)

∑a (b)∈P σa (b)
×
[

1− (M− 1) σb

∑n∈P σa(b)

]] (26)

By replacing Г and ϕ, we obtain:

= δlog

(
∑

b ε TT
βk

)M

Γ.( ∑
b ε TT

βb)
2

ϕ (27)

The inference indicates that the MBS function of the app is concave. The total amount
of economic benefit is obtained by relating the correct first-order status.

(
∑

b ε TT
βb

)∗
=

[√
δM
2ϕ

]( ∑
k ε TT

βb)
max

(28)

Taking the Lagrangian of the problem with respect λ as Lagrange Multiplier [12], the
outcome is:
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L
(

∑
b ε TT

βb, λ

)
= δlog

[
( ∑

b ε TT
βb)

MΓ− ( ∑
b ε TT

βb)
2 ϕ + λ( ∑

b ε TT
βb)

−( ∑
b ε TT

βb)
max

] (29)

The mentioned equation has a maximized state subject to the λ ≥ 0 which is the
dual function and can be resolved via sub-gradient retrieval of the Lagrange Multiplier,
as follows:

λ(s + 1) =

[
λ(s) + κ(s)

(
∑

b ε TT
βb(s)

)
−
(

∑
b ε TT

βb(s)

)max]+
(30)

Wherever κ(s) is a step-by-step size in repetition s. The step size is always positive
of the form, [Y]+ = max{0, Y} [1]. Complete economic stimulus β∗ can be obtained us-
ing Karush–Kuhn–Tucker (KKT), given that the first-order derivative of the Lagrangian
Function of βk with respect to β is zero. The complete economic benefit solution has been
simplified as follows [13]: (

∑
b ε TT

βb

)∗
=

[
λ +

√
λ2 + 8δMϕ

4ϕ

]
(31)

Based on the above inferences, we designed an algorithm for our model, which is
as follows:

Nash equilibrium is crucial because it enables to choose the optimum outcome in a
circumstance by taking into account their own choices and those of other parties. Our game
is a non-cooperative-based game using Nash equilibrium. Nash equilibrium proved analyt-
ically shows that the customer achieves high QoS in simulation results. In the simulation
maximum, the net profit graph shows the maximum profit of the mobile operators.

All the equations are analyzed in two phases in first phase equation, which finds
the Nash equilibrium for primary players and the second for secondary players. All the
equations are used step by step to find Nash equilibrium for both parties.

All the variables that are used in the above mathematical model and Algorithm 1 are
explained in tabular form in Table 1.

Table 1. Variables and Their Explanation.

Variables Explanation of Variables

SMBS Area of the MBS covered in communication range
Swi Area of the Wi-Fi covered in communication range
L Access point offload Traffic Load
P Set of players involved in the offloading game
V Represent Video Traffic offloading
A Represent Audio Traffic offloading
T Represent Text Traffic offloading
U Present the payoff/Utility function
D Different Types of traffic
βD Incentive offer for various data types
σD The cost paid for offered incentive
G Represents offloading Game
S Strategy applied for the game that finds NE
Σ Summation
∂ Partial derivative finds the lowest value

Br Best Response to find NE
M Size of the whole area means MBS and Wi-Fi both have coverage
l* Equilibrium
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Table 1. Cont.

