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Abstract

The increasing deployment of wireless devices has connected humans and objects all around

the world, benefiting our daily life and the entire society in many aspects. Achieving those connec-

tivity motivates the emergence of different types of paradigms, such as cellular networks, large-scale

Internet of Things (IoT), cognitive networks, etc. Among these networks, enabling reliable and

secure data transmission requires various resources including spectrum, energy, and computational

capability. However, these resources are usually limited in many scenarios, especially when the num-

ber of devices is considerably large, bringing catastrophic consequences to data transmission. For

example, given the fact that most of IoT devices have limited computational abilities and inadequate

security protocols, data transmission is vulnerable to various attacks such as eavesdropping and re-

play attacks, for which traditional security approaches are unable to address. On the other hand,

in the cellular network, the ever-increasing data traffic has exacerbated the depletion of spectrum

along with the energy consumption. As a result, mobile users experience significant congestion and

delays when they request data from the cellular service provider, especially in many crowded areas.

In this dissertation, we target on reliable and secure data transmission in resource-constrained

emerging networks. The first two works investigate new security challenges in the current heteroge-

neous IoT environment, and then provide certain countermeasures for reliable data communication.

To be specific, we identify a new physical-layer attack, the signal emulation attack, in the heteroge-

neous environment, such as smart home IoT. To defend against the attack, we propose two defense

strategies with the help of a commonly found wireless device. In addition, to enable secure data

transmission in large-scale IoT network, e.g., the industrial IoT, we apply the amply-and-forward

cooperative communication to increase the secrecy capacity by incentivizing relay IoT devices. Be-

sides security concerns in IoT network, we seek data traffic alleviation approaches to achieve reliable

and energy-efficient data transmission for a group of users in the cellular network. The concept
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of mobile participation is introduced to assist data offloading from the base station to users in the

group by leveraging the mobility of users and the social features among a group of users. Following

with that, we deploy device-to-device data offloading within the group to achieve the energy effi-

ciency at the user side while adapting to their increasing traffic demands. In the end, we consider a

perpendicular topic - dynamic spectrum access (DSA) - to alleviate the spectrum scarcity issue in

cognitive radio network, where the spectrum resource is limited to users. Specifically, we focus on

the security concerns and further propose two physical-layer schemes to prevent spectrum misuse in

DSA in both additive white Gaussian noise and fading environments.

iii



To my beloved parents.

For their endless love, support, and encouragement

iv



Acknowledgments

First of all, I would like to give my sincere appreciation to my advisor, Prof. Linke Guo,

for giving me opportunity to do research and providing invaluable guidance, encouragement, and

the greatest support with my years’ study. Dr. Guo has not only helped me on my research during

the past few years with his knowledge and insight, but also with thoughtfulness and patience on my

personal growth. His dynamism, optimism, vision and sincerity have deeply inspired me. It was a

great privilege and honor to work and study under his guidance.

I would like to thank Professor Daniel Noneaker, Professor Harlan Russell, and Professor

Long Cheng for serving on my supervisory committee and for their strongest supports in my work

and academic career.

I would also like to thank Dr. Yuguang Fang, Dr. Hongxin Hu, Dr. Zhanpeng Jin, Dr. Mark

L. Fowler, Dr. Yu Chen, Dr. Xiaohua Li, and Dr. Ming Li for their timely help and suggestions on

my research and my academic career.

I would not be a sane graduate student without a group of great friends. I would like to

extend my thanks to all my colleagues in the lab for providing me a warm, family-like environment

and for their collaboration and insightful advice. I specially thank Dr. Gaoqiang Zhuo, Dr. Qi Jia,

Dr. Zekun Yang, Dr. Jian Zheng, Dr. Jing Zhang, Pei Huang, Sihan Yu, Ronghua Xu, Ning Chen,

Weihang Tan, Antian Wang, Yu Xuan, Xiner Lu for many valuable discussions and all the good

memories.

Specially, I would like to give express my gratitude to my advisor Linke Guo and his wife

Wenjun Chen, who not only constantly encouraged me and helped me in many ways, but also shared

their view of life with me.

Finally, I owe a special debt of gratitude to my beloved parents for their love and sacrifices

for educating and preparing me for my future. It is them who have been always supporting me and

v



have be accompanying with me to share my success, failure, joys, and tears. Without their constant

and unwavering love, I would never imagine what I have achieved.

vi



Table of Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope and Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . 3

2 Signal Emulation Attack and Defense for Smart Home IoT . . . . . . . . . . . . 6
2.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Signal Emulation Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Passive Defense Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Proactive Defense Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Incentivizing Relay Participation for Securing Internet of Things Communication 42
3.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 Utility Maximization in CUS Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Utility Maximization in CKS GAME . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.6 Performance Analysis and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Motivating Human-enabled Mobile Participation for Data Offloading . . . . . . 65
4.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Motivations and Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 System Model and Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



4.5 Utility Maximization in Delay-tolerant Model . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Utility Maximization in delay-sensitive Model . . . . . . . . . . . . . . . . . . . . . . 90
4.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Social-aware Energy-efficient Data Offloading with Strong Stability . . . . . . . 99
5.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4 Energy Consumption Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5 Online Energy Consumption Minimization . . . . . . . . . . . . . . . . . . . . . . . . 112
5.6 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Secure and Optimized Unauthorized Secondary User Detection in Dynamic
Spectrum Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
6.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.3 System Model and Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.4 Optimized Unauthorized SU Detection Scheme . . . . . . . . . . . . . . . . . . . . . 137
6.5 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.6 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7 CREAM: Unauthorized Secondary User Detection in Fading Environments . .152
7.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.4 CREAM Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.5 Optimized Constellation Rotation in CREAM . . . . . . . . . . . . . . . . . . . . . . 161
7.6 Scheme Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.7 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8 Conclusions and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

viii



List of Tables

2.1 Symbol/Packet Level Performance (LoS) . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Prototype Signal Emulation Attack Performance . . . . . . . . . . . . . . . . . . . . 33
2.3 Symbol/Packet Level Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 Notations in M/G/1 Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Notation Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.1 PSER Upper Bound when SNR = 10dB . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.2 Fading Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.3 OFDM Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
7.4 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

ix



List of Figures

2.1 Experiment on the Vulnerability of ZigBee devices . . . . . . . . . . . . . . . . . . . 10
2.2 DSSS Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Cross-Technology Signal Emulation Attack . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Received signal at ZigBee receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Eavesdropping Performance at WiFi attacker . . . . . . . . . . . . . . . . . . . . . . 18
2.6 ZigBee Waveform Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.7 64-QAM Quantization Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.8 Eavesdropped Signal Vs. Emulated Signal . . . . . . . . . . . . . . . . . . . . . . . . 23
2.9 Passive Defense Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.10 Constellation Performance under AWGN Effect . . . . . . . . . . . . . . . . . . . . . 26
2.11 Proactive Defense Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.12 Time-domain and Frequency-domain Features . . . . . . . . . . . . . . . . . . . . . . 28
2.13 Experiment Settings and Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.14 Signal Emulation Attack Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.15 Quantization Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.16 Hamming Distance Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.17 Effects on Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.18 Building Map 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.19 Defensive Performance on Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.20 Detection Performance in USRP Testbed . . . . . . . . . . . . . . . . . . . . . . . . 37
2.21 Detection Performance in Prototype Testbed . . . . . . . . . . . . . . . . . . . . . . 38
2.22 Building Map 2 – Second Floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.23 Detection Performance in Field Experiments . . . . . . . . . . . . . . . . . . . . . . 41

3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 System Parameters in Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 System Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Security Performance in CKSG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.5 Comparison between SSSR and SSMR in CUSG . . . . . . . . . . . . . . . . . . . . 62
3.6 Comparison between SSMR and MSMR in CUSG . . . . . . . . . . . . . . . . . . . 63
3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Potential Location of the MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Time Changes vs. Potential Location . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 System Model of Mobile Participation . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4 M/G/1 Queue in Delay-Sensitive Model . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 UMDT Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.6 Delay Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.7 Effect from MCUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.8 Effect from RUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

x



5.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Dynamic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.3 Content Queue Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.4 Representative Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.5 Energy Cost Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.6 User Number Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.7 Reaching Steady State Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.1 System Model of the Optimized Detection Scheme . . . . . . . . . . . . . . . . . . . 135
6.2 Framework of the Secure and Optimized Detection Scheme . . . . . . . . . . . . . . 136
6.3 An Example for Permit Symbol Constellation . . . . . . . . . . . . . . . . . . . . . . 139
6.4 MI vs Rotation Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.5 Permit Contellation after RMLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.6 Constellation of the Transmitted Symbols . . . . . . . . . . . . . . . . . . . . . . . . 142
6.7 The Impact of Power Allocation Scalar k on Performance . . . . . . . . . . . . . . . 146
6.8 Trade off between PER and Data BER . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.9 PER vs. SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.10 Data BER vs. SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.11 Comparison, Accuracy and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.12 PER Performance using USRP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
7.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.3 An Example of Superposed Constellation . . . . . . . . . . . . . . . . . . . . . . . . 160
7.4 Comparison between QPSK and QPSK with Rotation . . . . . . . . . . . . . . . . . 162
7.5 PSER Upper Bound vs. SNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.6 Power Allocation Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.7 SNRδ Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.8 Fading Environments Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.9 Repetition Encoding Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.10 θp Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.11 False-positive Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.12 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

xi



Chapter 1

Introduction

1.1 Research Overview

Our daily lives and even our society are greatly benefited from the emerging wireless net-

works such as Internet of Things (IoT) and the cellular network. Different from traditional networks,

there are several new features in the emerging networks, including large quantities of data, an in-

creasing number of users and devices, heterogeneous environment, etc. However, due to the fact that

resources such as energy, spectrum, and computational capabilities are constrained, the deployment

of the emerging networks faces lots of challenges. For example, although the exploding popularity of

mobile devices enables people to enjoy benefits brought by various interesting mobile apps, such as

social networking, mobile video services, and location-based services, the ever-increasing data traffic

has exacerbated the depletion of licensed wireless spectrum bands along with the energy consump-

tion in the cellular network. As a result, users experience severe congestion when they request data

from the cellular provider. Not only by mobile devices such as mobile phones, but abundant data is

also being continuously generated by ever-growing IoT devices like sensors, decision-making devices,

and other miscellaneous electronic measuring apparatuses that are indiscriminately connected to the

internet. These devices facilitate the evolution of the IoT, which forms a new networking paradigm

that connects humans and the physical world through ubiquitous sensing, computing, and commu-

nications. The exponentially increasing number of those IoT devices also results in severe spectrum

shortage specifically in the already crowded ISM band, resulting in several interferences as well.

Besides, compared with mobile phones, IoT devices have very limited computational abilities and
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inadequate security protocols. As a result, data communication in IoT networks is more vulnerable

to various attacks due to the open nature of the wireless environment, such as eavesdropping and

replay attacks. In this dissertation, we strive to solve the mentioned issues around achieving reliable

and secure data transmission in the emerging networks by carrying out feasible solutions.

1.2 Research Challenges

This subsection outlines the major reliability and security issues during data transmission

that ought to be addressed in the emerging networks.

First of all, depending on different requirements on wireless transmission, dedicated wireless

protocols have been adopted on various types of IoT, resulting in a heterogeneous environment. To

alleviate interference among heterogeneous IoT devices and further improve the spectrum utilization

efficiency, recent advances in Cross-Technology Communication (CTC) enable direct communication

across those wireless protocols. However, this new methodology incurs serious security concerns on

heterogeneous IoT devices. Data transmission becomes more vulnerable to various attacks such as

eavesdropping and replay attacks. Even worse, with limited computational capabilities, traditional

crypto approaches cannot work to defend against the above attacks.

Second, the information sensed, collected, and transmitted by IoT devices can be easily

intercepted by adversaries, which becomes a serious concern in most IoT applications requiring

sensitive data. The above problem becomes more serious in the large-scale IoT environment, such

as the industrial IoT. In practice, cooperative communication approaches can effectively improve

the security level for wireless communication under the presence of eavesdroppers with unbounded

computational ability. How to motivate the participation of relay nodes to ensure reliable and secure

data transmission becomes a huge challenge.

Third, mobile data offloading is a promising paradigm to alleviate data traffic by utilizing

complementary and revolutionary networking techniques (e.g., small cell, WiFi offloading, and op-

portunistic communication) to deliver mobile data originally from the cellular network. However,

the current approaches cannot fully address the issue in terms of user demand and offloaded traffic.

As a result, mobile users still experience severe congestion when a large number of users request

data. How to enable data delivery from the base station to a group of users becomes a big challenge

and should be well addressed.
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The last but not the least, Dynamic spectrum access (DSA) has been envisioned to become

the key to enabler to solve worldwide spectrum shortage. However, the open nature of the wireless

medium brings severe threats to the DSA system resulting from unauthorized access. Specifically, an

unauthorized secondary user (SU) utilizes the licensed spectrum by faking/replaying the spectrum

permit, which will not only introduce severe interference to authorized SUs but also disable the

DSA system due to the lack of stability and incentives. Even worse, in practical DSA systems,

pervasive fading channels would also cause wireless signal attenuation. Therefore, ensuring reliable

communication between authorized secondary users while preventing spectrum misuse becomes a

key challenge.

1.3 Scope and Organization of the Dissertation

The dissertation contributes to the scheme designs to achieve reliable and secure data trans-

mission for several key research problems in the emerging networks given limited resources. The rest

of the dissertation is organized as follows.

Cross-Technology Communication (CTC) tackles the interoperability issue in the heteroge-

neous IoT environment by enabling direct communication among devices across different wireless

technologies. It can greatly avoid repeated data transmission among different protocols, enhance

the spectrum efficiency in the already-crowded ISM band, and reduce the cost of gateway deploy-

ment. However, this new paradigm poses significant challenges. For example, an attacker can take

advantage of CTC to launch attacks to IoT devices with a different protocol without being identified

because of the protocol differences. Even worse, the low-computational capabilities of IoT devices

hinder the deployment of computational-intensive cryptographic approaches at higher layers for de-

tection. In Chapter 2, we identify a new physical-layer attack, cross-technology signal emulation

attack, where a WiFi device can eavesdrop a ZigBee packet on the fly, and further manipulate the

ZigBee IoT device by emulating a ZigBee signal. To defend against this attack, we propose two

defense strategies with the help of a commonly found WiFi router.

In Chapter 3, we target on security enhancement in large-scale IoT network. On the one

hand, over 60% of IoT applications are required to achieve low power consumption, long battery

life, high data rate, and wide coverage simultaneously. However, none of the existing wireless tech-

nologies can satisfy the above requirement simultaneously. On the other hand, the disclosure of
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sensitive information, including machinery data, patients’ health data, or financial files, collected by

many IoT applications is unacceptable. Unfortunately, data communication is de facto vulnerable

to the eavesdropping attack due to the heterogeneous wireless environment in the large-scale IoT

system. Cooperative communication is a perfect fit to tackle the above challenges with its advan-

tages on wide coverage, energy efficiency, and high interference mitigation capability. In addition,

it introduces the inherent randomness of wireless channels, which could prevent eavesdroppers from

intercepting the transmitted message. In Chapter 3, we apply the amplify-and-forward (AF) coop-

erative communication to increase the secrecy capacity of IoT systems by incentivizing relay IoT

devices.

Facing the challenges that mobile users still experience severe congestion when a large

number of users request data from the base station with the consideration of mobile data offloading,

we take a step further to reconsider the human-enabled approach for mobile offloading, which takes

human social behaviors and human activities into consideration. Intuitively, users with similar social

interests often group together in certain crowded areas such as football stadiums and theme parks,

which potentially results in similar content requests. The above phenomenon leads us to consider

how to avoid repeated requests/retrievals in order to reduce the number of accesses to the service

provider. As for human activities, an observation is that users in crowded areas either walk around

or go to their interested attractions. Therefore, in Chapter 4, we introduce the concept of mobile

participation to assist data offloading by leveraging the mobility of users and the social features

among a group of users. A mobile caching user, who pre-caches a certain amount of contents, will

roam around congested areas to participate in data dissemination in order to satisfy users’ requests,

which is expected to benefit both himself and users in the crowd simultaneously. To motivate such

human-enabled mobile participation for data offloading, a Stackelberg game is deployed with joint

considerations on social effect and delay effect.

As an extension work in Chapter 4, the data dissemination among the users within the group

is well studied in Chapter 5 to achieve energy efficiency. The explosively increasing data traffic leads

to a significant increase in energy consumption and thus puts an adverse effect on the environment.

Having the offloaded data, similar social interests among users motivates them Device-to-Device

(D2D) communication for further data dissemination within the group, which would greatly relieve

the traffic burden at base stations and thus free energy consumption. However, energy consump-

tion in D2D communication becomes one of the most critical challenges for deployment. Frequently
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transceiving data between battery-powered mobile devices could quickly drain their energy. Mean-

while, arbitrarily caching data in their buffer will bring trouble due to limited buffer size. Even

worse, the stability of the entire network suffers from break-off users. In Chapter 4, we leverage

users’ social preference to reduce energy consumption on mobile devices and keep the stability of

the entire system while satisfying users’ traffic demands.

Dynamic System Access (DSA) has received considerable attention recently due to its ability

to alleviate the spectrum scarcity issue. However, the unauthorized secondary user can utilize

the licensed spectrum by faking/replaying the spectrum permit, which not only introduces severe

interference to authorized SU but also disables the DSA system due to the lack of stability and

incentives. In Chapter 6, we propose a secure and optimized unauthorized SU detection scheme. Our

scheme achieves accurate and efficient permit detection. Meanwhile, unauthorized SU is effectively

prevented from faking/replaying the spectrum permit, which improves the security of the DSA

system.

As an extension work of Chapter 6, we consider the fading effects when designing an unau-

thorized secondary user detection scheme in Chapter 7. In practical DSA systems, due to the atmo-

spheric ducting, ionospheric reflection and refraction, and the reflection from terrestrial objects, the

communication between authorized second users is via a wireless multipath channel, which would

suffer the wireless signal from an arbitrary time dispersion, attenuation, and phase shift, known

as fading. In Chapter 7, we devise an authorized secondary user authentication scheme that is

robustness to fading effects and further unleash its great potential for future wireless systems.

Finally, Chapter 8 concludes this dissertation and discusses some future research work.
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Chapter 2

Signal Emulation Attack and

Defense for Smart Home IoT

2.1 Chapter Overview

The proliferation of the Internet of Things (IoT) enables ubiquitous connections among

various wireless devices, such as wearable health monitors, security locks, fitness trackers, etc., for

bettering our daily life [9,161]. According to a recent market report [40], it is expected the number of

IoT devices will reach to a total of 41.6 billion by 2025. Among different wireless technologies being

used, ZigBee is one of the dominant protocols used for smart home applications. Many household

appliances have equipped with ZigBee chips for receiving commands from a multi-protocol gateway

(ZigBee communication) and further being managed by users’ mobile devices (WiFi communication).

However, the wireless transmission between the gateway and ZigBee devices can be easily overheard

by eavesdroppers, in the sense that the smart home IoT devices have the potential of being hacked

in the wireless environment. Considering the dramatic growth of IoT used in home areas and the

critical functionalities that IoT has involved, the loss could be immense. For example, attackers

can turn on the cooling on smart thermostats during winter, unlock the smart garage door, and

even turn off security camera for break-in, by transmitting the eavesdropped ZigBee signal directly

without using the authorized gateway. Even worse, as our experimental results demonstrate, existing

upper-layer cryptographic approaches do not work, and thus the attacker can completely bypass the
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upper-level security detection at ZigBee receivers.

Besides ZigBee, WiFi and Bluetooth protocols also play important roles in smart home

applications. They all occupy the Industrial, Scientific, and Medical (ISM) 2.4 GHz band, generating

a heterogeneous environment [45,109,115,165]. To tackle the interoperability issue, Cross-Technology

Communication (CTC) serves as a feasible solution by enabling direct communication among devices

across different wireless technologies [35, 74, 119]. It can greatly avoid repeated data transmission

among different protocols, enhance the spectrum efficiency in the already-crowded ISM band, and

reduce the cost of gateway deployment. However, this new paradigm poses significant security

challenges. One of them is: an attacker can take advantages of CTC to launch attacks to IoT devices

with a different protocol without being identified. Even worse, the low-computational capabilities of

IoT devices hinders the deployment of computational-intensive cryptographic approaches at higher

layers for detection. Taking WiFi to ZigBee CTC as an example, with a much higher transmission

power and mobility, WiFi devices can generate a stronger signal with a greater transmission range

than ZigBee devices. As a result, WiFi devices can successfully attack ZigBee devices from a

further distance without being found, making the attack more practical and powerful. Given the

increasing deployment of IoT devices, it is critical to detect this type of attack and design effective

countermeasures.

In this chapter, we identify a new attack named as Signal Emulation Attack in the

practical smart home scenario, where a WiFi attacker first eavesdrops on the control message by

listening to the communication between ZigBee devices and their gateway. Then, it embeds the

control message into its WiFi signal to manipulate the functionality of ZigBee devices. The emulated

signal can pass the demodulation process at the ZigBee receiver, and thus it is infeasible to be

detected. To protect the ZigBee devices, this work proposes two defense strategies with the help of

an auxiliary anchor, i.e., a WiFi router. We list our contribution as follows,

• We are the first to identify a new physical-layer attack, the signal emulation attack, in the

heterogeneous environment.

• The proposed passive defense strategy prevents the WiFi attacker from emulating a perfect

ZigBee signal by leveraging the noise generated by the anchor.

• We also propose a proactive defense strategy to protect ZigBee receiver with the help of the

anchor, which can determine whether the signal is coming from a valid ZigBee source in a
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real-time manner.

• We perform extensive experiments to validate threats of the signal emulation attack and further

demonstrate the effectiveness of two defense strategies.

• We design a real-world prototype to enable the smartphone to perform the signal emulation

attack, while defense strategies are thoroughly evaluated in practical scenarios.

The rest of this chapter is organized as follows.The related works are discussed in Section

2.2. Section 2.3 illustrates the motivation of signal emulation attack, together with the introduction

of a threat model. Section 2.4 gives some background information about the ZigBee receiver and

the WiFi transmitter, based on which we demonstrate the details of the signal emulation attack in

Section 2.5. As the countermeasures, passive and proactive strategies are proposed in Section 2.6

and Section 2.7, respectively. We give our experimental confirmation of the signal emulation attack

as well as evaluation of two defense strategies in Section 2.8, followed by the conclusion in Section

2.9.

2.2 Related Work

2.2.1 Solutions to PHY Security Problems

Physical-layer security problems mostly focus on how to prevent attacks (e.g., eavesdropping

and interception) during the communication. Corresponding defense strategies can be categorized

into two groups. One is to theoretically discuss the secrecy capacity, which exploits the property

of the wireless channel for secure communication [54, 178]. Many transmission strategies, such as

cooperative transmission [201], artificial noise [124], and secure beamforming [121], are proposed to

enhance the security capacity in the physical layer. The other group is to embed the private permit

into the message to prevent it from being replayed, such as RF fingerprinting in [26, 83, 166] and

authentication signal embedding in [97,98,105,106,142,163,185,193]. However, the above methods

cannot prevent the signal from being eavesdropped and emulated.

2.2.2 Cross-Technology Communication

Cross-Technology Communication (CTC) is envisioned to serve as an effective approach

to alleviate the cross-technology interference by allowing direct communication between devices
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with different protocols [32,194,197,198]. B2W 2 [35] enables the high throughput and long distance

concurrent N -way CTC between BLE and WiFi by leveraging channel state information. In FreeBee

[102], Esense [32] and GSense [195], the communication between WiFi and ZigBee devices is enabled

by using RSS to measure the WiFi signal. Different from the above packet-level CTCs, Li et. al

in [119] propose a physical-level emulation technique. Their objective is to increase the throughput

in CTC. From security perspective, Chen et. al discuss potential jamming attacks and sniffing attack

in [33]. Different from these works, we consider the emulation technique as a powerful attacking

method and further make the emulation attack complete and more practical to real life.

2.2.3 RF Fingerprinting

Most radio fingerprinting methods identify a device by considering various PHY layer classi-

fication approaches. Based on [26], RF features are broadly classified into: (1) channel-specific ones,

e.g., channel impulse response, that characterize the wireless channel. They have been successfully

adopted in robust location distinction [118,141]; (2) Transmitter-specific ones that are independent

of the channel, e.g., artifacts of individual wireless frames [26], unique features in the radio turn-on

transients [46], and joint time-frequency Gaborand Gabor-Wigner Transform features [149]; and (3)

Hardware properties like TCP and ICMP time stamp in [103]. All the above work apply radio fin-

gerprint techniques to distinguishing different wireless devices whiles our proactive defense strategy

is to differentiate signals generated based on different protocols. In other words, our strategy still

works even if the ZigBee device is changed to a new (unknown to the classifier) one.

2.3 Motivation

From the attackers’ perspective, when performing attacks to ZigBee devices, one of the

major difficulties is the short attacking range (approx. 10m). Due to the limited transmission

power, attackers can even be identified within the line-of-sight (LoS) range. In what follows, we

conduct an experiment to demonstrate the limitation of attacking ZigBe devices using the ZigBee

protocol, and further discuss the feasibility and severeness of the WiFi-enabled emulation attack.
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Figure 2.1: Experiment on the Vulnerability of ZigBee devices

2.3.1 Experimental Results and Observations

2.3.1.1 Experiment Settings

As shown in Fig.2.1a, we use a Commercial off-the-shelf (COTS) Sylvania ZigBee LED [14]

light bulb as an end IoT device, and we also let a gateway send “TURNING ON” and “TURNING OFF”

commands to LED. The LaunchPad CC26x2R [92] (ZigBee attacker) is deployed to eavesdrop on

the communication between the gateway and LED. The command messages are stored and re-sent

using both the LaunchPad and USRP (WiFi attacker) as shown in Fig. 2.1b, where the USRP sends

an emulated signal based on the eavesdropped ZigBee signal. Given the experimental results, we

analyze the advantages of using WiFi for launching the attack.

2.3.1.2 Payload Analysis

We use WireShark [8] to analyze the packets sent by the gateway in Fig.2.1c. To launch

the attack, we use the LaunchPad to send the eavesdropped ZigBee packet for attacking the smart

LED. Although the commands change over time, the ciphertext form of “TURNING ON” shown in the

“Data” field can still be re-used on the LaunchPad for turning on the LED as shown in Fig.2.1d.

In our case, the receiver LED does not verify the sequence numbers and frame counters, making

it already vulnerable to the replay attack. However, even if the protocol enforces the verification

to defend, this type of attack is still possible because of the potential key leakage issue during the

initialization process [99,133,155] especially when there is a new device added into the network [51].

Many cracking tools [7] can be used to steal the keys and finally decrypt the received commands.

Therefore, even if ZigBee devices are using symmetric upper-layer encryption schemes, such as AES-

CCM, this type of attacker still can change the sequence number and/or frame counters in the

decrypted message and then re-encrypt as a new message, achieving the successful replay attack to
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ZigBee devices.

2.3.1.3 Attacking Performance Analysis

From the perspective ZigBee devices, given the above vulnerability, they may suffer even

more serious attacks in the heterogeneous environment consisting of malicious WiFi attackers.

• Attacking range: Adopting IEEE802.15.4 protocols, the transmission power of ZigBee at-

tackers is relatively low at 5dBm, while a common smartphone WiFi transmission power is 6-7

times more than that, making the attacking range greatly improved.

• Attacker detection: The low transmission power of ZigBee attackers prevents them from

performing the attack at Non Line-of-Sight (NLoS) locations. Thus, they are at a higher risk

of being detected. However, the WiFi attacker can stay at NLoS locations to attack ZigBee

devices without being found.

• Device ubiquity: Compared to WiFi devices that pervasively exist in people’s daily life,

devices with ZigBee protocol are always fixed at certain places, which reduces the feasibility

for attacks.

From the attacker’s viewpoint, to verify the feasibility and benefits brought by WiFi proto-

col, we extend the above experiment by using a USRP to attack LED using both ZigBee signal and

WiFi emulated signal (detail will be presented later). We also deploy a LaunchPad next to LED to

record received packets.

As shown in Table.2.1, both the symbol-error-rate (SER) and packet-error-rate (PER) will

increase in the LoS scenario for both ZigBee and WiFi attackers, resulting in a significant drop in

attack success rate. When both attackers are closer to the LED, their SER and PER remain similar.

However, the WiFi attacker has higher attacking success rate as the distance increases to 15m and

20m. In addition, due to the NLoS propagation feature of the WiFi signal, the WiFi attacker can

also launch the attack when hiding outside of the house. According to the above discussion, WiFi

attackers are more powerful than ZigBee attackers in terms of 1) longer attacking range; 2) NLoS

capability; 3) ubiquity of devices. Given these advantages, the resulting consequences would be

immense if no prevention mechanism is deployed.
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Table 2.1: Symbol/Packet Level Performance (LoS)

Distance 5m 10m 15m 20m

SER (WiFi) 0.55% 0.4% 0.52% 1.23%

PER (WiFi) 0.75% 1.8% 4.1% 4.8%

SER (ZigBee) 0.51% 0.44% 1.34% 2.31%

PER (ZigBee) 1.1% 1.7% 6% 15.2 %

2.3.2 Threat Model

Motivated by the above observation, we focus on a physical-layer signal emulation attack on

ZigBee devices. Instead of launching the attack using ZigBee devices, we consider a WiFi attacker

for longer attacking range and higher success rate, for which it can hide somewhere (50m away)

without being found. Specifically, the entire signal emulation attack consists of the following steps.

Step 1: Signal Eavesdropping. The WiFi attacker moves close to ZigBee devices to eavesdrop

on the communication between ZigBee devices and their authorized gateway.

Step 2: Signal Emulation. The WiFi attacker “translates” the eavesdropped ZigBee signals into

its “own language” for attacking.

Step 3: Device Attacking. By ensuring the channel is not occupied by ZigBee devices, the WiFi

attacker sends emulated signal via its RF component for attacking purpose.

With this being said, the WiFi attacker will follow the IEEE 802.11g standard for physical

(PHY) and media access control layer (MAC) when launching the attack. We assume it will be able

to eavesdrop on the overlapped frequency band between WiFi and ZigBee within a close proximity.

The WiFi attacker can also store the historical knowledge of ZigBee signals, such as eavesdropping

time, location, and amplitude. Given previously discussed advantages, the WiFi attacker can be

any device with a WiFi radio, which can send signals with a higher power (approx. 8dB higher than

ZigBee) at any place within the transmission range. Meanwhile, we limit the WiFi capabilities from

the following aspects: due to protocol differences, 1) WiFi attackers are unable to generate a WiFi

signal that is completely the same with the eavesdropped ZigBee signal; and 2) WiFi attackers are

unable to simply replay and amplify the eavesdropped ZigBee signal.

As for ZigBee devices, they follow the IEEE 802.15.4 standard. Mostly, they are fixed at

specific locations, such as kitchen, bedroom, and garage, where they communicate with gateways as
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usual. In particular, they are unable to detect the existence of WiFi attackers. Most importantly, we

assume they cannot distinguish the sources of received signals and can only execute the command

as long as the signal passes its security check (in the case where cryptographic keys have been

compromised).

2.4 Preliminaries

Before stepping into the detailed design of signal emulation attack, we first analyze its

feasibility by reconsidering the ZigBee transmitter/receiver and WiFi transmitter.

2.4.1 ZigBee Transmitter and Receiver

ZigBee devices work in the unlicensed 2.4 to 2.4835 GHz ISM bands where 16 channels are

allocated. Each channel occupies 2 MHz bandwidth with 5 MHz spaced apart. They apply Direct

Sequence Spread Spectrum (DSSS) to improve interference/noise resilience. At the transmitter,

each original ZigBee symbol (4 bits) is mapped to a 32-chip sequence by being multiplied by a

pseudo-random noise spreading code. Offset Quadrature Phase Shift Keying (OQPSK) is deployed

as the modulation scheme, which maps every 2 DSSS chips to one of the 4 complex symbols. At

the receiver, after OQPSK decoding, the ZigBee receiver calculates the Hamming distance between

received 32-chip sequence and all the 16 predefined 32-chip sequences as shown in Fig.2.2, where

each predefined one corresponds to one ZigBee symbol. The predefined chip sequence having the

minimum Hamming distance is chosen as the candidate. Meanwhile, the ZigBee receiver sets a

threshold. If the minimum Hamming distance is smaller than the threshold, the received chip

sequence is decoded to the ZigBee symbol that the candidate represents. Otherwise, the received

chip sequence is discarded.
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Figure 2.2: DSSS Demodulation

2.4.2 WiFi Transmitter

WiFi devices have a higher transmission power and longer transmission range compared

to ZigBee devices. They also work in the 2.4GHz ISM band with 20 MHz bandwidth for each

channel, which results in the potential spectrum overlapping between the WiFi and ZigBee signals.

One example is that the ZigBee signal occupied on channel 17 (2434 − 2436MHz) is completely

overlapped with that of the WiFi signal centered on the 2442 MHz (2432 − 2452MHz). However,

WiFi transmitters deploy complete different PHY techniques compared to ZigBee transmitter. In

our chapter, we mainly consider the following three differences.

2.4.2.1 Modulation scheme.

WiFi transmitter deploys 64-Quadrature Amplitude Modulation (QAM) followed by the

Orthogonal Frequency Division Multiplexing (OFDM). Specifically, after preprocessing (scrambling,

encoding, and interleaving), every 6 data bits are mapped to one of the 64 complex symbols on

QAM constellation. Every 48 complex symbols together with 4 pilot symbols and 12 null symbols,

representing the signal on 64 subcarriers (each occupies 312.5 kHz bandwidth) respectively, form an

OFDM symbol [63] in frequency domain. The 64-point Inverse Fast Fourier Transform (IFFT) is

then employed, changing the OFDM symbol from the frequency domain to the time domain.
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2.4.2.2 Cyclic Prefix (CP)

After IFFT, a guard interval (CP), which is the repetition of the last 16 complex data, is

added to the beginning, forming a complete WiFi symbol with 80 complex data. The CP together

with OFDM helps WiFi signals combat multi-path effect by inhibiting inter-symbol interference

(ISI) between adjacent OFDM symbols. ZigBee transmitter does not have CP process.

2.4.2.3 Repetitive Short Training Sequences (STSs)

WiFi receiver calculates the carrier frequency offset (CFO) from the center frequency via

auto correlation among 10 repetitive STSs. Each STS contains 16 raw WiFi symbol. However, those

repetitive STSs do not exist in the ZigBee signals.

In practice, the WiFi device can overhear the ZigBee signal due to spectrum overlapping.

However, it cannot generate a signal that is completely the same as the ZigBee signal. Fortunately,

the DSSS demodulation allows a few errors in received signals at the ZigBee receiver, which gives

attackers opportunities to control ZigBee devices. Based on the above discussion, we list the main

challenges in launching signal emulation attack, 1) how to generate a WiFi signal that is similar

enough to the actual ZigBee signal? and 2) how to guarantee that the emulated signal can pass the

DSSS demodulation and be decoded correctly?

2.5 Signal Emulation Attack

To answer the above questions, we detail our design in the signal emulation attack in this

section.

2.5.1 Attack Overview

The signal emulation attack is shown in Fig.2.3. The WiFi attacker first eavesdrops on the

signal from the communication between two ZigBee devices. Then, it generates a signal that is

similar to the eavesdropped one. As a result, the emulated signal passes the DSSS demodulation

process and the ZigBee device executes the command from the WiFi attacker.

15



ZigBee Gateway

Wi-Fi Attacker

Emulation AttackChannel Listening

Wi-Fi Attacker
ZigBee Device ZigBee Device

Emulation Attack

ZigBee Transmission

Channel Eavesdropping 

Figure 2.3: Cross-Technology Signal Emulation Attack

2.5.2 ZigBee Signal Eavesdropping

2.5.2.1 Overview

To launch the emulation attack, the WiFi attacker needs to know the ZigBee transmitter’s

signal. Locating close to ZigBee devices, the attacker passively senses the channel and records the

received ZigBee signal. However, with a 20 MHz sensing bandwidth, the WiFi attacker also senses

the signals from other sources, especially the environmental WiFi signals. Therefore, the difficulty

becomes how to recognize and further capture the ZigBee signal from the received ones.

2.5.2.2 Short-Distance Eavesdropping

We first conduct an experiment to explain why the WiFi attacker has to eavesdrop on

the ZigBee signal from a short distance to ZigBee devices. Two USRPs operating at the Channel

11 (centered at 2405MHz) play roles of the ZigBee transmitter and receiver, respectively. Their

distance is set to 0.5m, 1m and 1.5m and 2m, respectively. The ZigBee transmitter randomly sends

two signals each time. The real component amplitude of the received signals is shown in Fig.2.4,

where the amplitude of the ZigBee signal decreases with the increase of the distance. When the

transmitter is 2m away from the receiver, the ZigBee signal is overwhelmed by the noise. However,

the ZigBee signal can still be decoded by the ZigBee receiver due to the error tolerance of DSSS. For

the WiFi attacker, unfortunately, with completely different PHY layer techniques, it cannot extract

the ZigBee signal from the noise. Therefore, the WiFi attacker has to locate in the close proximity

to ZigBee devices to eavesdrop on the ZigBee signal.
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Figure 2.4: Received signal at ZigBee receiver

2.5.2.3 ZigBee Signal Distinguish and Extraction

WiFi attacker distinguishes the ZigBee signal from the view of WiFi frame structure. After

detecting a sufficiently high amplitude, WiFi attacker temporarily stores the received signal and

calculates the CFO as,

fo =
1

16
arg
∑NSTS−1−16

n=0
t[n]t∗[n+ 16], (2.1)

where t[n] denotes the n-th STS sample and NSTS = 160 represents total STS samples. t∗ is the

complex conjugate of the t. If fo is above a given threshold, the received signal is supposed to be the

ZigBee signal. WiFi attacker stores it for the further emulation. Otherwise, WiFi attacker assumes

it as a WiFi signal and begins to decode it.

