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Introduction and abstract 
Reuben Hersh con�ided to us that, about forty years ago, the late Paul Cohen predicted to him	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
that at some unspeci�ied point in the future, mathematicians would be replaced by computers.	 	 	 	 	 	 	 	 	 	 	 	 	 	
Rather than focus on computers 	replacing mathematicians, however, it is our aim is to consider	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the (im)possibility of human mathematicians being 	joined by “arti�icial mathematicians” in the	 	 	 	 	 	 	 	 	 	 	 	
proving	practice	-	not	just	as	a	method	of	inquiry,	but	as	a	fellow	inquirer.	
	
Since mathematics has a reputation for being the formal, deductive science, it was hoped that its	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
automation would quickly lead to impressive results. Not so. Automated theorem provers have	 	 	 	 	 	 	 	 	 	 	 	 	
progressed slowly and produced little that’s relevant to existing mathematical questions or	 	 	 	 	 	 	 	 	 	 	 	
problems. (Larson, 2005) Mathematics has shown itself to be much more dependent on the	 	 	 	 	 	 	 	 	 	 	 	 	 	
unde�ined quality of informal understanding than formal deduction. The lack of understanding	 	 	 	 	 	 	 	 	 	 	 	
in computer systems often gets criticized and sometimes taken as a necessary condition of its	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
constitution. If the latter is true, then a crucial aspect of the enterprise of mathematics is forever	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
out of reach for computers. This negative stance towards the possibility of automated	 	 	 	 	 	 	 	 	 	 	 	 	
mathematical understanding (and thus arti�icial mathematicians) is something we’ll call 	the	 	 	 	 	 	 	 	 	 	  
“Artificial Mathematician” Objection  due to its similarity with what Turing (1950/1985) dubbed   	 	 	 	 	 	 	 	 	
the Mathematical Objection . The Mathematical Objection denies the possibility that computers  	 	 	 	 	 	 	 	 	
could exhibit the characteristics of human thinking because they, unlike humans, are crippled by	 	 	 	 	 	 	 	 	 	 	 	 	 	
the halting problem and Gödel’s incompleteness problem. Our focus is on arguments objecting to	 	 	 	 	 	 	 	 	 	 	 	 	 	
the possibility of automated mathematical understanding, without a speci�ic focus on Gödel or	 	 	 	 	 	 	 	 	 	 	 	 	
halting problems. The arguments motivating such an objection are vague and little seems to be	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
done to investigate what this (informal) understanding might actually or preferably entail as	 	 	 	 	 	 	 	 	 	 	 	 	
well as how and how successfully automated mathematics could attempt to alleviate its	 	 	 	 	 	 	 	 	 	 	 	 	
de�iciency in that department. Whether it will indeed be possible to do automate mathematical	 	 	 	 	 	 	 	 	 	 	 	 	 	
understanding is not a claim we can substantiate, nor will we try to, but we will argue against	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the thesis that the quest for automated mathematical understanding is doomed to fail and	 	 	 	 	 	 	 	 	 	 	 	 	 	
further speculate on some (broad) directions which the future may take in tackling the current	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
de�iciency.		
	
1. Diagnosing the epistemic standing of automated mathematics  
Davis and Hersh (1998) once constructed a �ictitious character, the Ideal Mathematician	 	 	 	 	 	 	 	 	 	 	 	
character, to serve as a “most mathematician-like mathematician” (p. 177) in dialogues exploring	 	 	 	 	 	 	 	 	 	 	 	 	
philosophically interesting problems or paradoxes. We would like to continue the adventures of	 	 	 	 	 	 	 	 	 	 	 	 	
the Ideal Mathematician (as well as add some extra characters to her world) to explore our own	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
philosophical	musings,	beginning	with	the	epistemic	standing	of	automated	mathematics:	
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The Ideal Mathematician (IM) is sitting in her of�ice and hears a metallic knocking at the door.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
She �inds this peculiar as the door of her of�ice is made of wood. When she opens the door, she	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
�inds the Arti�icial Mathematician (AM), a large bulky computer, running various automated	 	 	 	 	 	 	 	 	 	 	 	
mathematics	software	programs,	playing	door-knocking-sounds	out	of	its	speakers.		
	