Variables Explanation of Variables

δ Total Utility of the APs
Max Maximum function
Log Logarithm

L Lagrange Multiplier

Algorithm 1 For the IDO using Game Theory

Input: {MBS information, APs information, Economic incentives based on traffic types}
Output: {maximum payoff, Maximum offloading}
1 Let the Network have N No of APs
2 MBS be the Macro cell for all APs
3 Let γ is Unit Power Cost for offloading of various traffics
4 Let β = {βR, βV, βA, βT} is the Offered Incentives by MBS to APs
5 Let λ be the Unit Spectrum
6 Initialize γ= {[1:1:20],1} //Definition and Initialization of variables
7 function MBS Role (β, λ) //Function show MBS Role, calculate incentive and
other properties
8 Initialize Im and Im* //Two different states of an AP
9 Initialize Cost, fm, fm* //Most formulae have two fragments
10 For I = I to N
11 Cost= Cost + γ(I) End for //calculate total cost
12 fm = (N-1)/Cost //Calculate 1st fragment
13 For I= 1 to N
14 fm* = fm*+((1-(N-1)*γ(I)) End For //Cost Calculate 2nd fragment
15 Im = fm*
16 Im* = β*fm*fm* //Economic Incentive
17 η = η+η*fm*fm* //Progressive balance of offloaded traffic
18 Γ = fm*fm* //Calculate proportional fairness of offload
MBS = λ*Im*–Power(β,2)*Im*fm End function //Maximum net profit gained
19 function OptimalIncentive(X, λ) //To find out optimal incentive
20 Initialize Im and Im* //Two different states of an AP
21 Initialize Cost,fm,fm* //Two fragments and cost initialization
22 For I = I to X
23 Cost = Cost+γ(I) End for //Calculate total cost Calculate 1st fragment
24 fm = (X−1)/Cost
25 For I = 1 to X
26 fm* = fm* + ((1-(X-1) * γ(I)) End for //Cost Calculate 2nd fragment
27 Im = fm*
28 Γ = fm * fm*
29 β = sqrt ((λ * X) / 2 * Γ //Incentive Calculation
Im* = Power (λ, 2) * fm * Im/4 End function // Optimal economic incentive
per traffic type
30 functions Cut Off Data (X, β) //This function is used only When MBS only need
to check traffic offload status.
31 Initialize Im and Im* //Two different states of an AP
32 Initialize Cost, fm, fm* //Two fragments and cost Initialization
33 For I = I to X
34 Cost=Cost+γ(I) //Calculate total cost
35 fm =(X-1)/Cost End for //Calculate 1st fragment
36 For I = 1 to X
fm* = fm* + ((1-(X-1) * γ(I)) End for //Cost Calculate 2nd fragment
37 Im = fm*
38 Im* = β * fm * fm* End function //Economic incentive

The proposed non-cooperative game distributes incentives to the secondary players
based on the traffic category on demand. It will improve the QoS to avoid the congestion
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issue through integrated data offloading based on Stackelberg’s theory. We have applied a
non-cooperative game theory model called the Stackelberg model, which uses integrated
data offloading to alleviate the congestion issue of mobile users. The intersection of the
Best Response function from all players in the Stackelberg model proved Nash equilibrium.

Algorithm No.1 takes MBS information with predefined economic incentives and input
and produces the output of maximum payoff and offloading to benefit the cellular network
in an efficient way. Different symbols are used for various factors, i.e., unit spectrum,
unit power cost, and incentives of the appropriate type. To simplify larger equations with
repetitive parts, some temporary variables such as fm are introduced, and lm is used as
the state of AP. Some calculations are performed, such as total cost, fragments, economic
incentives, progressive balance, proportional fairness, etc.

Subsequently, net profit gain is calculated for decision-making by MBS. Two functions,
optimal incentive and cut-off data, are used to estimate optimal incentives and traffic status,
which are frequently used in different formats.

4. Performance Evaluation and Results Discussion

In this section, we evaluate the performance of the proposed algorithm IBS through
MATLAB [11]. We conducted detailed parameters, which are given in Table 2.

Table 2. Simulation Environment Parameters.

Parameters Value

Simulation Area 3000 × 2000 m2

Macro cell (MBS) 800 Square meters
MBS transmission power 42 dBm
Microcell User Capacity 60
MBS 20 MHz
APS 20 No
APS 40 Square meter of transmission range
APS bandwidth 2.4 GHz and 5 GHz
APS transmission power 26 dBm
MU per AP 5 to 10
Traffic Model FTP
Battery Capacity 100 packets
Number of time slots 1000
Traffic Type Heterogeneous

The simulation uses QoS parameters such as energy consumption, throughput, delay,
congestion control, and peak time and off-peak time as the metrics of performance within
wireless cellular networks. Energy consumption shows the consumption of energy with
offloading and offloading levels. The delay shows the average amount of time that has
to be taken when uploading to and downloading from the service to the provider. The
congestion control shows the link overhead ratio. The peak time and off-peak time show
the ratio of the user that uses a wireless cellular network with and without offloading.
Table 3 shows the mathematical representation of the QoS parameters.

Table 3. Simulation Parameters.

