1,005 research outputs found

    The "Artificial Mathematician" Objection: Exploring the (Im)possibility of Automating Mathematical Understanding

    Get PDF
    Reuben Hersh confided to us that, about forty years ago, the late Paul Cohen predicted to him that at some unspecified point in the future, mathematicians would be replaced by computers. Rather than focus on computers replacing mathematicians, however, our aim is to consider the (im)possibility of human mathematicians being joined by “artificial mathematicians” in the proving practice—not just as a method of inquiry but as a fellow inquirer

    Structure-based classification and ontology in chemistry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent years have seen an explosion in the availability of data in the chemistry domain. With this information explosion, however, retrieving <it>relevant </it>results from the available information, and <it>organising </it>those results, become even harder problems. Computational processing is essential to filter and organise the available resources so as to better facilitate the work of scientists. Ontologies encode expert domain knowledge in a hierarchically organised machine-processable format. One such ontology for the chemical domain is ChEBI. ChEBI provides a classification of chemicals based on their structural features and a role or activity-based classification. An example of a structure-based class is 'pentacyclic compound' (compounds containing five-ring structures), while an example of a role-based class is 'analgesic', since many different chemicals can act as analgesics without sharing structural features. Structure-based classification in chemistry exploits elegant regularities and symmetries in the underlying chemical domain. As yet, there has been neither a systematic analysis of the types of structural classification in use in chemistry nor a comparison to the capabilities of available technologies.</p> <p>Results</p> <p>We analyze the different categories of structural classes in chemistry, presenting a list of patterns for features found in class definitions. We compare these patterns of class definition to tools which allow for automation of hierarchy construction within cheminformatics and within logic-based ontology technology, going into detail in the latter case with respect to the expressive capabilities of the Web Ontology Language and recent extensions for modelling structured objects. Finally we discuss the relationships and interactions between cheminformatics approaches and logic-based approaches.</p> <p>Conclusion</p> <p>Systems that perform intelligent reasoning tasks on chemistry data require a diverse set of underlying computational utilities including algorithmic, statistical and logic-based tools. For the task of automatic structure-based classification of chemical entities, essential to managing the vast swathes of chemical data being brought online, systems which are capable of hybrid reasoning combining several different approaches are crucial. We provide a thorough review of the available tools and methodologies, and identify areas of open research.</p

    Formal Analysis of Geometrical Optics using Theorem Proving

    Get PDF
    Geometrical optics is a classical theory of Physics which describes the light propagation in the form of rays and beams. One of its main advantages is efficient and scalable formalism for the modeling and analysis of a variety of optical systems which are used in ubiquitous applications including telecommunication, medicine and biomedical devices. Traditionally, the modeling and analysis of optical systems have been carried out by paper-and-pencil based proofs and numerical algorithms. However, these techniques cannot provide perfectly accurate results due to the risk of human error and inherent incompleteness of numerical algorithms. In this thesis, we propose a higher-order logic theorem proving based framework to analyze optical systems. The main advantages of this framework are the expressiveness of higher-order logic and the soundness of theorem proving systems which provide unrivaled analysis accuracy. In particular, this thesis provides the higher-order logic formalization of geometrical optics including the notion of light rays, beams and optical systems. This allows us to develop a comprehensive analysis support for optical resonators, optical imaging and Quasi-optical systems. This thesis also facilitates the verification of some of the most interesting optical system properties like stability, chaotic map generation, beam transformation and mode analysis. We use this infrastructure to build a library of commonly used optical components such as lenses, mirrors and optical cavities. In order to demonstrate the effectiveness of our proposed approach, we conduct the formal analysis of some real-world optical systems, e.g., an ophthalmic device for eye, a Fabry-P\'{e}rot resonator, an optical phase-conjugated ring resonator and a receiver module of the APEX telescope. All the above mentioned work is carried out in the HOL Light theorem prover

    High glycine concentration increases collagen synthesis by articular chondrocytes in vitro: acute glycine deficiency could be an important cause of osteoarthritis