We conduct an experiment to verify the above method. Two USRPs send WiFi and ZigBee

signals alternately while another USRP plays the role of the WiFi receiver. The distance between

the transmitters and receiver is 0.6m, 1.5m and 2m. Each transmitter sends signals 100 times on

each location. We illustrate the CFO performance in Fig.2.5a. The CFO of WiFi signal centralizes
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at 0 whereas the CFO of ZigBee signal is far larger (e.g., Z60 denotes ZigBee signal at 60cm and

W100 denotes WiFi signal at 100cm). Fig.2.5b shows the eavesdropping accuracy. The false positive

rate represents that the received normal WiFi signal is mistakenly considered to be from the ZigBee

transmitter whereas the false negative rate denotes that the received ZigBee signal is regarded as

from another WiFi device. As we can see, when the WiFi attacker sets its decision threshold for

CFO to around 0.001, it can effectively eavesdrop on ZigBee signal while the WiFi signal receiving

is not affected.

(a) CFO (b) Accuracy

Figure 2.5: Eavesdropping Performance at WiFi attacker

Note that WiFi attacker can effectively extract the ZigBee signal without buffer overflow and

extra cost as explained in the following. (1), Because WiFi attacker locates near to ZigBee devices,

most RF samples with high amplitudes should come from either WiFi or ZigBee devices instead of

other devices equipped with different wireless protocols. (2), Since users’ operations to smart home

ZigBee devices usually has the daily routines, WiFi attacker eavesdrops the ZigBee signal during a

fixed period. Hence, WiFi attacker does not have to store the received signal all the time. (3), CFO

calculation is the necessary step when decoding signals, there is no extra computational cost at the

WiFi attacker.

2.5.3 ZigBee Signal Emulation

The objective of the ZigBee signal emulation is to generate a WiFi signal that is similar

to the eavesdropped ZigBee signal. As shown in Fig.2.6, the attacker processes the eavesdropped

signal in a reverse direction to obtain the corresponding WiFi data bits, which are sent to ZigBee

devices when launching the attack. We ponder the problem step by step by comparing the difference
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between the ZigBee and WiFi transmitters.

Cyclic Prefixing FFT
QAM 

Quantization
Inverse of 

Preprocessing

Zigbee Signal
0101000...

WiFi Data bits

WiFi Attacker Transmitter

Emulated  Signal

......

Figure 2.6: ZigBee Waveform Emulation

2.5.3.1 Cyclic Prefix Manipulation

Each WiFi symbol consists of 80 complex data, including 16 cyclic prefix data followed by

the 64 effective data. However, the ZigBee signal does not have such a characteristic. Hence, given

80 eavesdropped data, the attacker inevitably discards the first 16 data and chooses the rest 64

data as the emulation objective. We assume every 64 data to be emulated constructs a sample.

Meanwhile, we denote z(n, s), where n = 1, 2, · · · , N and s = 1, 2, · · · , S, as the n-th data in the

s-th sample. We further assume there are S samples in the eavesdropped ZigBee signal and N = 64.

2.5.3.2 Frequency Subcarrier Selection

To get the corresponding WiFi data bits for each raw sample, a 64-point FFT is applied,

Z(k, s) =
∑N

n=1
z(n, s)e−j

2π
N nk, k = 1, 2, · · · ,K, (2.2)

where the FFT point Z(k, s) denotes the component on the subcarrier k in the s-th raw sample in

the frequency domain and K = 64. Since each WiFi symbol occupies 20MHz bandwidth with 64

subcarriers whereas the spectrum with 2MHz bandwidth is occupied by the ZigBee signal, only 7

subcarriers ( 2
20 × 64) of the WiFi signal are overlapped with the ZigBee Signal. The WiFi attacker

emulates the eavesdropped signal by manipulating the components on 7 subcarriers. The question

becomes how to locate those subcarriers.

Since the signal on the non-overlapped subcarriers is mostly the noise whereas that on
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the overlapped channels is more powerful. Hence, we deploy a folding process to locate them by

considering the energy of the FFT points E(k, s),

E(k, s) = Z(k, s)Z(k, s), (2.3)

where Z(k, s) indicates the conjugate of Z(k, s). The energy E(k, s) forms a two-dimension matrix,

where the elements in the kth row indicate the energy of each raw sample on the subcarrier k whereas

those in the sth column signify the energy on each subcarrier in the raw sample s. Thus, a histogram

ES(k) of E(k, s) is built according to the following equation,

ES(k) =
∑S

s=1
E(k, s), k = 1, 2, · · · ,K, (2.4)

where ES(k) is the total energy of all the samples on the subcarrier k. We sort ES(k) using the

merge-sort algorithm [39] to identify the location of 8 most powerful subcarriers. The reason to

choose 8 subcarriers instead of 7 is to ensure that the spectrum occupied by the emulated signal

completely overlaps that occupied by the ZigBee signal. Here, subcarrier 29− 36 are chosen.

2.5.3.3 64-QAM Quantization Optimization

WiFi and ZigBee signals have different constellation structures. An example is shown in

Fig. 2.7a, where blue circles and red diamonds represent FFT points of the eavesdropped signal

and the 64-QAM constellation, respectively. To get WiFi data bits, the WiFi attacker quantizes

FFT points to 64-QAM points. Such quantization results in irreversible distortion. WiFi attacker

attempts to minimize the quantization distortion.

Based on the Parseval’s theorem view [39], minimizing the signal distortion in the time-

domain under energy metric is equivalent to minimizing the total deviation of frequency components

after quantization. Hence, our principle is to choose the closest 64-QAM constellation point to each

of the FFT points in term of Euclidean distance. Without considering constellation scale, the real

and imaginary components of the 64-QAM points, QRe and QIm, are chosen from the set {-7, -5,

-3, -1, +1, +3, +5, +7}, respectively. To minimize quantization errors, a scalar α is introduced. We

have the following optimization problem,
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min
α

SE∑
k=SS

(ZRe(k, s)− αQRe(m))
2

+ (ZIm(k, s)− αQIm(m))
2

α > 0, (2.5)

where ZRe(k, s) and ZIm(k, s) represent real and imaginary components of the FFT point Z(k, s)

respectively. SS and SE denote the start and end locations of the chosen FFT points, respectively.

Let j =
√
−1. We have Z(k, s) = ZRe(k, s) + jZIm(k, s). In particular, α(QRe(m) + jQIm(m))

indicates the 64-QAM point that is the nearest to the FFT point Z(k, s). The optimization problem

(2.5) aims to find the optimal scalar α such that the total quantization error between the chosen FFT

points and their nearest QAM points is minimized. However, we cannot solve the problem directly

since different QRe(m) and QIm(m) are chosen for the same FFT point Z(k, s) given different scalar

αs. For example, we choose 3 FFT points from Fig.2.7a and mark them as No. 1, 2, and 3 as

shown in Fig. 2.7b. The scalar for the red-diamond 64-QAM constellation is α = 1 while that of

the green-pentagram 64-QAM constellation is α = 1.2. In Fig.2.7b, the basic QAM point QRe(m)

and QIm(m) for No.3 FFT point does not change, which is −3− 3j. However, for No.1 FFT point,

it is changed from −3 + 3j to −1 + 3j while from 3 + 5j to 1 + 5j for No.2 FFT point.

The above result indicates that an optimal scaler definitely exists that results in the least

quantization error. We propose a quick algorithm to find the optimal scalar. As shown in Algorithm

1, we define a unit quantization (Line 7 − 14) as the process that quantizes the FFT points to the
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Figure 2.7: 64-QAM Quantization Optimization
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Algorithm 1: Quantization Error Minimization
Input: initial start and end of the scalar range αS and αE

basic 64 QAM constellation points QRe(m) and QIm(m), m = 1, 2, · · · , 64
chosen FFT points from ZigBee signal samples Z(k, s), k = SS, SS + 1, · · · , SE, s = 1, 2, · · · , S

its increasing gap δ = 1
error threshold η = 10−5

Output: α∗

1 ê = 0, e = 105;
2 while |ê− e| > η do
3 M = αE − αS/δ ;
4 ê = e ;
5 for i = 0; i < M do
6 αi = αS + i ∗ δ; ei = 0 ;
7 for i = 1; i ≤ 8 ∗ S do
8 for m = 1; m ≤ 64 do
9 D(i,m) = (ZRe(k, s)− αiQRe(m))2 + (ZIm(k, s)− αiQIm(m))2

10 end
11 E(i) = min

0≤m≤64
D(i,m);

12 k = arg0≤i≤64 E(i);

13 ei = ei + E(k)

14 end

15 end
16 e = min

0≤i≤M
ei; k = arg0≤i≤M e;

17 αS = αk − δ/2; αE = αk + δ/2; δ = δ/10 ;

18 end
19 α∗ = αk ;
20 return α∗;

64-QAM points given a scalar and calculates the corresponding quantization error. Our key idea is

that: instead of processing each unit quantization given a fixed scalar range [αS , αE ] with a fixed gap

δ, we attempt to minimize the number of unit quantization process with a variable range and gap.

As shown in Step 17, we shrink the optimal scalar range and decrease the gap simultaneously. Since

the quantization error is a convex function of the scalar, the global optimal scalar is unique [25].

After each unit quantization, a current optimal scalar is found given a scalar range and gap. The

global optimal scalar must be around the current one. Hence, after a few iterations, we can get a

global optimal scalar.

Next, we demonstrate how the proposed algorithm speeds up the quantization process.

Denote the number of the iterations as Inum. To ease description, we apply the symbol ′ on the

upper right to represent the initial values while the symbol ∗ to denote the values with the global

optimal scalar. Without our algorithm, the unit quantization is processed
α′S−α

′
E

δ∗ times to minimize

the quantization error by choosing the optimal scalar. Our algorithm reduces the times to
α′S−α

′
E

δ′ +

10Inum, where δ∗ = δ′10−Inum as shown in Step 12. In the case with more iterations, our algorithm

decreases the number of unit quantization processes by about 10Inum times.

After 64-QAM quantization, WiFi data bits are obtained from the inverse process of the

interleaver, convolution encoding, and scrambler as in [119]. Those bits are stored in the cache. The
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WiFi attacker launches the attack by sending them to ZigBee devices.

Figure 2.8: Eavesdropped Signal Vs. Emulated Signal

Fig.2.8 compares the ZigBee and emulated signals in a general case where ZigBee devices

and WiFi attackers are centered in different frequencies, e.g., ZigBee on 2.405GHz and WiFi on

2.410GHz. The blue lines are the waveform of the ZigBee signal and the orange line represents the

emulated signal. Those two waveforms are very similar except those in the red rectangle due to

cyclic prefix rules. To achieve the goal of attacking the ZigBee receiver at its operation frequency,

the WiFi attacker allocates the subcarriers 13− 20 to the emulated signal, which are 16 subcarriers’

ahead from the central subcarrier locations 29− 36. Hence, the waveform of the transmitted signal

is shown as the green lines in Fig.2.8.

2.6 Passive Defense Strategy

2.6.1 Motivation

The intuition behind our passive defense strategy is that “Quantitative Changes lead to

Qualitative Changes”. By making trouble to the eavesdropping process, we mislead the WiFi attacker

to generate the imperfect emulated signal, which cannot pass the detection at the ZigBee receiver.

The proposed approach makes use of an auxiliary WiFi transmitter, for which we refer as an anchor.
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As shown in Fig. 2.9, locating near the ZigBee transmitter, the anchor transmits the AWGN noise

when the ZigBee device transmits the signal. We assume that the it follows the Gaussian distribution

nz ∼ CN (0, σ2) with the mean 0 and the variance σ2. The signal received at both the ZigBee receiver

and the WiFi attacker becomes,

z′(n, s) = z(n, s) + nz(n, s). (2.6)

ZigBee DeviceZigBee Gateway

Mobile Anchor

ZigBee Device

Wi-Fi Attacker

Channel Listening Attack & Defense

Wi-Fi Attacker

Discard

Emulation Attack

Wireless Transmission

Channel Eavesdropping 

Figure 2.9: Passive Defense Model

2.6.2 Noise Effect to the WiFi Attacker

In the DSSS demodulation, ZigBee devices set a threshold to the number of error chips

between the received chip sequence and the predefined ones. In other words, ZigBee devices tolerate

a few error chips for each received chip sequence. Therefore, even if the ZigBee receiver receives a

signal with a slightly smaller signal-to-noise ratio (SNR), it still can find one predefined chip sequence

and is decoded to the ZigBee symbol that the predefined one represents. However, different from

the regular decoding process, the noise concealed in the eavesdropped signal would propagate to the

signal emulation process at the WiFi attacker, resulting in larger quantization distortion.

As in (2.6), the signal eavesdropped by the WiFi attacker is a noised ZigBee signal z′(n, s).

After the FFT operation, the output is,

Z ′(k, s) = Z(k, s) +NZ(k, s), (2.7)

24



where NZ(k, s) is the FFT points of the AWGN in the frequency domain. The WiFi attacker

quantizes the FFT points Z ′(k, s) to the QAM points based on Algorithm 1. Denote the QAM

point corresponding to the FFT point Z ′(k, s) as Q′(k, s). After quantization, the square error

e′(k, s) between the QAM point and the FFT point of raw signal is,

e′(k, s) = (ZRe(k, s)− αQ′Re(m))
2

+ (ZIm(k, s)− αQ′Im(m))
2

However, if the anchor does not emit AWGN noise, the square error e(k, s) for the FFT point Z(k, s)

is,

e(k, s) = (ZRe(k, s)− αQRe(m))
2

+ (ZIm(k, s)− αQIm(m))
2

(2.8)

The noise sent by the anchor tempts the WiFi attacker to quantize the FFT point Z ′(k, s)

to a different QAM point Q′(k, s). The new QAM point is farther to the FFT point Z(k, s) of the

ZigBee signal without the added noise, resulting in larger distortion in the emulated signal. To make

it more clear, we pick up the noisy FFT points with the variance σ2
F in the first sample, s = 1 and

draw them in Fig. 2.10 where the optimal scalar is α = 1. σ2
F is the variance in the frequency

domain. For the AWGN, variances in the time domain σ2 and frequency domain σ2
F form a linear

relationship. The blue marks in Fig. 2.10 denote the FFT points without the anchor whereas the

black marks represent the FFT points with the added AWGN. We take the FFT point k = 34 as an

example, which is amplified at lower left. When there is no added noise, the FFT point is quantized

to the QAM point −7 + j whereas the quantized QAM point becomes −5 + j affected by the noise,

which deviates the FFT point. Such a false quantization results in higher quantization error. The

table in 2.10 further demonstrates our idea: the quantization error becomes larger when the anchor

transmits the AWGN together with the ZigBee transmitter.
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Subcarrier Q(k, s) e(k, s) Q′(k, s) e′(k, s)

29 −1 + j 0.6466 −1− j 2.8371

30 −1− 3j 1.2294 1− 3j 0.8794

31 −1− 5j 0.2995 −1− 5j 0.2995

32 3− j 0.3377 3 + j 2.0649

33 5− 3j 1.0989 5− 3j 1.0989

34 −7 + j 0.3899 −5 + j 2.4421

35 −1− j 0.6528 1− j 5.5319

36 −1 + 5j 0.1200 −1 + 5j 0.1199

Figure 2.10: Constellation Performance under AWGN Effect

Based on the Parseval’s theorem [175], the energy in the time-domain is equalized to that in

frequency-domain. Hence, the larger quantization error in the frequency domain results in the larger

signal distortion. When the ZigBee device receives such a distorted signal, the chip error exceeds the

threshold in DSSS. It discards the received signal. Therefore, the passive defense strategy prevents

the WiFi attacker from controlling the ZigBee devices.

2.7 Proactive Defense Strategy

The major shortage in the previous passive defense strategy is that the added noise level

cannot be too high. Otherwise, the ZigBee receiver cannot decode the valid information from the

ZigBee transmitter neither. Besides, with the strong computation capability, the WiFi attacker can

launch the signal emulation attack via the exhaustive search on its constellation and periodically

checking the current state of the ZigBee receiver. Hence, new defense strategies are needed.
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Figure 2.11: Proactive Defense Strategy

2.7.1 Motivation

As shown in Fig.2.11, the goal of this proactive defense strategy is to distinguish whether

the received signal is from the WiFi attacker or the ZigBee transmitter in a real-time manner. To

achieve it, the anchor will first proactively learn the behavior of both the WiFi attacker and the

ZigBee transmitter from previously received signals. When the new signal is detected, the anchor

classifies the signal source based on the historic learning knowledge.

Note that our proactive approach is different from radio frequency fingerprinting techniques

[26, 46, 118, 141], which leverage the uniqueness in the transmitted signal to localize or identify the

specific source based on the analog properties, particularly the presence of analog components in the

radio transmission chain. However, our proactive scheme does not differentiate devices but instead,

we use features to find differences between protocols. Besides, our used metric will only be evaluated

within each signal (e.g., cosine difference) compared to RF fingerprinting-based approaches applying

metrics for comparison of two same-protocol signals.
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(a) Cosine Distance (b) C40 Difference (c) C42 Difference

(d) Maximum Energy (e) Minimum Energy

Figure 2.12: Time-domain and Frequency-domain Features

2.7.2 Feature Extraction

To identify the differences between the ZigBee signal and emulated signal, the anchor ex-

tracts unique features from received signals on both the time and frequency domain.

2.7.2.1 Time Domain Feature

The cyclic prefix is obtained by prepending a copy of the last 16 complex data from the end

to its beginning for the emulated ZigBee sample. With this being said, a circular signal structure

appears, i.e., the first 16 data and last 16 data should be the same in each emulated sample. However,

the ZigBee signal does not have such property. Therefore, the anchor can check whether the signal

has such a circular structure. In particular, the anchor sends the received signal into the folding

process after signal alignment. Because there are 80 complex data in each emulated sample, the

anchor chooses 80 as the length of each column instead of 64. Denote the folding matrix as F, and

its element F (n, s) is the n-th complex data in the s-th signal sample. To be consistent with the

previous discussion, there are in total of S signal samples. Theoretically, if the signal comes from

the WiFi attacker, the n-th row vector is the same with the (n + 64)-th row vector in the folding

matrix, i = 1, 2, · · · , 16. The cosine distance, which finds the angle between two vectors, is applied
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to measure the similarity between two row vectors. The value of the cosine distance is close to 1 if

the two vectors are similar. To consider the similarity between the first 16 row vectors and the last

16 corresponding ones, we calculated the averaged cosine distance DF as follows,

DF =
1

16

16∑
n=1

∑S
s=1 F (n, s)F ∗(n+ 64, s)√∑S

s=1 F
2(n, s)

√∑S
s=1 F

2(n+ 64, s)
(2.9)

In addition, we simulate the cosine distance of both the eavesdropped signal and the emulated signal

as illustrated in Fig. 2.12a (Fig. 12a-12e are in next page), from which we see that the first 16 row

vectors of the emulated signal and their related vectors in the end are almost the same. Different

from this, the corresponding vectors of the ZigBee signal are negatively correlated.

2.7.2.2 Frequency Domain Features

The largest difference between the eavesdropped and the emulated signal is the constellation

difference as shown in Fig.2.7a. Since the emulated signal is a WiFi signal, its constellation has

a squared structure. However, the constellation of the eavesdropped signal does not have such a

performance. Therefore, the constellation structure of the received signal is considered for detection.

The 64-QAM constellation has constant normalized fourth-order stimulants C40, C41 and

C42 [162]. Given received signal data z(n, s), the anchor estimates them as follows,

C̃40 =
1

N ∗ S

S∑
s=1

N∑
i=n

z4(n, s)− 3C̃2
20

C̃41 =
1

N ∗ S

S∑
s=1

N∑
i=n

z3(n, s)z∗(n, s)− 3C̃20C̃21

C̃42 =
1

N ∗ S

S∑
s=1

N∑
i=n

|z4(n, s)| − |C̃20|2 − 2C̃2
21 (2.10)

In addition, the second-order moments C̃20 and C̃21 are estimated,

C̃20 =
1

N ∗ S

S∑
s=1

N∑
i=n

z2(n, s), C̃21 =
1

N ∗ S

S∑
s=1

N∑
i=n

|z(n, s)|2.
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Finally, the normalized second-order moments and fourth-order stimulants are given as,

Ĉ2q = C̃2q/C̃
2
21, q = 0, 1, Ĉ4q = C̃4q/C̃

2
21, q = 0, 1, 2 (2.11)

Their theoretical values are C21 = 1, C20 = 0, C40 = C42 = −0.6190 for the 64-QAM constellation.

By comparing the difference between the estimated second-order/fourth-order stimulants

and their theoretical values, the anchor can roughly estimate the signal source. If the difference is

small, the signal is from the attacker. Otherwise, it is from a ZigBee device. We deploy (C̃20−C20)2,

(|Ĉ40| − |C40|)2 and (C̃42 −C42)2 to represent the above features. The reason for the absolute value

of C40 is to avoid the effect brought by the signal phase rotation in transmission [162]. Their

performance is shown in Fig. 2.12b, and Fig. 2.12c, respectively, where the difference between the

second-order/fourth-order stimulants and their theoretical values in the emulated signal is smaller

than that in the eavesdropped signal.

Besides the features related to stimulants, we consider the energy of the points in the

constellations. By investigating Fig. 2.7a again, we see that the quantization process amplifies the

FFT points with the smallest energy and shrinks the FFT points with the largest energy, resulting

in their energy changes. We show the comparison of the maximum and minimum energy between

the eavesdropped signal and the emulated signal in Fig.2.12d and Fig.2.12e, respectively, all of which

validate our idea. Therefore, the maximum and minimum energy of the points after FFT operation

from the received signal are chosen as the features.

2.7.3 Data Collection

In the training process, the anchor collects the data from both the WiFi attacker and the

ZigBee transmitter based on the following process. As long as it is receiving the signal, the anchor

first checks whether the state of the ZigBee receiver changes. If it is not changed, the anchor regards

the signal as the emulated signal; otherwise, the anchor inquiries the ZigBee transmitter on whether

it has transmitted signal. If it did not send any signal, the anchor likewise regards the signal as the

emulated signal. If the ZigBee transmitter sends the signal, the anchor marks it as the signal source.
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2.7.4 Signal Classification

The anchor deploys the binary logistic regression model [44,135] to distinguish whether the

currently received signal is either from the WiFi attacker (‘1’) or the ZigBee transmitter (‘0’) by

calculating the corresponding probability P (Y = 1|x) and P (Y = 0|x) after extracting the features,

P (Y = 1|x) =
exp(ŵ · x+ b̂)

1 + exp(ŵ · x+ b̂)
, P (Y = 0|x) =

1

1 + exp(ŵ · x+ b̂)

where x is a feature vector consisting of all the features described above. It denotes the feature

extracted from the current received signal. If P (Y = 1|x) is larger than P (Y = 0|x), the anchor

decides the signal is from the WiFi attacker; otherwise, the signal is from the ZigBee transmitter.

In particular, ŵ ∈ Rn and b̂ are the estimated parameters learned from the training data

set T = {(x1, y1), (x2, y2), · · · , (xT , yT )}. They are obtained by maximizing logarithm likelihood

L(w, b),

L(w, b) =
∑T

i=1
[yi(w · xi)− log(1 + exp(w · xi))]. (2.12)

2.8 Performance Evaluation

2.8.1 Experiment Settings

We implement the emulation attack and its defense strategies on the USRP testbed and the

Prototype testbed respectively to thoroughly evaluate their performance.

In the USRP testbed, the USRP-N210 is deployed as a WiFi attacker, attempting to control

the ZigBee device CC26x2R Wireless MCU LaunchPad as shown in Fig. 2.13a. Both of them are

centered at 2.405GHz. The distance between them is set to 5m, 10m, 15m, and 20m, respectively.

USRP testbed gives freedom to choose parameters (e.g., transmission power, central frequency, pay-

load length, etc.) for each step in the entire design, which can better simulate different environments.

As assumed in the motivation, we claim the signal emulation attack is severe due to the

ubiquity of WiFi devices, where arbitrary devices with WiFi RF can launch the attack. Hence,

we also implement experiments on a Prototype testbed, where the Nexus 5 smartphone (centered

on 2.412GHz) attempts to control a smart light prototype (centered on 2.412GHz) in both LoS

and NLoS as shown in Fig.2.13c. Nexus 5 whose radio chip is BCM4339 supports the widely used

Nexmon framework which realizes modifications on the WiFi part [5] from a lower level. In Nexmon,
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(a) USRP Testbed

(b) Smart Light Prototype

(c) Prototype Testbed

Figure 2.13: Experiment Settings and Prototype

we only change the WiFi packet length in order to fit the length of the ZigBee’s “TURNING ON”

command. To be specific, the length of a WiFi packet normally is around 1500 bytes. If the data

is greater than that, it will be divided into several packets. Hence, we use Nexmon to ensure that

a larger packet can be transmitted instead of being divided into several packets. In the smart light

prototype in Fig.2.13b, the CC26x2R turns on the common light bulb by triggering a high level to

the I/O output D100 as soon as detecting the “TURNING ON” command. Because the bulb needs a

110V voltage whereas the maximum supply voltage is 5V on CC26x2R, an extra relay is introduced

playing the role of the switch. During the experiment, there are human activities such as walking,

WiFi and Bluetooth signal transmission at the same time.

2.8.2 Signal Emulation Attack Performance

2.8.2.1 USRP Testbed

The attacker USRP sends 100 fixed-length emulated signals to ZigBee device CC26x2R

10 times given each distance. Symbol error rate (SER) denotes the number of symbols that are

mistakenly decoded plus the number of symbols that are not received divided by the number of

total symbols. Packet error rate (PER) represents the number of emulated signal packet being
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received with error over the number of total packets. The packet error happens if at least one

symbol in it is detected with error. It means that the ZigBee device is not controlled by WiFi

attacker. As can be seen in Fig.2.14, both the SER and PER are small even if the distance between

them is long, e.g., 15m and 20m, which demonstrates that WiFi attacker can control the ZigBee

device from a longer distance.

(a) SER (b) PER

Figure 2.14: Signal Emulation Attack Performance

2.8.2.2 Prototype Testbed

The smartphone continuously sends “10000” as the “TURNING ON” commands from different

locations. A USRP is deployed next to the bulb to help analyze the received signal. The result is

illustrated in Table. 2.2. As the distance increases, both the SER and PER decrease. However, even

the distance between the smartphone and the light bulb is beyond 20m, the PER is still very small.

In other words, the smartphone can successfully control the ZigBee device from a longer distance,

which demonstrates the effectiveness of our signal emulation attack.

Table 2.2: Prototype Signal Emulation Attack Performance

Distance 5m 10m 15m 20m 25m

SER 0.94% 3.26% 10.88% 15.93% 14.25%

PER 0.026% 0.082% 0.25% 0.36% 0.32%
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2.8.3 Passive Defense Strategy

To evaluate the passive defense strategy, we deploy another USRP in both testbeds to

perform as the anchor, which transmits the AWGN with the ZigBee signal simultaneously during

the eavesdropping phase. The signal-to-noise ratio is set from −20dB to 30dB. During the attacking

process, we mainly consider the LoS case in USRP testbed and both the LoS and NLoS cases in

Prototype testbed.

2.8.3.1 USRP Testbed

At the above locations, the WiFi attacker transmits 100 emulated noised signal 10 times.

We show the effectiveness of the passive defense strategy from the following aspects.

Effect on the Quantization. We illustrate scalar α and the average square error cor-

responding with it in Fig.2.15a and Fig. 2.15b. When the SNR is under 0dB, a large scalar α is

generated and results in a high average square error. This is because the noise with a high power

brings a negative effect to the constellation quantization of the eavesdropped signal. Each FFT

point of the eavesdropped signal is quantized to the 64-QAM point that is far away from itself.
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Figure 2.15: Quantization Performance
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Figure 2.16: Hamming Distance Performance

Effect on Hamming Distance. In Fig.2.16, we illustrate the Hamming distance distribu-

tion for both the received ZigBee signal and emulated signal when the anchor generates the AWGN

with the high SNR (22dB) and low SNR (2dB). The threshold of Hamming distance is set to 10.

When the SNR is 22dB, most Hamming distance of ZigBee signal is around 0 and 1 whereas that

of emulated signal is distributed among 2 − 9. The ZigBee receiver decodes all the chips correctly.

As the distance increases, the Hamming distance of the emulated signal becomes larger. Due to

noise tolerance, the ZigBee receiver still decodes the emulated signal to correct symbols. However,

when the SNR is 2dB, many chips are incorrectly decoded. The ZigBee receiver cannot recognize

the emulated signal. WiFi attacker cannot control the ZigBee devices.

Effect on SER and PER. We evaluate the SER and PER from the receivers’ perspective.

As we can see in Fig.2.17, the SER and PER of both the ZigBee and emulated signal are very high

when the SNR is below 0dB. The receiver decodes neither of them. When the SNR is above 5dB,

the SER and PER of them approach to 0. The ZigBee receiver decodes both of them. When the

SNR is between 0dB and 5dB, both SER and PER of ZigBee signal approach to 0 while the PER

of the emulated signal is high, especially when the distance is larger. The receiver only decodes the

ZigBee signal. The above analysis demonstrates that our passive defense strategy can effectively

protect the ZigBee device from being attacked by WiFi attackers, particularly those who attempt

to control the ZigBee device from a longer distance.
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(a) CC26x2R SER (b) CC26x2R PER

Figure 2.17: Effects on Error Rate

2.8.3.2 Prototype Testbed

The smartphone attempts to control the bulb from locations L1 to L7 in the building whose

floor map is shown in Fig.2.18. Specifically, WiFi attacker locates at L1, L2 and L4 attacks the

bulb in LoS. When the smartphone is at L3, L5, L6 or L7, it attempts to turn on the bulb without

being found (NLOS). The SNR increases from −2dB to 30dB during the eavesdropping phase.

Figure 2.18: Building Map 1

The success rate of turning on the bulb is illustrated in Fig. 2.19. When the SNR is low,

e.g., −2dB and 2dB, WiFi attacker only turns on the bulb in LoS case. As the SNR increases,

indicating the added AWGN is decreasing, the success rate also increases. When it increases to
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26dB and 30dB, the noise variance is so small that it cannot bring any trouble to the WiFi attacker.

WiFi attacker turns on the prototype at all the marked locations, including many NLoS locations.

The above observation also echos the effectiveness of our signal emulation attack in both LoS and

NLoS case.

Figure 2.19: Defensive Performance on Prototype

2.8.4 Proactive Defense Strategy

In our proactive strategy, a USRP, as the anchor, is put next to ZigBee devices to help

distinguish the signal source. Note that we consider the normalized maximum energy and minimized

energy instead of extracting them directly.

(a) ROC Curve (b) Recall and Precision

Figure 2.20: Detection Performance in USRP Testbed
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2.8.4.1 USRP Testbed

We randomly generate 1000 ZigBee signal, which are eavesdropped by the WiFi attacker.

Then, it generates the corresponding emulated signal. The original ZigBee signal and the emulated

ones are sent to the ZigBee device respectively. Half of the received emulated signal is put into the

training set and the others are to be classified. The operation of the ZigBee signal is the same. The

experimental results are shown as a Receiver Operating Characteristic (ROC) curve in Fig.2.20a.

The false positive rate represents that the emulated signal is mistakenly considered to be from the

ZigBee transmitter whereas the false negative rate denotes that the ZigBee signal is regarded as from

the WiFi attacker. In the LoS case, both the false positive rate and false negative rate approach to

0 due to the existence of the powerful anchor. In addition, we demonstrate the recall and precision

performance in Fig.2.20b. The recall value represents the capability of identifying the WiFi attacker

whereas the precision value denotes the capability of recognizing the ZigBee transmitter from the

received signal. When the detection threshold is set to around 0.7, both the recall and precision

value are near to 1, in the sense that the anchor effectively identifies both the WiFi attacker and

ZigBee transmitter.

(a) ROC Curve (b) Recall and Precision

Figure 2.21: Detection Performance in Prototype Testbed

2.8.4.2 Prototype Testbed

The WiFi attacker attempts to control the bulb from the LoS locations L1 and L2 together

with NLoS locations C1, C2 and C3. The USRP receives 500 emulated signals and ZigBee original

signal, respectively. Half of both received signals are put into the training set and the others are
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going to be classified. As we can see from Fig.2.21, when the detection threshold is set to 0.5, both

false positive and negative rates approach to 0.2 while the precision is near to 0. The anchor can

effectively identify the received signal source.

2.8.5 Results from Field Experiments

2.8.5.1 Experiment Settings

To further verify the effectiveness of emulation attack and defense strategies, we conduct

field experiments in a larger space, where the end-to-end distance is more than two times of the

previous building. Due to the complicated floor plan as given in Fig. 2.22, we can carry out more

experiments in the extreme NLoS case.

R
1

R2

C2C1

Second floor

R3

R4

R5

Figure 2.22: Building Map 2 – Second Floor

Specifically, we test the results on emulation attack to the commodity Sylvania ZigBee LED.

The launchpad CC26x2R is always placed close to LED to show the symbol/packet level performance.

A USRP is placed at location C1 on the second floor. For the LoS case, we move LED from USRP

location to the end of the hallway C2. The distance from C1 to C2 is 80m. For the NLoS, we place

the LED in room R1, R2, R3, and the end of the hallway on the first floor C2′. The distance between

R2 and C1 is around 60m. The emulation signal has to pass through other rooms, e.g., R3, R4, R5,

before being received at R1. The USRP sends the “TURNING ON” command that includes 49 ZigBee

symbols 500 times to turn on the LED. As an attacker, the USRP sends the emulated command

with the gain value 20dB, which indicates the amplification factor in hardware before sending the
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signal out [6]. As a ZigBee transmitter, the USRP transmits the received ZigBee command with the

gain value 12dB. Since the maximum power of WiFi transmission on the smartphone (e.g., Samsung

Galaxy series) is 13dBm whereas that on ZigBee devices is 5dBm, gain value settings are to ensure

the maximum power ratio between WiFi and ZigBee.

2.8.5.2 Signal Emulation Attack Performance

In the field experiment, the LED is turned on after receiving either emulated or ZigBee

“TURNING ON” command in LoS case. In NLoS case, the LED is on for the above four locations

only when the USRP sends emulated signals. The signal performance on CC26x2R gives similar

results. As in Table.2.3, when the USRP sends the emulated command, the signals received by

CC26x2R have a lower SER. The received packet is supposed to be incorrect if one of the symbols

is not correctly received. Hence, the PER is relatively high. However, it is much smaller than that

when the USRP sends the ZigBee. Even worse, being placed at R2, the CC26xR even cannot receive

the ZigBee signal. The above results validate our intuition that ZigBee devices are more easily

controlled by WiFi devices from NLoS locations.

Table 2.3: Symbol/Packet Level Performance

Location C2 C2′ R1 R2 R3

SER (WiFi) 16.09% 9.15% 34.25% 23.09% 11.78%

PER (WiFi) 44.60% 44.30% 62.70% 57.60% 36.50%

SER (ZigBee) 16.07% 6.06% 53.81% N/A 11.12%

PER (ZigBee) 44.30% 19.10% 83.20% N/A 32.90%

2.8.5.3 Proactive Defense Strategy

To distinguish the signal source, a USRP is deployed next to the Smart LED. Similarly, it

receives 500 emulated signals and original ZigBee signals (including both LoS and NLoS), respec-

tively. The result is shown in Fig.2.23. When the detection threshold is lower than 0.8, the anchor

would not ignore the emulated signal, but it is possible that the anchor mistakenly regards the

ZigBee source as WiFi attacker. When the detection threshold is set above 0.8, the distinguishing

result is reversed. When the threshold is set to around 0.8, the anchor gets a balance between the

false positive rate and the false negative rate. Shown in Fig.2.23b, the recall and precision value
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approaches to 0.8 simultaneously when the threshold is set between 0.8 and 0.9, in the sense that

the anchor can effectively identify both the ZigBee receiver and WiFi attacker.

(a) ROC Curve (b) Recall and Precision

Figure 2.23: Detection Performance in Field Experiments

2.9 Chapter Summary

In this chapter, we identify a new physical-layer based attack, cross-technology signal em-

ulation attack, where the WiFi attacker controls the ZigBee device by emulating the eavesdropped

ZigBee signal. To combat this attack, we introduce an anchor to safeguard the ZigBee communica-

tion. In the passive defense strategy, the anchor transmits the AWGN to prevent the WiFi attacker

from successfully emulating the perfect ZigBee signal. Whereas in the proactive defense strategy,

the anchor receives the signal and identifies the signal source in real time. We implement our design

on real-world testbeds and the commodity smart LED together with our self-designed prototype.

Extensive experiments are performed, demonstrating both the feasibility of signal emulation attack

and the effectiveness of the defense strategies.
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Chapter 3

Incentivizing Relay Participation

for Securing Internet of Things

Communication

3.1 Chapter Overview

Internet of Things (IoT) is expected to enable ubiquitous connectivity and information

exchange among billions of everyday necessities. Although the use of such smart connected objects

has become a reality in our daily activities, serious concerns are raised as follows. On the one

hand, over 60% of IoT applications are required to achieve low power consumption, long battery

life, high data rate, and wide coverage simultaneously [114]. Although the newly proposed NB-IoT

and LoRa protocols would be able to address some of the above requirements, the low data rate

(approx. 50-250 kbps) becomes the main bottleneck to hinder their widely deployment in many

applications. For some existing wireless technologies, such as Bluetooth Low Energy (BLE) and

802.15.4/ZigBee, the low power feature limits the communication range, and thus they are unable

to be deployed in industrial applications, such as environmental sensing and machinery weakness

monitoring. On the other hand, the disclosure of sensitive information collected by many IoT

applications is unacceptable, such as machinery data, patients’ health data, financial files, etc.

Unfortunately, data communication is de facto vulnerable to the eavesdropping attack due to the
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heterogeneous wireless environment in the IoT system [179,182].