Name of Parameters Mathematical Representation

Offloading Ratio Γ = ∑ fn
∆t

Congestion Control η = ∑(ln−fn)
δ∆t

Delay Ω = ∆tc − ∆ti
Throughput τ = ∑ ln

∆t

The proposed algorithm IBS is compared with existing algorithms such as IFPC [14]
and IMDO [15].
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Results and Discussion

The offload ratio corresponds to the rate of data offloaded per unit time. We take
data in 10 MB size chunks and time rate in seconds. The first achievement of our model
is maximized offload, which has a high effect on the rest of the factors shown in the
figures. The graph given in Figure 2 shows that offloading starts when at least one AP
is introduced, and it increases with the introduction of more APs. The proposed model
achieved seven units, which denotes 70 MB/s data offload on 20 APs. This shows sufficient
improvement compared to existing models, as shown in Figures 2 and 3. The lines shown
are differentiated based on the incentive scheme offered by the respective models. Our
model performed comparatively well.

The QoS decreases due to overload traffic, which leads to network congestion. To
handle the issue, our model presents a strategy with the outcome of maximum offloading
and unique management of integrated Wi-Fi, due to which five Pico cells are proven
sufficient to control the congestion on spectrum value 2, while IMDO and IFPC models do
the same job on 12 and 17 Pico cells, respectively. This shows that our model refined the
control of congestion compared to other models, as shown in Figure 3. The result of the
proposed model is superior to the other models.

Our proposal of an incentive-based scheme based on game theory and a two-stage
Stackelberg approach for integrated data offloading has made the decision-making process
in a heterogeneous network. A single mobile base station and some integrated access points
in a crowded metropolitan area are taken to model our proposed scheme. This station offers
an economic incentive based on traffic types, and access points compete with each other
to earn incentives for offload traffic. A mathematical game derives analysis of real-world
scenarios through simulation.

Figure 2. Spectrum Use Ratio.

The data transferred from source to destination in a fixed time interval refer to through-
put. The amount of data is represented in bytes form, while time is measured in seconds,
but throughput is their benchmark or often taken in percentage. The graph shows through-
put performance in association with the spectrum used. The spectrum used is taken from
zero to two, and its impact is examined on the throughput of the three models. Zero spec-
trums mean no throughput, and the addition of spectrum implies refinement of throughput.
With congestion, reduction in throughput occurs, but as the models reduce congestion,
it is added to the throughput. The proposed model accomplishes one hundred percent
throughput, as shown in Figure 2 using spectrum value 2, while the other two models are
rendered to attain 48% and 62%, comparatively.

We use the Stackelberg-based game model to derive optimal incentives based on the
traffic types. The primary player will pay the optimal incentive to the secondary player, and
the secondary player will perform optimal offloading based on the offered incentive. The
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throughput graph shows that we achieve high throughput in the offloading. The absolute
result has been exhibited by the proposed scheme proposed shown in Figure 4.

Figure 3. Offload Ratio.

Figure 4. Throughput Analysis.

The time taken for data to travel travel from host to client is referred to as response
delay. In the graph, the delay is represented on the y-axis in milliseconds and with the
spectrum used on the x-axis for the data in increasing order to test the response, but despite
the effect of growing load on the spectrum, all three models reduced delay due to offloading
and making the channel congestion free. IMDO performed the best overall in this result,
but our model more rapidly gained its position as shown in Figure 5, which is evident from
the end near 1.7, while IFPC approaches near 2.

The proposed algorithm uses IDO to alleviate the congestion issue. It will migrate the
traffic from the primary channel to the secondary channel based on the traffic category, so
the chance of congestion is less, due to which the delay is decreased.

The growing load on the spectrum reduced delay due to offloading and making
the channel congestion free. IMDO performed the best overall because it will use a non-
cooperative-based game model that will distribute channels fairly to both users. The results
of our model are fair, and are shown in Figure 5.

Energy consumption is considered an important factor in mobile devices concerning
their QoS. The latest wireless communication technologies focus on improving their energy
requirements. Energy consumption is taken in megabytes offload per watts concerning
the increasing number of picocells. The IMDO model performed best, but with a slight
difference; the proposed model showed its outcome. The proposed scheme is better, but it
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is not absolute due to the integrated architecture, where much sub-level management is
required. The result is satisfactory compared with other schemes, as shown in Figure 6.