    Get PDF
    Collagen synthesis is severely diminished in osteoarthritis; thus, enhancing it may help the regeneration of cartilage. This requires large amounts of glycine, proline and lysine. Previous works of our group have shown that glycine is an essential amino acid, which must be present in the diet in large amounts to satisfy the demands for collagen synthesis. Other authors have shown that proline is conditionally essential. In this work we studied the effect of these amino acids on type II collagen synthesis. Bovine articular chondrocytes were cultured under a wide range of different concentrations of glycine, proline and lysine. Chondrocytes were characterized by type II collagen immunocytochemistry of confluence monolayer cultures. Cell growth and viability were assayed by trypan blue dye exclusion method. Type II collagen was measured in the monolayer, every 48 h for 15 days by ELISA. Increase in concentrations of proline and lysine in the culture medium enhances the synthesis of type II collagen at low concentrations, but these effects decay before 1.0 mM. Increase of glycine as of 1.0 mM exceeds these effects and this increase continues more persistently by 60–75%. Since the large effects produced by proline and lysine are within the physiological range, while the effect of glycine corresponds to a much higher range, these results demonstrated a severe glycine deficiency for collagen synthesis. Thus, increasing glycine in the diet may well be a strategy for helping cartilage regeneration by enhancing collagen synthesis, which could contribute to the treatment and prevention of osteoarthriti

    Summer Research Fellowship Project Descriptions 2019

    Get PDF
    A summary of research done by Smith College’s 2019 Summer Research Fellowship (SURF) Program participants. Ever since its 1967 start, SURF has been a cornerstone of Smith’s science education. Supervised by faculty mentor-advisors drawn from the Clark Science Center and connected to its eighteen science, mathematics, and engineering departments and programs and associated centers and units. At summer’s end, SURF participants were asked to summarize their research experiences for this publication.https://scholarworks.smith.edu/clark_womeninscience/1008/thumbnail.jp

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    The relationship between different dimensions of alcohol use and the burden of disease-an update.

    Get PDF
    Alcohol use is a major contributor to injuries, mortality and the burden of disease. This review updates knowledge on risk relations between dimensions of alcohol use and health outcomes to be used in global and national Comparative Risk Assessments (CRAs). Systematic review of reviews and meta-analyses on alcohol consumption and health outcomes attributable to alcohol use. For dimensions of exposure: volume of alcohol use, blood alcohol concentration and patterns of drinking, in particular heavy drinking occasions were studied. For liver cirrhosis, quality of alcohol was additionally considered. For all outcomes (mortality and/or morbidity): cause of death and disease/injury categories based on International Classification of Diseases (ICD) codes used in global CRAs; harm to others. In total, 255 reviews and meta-analyses were identified. Alcohol use was found to be linked causally to many disease and injury categories, with more than 40 ICD-10 three-digit categories being fully attributable to alcohol. Most partially attributable disease categories showed monotonic relationships with volume of alcohol use: the more alcohol consumed, the higher the risk of disease or death. Exceptions were ischaemic diseases and diabetes, with curvilinear relationships, and with beneficial effects of light to moderate drinking in people without heavy irregular drinking occasions. Biological pathways suggest an impact of heavy drinking occasions on additional diseases; however, the lack of medical epidemiological studies measuring this dimension of alcohol use precluded an in-depth analysis. For injuries, except suicide, blood alcohol concentration was the most important dimension of alcohol use. Alcohol use caused marked harm to others, which has not yet been researched sufficiently. Research since 2010 confirms the importance of alcohol use as a risk factor for disease and injuries; for some health outcomes, more than one dimension of use needs to be considered. Epidemiological studies should include measurement of heavy drinking occasions in line with biological knowledge

    Women in Science 2014

    Get PDF
    Women in Science 2014 summarizes research done by Smith College’s Summer Research Fellowship (SURF) Program participants. Ever since its 1967 start, SURF has been a cornerstone of Smith’s science education. In 2014, 150 students participated in SURF (141 hosted on campus and nearby eld sites), supervised by 61 faculty mentor-advisors drawn from the Clark Science Center and connected to its eighteen science, mathematics, and engineering departments and programs and associated centers and units. At summer’s end, SURF participants were asked to summarize their research experiences for this publication.https://scholarworks.smith.edu/clark_womeninscience/1003/thumbnail.jp
    corecore