Cooperative communication is a perfect fit to tackle the above challenges with its advan-

tages on wide coverage, energy efficiency, and high interference mitigation capability. While being

thoroughly investigated in the Wireless Sensor Network (WSN), it could play a more significant role

in the IoT system on enhancing the reliability and security. Specifically, the cooperative communi-

cation will introduce inherent randomness of wireless channels, which could prevent eavesdroppers

from intercepting the transmitted message. However, the major challenge that deters the deploy-

ment of cooperative communication on improving the security level is the limited battery life of

wireless sensors. In this chapter, we propose a novel cooperative IoT system consisting of multi-

ple relay IoT nodes to enhance the reliability and security, where the shortage of device energy is

conquered by leveraging energy harvesting techniques on IoT devices. In particular, many Commer-

cial off-the-shelf (COTS) IoT nodes are able to collect energy from renewable resources in ambient

environments, such as vibration, solar and, wind energy [100]. In our proposed system, the newly

introduced relay IoT node mainly plays two roles: 1) forwarding the data from each source node

to the destination node to ensure the reliable communication; 2) preventing data information from

being intercepted by the eavesdroppers to secure the IoT communication. Although the proposed

paradigm enlightens a new methodology for reliable IoT communication, how to incentivize relay

IoT nodes to help the data forwarding becomes a challenging issue, because each relay IoT node

has to consume its own harvested energy for relaying. Therefore, we propose a game-theoretical

solution to motivate the participation of relay IoT nodes with joint consideration on both channel

state information (CSI) and energy consumption. We highlight our contributions as follows,

• We propose a novel cooperative IoT system to ensure the reliability and security of data

communication specifically for IoT applications.

• Leveraging energy harvesting techniques, relay IoT nodes can help improve the secrecy capacity

by participating in the cooperative communication continuously.

• To demonstrate the practicality, two two-stage Stackelberg games under both the wiretap-link

CSI unknown and known cases are formulated between the source and relay IoT nodes.

• Simulations and the experiments using real-world dataset show the feasibility of the proposed

scheme.
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The rest of this chapter is organized as follows. We briefly review related work in Section

3.2. Detailed description of the system model and the Stackelberg game formulation are given in

Section 3.3. In Section 3.4, we introduce the proposed Stackelberg game in the wiretap-link CSI

unknown case in detail. An extension to the wiretap link CSI known case, which is more complex,

is discussed in Section 3.5. In Section 3.6, complexity is analyzed and performance evaluation is

demonstrated for both cases, followed with a conclusion in Section 3.7.

3.2 Related Work

3.2.1 Cooperative Communication in IoT

Cooperative communication aims at improving energy efficiency, overall throughput, power

control, and resource allocation in wireless networks [81,160]. It has been widely deployed in many

IoT applications. Omar et al. in [139] use cooperative communications in a smart metering system

to relay data in a multi-hop fashion to far-off aggregation points. The experimental results verify

cooperative communication can increase network range, prolong network lifetime, and reduce energy

consumption. It is also deployed in cluster-based industrial IoT network to optimize both energy

efficiency and QoS in [159, 160]. In the context of large-scale IoT, Bader et al. in [18] use blind

cooperative transmission in conjunction with multi-hop networking to minimize underlying protocol

overhead and therefore allows for scalability. However, securing cooperative IoT system receives less

attention.

3.2.2 Physical-layer Security

Physical-layer security mechanism exploits the property of the wireless channel for secure

communication [53,177]. It has shown great potential in providing information-theoretically unbreak-

able secrecy [182]. Many transmission strategies, such as cooperative transmission [201], artificial

noise [124], and secure beamforming [120], are proposed to enhance physical layer security. Among

all those strategies, cooperative communication is of great significance to the IoT communication

due to its low power and wide coverage requirements. A comprehensive overview of physical layer

security in wireless cooperative relay networks is provided in [152]. The performance of secure

transmission is improved by employing multiple cooperative relays in [201, 202]. Specifically, Xu et

44



al. in [182] prove that the proper use of relay transmission enhances the secrecy throughput and

extends the secure coverage range for IoT communications. However, without proper benefits, relay

IoT nodes will not participate in the cooperative communication.

3.2.3 Stackelberg Game

Stackelberg game [48] models and analyzes the interactions among independent decision

makers, which has been applied in a broad field of wireless communications and networks [90].

Particularly, A single-leader single-follower Stackelberg game is proposed in [52] for physical layer

security and energy efficiency enhancement. However, it does not support multiple relay nodes

case. A single-leader multiple-followers Stackelberg game is deployed to coordinate multiple relays

for physical-layer security improvement in [53], where the fairness among relay nodes is considered.

However, due to the different CSIs on the wiretap link between the eavesdropper and each relay

node, each relay node contributes differently to physical layer security. The EWS-based algorithm

in [53] is also not a proper method for physical-layer security enhancement.
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Figure 3.1: System Model
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3.3 System Overview

3.3.1 System Model

An industrial IoT application shown in Fig.3.1 describes our system model. Assume K

energy constrained source nodes S = {S1, S2, · · · , SK} to transmit data to a distant destination

node D (e.g., IoT gateway) through orthogonal channels in the presence of an eavesdropper E near

the destination node D. Nodes D and E are out of the transmission range of the source nodes. To

enable data transmission and prevent them from being intercepted, an amplified-and-forward (AF)

cooperative protocol is employed with the help of N mobile relay IoT nodes R = {R1, R2, · · · , RN}.

Each Ri can collect extra energy from the ambient environment when it does not work for S. Besides,

all the nodes including the eavesdropper are assumed to know the existence of the relay nodes and

the cooperative protocol, which is a common assumption in the physical-layer security protocols [52].

Since the eavesdropper cannot receive data information from S, it monitors the data transmission

from Ri to D and attempts to interpret the data.

3.3.2 Cooperative IoT System

We consider a flat Rayleigh fading channel in the proposed cooperative IoT system. The

fading amplitude between Sk and Ri is denoted hSki, whereas that between Ri and D is represented

by hid. Meanwhile, we denote the fading amplitude between Ri and E as hie. Without loss of

generality, nki, nid and nie are the corresponding additive white Gaussian noise (AWGN) with the

same distribution CN (0, σ2), where σ2 is one-sided power spectral density. Similar to [53], we assume

that source nodes can get global CSI of the main links, and the local information can be obtained

by the relay nodes. Generally, data transmission is divided into two steps:

Step 1: Sk broadcasts its encoded signal sk (E
(
|sk|2

)
= 1) with the power PSk . The signal received

at Ri is,

ySki =
√
PSkhSkisk + nki. (3.1)

Step 2: Ri normalizes and amplifies the received signal ySki with the power PiSk and sends to D.

Then, D receives,

ySkid =
√
PiSkhid

ySki
|ySki|

+ nid, (3.2)
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where the power PiSk consists of two parts: the power provided by the relay IoT node itself and

harvested from the ambient environments. Similarly, Sk’ signal forwarded by Ri can also be received

by E, where

yie =
√
PiSkhie

ySki
|ySki|

+ nie. (3.3)

Substitute (3.1) into (3.2), the signal-to-noise radio (SNR) ΓSkid on the main link (Sk-Ri-D)

becomes,

ΓSkid(PiSk) =
PSkPiSkγSkiγid

1 + PSkγSki + PiSkγid
, (3.4)

where γSki = |hSki|2/σ2 and γid = |hid|2/σ2.

Similarly, based on (3.1) and (3.3), the SNR ΓSkie on the wiretap link (Sk-Ri-E) related to

the relay node Ri is,

ΓSkie(PiSk) =
PSkPiSkγSkiγie

1 + PSkγSki + PiSkγie
, (3.5)

in which γie = |hie|2/σ2, i = 1, 2, · · · , N .

To maximize the receiving SNR, we deploy Maximum Radio Combination (MRC) at both

D and E, representing the theoretically optimal combiner over fading channels [63]. As a result, the

corresponding channel capacities on the main link and wiretap link are,

Cdk(Prk) = W log2(1 +
∑N

i=1
ΓSkid) (3.6)

and

Cek(Prk) = W log2(1 +
∑N

i=1
ΓSkie) (3.7)

respectively, where Prk = {P1Sk , P2Sk , · · · , PNSk} denotes the power each relay node consumes to

forward the signal.

DEFINITION 1. (Secrecy Capacity) The secrecy capacity [76] related to Sk, defined as the dif-

ference between the capacity of the main link (Sk-R-D) and that of the wiretap link (Sk-R-E), is

written as,

Csec,k(Prk) = max{Cd(Prk)− Ce(Prk), 0} (3.8)

It represents the maximum transmission rate of the main link that the eavesdropper is unable to

decode any information.
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Therefore, in order to enhance the IoT system security, it is necessary to maximize the

secrecy capacity of Sk with the help of multiple relay IoT nodes given the source node power PSk

and the CSI of both the main link and the wiretap link,

maxPrk
Csec,k(Prk) (3.9)

s.t. 0 ≤
∑K
k=1 PiSk ≤ Pi,max, i = 1, 2, · · · , N. (3.10)

where Pi,max is the maximized power the relay node Ri can use to forward the data.

3.3.3 Stackelberg Game Formulation

To incentivize the relay participation, we propose a game-theoretical approach to choosing

proper relay IoT nodes for data forwarding. In contrast to treating source nodes equally from

relay IoT nodes’ perspectives, Si intends to select the most beneficial Ri because Ri has different

performance on enhancing the secrecy capacity due to the different CSIs and available power. To

maximize the benefits of both the source nodes and the relay nodes, we formulate their interactions

as a two-stage multi-buyer multi-seller Stackelberg game. Particularly, we discuss the Stackelberg

game under the wiretap-link CSI unknown and know cases, named as the CUS game and the CKS

game, respectively.

3.3.3.1 CSI-Unknown Model (CUS Game)

Assuming the eavesdropper only listens without transmitting, the CSI on the wiretap link

hie, i = 1, 2, · · · , N, is unknown. The source node Sk cannot select qualified relay IoT nodes and

purchases power to enhance the secrecy performance. Motivated by [53], we replace the capacity on

the wiretap link with its supremum Csupe , which can be obtained based on a period of monitoring.

We define the multi-buyers multi-sellers Stackelberg game as,

DEFINITION 2. (CUS Game)

• Stage I (Unit Pricing) Each relay IoT node Ri ∈ R sells a unit price q∗i of its power to

maximize its benefit Ui,

q∗i = arg max
∑

i∈N
(qi − ci)PiSk , i = 1, 2, · · · , N (3.11)
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• Stage II (Power Purchased) Each Sk ∈ S buys an amount of power PiSk from Ri, Ri ∈ N

to maximize its utility given the power and secrecy capacity constraints.

Prk
∗ = arg maxUSk(Prk ,q), k = 1, 2, · · · ,K (3.12)

In the CUS game, each Ri sells the power to S with the unit price qi to maximize its utility,

Ui(PiS1
, PiS2

, · · · , PiSK , qi) = (qi − ci)
∑K

k=1
PiSk (3.13)

with its current power constraint (3.10). ci denotes its own cost. The unit price of each relay node

composes a price vector q = {q1, q2, · · · , qN}. As for each Sk, when Ri, i ∈ N helps forward the

data, it gets the utility,

USk(Prk ,q) = α(Cdk(Prk)− Csupe )−
∑N

i=1
qiPiSk (3.14)

where α denotes the gain per unit of secrecy capacity.

3.3.3.2 CSI-known Model (CKS Game)

In an IoT system, a receiving node can play as a legitimate destination node for some data

transmission while still performing as an eavesdropper for others. Therefore, the CSI on the wiretap

link can be obtained, and we extend the above CUS game to the CKS game. At this time, the utility

of each source node becomes,

USk(Prk ,q) = αCsec,k(Prk)−
∑N

i=1
qiPiSk (3.15)

In addition, a secrecy capacity constraint is added to ensure data transmission security,

Csec,k(Prk) > C0 (3.16)

The Stackelberg game formulation and utility with power constraint for each relay node keeps

unchanged.
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3.4 Utility Maximization in CUS Game

In the proposed CUS game, we deploy the backward induction [58] to find the optimal power

strategies that no source node deviates based on the unit price each relay node charges. For each

relay node in Stage I, we are interested in the pricing strategy that maximizes its benefit given the

source nodes’ optimal strategies of in Stage II, which yields the concept of power equilibrium,

DEFINITION 3. (Power Equilibrium) For any price pi given in Stage I, the power equilibrium

(PE) in Stage II is a strategy profile P ∗iSk such that Sk cannot improve its utility by unilaterally

changing the power purchased from Ri, i.e.,

P ∗iSk = arg maxPrk
USk(Prk ,q), i = 1, 2, · · · , N (3.17)

3.4.1 Stage II: Power Equilibrium

Since source nodes transmit the data on the orthogonal channels and are equally treated by

each relay node, we consider the power equilibrium for an Sk. Based on (3.4), (3.6) and (3.14), its

utility becomes,

USk(Prk ,q) = αW log2(1 +
∑N
i=1

PSkPiSkγSkiγid
1+PSkγSki+PiSkγid

)

−Csupe −
∑N
i=1 qiPiSk

= αW log2(1 +
N∑
i=1

AkiPiSk
Bki+PiSk

)− Csupe −
N∑
i=1

qiPiSk (3.18)

where Aki = PSkγSki and Bki = 1 + PSkγSki/γid. The constant Csupe transforms the utility maxi-

mization problem on the secrecy capacity to that on the channel capacity on the main link. Such

transformation is an approximation to the original problem. Only when the supreme secrecy capac-

ity equals to the channel capacity on the wiretap link are the two utility maximization problems

equal [90].

Using the utility function (3.18), by setting the derivative ∂USk(Prk ,q)/PiSk = 0 as the

first-order condition and solving the equation set, we get the optimal power strategies,

P ∗iSk =

√
AkiBki
qi

Yk +
√
Y 2
k + 4Xk

αW
In2

2Xk
−Bki (3.19)
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where Xk = 1 +
∑N
i=1Aki and Yk =

∑N
i=1

√
qiAkiBki. Meanwhile, since the utility function (3.18)

is joint concave in {PiSk}N1 , P ∗iSk is the power equilibrium purchased from Ri given its unit price pi.

3.4.2 Stage I: Optimal Pricing

Different to the scenario in [58], CUS game is played between multiple source nodes and

relay nodes. From (3.13), we see that the utility of each relay IoT node depends on the power sold

to all the source nodes. To obtain the optimal price of Ri, we set the derivative ∂USki/∂qi = 0 and

obtain,

qi = Ii(q) = ci −
∑K
k=1 P

∗
iSk

∂
∑K
k=1 P

∗
iSk
/∂qi

(3.20)

Denote I(q) = {I1(q), I2(q), · · · , IN (q)}. We have,

Theorem 1. The optimal price is obtained by continuously updating the price of each relay node as

follows,

q = I(q). (3.21)

Proof: To prove the convergence, we show that I(q) is a standard function [186], which means

that I(q) needs to satisfy positivity, scalability, and monotonicity.

Positivity: I(q) > 0. From (3.19), for each relay node,

∂
∑K
k=1 P

∗
iSk

∂qi
= − 1

2qi

K∑
k=1

√AkiBki
qi

Yk +
√
Y 2
k + 4Xk

αW
In2

2Xk

×
1−

√
qiAkiBki√

Y 2
k + 4Xk

αW
In2

 < 0

Hence, Ii(q) in (3.20) is positive under the condition that both ci and
∑K
k=1 P

∗
iSk

are larger than 0.

Scalability: We show that for all ϑ > 1, ϑI(q) > I(ϑq).

ϑI(q)− I(ϑq) = (ϑ− 1)ci + ϑ

( ∑K
k=1 P

∗
iSk

(ϑq)

∂
∑K
k=1 P

∗
iSk

(ϑq)/∂qi
−

∑K
k=1 P

∗
iSk

(q)

∂
∑K
k=1 P

∗
iSk

(q)/∂qi

)
> 0 (3.22)

where the key is to see whether the second part in (3.22) is positive. Denote Zi(W ) =
∑K
k=1 P

∗
iSk

(q)

∂
∑K
k=1 P

∗
iSk

(q)/∂qi
.

Based on (3.19),

P ∗iSk(ϑq) =

√
AkiBki
ϑqi

√
ϑYk +

√
ϑY 2

k + 4Xk
αW
In2

2Xk
−Bki =

√
AkiBki
qi

Yk +
√
Y 2
k + 4Xk

αW
ϑIn2

2Xk
−Bki

(3.23)
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Instead of q, ϑ puts an effect to W in (3.23). Hence,

∑K
k=1 P

∗
iSk

(ϑq)

∂
∑K
k=1 P

∗
iSk

(ϑq)/∂qi
= Zi(W/ϑ) (3.24)

The scalability problem becomes to see whether Zi(W/ϑ)− Zi(W ) is positive, where Zi(W ) equals

to

−2qi
∑K
k=1

(√
AkiBki
qi

Yk+
√
Y 2
k +4Xk

αW
In2

2Xk
−Bki

)
∑K
k=1

(
1−

√
qiAkiBki√

Y 2
k +4Xk

αW
In2

)(√
AkiBki
qi

Yk+
√
Y 2
k +4Xk

αW
In2

2Xk

) (3.25)

Through deduction, we conclude that Zi(W ) in (3.25) is monotonic decreasing. Zi(W/ϑ) > Zi(W/ϑ)

for i = 1, 2, · · · , N , the scalability of I(q) is proved.

Monotonicity: If q ≥ q
′
, I(q) ≥ I(q

′
). q ≥ q

′
denotes that there at least exists an Ri such that

qi ≥ q
′

i. For any j 6= i,

Ii(qi,q−i) ≥ Ii(q
′

i,q−i) (3.26)

and

Ij(qi,q−i) ≥ Ij(q
′

i,q−i) (3.27)

where q−i denotes the price of other relay nodes except Ri. From (3.26) and (3.27), we see that

the problem becomes to show that ∂Ii(q)/∂qi ≥ 0 and ∂Ij(q)/∂qi ≥ 0. We conclude that above

inequalities are satisfied after deduction process. Therefore, monotonicity property is proved.

Based on the above discussion, we describe the utility maximization process for both the

source and relay nodes in Algorithm 2, which is convergent according to Theorem 1.

Algorithm 2: Utility Maximization in CUS Game

Input: convergence threshold ξ
Output: P∗rk ,q

∗

1 Set the initial price qi(0) = ci, i = 1, 2, · · · , N ;
2 Set the initial power PiSk = 0, i = 1, 2, · · · , N, k = 1, 2, · · · ,K;

3 while 1T |q(n+1) − q(n)| ≤ ξ do
4 Compute PiSk based on (3.19) for k = 1, 2, · · · ,K, i = 1, 2, · · · , N ;
5 Update q(n+1) according to (3.21);

6 end
7 Compute PiSk given q(n);
8 return q∗ = q(n), P∗rk = Prk ;
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3.5 Utility Maximization in CKS GAME

In this section, we consider the CKS game. According to (3.8), instead of being a constant,

the capacity of the wiretap link is affected by the power PiSk . Therefore, the algorithm applied in

CUS game cannot be used here to get the optimal strategies for the source and relay nodes.

3.5.1 Relay Selection

Since relay nodes have different local CSIs and ask for different unit prices for helping the

same source node, each source node has its own preference on the relay nodes.

Denote θi = |hid|2/|hie|2 = γid/γie as the ratio of the power gain between the Ri-D and

Ri-E links. When the secrecy capacity is positive, Csec,k in (3.8) is rewritten as,

Csec,k = W log2(1 +

N∑
i=1

PSkPiSkγSkiθiγie
1 + PSkγSki + PiSkθiγie

)−W log2(1 +

N∑
i=1

PSkPiSkγSkiγie
1 + PSkγSki + PiSkγie

) (3.28)

By setting the Csec,k’s derivative with respect to θi,

∂Csec,k
∂θi

=
W

ln2

1

(1 +
∑N
i=1

PSkPiSkγSkiθiγie
1+PSkγSki+PiSkθiγie

)
× PSkPiSkγSkiγie(1 + PSkγSki)

(1 + PSkγSki + PiSkθiγie)
2

> 0. (3.29)

We see Csec,k is increasing with θi and Csec,k = 0 only if θi = 1, i = 1, 2, · · · , N . Thus, to secure the

data transmission, relay IoT nodes with a higher power gain on the wiretap link will be discarded.

The remaining relay IoT nodes forms a new set L = {R1, R2, · · · RL}.

3.5.2 Stage II: Power Equilibrium

Similar to that in CUS game, the source node Sk is considered. Its secrecy capacity is

ensured to be positive with selected feasible relay IoT nodes. Given their unit price q, the utility

maximization problem (3.15) in State II becomes,

max
Prk

αCsec,k(Prk)−
∑L

i=1
qiPiSk

s.t. 0 ≤ PiSk ≤ Pi,max/K, i = 1, 2, · · · , L (3.30)

Csec,k(Prk) > C0 (3.31)
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Motivated by [171], we combine the penalty function method and the differential convex program-

ming (DC programming) to maximize (3.30), which is equivalent to,

minPrk

∑L

i=1
qiPiSk − αCsec(Prk) (3.32)

3.5.2.1 Obtaining Exact Penalty

To simplify the minimization, penalty function method [20] is deployed to merge the con-

straint (3.31) into the objective function, which transforms the original problem to,

minPrk

∑N

i=1
qiPiSk − αCsec(Prk) + βmC

+(Prk)

0 ≤ PiSk ≤ Pi,max/K, i = 1, 2, · · · , L (3.33)

where the penalty function C+(Prk) is constructed as,

C+(Prk) = max{−Csec(Prk) + C0, 0} (3.34)

where βm is a suitable penalty factor. Based on [171], there exists β > 0 such that for every βm > β

the problem in (3.32) is equivalent to the penalty problem in (3.33), which can be solved given βm

using DC programming. Since a larger βm may increase the difficulty to solve the penalty problem,

we start βm with a small value and scale it up by a scaling factor d > 1 to make the problems (3.32)

and (3.33) equivalent. The algorithm to obtain the exact penalty factor is as follows.

Algorithm 3: Obtaining Exact Penalty

Input: Pricing q, convergence threshold ε, the index of update m, and the maximum allowed
number of m, Mε

Output: Prk(q)
1 Choose an initial value β0, set m = 0 and C+(Prk)(β0) = R0;

2 while βmC
+(Prk)(βm) < ε or n > Nξ do

3 Given βm, using DC Programing algorithm to solve (3.33) to otain the optimal Prk
(βm);

4 Calculate βmC
+(Prk)(βm);

5 βm+1 = dβm;
6 m = m+ 1;

7 end

8 return Prk(q) = Prk
(βm);

Theorem 2. Algorithm 3 is convergent.
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Proof: Assume (3.33) is solvable. Then Prk
(βm) and Prk

(βm+1) are the optimal solutions of (3.33)

given βm and βm+1, respectively. We have:

L∑
i=1

qiP
(βm)
iSk

− αCsec(Prk)(βm) + βmC
+(Prk)(βm) ≤

L∑
i=1

qiP
(βm+1)
iSk

− αCsec(Prk)(βm+1) + βmC
+(Prk)(βm+1),

and

L∑
i=1

qiP
(βm+1)
iSk

− αCsec(Prk)(βm+1) + βm+1C
+(Prk)(βm+1)

≤
L∑
i=1

qiP
(βm)
iSk

− αCsec(Prk)(βm) + βm+1C
+(Prk)(βm)

respectively. By adding the above two inequalities, we get,

C+(Prk)(βm+1) ≤ C+(Prk)(βm) (3.35)

Since C+(Prk) is decreasing, Algorithm 3 is convergent.

3.5.2.2 Solving Penalty Problem

Given the penalty factor βm, we introduce an auxiliary variable t ∈ R and reformulate as,

min
Prk

U
′

Sk
(Prk) =

N∑
i=1

qiPiSk − αCsec,k(Prk) + βm(t+ Cek(Prk))

s.t.− Cdk(Prk) + C0 ≤ t

− Cek(Prk) ≤ t

0 ≤ PiSk ≤ Pi,max/K, i = 1, 2, · · · , L

For convenience, we denote the feasible set as

S = {(Prk , t) : −Cdk(Prk) + C0 ≤ t,−Cek(Prk) ≤ t,Prk ∈ S, t ∈ R} (3.36)
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By dividing the objective function into two convex functions,

U
′

Sk
(Prk , t) = US1(Prk , t)− US2(Prk) (3.37)

where

US1(Prk , t) =

N∑
i=1

qiPiSk − αCdk(Prk) + βmt (3.38)

and

US2(Prk) = −(βm + α)Cek(Prk) (3.39)

The problem in (3.33) is a standard DC programming problem now. We solve it iteratively with a

sequential convex program,

min
(Prk

,t)∈S
US1(Prk , t)− US2(Prk (n))− < ∇US2(Prk (n)),Prk −Prk (n) > (3.40)

In particular, ∇US2(Prk) =
(
∂US2

∂Pr1
, ∂US2

∂Pr2
, · · · , ∂US2

∂PrN

)
in (3.40) represents the gradient with respect

to Prk , where

∂US2

∂PiSk
= −W (βm + α)

ln 2

γSkiγiePSk (1+γSkiPSk )

(1+γSkiPSk+γiePiSk )2(
1 +

∑i=L
i=1

PSkPiSkγSkiγie
1+PSkγSki+PiSkγie

)2 (3.41)

We propose Algorithm 4 to minimize the objective function in (3.40). According to [143], the

U
′

Sk
(Prk (n+1)) obtained is decreasing, and thus Algorithm 4 is convergent.

Algorithm 4: DC Programing Algorithm

Input: PSk , βm, convergence threshold ξ,Nξ
Output: Prk

(βm)

1 Set the initial value Prk (n) = c and n = 0;

2 Compute U
′
Sk

(Prk (0)) ;

3 while |U
′
Sk

(Prk (n+1))− U
′
Sk

(Prk (n))| ≤ ξ or n > Nξ do

4 Based on U
′
Sk

(Prk (n)), solving (3.40) to obtain Prk (n+1) using convex programming;

5 Calculate U
′
Sk

(Prk (n+1));

6 n = n+ 1;

7 end

8 return Prk
(βm) = Prk (n);

Since both Algorithm 3 and Algorithm 4 are convergent, the power equilibrium for each

source node is obtained given the price of relay nodes.
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3.5.3 Stage I: Optimal Pricing

Similar to that in the CUS game, we update the price of each relay node as in (3.20). In

practice, each selected relay node Ri listens to the instantaneous feedback information about P ∗iSk

and ∂P ∗iSk/∂pi from the source node. In addition, it is natural for each relay node to regulate the

unit price of its power as qi = ci, because a lower price qi will result in a negative utility Ui while a

higher price qi would be at the risk of being excluded by the source node at the beginning.

3.6 Performance Analysis and Evaluation

In this section, we analyze the complexity for both the CUS and CKS game and evaluate

their performance by both the simulations and experiments using real-world dataset.

3.6.1 Complexity Analysis

3.6.1.1 CUS Game (CUSG)

The problem of obtaining the strategies for both the source nodes and relay IoT nodes can

be divided into two subproblems iteratively. First, for the utility maximization of source nodes, the

optimal power is easily obtained according to Algorithm 2. Second, for the utility maximization of

relay IoT nodes, the key to the price update is to calculate the partial derivative with respect to

the unit price. Even if there are multiple relay IoT nodes, the source node updates the price for

relay IoT nodes at one time and does not have to interact with each relay IoT node individually [90].

Hence, the expense of the communication between the source and relay IoT nodes is largely reduced.

3.6.1.2 CKS Game (CKSG)

The problem of obtaining the strategies for both the source and relay nodes is divided

into three subproblems hierarchically. From Algorithm 3, Algorithm 4, and the Eq (3.20), the

computational complexity of the proposed utility maximization method heavily depends on the

DC programming and the derivatives with respect to the unit price of each relay IoT node. Since

the convex subproblem in DC programming can be solved by many standard convex optimization

methods, the utility maximization problem for the source node given the unit price can be easily

solved.
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3.6.2 Performance Evaluation Settings

To demonstrate the feasibility of our proposed game-theoretical approaches, we conduct

both simulations and experiments using real-world datasets under both wiretap-link CSI known

and unknown cases. In the wiretap-link CSI known case, we mainly consider the secrecy capacity

performance, while the price, the power, and utilities of the source/relay nodes are focused in the

wiretap-link CSI unknown case.

3.6.2.1 Simulation Setting

We mainly consider the following three cases, Single-Source Single-Relay (SSSR), Single-

Source Multiple-Relay (SSMR), and Multiple-Source Multiple-Relay (MSMR), where we choose 2

nodes in the multiple source/relay cases. Note that these can be easily extended into the scenario

with more than two source/relay nodes. The simulation settings are give in Fig. 3.3a and Tab. 3.2.

Simulation Parameter Values

maximum power of the source node 10mW

maximum power of the relay IoT node 100mW

variance of the noise σ2 10−8

path loss of the static Rayleigh channel 2

transmission bandwidth W 1 (Normalization)

gain per unit of secrecy capacity α 0.01

unit cost of transmission power ci 0.01

secrecy capacity constraint in CKSG 0.01bit/s/Hz

supreme secrecy capacity in CUSG 1bit/s/Hz

Figure 3.2: System Parameters in Simulation

3.6.2.2 Experiment Setting

We use the data from 54 sensors deployed in the Intel Berkeley Research lab [1] as shown in

Fig. 3.3b. These sensors collect timestamped topology information, along with humidity, tempera-

ture, light and voltage values once every 31 seconds. We consider one of the circles surrounded by 26

nodes (No.3, No.6, and No.10-33). In addition, we assume there is a destination node located at the

center of the circle (10m, 15m). An eavesdropper (12m, 18m) near the destination node attempts to
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intercept the sensed data information from all the source nodes.
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Figure 3.3: System Settings

3.6.3 Security Performance in CKSG

The secrecy capacity performance in the CKSG simulation is demonstrated in Fig.3.4, where

‘x-coordinate’ and ‘y-coordinate’ in Fig.3.4a and Fig. 3.4b denote the location of relay nodes. The

‘Distance’ represents the horizontal location difference between the source node S1 and relay nodes.

For SSSR scenario, S1 is fixed and R2 is moving in the red area in Fig.3.3a. For SSMR scenario, a

new relay IoT node R1 is introduced, which is fixed at the location (50m, 0m). Extending to MSMR

scenario, the source node S2 is added and fixed at the location (0m, 50m).

3.6.3.1 Effect of Multiple Relay Nodes

The location of R2 has a strong effect on the secrecy capacity as shown in Fig.3.4a and

Fig.3.4b. Particularly, when R2 is near the destination node, the secrecy capacity is largely improved.

This is because the power gain ratio between the relay-destination link and the relay-eavesdropper

link increases as R2 moves to the destination node. Besides, the comparison between Fig.3.4a and

Fig.3.4b demonstrates that the introduction of R1 increases the total secrecy capacity. Since R1

close to the destination node D instead of the eavesdropper E, it can help forward the data from

S1 while preventing it from being intercepted by the eavesdropper. The security performance is

improved.
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3.6.3.2 Effect of Multiple Source Nodes

Fig.3.4c compares the secrecy capacity performance under the SSMR and MSMR scenarios,

which shows that bringing in extra source nodes deteriorates the security performance. When the

relay node R2 moves from the source node to the destination node, the total secrecy capacity MSMR

is first smaller then surpasses that in SSMR. This is because the power gain on the S2-R1-D link

is less than that on the S2-R1-E link. When R2 gets over to the (50m, 0m), the power gain on the

S2-R1-D link is larger than that on the S2-R1-E link. The total secrecy capacity begins to increase.
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Figure 3.4: Security Performance in CKSG

3.6.3.3 Main-to-Eavesdropper Link Ratio Effect

We draw the relationship between the utility of the source node and the power gain ratio in

SSMR scenario in Fig.3.4d, where y-coordinate of the relay node R2 is assumed to be 0. In Fig.3.4d,

the power gain ratio θ brings a positive effect to the source node utility. When θ ≤ 1, the utility
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of the source node keeps 0, which shows that the relay selection in the CKS game is infeasible. In

addition, the source node’ utility is still 0 even if θ > 1. Since the source node has to purchase the

power from each relay node, it has to get a larger secrecy capacity in order to ensure its utility. In

contrast to that in Fig.3.4b, the source node’s utility gets maximized when R2 is in the middle of

the source and destination node. When R2 is near to the destination node, it uses less power to

forward the data. To get more benefits, R2 requests a higher unit price, which decreases the utility

of the source node. When R2 is near the source node, it has to use more power for transmission.

According to Eq.(3.15), the source node’s utility is thus decreased.

3.6.4 Utility Performance in CUSG

In this subsection, we demonstrate the utility performance for both the source and relays

nodes in CUSG. In particular, we keep the location of S1, D and E while changing the location

of S2 and R1 to (0m, 25m) and (50m, 25m), respectively, in both SSMR and MSMR scenarios.

Meanwhile, we suppose R1 in SSSR scenario and R2 in other scenarios are moving from (20m, 25m)

to (80m, 25m) in a straight line to see the changes on the price, power and utility of both source

and relay nodes.

3.6.4.1 Effect of Multiple Relay Nodes

Fig.3.5 compares the performance in all ways between SSSR and SSMR scenarios. Particu-

larly, we show the effect brought by the moving relay node R2 in SSMR scenarios. Specifically, due

to competition, introducing a new relay IoT node lowers the power unit price obviously as shown

in Fig.3.5a. In the SSSR scenario, the source node purchases a smaller amount of power from the

relay IoT node since the power is too expensive. Whereas in the SSMR and MSMR scenarios, the

low power unit price stimulates the source nodes to purchase more power. Meanwhile, owing to

the energy harvesting, the relay IoT nodes can use their power to forward the data from the source

nodes as much as possible as shown in Fig.3.5b. As a result, the power unit price and power quantity

co-determine the utility of the source and relay nodes shown in Fig.3.5c and Fig.3.5d, where the

introduction of the relay nodes increases the utility of source nodes and brings a slightly negative

effect on other relay IoT nodes.
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(a) Power Unit Price (b) Total Power Quantity

(c) Total Source Node Utility (d) Total Relay Node Utility

Figure 3.5: Comparison between SSSR and SSMR in CUSG

3.6.4.2 Mutual Effect among Relay Nodes

We mainly consider the SSMR scenarios, where R1 is fixed at (50m, 25m) and R2 is moving.

When R2 is close to S1, it uses more power to forward the S1’s data. Thus, a low power unit price

is enough to get a high utility for R2. Since S1 buys less power from R1, R1 has to increase its unit

price to maximize its utility. However, as R2 is moving far away from S1, it sells less power to S1.

R2 has to increase the power unit price. Seeing that R2 increases its unit price, R1 also increases its

own price as shown in Fig.3.6a. As a result, both R1’ power unit price and the power quantity sold

to S1 change even if it does not move as reflected in Fig.3.6a and Fig.3.6b. Obviously, the utility of

R2 is increasing when it is close to S1 while becoming less as it is moving to D as shown in Fig.3.6c.

Given less power and more unit price, the utility of the source node decreases as demonstrated in

Fig.3.6d.
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3.6.4.3 Effect of Multiple Source Nodes

The performance in all ways between SSMR and MSMR scenarios is compared in Fig.3.6,

where Fig.3.6a and 3.6b show the changes of power unit price and quantity when introducing a new

source node S2. Suppose each relay node has enough harvested energy to forward the source nodes’

data. Compared to the distance to S1, R2 is always close to S2. R2 sells more power to S2 than to

S1. As R2 continues moving, such distance difference becomes less. The power sold to S1 and S2 is

almost the same. That is why the power quantity sold to S1 and S2 is similar for R1. With more

source nodes, the competition between relay IoT nodes becomes more fierce. Both relay nodes would

like to sell more power to source nodes, which benefits source nodes’ utilities. As shown in Fig.3.6d,

the utility of each source node is more in MSMR scenario compared to that in SSMR scenario. Since

each relay node sells more power with almost the same unit price, they get more utilities as shown

in Fig.3.6c.

(a) Power Unit Price (b) Total Power Quantity

(c) Total Relay Node Utility (d) Total Source Node Utility

Figure 3.6: Comparison between SSMR and MSMR in CUSG
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3.6.5 Real-world Experimental Results

To show the performance of CKSG and CUSG, we conduct the experiment using real-world

dataset as shown in Fig.3.7. We first verify the effect brought by multiple relay IoT nodes in

CKSG. The total secrecy capacity of all the 26 participating source nodes is illustrated in Fig.3.7a.

Obviously, the introduction of more relay nodes indeed improves the security performance when the

wire-tap link CSI is known. Note that we assume at most 10 relay IoT nodes help forward data.

With more relay nodes, the interference among them would deteriorate the data transmission. In

CUSG, the competition among relay nodes increases the power unit price as given in Fig.3.7b. As

power unit price becomes larger, the source nodes will not purchase more power. Thus, the average

source node utility is increasing and then decreasing as more relay IoT nodes help forward the data

as shown in Fig.3.7c.

(a) Secrecy Capacity in CKSG (b) Power Unit Price (CUSG) (c) Source Node Utility (CUSG)

Figure 3.7: Experimental Results

3.7 Chapter Summary

In this chapter, we design a cooperative IoT system for ensuring the communication security.

To benefit the relays in forwarding the data for defending the eavesdropping attack, we propose two

Stackelberg games, namely CUS game and CKS game, working under the wiretap-link CSI unknown

and known cases, respectively. Our simulation and experiment results show that the game-theoretical

approach will improve the utility of source nodes and defend against the eavesdropping attack, and

thus enhances the security for IoT systems.
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Chapter 4

Motivating Human-enabled Mobile

Participation for Data Offloading

4.1 Chapter Overview

The soaring popularity of mobile devices enables people to communicate with their social

ties at any time and from anywhere. People use mobile apps to create and exchange a huge amount

of data with their social interactions in cyberspace. Reports warn that monthly global mobile data

traffic will surpass 48.3 EB per month by 2021 [37]. Although cellular network operators exploit

their efforts to provide better services in terms of higher data rate and lower costs, users are still

facing poor performance in their daily life, especially in some crowded areas, such as football stadi-

ums, theme parks, and airports. However, the above crowded areas are the places that highly need

reliable wireless communication, e.g., broadcasting evacuation information for safety purpose. As a

promising solution, mobile data offloading takes advantages of small cell, Wi-Fi, and opportunistic

communication to pro-actively reduce the data traffic targeted for cellular networks [89]. Unfortu-

nately, although various types of mobile offloading schemes have been proposed in both academia

and industry, we are still lacking effective methods. For example, utilizing small cells is not an

effective method due to the scarcity of licensed spectrum bandwidths. Even worse, deploying more

small cells will incur significant costs. Regarding Wi-Fi offloading, the service provider has access to

much larger free spectrum to cater the Wi-Fi deployment. However, Wi-Fi offloading cannot pro-
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vide guaranteed QoS, and Wi-Fi-enabled devices may experience increased battery drainage since

it has to operate on two different radio interfaces [11]. To perform mobile offloading, opportunistic

communication has been identified as another approach, which increases communication chances

by utilizing the potential social connections among users and thus is beneficial to deliver contents.