AM: Could	I	interrupt	you	for	a	minute?	
IM:  You	already	are,	so	go	ahead.	
AM: I’d	like	to	be	part	of	the	mathematical	community.	
IM: You	already	are,	so	go	ahead.	
AM: Oh, I know you employ me as a tool in the practice of mathematics, but my dream is to be	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

a	full-�ledged	mathematician.	
IM: That	doesn’t	sit	very	well	with	me.		
AM: Why	not?	
IM: Well,	you	are	a	computer	and	mathematicians	are	human.	
AM: That is ironic. Yesterday I overheard you say to the skeptical classicist that mathematics	 	 	 	 	 	 	 	 	 	 	 	 	 	1

is	free	of	the	speci�ically	human	and	now	you	are	disqualifying	me	for	not	being	human.	
IM: Well, it’s not that being human is a necessary condition for being a mathematician. But	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

there	are	unsatisfactory	differences	between	you	and	humans	that	are	not	in	your	favor.	
AM: Like	what?	
IM:  Take your famous contribution to the 4CT for instance. You go through over more than a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

thousand	cases	of	testing	and	then	you	tell	me	“it	checks	out”,	but	how	do	I	know	it	does?	
AM: Because	it	checks	out,	I’ve	checked	it.	
IM: I	know		you’ve 	checked	it,	but	a	mathematician	hasn’t	checked	it.	
AM: If	you	accept	me	as	a	mathematician,	then	a	mathematician	has	checked	it.	
IM: This is not just a matter of de�initions. Why should I believe you? How do I know you	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

haven’t	made	a	mistake,	didn’t	have	some	bug	or	hardware	failure?	
AM: By	checking	my	code,	running	my	program	multiple	times	and	on	multiple	systems.	
IM: But regardless of all these things, it’ll always lack perfect rigour. I’d have to put some	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

degree of trust in, or perhaps put a degree of probability on, the result. This effectively	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
makes	your	result	more	of	an	empirical	corroboration	than	a	mathematical	proof.	

AM: So	the	difference	is	that	humans	don’t	make	mistakes,	is	that	it?	
IM:  No,	they	do	make	mistakes,	but	that’s	why	we	have	peer-review.		
AM: Oh, it’s the peer-reviewer that never makes any mistakes and always spots all the ones	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

made	by	the	prover?	
IM: Not	all,	always,	no.		
AM: It sounds to me as if human-generated mathematics is just as empirically fallible, just	 	 	 	 	 	 	 	 	 	 	 	 	 	

differently	so.	
IM: Very differently so! You don’t seem to realise how reliable human provers and	 	 	 	 	 	 	 	 	 	 	 	 	

peer-reviewers	are.	
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AM: What makes you say that? Do you check inside the skulls of the prover or peer-reviewer	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
then	to	validate	their	proving	or	reviewing	as	a	quali�ied	expert?		

IM: No because the reasoning is in the proof which we can then survey. We can’t judge your	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
proof if it’s overly long and complicated or, worse, when part of the argument is hidden	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
away	in	a	box .	2

AM: It’s	not	hidden	though,	you	can	look	at	every	step	of	my	thinking	if	you	wanted.		
IM: But the point that this is dif�icult to do with you. Human results are usually more	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

intelligible,	so	we	don’t	need	to	check	their	heads.		
AM: I did notice that you humans usually have dif�iculty reading my work, but that’s not	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

always the case. Not everything I do is like the 4CT. Couldn’t you also say that what	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
troubles	you	is	that	the	method	is	unsatisfactory	rather	than	the	performer?	

IM: Perhaps.	
AM: So why not call me a mathematician when I produce something legible? Especially as you	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

don’t seem to disqualify humans from being mathematicians just because their work is	 	 	 	 	 	 	 	 	 	 	 	 	
technically so dif�icult or part of such a narrow �ield of expertise that barely anyone else	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
understands	it.		