Figure 5. Response Delay Analysis.

Figure 6. Energy Consumption Analysis.

Economic feasibility for industrialized technologies is very important, which primarily
depends on the cost factor. In this simulation, we tested the Average Expense on the y-axis
concerning the offloading ratio on the x-axis. The result is constructed based on 10 MB per
Pakistani Rupee as a unit of average expense for the MNO with a different offloading ratio
up to four, as shown in Figure 7. The proposed scheme has shown a considerable decrease
in expense per 10 MB per PKR and attains 0.4 PKR on four offload ratios, which are the
achievements of the proposed model.

This simulation is constructed to demonstrate the peak and off-peak time offload of
the proposed scheme because it is also a considerable factor for MBS to save for itself when
there is a much lesser load on the primary channel. The utilization of AP should be fairly
controllable to maximize MBS earning, and APs need to be honestly consumed to provide
QoS to end users. The performance of picocells in peak time in terms of offload ratio on the
y-axis is far better than its performance in off-peak time, which shows better management
of picocells, as shown in Figure 8.

We consider a crowded urban environment for our model where excessive data
required services are utilized; therefore, there is congestion in a cellular channel, and the
APs are used to balance this load. For this, we take the same scenario to examine the
load-balancing manner through APs. During peak time, the simulation shows that picocells
are grabbing more load than the entire MBS. The graph shows that APs are offloading
12 MB/s, while MBS usage is 7.1 MB/s, which shows that the APs could easily lead the
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MBS in data management. This shows the utmost consumption of APs with the proposed
scheme given in Figure 9.

Figure 7. Average Expense or Cost Factor.

Figure 8. Peak Time and Off-Peak Time Performance.

Figure 9. Cellular vs. AP Consumption.

In this simulation, network throughput is checked with and without Wi-Fi offloading.
The simulation shows less than 20% throughput result for spectrum up to two without
Wi-Fi, while with Wi-Fi offloading, it establishes the throughput up to 100%. The graph in
Figure 10 shows the deep impact of Wi-Fi offloading on the considered network throughput.
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Figure 10. Impact of Wi-Fi.

5. Conclusions and Future Work

The fast internet connections and the emergence of the latest smart devices everywhere
have tremendously increased the data traffic on networks due to the use of data-hungry
services. To cope with the situation, Mobile Network Operators (MNO) need to fulfill the
high capacity requirement, throughput, coverage, and better QoS to ensure the long life of
their relationship with users, in order to earn in a more sophisticated way. Mobile Data
Offloading is a cheap solution among all providers, improving QoS by reducing the burden
on the network. Different technologies such as Wi-Fi, WiMAX, Femtocells, Opportunistic
communication, and IP run movable are used to offload data from the cellular network.
However, Wi-Fi offloading is widespread among them because it is economical for both
providers and users. We considered offloading through Wi-Fi as a solution and built
various scenarios to examine the association of Wi-Fi with cellular networks for offloading.
The main target of our work was to accomplish maximum offloading via Wi-Fi using
the Stackelberg approach. We studied the outcomes of the Stackelberg approach in the
commercial market. We have introduced a two-stage game model. In the first phase, the
MBS provides economic stimulus to the APs based on the types of traffic used, while in the
next phase, the APs exploit these stimuli, releasing various traffic. The mathematical model
is developed to analyze our works, passed through simulation and experimental methods.
We have used MATLAB as a simulation tool and presented simulations for different values
of incentives to examine their effects on offloading. Furthermore, the QoS parameter
performance was analyzed and compared with the existing model. The experiments
proved that the proposed model performs better than the previous model, and Nash
Equilibria via Best Response potential function was achieved using the proposed scheme.
Additionally, the proposed traffic types-based game achieved a total unique equilibrium.
Because of these numerical outcomes, it is concluded that the proposed traffic-types-based
game is impartially superior in all considerable structures and operations. Based on
optimal incentives, maximum offloading and enhanced throughput is the achievement of
our model.

The issue of privacy and security is open to exploration in such a two-way offload-
ing process, and the study of the multiple base station and multiple attached APs with
parameters of delivery and the speed differences is the open issue for future research.
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