In particular, some works [61, 87] apply social-based approaches to help data dissemination among

social ties or users with similar social profiles. Apparently, the opportunistic communication is not

reliable for data delivery in an ad hoc mode because there is lack of incentives for source users to

coordinate the data dissemination. Clearly, mobile offloading has not been well developed nor widely

applied.

Facing these challenges and existing solutions, we take a step further to reconsider the

human-enabled approach for mobile offloading, which takes human social behaviors and human ac-

tivities into consideration. Intuitively, users with similar social interests often group together at

certain location [158], which potentially results in similar content requests. For example, users

gathered in specific attractions in the Disneyland may request the similar contents related to those

attractions. When they request similar contents, network congestion would be caused due to limited

bandwidth. Such congestion potentially prevents users from getting their requested contents. The

above phenomenon leads us to consider how to avoid repeated requests/retrievals in order to reduce

the number of accesses to the service provider (SP). A possible solution is to leverage users’ similar

social attributes to design a human-enabled data offloading scheme. In sociology [134], homophily

phenomenon describes that people with more similar attributes contact more frequently than com-

plete strangers. The interactions between users with more contacts bring more social effect, which

captures the advantages of word-of-mouth communication [29]. Specifically, users typically form

their opinions about the quality of the contents based on the information they obtain from other

users. Thus, when a user demands more contents, his social friends would also request more contents

due to the similarity of their interests. Meanwhile, users with identical attributes could share their

contents with each other using free device-to-device (D2D) communication. As for human activities,

an observation is that users in crowded areas either walk around or go to their interested attractions.

Hence, we can take advantage of the mobility of users to alleviate the congestion.

In this work, we propose a human-enabled mobile participation approach in data

offloading by introducing a mobile caching user (MCU), who bridges the gap between the SP and

users when the above congestion happens. Qur approach is mainly divided into two steps. In
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the first step, we consider the data offloading between the MCU and the representing users (RUs)

with similar content requests in crowded areas. Specifically, an MCU pre-caches a number of large

volume contents in advance. After receiving congestion information (e.g., congestion area, requested

contents, .etc) from the SP, the MCU chooses a specific crowded area where requested contents are

similar with his own interests and is near to his current location, physically moves to the RUs in the

chosen area and transfers the contents to them. In the second step, the RUs with obtained contents

further disseminate content copies via D2D communication to other users opportunistically, who have

the identical content requests with them. We mainly consider the first step, where delay-tolerant

scenario and delay-sensitive scenario are discussed. In the delay-tolerant scenario, RUs would like to

wait until they download the requested contents. Whereas in the delay-sensitive scenario, RUs are

urgent to get the requested contents. They will be more dissatisfied with the increasing of the waiting

time. Compared to traditional data offloading approaches, the proposed approach is significantly

cheaper than the small cell build-out. Moreover, by physically moving to the crowd, the MCU makes

data transmission more reliable and flexible than either Wi-Fi or pure D2D communication.

To motivate above human-enabled mobile participation, we design an incentive mechanism.

While participating in human-enabled data offloading, the MCU spends a few time in moving and

consumes his own resources such as battery and storage. Hence, he would not be interested in

it unless he receives a satisfying revenue. As for RUs, they not only get the originally requested

contents, but also harvest additional contents they may be interested in due to the similarity of

their interests with other RUs, which largely improves their satisfactions. Since RUs request similar

contents and pay for them individually, it is reasonable to assume that RUs are selfish and rational.

Hence, each RU only wants to maximize his own satisfaction. To increase the MCU’s total revenue

and provide RUs’ satisfaction, we will thoroughly investigate RUs‘ content requests, social effect,

delay effect, and unit payment strategy for both the MCU and RUs in the proposed incentive

mechanism.

Our Contributions: We highlight our major contributions as follows,

• We propose a new data offloading scheme that takes advantages of both homophily phe-

nomenon and mobile participation to greatly reduce the congestion in crowded areas where

users with similar interests are normally grouped together.

• Specifically, we consider two system models: the delay-tolerant model and the delay-sensitive
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model. In both models, by considering RUs’ interactions, we formulate the communication

between the MCU and RUs as a two-stage Stackelberg game. In Stage I, the MCU chooses a

unit payment to maximize his total revenue. In Stage II, each RU chooses a requested content

level given the unit payment to maximize his satisfaction on the received contents.

• For the delay-tolerant scenario, the interactions between RUs bring social effect. We first give

an assumption under which we show the existence and uniqueness of the Nash equilibrium in

Stage II. Then, we present an effective algorithm to compute the unique Stackelberg equilib-

rium in Stage I, at which the revenue of the MCU is maximized, and none of the RUs continue

requesting contents by unilaterally deviating from his current strategy

• For the delay-sensitive scenario, the interactions between RUs not only bring social effect but

also delay effect. We extend the Stakelberg game to the delay-sensitive model. To alleviate

the serious delay effect, we propose two improved delay-sensitive models by further taking

advantages of users’ mobility, where the first one considers the queueing delay and the other

introduces multiple MCUs.

The rest of this chapter is organized as follows: In Section 4.2, we briefly review the existing

data offloading approaches, economical incentives for performing data offloading and the social effect

due to similar interests between RUs based on their social relationship. In Section 4.3, we explain

our motivations of leveraging the homophily phenomenon and the mobile participation. Following

with that, a detailed description of our proposed data offloading system models is given in Section

4.4, which are formulated as two-stage Stackelberg games respectively. In Section 4.5, we study the

proposed Stackelberg game in the delay-tolerant scenario. To better adapt to the practical situation,

we extend the Stackelberg game to the delay-sensitive scenario in Section 4.6. In Section 4.7, the

performance of our data offloading approach is evaluated, followed by a conclusion in Section 4.8.

4.2 Related Work

4.2.1 Mobile Data Offloading

Mobile data offloading [11] is a promising way to alleviate traffic congestion and reduce the

energy and bandwidth consumption. For example, Liang et al. in [180] offload their applications

and data from mobile devices to the cloud to improve users’ experience in terms of longer battery

68



lifetime, larger data storage, faster processing speed and more powerful security services. Zhang et

al. in [196] offload mobile users’ applications to nearby mobile resource-rich devices (i.e., cloudlets)

in an intermittently connected system to reduce energy consumption and improve performance. In

this chapter, we generally discuss the mobile offloading for cellular networks, which is classified into

two categories [78]. Infrastructure-based mobile data offloading [16] refers to deploying small cell

base stations and Wi-Fi hotspots for mobile users [79, 134]. The connection between mobile users

and the base station is proposed to achieve flow level load balancing under spatially heterogeneous

traffic distributions in [19, 108] . However, the lack of cost-effective backhaul associations for base

station often impairs their performance in terms of offloading mobile traffic. The second category

is the ad-hoc-based mobile traffic offloading, which refers to applying short range communication as

the underlay to offload mobile traffic [61,87,125,164,200].

4.2.2 Economic Incentives for Data Offloading

The above works mainly focus on the technical perspective adoption of data offloading

without considering economic incentives. The incentive issue is significant for the case where Wi-Fi

or small cell is privately owned by third-party entities, who are expected to be reluctant to admit

non-registered users’ traffic without proper incentives [60]. The incentive framework for the so-called

user-initiated data offloading is considered in [86, 140], where users initiate the offloading process

and offer necessary incentives in order to obtain their contents. Gao et.al. in [60] consider the

network-initiated data offloading, where cellular networks initiate the offloading process, and hence

the network operators are responsible for incentivizing Wi-Fi.

4.2.3 Attribute-based Social Effect

The above works do not consider homophily phenomenon [134]. Reingen et al. in [148]

conduct a survey of the members of a sorority in which they measure brand preference congruity as

a function of whether they live in the sorority house. They find that those who live together as a

group have more congruent brand preferences than those who do not. Presumably, living together

provides more opportunities for interaction and communication. Taking a further step, they note

that information obtained from social tie connections will influence in decision making in [28].

The above observations and inference are deployed in several works. In [68,70,71], different
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privacy-preserving authentication schemes for mobile health networks are designed from a social

perspective view. Users in online social networks apply their attributes to find matched friends

and establish social relationships with strangers in [69]. Gong et al. in [65] study users’ behaviors

by jointly considering congestion effect in the physical wireless domain and social effect based on

users’ social relationship. In [34,64], a social group utility maximization framework, which captures

the impact of mobile users’ diverse social ties, is studied. Considering the social effect brought by

social ties among users, different pricing strategies of a monopolist have been studied in [30]. In our

previous work [190], the social effect brought by users’ similar social attributes is deployed to assist

data offloading. However, the introduction of the MCU brings severe delay effect, which negatively

affects the data offloading performance. To alleviate delay effect, we take the queue and multi-leader

Stackelberg game into consideration now, which differentiates our chapter with [65]. We focus on

incentive mechanisms to motivate human-enabled mobile participation for data offloading under

both social effect and severe delay effect.

4.3 Motivations and Preliminaries

4.3.1 Social Enabled Data Offloading

Given a pair of strangers, one cannot push another to help recommend/forward his contents

if they do not have any pre-established relationship. However, comparing with complete strangers,

people may intend to help the one that shares some similarities in terms of attributes, e.g., language,

nationality, affiliation, etc. As discussed in [107], it is a well-accepted nature of human interaction

that people like to interact with those who are similar to themselves, which is often termed the ”like

me” principle. In [72,73], the authors conduct an experiment based on the trace file collected during

the INFOCOM 2006 [154], which analyzes the relationship between the contact rate and the number

of identical attributes. The result shows that the contact rate in terms of the number of contacts

between two users increases with the increment of identical attributes, which further validates the

”like-me” principle. Therefore, a potential social tie can be set up based on the attribute similarity.

Furthermore, Reingen et al. in [28] find that information obtained from strong tie connections are

more influential in decision making than weak tie connections at a micro level (information flows

within dyads or small groups). Motivated by it, content dissemination would be more efficient given

the assumption that more attribute similarities exist between users. In addition, users who share
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similar interests intend to form a group and they can forward messages to others in the group more

efficiently according to [85]. Hence, we infer that the social-enabled content dissemination would be

much more efficient if users apply attribute similarity to form the attribute-similar group.

Motivated by the above discussions, we consider human’s similar social attributes. In the

scenarios where users group together based on their similar social attributes, such as interests, their

requested contents have a higher probability to be similar even identical due to their influence on each

other. Hence, we could select RUs to request contents and further disseminate them to other users

via D2D communication. Thus, users can obtain more interested contents and their satisfactions

are improved.

(a) Potential location in Real Trace (b) Disney Map

Figure 4.1: Potential Location of the MCU

(a) Potential Location vs. Time (b) Locations in Different Time Slot

Figure 4.2: Time Changes vs. Potential Location
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4.3.2 Mobile Participation

We conduct an experiment analyzing human mobility traces using the real data trace file

[151] in order to show the feasibility of mobile participation. The human traces are obtained every 30

seconds from 40 volunteers who spent their Thanksgiving and Christmas holidays in Disney World,

Florida, US. We describe all the locations the volunteers have gone to as shown in Fig.4.1a, in which

we circle the locations that are visited most. By comparing it with the real Disney World map [2] in

Fig.4.1b, we find that those circled locations are exactly the crowded attraction areas, where users

with similar interests get together and request similar contents. For example, at the Rock ’n’ Roller

Coaster Starring Aerosmith attraction, many young visitors who enjoy the trilling feelings group

together and they are more interested in exciting contents. In addition, we draw 17 volunteers’

mobile traces as time changes in Fig.4.2a, which verifies the mobility of volunteers. Meanwhile,

we illustrate volunteers’ locations in different time-slots in Fig.4.2b,where we see that volunteers

are distributed in all crowded attraction areas in each time-slot. Inferring from the observations in

Fig.4.1 and Fig.4.2, we conclude that: 1). volunteers move as time changes; 2), there always exist

volunteers in each attraction in each time-slot. Therefore, leveraging mobile participation is feasible

to achieve content delivery and dissemination.

4.4 System Model and Problem formulation

4.4.1 Overview

To assist the description, we continue the example in Disney World as shown in Fig. 4.3,

where the yellow area is denoted as the Rock ’n’ Roller Coaster Starring Aerosmith attraction. It is

divided into two time-slots. In time-slot 1, no congestion exists in the yellow area. David downloads

numbers of contents and continues to visit other attractions. In time-slot 2, an increasing number

of users with similar interests group together and request for contents related to the attraction,

which results in severe congestion. As a result, users cannot get the requested contents from the

SP. The SP asks David for help via transmitting him the short message related to the congestion

information. Since David is interested in the same attraction and can obtain extra revenue, he

moves back to disseminate the contents after checking the distance availability between himself and

the chosen attraction. He first announces the unit payment for the requested contents. Each RU
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chooses a requested content quantity to maximize his satisfaction based on the unit payment and

other RU’s choices, which is submitted to David. David maximizes the total revenue and computes

the corresponding unit payment which is returned to RUs. Such communication between David

and RUs is processed iteratively until David and RUs reach an agreement, in which David gets the

maximized revenue and RUs satisfy the content obtaining experience. Finally, RUs disseminate their

contents to other users in the crowd via D2D communication.

Time-slot 1 Time-slot 2

 

 

 

Content retrieve

Instruction  transmission

Moving trajectory

Non-congested Subarea

Congested Subarea

Contents

Mobile Caching User

Users

1

2

3

4

5

Access Point

 Content delivery

Figure 4.3: System Model of Mobile Participation

4.4.2 System Model

Depending on RUs’ sensitiveness to the waiting time for the requested contents, two models

are considered: delay-tolerant model and delay-sensitive model.

4.4.2.1 Delay-Tolerant Model

In the delay-tolerant model, RUs do not care their waiting time. Assume a set of RUs

N = {1, 2, · · · , i, · · ·N} group together and cannot get their requested contents from the SP directly,

where N denotes the total number of RUs. Their corresponding requested content level profile is

represented as x = {x1, x2, · · · , xi, · · · , xN}T ∈ [0,∞)
N

, which quantifies the contents they request
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from the MCU. Let xi ∈ [0,∞) denote the requested content level of the RU i and x−i denote the

requested content levels of other RUs except for the RU i. According to [30], the RU i’s satisfaction

consists of the following two parts: 1), internal characteristics, represented by the maximum internal

demand rate ai > 0 and the internal demand elasticity factor bi > 0. The internal demand rate

represents the maximum satisfaction that each RU gets given unit content level whereas the elasticity

factor measures the sensitivity of the RU’s satisfaction to changes in content levels [31]. 2), external

characteristics, represented by social effect that RU j brings to RU i, quantified by gij > 0, ∀j ∈ N

and j 6= i. Since utility is a terminology in game theory and economics to represent the satisfaction

experienced by the consumer of a good [176], the satisfaction of each RU is quantified by utility

hereinafter. Given the unit payment p the MCU charges RUs, the utility of RU i is quantified as,

ui(xi,x−i, p) = aixi −
1

2
bix

2
i +

∑
j 6=i

gijxixj − pxi,∀i (4.1)

The quadratic form in (4.1) not only allows for tractable analysis but also serves a good

second-order approximation for a broad class of concave utility functions [30].

Given RUs’ requested content levels, the total revenue of the MCU is,

R (x, p) =
∑

i∈N
(p− c)xi (4.2)

where c is the unit cost the MCU spends when transmitting contents to RUs, including energy and

move consumption.

4.4.2.2 Intuitive Delay-Sensitive Model

Due to the difference of RUs’ requested contents, the MCU moves to RUs and delivers

contents to them one by one. As a result, each RU has to wait for the content transmission from

the MCU when multiple RUs request contents. If they are urgent to obtain the requested contents,

their utilities would be lowered due to long waiting time.

Assume RUs do not know the transmission order of the MCU in advance. Each RU would

consider the worst case that he is the last one to receive the contents. To clearly show the time

delay effect, we assume the transmission rates between the MCU and RUs are normalized and the
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same. The utility of the RU i in the delay-sensitive model is,

ui (xi,x−i, p) = aixi −
1

2
bixi

2 +
∑

j∈N
gijxixj −

1

2
d
(∑

j∈N
xj

)2

− pxi,∀i (4.3)

where d is the delay effect coefficient determined by the SP. Compared (4.3) with (4.1), the social

relationship between RUs brings not only positive social effect but also severe delay effect in the

intuitive delay-sensitive model.

The total revenue of the MCU keeps unchanged,

R (x, p) =
∑

i∈N
(p− c)xi. (4.4)

4.4.2.3 Queue Delay-Sensitive Model

The potential assumption in the above intuitive delay-sensitive model is that the MCU

begins transmission after the SP receives content requests from all RUs. If the SP can predict the

potential congestion effect at some locations, it could arrange the MCU to move to these locations

in advance instead of asking the MCU for help after congestion effect appears. Because the SP keeps

the historical data monitoring records, the above assumption is easily satisfied. Thus, when an RU

broadcasts a content request, the MCU could transmit the content to him on time. Simultaneously,

the content requests from other RUs continuously arrive at the MCU. Content transmission from

the MCU to RUs forms a First In First Out (FIFO) queue model in Fig. 4.4. The notations are

listed in Table. 4.1.

Waiting
Data 

Transmitting
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2nU 2nR
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Figure 4.4: M/G/1 Queue in Delay-Sensitive Model

In the queue delay-sensitive model, we assume the levels of newly arrival requested contents
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Table 4.1: Notations in M/G/1 Queue

Symbols Meaning

Rn
the remaining requested content levels in the queue
after the content delivery to user n

Tn the content transmission period for user n

Cn
the content requests newly coming to the queue
while user n+ 1 is receving the requested contents

tn the time at which the content transmission for user n is finished
tn + Tn the time at which the content transmission for user n+ 1 is finished

Cn in a finite interval of length t follows the Poisson distribution with mean arrival rate λ: P{Cn =

j|Tn = t} = (λt)j

j! e−λt. The Poisson process is a viable model when contents originate from a large

population of independent RUs. Due to the similar interests of RUs at the same location, most of

their requested content levels distribute in the same interval. Given unit content transmission speed,

the content transmission time is modeled to follow the Gaussian distribution with mean µ� 0 and

variance σ2. Assume the traffic intensity ρ = λ/µ < 1 for stability. Based on Pollaczek-Khinchin

(P-K) formula [17], the expected RU waiting time Wq for each RU is,

Wq =
ρ2 + λ2σ2

2λ(1− ρ)
(4.5)

Considering the waiting time, each RU’s utility becomes,

ûi (x̂i, x̂−i, p̂) = aix̂i −
1

2
bix̂

2
i +

∑
j∈N

gij x̂ix̂j − k
ρ2 + λ2σ2

2λ(1− ρ)
− p̂x̂i,∀i (4.6)

where k is the congestion coefficient. According to the historical records, the SP can predict the

traffic mean arrival rate λ. One observation is that contents related to each attraction are time-

invariant. Thus, the SP could also evaluate the current traffic intensity ρ. Since different RUs

request contents when congestion effect happens, the variance σ2 is unknown. Point estimation [43]

is applied to estimate σ2,

σ̂2 =
1

N − 1

∑
j∈N

(
x̂j −

1

N

∑
m∈N

x̂m

)2

(4.7)
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Substitute (4.7) into (4.6), the utility becomes,

ûi (x̂i, x̂−i, p̂) = aix̂i−
1

2
bix̂

2
i+
∑
j∈N

gij x̂ix̂j−k
ρ2

2λ(1− ρ)
−k λ

2(1− ρ)

1

N − 1

∑
j∈N

(
x̂j −

1

N

∑
m∈N

x̂m

)2

−p̂x̂i,∀i

(4.8)

The total revenue of the MCU is the same as that in the intuitive delay-sensitive model.

4.4.2.4 Multi-leader Delay-Sensitive Model

Another observation in the intuitive delay-sensitive model is that only a single MCU satisfies

RUs’ content requests. If multiple MCUs cooperatively transmit contents to RUs simultaneously,

the waiting time for each RU is reduced. Therefore, we extend to the case where multiple MCUs

assist content transmission.

Assume there are M MCUs denoted by M = {m1,m2, · · · ,mM}. Each RU is assigned to

the nearest MCU. Denote Ii,m = 0, 1, i ∈ N ,m ∈ M as the connection indicator between RU i and

MCU m. In particular, Ii,m = 1 implicits MCU m transmits contents to RU i. Otherwise, there is

no connection between them. Meanwhile, each RU is restricted to connect one MCU whereas each

MCU serves multiple RUs,
∑
m∈M Ii,m = 1. All the Ii,m compose a indicator matrix I. Given the

locations of both RUs and MCUs, the indicator matrix is known. Denote the number of RUs served

by the MCU mi, i = 1, 2, · · · ,M as nmi . To ease the description, we put the RUs served by the same

MCU together and reorder the RU set as N = {x1, · · · , xnm1
, xnm1+1, · · · , xnm1+nm2

, · · · , xN} with∑
mi∈M nmi = N .

Because the introduction of multiple MCUs divides RUs into smaller piles whereas the

M/G/1 queue model adapts to the case with a large number of RUs better. Taking the indicator

matrix I into consideration, we model the utilities based on the intuitive delay-sensitive model

instead of the queue model. The utility of each RU is,

ũi (x̃i, x̃−i, p̃) = aix̃i−
1

2
bix̃

2
i +
∑

j∈N
gij x̃ix̃j−

1

2
d̃

M∑
m=1

Ii,m

(∑
j∈N

Ij,mx̃j

)2

−
M∑
m=1

p̃mx̃i,∀i (4.9)

where p̃ = {p11
T
nm1

, p21
T
nm2

, · · · , pM1TnmM
}T is the unit payment vector corresponding to each RU.

Specifically, 1nmi represents nmi × 1 vector with 1s, and p̃m is the unit payment at the MCU m.

Since MCUs serve different RU piles, their unit payments are different.
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Accordingly, the revenue of each MCU is,

R̃m (x̃, p̃m) =
∑

i∈N
(p̃m − c) Ii,mx̃i,∀m ∈M (4.10)

Because all MCUs cooperate to offload data, they aim to achieve the maximum total revenue,

R̃ (x̃, p̃) =
∑

m∈M

∑
i∈N

(p̃m − c) Ii,mx̃i. (4.11)

4.5 Utility Maximization in Delay-tolerant Model

4.5.1 Overview

In game theory, Stackelberg game [58] is a tool to model the scenario where a hierarchy of

actions exists between two types of players: one is the leader, and the other is the follower. The

leader makes its move first. After the leader chooses a strategy, the follower always chooses the best

response strategy that maximizes its utility. Knowing this reaction from the follower, the leader

strategically chooses a strategy to maximize its utility. This optimal strategy of the leader, together

with the corresponding best response strategy of the follower, constitutes a Stackelberg equilibrium.

At a Stackelberg equilibrium, no follower has an incentive to adjust its strategy unilaterally.

The communication between the MCU and RUs in the delay-tolerant scenario can be formu-

lated as such a two-stage Stackelberg game, named as Utility Maximization game in delay-tolerant

(UMDT).

Stage I (Unit Payment) The MCU chooses a unit payment p∗ to maximize the total

revenue R,

p∗ = arg max
p∈[0,∞)

∑
i∈N

xi(p− c)

Stage II (Requested Content Level) Each RU i ∈ N chooses a requested content level

xi to maximize the utility ui (xi,x−i, p) given the unit payment p and the requested content levels

of others x−i,

x∗i = arg max
xi∈[0,∞)

ui (xi,x−i, p) ,∀i

In the UMDT game, the MCU is the leader with the unit payment p∗ as the strategy and

RUs are the followers. The strategy of RU i is the requested content level x∗i , ∀i. Due to each
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RU is selfish, the game in Stage II is considered as a non-cooperative game, which we call Request

Level Determination (RLD) game. Given the UMDT formulation, we are interested in the following

questions:

• Q1: For a given unit payment p, is there a profile of stable strategies in the RLD game such

that no RU can increase the utility by unilaterally changing his current strategy?

• Q2: If the answer to Q1 is affirmative, is the stable strategy profile unique? When it is unique,

RUs will be guaranteed to select the strategies in the same stable strategy profile.

• Q3: How can the MCU select the value of p to maximize the total revenue?

The stable strategy profile in Q1 corresponds to the concept of Nash equilibrium [58].

DEFINITION 4. Nash equilibrium: A profile of strategies x∗ is a Nash equilibrium of the RLD

game if for any mobile RU i

ui(x
∗
i ,x
∗
−i, p) ≥ ui(xi,x∗−i, p) (4.12)

for any xi ≥ 0, where ui is defined in (4.1).

The existence (Q1) and uniqueness (Q2) of a stable Nash equilibrium strategy profile not

only ensure that no RU has an incentive to make a change unilaterally but also allow the MCU

to predict the behaviors of RUs and thus to select the optimal unit payment. The answer to Q3

depends heavily on those to Q1 and Q2. Stackelberg equilibrium, which is the final solution to the

UMDT game, consists of the optimal solution computed in Q3 and the corresponding strategies at

the Nash equilibrium in the RLD game.

4.5.2 RU Utility Maximization

Backward reduction methods [58] are deployed to maximize the utilities of both RUs and

MCUs. We answer above Q1 and Q2 first, followed by an algorithm to find the RUs’ best response

strategies in the RLD game.

DEFINITION 5. Best Response Strategy: Given p and x−i, a strategy is RU i’s best response

strategy, denoted by βi(x−i), if it maximizes the utility function ui(xi,x−i, p) in (4.1), over all

xi ≥ 0.
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Based on the definition of Nash equilibrium, every RU plays his best response strategy at

a Nash equilibrium. By setting the derivative ∂ui(xi,x−i,pi)
∂xi

= 0 as the first order condition in (4.1),

we obtain the RU i’s best response strategy,

βi (x−i) = max

{
0,
ai − p
bi

+
∑

j 6=i

gij
bi
xj

}
,∀i (4.13)

in which the max operation is to ensure RU i’s strategy non-negative. Each RU’s best response

strategy consists of two parts: internal demand (ai − p)/bi which is independent of other RUs,

and external demand
∑
j 6=i

gij
bi
xj indicating the social effect other RUs bring to the RU i. The

coefficient gij/bi represents the marginal increase of RU i’s requested content level when RU j’s

requested content level increases. It implies that the increase of other RUs’ strategies has a positive

impact on the RU i’s strategy.

4.5.2.1 Existence and Uniqueness of RUs’ Best Response Strategies — the Answers

to Q1 and Q2

Since each RU has a great incentive to unboundedly increase the requested content levels

provided other RUs’ request levels are sufficiently large, the Nash equilibrium cannot be ensured to

exist. To circumvent such situation, we give a general assumption under which a Nash equilibrium

exists.

Assumption 1.
∑
j 6=i

gij
bi
< 1,∀i.

The Assumption 1 is a sufficient condition for the existence of RUs‘ best response strategies.

Assume that the maximum requested content level among all the other RUs is x
′

j . Under the

Assumption 1, the external demand is
∑
j 6=i

gij
bi
xj ≤

∑
j 6=i

gij
bi
x
′

j < x
′

j . It implies that the social

effect experienced by an RU from others is limited to the largest effect this RU can experience from

an individual of the other RUs.

Theorem 3. Under Assumption 1, the RLD game in Stage II always admits a Nash equilibrium

for RUs.

To prove Theorem 3, the main idea is to show that our RLD game with unbounded content

levels is equivalent to a game with bounded content levels that admits a Nash equilibrium. We prove

it in the following.
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Proof: In the RLD game G =
{
N , {ui}i∈N , [0,∞]N

}
, we denote x∗ as a strategy profile and x∗i

as the largest requested content level in it, i.e., x∗i > x∗j ,∀j 6= i. Based on (4.13), when x∗i > 0,

x∗i =
ai − p
bi

+
∑

j 6=i

gij
bi
x∗j ≤

|ai − p|
bi

+
∑

j 6=i

gij
bi
x∗i

from which we get x∗i ≤ |ai − p| /(bi−
∑
j 6=i gij) ≤ x̃. x̃ is any number that satisfies x̃ ≥ maxi∈N |ai − p| /(bi−∑

j 6=i gij). Since x∗i is the largest content level, all the content levels in game G are bounded, i.e.,

x∗j ∈ [0, x̃], j ∈ N . Therefore, our game G is equivalent to a new game G̃ =
{
N , {ui}i∈N , [0, x̃]N

}
that has the same Nash equilbium stategy profile.

Taking the game G̃ into consideration, the strategy space [0, x̃]N is compact and convex.

The utility function ui (xi,x−i, p) is continuous in xi and x−i. The second-order derivative of RU

i’s utility function ∂2ui(xi,x−i,p)
∂2xi

= −bi is negative. Therefore, it is a concave game and admits a

Nash equilibrium [50,153]. Hence, the Nash equilibrium for our RLD game G exists.

Theorem 4. Under Assumption 1, the RLD game in Stage II has a unique best response strategy.

According to [153], to prove Theorem 4, we try to demonstrate that the RLD game is a

concave game.

Proof: The Jacobian matrix ∇u(x) of RUs’ utility profile u(x)
∆
= {u1(x), u2(x), · · · , uN (x)} is

given by ∇u (x) = −(Λ−G),

where Λ = diag(b1, b2, · · · , bN ) and G =



0 g12 · · · g1N

g21 0 · · · g2N

...
...

. . .
...

gN1 gN2 · · · 0


. The ij-th element in

G, denoted by gij , represents the social effect that RU j brings to RU i, j 6= i. According to

Assumption 1,

[Λ−G]ii >
∑
j 6=i

∣∣∣[Λ−G]ij

∣∣∣ ,∀i
where [Λ−G]ij denotes the element in the ith row and jth column in the matrix [Λ−G]. Hence,

[Λ−G] is strictly diagonal dominant. Assume social effect between RUs is symmetric, gij =

gji,∀i, j ∈ N , [Λ−G]
T

is also strictly diagonal dominant. Therefore,∇u (x)+∇uT (x) = − [Λ−G]−

[Λ−G]
T

is strictly diagonal dominant and symmetric. According to [82], a symmetric matrix that

is strictly diagonally dominant with real nonnegative diagonal elements is positive definite. Thus,
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− [Λ−G]− [Λ−G]
T

is negative definite since the elements in it are negative. ∇u(x) is diagonally

strictly concave [153]. The RLD game has a unique Nash equilibrium.

4.5.2.2 Calculation of RUs’ Best Response Strategies

We propose an algorithm to calculate RUs’ best response strategies as shown in Algorithm

5.

Algorithm 5: Calculate the RUs’ Best Response Strategies

Input: precision threshold ε
Output: x∗

1 x
(0)
i ← 0, ∀i ∈ N ; n← 1;

2 for j = 1; j ≤ N do

3 x
(n)
i = max

{
0, ai−p

bi
+
∑
j 6=i

gij
bi
x
(n−1)
j

}
;

4 end

5 if ||x(n) − x(n−1)|| < ε then

6 x∗ = x(n);
7 break;

8 else
9 n = n+ 1;

10 go back to 2;

11 end
12 return x∗;

Theorem 5. Algorithm 5 calculates the Nash equilibrium in the RLD game.

To prove Theorem 5, the key is to prove that the best response strategy for each user is

converged.

Proof: Let ∆x
(n)
i , x

(n)
i − x∗i ,∀i. According to step 3 in Algorithm 5,

|∆x(n)
i | ≤

∣∣∣∣∣∣
∑
j 6=i

gij
bi

∆x
(n−1)
j

∣∣∣∣∣∣ ≤
∑
j 6=i

gij
bi

∣∣∣∆x(n−1)
j

∣∣∣ ,∀i (4.14)

Denote ||∆x(n)
i ||∞ as the l∞-norm of vector (∆x

(n)
1 ,∆x

(n)
2 , · · · ,∆x(n)

N ), ||∆x(n)
i ||∞ = max

i∈N
(∆x

(n)
1 ,∆x

(n)
2 , · · · ,∆x(n)

N ).

According to (12), ||∆x(n)
i ||∞ ≤ max

i∈N

∑
j 6=i

gij
bi

∣∣∣∆x(n−1)
j

∣∣∣ ≤ (
max
i∈N

∑
j 6=i

gij
bi

)
||∆x(n−1)

i ||∞. Since

max
i∈N

∑
j 6=i

gij
bi
< 1, ||∆x(n)

i ||∞ ≤ ||∆x
(n−1)
i ||∞. It implies that Algorithm 5 results in a contraction

mapping of ||∆x(n−1)
i ||∞ and thus converges to the Nash equilibrium.

To ease the description, we express the best response strategies in a matrix format.
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Lemma 1. Denote S as the set of RUs with positive strategies and N − S as the set of other RUs:

S = {i|x∗i > 0} and N − S = {i|x∗i = 0}, the best response strategies are:

x∗S = (ΛS −GS)
−1

(aS − p1S) (4.15)

x∗N−S = 0N−S (4.16)

where x∗S = {x∗i |i ∈ S}, x∗N−S = {x∗i |i ∈ N − S} and aS = {ai|i ∈ S}. The matrices ΛS ,GS are

|S| × |S| matrices with elements in Λ,G with indices in S × S, respectively. The vectors 1S and

0N−S are |S| × 1 and |N − S| × 1 vectors with 1s and 0s, respectively.

To prove Lemma 1, the important part is to show that (ΛS −GS)
−1

is invertible.

Proof: According to (4.13) and Algorithm 5,

x∗i =
ai − p
bi

+
∑
j 6=i

gij
bi
x∗j , i, j ∈ S (4.17)

The matrix format of (4.17) is,

(ΛS −GS) x∗S = (aS − p1S) (4.18)

Because ΛS is a positive diagonal matrix, it is invertible. Denote any eigenvalue and the correspond-

ing eigenvector of Λ−1
S GS as λ and µ, respectively. Mathematically,

(
Λ−1
S GS

)
µ = λµ. Assume µi

is the largest element in absolute value, |µi| ≥ |µj | ,∀j 6= i,

|λµi| =

∣∣∣∣∣ ∑j∈N [Λ−1
S GS

]
ij
µj

∣∣∣∣∣ ≤ ∑
j∈N

∣∣∣[Λ−1
S GS

]
ij

∣∣∣ |µj |
≤ |µi|

∑
j∈N

|gij |
bi

< |µi| (4.19)

From (4.19), the absolute values of all eigenvalues of Λ−1
S GS are less than 1. Since the eigenvalue

values of the matrix I − Λ−1
S GS are equaled to 1 − λ, the matrix I − Λ−1

S GS does not have 0

eigenvalues. Thus, ΛS −GS = ΛS
(
I−Λ−1

S G
)

is invertible and xS
∗ = (ΛS −GS)

−1
(aS − p1S).
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4.5.2.3 Discussion on social effect

Proposition 1. For the RLD game, when ai = a > p and the social effect is symmetric, gij =

gji,∀i 6= j, the social relationship between RUs brings a positive effect to Nash equilibrium.

To prove Proposition 1, the main idea is to show that the total requested content level at

the Nash equilibrium increases when gij increases. In addition, the performance under asymmetric

social effect will be shown to be similar with that under symmetric social effect.

Proof: From (4.17), we find that RUs’ strategies at the Nash equilibrium is a continuous function

of the matrix GS . Thus, we can find a matrix G
′

S , in which g
′

ij ≥ gij , g
′

ij ∈ G
′

S , gij ∈ GS and at least

one strictly inequality exists, such that RUs with positive strategies x∗
′

S at the Nash equilibrium

under G
′

S are also in the set S. According to (4.18),

(ΛS −GS) x∗S = (aS − p1S) (4.20)

(
ΛS −G

′

S

)
x∗
′

S = (aS − p1S) (4.21)

Subtract (4.20) from (4.21),

x∗
′

S − x∗S = (ΛS −GS)
−1

∆GSx
∗′
S (4.22)

where ∆GS = G
′

S −GS . Thus, the total difference between x∗
′

S and x∗S is

1TS

(
x∗
′

S − x∗S

)
= 1TS (ΛS −GS)

−1
∆GSx

∗′
S (4.23)

According to x∗S = (ΛS −GS)
−1

(a− p)1S in (4.15), it follows that,

1TS (ΛS −GS)
−1

=
(

(ΛS −GS)
−1

1S

)T
=

1

a− p
x∗TS (4.24)

Substitute (4.24) into (4.23), we get the total difference as,

1TS

(
x∗
′

S − x∗S

)
=

1

a− p
x∗TS ∆GSx

∗′
S (4.25)
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Because a > p, x∗
′

S ,x
∗
S � 0 and ∆GS � 0, the total difference between x∗

′

S and x∗S , 1TS

(
x∗
′

S − x∗S

)
>

0, which implies that the total requested content levels at the Nash equilibrium increase when gij

increases. The Proposition 1 verifies that the social effect between RUs with similar social attributes

makes RUs get more interested contents.

4.5.3 The MCU Revenue Maximization

According to the above analysis, the MCU, as a leader, knows there exists the unique Nash

equilibrium for the RUs given any unit payment. Hence, he can maximize the total revenue by

choosing the optimal unit payment.

4.5.3.1 The Impact of Unit payment

We first take the case with two RUs as an example. Without loss of generality, assume

a1 > a2. Intuitively, in (4.13), both RU 1 and RU 2 have positive strategies when the unit payment

p is in a low price regime. Their strategies are,


x1 =

a1 − p
b1

+
g12

b1
x2 (4.26a)

x2 =
a2 − p
b2

+
g21

b2
x1 (4.26b)

By solving above equations, we get the value of x1 and x2,

x1 =
(a1 − p)b2 + (a2 − p)g12

b1b2 − g12g21
(4.27)

x2 =
(a2 − p)b1 + (a1 − p)g21

b1b2 − g12g21
(4.28)

which show that the strategies of both RU 1 and RU 2 decrease as p increases. Based on the

Assumption 1, x1 > x2. Thus, when increasing p, the strategy of RU 2, x2, first decreases to 0.