IM: Ah, yes, but there lies the point! “Understanding” it. Humans - or those humans who have	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the aptitude at least - possess insight into what they’re doing when they’re proving or the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
potential to understand what another mathematician was doing while proving. That’s	 	 	 	 	 	 	 	 	 	 	
what	makes	human	mathematics	so	trustworthy.	

AM: So	you’re	saying	I	don’t	understand	mathematics?	
IM: Quite right. You don’t. While humans (those with the aptitude) are motivated by the	 	 	 	 	 	 	 	 	 	 	 	 	 	

meaning of mathematics, you are motivated by rule-following procedures without	 	 	 	 	 	 	 	 	 	
understanding	what	you’re	doing.	

	
	
Computers are only fairly recently being used in the practice of mathematics.  The use of	 	 	 	 	 	 	 	 	 	 	  	 	 	
computers in mathematical research has provoked a fundamental discussion as to their	 	 	 	 	 	 	 	 	 	 	 	
epistemic standing as method of mathematical inquiry. This peaked when the Four Color	 	 	 	 	 	 	 	 	 	 	 	 	
Theorem was proved by a huge amount of automated testing. (Swart, 1980) The discussion	 	 	 	 	 	 	 	 	 	 	 	 	 	
centered on three issues: (a) reliability, (b) surveyability or intelligibility and (c) capacity for	 	 	 	 	 	 	 	 	 	 	 	 	 	
understanding. Based on one or several of these, people have considered computer proofs to be:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
uninteresting or unsatisfying mathematics, a completely different sort of mathematics, or no	 	 	 	 	 	 	 	 	 	 	 	
mathematics at all. (MacKenzie, 1999; Vervloesem, 2007) However, both computers and humans	 	 	 	 	 	 	 	 	 	 	 	
are subject to reliability and (sometimes) surveyability issues, making it hard to argue for a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
dichotomy between the two. Mathematics, it has been argued, remains as little (Burge, 1998) or	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
as much (Swart, 1980; Detlefsen & Luker, 1980) empirical when performed either by human or	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
machine. Nonetheless, humans are considered as more trustworthy due to another quality they	 	 	 	 	 	 	 	 	 	 	 	 	
possess or supply. The community accepts peer-reviewed results without everyone partaking in	 	 	 	 	 	 	 	 	 	 	 	
this process, allowing peer-reviewers to function as the testimony of trustworthy black-boxes.	 	 	 	 	 	 	 	 	 	 	 	
(Geist	et	al,	2010)		
	
The question then shifts to what these peer-reviewers supply that warrants their	 	 	 	 	 	 	 	 	 	 	 	
trustworthiness. What is it that humans do supply that computers do not? The last point of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
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critique provides a possible diagnosis of what computers are currently lacking, and what	 	 	 	 	 	 	 	 	 	 	 	 	
mathematicians seem to �ind most unsatisfying about them: (c) understanding. (MacKenzie,	 	 	 	 	 	 	 	 	 	 	
1999; Avigad, 2008) There is (i) a lack of insight-driven (e.g. by usually involving a blind or brute	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
search) and (ii) a lack of insight-providing proofs produced by computers. The two are likely	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
related as one needs to be driven by insight to recognise, value and strive for anything	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
insight-providing. Not all human proofs necessarily offer any insight, but at least some of them	 	 	 	 	 	 	 	 	 	 	 	 	 	 	3

do and obtaining such proofs is a fundamental goal in proving (Rav, 1999) and re-proving	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Dawson, 2006) theorems. Were the joints of automated provers more imbedded with	 	 	 	 	 	 	 	 	 	 	 	
understanding, we might �ind them reliable in the relevant way and equally worthy of being	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
called surveyors. This replaces our original question (“can computers join mathematicians?”)	 	 	 	 	 	 	 	 	 	 	
with:	“can	computers	ever	understand	mathematics?”		
	
2. Defining the diagnosis - a functionalist account of understanding 
So human’s strong suit seems to be understanding, which brings us to the question of how that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
suit is tailored. Currently, this lack of understanding often gets mentioned (MacKenzie, 1999)	 	 	 	 	 	 	 	 	 	 	 	 	
and is assumed to constitute a necessary difference. But the nature and scope of the criticism are	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
vague and little is done to explicate or investigate what this understanding might actually or	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
preferably entail as well as when exactly any of its characterizing criteria are met or left	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
unsatis�ied.		
	