Denote the unit payment as pth at which RU 2’s best response strategy is decreased to 0. According

to (4.28), pth = a2b1+a1g21
b1+g21

. Continuing to increase p, the strategy of RU 1 then decreases to 0.

Therefore, we have the Proposition 2.

Proposition 2. In RLD game, the impact that p brings to the two RUs’ best response strategies x∗1

and x∗2 is as follows
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• When we set p in a low regime: 0 ≤ p < pth, the best response strategies of two RUs are listed

in (4.27) and (4.28);

• When we set p in a medium regime: pth ≤ p < a1, x1 = a1−p
b1

and x2 = 0;

• When we set p in a high regime; p ≥ a1, RUs will not pick up their strategies: x1 = x2 = 0.

Based on the Assumption 1, pth = a2b1+a1g21
b1+g21

> a2. It implies that RU 2 would like to take

part in the game (x2 ∈ 0) although the unit payment he has to pay is larger than the internal effect.

This gives the credits to the social effect that RU 1 brings to, which verifies that social effect brings

benefits in our scheme.

Next, we extend our discussion on the impact of p to a general case where more RUs request

contents.

Proposition 3. In RLD game, the impact that p brings to the RUs’ best response strategies x∗ is

as follows

• When we set p in a low regime 0 ≤ p ≤ max
i∈M

ai: there is a set of prices p0 , 0 < p1 < p2 <

· · · < pM < pM+1 , max
i∈N

ai. For each k ∈ {0, 1, 2, · · · ,M}, there is a set Sk ⊆ N such that for

any p ∈ [pk, pk+1] such that x∗i =
[
(ΛSk −GSk)

−1
(aSk − p1Sk)

]
i
,∀i ∈ Sk and x∗i = 0,∀i /∈ Sk

• When we set p in a high regime p ≥ max
i∈N

ai, x
∗
i = 0,∀i

We prove Proposition 3 in the following. It shows that each RU’ best response strategy is

a piecewise linear function of the price, which motivates us to propose the Algorithm 6 to calculate

the MCU’s optimal revenue.

Proof: For any unit payment p ∈ [0,maxi∈N ai], the requested content levels of the set of RUs S

with positive strategies are given in (4.15). Meanwhile, according to (4.13), RU i’s the requested

content level x∗i = ai−p
bi

+
∑
j 6=i

gij
bi
x∗j is continuous in p and RU j’s requested content level x∗j , j 6= i.

When the unit payment p increases a small amount to p
′
, the set of RUs with positive strategies at

the Nash equilibrium does not change and their strategies are still given by (4.15) except that p is

replaced by p
′
. Hence, the set of RUs with positive strategies is the same at any unit payment in a

continuous unit payment interval. However, when the unit payment p increases a large amount to

p′′, some RUs’ strategies decrease to 0 and thus they would not request any contents as shown in

above two-RU example. Therefore, the interval of the unit payment is piecewise.
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Assuming RU i has a maximized strategy x∗i > 0 when p ≥ max
i∈N

. According to (4.13),

x∗i = ai−p
bi

+
∑
j 6=i

gij
bi
x∗j ≤

∑
j 6=i

gij
bi
x∗j ≤

∑
j 6=i

gij
bi
x∗i < x∗i , which is a contradiction. Therefore,

x∗i = 0,∀i when p ≥ max
i∈N

.

4.5.3.2 Calculation of the MCU’s Optimal Revenue — the Answer to Q3

Based on the Lemma 1, the piecewise unit payment p is linear with the total best response

strategies 1Tx∗ at the Nash equilibrium. Hence, the total revenue of the MCU (p − c)1Tx∗ is a

quadratic function with the unit payment p according to (4.2). Given above characteristics, we

propose the Algorithm 6. Inspired by PROPOSITION 3, we first determine the unit payment

interval in which the set of RUs with positive strategies does not change when the unit payment

increases or decreases. Within each determined unit payment interval, we calculate the optimal unit

payment to maximize the total revenue of the MCU. Finally, by comparing total revenues in each

interval, we obtain the final unit payment, which makes largest total revenue for the MCU. The

final unit payment, together with the corresponding RUs’ requested content levels, composes the

Stackelberg equilibrium.

Specifically, the Algorithm 6 is initialized by calculating the RUs’ best response strategies

when the unit payment p = 0, as shown in Step 1. From Step 3 to Step 7, it finds the set S composed

of RUs with positive strategies, which serves the initial conditions in the following steps. As the

unit payment p increases from 0 to max
i∈N

ai, it iteratively finds the critical unit payment at which the

set S changes as illustrated from Step 10 to Step 22. Because the change of the set means either

adding or dropping an eligible RU, the process of finding the critical unit payment can be divided

into the following three parts:

• Step 10 to Step 15 investigates the critical unit payment in the set S, which makes at least

one RU’s positive strategy decreases to 0. Since RU i is in the set S, according to (4.15), his

positive strategy xi is,

xi =
[
(ΛS −GS)−1

]
i,S (aS − p1S) > 0 (4.29)

where
[
(ΛS −GS)−1

]
i,S denotes a 1 × |S| vector with elements in the ith row of the matrix

(ΛS − GS)−1 and the columns with indices in S. If
[
(ΛS −GS)−1

]
i,S 1S > 0, the RU i’s

positive strategy decreases as p increases. Assuming when the unit payment increases to p̂i,
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Algorithm 6: Calculate the MCU’s Optimal Revenue

Input: none
Output: p∗, x∗,r∗

1 calculate the Nash equilibrium x∗
′

using Algorithm 5 when the unit payment is 0;
2 p← 0; p∗ ← 0; r∗ ← 0; S ← ∅;
3 for i = 1, i ≤ N do

4 if x∗
′
i > 0 then

5 S ← S
⋃
{i} ;

6 end

7 end
8 while p ≤ max

i∈N
ai and S 6= ∅ do

9 S1 ← ∅; S2 ← ∅;
10 foreach i ∈ S do
11 if

[
(ΛS −GS)−1

]
i
1S > 0 then

12 S1 ← S1
⋃
{i};

13 p̂i ←
[(ΛS−GS)

−1]
i
aS

[(ΛS−GS)−1]
i
1S

;

14 end

15 end
16 foreach i ∈ N − S do

17 if [G]i,S (ΛS −GS)−1 1S < −1 then

18 S2 ← S2
⋃
{i};

19 p̂i ←
[G]i,S(ΛS−GS)

−1aS+ai
[G]i,S(ΛS−GS)−11S+1

;

20 end

21 end
22 p = min

i∈S1∪S2
p̂i;

23 k = argi∈S1∪S2 p;

24 p
′

=
1TS (ΛS−GS)

−1aS+c1
T
S (ΛS−GS)

−11S
21TS (ΛS−GS)−11S

;

25 if p
′
∈
[
p, p
]

then

26 p̃ = p
′
;

27 else if p
′
< p then

28 p̃ = p;

29 else
30 p̃ = p;
31 end

32 r̃ = (p̃− c)1TS (ΛS −GS)−1 (aS − p̃1S);
33 if r̃ > r∗ then

34 p∗ ← p̃;r∗ ← r̃; x∗S = (ΛS −GS)−1 (aS − p∗1S); x∗N−S = 0N−S , x∗ = x∗S
⋃

x∗N−S;
35 end
36 p← p̃;

37 if k ∈ S then
38 S = S\{k};
39 else
40 S = S ∪ {k};
41 end

42 end
43 return p∗,x∗, r∗
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the RU i’s positive strategy xi decreases to 0. We have,

[
(ΛS −GS)−1

]
i,S aS = p̂i

[
(ΛS −GS)−1

]
i,S 1S

p̂i =

[
(ΛS −GS)−1

]
i,S aS

[(ΛS −GS)−1]i,S 1S
(4.30)

• Step 16 to 21 investigates the critical unit payment in the set N − S, which makes at least one

RU’s strategy become positive When RU i is in the set N − S, xi = 0 > ai−p
bi

+
∑
j 6=i

gij
bi
xj . If

xj > 0, xj =
[
(ΛS −GS)−1

]
j,S (aS − p1S). Denote Gi,S as a 1× |S| vector composed of the

element of the ith row of the matrix G with column indices in S,

xi = 0 > ai−p
bi

+ 1
bi

[G]i,S (ΛS −GS)
−1

(aS − p1S)

= 1
bi

[G]i,S (ΛS −GS)
−1

aS + ai
bi
− p

bi

(
[G]i,S (ΛS −GS)

−1
1S + 1

)

If [G]i,S (ΛS −GS)
−1

1S < −1, ai−p
bi

+ 1
bi

[G]i,S (ΛS −GS)
−1

(aS − p1S) increases as p de-

creases. It becomes positive when the unit payment decreases to,

p̂i =
[G]i,S (ΛS −GS)

−1
aS + ai

[G]i,S (ΛS −GS)
−1

1S + 1
(4.31)

• By comparing both the critical unit payments in set S and N − S, we choose the minimized

one as the final critical unit payment as illustrated in Step 22.

From Step 24 to Step 31, we calculate the unit payment p̃ ∈
[
p, p
]

such that the MCU’s rev-

enueR (x, p) is maximized, in whichR (x, p) = R (xS , p) =
∑
i∈S

xi(p− c) = (p−c)1TS (ΛS −GS)
−1

(aS − p1S) , p ∈[
p, p
]
. By setting the first order derivative of R (x, p) to 0, we find the potential optimal unit payment

p
′

in the interval
[
p, p
]
.

p
′

=
1TS (ΛS −GS)

−1
aS + c1TS (ΛS −GS)

−1
1S

21TS (ΛS −GS)
−1

1S
(4.32)

if p
′ ∈

[
p, p
]
, the optimal unit revenue p̃ = p

′
. Otherwise, the optimal unit payment is p̃ = p if
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p
′
<= p, or p̃ = p if p

′
<= p. The local optimal revenue r

′
is,

r
′

= (p̃− c)1TS (ΛS −GS)
−1

(aS − p̃1S) , p̃ ∈
[
p, p
]

(4.33)

Meanwhile, the set S is updated as shown from Step 37 to Step 41 by adding or deleting the RU

k found in Step 23. The renewed set S is deployed to continue finding another local optimal unit

payment.

Finally, by comparing the local optimal revenues in each unit payment interval, we find the

global optimal revenue r∗ and its corresponding unit payment p∗ as illustrated in Step 32 to Step

35. The related RUs’ best response strategies x∗ are calculated.

4.6 Utility Maximization in delay-sensitive Model

In this section, we model the delay-sensitive cases as three two-stage Stackelberg games to

maximize the utilities of RUs and MCUs, respectively. Specifically, the delay effect considered in the

intuitive delay-sensitive model is essentially a specific form of the congestion effect studied in [65].

Therefore, we mainly discuss the other two delay-sensitive models.

4.6.1 Intuitive Delay-Sensitive Model

Refering to [64], the RU i’s best response strategy is,

βi (x−i) = max

{
0,
ai − p
bi + d

+
∑

j 6=i

gij − d
bi + d

xj

}
,∀i (4.34)

By comparing (4.13) and (4.34), each RU suffers both positive social effect and negative delay effect

brought by other RUs. When gij < d, the RU j even brings negative external effect to the RU

i. Otherwise, the RU j puts positive external effect. Under the assumption
∑
j 6=i

|gij−d|
(bi+d) < 1,∀i, the

utility maximization is obtained according to Algorithm 3 in [64].
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4.6.2 Queueing Delay-Sensitive Model

By setting the derivative ∂ûi(x̂i,x̂−i,p̂)
∂x̂i

= 0 in (4.8), the RU i’s best response strategy is

obtained as,

βi (x̂−i) = max

0,
ai − p̂
bi + d̂

+
∑

j 6=i,j∈N

gij − d̂
N−1

bi + d̂
xj

 (4.35)

where d̂ = kλ
N(1−ρ) is assumed as a system parameter estimated by the SP. Comparing (4.34) and

(4.35), given d̂ = d, the delay effect in the queueing delay-sensitive model is relieved from d to d
N−1 ,

which theoretically proves that our queue model lowers the delay effect. Meanwhile, the content

mean arrival rate λ brings a negative effect to RUs’ utilities. It is because larger λ increases the

queue length given the fixed average content transmission time and thus puts RUs to the longer

waiting time. Similarly, the traffic intensity ρ puts a negative delay effect to RUs’ utilities.

Since each RU’s utility in (4.35) is similar to that in (4.13) and the MCU’s utility keeps

unchanged, we could simply apply the Algorithm 6 to obtaining the best strategies for both RUs

and MCU under the following assumption:

Assumption 2.
∑
j 6=i

|gij− d̂
N−1 |

(bi+d̂)
< 1,∀i.

4.6.3 Multi-leader Delay-Sensitive Model

Due to the participation of multiple MCUs, the previous single-leader Stackelberg game is

extended to a multi-leader two-stage Stackelberg game as follows:

Stage I (Unit Payment) Each MCU announces its unit payment p̃m to maximize their

total revenues,

p̃∗ = arg max
p̃∈[0,∞)M

R̃ (x̃, p̃)

Stage II (Requested Content Level) Each RU i ∈ N strategies the required content

level x̃i to maximize his own utility given the price p̃ and the requested content levels of others x̃−i,

x̃∗i = arg max
x̃i∈[0,∞)

ũi (x̃i, x̃−i, p̃) ,∀i.
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4.6.3.1 Utility Maximization for RUs

Similar with (4.13), the best response strategy for RU i is:

βi (x̃−i, p̃) = max

0,

ai −
M∑
m=1

Ii,mp̃m

bi + d̃
+

∑
j 6=i,j∈N

gij − d̃
M∑
m=1

Ii,mIj,m

bi + d̃
xj


Formula (4.36) shows that the introduction of multiple MCUs reduces each RU’s delay effect by

serving them locally whereas does not affect their global positive social effect. With known indicator

matrix, (4.36) is similar with (4.3). Therefore, if we have the following assumption, the existence

and uniqueness can be proved referring to the previous proof.

Assumption 3.
∑
j 6=i

|gij−d̃
M∑
m=1

Ii,mIj,m|

(bi+d̃)
< 1,∀i

Meanwhile, under the Assumption 3, the best response strategies for all RUs given the unit

payment vector are

x̃∗S =
(
Λ̃S − G̃S

)−1

(aS − p̃S) (4.36)

x̃∗N−S = 0N−S (4.37)

The corresponding matrices Λ̃ = diag(b1 + d̃, b2 + d̃, · · · , bN + d̃) and G̃ = G − D, where D =

d̃



0
∑

m∈M
I1,mI2,m · · ·

∑
m∈M

I1,mIN,m∑
m∈M

I2,mI1,m 0 · · ·
∑

m∈M
I2,mIN,m

...
...

. . .
...∑

m∈M
IN,mI1,m

∑
m∈M

IN,mI2,m · · · 0


. The implication for S has been ex-

plained previously.

4.6.3.2 Utility Maximization for MCUs

Due to the globally positive social effect and locally negative delay effect, we cannot simply

deploy the Algorithm 6 to solve the Stackelberg game for each pile of RUs. However, owing to the

existence and uniqueness of all RUs’ best response strategies x̃∗, MCUs can correctly predict the

behaviors of all RUs given the unit price p̃, which gives them opportunities to maximize their total

revenues.
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To ease the description, we consider the case where all RUs receive their requested data

x̃∗S = x̃∗. The case in which some RUs receive no contents can be easily extended. With the known

indicator matrix, (4.11) is rewritten as,

R̃ (x̃, p̃) = (p̃− c1N )T x̃∗ (4.38)

Substitute (4.36) into (4.38), we have,

R̃ (x̃, p̃) = (p̃− c1N )T
(
Λ̃− G̃

)−1

(a− p̃)

= −p̃T
(
Λ̃− G̃

)−1

p̃ + p̃T
(
Λ̃− G̃

)−1

a + c1TN

(
Λ̃− G̃

)−1

p̃− c1TN
(
Λ̃− G̃

)−1

a (4.39)

We ignore the last term in (4.39) since it has nothing to do with p̃ in the following. To obtain the

strategies for each MCU, we have the total utilities maximization problem as,

max
p̃1,··· ,p̃M

R̃ (x̃, p̃)
′

= −p̃TAp̃ + p̃TAa + c1TNAp̃

s.t. 0 ≤ p̃m ≤ max
i∈N

ai,∀m (4.40)

where A =
(
Λ̃− G̃

)−1

. The constraints in (4.40) is to restrict each MCU’s unit payment. Oth-

erwise, RUs would not receive any contents from MCUs as shown in (4.36) and (4.37). Since p̃ is

piecewise, we divide the matrix A into blocks,

A =



A11 A12 · · · A1M

A21 A22 · · · A2M

...
...

. . .
...

AM1 AM2 · · · AMM


(4.41)

where

Auv =



ai−1∑
u=1

nmu+1,
j−1∑
v=1

nmv+1
· · · ai−1∑

u=1
nmu+1,

j∑
v=1

nmv

...
. . .

...

a i∑
u=1

nmu ,
j−1∑
v=1

nmv+1
· · · a i∑

u=1
nmu ,

j∑
v=1

nmv


a = {a1, · · · , anm1

, anm1
+1, · · · , anm1

+nm2
, · · · , aN}T = {a′T1 ,a

′T
2 , · · · ,a′TM}T is rewritten, where
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a
′

i = {a∑nmi−1
+1, · · · , a∑nmi

}T . Substituting (4.41) into (4.40),

R̃ (x̃, p̃)
′

=
M∑
i=1

M∑
j=1

p̃ip̃j1
T
nmi

Aij1nmj +
M∑
i=1

p̃i
M∑
j=1

(
(1Tnmi

Aij1nmj )T + 1Tnmi
Aija

′

j

)
= p̃

′TA
′
p̃
′
+

M∑
i=1

p̃i
M∑
j=1

(
(1Tnmi

Aij1nmj )T + 1Tnmi
Aija

′

j

)

where p̃
′

= [p̃1, p̃2, · · · , p̃M ] and A
′

is a new matrix with the ijth element 1Tnmi
Aij1nmj . According

to [82] and [25], the total utilities maximization is a convex optimization problem as long as A
′
+A

′T

is positive semidefinite. Therefore, we can use convex toolbox cvx [66] to obtain the strategies of

MCUs under the positive semidefinite assumption.

4.7 Performance Evaluation

In this section, we evaluate the performance of the data offloading approaches in both the

delay-tolerant scenario and the delay-sensitive scenario.

4.7.1 Simulation Settings

We consider a scenario with N = 10 RUs served by MCUs. Their internal characteristics

follow a Gaussian distribution, where ai ∼ N (µa, 2) and bi ∼ N (µb, 2) ,∀i. To show the social effect

brought by RUs’ social relationship, we deploy the Erdős-Rényi (ER) graph [49] model, in which

a social edge between RUs exists with probability PS in a group. If a social edge indeed exists, it

is assumed to follow a normal distribution N (µg, 2). To ensure the assumptions proposed in the

chapter, we set µa = µb = 30. In addition, the MCU’s unit cost when delivering contents to RUs is

constant, c = 5.

4.7.2 Simulation Results

In our simulations, we mainly compare the performance of the following cases: (1) No

relationship case (NSR), in which there are no interactions between RUs, gij = 0, i, j ∈ N , d =

d̂ = d̃ = 0. (2) Delay-tolerant case (UMDT), in which the social effect exists among RUs due to

their similar social attributes gij 6= 0,∃i, j ∈ N , d = d̂ = d̃ = 0. (3) Intuitive Delay-sensitive

94



case (iUMDS). (4) Queue Delay-sensitive case (qUMDS), and (5) Multi-leader Delay-sensitive case

(mUMDS). Note that we normalize most simulation performance based on the NSR case, which

means the performance value is divided by the corresponding value in the NSR case. In what

follows, we show the impacts to which the social effect and delay effect will bring respectively.

4.7.2.1 The Impact of the Probability of Social Edge

To investigate the impact of social effect, we first consider the UMDT case in Fig.4.5. Since

two RUs in a social relationship could have different interests, we want to find whether such an

asymmetry impacts RUs’ utilities. Fig.4.5a shows that it does not play an important role on RUs.

Therefore, we choose the asymmetric social relationship in the followings as gij 6= gji to be close to

reality. Fig.4.5a also tells us that the probability of the social relationship between RUs has a large

impact. This is because the probability implies the contact opportunities between RUs, which would

bring more social effects. Fig.4.5b further demonstrates the above observation, which shows that

the total utility of RUs increases as the increasing of the probability of social relationship. Hence,

our motivation is verified that the homophily phenomenon truly brings positive social effects to data

offloading scheme.

(a) Asymmetry Effect (b) Social Effect

Figure 4.5: UMDT Case

4.7.2.2 The Impact of Delay Effect

In iUMDS case, we consider the intuitive delay effect. From Fig.4.6b, we find that such

delay effect puts a serious negative impact on the MCU’s total revenue. Specifically, when the delay

effect is large, it could even cancel out the benefits brought by the social effect. When RUs are eager
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to obtain their requested contents, they have to wait for a long time. Thus, they would not request

more contents even if the unit payment is low. The low unit payment and few contents decrease the

total revenue of the MCU.

(a) Total Levels vs. Number of RUs (b) Intuitive Delay Effect (c) Queue Effect

Figure 4.6: Delay Effect

4.7.2.3 The Benefits brought by Improved Models

In order to show the benefits in the qUMDS and mUMDS cases, we compare the MCU’s

total revenue as shown in Fig. 4.6a. The worst situation is considered that the intuitive delay effect

cancels the benefits brought by social effect completely, where µg = d = 3. Fig. 4.6a demonstrates

that the introduction of the queue and multiple MCUs indeed helps increase the total revenue.

qUMDS Case. We discuss the impact of the mean arrival rate shown in Fig. 4.6c. It

impacts RUs’ content levels negatively. Higher mean arrival rate indicates that more content requests

come to the MCU while it is delivering contents, which would increase the content queue length.

RUs have to wait for a longer time to obtain their contents and thus dissatisfy with the content

transmission. Therefore, their requested content levels would decrease.
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(a) Total Revenue (b) Total Utility

Figure 4.7: Effect from MCUs

mUMDS Case. In Fig. 4.7, we draw the impacts to both MCUs and RUs’ utilities brought

by the number of MCUs. Assume there are N = 25 RUs requesting contents. As can be seen from

Fig.4.7a and Fig.4.7b, more MCUs not only increase the utilities of RUs but also improve the total

revenue of themselves. Fig.4.8 shows an interesting phenomenon. Given the number of MCUs, each

RU’s waiting time will increase as the number of RUs becomes large, and thus their own utilities

reduce. In the worst case, the total utilities of a larger number of RUs are lower than those of a

smaller number of RUs as shown in Fig.4.8b. However, since the number of RUs is large, the total

avenue obtained from them can still be as high as shown in Fig. 4.8a. Both Fig. 4.7 and Fig. 4.8

demonstrate the effectiveness of our proposed multiple MCU delay sensitive model.

(a) Total Revenue (b) Total Utility

Figure 4.8: Effect from RUs
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4.8 Chapter Summary

In this chapter, we propose a data offloading approach by leveraging human’s social behavior

and human activities. To motivate the participation of MCUs, a two-stage Stackelberg game is

deployed considering the interactions between RUs. In the delay-tolerant scenario, the interactions

bring social effect owing to RUs’ similar social attributes. We prove that the Stackelberg game has

a unique Nash equilibrium and design an effective algorithm to compute the RUs’ best response

strategies. This enables the MCU to maximize the revenue. In the delay-sensitive scenario, by

further taking advantages of RUs’ mobility, we propose two improved approaches to lower RUs’

delay effect due to their long waiting time, which introduces queue and extends the single-leader

Stackelberg game to the multi-leader scheme, respectively. Based on the simulation results, we have

shown the feasibility and effectiveness of our proposed approaches.
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Chapter 5

Social-aware Energy-efficient Data

Offloading with Strong Stability

5.1 Chapter Overview

With the rapid growth of the popularity of mobile devices and Internet services, people enjoy

more benefits than ever before. For example, communicating with friends and watching videos at

any time and anywhere become a reality. However, such operations generate a huge amount of data

traffic. According to the report from the Cisco, global mobile data traffic will increase sevenfold

between 2016 and 2021, reaching 48.3 EB per month by 2021 [37]. On the one hand, the explosively

increasing data traffic burdens mobile operators with large operational expenditure [199]. On the

other hand, it leads to a significant increase in energy consumption and thus puts an adverse effect

to the environment [188]. As shown in [59], the amount of CO2 emissions from the cellular networks

will be 345 million tons by 2020. As a result, it is critical to investigate effective solutions to reduce

energy consumption while adapting to the ever-increasing data traffic demands.

Mobile data offloading is a promising paradigm to address the above challenge by utilizing

complementary and revolutionary networking approaches (e.g., small cell, WiFi offloading, and

opportunistic communication) to deliver mobile data originally planned for cellular networks [199].

Instead of requesting data from base stations, users either access data from other users or offload

data to other requested users with the help of the Device-to-Device (D2D) communication. Hence,
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energy consumption at base stations is largely reduced. Taking a step further, incorporating mobile

users’ social behaviors into consideration facilities the above idea in real life. Specifically, users with

similar social interests often group together in a region, which potentially results in similar content

requests. For example, users gathered in specific attractions, such as Disneyland, may request

similar contents related to those attractions. Such a characteristic is also reflected in social networks,

where socially-related data shared among social ties are similar or even identical (e.g., similar photo

updates on Facebook). The above observation leads us to consider whether we can avoid duplicated

requests/retrievals in order to reduce the number of accesses to the cellular network. Having the

offloaded data, similar social interests among users will motivate them using D2D communication

for further data dissemination [15], which would greatly relieve the traffic burden at base stations

and thus free energy consumption.

However, energy consumption in D2D communication becomes one of the most critical

challenges for the deployment. Frequently transceiving data between battery-powered mobile devices

could quickly drain their energy [174, 187]. Meanwhile, arbitrarily caching data in their buffer will

bring trouble due to limited buffer size. Even worse, the stability of the entire network suffers

from break-off users [110,168]. In our chapter, we leverage users’ social preference to reduce energy

consumption on mobile devices, and keep the stability of the entire system while satisfying users’

traffic demands. Specifically, we mainly focus on the following problems:

• Whether to cache or offload data? It relies on the current caching queue size and the

underlying wireless environment. When the channel condition is poor, transmitting the same

amount of data results in higher energy consumption. Rather than forwarding the data to the

next hop, the user keeps them in a queue and waits for a better channel condition. However,

the cumulative queuing data may surpass the buffer size and further affect network stability.

Therefore, each user has to make a decision on whether to forward the data or queue it for

energy saving purpose.

• How much data to be cached or offloaded? Since the energy and the queue size are

limited, each user sets different preferences over caching and offloading data for others, which

is addressed by allocating different queue sizes and data transmission rates according to their

social interests to offloaded data.

• Who will cache and offload data? In a wireless environment, the same data can be cached
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at different users and one user can cache for multiple data. If more users help cache and offload

data, the overall system-wide energy consumption is reduced by decreasing the transmission

ranges between users. However, these users inevitably increase energy consumption at their

own sides. Hence, users who cache and offload data should be selected.

• How does social preference work? Users have different interests in different kinds of data.

They could affect the data offloading according to their preferences. For example, when the

channel condition is poor, they assign a larger buffer size for the interested data. Thus, the

energy consumption is decreased. Based on their preferences, users can flexibly allocate buffer

size to data, which will guarantee network stability.

Obviously, energy consumption, channel condition, and network capacity in social-aware

data offloading are tightly coupled. To answer those questions, we present a cross-layer optimization

framework. An offline energy optimization problem P1 is formulated aiming at minimizing the time-

averaged value of energy consumption at all users by jointly considering the correlation between

random channel conditions, users’ social preferences, network capacity and transmission scheduling,

which turns out to be a time-coupling stochastic Mixed-Integer Non-Linear Programming (MINLP)

problem. Previous approaches applying Dynamic Programming (DP) always suffer from the “curse

of dimensionality” problem [22]. Besides, solutions using DP require detailed statistical information

on system random variables, which are difficult to obtain in practice. Therefore, based on deploying

Lyapunov optimization theory [137], we reformulate an equivalent problem P2 and propose an

online energy approximation problem P3. Different with the offline energy optimization requiring

the knowledge of the network statistics, the online energy approximation problem P3 does not

require any statistic knowledge of the random process. However, P3 is still a MINLP which is

NP-hard and needs to be solved in each time slot. By introducing a virtual queue, we decompose

P3 into three subproblems: link scheduling and power allocation (S1), content allocation (S2), and

routing (S3). Three algorithms are developed to solve them based on the current network states

only respectively. Finally, we demonstrate the network stability by proving all the queues are finite

(Theorem 1). Meanwhile, we prove that the proposed algorithm leads to an upper and lower bound

(Theorem 2 and Theorem 3) to the original problem, where φ∗P3 − B
V ≤ φ∗P1 ≤ φ∗P3. φ∗P1 and φ∗P3

are the optimal results of P1 and P3, respectively. B is a constant and V represents the weight on

how much we emphasize on the energy consumption minimization in P3. As we can see, B
V goes to
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0 as V increases, in which the minimized time-averaged expected energy is obtained in P1.

The rest of this chapter is organized as follows: Section 5.2 briefly reviews the existing D2D

enabled data offloading schemes and studies the effect brought by social characteristics, together

with Lyapunov optimization techniques applied in wireless networks. In Section 5.3, we introduce

our system architecture and network model. The formulation of an offline energy minimization

optimization problem is given in Section 5.4. In Section 5.5, based on Lyapunov optimization theory,

we formulate an online finite-queue-aware energy minimization problem and design a decomposition

based approximation algorithm to solve it. We prove that the proposed approximation algorithm

guarantees network strong stability, and derive both a lower and upper bound on the optimal result

of the offline optimization problem in Section 5.6, followed by the simulation results. Finally, we

conclude our work in Section 5.7.

5.2 Related Work

5.2.1 D2D Enabled Data Offloading

In D2D enabled data offloading framework, some users are chosen as helpers/relays [80,96,

183, 192] to receive the data via cellular networks. Then, those users further propagate the data

among all the users through D2D communications. It is further classified into two categories: in-band

offloading and out-of-band offloading [147], where the direct communication between users occupies

the licensed cellular spectrum and unlicensed spectrum (e.g., WiFi-Direct, Bluetooth) respectively.

In-band offloading may improve the resource utilization by reusing the spectrum for the users that

are physically in close proximity to communicate with each other at a high rate and low power

consumption. The developments in the 3GPP LTE Standard (Rel-12) have proposed integrating

direct in-band communication capabilities into the future cellular architecture [123]. Li et al. in [116]

study the realistic bound of an offloading strategy exploiting LTE-D2D in a large-scale scenario.

Their simulation results confirm that augmenting the number of users in the cell largely benefits to

offloading, increasing its efficiency. In that case, D2D transmissions account for up to 50% of the

traffic, which shows the feasibility of in-band offloading.

Since direct transmissions take place in the same band as the cellular transmissions, in-band

offloading provides additional flexibility to the network but raises issues on mutual interference and

resource allocation. Thus, previous works mainly focus on interference management and transmission
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coordination problems. In [145], the radio resource allocation is optimized to help decrease the

mutual interference between D2D communications and the primary cellular network. Xu et al.

propose a reverse iterative combinatorial auction mechanism to allocate spectrum resources between

cellular users and D2D pairs [181]. Doppler et al. in [47] limit the maximum transmission power of

D2D peers to alleviate the interference. With the explosive increase of data traffic, power allocation

puts an effect on not only the interference management but also device battery. However, how to

improve energy efficiency at mobile users receives little attention in D2D enabled data offloading.

Meanwhile, social-characteristics, which play an important role in other offloading schemes [77,173],

are not considered.

5.2.2 Social-enabled Data Offloading

The “like-me” principle [107] describes a well-accepted nature of human interaction that

people like to interact with those who are similar to themselves. An experiment analyzing the

relationship between the contact rate and the number of identical attributes is conducted in [72,73]

based on the trace file collected during the INFOCOM 2006 [154]. Its result shows that the contact

rate in terms of the number of contacts between two users increases with the increment of identical

attributes, which further validates the “like-me” principle. In addition to that, Hsu et al. in [85] show

that users who share similar interests intend to form a group and they forward messages to others in

the group more efficiently. From the above phenomena, in the scenario where users with attribute

similarities form the attribute-similar group, we infer that the content dissemination is much more

efficient when the social characteristics are considered. As in our previous work [190, 191], users

are more satisfied with the data offloading process when we take into consideration the social effect

brought by users’ similar attributes.

The deployment of the above social characteristics has been addressed in data offloading. Li

et al. in [117] demonstrate that we can leverage the social behaviors to assist D2D communication in

order to enhance the achievable system performance. In [77], social participation and interaction are

exploited to help select the target users in order to minimize the mobile data traffic over the cellular

network. Zhang et al. and Wang et al. exploit social network characteristics for assisting the ad

hoc peer discovery in [189] and [172], respectively. Social characteristics are also applied to resource

allocation in D2D communication. In [172], a two-step coalition game is formulated to achieve

optimal spectrum allocation by deploying social times in human-formed social networks. Although
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the social characteristics are utilized to improve the energy efficiency in [88], they do not consider

the randomness in D2D communication, e.g., channel condition and cellular users. However, such

randomness would result in serious changes in the network. In our chapter, we investigate how to

minimize the energy consumption at mobile users (D2D users) while satisfying their traffic demands

and network stability under the varying channel condition.

5.2.3 Lyapunov Optimization Method

Lyapunov optimization theory has been adopted to investigate stochastic optimization prob-

lems in communication and queuing systems [93,110,136–138,168,184]. However, the queues are not

guaranteed to be finite in [110,168,184], which destroys the network stability. Although finite queue

sizes are maintained in [136,138,184], some packets are dropped as a cost in opportunistic scheduling

scheme. Hence, network utility is lowered. Based on Lyapunov optimization framework, the authors

in [110] address social preference of users and apply back-pressure based transmission scheduling

to achieve guaranteed utility optimality. Li et al. in [111] employ Lyapunov optimization theory

to develop online crowdsourcing algorithms. Liao et al. in [122] propose an online finite-queue-

aware energy cost minimization problem with the help of Lyapunov optimization theory. The above

two works guarantee both network stability and utility. However, they do not consider the social

characteristics among nodes. Besides, the work [122] deploys a fixed modulation scheme whereas

the simulation results in [112] demonstrate the effectiveness on the users’ utility using an adaptive

modulation scheme. Motivated by the above work, we try to minimize the energy consumption in

D2D data offloading by taking social characteristics and adaptive modulation into accounts based

on Lyapunov optimization theory in our chapter.

5.3 System Models

5.3.1 System Architecture

We take data dissemination in the Disney World as an example, where users with similar

social interests group together in the same place, e.g., Rock ‘n’ Roller Coaster Starring Aerosmith

attraction. They request the same contents, e.g., videos related to the attraction, whereas WiFi is

not accessible. As shown in Fig.5.1, instead of getting the requested contents from the base station
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Figure 5.1: System Model

(BS) directly, D2D offloading is deployed to satisfy users’ requests. Specifically, users with the largest

cache are chosen as the representative users to get the contents from the BS, which are further

transmitted among the crowd via D2D communication. To reuse the network resource, all the D2D

communications occur on the fixed spectrum bands, whi ch introduces possible interference between

different D2D communications and hence would affect the achievable communication rate. In order

to prevent interference and improve the energy efficiency at mobile users, the cellular network takes

charge of the whole process including network management, link scheduling and resource allocation

taking advantage of the social relationships among users.

5.3.2 Network Model

As described in Fig. 5.1, a set of users U = {1, 2, · · · , U} with the common interests

request new contents from the service provider. We represent the above contents using a set

L = {1, 2, · · · , L}. Since these users are in close proximity, they get the requested contents ei-

ther from the BS via cellular communication or from others having common interests via D2D

communication. Each content l is further denoted as a tuple {f lij(t), i, j}, indicating the amount of

content l offloaded from the caching user i to the requesting user j in time slot t. Because users have

different communication interfaces and locate at different positions, they occupy different spectrum

bands. Let Mi denote the set of available spectrum bands the user i has. Mi might be different

from Mj , i.e., Mi 6=Mj for i 6= j, i, j ∈ U . All the available spectrum bands compose a spectrum

setM = {1, 2, · · · ,M} andMi ⊂M for each user i. In addition, we assume the bandwidth of band

m is an i.i.d. random process denoted by {Wm(t)}∞t=0, which is observed at the beginning of each
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time slot.

Table 5.1 summarizes the main notations for ease of reference, where t denotes in the time

slot t.

Table 5.1: Notation Table

U user set

L content set

C modulation order set

Pmij (t) power of transmission from user i to user j on band m

P revi (t) receiving power at user i

ei(t) total energy consumption at user i

∆t duration for one time slot

Qli(t) data queue for content l at user i

Yij(t) virtual link-layer queue from user i to user j

ρli(t) user i’s interest in content l

pli buffer size for data queue Qli(t)

f lij(t) amount of content l offloaded from user i to user j

clij(t) content l’s maximum transmission rate from user i to user j on band m

cmaxij content l’s maximum transmission rate from user i to user j

smij (t) Binary Var: band m is assigned for transmission from user i to user j

smcij (t)
Binary Var: band m is assigned for transmission from user i to user j

with modulation order 2c

vl(t) amount of content l, maximum: vmax

vmax maximum amount of content received from BS

λ parameter determined by system controller

V weight on importance on energy minimization

5.3.3 Network rate stable and strongly stable

We first introduce definitions and theorems of Lyapunov optimization [137]. We denote

those theorems as lemmas used for scheme design and analysis later.
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DEFINITION 6. The time average of a random process a(t), denoted by a, is a = limT→∞
∑T
t=0

1
T E [a(t)].

DEFINITION 7. A discrete time process a(t) is rate stable if limt→∞supa(t)
t = 0 with probability

1, and strongly stable if limT→∞sup 1
T

∑T
t=0 E [a(t)] <∞.