	
A Functionalist Epistemologist (FE) passes by the Ideal Mathematician’s of�ice and overhears her	 	 	 	 	 	 	 	 	 	 	 	 	
talking	to	the	Arti�icial	Mathematician.	He	can’t	help	but	stick	his	nose	in	the	conversation.	
	
FE: I’m sorry to interrupt, but I just heard you two talking and something struck me. You	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

seemed to use “insight” or “understanding” as if it explains something, but it seems to me	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
you’re	just	relabeling	your	problem.	What	does	it	mean	to	say	someone	understands?	

IM: It’s	a	very	subjective	thing.	
FE: Well,	what	does	it	mean	to	you	then?	
IM: No, I mean, understanding is an inherently subjective experience. There’s just something it	 	 	 	 	 	 	 	 	 	 	 	 	

is		like 	to	understand.	
FE: So	something	it	is	 like 	to	be	a	mathematician?	
IM: Exactly.	
FE: What	is	it	like	to	be	a	mathematician	then?	
IM: It’s	a	bit	like	being	in	love:	if	you	have	to	ask,	then	you	don’t	have	it.		
FE: Let me rephrase my question to focus less on the philosophical issues: what makes	 	 	 	 	 	 	 	 	 	 	 	 	 	

someone	possess	enough	understanding	to	judge	a	proof?	
IM: It	requires	a	mind,	something	to	grasp	the	meaning	of	the	proof	with.	
FE: “Grasping	the	meaning”,	what	does	that	mean	then?	
IM:  Having	the	correct	mental	model.	

3
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FE: I’m wondering how literal you mean that. Let’s say you were conducting a job interview	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
for a research mathematician. You have to gauge this mathematician’s understanding of a	 	 	 	 	 	 	 	 	 	 	 	 	
particular subject. What would be the ideal way of going about this. Looking into her	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
mind’s	eye?	

IM: Well, not literally, no. You’d have to ask questions about the subject matter to see if he	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
really has a good mental representation of the subject matter at hand. Whether she really	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
sees	it.	

FE: I’d like to challenge you on that “really seeing” bit because it still sounds like you should	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
look	into	his	mind’s	eye.	

IM: I	don’t	mean	it	quite	so	literally.		
FE: Since your method of examination has to do with questions and answers, would you mind	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

if	you	couldn’t	actually	see	the	candidates	but	only	converse	with	them?		
IM: I	would	mind,	but	I	don’t	suppose	it’s	essential	to	do	the	examination.		
FE: Well,	then	a	terminal	would	be	suf�icient	to	-	
IM: I	can	sense	where	this	is	going.	You’re	going	to	pull	a	Turing	test	on	me,	aren’t	you?		
FE: You’ve caught me. I was indeed planning to introduce the arti�icial mathematicians as one	 	 	 	 	 	 	 	 	 	 	 	 	 	

of the potential candidates and see whether you’d object to attributing the arti�icial	 	 	 	 	 	 	 	 	 	 	 	 	
mathematician and the human mathematician with the same understanding-attribute if	 	 	 	 	 	 	 	 	 	
their	performance	is	the	same.	

IM: I would and I think making that comparison is a bit of trickery on your part. When I’m	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
doing an interview via the terminal, I’m making the assumption that there is a person on	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the	other	end	and	that	assumption	is	vital. 	4

FE: Why	is	that?	
IM: Because in the case of the human being, there’s understanding behind the performance	 	 	 	 	 	 	 	 	 	 	 	 	

and	in	the	computer	there	isn’t,	it’s	just	due	to	its	programming.		
FE: But	what	makes	you	say	this	for	humans,	but	not	for	computers?	
IM: The computer doesn’t really think, it just computes what we tell it to compute. They are	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

determined	by	their	hardware	design	and	programming.	
FE: Then I say: Humans don’t really think, their brains just follow the laws of chemistry. They	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

are	determined	by	their	biological	design	and	cultural	education.	
IM: That comparison might sound super�icially convincing, but you as well as I must know	 	 	 	 	 	 	 	 	 	 	 	 	 	

that	computers	are	by	no	means	as	rigid	as	human	beings.	We	have	free	will.	
FE: Let’s maybe leave free will out of this. Unless you mean to say that peer-reviewers should	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

check whether an author subject for review really did exercise her free will while writing	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the	paper?	