Lemma 2. Queue Rate Stability [137]

Let Q(t) denote the queue length of a single-user discrete time queuing system, whose initial

state Q(0) is a non-negative real-valued random variable, and future states are driven by stochastic

arrival and transmission processes a(t) and b(t) according to the following dynamic equation:

Q(t+ 1) = max {Q(t)− b(t), 0}+ a(t), t ∈ {0, 1, 2, · · · }

Then Q(t) is rate stable if and only if a ≤ b.

Lemma 3. Necessity for Queue Strong Stability [137]

If a queue Q(t) is strongly stable, and there is a finite constant c such that either a(t) +

b−(t) ≤ c with probability 1 for all t, where b−(t)
∆
= −min {b(t), 0}1, or b(t)−a(t) ≤ c with probability

1 for all t, then Q(t) is rate stable, i.e., a ≤ b.

Besides, we say that a network is rate stable or strongly stable if all queues in this network

are rate stable or strong stable as described above.

5.4 Energy Consumption Optimization

In this section, we investigate the energy consumption optimization problem given cross-

layer constraints in D2D data offloading.

5.4.1 Energy Consumption

For each offloading user, he consumes the energy when he either transmits the contents or

receives the requested contents. Denote the energy consumed at user i as Ei(t), i ∈ U , in time slot

t,

Ei(t) =
∑

j∈U,j 6=i

∑
m∈Mi∩Mj

Pmij (t)smij (t)∆t+ P revi smji(t)∆t, (5.1)

1Based on [137], the value of a(t) is assumed to be non-negative. For most physical queuing systems, b(t) assumed
to be non-negative, although it is sometimes convenient to allow b(t) to take negative values.
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where the user i consumes the power Pmij (t) to transmit the contents to the user j using band m.

P revi , a constant, denotes the power the user i spends receiving the contents. We suppose ∆t to be

the time duration in each time slot, and smij (t) is a binary transmission indicator where smij (t) = 1

means that user i transmits to user j on band m in time slot t. Otherwise, smij (t) = 0.

5.4.2 Interference Constraints

To mitigate the interference and improve the throughput when different users offload con-

tents simultaneously, we investigate the constraints from the physical layer.

Based on a widely applied model [55,63,84], the power propagation gain from user i to user

j, denoted by gij , is,

gij = d(i, j)−γ , (5.2)

where d(i, j) is the Euclidean distance between user i and j and γ represents the path loss exponent.

Here we assume that the coherence bandwidth of each band is larger than the bandwidth itself so

that each band is flat. Meanwhile, the coherence time of the channel is larger than the duration of

a time slot so that the fading remains constant in each time slot. In addition, users are assumed to

be in the same location during content transmission.

Given the propagation gain in (5.2), according to [63], the signal-to-interference-plus-noise

ratio (SINR) of the signal received at j from i on band m becomes,

SINRmij (t) =
gijP

m
ij (t)

ηjWm(t) +
∑
k 6=i,v 6=j gkjP

m
kv(t)

, (5.3)

in which we denote ηj as the thermal noise power density at user j. Wm(t),m ∈ M represents the

bandwidth of the current spectrum being occupied. We simulate the changes of the current channel

condition by changing Wm(t). As in [75, 113], the content transmission is successful only if the

received SINR at user j satisfies,

SINRmij (t) ≥ Γ, (5.4)

where Γ is a threshold that depends on the current modulation scheme and the target bit error rate

(BER) Pb [63]. To adapt the current channel condition, we deploy an adaptive M-order quadratic

amplitude modulation (M-QAM) scheme, where the modulation order O is chosen from a order set
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C = {21, 22, · · · , 2C}. Hence, we have different possible thresholds as,

Γlog2 O = − (O − 1) ln(5Pb)

1.5
, O = 21, 22, · · · , 2C . (5.5)

Suppose that ideal Nyquist data pulse is applied on modulation. The spectrum efficiency of M-QAM

is log2O bps/Hz [63]. Let ΓC+1 =∞. When Γlog2 O ≤ SINRmij (t) ≤ Γlog2 O+1, the achievable data

rate from user i to user j on band m is,

cmij (t) = Wm(t) log2O(t). (5.6)

5.4.3 Network Layer Constraints

It is an efficient way to improve the energy efficiency by considering the channel condition

changes. Instead of offloading the contents to other users when the channel condition is poor, each

user would like to keep the contents until that channel condition becomes better. Hence, each user

maintains a content queue Qli(t), i ∈ U , l ∈ L for his received content at the network layer. For every

queue Qli at each user, it is updated in the following,

Qli(t+ 1) = max

Qli(t)− ∑
j∈U,j 6=i

f lij(t), 0

+ (
∑
{j|i 6=j}

f lji(t) + vl(t)1i=Sl
). (5.7)

If Qli(t) = 0, the user i is not on the offloading path for the content l in the current time slot. In

(5.7), the binary variable 1i∈sl(i ∈ U) indicates whether the user i is the representative user who

receives the content l from the BS. We use vl(t) to denote its amount in the unit of the number

of bits, vl(t) ≤ vmax, where the constant vmax denotes the maximum amount of content received

from base station. Note that we suppose the value of vl(t) is known at the beginning of each time

slot. Because there is no incoming data from other users at the source user of session l, we have the

following constraint, ∑
{j 6=i|i}

f lji(t) = 0,∀i = sl, l ∈ L. (5.8)

5.4.4 Social Preference in Queue

We define a rational number ρli ∈ [0, 1] to denote user i’s social interests on content l. The

more interesting to the contents, the larger ρli is. Our social preference in queue is reflected on the
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maximum queue size to the contents. To be specific, pli = F (ρli), i ∈ U denotes the maximum queue

size user i provides for by-passing content l ∈ L. F (·) is a positive function that differentiates the

queue size allocated to contents with different social preferences ρli of user i. We suppose F (·) is

an increasing function with users’ social preference ρli. It means users would like to provide larger

queues for caching their interested contents. Specifically, we denote pli = (1+αρli)p
l
sl

, where plsl is the

maximum queue size user sl provides for content l from base station and α is the weight to strengthen

the social preference’s effect to the maximum buffer size. The reason for 1 is to ensure that user still

participates the data offloading process even he is not interested in the content. Otherwise, in the

worst case that no user is interested in the contents, they all keep the contents to themselves and

thus data offloading is stopped. In addition, we assume α = 1.

5.4.5 Link Scheduling Constraints

In this subsection, we illustrate the power allocation and link scheduling on content dissem-

ination. Since each user is unable to transmit to or receive from multiple users on the same band,

given the binary transmission indicator smij (t) mentioned above, we have,

∑
j∈U,j 6=i

smij (t) ≤ 1, and
∑

i∈U,i6=j

smij (t) ≤ 1. (5.9)

Besides, due to “self-interference” at the physical layer, a user cannot use the same frequency band

for both transmission and receiving at the same time. Hence,

∑
i∈U,i6=j

smij (t) +
∑

q∈U,q 6=j

smjq(t) ≤ 1. (5.10)

Meanwhile, we suppose that each user is equipped with a single radio, in the case that he cannot

occupy more spectrum bands in each time slot. Taking (5.9) and (5.10) into consideration, one of

the constraints in the link scheduling finally becomes,

∑
m∈Mi∩Mj

∑
i6=j

smij (t) +
∑

n∈Mj∩Mq

∑
q 6=j

snjq(t) ≤ 1. (5.11)

In addition to the above constraints at a certain user, there are also power constraints due to potential

interferences among different users. Denote smcij (t) as a binary indicator that describes whether the
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content transmission from user i to user j on band m satisfies Γc ≤ SINRmij (t) ≤ Γc+1(1 ≤ c ≤ C),

where c = log2O,
C∑
c=1

smcij (t) ≤ 1. (5.12)

Moreover, since each available transmission’s SINR must be above one of the thresholds in {Γ1,Γ2, · · · ,ΓC},

we get,

smij (t) =

C∑
c=1

smcij (t). (5.13)

Considering (5.3) and (5.4), under an adaptive M-QAM schemes, the constraint on the power Pmij

is,

gijP
m
ij (t) ≥

(
C∑
c=1

smcij (t)Γc

)(
ηjW

m(t) +
∑

k 6=i,v 6=j
gkjP

m
kv(t)

)
, (5.14)

The other constraint on the transmission power Pmij is,

0 ≤ Pmij (t) ≤ Pmaxi ,∀i, j ∈ U ,m ∈Mi ∩Mj , (5.15)

where Pmaxi is the maximum transmission power of user i.

Besides, the amount of contents transmitted from user i to user j on band m in each time

slot cannot exceed the achievable data rate multiplied by the duration of the time slot,

∑
l∈L

f lij(t) ≤
∑

m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t. (5.16)

5.4.6 Offline Energy Consumption Minimization

In offline energy consumption minimization, we aim to minimize the time-averaged ex-

pected energy consumption given the interference and link scheduling constraints while guaranteeing

the strong stability of the network. We formulate offline energy consumption minimization problem,

P1: minimize lim
T→∞

1
T

T−1∑
t=0

∑
i∈U

E[Ei(t)]

s.t. Constraints (5.8), (5.11), (5.13)-(5.16)

Q(t) is strongly stable. (5.17)
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In (5.17), Q(t) =
{
Qli(t),∀i ∈ U , l ∈ L

}
. We denote the optimal result of P1 by φ∗P1. Without the

constraint (5.17), P1 is a time-coupling stochastic MINLP problem, which is already expensive to

solve. Previous approaches usually solve such problems based on Dynamic Programming [22] and

suffer from the “curse of dimensionality” problem. They also require detailed statistical information

on the random variables in the problem, which may be difficult to obtain in practice. In addition, the

constraint (5.17) makes P1 an even more complicated problem. Hence, we reformulate this problem

into an online energy consumption optimization problem using Lyapunov optimization theory to

break the time-coupling in P1 and find a feasible solution based on the current network condition.

5.5 Online Energy Consumption Minimization

In this section, Lyapunov optimization theory is applied to design a drift-plus-penalty online

energy consumption minimization problem P3 without requiring any prior knowledge of the network

parameters while guaranteeing the network stability. The solution to P3 depends on the current

channel conditions and the current queue backlogs.

5.5.1 Equivalent Offline Optimization Problem

Before moving forward, we reformulate the offline optimization problem P1 into a new one

denoted as P2 to help ensure the strong stability of the network. We will show it later. Generally,

two changes have been made as follows.

To adapt to the Lyapunov optimization framework , the objective function in P1 is replaced

by:

E = lim
T→∞

1

T

T−1∑
t=0

(∑
i∈U

E[Ei(t)]− λ
∑
i∈U

∑
l∈L

vl(t)1i=sl

)
, (5.18)

in which λ is a parameter determined by the system controller.

Besides, we add another constraint in the following,

lim
T→∞

1

T

T−1∑
t=0

E

[∑
l∈L

f lij(t)

]
≤ lim
T→∞

1

T

T−1∑
t=0

E

 ∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t

 , (5.19)

which is obtained by summing the inequality (5.16), taking expectation and limitation of both sides.
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The complete formulation of P2 is as follows,

P2: minimize E

s.t. Constraints (5.8), (5.11), (5.13)-(5.17), (5.19) .

We denote the optimal result of P2 by φ∗P2.

Since λ and vl(t) in (5.18) are neither related to the constraints (5.8), (5.11), (5.13)-(5.16)

nor the energy consumption, the new adding item λ
∑
i∈U

∑
l∈L

vl(t)1i=sl does not affect the optimal

solution to P1. Meanwhile, if the constraint (5.16) is satisfied, the constraint (5.19) is satisfied

spontaneously. Therefore, we say that the new proposed optimization problem P2 is equivalent to

the problem P1. The same with P1, P2 is also a time-coupling stochastic MINLP problem which

requires the prior knowledge of the network parameters. Besides, the requirement of the network

stability (5.17) further increases its difficulty. In the following, we formulate a drift-plus-penalty

problem P3 based on P2.

5.5.2 Modeling Virtual Queues

To satisfy the constraint (5.19), we first introduce a virtual queue Yij(t) complying with the

following queue law,

Yij(t+ 1) = max{Yij(t)−
∑

m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t, 0}+

∑
l∈L

f lij(t). (5.20)

It is understood as the link-layer queue for the link from user i to his neighbor user j, describing

the total amount of contents stored at user i to be transmitted to the user j at the beginning of the

time slot t. Since each user transmits to at most one neighbor on one band in each time slot, the

following inequality is satisfied,

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t−

∑
l∈L

f lij(t) ≤ cmaxij ∆t. (5.21)

Therefore, according to Lemma 3, if we guarantee the strong stability of the queue Yij(t), we ensure

the rate stability, i.e., constraint (5.16).
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5.5.3 Online Finite-queue-aware Energy Minimization

In this subsection, we formulate an online finite-queue-aware energy consumption minimiza-

tion problem. A new queue Θ(t) = {Q(t),Y(t)} is introduced which is composed of the network-

layer queue Q(t) =
{
Qli(t),∀i ∈ U , l ∈ L

}
and the link-layer queue Y(t) = {Yij(t),∀i, j ∈ U}. Sup-

pose Q(0) = 0 and Y(0) = 0, we define a Lyapunov function for Θ(t),

L (Θ(t)) = L (Q(t)) + L (Y(t))
∆
=

1

2

∑
l∈L

∑
i∈U

plsl
pli
Qli(t)

2 +
∑
i∈U

∑
j 6=i

Yij(t)
2

 , (5.22)

where 1
pli
Qli(t)

2 can be roughly understood as the buffer occupancy ratio of content l at user i.

We multiply it by plsl is to eliminate the parameters’ effect on L (Q(t)) (We will prove that plsl =

λV + vmax).

In (5.22), L (Θ(t)) being small implies that all queue backlogs are small, while L (Θ(t))

being large implies that at least one queue backlog is large. Since all queue backlogs change with

time, a key idea to push queue backlogs towards a lower congestion state is to make the queue

backlogs change as small as possible. Hence, we define the one-slot conditional Lyapunov drift as,

∆ (Θ(t))
∆
=E [L (Θ(t+ 1))− L (Θ(t)) |Q(t)] , (5.23)

where the expectation E(·) is with respect to the random channel condition and depends on the

control policy in reaction to these channel conditions. However, a lower queue congestion state

cannot ensure limited energy consumption at users. We revise the conditional Lyapunov drift to the

following drift-plus-penalty expression,

∆ (Θ(t)) + V E

[∑
i∈U

Ei(t)− λ
∑
i∈U

∑
l∈L

vl(t)1i=sl |Θ(t)

]
, (5.24)

in which V is a positive control parameter to represent a weight on how much we emphasize on

the energy consumption minimization. According to the drift-plus-penalty framework in Lyapunov

optimization [137], an upper bound for (5.24) should be minimized in each time slot to achieve

network stability while improving energy efficiency at users with the observation of the queue states

Θ(t), and the channel condition cmij (t) and Wm(t). Specifically, the upper bound on L (Θ(t+ 1))−
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L (Θ(t)) in (5.23) is:

L (Θ(t+ 1))− L (Θ(t)) =
1

2

∑
l∈L

∑
i∈U

plsl
pli

(
Qli(t+ 1)

2 −Qli(t)2
)

+
1

2

∑
i∈U

∑
j 6=i

(
Yij(t+ 1)2 − Yij(t)2

)

=
1

2

∑
l∈L

∑
i∈U

plsl
pli


max{Qli(t)−

∑
j∈U,j 6=i

f lij(t), 0}+ (
∑
{j|i 6=j}

f lji(t) + vl(t)1i=Sl
)

2

−Qli(t)2


+

1

2

∑
i∈U

∑
j 6=i


max{Yij(t)−

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t, 0}+

∑
l∈L

f lij(t)

2

− Yij(t)2


≤ 1

2

∑
l∈L

∑
i∈U

plsl
pli

(
∑
{j|i 6=j}

f lji(t) + vl(t)1i=Sl
)2 + (

∑
j∈U,i6=j

f lij(t))
2

+

∑
l∈L

∑
i∈U

plsl
pli
Qli(t)

 ∑
{j|i 6=j}

f lji(t) + vl(t)1i=Sl
−

∑
j∈U,j 6=i

f lij(t)

+
1

2

∑
i∈U

∑
j 6=i

 ∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t

2

+

1

2

∑
i∈U

∑
j 6=i

(∑
l∈L

f lij(t)

)2

+
∑
i∈U

∑
j 6=i

Yij(t)

∑
l∈L

f lij(t)−
∑

m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t


≤ 1

2

∑
l∈L

∑
i∈U

plsl
pli

( max
j∈U,j 6=i

cmaxij ∆t)2 +
1

2

∑
l∈L

∑
i∈U

plsl
pli

( max
{j|i 6=j}

cmaxji ∆t+ vmaxl )2 +
∑
i∈U

∑
j 6=i

(
cmaxij ∆t

)2
+

∑
l∈L

∑
i∈U

plsl
pli
Qli(t)

 ∑
{j|i 6=j}

f lji(t) + vl(t)1i=Sl
−

∑
j∈U,j 6=i

f lij(t)

+
∑
i∈U

∑
j 6=i

Yij(t)

∑
l∈L

f lij(t)−
∑

m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t


= B +

∑
l∈L

∑
i∈U

plsl
pli
Qli(t)

 ∑
{j|i 6=j}

f lji(t) + vl(t)1i=Sl
−

∑
j∈U,j 6=i

f lij(t)

+

∑
i∈U

∑
j 6=i

Yij(t)

∑
l∈L

f lij(t)−
∑

m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t


(5.25)

where B = 1
2

∑
l∈L
∑
i∈U

plsl
pli

(
max

j∈U,j 6=i
cmaxij ∆t

)2

+ 1
2

∑
l∈L
∑
i∈U

plsl
pli

(
max
{j|i 6=j}

cmaxji ∆t+ vmaxl

)2

+∑
i∈U

∑
j 6=i
(
cmaxij ∆t

)2
. cmaxij = Wmax log2O

max denotes the maximum capacity on the link from

user i to user j. Wmax is the maximized transmission bandwidth and Omax is the maximized modu-

lation order. In the first inequality, we use the fact that (max{Q−b, 0}+a)2 ≤ Q2+a2+b2+2Q(a−b)

for any Q ≥ 0, b ≥ 0, and a ≥ 0.

According to (5.16), we have
∑

j∈U,j 6=i
f lij(t) ≤

∑
j∈U,j 6=i

∑
l∈L

f lij(t) ≤
∑

j∈U,j 6=i

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t.

Since one user can transmit to at most one neighbor on at most one band in each time slot, we get
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∑
j∈U,j 6=i

f lij(t) ≤ max
j∈U,j 6=i

cmaxij ∆t. The above explains the second inequality. Substitute (5.25) into

(5.23) and (5.24), we have,

∆ (Θ(t)) + V E

[∑
i∈U

Ei(t)− λ
∑
i∈U

∑
l∈L

vl(t)1i=sl |Θ(t)

]
≤ B + ψ1(t) + ψ2(t) + ψ3(t), (5.26)

where:

ψ1(t): related to link scheduling variables smcij (t) and transmission power Pmij (t),

ψ1(t) = E
[∑
l∈L

∑
i∈U

plsl
pli
Qli(t)vl(t)1i=Sl

|Q(t)

]
+ E

[∑
i∈U

∑
j∈U,j 6=i

(Yij(t)
∑

m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t)|Y(t)

]

+V E

[∑
i∈U

∑
j∈U,j 6=i

∑
m∈Mi∩Mj

Pmij (t)smij (t)∆t|Θ(t)

]
. (5.27)

ψ2(t): related to amount of the contents obtained from the BS vl(t),

ψ2(t) = E
[∑
l∈L

∑
i∈U

(
plsl
pli
Qli(t)− λV )vl(t)1i=Sl

|Q(t)

]
.

(5.28)

ψ3(t): related to the amount of contents transmitted between users f lij(t),

ψ3(t) = E

∑
l∈L

∑
i∈U

plsl
pli
Qli(t)(

∑
{j|i 6=j}

f lji(t)−
∑
j 6=i

f lij(t))|Q(t)

+E

∑
i∈U

∑
j∈U,j 6=i

(
Yij(t)

∑
l∈L

f lij(t)

)
|Y(t)

 .
(5.29)

Because B is a constant, we minimize ψ1(t) + ψ2(t) + ψ3(t) instead of minimizing the right-hand-

side of (5.26), where ψ1(t), ψ2(t) and ψ3(t) are conditional expectations. By using the concept of

opportunistically minimizing an expectation, we minimize ψ
′

1(t) + ψ
′

2(t) + ψ
′

3(t) instead, where,

ψ
′

1(t) = −
∑
i∈U

∑
j∈U,j 6=i

Yij(t)
∑

m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t+ V

∑
i∈U

∑
j∈U,j 6=i

∑
m∈Mi∩Mj

(Pmij (t)smij (t))∆t,

(5.30)

ψ
′

2(t) =
∑
l∈L

∑
i∈U

(
plsl
pli
Qli(t)− λV )vl(t)1i=Sl

, (5.31)
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and

ψ
′

3(t) =
∑
l∈L

∑
i∈U

plsl
pli
Qli(t)(

∑
{j|i6=j}

f lji(t)−
∑
j 6=i

f lij(t)) +
∑
i∈U

∑
j∈U,j 6=i

(Yij(t)
∑
l∈L

f lij(t)). (5.32)

The final optimization problem P3 is,

P3: minimize ψ
′

1(t) + ψ
′

2(t) + ψ
′

3(t)

s.t. Constraints (5.8), (5.11), (5.13)-(5.16)

Q(t) and Y(t) are stable . (5.33)

5.5.4 A Decomposition Based Approximation Algorithm

In this subsection, we decompose P3 into three subproblems and solve them individually to

obtain a suboptimal and feasible solution.

5.5.4.1 Link Schedule and Power Allocation

We minimize ψ
′

1(t) as follows by finding the optimal link scheduling and power allocation

policy, determined by the variables smij (t) and Pmij (t).

S1: minimize ψ
′

1(t)

s.t. Constraints (5.11), (5.13)-(5.15). (5.34)

S1 is a mixed integer quadratically constrained quadratic programming problem, which is

also difficult to solve. We propose an iterative method in Algorithm 7. Generally, as shown in the

while iteration (Line 3-11), we update power allocation profiles Pmij (t) and link scheduling variables

smcij (t) for any ∀i, j ∈ U ,m ∈M, 2c ∈ C iteratively until the objective function in S1 does not change

or the maximum number of iterations is reached. We explain it in detail next.

• Fix smcij (t). The main idea is to fix the values of smcij (t) sequentially through a series of relaxed

linear programming problems. To be specific, given Pmij (t),∀i, j ∈ U ,m ∈ M, S1 becomes a

binary integer programming problem. As shown in Line 4-8, a greedy algorithm is proposed.

We first relax all the 0-1 integer constraints on smcij (t) to 0 ≤ smcij (t) ≤ 1, transforming the
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problem to a linear programming problem. Line 5 solves the linear programming problem to

obtain an optimal solution with each smcij (t) between 0 and 1. Among them, the largest smcij (t)

is set to 1, denoted as sm
∗c∗

i∗j∗ (t) = 1. Due to
∑

m∈Mi∩Mj

∑
i6=j

smij (t) +
∑

n∈Mj∩Mq

∑
q 6=j

sjq ≤ 1 in the

constraint (5.11), all the sncpj∗(t) = 0 and smcj∗p(t) = 0 for n,m ∈M, 2c ∈ C and p, q ∈ U are set

to 0. The above is what Line 6 does. We remove those already fixed smcij (t) from the objective

functions and constraints as illustrated in Line 7. The process in Line 5-8 is repeated until all

the smcij (t) is obtained.

• Fix Pmij (t). After obtaining the values of smcij (t),∀i, j ∈ U ,m ∈ M, S1 becomes a linear

programming problem with constraints (5.14)-(5.15), which can be easily solved.

• Update ψ
′

1(t)(n+1) given all Pmij (t)(n+1) and smcij (t)(n).

As in Line 6, band m is allocated to one transmission link in time slot t, say, from user i∗ to

user j∗. All the other users who want to offload contents to user i∗ and j∗ or request contents

from user i∗ and j∗ on band m are not allowed. Since we get a number of the smcij (t) values in

each “inside” while iteration, Line 6 simplifies the solving process for S1. In addition, due to the

interference constraints, allowing many user pairs (e.g., user i to user j, user k to user v) to occupy

the same band is impossible in order to ensure the successful transmission. Hence, the complexity

of Algorithm 7 does not increase as the number of users increases. It does not suffer from the issue

“curse of dimensionality”. The complexity of Algorithm 7 is the same as the complexity of linear

programming. Whereas previous approaches applying Dynamic Programming always suffers from

the “curse of dimensionality” problem [22].

Algorithm 7: Link Scheduling and Power Allocation
Input: cmij (t), Y(t), V , ε, Num

Output: smcij (t), Pmij (t) for m ∈ M, 2c ∈ C and i, j ∈ U
1 Choose an initial value for ψ

′
1(t)(0), ψ

′
1(t)(1) and Pmij (t)(0);

2 Set n = 0

3 while |ψ
′
1(t)(n+1) − ψ

′
1(t)(n)| < ε or n+ 1 > Num do

4 while there exists one smcij (t)(n) that is not fixed as 0 or 1 do

5 Solving S1 by relaxing all smcij (t)(n) as 0 ≤ smcij (t)(n) ≤ 1 for any m ∈ M, 2c ∈ C and i, j ∈ U given

Pmij (t)(n).

6 Set the largest smcij (t)(n) to 1. Denote as sm
∗c∗

i∗j∗ (t)(n) = 1 Based on (5.11), set sncpj∗ (t)(n) = 0 and

smcj∗p(t)(n) = 0 for any n,m ∈ M, 2c ∈ C and p, q ∈ U
7 Given already fixed smcij (t)(n) for m ∈ M, 2c ∈ C and i, j ∈ U , update S1.

8 end

9 Calculate Pmij (t)(n+1) by solving S1 given all smcij (t)(n).

10 Calculate ψ
′
1(t)(n+1) given all Pmij (t)(n+1) and smcij (t)(n).

11 end
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5.5.4.2 Content Allocation

We minimize ψ
′

2(t) by finding representative users together with the amount of the contents

they obtain from the BS,

S2: minimize ψ
′

2(t)

s.t. Constraints 0 ≤ vl(t) ≤ vmax. (5.35)

A search algorithm is developed to achieve the content allocation. To be specific, at the beginning

of each time slot, given the queue backlogs Qli(t) for each content l, the user with the smallest queue

backlog is chosen as the representative. When there are multiple users with the same smallest queue

backlog, we randomly pick one of them as the representative user. Therefore, the amount of contents

he can get is determined by,

vl(t) =


vmax if Qlsl(t)− λV ≤ 0

0 otherwise.

(5.36)

5.5.4.3 Routing

In this subsection, we minimize ψ
′

3(t) by finding the optimal routing policy, i.e., determining

the variables f lij(t). By reorganizing (5.32), we have,

ψ
′

3(t) =
∑
l∈L

∑
i∈U

∑
j∈U

(
−
plsl
pli
Qli(t) +

plsl
plj
Qlj(t) + Yij(t)

)
f lij(t). (5.37)

Hence, the optimization problem becomes,

S3: minimize ψ
′

3(t)

s.t. Constraints (5.8), (5.16). (5.38)

The objective function of S3 can be viewed as a weighted sum of the variables f lij(t). Hence,

we can determine f lij(t) at user i locally based on the current queue backlogs
plsl
pli
Qli(t),

plsl
plj
Qlj(t) and

Y lij(t). An algorithm is proposed described in Algorithm 8.

In Line 1, the variables f lij(t) (∀j = sl, l ∈ L) are set to 0 according to constraint (5.8).
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Line 2-9 and line 11 are to set the variables f lij(t) (∀i, j ∈ U , l ∈ L). Specifically, the variables

f lij(t) (∀j ∈ U , l ∈ L) with non-negative coefficients are set to 0 in line 3-4. The variable f lij(t)

with the smallest coefficient is found in Line 9. The value for f lij(t) is fixed in line 10-14. Because

it is possible that
∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t is equal to 0 if

∑
m∈Mi∩Mj

smij (t) = 0. In that case,

the corresponding variable f lij(t) is set to 0. Otherwise, f lij(t) with the smallest coefficient is set to∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t. It means that the transmission link from user i to user j is fully utilized

to deliver the requested contents. Note that if there are multiple variables f lij(t) with the same

smallest coefficients, the user i randomly picks one of them and sets it to
∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t.

Algorithm 8: Routing

Input: Q(t), Y(t), pli for any l ∈ L and i ∈ U
Output: f lij(t) for any l ∈ L and i, j ∈ U

1 Set f ljsl
(t) = 0 for any j ∈ U

2 foreach l ∈ L and i, j ∈ U do

3 if

(
−
plsl
pl
i

Qli(t) +
plsl
pl
j

Qlj(t) + Yij(t)

)
≥ 0 then

4 f lij(t) = 0

5 else

6 Calculate coelij(t) =

(
−
plsl
pl
i

Qli(t) +
plsl
pl
j

Qlj(t) + Yij(t)

)
.

7 end

8 end

9 Find the smallest coelij(t). Denote corresponding f lij(t) as f l
∗
i∗j∗ (t)

10 if
∑
m∈Mi∩Mj

smi∗j∗ (t) = 0 then

11 Set f l
∗
i∗j∗ (t) = 0

12 else

13 Set f l
∗
i∗j∗ (t) =

∑
m∈Mi∩Mj

cmi∗j∗ (t)smi∗j∗ (t)∆t

14 end

15 Set other f lij(t) = 0 for any l ∈ L and i ∈ U

In each time slot, the online finite-queue-aware energy consumption minimization problem

is solved after S1, S2 and S3 are solved respectively. The queues Q(t) and Y(t) are then updated

according to (5.7) and (5.20), respectively. We denote the corresponding time-averaged expected

total energy consumption by φ∗P3.

5.6 Performance Analysis

In this section, we prove that the proposed approximation algorithm guarantees network

strong stability. Following that, we derive both the lower and upper bounds on the optimal result

of P1. Finally, we give some simulation results based on our proposed approach.
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5.6.1 Network Strong Stability

Our proposed approach finds an approximation solution to P3 which satisfies the constraints

(5.8), (5.11), (5.13)-(5.16). However, we do not consider the network strong stability, which is an

important and challenging problem.

Theorem 6. Our proposed approximation problem guarantees that the queues Q(t) and Y(t) are

all strongly stable.

Proof: First, we demonstrate the strong stability of Q(t) by considering an arbitrary queue Qli(t).

In particular, the induction method is deployed to prove that Qli(t) ≤ pli, where plsl = λV + vmax

and pli = (1 + αρli)p
l
sl

.

When t = 0, we have Qli(0) = 0 ≤ pli.

When t = t′(t′ ≥ 0), we suppose Qli(t
′) ≤ pli. We prove that Qli(t

′+ 1) ≤ pli in the following.

Situation 1: i = sl. The queuing law (5.7) becomes,

Qlsl(t+ 1) = max{Qlsl(t)−
∑

j∈U,j 6=i

f lslj(t), 0}+ vl(t). (5.39)

We consider two situations on the value of vl(t),

• Case 1: Qlsl(t) ≤ λV . According to (5.36), vl(t) = vmax. Qlsl(t
′ + 1) ≤ Qlsl(t

′) + vmax ≤

λV + vmax = plsl .

• Case 2: Qlsl(t) > λV . According to (5.36), vl(t) = 0. Qlsl(t
′+ 1) ≤ Qlsl(t

′) ≤ λV + vmax = plsl ,

Situation 2: i 6= sl. The queuing law of Qli(t) is,

Qli(t+ 1) = max
{
Qli(t)−

∑
j∈U,j 6=i

f lij(t), 0
}

+
∑
{j|i∈U,i6=j}

f lji(t). (5.40)

Since only one neighboring user can transmit to user i in time slot t, we denote him as

user j. Considering the coefficient before f lji(t) in the objective function of S3, two situations are

discussed:

• Case 1:
plsl
pli
Qli(t) <

plsl
plj
Qlj(t) − Yji(t). According to (5.40), Qli(t + 1) ≤ Qli(t) + f lji(t) ≤

pli
plj
Qlj(t) −

pli
plsl
Yji(t) + f lji(t) ≤

pli
plj
Qlj(t) ≤ pli. The third inequality is satisfied due to the

following reasons,
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– Yji(t) = 0. Based on the solution to S1, smcji (t) = 0 and thus f lji(t) = 0. The inequality

holds.

– Yji(t) ≥ 1. Since f lji(t) ≤ max
i∈U,j 6=i

cmaxij ∆t and
pli
plsl
≥ 1, we have

pli
plsl
Yij(t) ≥ f lji(t). The

inequality is satisfied.

• Case 2:
plsl
pli
Qli(t) ≤

plsl
plj
Qlj(t)−Yji(t). Based on the solution to S3, f lji(t) = 0. Following (5.40),

we get Qli(t+ 1) ≤ Qli(t) ≤ pli.

From the above proof, an arbitrary queue Qli(t) is finite in each time slot. With Definition

7, Q(t) is strongly stable.

Next, we prove the strong stability of Y(t) by considering an arbitrary queue Yij(t). In

particular,

Yij(t) ≤ max
0≤k≤t

∑
l∈L

f lij(k). (5.41)

When t = 0, Yij(0) = 0 ≤ max
0≤k≤t

∑
l∈L f

l
ij(k).

When t = t′(t′ ≥ 0), we suppose Yij(t
′) ≤ max

0≤k≤t

∑
l∈L f

l
ij(k). We prove that Yij(t

′ + 1) ≤

max
0≤k≤t′+1

∑
l∈L f

l
ij(k) in the following.

• Case 1: Yij(t) ≤
∑

m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t. Based on (5.20), Yij(t + 1) =

∑
l∈L f

l
ij(t) ≤

max
0≤k≤t+1

∑
l∈L f

l
ij(k).

• Case 2: Yij(t) >
∑

m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t. Based on (5.20), Yij(t+1) = Yij(t)−

∑
m∈Mi∩Mj

cmij (t)s
m
ij (t)∆t+∑

l∈L
f lij(t). With inequality (5.16), Yij(t+1) ≤ Yij(t) ≤ max

0≤k≤t

∑
l∈L f

l
ij(k) ≤ max

0≤k≤t+1

∑
l∈L f

l
ij(k)

Because
∑
l∈L f

l
ij(t) ≤ cmaxij ∆t, we have Yij(t) ≤ cmaxij ∆t. Therefore, Y(t) is always finite and

strongly stable.

5.6.2 Lower and Upper Bounds for P1

In this subsection, we obtain both lower and upper bounds for the optimal results of P1,

i.e., φ∗P1.

Theorem 7. The solution obtained from our proposed algorithm serves as a suboptimal solution to

P1. And the corresponding time-averaged expected energy consumption holds an upper bound on the

optimal result of P1, i.e., φ∗P1 ≤ φ∗P3.
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Proof: Our proposed algorithm finds a feasible solution to P3 in each time while satisfying all the

constraints, e.g., (5.8), (5.11), (5.13)-(5.16) and (5.33). In addition, because (5.16) is satisfied and

Y(t) is strongly stable as proved above, Y(t) is rate stable according to the Lemma 3. Hence, the

constraint (5.19) holds as well. The solution in P3 is a feasible solution to P2. Because the problems

P1 and P2 are equivalent, the solution in P3 is also a feasible solution to P1. The corresponding

time-averaged expected energy consumption holds an upper bound on the optimal result of P2, i.e.,

φ∗P3 ≥ φ∗P1.

Next, we find a lower bound on φ∗P1 as in Theorem 8.

Theorem 8. The time-averaged expected energy consumption minimized by optimally solving P3,

denoted by φ∗P3, is within a constant gap B
V from the time-averaged expected energy consumption

achieved by P2, i.e., φ∗P1. Specifically, we obtain,

φ∗P3 −
B

V
≤ φ∗P1,

in which B and V are defined in previous sections.

Proof: Please refer to Appendix A for the detailed proof.

According to the Theorem 7 and the Theorem 8, we get a lower bound and an upper bound

on the optimal result of P1, respectively, where,

φ∗P3 −
B

V
≤ φ∗P1 ≤ φ∗P3. (5.42)

Because B and V are independent, BV definitely goes to 0 as V increases. Thus, the gap between the

upper and lower bound definitely becomes smaller. Thus, we could totally prove its sub-optimality

theoretically.

5.6.3 Simulation Results

We evaluate the performance of our proposed approximation approaches in MATLAB on a

computer with 4.0 GHz CPU and 32GB RAM. All the parameters are set in Table. 5.2. Specifically,

users are located at (375, 250), (625, 250), (300, 500), (550, 500), (800, 500), (300, 750), (550, 750),

(800, 750), (375, 1000) and (625, 1000) respectively as shown in Fig. 5.2.
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Figure 5.2: Dynamic Characteristics

Table 5.2: Simulation Settings

Parameter Values

Area 1000m× 1000m

Number of Users 10

Number of Time Slots 40

Duration in each time slot 1s

Bandwidth [1.2, 1.4, 1.6]MHz

Modulation Strategy [23, 24, 25]QAM

Bit Error Rate 10−3

SINR Thresholds {24.73, 52.98, 109.50}

Max. Transmission Power 2W

Noise Power Density 10−20W/Hz

Path Loss 4

Weight V 4.6× 104

User’s Interest ρ 1

5.6.3.1 Content Queue Performance

Fig. 5.3 demonstrates the changes in content queue amount as time goes by. In each time

slot, we sum up the content queue amount for each session at each user as the total one, which is

dynamic and arrives at a stable state after a period of less than 30s. Such observation is consistent

with the analysis in subsection 6.1. Thus, in the following simulations, we consider the time slots

from 1 to 30 instead of 40. Besides, we check the effect on the content queue brought by the energy
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(a) Energy Weight Controller V Effect (b) User’s Interest ρ Effect

Figure 5.3: Content Queue Performance

weight controller and the user’s interest respectively. In Fig. 5.3a, the total content queue varies

slightly under different energy weight controller. It is mainly because we factitiously initialize the

content queue amount to be proportional to the energy weight controllers. On the other hand, the

user’s interest in the content session puts a positive effect on the content queue. If a user is more

interested in each content, he would like to store contents and popularize them at the same time.

Thus, he allows more contents to be kept in his queue. As can be seen in Fig. 5.3b, at the stable

state, the total content queue is maximized when ρ = 1.0.

5.6.3.2 Dynamic Characteristics

The dynamic content queue in Fig. 5.3 introduces the dynamic performance to the whole

system. Such dynamic characteristics are reflected on the representative user choice (1i=Sl
) directly

according to (5.36). As shown in Fig. 5.4, in each time slot, different representative users are chosen

to receive different content sessions from the service provider. Meanwhile, the same content session

is transmitted to different representative users in different time slots. As time goes by, the choice of

different representative users becomes stable (from 25s to 31s), which indicates the stability of the

entire system is reached.

Besides, we describe the dynamic content transmission choice from the time slot 3 to the

time slot 6 in Fig. 5.2. The allowed and the actual content transmission pairs (smij (t) and f lij(t))

change in different time slots. In some time slots, e.g., the time slot 4, no contents are transmitted

although a few transmission pairs are allowed. Whereas the contents are transmitted in all the
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Figure 5.4: Representative Choice

allowed transmission pairs in some time slot, e.g., the time slot 5. Meanwhile, different content

sessions are transmitted between different transmission pairs in different time slots. The dynamic

content queue affects the offloading content amount as in S3, which puts an effect on both the

content queue and the virtual queue like. The dynamic virtual queue affects the choice of the

allowed transmission pairs as in S2. Thus, the system becomes dynamic but finally arrives at a

stable state.

5.6.3.3 Energy Cost Performance

We consider the averaged energy cost for each user in each time in Fig.5.5. Fig. 5.5a shows

the effect on the averaged energy cost brought by different modulation schemes. To achieve content

successful transmission under random channel conditions, users have to choose different modulations

schemes adaptively. Therefore, we see that the averaged energy cost under the adaptive M-QAM

scheme is lower than that under 8QAM and higher than that under 32QAM.

Fig. 5.5b considers the averaged energy cost in time slot 2. As can be seen, the averaged

energy cost decreases with the increase of the energy weight controller, which is consistent with our

description previously. Fig. 5.5c shows the changes in the averaged energy cost as the time goes

by, from which the average energy cost becomes almost the same after 20 time slots. The dynamic
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averaged energy cost performance is the same as that of the content queue amount. Besides, we

demonstrate the time-averaged energy cost under users’ social preferences in Fig.5.5d, where “Rand”

means users have different interests in different contents. Users would like to cache their interested

contents instead of disseminating them, especially in bad channel conditions. Therefore, we see that

the time-averaged energy cost decreases with the increase of social preference.

(a) Modulation Effect (b) Energy Weight V Effect

(c) Time Effect (d) Social Effect

Figure 5.5: Energy Cost Performance

Meanwhile, as energy weight controller V increases, the difference of time-averaged energy

cost between social preferences becomes smaller in Fig.5.5d. Social preference’s effect on the energy

cost results from its effect on the maximum queue size. When V becomes larger, keeping queue

stability becomes less important. Users could cache more contents no matter how much they are

interested in the contents. Hence, the total energy cost is lowered. Besides, social preference’s effect

on the energy cost becomes subtle. When V becomes smaller, users have to strictly guarantee their
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queue stability. They could not cache too much in their buffers. Therefore, they have to offload more

contents to other users, which increases the energy cost. Meanwhile, due to the strict requirement to

queue stability, users cache their most interested contents. Thus, their social preferences will greatly

affect the energy cost.

(a) Total Content Queue (b) Averaged Content Queue

(c) Total Energy Cost (d) Averaged Energy Cost

Figure 5.6: User Number Effect

5.6.3.4 User Number Effect

Besides the above consideration, we compare the content queue and energy cost performance

under a different number of users. Specifically, we consider the cases with 2, 4, 6, 8, 10, 12, 14 and 18

users respectively. The minimum distance among users in each case is set to 250m. In Fig.5.6a, we

consider the time-averaged total content queues, where the content queue amount increases as the

number of users increases. In Fig. 5.6b, we further average the content queue over the user number.

The time-averaged user-averaged content queue jumps among the cases with different numbers,
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Figure 5.7: Reaching Steady State Speed

which indicates the introduction of more users does not affect the stability of the content queue.

In addition to time-averaged total content queue performance, the time-averaged energy cost also

increases with the introduction of more users whereas per-user time-averaged energy cost decreases,

which are shown in Fig. 5.6c and 5.6d respectively.

Finally, we investigate our solution’s speed to a steady network state. As shown in Fig.5.7,

when a few users exist, they can reach a steady network state very soon. When the number of

users increases, it takes a longer time to reach a steady state. Since users are always in a changing

environment, the speed of reaching a network state does not affect users to offload or to access data

as long as they do not reach the maximum queue size. Such observations further demonstrate that

our proposed online optimization solution is not affected by the number of users, which means our

solution does not suffer from the “curse of dimensionality”.

5.7 Chapter Summary

In this chapter, we propose a social-aware energy-efficient data offloading approach to re-

duce energy consumption and achieve green communication in the cellular network. By jointly

considering storage capacity allocation, queuing and transmission scheduling, we design an offline
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energy consumption minimization problem, which is a time-coupling stochastic MINLP problem. By

introducing a virtue queue and employing Lyapunov drift-plus-penalty theory, we reformulate the

problem as an online finite-queue-aware energy consumption problem, which is decoupled and then

decomposed into several separate subproblems in each time slot. The proposed method ensures the

network with strong stability. Both lower and upper bounds on the optimal result of the original

optimization problem are obtained. Based on the simulation results, we show the feasibility and

efficiency of our approximation approach.
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Chapter 6

Secure and Optimized

Unauthorized Secondary User

Detection in Dynamic Spectrum

Access

6.1 Chapter Overview

The proliferation of mobile and interconnected devices has exacerbated the depletion of

licensed wireless spectrum bands in the recent decades. Dynamic System Access (DSA) has received

considerable attention recently due to its ability to alleviate the spectrum scarcity issue. In a DSA

system, a spectrum operator, who regulates the licensed spectrum, authorizes the secondary user

(SU) to opportunistically use the spectrum when it is not occupied by primary users. However, the

open nature of the wireless medium makes the DSA system a potential target for unauthorized access.

Specifically, by faking/replaying the spectrum permit (denoted as permit hereinafter), unauthorized

SU can use any available spectrum bands and introduce severe interference to authorized SU who

is currently using the designated spectrum bands. As a result, the authorized SU will lose interests

on participating in DSA and thus the benefits brought by the DSA system are largely deteriorated.
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Therefore, it is highly needed to devise an efficient and accurate unauthorized SU detection scheme

to ensure the DSA system and further unleash its great potential for future wireless systems with

cognitive capabilities.

Physical-layer authentication is an effective way to distinguish unauthorized SU from au-

thorized SU without having to complete higher-layer processing [97, 98, 105, 106, 185]. Specifically,

the authorized SU embeds an unforgeable permit into its data traffic using techniques related to the

physical layer. A third party named as the verifier passively eavesdrops on the SU’s transmission

and tries to detect and verify the permit. Yang et al. [185] add cryptographic permit into OFDM

symbols for detection. Permit is concealed via inter-symbol interference in [106]. These two schemes

negatively impact normal data transmission. Jin et al. [98] embed the permit by using dynamic

power control on transmitted signals. FEAT scheme in [105] embeds the authentication information

into the transmitted waveform by inserting an intentional frequency offset. It takes a long time to

detect the unauthorized SU in these two schemes, which gives the unauthorized SU opportunity to

transmit its information without being detected. By concealing the permit into the cyclic prefix

in [97], the fake/replayed permit can be detected, which is impractical due to the modification of

the existing physical layer protocols. These identified weaknesses motivate us to design an accurate,

efficient and implementable unauthorized SU detection scheme, which not only ensures the current

DSA system but also becomes a crucial component adapted to future wireless systems [4].

In this chapter, we propose a novel unauthorized SU detection scheme based on hierarchi-

cal modulation [95], where permit symbols generated using a hash function and data symbols are

synchronously aggregated before transmission. To overcome the intrusion to data transmission, the

operator picks up a proper power allocation scalar between the permit and data transmission power,

which allows the reliable transmission of both permit and data. Different from the traditional hi-

erarchical modulation, the operator modulates the permit using rotation multiple layer modulation

(RMLM), in which permit bits are first grouped, modulated, rotated and finally added together.

By choosing proper rotation angles based on the current channel condition, which sensors in DSA

obtain by performing channel estimation and then return to the operator, RMLM not only helps

permit information to resist the noise but also prevents unauthorized SU faking/preventing the per-

mit. The parameters related to the hash function, the power allocation scalar, the rotation angles

in RMLM together with permit rotation angles are sent to the verifier through an authenticated

and encrypted channel at the beginning of the spectrum authentication by the operator. At the
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verifier, MMSE-SIC (Minimum mean square error-Successive interference cancellation) is deployed

to detect the permit information. Together with RMLM, our scheme can achieve permit reliable

transmission with high transmission rate [165]. Since no extra knowledge is needed at the authorized

SU receiver, our scheme does not change the existing physical-layer protocols. We highlight and list

our contributions as follows:

• We propose a novel unauthorized SU detection scheme, which prevents unauthorized users

from capturing the authorized SU’s spectrum bands.

• We deploy an improved hierarchical modulation to embed permit information into data trans-

mission. A proper power allocation scalar is chosen to reduce the permit’s intrusiveness to

normal data transmission.

• Based on the current channel condition, we optimize the permit RMLM and achieve high

efficiency and accuracy in unauthorized SU detection.

• By combining the permit embedding at the SU transmitter and MMSE-SIC at the verifier, a

satisfactory permit error performance is achieved.

The rest of this chapter is organized as follows: In Section 6.2, we briefly review the existing

unauthorized SU detection schemes and study the literature of RMLM and MMSE-SIC. Then, we

give a description of our system model and the proposed framework in Section 6.3. In Section 6.4,

we elaborate the scheme from the following four parts: permit generation and encoding, permit

modulation, permit embedding, and permit detection and verification. To show the security effec-

tiveness of our proposed scheme, we analyze the resilience to emulation and replay attacks, as well

as the comprising attack in Section 6.5. Both permit and data detection performance are thoroughly

evaluated in Section 6.6, followed by the conclusion in Section 6.7.

6.2 Related Work

In this section, we review the prior works closely related to our proposed scheme.
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6.2.1 Unauthorized SU Detection

Previous methods on safeguarding the DSA system is to deploy cryptographic schemes

[12, 57, 126, 130] at the higher layers where messages carried by the waveform are detected for au-

thentication. Different with those mechanisms, the physical layer-based authentication approaches

enable a receiver to distinguish the authorized SU and the unauthorized SU without involving higher-

layer processing. This fact brings obvious advantages on efficiency improvement. More importantly,

the physical layer-based detection is indispensable in some cases. For example, in the heterogeneous

coexistence environment, e.g., IEEE 802.22 and 802.11af systems coexisting in TV white space,

incompatible system may not be able to decode each others’ higher layer signals. Thus, the re-

search on the physical layer-based detection approaches, such as RF fingerprinting in [26, 83, 166]

and authentication signal embedding in [97,98,105,106,142,163,185], attract a lot of attentions.

6.2.2 Superposition coding (SC) and MMSE-SIC

Hierarchical modulation is considered as a practical implementation of SC [131] while RMLM

is the extension of SC. Tse et al. [42,91,128,129,165] assume SC to be an alternative scheme for high

throughput transmission. An interesting feature of SC is that the transmitted signal exhibits an

approximately Gaussian distribution, which provides a more straightforward approach for achieving

the so-called shaping gain [56,167,169] as demonstrated in [129]. Successive interference cancellation

(SIC) is a physical-layer detection strategy at the receiver. As is described in [165], in SIC, one of

the users, say user 1, is decoded treating user 2 as interference, but user 2 is decoded with the benefit

of the signal of user 1 already removed. It has been proven that the transmission rate of users in the

capacity region can be achieved by deploying SC at the transmitter and SIC at the receiver in [165].

Therefore, we apply SC and SIC to improve the accuracy and efficiency of both permit and data

transmission.
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6.3 System Model and Framework Overview
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Figure 6.1: System Model of the Optimized Detection Scheme

6.3.1 System Model

As shown in Fig.6.1, our system model contains three entities.

• Spectrum Operator: It refers to a licensed spectrum owner or a spectrum-service provider that

regulates spectrum sharing. A typical example is the SAS in 3.5GHz band [38]. When a SU re-

quests an unoccupied spectrum, the spectrum operator allows the SU transmission by sending

it the spectrum authorized information. To prevent unauthorized access, the spectrum oper-

ator recruits multiple verifiers in the specific area. Besides, the spectrum operator optimizes

the permit embedding by picking up a proper allocation scalar and rotation angles in RMLM

according to the known current channel condition (In 3.5GHz, it is sensed by Environmental

Sensing Capability sensors (ESC) and reported to SAS), which are sent to the SU and its

nearby verifier. Either according to a pre-determined random schedule or when the authorized

SU in a particular area reports abnormal interference, the spectrum operator authorizes the

SU and the verifier to begin permit detection process.

• Secondary Users (SU): A SU requests and pays for a given licensed spectrum at the desired

location and time. As soon as receiving permit detection indication from the spectrum opera-

tor, the SU transmitter embeds the permit into its data and transmits the aggregated symbols.

The SU receiver has no idea about the permit embedding and detects data information without

any changes on the physical layer.
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• Verifier: It extracts the permit information from the received signal and does not participate

in normal data transmission. Even if the verifier detects data symbols, it cannot know the

data information due to the lack of higher layer protocols. After authentication, the verifier

reports its results to the spectrum operator who will then physically locate and further punish

the illegitimate transmitters.

6.3.2 Attack Model

We define the attacker as the unauthorized SU who transmits without authentication either

by accident or misconfiguration, or who illegally accesses the spectrum to avoid costs of spectrum

occupation. Given the flexibility of today’s cognitive radios, above operations can be done by

controlling its transceiver to manipulate its physical-layer symbols. Without a valid permit, the

attacker tries to compromise the spectrum by faking/replaying one. Meanwhile, we assume that the

unauthorized SU is computationally bounded and cannot break the cryptographic primitives used

to generate the permit. Finally, the unauthorized SU can compromise the verifier to report incorrect

results to the spectrum operator.
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Figure 6.2: Framework of the Secure and Optimized Detection Scheme

6.3.3 Framework Overview

The framework of the proposed detection scheme is shown in Fig.6.2. The permit sequence

pi in time slot i is encoded as the coded bit sequence cp(i), which is then mapped into permit symbol
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sequence xp(i) using RMLM:

xp(i) =
√
k(i)(mp1(i)ejθ1(i) +mp2(i)ejθ2(i)) (6.1)

which is then added to the modulated data symbol sequence xd(i). Given the AWGN noise nd(i)

with mean 0 and variance σ2, the received signal y(i) at the SU receiver is:

yd(i) = xd(i) + xp(i)e
jα(i) + nd(i) (6.2)

MMSE is used to detect the data bit sequence d′(i) from yd(i).

The received signal yp(i) at the verifier is:

yp(i) = xd(i) + xp(i)e
jα(i) + np(i) (6.3)

where np(i) is the AWGN noise with the same mean and variance with nd(i). We apply MMSE-

SIC to detect the permit p′i. The verifier detects data symbols while treating permit symbols as

interference at first. After subtracting detected data symbols, the remaining part is decoded as the

permit p′i using MMSE.

6.4 Optimized Unauthorized SU Detection Scheme

In this section, we elaborate the proposed unauthorized SU detection scheme. Mutual

information (MI) between the transmitter and receiver is a measure of transmission rate on the

premise of reliable communication [165]. Therefore, we choose the rotation angle in permit RMLM

by maximizing MI to achieve the accurate and efficient permit detection. As for permit embedding,

the power allocation scalar and the rotated angle for permit symbols are discussed step by step. Due

to the same detection scheme optimization in each time slot, we ignore the time slot expression i in

the following.

6.4.1 Permit Generation and Encoding

Before elaborating the scheme in detail, we make three assumptions to ensure the entire pro-

cess, which is the same as those in [98]. First, the geographic region is divided into non-overlapping
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cells of equal size to avoid the inter-cell interference. In each cell, we assume that the idle spectrum

is divided into non-overlapping channels to prevent the intra-cell interference. Finally, time is di-

vided into slots of equal length. To ensure the correct detection for permit and data, all entities are

assumed to be loosely synchronized to a global time server.

An efficient one-way hash chain is deployed by the operator to generate the unforgeable

spectrum permits. Denote h(x) as a cryptographic hash function on x and hη(x) as η successive

operations on h(·) to x. An SU transmitter requests a spectrum usage by specifying a band index, an

area index, and a time duration γ. Receiving the request, the spectrum operator transmits a random

number pγ to the SU transmitter securely. The SU transmitter recursively computes pi = h(pi+1),

i ∈ [1, γ − 1] as its permit in time slot i. The spectrum operator also generates p0 = hγ(pγ) and

sends it to the verifier.

To tolerate transmission errors resulted from the noise and reduce the hardware cost, the

permit is encoded using repetition code Cm with system parameter m. Other encoding techniques,

such as convolutional code and turbo code, can also be applied, which further improves the permit

detection efficiency by paying the complexity cost.

6.4.2 Permit RMLM

Given the permit RMLM process in Fig.6.2, we first show an example of permit constellation

assuming θ1 = 0 and θ2 = π/6 in Fig.6.3 after RMLM. We employ Quadrature Phase Shift Keying

(QPSK) to modulate the permit bits. It is widely applied in many applications and standards such

as IEEE 802.11b and IEEE 802.11g. General quadrature amplitude modulation is also supported.

In Fig.6.3, the two bits in angle brackets represent permit bits in the first layer while those in

parenthesis indicate permit bits in the rotated second layer. Every four bits correspond to one

permit symbol.

6.4.2.1 Rotation Angle Effect

As shown in Fig.6.3, the choice of rotation angle affects the permit transmission reliability

due to its effect on the minimum distance between permit symbols. In AWGN channel, increasing

the minimum distance is an effective method to enhance the noise-resilient capability [63]. A worst

case is θ1 = 0 and θ2 = π/2 under which the minimum distance becomes 0. The verifier cannot

distinguish permit bits from the detected permit symbols. Therefore, how to choose a proper rotation
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Figure 6.3: An Example for Permit Symbol Constellation

angle becomes the key part in permit RMLM. Since the repition code Cm encoding the permit has

an strong error correcting capacity of (m−1)/2, we consider the permit transmission quality instead

of its recoverability at the verifier in our scheme. According to [67], the input−output MI is an

indicator of how much coded information can be pumped through a channel reliably given a certain

input signaling. Therefore, we pick up the rotation angle by maximizing MI.

Assuming we have subtracted the data symbols at the verifier. Since choosing the proper

rotation angle is the same in each time slot, we rewrite the permit at the SU transmitter and

the verifier as U = U1 + U2e
jθ and V = U + N , where U1, U2e

jθ, U represent
√
k(i)mp1(i),√

k(i)mp2(i)ejθ2(i) and xp(i) respectively. The noise np(i) in (6.3) is denoted as N with zero mean

and variance σ2. Our goal is to find a proper θ by maximizing MI between V and U :

max
θ

I(U ;V )

s.t. 0 ≤ θ ≤ 2π (6.4)

where I(U ;V ) =
∑
u∈U,v∈V p(uv)log2

∑
u′∈U p(v|u

′)p(u′)

p(u) [42]. The joint distribution of the input u

and output v, the probability distribution function (PDF) of u, and the PDF of v on the knowledge

of u′ are p(uv), p(u), and p(v|u′), respectively. When the probability of each elements in U is equal,
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the MI gets the maximum value [42]. It is written as:

I(U ;V ) = log2M −
1

M

∑
um∈U
v∈V

p(v|um)log2

∑
uj∈U

p(v|uj)

p(v|um)
(6.5)

where p(v|uj) = 1
πσ2 exp(

−|v−uj |2
σ2 ). M denotes maximum number of permit symbols after RMLM.

Using QPSK modulation, M = 16.

6.4.2.2 MI Optimization

Denote dmj =
um−uj

σ and t = v−um
σ . Due to the complex and continuity of the received

signal V , rewrite I(U ;V ) in (6.5) as:

I(U ;V ) = log2M −
1

Mπ

M∑
m=1

+∞∫
−∞

+∞∫
−∞

exp
(
−|t|2

)
×

log2

M∑
j=1

exp
(
−2t · dmj − |dmj|2

) dt (6.6)

Assume fm(t) = log2

∑M
j=1 exp

(
−2t · dmj − |dmj |2

)
, I(U ;V ) is expressed by Gussian-Hermite nu-

merical integration as:

I(U ;V ) = log2M−
1

Mπ

M∑
m=1

+∞∫
−∞

+∞∫
−∞

exp
(
−|t|2

)
fm(t) dt = log2M−

1

Mπ

M∑
m=1

P∑
p1=1

Wp1

P∑
p2=1

Wp2f(t1, t2)

(6.7)

where P , Wp1, Wp2, t1 and t2 are the parameters that can be found in [10].

The I(U ;V ) in (6.7) is a function with variable θ concealed in fm(t). The MI maximization

problem becomes:

max
θ

log2M −
1

Mπ

M∑
m=1

P∑
p1=1

Wp1

P∑
p2=1

Wp2f(t1, t2)

s.t. 0 ≤ θ ≤ 2π (6.8)

We solve the above optimization problem by a numerical global research method [104],

which can be implemented using the MATLAB Global Optimization Toolbox. This method is a

gradient-based algorithm using multiple randomized starting points to find different local optimal

values of a smooth nonlinear optimization problem [27].
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6.4.2.3 Rotation Angle Chosen

We figure the relationship between the rotation angle and the MI in Fig.6.4 assuming the

Signal-to-Noise Ratio SNR = 20dB and k = 0.25. The opmital rotation angle is θ∗ = π/4 and the

figure is about θ symmetric. In Fig.6.5, the permit constellations are plotted together when θ = π/6

(red solid circle) and θ = π/3 (blue hollow circle). Combining Fig.6.4 and Fig.6.5, we conclude that

the permit constellations are totally different under different rotation angles even if their effects on

MI are similar, e.g., θ = π/6, π/4, π/3. Motivated by above observations, the spectrum operator

is designed to choose a list of sequential rotation angles randomly based on the current channel

condition, e,g., θ = {π/6, π/4, π/3, π/3, π/4, · · · } at 20dB, which are sent to the verifier and SU

respectively.

Figure 6.4: MI vs Rotation Angle Figure 6.5: Permit Contellation after RMLM

6.4.3 Permit Embedding

6.4.3.1 Power Allocation

Although the permit symbols and data symbols can be transmitted simultaneously, the em-

bedded permit symbols are actually the interference of data symbols, which brings negative impacts

to the data transmission. To alleviate such negative impact, we introduce the power allocation scalar

k. Assume the unit total power, the power of the permit and the data is k and 1 − k respectively.

We will thoroughly investigate the power allocation via the experiment in Section V to choose a

proper one under which the reliable transmission of both the permit and data is achieved.
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6.4.3.2 RMLM Permit Symbol Rotation

The motivation to rotate RMLM symbols when embedded into data is to increase the data

detection accuracy and further improve the permit detection performance. Specifically, we rotate

RMLM permit symbols with an angle α when they are embedded to the data symbols in the first

quadrant, such that the minimum distance between aggregated symbols and the vertical/horizontal

axis is maximized. The aggregated symbols are then made symmetric along the vertical axis, the

central point, and the horizontal axis to construct the constellation. Since QPSK and MMSE-

SIC employed at the SU transmitter and the verifier respectively, the above minimum distance

maximization effectively helps resist against the interference to the transmitted symbols brought by

the noise. Data symbols are detected with better accuracy and thus an improved permit detection

is achieved. Meanwhile, the data detection performance is also improved at the SU receiver.
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Figure 6.6: Constellation of the Transmitted Symbols

An constellation example of the transmitted symbols is shown in Fig.6.6 with k = 0.25,

θ = π/6, and α = 0, in which x marks, red triangles and green blue dots represent the constellations of

the original permit symbols, the original data symbols and the final transmitted symbols respectively.

In practice, a permit can be transmitted via one or multiple data packets. Permit embedding starts

after the preamble and header transmission until either permit bits are all sent or the data symbols
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all are used up [98]. In our scheme, each data symbol carries four permit bits due to two layers’

aggregation in RMLM. More permit bits can be embedded by increasing the number of layers.

6.4.4 Permit Detection and Verification

6.4.4.1 Permit and Data Detection

MMSE-SIC is deployed to detect the permit at the receiver. With the received signal, the

verifier first detects each QPSK data symbol sequentially by using MMSE. Specifically, the verifier

suggests the QPSK constellation point nearest to the received signal as the transmitted data symbol,

e.g., red triangular in Fig. 6.6. The detected data symbol is then subtracted from the received signal.

At the same time, the verifier makes a re-symmetry for the remained signal according to the position

of the detected data symbol. If it is in the second/three/four quadrant, the verifier finds the point

that is symmetric with the remained signal about the vertical/central/horizontal axis as the received

permit signal. Similar with the data detection, the verifier detects the permit symbols using MMSE.

According to the mapping rules between permit symbols and permit bits, the verifier can easily

get the transmitted permit bits, which is then decoded as either 0 or 1 by using the hard-decision

strategy. Since each permit bit has been consecutively repeated m times, the majority rule is then

applied to determine each permit bit. Note that the verifier reconstructs the permit constellation

based on k, α, and θ, e.g., green cross (×) in Fig. 6.6.

Permit transmission and detection are totally transparent to the SU receiver as if it does

not know the existence of permit. The SU receiver still performs QPSK demodulation.

6.4.4.2 Permit Detection in Practice

In practice, the start of the permit detection is similar with that in [97,98]. The verifier keeps

detecting the permit from physical-layer signals on the corresponding band in a specific duration. It

first detects the preamble for synchronization and obtains the packet size from the header, followed

by the permit detection. If the verifier misses the preamble of the current packet, it detects the

permit from the upcoming packet.
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6.4.4.3 Permit Verification

Denote the detected permit in time-slot i as p′i. To verify the transmitter’s identity, the

verifier computes p′0 by i successive operations of the same hash function h on p′i, p
′
0 = hi(p′i). If

p′0 6= p0, verifier suggests this transmitter is an unauthorized SU. Otherwise, the specific band is

assumed to be securely used by an authorized SU. All the detection results are finally reported to

the spectrum operator who will take further measures according to the receiving results.

6.5 Security Analysis

By emulating an authorized SU transmitter, replaying an overheard permit, or compromising

the verifier to report incorrect results to the spectrum operator, the unauthorized SU may access

the spectrum illegally. Our proposed scheme is resilient to above attacks.

6.5.1 Emulation Attack

A successful emulation attack is achieved if an unauthorized SU provides a proof of the

SU transmitter’s identity to mislead the verifier to believe that the current spectrum is occupied.

Specifically, the unauthorized SU launches an emulation attack if it derives a fake permit which

is the same as that of the SU transmitter. However, such emulation attack is impossible in our

scheme. The unauthorized SU does not have the computational ability to break the cryptographic

primitives. Therefore, it cannot obtain the permit in the next time slot without the root of the

hash chain. However, the unauthorized SU may occasionally create the same permit. Fortunately,

the length of the permit generated using hash function is long enough, so we can ignore such case.

Taking SHA-1 for example, which is one of the most widely used cryptographic hash functions,

it generates 160-bit values. The maximized probability of generating the same permit is 1/(2160),

which is negligible. Therefore, our scheme can successfully prevent the emulation attack.

6.5.2 Replay Attack

Although the unauthorized SU cannot derive a fake permit, it may eavesdrop on a SU trans-

mission, extract its permit, and then attempt to use it for its data transmission. To prevent the

unanthorized SU from extracting the permit, we provide three barriers. As mentioned in IV-B-3)
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part, the angles calculated based on the current channel condition are put into the roatation angle

list randomly, which is sent to the SU transmitter and the verifier through an authenticated and

encrypted channel. Both the SU transmitter and the verifier process the permit using the rotation

angles sequentially and consistently. Therefore, the first barrier in our scheme is the channel esti-

mation. With wrong channel estimation, it is difficult for the unauthorized SU to know the rotation

angle range. Even though the unauthorized SU guesses the range successfully, the randomness of the

chosen rotation angles sets up a new obstacle for the unauthorized SU to know the current rotation

angle based on the previous knowledge. Meanwhile, as shown in Fig.6.5, the constellation patterns

of the permit under different rotation angles are totally different. Hence, the unauthorized SU is

almost impossible to guess the permit exactly without the rotation angle. Taking a step back, if

the unauthorized SU luckily extracts the current permit, it cannot replay the permit in the next

slot without the hash root. Therefore, a lion is in the way for the unauthorized SU to extract the

current permit and further replay one to deceive the verifier.

6.5.3 Compromising Attack

By compromising the verifier to report the wrong detection results to the spectrum operator,

the unauthorized SU can access the spectrum “legally”. To solve such problem, the spectrum oper-

ator deploys a number of verifiers to patrol the potential transmission area. By receiving detection

results from various verifiers and combining them using known consensus distributed algorithms [41],

the probability of wrong spectrum occupation judgment is greatly lowered.

6.6 Performance Evaluation

In this section, we evaluate the performance of our secure and optimized detection scheme

using both MATLAB simulations and the USRP experiment.

6.6.1 Evaluation Settings

In the evaluation, we use SHA-1 with 160-bit long as the hash function for the permit

generation. 100 data packages with payload length of 2000 bytes each are transmitted in each

time slot. As shown in Fig. 6.2, we assume the aggregated symbols are transmitted in an AWGN

environment with the noise variance σ2, the power of which is normalized. SNR is defined as
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SNR = 1
σ2 . We evaluate the permit detection performance based on permit bit-error-rate (BER)

and permit error rate (PER). In particular, PER is approximated by the probability when all the

160 permit bits are correctly extracted. The data detection performance is measured using data

bit-error-rate (data BER).

(a) Permit BER with m = 17 (b) PER (c) Data BER

Figure 6.7: The Impact of Power Allocation Scalar k on Performance

6.6.2 Results in MATLAB Simulations

6.6.2.1 Permit BER Performance

In Fig.6.7a, the permit BER decreases to 0 when SNR is near 15dB with m = 17 and

k = 0.10. By increasing k, the permit BER performance improves. In a very poor wireless channel,

e.g., SNR = 5dB, our detection scheme obtains a satisfactory permit BER performance.

6.6.2.2 PER and Data BER Performance

PER Performance. Since the one-way hash function is used, we have to ensure the

correctness of each permit with 160 permit bits. The relationship between the permit BER Pb and

the PER Pp is calculated theoretically as:

Pp = 1−(

 m

dm/2e

 (1−Pb)dm/2ePm−dm/2eb +

 m

dm/2 + 1e

 (1−Pb)dm/2+1eP
m−dm/2+1e
b +· · ·+(1−Pb)m)160

(6.9)

In Fig.6.7b and Fig.8, we see that our scheme can achieve a very low PER. Taking the

case with m = 17, k = 0.25 as an example, when SNR equals 2|4|6|8|10|12dB, the PER is

1.00|0.86|0.14|0.02|0.0009|0. We compare the PER performance between our proposed scheme and

schemes in [98] as illustrated in Fig.6.11a. With the same repetition parameter m = 17 and similar
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power allocation scalar k, our scheme achieves a lower PER. Note that we evaluate the power allo-

cation scalar in [98] by squaring its system parameter k. When k = 0.4949 and 0.4241 in [98], the

power allocation scalar equals to 0.2499 and 0.1799.

The impact to Data detection. From Fig.6.7c and Fig.9, we see that the data can

be correctly transmitted with SNR > 15dB. This is consistent with the fact that accurate data

transmissions are unlikely to occur in poor wireless channels. In addition, the data BER performance

is compared between the case without permit transmission and the case with spectrum permits

of different allocating power in Fig.6.7c, which shows that introducing permit brings 3dB SNR

reduction. To further show the relationship between the permit and the data transmission, we

Figure 6.8: Trade off between PER and Data BER

joint consider the performance of PER and data BER as shown in Fig. 6.8 with m = 7. When

SNR = 12dB, the power allocation scalar k is equaled to 0.10, 0.15, 0.2, 0.25 and 0.3, respectively.

The setting of k in other SNRs is similar. Obviously, the closer the curves to the origin, the lower

decoding errors for the permit as well as the data BER. From Fig. 6.8, we find that the permit

brings a negligible negative impact to the data transmission even in poor wireless channels [62].

When SNR > 15dB and k > 0.20, both PER and data BER approach to the origin.

Additionally, the performance of PER and data BER are affected by parameters and opti-

mization variables related to our scheme. We discuss their influences as follows,

The Impact of Power Allocation Scalar. From Fig.6.7, we see that the power allocation
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scalar brings a positive effect on the PER whereas a negative effect on the data BER. It is because

permit symbols are considered as the noise when data symbols are detected. Thus, permit symbols

with higher power make data detection vulnerable to the noise. An interesting observation is that

the performance of permit detection mainly depends on k although the detection of permit symbols

depends on that of data symbols. It gives a credit to the repetition encoding for permit symbols and

the optimization in permit embedding. The optimization in permit embedding ensures that parts of

permit symbols can be accurately detected even if data symbols are incorrectly detected. Combing

with hard-decision decoding strategy, the PER performance is further improved.

(a) Permit Modulation (b) Permit Embedding (c) Permit Detection with k = 0.25

Figure 6.9: PER vs. SNR

(a) Permit Modulation (b) Permit Embedding (c) Permit Detection with k = 0.25

Figure 6.10: Data BER vs. SNR

Permit Modulation Optimization. Fig.6.9a and Fig.6.10a illustrate the results of permit

modulation optimization with m = 13. Both PER and data BER decrease with an optimized permit

modulation, which satisfies our expectations. By optimizing the rotation angle θ of permit symbols

in the second layer, we maximize the MI of permit symbols, which increases their resistance to the

environmental noise. The permit symbols with an optimal constellation introduce less noise to data

symbols. Therefore, the performance of data BER is improved.

Permit Embedding Optimization. The effect of permit embedding optimization is

shown in Fig.6.9b and Fig.6.10b with m = 13, in which “Opt” means that we rotate permit symbols
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and make a symmetry for them when they are embedding into data symbols whereas “noOpt”

means permit symbols are added on data symbols directly. The data detection mainly depends on

k and the permit embedding optimization contributes to permit detection. This can be supported

by comparing the “Opt” and “unOpt” cases with m = 13 and k = 0.25 in Fig.6.9b. Without

optimization, the PER of the permit detection depends on k and data detection simultaneously.

When k is large, the incorrect data detection brings negative impacts on permit detection. As

illustrated in the impact of power allocation scalar, the permit embedding optimization alleviates

the negative impact on permit detection. Thus, “Opt” case outperforms “unOpt” case.

Permit Detection. Fig.6.9c and Fig.6.10c describe the impact of parameter m Since

repetition encoding is applied to permit symbols, it has nothing to do with data BER. Due to

majority rules in the decoding, the detection performance can be easily improved by increasing

m. However, it also brings more redundancy to permit transmission. In the simulations, we find

that increasing m brings better PER performance by sacrificing efficiency with m lower than 13.

However, when m > 13, the PER cannot reduce more even if continuing increasing m. This reminds

us to choose a proper m which both improves the PER performance and increases the acceptable

redundancy.

6.6.2.3 Detection Accuracy and Efficiency

False-positive and False-negative rates. Based on the PER results, we further analyze

the false-positive rate as shown in Fig.6.11b with m = 13 and k = 0.25. The num in the figure

implies the number of verification attempts for the permit. We can clearly see that the false-positive

rate of our schemes is almost negligible even with a high PER. As for the false-negative rate, the

probability that a fake permit is identified as authorized one is (1− Pp)/2160, which is too small to

mislead the verifier. Hence, our proposed scheme can effectively defend both emulation or replay

attack.
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(a) Comparison with m = 17 (b) Accuracy (c) Efficiency

Figure 6.11: Comparison, Accuracy and Efficiency

Detection Efficiency With the above false-positive rate, we compute permit detection

time as follows. Denote l as the byte length of each data packet. Assuming the data is transmitted

with a speed of 2 Mbit/s and repetition encoding parameter m = 13, Fig. 6.11c shows the impact of

l and num on the permit detection time. Generally, the permit detection time increases with l. In

particular, larger data packet means that the time gap between the transmission of two consecutive

permits becomes longer, leading to longer permit detection time. With the same length of the data

packet, the permit detection time increases with the number of the verification attempts. This is

because the increment of the number of verification attempts will potentially increase the number

of data packets, which results in longer permit detection time. No matter how many the number

of verification attempts and data packet length are, the average detection time for each permit is

the same, which is near to 10−3s. Both permit detection time and average permit detection time

demonstrate the high efficiency of our scheme.

6.6.3 Results in USRP Experiment

An experiment using USRP N210 [150] with GNU Radio is conducted in our lab. During the

experiment, there are human activities such as walking. Since the phase ambiguity commonly exists

in QPSK modulation in practice, differential QPSK, where the information bits are differentially

coded, substitutes QPSK in our experiment [63].

The PER performance using USRP is shown in Fig.6.12. Both the power allocation scalar

k and repetition encoding parameter m have a positive impact on the permit detection. However,

the PER performance in the USRP experiment is worse than that in MATLAB simulations. Taking

the case with k = 0.25 and m = 7 as an example, the PER is near to 0.3 when the SNR increases

to 16dB in the USRP experiment, whereas the PER approaches to 0 when SNR is above 8dB in
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MATLAB simulations. We infer that it is due to the imperfect time and frequency synchronization

together with the phase recovery. Poor phase recovery mechanisms bring a serious impact on the

permit detection. Even worse, when k is decreased to 0.15, the verifier cannot detect the permit.