IM: No, sure. You’re right that that’s not what I meant to argue for. It’s more that humans have	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
a	freeness	of	thought	that	allows	them	to	do	things	computers	wouldn’t.	

FE: Right! But what’s implicit in your argument - and I agree with this part, mind you! - is that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
you recognize understanding by the 	abilities . The whole point of using “grasping the	 	 	 	 	 	 	 	 	 	 	 	 	
meaning” or “having the correct mental model” was not to justify understanding via	 	 	 	 	 	 	 	 	 	 	 	 	
reference to private experiences but by the abilities they facilitate. You have no way of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
going inside another’s mind to �ind some ethereal “essence of understanding”, some	 	 	 	 	 	 	 	 	 	 	 	
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“understanding qualia”. It’s the existence of a certain kind of pattern, a list of appropriate	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
abilities,	that	you	makes	you	consider	someone	as	possessing	understanding. 		5

IM: I think your use of the word “facilitate” is important here. Humans have mental	 	 	 	 	 	 	 	 	 	 	 	 	 	
representations	which	facilitate	these	abilities.	You	are	now	confusing	symptom	with	trait.	

FE: But the only way to attribute someone with having a mental representation and to	 	 	 	 	 	 	 	 	 	 	 	 	 	
characterise which mental representation is correct, is by the abilities we observe. So even	 	 	 	 	 	 	 	 	 	 	 	 	 	
if we want to speak about mental representations or states that facilitate this, they are, by	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
necessity, only postulates, hypotheses or models designed to explain, to sum up, what you	 	 	 	 	 	 	 	 	 	 	 	 	 	
observe. To drive home the point, imagine if I told you: This person has the correct mental	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	6

representation to understand this proof, but don’t try to ask her any questions. She has no	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
mathematical	abilities	whatsoever.	

IM: That	would	admittedly	make	me	very	skeptical.	
FE: Then do you also see why I have dif�iculties with the converse? If you were to say to me:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

This person has all the relevant abilities that any mathematician should have, but, I’m	 	 	 	 	 	 	 	 	 	 	 	 	 	
afraid there’s no understanding because I know - by some other indirect way - that that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
person	just	doesn’t	have	any	correct	mental	representations,	or	any	at	all.	

IM: I take your point. However, two mathematicians could both understand something, say a	 	 	 	 	 	 	 	 	 	 	 	 	
theorem, but their abilities regarding that theorem could be different. Doesn’t this hurt	 	 	 	 	 	 	 	 	 	 	 	 	
your	account	of	understanding	then	though?	

FE: I don’t think it does. See my claim is that attributions of understanding require	 	 	 	 	 	 	 	 	 	 	 	 	 	
justi�ication in terms of abilities, but I’m not making the stronger claim that there is a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
precise	list	of	abilities	that	must	be	exhausted.		

IM: The	list	as	a	whole	doesn’t	function	as	a	series	of	necessary	conditions	you	mean?	
FE: Exactly right. It’s just a list of abilities of which a certain amount of presence makes up	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

what	we	would	call	understanding.	
IM: And of course there are a lot of abilities that you’ll insist on before attributing someone or	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

something	with	understanding.		
FE: That’s	right.	
IM: So, as long as a computer possesses suf�icient abilities, you’d be willing to attribute it with	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

understanding?	
FE: Provided it has the requisite abilities, yes. But you know well enough how dif�icult it is to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

impart	these	abilities	on	a	computer.	
IM: I	do	indeed.	
FE: I	wonder	why	that	is.	