This is because the received permit power is further lowered due to the attenuation of transmission

signals, which submerges the permit into the noise. Although the experimental results are not as

good as those in MATLAB simulations, our scheme can achieve high detection accuracy in the good

environment and outperforms Jin’s work in [98] with proper parameters. In the case with k = 0.3

and m = 7, the PER is about 0.7|0.05|0.02|0.01 when SNR approaches to 12|14|16|18dB. This result

demonstrates the effectiveness of our scheme.

Figure 6.12: PER Performance using USRP

6.7 Chapter Summary

In this chapter, we present a secure and optimized unauthorized SU detection scheme.

Through optimizing both permit modulation and permit embedding, our scheme achieves accu-

rate and efficient permit detection. Meanwhile, unauthorized SU is effectively prevented from fak-

ing/replaying the spectrum permit, which improves the security of the DSA system. The detailed

MATLAB simulations and USRP experiment results have proven above advantages of our proposed

scheme.
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Chapter 7

CREAM: Unauthorized Secondary

User Detection in Fading

Environments

7.1 Chapter Overview

The exploding growth and popularity of wireless devices and services have exacerbated the

depletion of licensed wireless spectrum in recent decades [36,190]. Dynamic Spectrum Access (DSA)

is a viable option to mitigate the above spectrum scarcity issue by allowing the spectrum sharing

between primary users (PUs) and secondary users (SUs). In particular, Federal Communications

Commission (FCC) regulates that the spectrum sharing framework in 3.5 GHz allows the Citizens

Broadband Service Devices (CBSDs) to opportunistically use the spectrum when it is not occupied

by or interfered with the incumbent users (authorized federal and grandfathered fixed satellite service

users). To effectively regulate the spectrum access, the spectrum operator in DSA usually issues a

unique and unforgeable spectrum permit (denoted as permit hereinafter) to an authorized SU (aSU),

which acts as an authorization to allow the aSU to occupy the dedicated frequency channel in the

specified area and time duration [98].

Although the DSA is envisioned as a promising approach, quite a few practical concerns

prevent it from actually implementing. On the one hand, specifically to the wireless environment,
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due to the atmospheric ducting, ionospheric reflection/refraction, and the reflection from terrestrial

objects, the message transmitted via a wireless multi-path channel suffers dispersion, attenuation,

and phase shift, all of which are known as fading effects [132]. On the other hand, the open nature

of the wireless medium provides opportunities for unauthorized SUs (uSUs) to occupy the spectrum

by faking/replaying the permit, which would cause severe interference to aSUs allocated to the same

spectrum. As a result, no user would participate in the DSA system for improving the spectrum

usage efficiency. Therefore, it is highly needed to devise an aSU authentication scheme to ensure the

security of the DSA system in fading environments to further unleash its great potential for future

wireless systems.

In this chapter, we propose a spectrum misuse detection scheme in fading environments,

CREAM, Constellation Rotation Embedding for Authenticating the authorized SUs based on su-

perposition Modulation. Working under the Orthogonal Frequency-Division Multiplexing (OFDM)

framework, CREAM conceals each aSU’s permit into its message signal by superposing them into the

power domain. To better adapt specific fading environments, CREAM constructs an optimization

problem to find the optimal angle for constellation rotation and interleaving prior to superposition

modulation. A third party verifier, close to the aSU transmitter, passively monitors the signal trans-

mission. Having a pre-shared secret on the related parameters with the aSU, e.g., power allocation

factor, rotation angles, and the permit root, the verifier detects the permit using maximum likelihood

(ML) estimation, followed by the transmitter identification. In general, CREAM has the following

salient features that make it ideal for uSU detection in fading environments:

• Security: Without the complete knowledge of modulation parameters, uSUs cannot fake or

replay the current permit of aSUs. When uSUs occupy the spectrum directly, the changes

in the received signal’s will alert the verifier. In both cases, spectrum misuse can be easily

detected.

• Accuracy: OFDM is robust against fading caused by the multi-path propagation. In addi-

tion to that, the optimized constellation rotation produces significant gains by increasing the

dimensionality of the signal in fading environments. Therefore, CREAM effectively improves

the performance for permit and message transmission and thus achieves low false-positive and

false-negative rates for permit detection.

• Efficiency: Superposition modulation benefits the DSA system from achieving a high au-
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thentication rate [105]. Spectrum misuse can be detected in an extremely short time period.

Meanwhile, the high authentication rate leaves little time for uSUs to fake or replay the permit.

• Low-intrusion: The closeness between the verifier and the aSU transmitter results in less

path loss, which requires less power to achieve the reliable communication for the permit.

Thus, the permit embedding exerts less intrusion to message transmission. Beyond that, the

constellation rotation and interleaving for the message signals contribute to their transmission

performance improvement in fading environments.

The rest of this chapter is organized as follows: In Section 7.2, we review the existing uSU

detection schemes, along with a brief description of the fading environments and the techniques

to defend against fading. Section 7.3 describes the system model and the proposed framework.

The CREAM scheme is elaborated in Section 7.4 from the following three components: permit

pre-processing, permit embedding, permit post-processing. Particularly, Section 7.5 optimizes the

constellation rotation in permit embedding process. In Section 7.6, we analyze the theoretical

performance for CREAM, followed by a thorough evaluation of the permit and message performance

using MATLAB simulations in Section 7.7. Finally, Section 7.8 concludes the chapter.

7.2 Related Work

7.2.1 Unauthorized SU Detection

Methods for authenticating SUs can be classified into three categories. One is to utilize

cryptographic schemes [13, 57, 126, 130] at the higher layers. However, involving higher-layer pro-

cessing lowers the authentication efficiency due to high time consumption. Meanwhile, incompatible

systems may not be able to decode each others’ higher layer signals [105]. The transmitter-unique

“intrinsic” characteristics of the waveform, such as RF fingerprinting and electromagnetic signature

identification [26,83,166], can also be deployed to identify transmitters. However, according to [105],

those methods are sensitive to environmental factors, e.g., temperature changes, interference, etc,

which limits their efficacy in real-world scenarios.

Recent methods focus on “extrinsically” physical-layer authentication scheme, in which a

unique unforgeable signal is embedded in the message signal and then extracted at the receiver

[97, 98, 105, 106, 185]. Yang et al. [185] embed the permit by duplicating sub-carriers in OFDM to
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achieve the desired and detectable cyclo-stationary feature. Such operations not only decrease the

message throughput but also introduce high computational overhead. In [106], P-DSA is proposed

to conceal permit via controlled inter-symbol interference, which negatively impacts normal message

transmission. FEAT scheme in [105] enables the verifier to perform blind parameter estimation on

multiple parameters of the OFDM signal, giving rise to a high computation complexity. Jin et al. [97]

conceal at most two permit bits by changing the cyclic prefix length in each symbol of a physical-

layer frame, resulting in low authentication rate. By controlling the power of the transmitted signals

in [98], the permit is embedded given power constraint imposed on the transmitter. However, the

first two schemes in [98] are mainly designed for AWGN environments and are not robustness to

fading effects. Although another scheme is proposed to adapt to fading environments by changing

the message constellation, it has a low authentication rate together with the first two schemes.

Hence, CREAM rotates and superposes the permit and message to achieve a secure and reliable

aSU transmission in fading environments with a high authentication rate and a low-complexity

implementation.

7.2.2 Fading Environments

The phenomenon of fading is the time variation of the channel strengths due to the small-

scale fading resulted from multi-path and moving, as well as larger-scale effects such as path loss via

distance attenuation and shadowing by obstacles, which causes the attenuation of the signal at the

receiver [165]. Multi-path fading causes the magnitude attenuation and the phase shift of the signal

due to the atmospheric ducting, ionospheric reflection and refraction, and reflection from terrestrial

objects such as mountains and buildings [63]. Rayleigh fading [146] is a stochastic model to show

the effect brought by multi-path fading in which the envelope of the channel response is Rayleigh

distributed and the phase of the channel response is randomly distributed between 0 and 2π. It is

quite reasonable for scattering mechanisms where there are many small reflectors.

Constellation rotation is considered as a practical implementation of signal space diversity

(SSD) [127]. By increasing the diversity order [165], the rotated signal transmitted over the fading

channel has exactly the same performance of the nonrotated one transmitted over an additive white

Gaussian noise (AWGN) channel [24]. OFDM is a widely used modulation scheme in fading environ-

ments [144]. It is robust against the multi-path fading by separating a wideband signal into many

smaller narrowband signals [156]. CREAM combines the constellation rotation and the OFDM to
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achieve the permit and message reliable transmission in fading environments.

7.3 System Model
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Figure 7.1: System Model

7.3.1 System Model

As shown in Fig.7.1, our system model contains three entities.

Spectrum Operator: Being an administrator and pivot in DSA system, it obtains the current

channel estimation from dispersed sensors. For example, in 3.5GHz, Environmental Sensing Capa-

bility (ESC) is deployed to sense and then report the channel conditions. Receiving the spectrum

request from each aSU, it chooses a proper allocation factor and constellation rotation angles based

on the channel condition together with a permit root. These parameters are transmitted to the

aSU and its nearby verifiers via an authenticated and encrypted channel respectively. When an aSU

reports abnormal interference or when a pre-determined random schedule is required, it mandates

the verifiers to begin uSU detection.

Secondary Users: They request and pay for a given licensed spectrum by submitting their locations

and time periods. Meanwhile, they embed the unique spectrum permits into the message signals to

demonstrate their legal identities using the received parameters from the spectrum operator.
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Verifiers: They are employed by the spectrum operator to help identify their nearby SU transmit-

ters. The authentication results are sent to the spectrum operator. They do not participate in the

message transmission.

7.3.2 Adversary Model

We define the attacker as an uSU who accesses the spectrum either by accident or misconfig-

uration, or to avoid costs of spectrum occupation. The above operations can be done by controlling

its transceiver to manipulate its physical-layer symbols. By occupying the channels allocated to aSUs

directly or with a faked/replayed permit, the uSU brings severe interference to aSUs. Meanwhile,

we assume that the uSU is computationally bounded and cannot break the cryptographic primitives

used to generate the permit. Finally, it can compromise verifiers to report incorrect results to the

spectrum operator.
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Figure 7.2: Framework

7.3.3 Framework Overview

The CREAM framework is shown in Fig.7.2, in which the superposed signal in time slot i

is:

x(i) =
√
Pp(i)xp(i)e

jθp(i) +
√
Pd(i)xd(i)e

jθd(i) (7.1)

where xp(i) and xd(i) are the permit and message symbols after encoding and modulation respec-

tively. Their corresponding constellation rotation angles are θp(i) and θd(i) whereas Pp(i) and Pd(i)
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are their transmitted powers. Denote x(i)’s real and imaginary components as xR(i) and xI(i).

After interleaving [101], it becomes:

x
′
(i) = xR(i) + jxI(i− k) (7.2)

which is remapped to OFDM symbols to be transmitted.

Denote h(i) as the channel multi-path fading coefficient with expectation E{|h(i)|2} = 1.

At the verifier and the aSU receiver, the received signal is:

r(i) = h(i)x
′
(i) + n(i) (7.3)

where n(i) is the equivalent AWGN noise with large-scale path loss absorbed into it. It has noise

variances σ2
p and σ2

d at the verifier and the aSU receiver respectively. Assume perfect channel

estimation, the received signal after OFDM demodulation and de-interleaving is:

y(i) = h(i)∗/|h(i)|r(i) = |h(i)|x(i) + η(i) (7.4)

where |h(i)| is the channel gain and the equivalent noise becomes η(i) = h(i)∗/|h(i)|n(i). It has the

same variance as the original noise n(i). ML detection is deployed at both the verifier and the aSU

receiver. Without loss of generality, we ignore index i in what follows.

7.4 CREAM Scheme

According shown in Fig. 7.2, CREAM is divided into three sequential parts permit pre-

processing, permit embedding, and permit post-embedding, each of which will be discussed respectively

as follows.

7.4.1 Permit Pre-processing

Similar to [98], the spectrum and the geographic region are divided into non-overlapping

parts respectively. The time period is split into slots of equal length. All entities are assumed to be

loosely synchronized to a global time server.

• Generation: An efficient one-way hash chain is used to generate the unforgeable spectrum
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permits. Let f(x) denote a cryptographic hash function on x, and fη(x) means η successive

operations on f(·) to x. Assuming an aSU requests a spectrum in a time period γ. The

spectrum operator sends a random number pγ to the aSU. The aSU recursively computes

pi = f(pi+1), i ∈ [1, γ − 1] as its permit in time slot i. Meanwhile, the spectrum operator

transmits p0 = fγ(pγ) to the verifier.

• Encoding: For simplicity, the permit is encoded using repetition code Cm to tolerate transmis-

sion errors resulted from the noise, in which each permit bit is repeated m times.

• Modulation: Quadrature Phase Shift Keying (QPSK), which has been widely applied in many

applications and standards such as IEEE 802.11b and IEEE 802.11g, is chosen as the basic

modulation scheme for both permit and message. General quadrature amplitude modulation

is also supported.

7.4.2 Permit Embedding

As shown Fig.7.2, CREAM allocates the power to permit and message, followed by rotating

their constellations with the optimized angles. Finally, the rotated permit and message are super-

posed with the Gray-mapping rule [156], in which constellation points with the minimum Euclidean

distance have one-bit difference. A Grey-mapping constellation example after permit embedding is

shown in Fig.7.3 with θd = θp = π/6 and Pp = 0.1, Pd = 0.9, where the first two bits represent

message and the second bits in the bracket denote the permit.

In order to achieve low intrusion to the message, the permit and message power should

satisfy:

Pp + Pd = 1, Pd > Pp > 0. (7.5)

Fractional Transmit Power Allocation (FTPA) [21], as an effective power allocation method, is chosen

in CREAM. In FTPA, the power of the permit is allocated as:

Pp =
1

(|h|/σp2)−α + (|h|/σd2)−α
(|h|/σp2)−α (7.6)

where α ∈ [0, 1] is the decay factor. The case of α = 0 corresponds to equal transmit power

allocation between the permit and message. When α is increased, the more power is allocated to the

message. In CREAM, the spectrum operator thoroughly investigates the value of the decay factor
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via experiments such that the reliable transmission of both permit and message is ensured.

X1: 11(11)

X2: 11(01)

X3: 11(00)

X4: 11(10)

X5: 01(11)

X6: 01(01)

X7: 01(00)

X8: 01(10)

X9: 00(11)

X10: 00(01)

X11: 00(00)

X12: 00(10)

X13: 10(11)

X14: 10(01)

X15: 10(00)

X16: 10(00)

Figure 7.3: An Example of Superposed Constellation

7.4.3 Permit Post-processing

According to Eq (7.2), interleaving the real and imaginary components of the superposed

symbol x makes them being transmitted in different time. Hence, when the duration between

the transmission of real and imaginary components is larger than the coherent time of the fading

channel [165], their transmissions suffer independent fading effect. Therefore, different to Eq (7.4),

the received signal after de-interleaving can be rewritten as:

yR = |hR|xR + ηR, yI = |hI |xI + ηI (7.7)

where |hR| and |hI | are the channel gains of the signal x’s real and imaginary components, respec-

tively. To ease the description, we rewrite |hR| and |hI | as hR and hI . In the Rayleigh fading model,

they are i.i.d. Rayleigh random variables with distribution as follows:

p(x) = 2x/β × e−
x2

β , x = hR, hI (7.8)
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where β = E(h2
R) = E(h2

I) = 1
2 .

At the verifier, ML is deployed. According to Eq (7.7), the ML metric for detecting xp is:

M(x) = exp

(
− (yR − hRxR)2 + (yI − hIxI)2

σ2

)
(7.9)

The bit Likelihood ratio (LLR) for the permit is written as:

L(i) = In
∑

x∈A0
i

M(x)− In
∑

x∈A0
i

M(x), i = 3, 4 (7.10)

where Ali is a set of x whose i bit is l, l = 0, 1. If L(i) > 0, the i bit in x is detected as 0. Otherwise,

it is detected as 1. The majority rule is applied to decode each permit bit. Permit transmission and

detection are totally transparent to the aSU receiver as if it does not know the permit existence.

QPSK together with ML detection is utilized at the aSU receiver.

Denote the detected permit in time-slot i as p′i. To verify the transmitter’s identity, the

verifier computes p′0 by i successive operations of the same hash function f on p′i, p
′
0 = f i(p′i). If

p′0 6= p0, the verifier suggests the transmitter as an uSU. The detection results are finally reported

to the spectrum operator who will physically locate and further punish the transmitter.

7.5 Optimized Constellation Rotation in CREAM

In this section, we thoroughly investigate the how to optimize constellation rotation for

permit and message in a specific fading environment.

7.5.1 Motivation

Consider the case without constellation rotation, θp = θd = 0 in Eq (7.1). the superposed

symbol becomes:

x =
√
Pp(xp,R + xd,R) + j

√
Pd(xp,I + xp,I). (7.11)

in which the real/imaginary component of x is only composed of the corresponding real/imaginary

component of the permit and message respectively. Suppose that a deep fade hits only one of the

components of the superposed signal, e.g., real component. Then, only the imaginary components

of the permit and message survive. The integrity of the permit and message symbol is negatively
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affected.

While we rotate the constellation of the permit and message with θp and θd respectively, the

real component of x in Eq (7.1) becomes
√
Pp(xp,R cos θp−xp,I sin θp)+

√
Pd(xd,R cos θd−xd,I sin θd),

whereas the imaginary component changes to
√
Pp(xp,R cos θp − xp,I sin θp) +

√
Pd(xd,R cos θd −

xd,I sin θd). Each component now contains all the components of the permit and message after rota-

tion. Thus, even if one component suffers from deep fading, the integrity of the permit and message

is still retained. The information involved in real and imaginary components of the symbol can be

reconstructed. Fig. 7.4 shows a simple example to further illustrate the advantages of the rotation.

With constellation rotation, any two points achieve the maximum number of distinct components.

In the case that one component is deep faded, e.g., imaginary component, the ‘compressed’ constel-

lation in Fig.7.4b (empty circles) offers more protection against fading effect, since no components

for any two points collapse together as would happen with Fig.7.4a.

(a) QPSK (b) QPSK with Rotation

Figure 7.4: Comparison between QPSK and QPSK with Rotation

7.5.2 Constellation Rotation Optimization

To effectively defend against fading effects, the constellation rotation is usually optimized

by maximizing the minimum product distance or minimizing error probabilities when ML detection

is deployed. However, it is difficult to obtain an explicit expression for the exact error probabilities

[165]. Therefore, CREAM employs a suboptimal method, which is to minimize the permit symbol

error rate (PSER) upper bound.

Pe ≤
1

N

∑N

i=1

∑N

k=1,k/∈Γ(i)

P (xi → xk) (7.12)
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where N is the size of the superposed constellation. P (xi → xk) is the pairwise error probability

(PER) of confusing xi with xk when xi is transmitted. Γ(i) is the set involving symbols that do

not constitute a valid PER for xi after permit detection. For example, when x1 is transmitted, the

detected permit bits are always 11 if the detected signal belongs to the set [x1, x5, x9, x13] as shown

in Fig.7.3.

PER in Eq (7.12) is refined as P (xi → xk) =
∫∞

0

∫∞
0
P (xi → xk|hR, hI)p(hR)p(hI)dhRdhI

given the probability density function of channel gain p(hR) and p(hI), where P (xi → xk|hR, hI) is

calculated based on Eq (7.9) as:

P (xi → xk|hR, hI) = P
(
(yR − hRxk,R)2 + (yI − hIxk,I)2 ≤ (yR − hRxk,R)2 + (yI − hIxk,I)2|xi is sent

)
= P

(
hR(xi,R − xx,R)ηR + hI(xi,I − xk,I)ηI ≤ −

1

2
h2
R(xi,R − xk,R)2 − 1

2
h2
I(xi,I − xk,I)2

)
=

1

2
erfc

(
1

2

√
1

σ2
p

√
h2
R(xi,R − xk,R)2 + h2

I(xi,I − xk,I)2

)

≤ 1

2
exp

(
− 1

4σ2
p

(
h2
R(xi,R − xk,R)2 + h2

I(xi,I − xk,I)2
))

(7.13)

in which the third equation is derived because hR(xi,R − xk,R)ηR + hI(xi,I − xk,I)ηI is a Gaussian

random variable with zero mean and the variance Ω2 = h2
R(xi,R − xk,R)2 + h2

I(xi,I − xk,I)2. The

inequality is based on the rule P (X ≤ x) = 1
2erfc(

√
x2/2Ω2) [94].

Since hR and hI are the Rayleigh channel gain, p(h2
R) and p(h2

I) submit to the exponential

distribution where p(x2) = e−x
2

[170]. P (xi → xk) in Eq (7.12) is finally expressed as:

P (xi → xk) ≤ 1

2

∞∫
0

exp

(
−h2

R

(
1 +

1

4σp
(xi,R − xk,R)2

))
dh2

R ×
∞∫

0

exp

(
−h2

I

(
1 +

1

4σp
(xi,I − xk,I)2

))
dh2

I

=
1

2
(

1 +
(xi,R−xk,R)2

4σ2
p

)(
1 +

(xi,I−xk,I)2

4σ2
p

) (7.14)

Based on Eq (7.14), the upper bound for PSER Pupper in Eq (7.12) is:

Pe ≤
1

N

N∑
i=1

N∑
k=1,k/∈ΓN

(i)

1

2
(

1 +
(xi,R−xk,R)2

4σ2
p

)(
1 +

(xi,I−xk,I)2

4σ2
p

) (7.15)

Since the constellation rotation angels θp and θd are concealed in xi and xk, the angles can be

obtained by minimizing above PSER upper bound. The optimization problem in CREAM is as
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follows:

min
θp,θd

Pupper

s.t. 0 ≤ θp, θd ≤ 2π (7.16)

Based on Eq (7.15), Pupper mainly depends on the constellation pattern. In addition, different

rotation angles may produce the same constellation pattern. Therefore, the PSER upper bound

minimization is a non-convex problem. We deploy a numerical method by performing a global

search with one-degree step.

(a) SNR = 10dB (a) SNR = 20dB

Figure 7.5: PSER Upper Bound vs. SNR

Table 7.1: PSER Upper Bound when SNR = 10dB

Upper Bound 0.0092 0.0092 0.0092 0.0092 0.0092

θd 19 20 20 70 71

θp 23 24 25 65 67

Two examples are shown in Fig.7.5 with Pp = 0.1 and Pd = 0.9. Meanwhile, Table 7.1

illustrates the minimized PSER upper bound with corresponding rotation angles θp and θd when

SNR = 10dB. From them, we see that 1) the PSER upper bound has different shapes under dif-

ferent channel conditions, which verifies that the constellation rotation angles vary with the current

channel condition; 2) the PSER upper bound minimization problems have multiple solutions. Such

characteristics make CREAM a powerful scheme to prevent the uSU from replaying the permit.
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7.6 Scheme Analysis

In this section, we analyze the spectrum misuse detection efficiency, the computational

complexity, and the security of CREAM.

7.6.1 High Detection Efficiency

Assume the permit is repetition coded with 1/7 rate (m = 7) and the message is con-

volutional coded using 1/2 rate. In IEEE 802.11a standard with 24Mbps message bit rate, the

transmission rate for the permit bits is close to 7Mbps. FEAT [105] and SafeDSA [97] embedded

one permit bit into each OFDM frame. The permit bit transmission rate is at most 1/4Mbps when

there is only one OFDM symbol in each frame that includes 96 message bits. Compared with

SafeDSA and FEAT, CREAM achieves a high authentication rate. For the uSUs who have not

accessed the spectrum, CREAM leaves them little time to prepare the faked/replayed permit. For

the uSUs who are occupying the spectrum, CREAM can detect them in a short time.

7.6.2 Low Computational Complexity

In CREAM, the transmission and reception of both permit and message use the basic

physical-layer techniques. Although interleaving and de-interleaving are the most time-consumption

operations, they only require a buffer to store the received signal without complex operations.

Whereas in SafeDSA [97], the verifier needs to estimate the cyclic prefix length based on the mes-

sage dependency test to detect each permit bit. Even worse, in FEAT [105], the verifier has to

perform blind parameter estimation on multiple parameters of the OFDM signal. For complete

blind estimation, the possible ranges of the parameters to be estimated need to be comprehensive,

which covers all possible values and thus results in a high computation complexity.

7.6.3 High Resilience to Attack

Emulation Attack. A successful emulation attack is achieved if a uSU provides a proof

of an aSU transmitter identity to mislead the verifier to believe that the current spectrum is not

misused. Specifically, the uSU launches an emulation attack if it derives a faked permit which is

the same as that of the aSU transmitter. Since the one-way hash chain is employed to generate

the spectrum permits, the uSU does not have the computational ability to break the cryptographic

165



primitives and therefore it cannot obtain the permit without the root of the hash chain. Unfortu-

nately, the uSU may occasionally create the same permit. However, the probability of such situation

is so small that we can ignore it. Taking SHA-1 with 160-bit length as an example, the probabil-

ity of generating the same permit is (1/2)160. Therefore, our scheme can successfully prevent the

emulation attack [157].

Replay Attack. The uSU may eavesdrop an aSU transmission, extract its permit, and

then attempt to use it for its message transmission. CREAM provides several barriers to prevent the

replay attack. Since the constellation rotation angles are calculated based on the current channel

condition, it is difficult for the uSU to extract the permit from the received signals with wrong

channel estimation. In addition, the characteristics of the minimized PSER upper bound allows for

using different rotation angles in the same channel condition. Therefore, even if the uSU eavesdrops

the angles by monitoring the permit transmission in the current slot, it does not know the rotation

angles in the next slot, which confuses it when extracting permit. In addition to that, since it cannot

generate the next permit based on the current eavesdropped one without the root of the hash chain,

it is impossible for the uSU to replay the future permits to deceive the verifier. Therefore, CREAM

is resilient to replay attack.

Free-rider Attack. In free-rider attack, the uSU hides behind the aSU by sending message

parallel without permits [185]. Since the messages of the uSU and the aSU are independent, the

free-rider attack would increase the number of the constellation points, which can be easily found

by the verifier.

Compromising Attack. By compromising the verifier to report the wrong detection

results to the spectrum operator, the uSU can access the spectrum “legally”. The low computa-

tional complexity allows the DSA to employ a number of verifiers to patrol the area near the aSU

transmitter. By receiving detection results from various verifiers and combining them using known

consensus distributed algorithms [41], the probability of wrong spectrum occupation judgment is

greatly lowered.

7.7 Performance Evaluation

We evaluate the performance of CREAM in fading environments using MATLAB simula-

tions. Specifically, three indoor environments are considered as listed in Table 7.2 and CREAM
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Table 7.2: Fading Parameters

Parameter Values
Moving speed 2.7km/h

1. Small office/ Home office
Rms delay spread 50ns
Number of taps 5

2. Large office building
Rms delay spread 100ns
Number of taps 10

3. Factory
Rms delay spread 200ns
Number of taps 19

performance in fading environment 1 is mainly discussed. We show the performance in other two

fading environments 2 and 3 by comparing with that in fading environment 1.

7.7.1 Simulation Settings

Adapting to indoor environments, we set parameters in CREAM with the help of IEEE802.11a

standard, in which message transmission speeds as high as 54Mbps are possible. The main difference

is that we consider CREAM performance in 3.5GHz band, particularly for small cell deployments [23]

approved by FCC [3]. The system parameters are listed in Table 7.3 and Table 7.4 respectively.

Table 7.3: OFDM Parameters

Parameter Values
Operation Frequence 3.5GHz

Sampling rate 20Mhz
IFFT/FFT sampling point 64

Subcarrier frequency spacing 0.3125MHz
Total Bandwidth 16.25MHz

OFDM Symbol Period 4µs
Guard interval 0.8µs

Number of message Subcarriers 48
Number of pilot Subcarriers 4

Table 7.4: System Parameters

Parameter Values
message Encoding 1/2 Conv coding
Permit Encoding 1/m repetition coding

Modulation QPSK
Mapping Grey mapping

Coded bits 96
message bits 48
Permit bits 96/m

As for other default simulation settings, CREAM uses the 160-bit SHA-1 function to con-

struct the permit. Each frame has a constant message payload length of 100 OFDM symbols. Hence,

Ns =
⌊

100∗96
160m

⌋
=
⌊

60
m

⌋
permit is transmitted in each frame. Moreover, we transmit 500 frames to

average each point in MATLAB results. As for power settings, we assume the superposed symbols

are transmitted using the unit power. The received signal-to-noise radio at the verifier SNRp and
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the aSU receiver SNRd are defined respectively as follows:

SNRp =
1

σ2
p

, SNRd =
1

σ2
d

, SNRδ = SNRp − SNRd > 0

Since the aSU transmitter is further to the aSU receiver than the verifier as assumed previously, we

denote SNRδ as the received SNR difference. In the following simulations, SNRδ = 10dB. The

default delay factor α is set to 1 to ensure the reliable communication for the message. The permit

encoding rate m is set to 7.

7.7.2 CREAM Performance

We first evaluate the permit bit-error-rate (BER) and message BER performance. Permit

BER is a basic measurement on the permit transmission accuracy, whereas message BER reflects

the permit’s intrusion to message. Further, we calculate the permit error rate, which describes

transmission error for a whole permit composed of 160 bits. False-positive rate is also considered

to measure the negative effect CREAM possibly brings to the aSU’s transmission. Several key

parameters affect the CREAM performance, including the SNR difference between the verifier and

the secondary user receiver SNRδ, the power allocation factor α, the rotation angles θp and θd, etc,

all of which will be discussed in the following.

Note that although the physical-layer authentication work in fading environments is men-

tioned in [97] and [105], they do not consider the detailed factors, e.g., the moving speed, the time

delay, and the multi-path. Therefore, we cannot compare the CREAM performance with these works

directly.

7.7.2.1 Impact Factor

The Impact of the Power Allocation. According to Eq (7.6), the power allocation

between the permit and message depends on the decay factor α given SNRs. Fig.7.6a and Fig.7.6b

show its impact on the permit BER and message BER respectively. By comparing these two figures,

it seems that the decay factor puts an opposite effect on the permit and message transmission. When

α = 0, the power is allocated evenly. The permit is transmitted with the high power. However, it

results in the loss of message power and brings serious intrusion to message. When the decay factor

is near to 1, most power is allocated to the message transmission. The permit is easily affected by
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the fading effects and noise. Thus, permit BER has a poor performance. In practice, we have to

ensure that the permit embedding brings the slightest negative impact on message transmission.

Under this premise, we try to distribute more power to the permit.

(a) Permit Bit Performance (b) Message Bit Performance

Figure 7.6: Power Allocation Impact

The Impact of the Received SNR Difference. SNR difference between the verifier

and the aSU receiver plays an important role in both permit and message performance as illustrated

in Fig.7.7a and Fig. 7.7b. When they are near to each other, the message and permit transmission

cannot be easily distinguished in the power domain. Hence, the message transmission is negatively

affected by the permit. When they are far from each other and the permit is much closer to the aSU

transmitter, a reliable permit transmission can be achieved with less power and thus more power is

allocated to the message transmission to help it defend against the pass loss. However, when they

are far apart and the aSU receiver is much further to the aSU transmitter, the message transmission

would suffer larger pass loss and thus most power has to be allocated to the message, which affects

the permit transmission negatively. As shown in Fig.7.7a and Fig. 7.7b, the message BER has a poor

performance when SNRδ = 0dB and 20dB. The permit BER also performs poor at SNRδ = 20dB.

When SNRδ = 4dB, both the permit and message can be transmitted accurately with a low BER.
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(a) Permit Bit Performance (b) Message Bit Performance

Figure 7.7: SNRδ Impact

Fading Environments. We simulate the permit BER and message BER under different

fading environments in Fig.7.8a and Fig.7.8b, respectively. From them, we see that CREAM has

a similar performance and performs well under three different fading environments. The differ-

ence is that permit transmission performs slightly better in large office building whereas message

transmission has a better performance in small office/home office environments.

(a) Permit Bit Performance (b) Message Bit Performance

Figure 7.8: Fading Environments Impact

The Impact of the Repetition Code Rate. Fig.7.9a describes the permit BER perfor-

mance using different repetition encoding rates 1/m. From it, we see that a low rate helps improve

the permit BER performance. According to [63], a repetition code with parameter m has an er-

ror correcting capacity m−1
2 . Hence, when m is large, the permit BER has a good performance.

However, a low encoding rate decreases the permit transmission rate and brings a negative impact

on the authentication rate. We will discuss it later. The Impact of the Rotation Angles. By
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(a) Permit BER Performance (b) Permit Performance

Figure 7.9: Repetition Encoding Impact

optimizing the rotation angles in Section V, we can get a minimized PSER upper bound. Fig.7.10

compares the permit BER performance under different rotation angles. From it, we conclude that

optimized permit rotation angle indeed improves the permit BER performance. Specifically, when

the SNRp ∈ [0dB, 10dB], it brings almost 3dB gain.

Figure 7.10: θp Impact

7.7.2.2 Detection Accuracy

Permit Error Rate. Since the one-way hash function is used to secure the authentication,

CREAM has to ensure the correctness of each permit with 160 bits. Denote above permit BER
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as Pb. The permit length is L = 160, the permit error rate Pp can be calculated theoretically as

follows:

Pp = 1−(

 m

dm/2e

 (1−Pb)dm/2ePm−dm/2eb +

 m

dm/2 + 1e

 (1−Pb)dm/2+1eP
m−dm/2+1e
b +· · ·+(1−Pb)m)L

(7.17)

From Fig. 7.9b, we see that the permit error rate has a good performance above SNRp = 8dB.

Based on [62], the channel SNR in [10, 15), [15, 25), and [25, 40) indicates very poor, poor, and very

good wireless channels. Hence, the whole permit transmission can realize in CREAM even in poor

channel conditions.

(a) Repetition Encoding Impact (b) Symbol Number Impact

Figure 7.11: False-positive Rate

False-positive Rate and False-negative Rate. As shown in Fig. 7.11a, the false-positive

rate performs better above SNRp = 5dB, which means the aSU is mistakenly recognized as the uSU

with an extremely low possibility even in a poor channel. Comparing Fig.7.9b and Fig.7.11a, m

puts a more important impact to the permit error rate than to the false-positive rate. With the

same number of transmitted message bits in each frame, the number of permits is decreased due

to low repetition rate. Therefore, we say that a large m lowers the permit transmission efficiency.

Meanwhile, the number of OFDM symbols in each frame also affects the false-positive rate as shown

in Fig.7.11b. With more OFDM symbols in each frame, each permit is transmitted more times. Since

the verifier considers the transmitter as unauthorized when all the permits cannot be identified, the

probability of identifying an incorrect aSU is lowered.

As for the false-negative rate, the probability that a uSU is identified as an aSU by success-
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fully faking the 160-bit permit is (1 − Pp)/2160. The probability is so small that the faking attack

is considered as negligible.

7.7.2.3 Intrusiveness to message

Finally, we compare the message BER performance between the case without the permit and

CREAM in Fig. 7.12. Suppose that the SNR difference SNRδ = 12dB. When SNRp ∈ [4dB, 14dB],

the actually received SNR at the aSU receiver is in [−8dB, 2dB]. From Fig. 7.12, we conclude that

CREAM almost brings no negative effect on message transmission. Instead, CREAM improves the

message BER performance due to rotating the message constellation.

Figure 7.12: Comparison

7.8 Chapter Summary

In this chapter, we present a physical-layer unauthorized secondary user detection scheme

referred to as CREAM. Combining the constellation rotation optimization, interleaving and super-

position modulation in the OFDM framework, CREAM not only alleviates the negative effect of

the aSU message transmission brought by fading, but also prevents the uSU from occupying the

spectrum effectively. Detailed analysis and MATLAB simulation results have proven its accuracy,

efficiency, security and low intrusion to message transmission.
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Chapter 8

Conclusions and Discussion

This dissertation is along the line of designing schemes to ensure reliable and secure data

transmission in emerging networks, especially in IoT network and cellular network. The common

drawback in these emerging networks is the resource limitation due to the explosively increasing

number of devices and data traffic they have generated, which devastates the data transmission in

terms of reliability. Besides, most smart devices in IoT network are resource-constrained, for which

they are vulnerable to various attacks. Although DSA is a promising way to alleviate the spectrum

scarcity issue for both IoT network and cellular network, security concern arises. To address those

problems, different schemes are designed in each chapter. Through simulations, real-world data

evaluations, as well as practical experiments, we have demonstrated the effectiveness and efficiency

of the proposed schemes, which validate our design objective, achieving reliable and secure data

transmission in emerging networks given resource limitation.

As a matter of fact, IoT is transforming every corner of our daily life and plays a more and

more important role. At the same time, there will be a larger number of smart devices equipped

with various wireless protocols, resulting in severe wireless interference. As one of the future work,

the potential attacks due to heterogeneous environment need to be future explored. For instance,

following the line of signal emulation attack from WiFi to ZigBee devices, is it possible to launch

the attacks from WiFi to BLE and from BLE to ZigBee in 2.4GHz band as well as from ZigBee

to LoRa in 900MHz band? For the second future work, in the heterogeneous environment, the

interference among different wireless protocols, named as the cross-technology interference (CTI),

is usually treated as bad things. A plethora of work discusses how to alleviate and even eliminate
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it. CTI is small and a slight disturbance results in perceptible changes on it. Different from the

traditional work, whether the above CTI feature can benefit us is a new direction. I will compre-

hensively investigate those features and attempt to apply them to human behavior detection and

access authentication. In the end, with the application of machine learning or even deep learning

in both wireless communication and networks, I would like to investigate it from the perspective of

security. To be specific, adversarial attacks have been widely investigated in the image processing

area, but they are scarcely addressed in the RF signal domain. The general idea for adversarial

attacks to RF signal is to generate imperceptible perturbations to RF signal at the transmitter so as

to mislead the DL classifier at the receiver. However, it is far more complex and difficult than that

in the image domain. To be specific, RF adversarial examples suffer from complex channel proroga-

tion/interference/noise during transmission, the effects of which will persist at the DL classifier and

may change the classification results. As an emerging area, there are many open problems worth

further investigation.
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