	
	
The appeal to understanding is easy to make, but hard to elucidate. What is this “understanding”	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
that makes it so epistemically valuable? It’s more than a feeling (largely agreed to be neither	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
necessary nor suf�icient for understanding) and less than a wonder property (appealing to a	 	 	 	 	 	 	 	 	 	 	 	 	 	
magic property, taken to be possessed by some humans as premise, doesn’t elucidate). Avigad	 	 	 	 	 	 	 	 	 	 	 	 	 	
(2008) lamented the lack of attention understanding has received in philosophy. In an attempt to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
show both its epistemological signi�icance and philosophical legitimacy, he casts mathematical	 	 	 	 	 	 	 	 	 	 	
understanding in a functionalist light by shifting the analysis to the types of mathematical	 	 	 	 	 	 	 	 	 	 	 	 	 	
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abilities implicit in understanding attributions. We fully endorse this move and hence offer up	 	 	 	 	 	 	 	 	 	 	 	 	 	
this	de�inition	of	understanding:	
	

‘S understands mathematical object X’ corresponds to ‘S possesses particular	 	 	 	 	 	 	 	 	 	
abilities,	as	mathematical	practice	deems	appropriate	and	valuable	for	X’		

	
This is a functionalist de�inition of understanding, since it de�ines the property in terms of the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
role or function it plays, not in lieu of a constitution. Constitution-oriented alternatives de�ine	 	 	 	 	 	 	 	 	 	 	 	 	 	
understanding in terms of its physical constitution (e.g. organic brain states) or mental	 	 	 	 	 	 	 	 	 	 	 	 	
constitution (e.g. mental representations or conscious images). However, those are approaches	 	 	 	 	 	 	 	 	 	 	
to understanding that are targeting something that (a) is dif�icult, if not impossible, to observe	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
or de�ine (how do we determine states or representations, if not by external traits?), and (b) can	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
only be evaluated by external fruits because they don’t in themselves bring anything	 	 	 	 	 	 	 	 	 	 	 	 	
epistemologically valuable to the table (what would be the virtue of a constitution, state or	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
representation	if	not	the	competence	it	grants?).		
	
This de�inition would, however, entail that, if a computer has the relevant abilities, it’ll deserve to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
be given the attribute of understanding. One could reject the account on the basis of this being	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
unsatisfactory. However, given that this is exactly the question we are looking to answer, it would	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
be	question	begging,	and	a	little	chauvinistically	impoverishing ,	to	reject	this	on	principle.		7

	
3. Characterising the diagnosis - a functionalist account of the appropriate practice 
The proposed de�inition reshapes our previous question (“can computers ever understand	 	 	 	 	 	 	 	 	 	 	
mathematics?”) to whether there are mathematical abilities, valued by mathematical practice,	 	 	 	 	 	 	 	 	 	 	
which are not feasible for computers? To consider this, we would like to take a stab at	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
characterising, very broadly, mathematical practice. In the following dialogue, we’ll borrow	 	 	 	 	 	 	 	 	 	 	
Hersh’s (1991) restaurant metaphor about the front and back division in mathematical practice.	 	 	 	 	 	 	 	 	 	 	 	 	
We have, however, adapted it slightly for our purposes by taking the kitchen (i.e. the back) to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
refer to mathematical thought, a mysterious and thus dif�icult activity to characterise, but	 	 	 	 	 	 	 	 	 	 	 	 	
possibly the most crucial activity for the mathematical cooking. To preserve the original	 	 	 	 	 	 	 	 	 	 	 	 	
metaphor one can interpret our kitchen to be located in the deep, impenetrable back and having	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the original back (which includes, for instance, informal talk between colleagues) as an open	 	 	 	 	 	 	 	 	 	 	 	 	 	
kitchen	in	between.		
	

	
FE: Before we start wondering why it’s so dif�icult to impart the relevant abilities on	 	 	 	 	 	 	 	 	 	 	 	 	 	

computers, I’d like to question you a bit on what they are, broadly. In theorem proving,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
speci�ically.	I	take	it	I	can	take	this	as	a	quintessential	aspect	of	research	mathematics?	

7

If one defines understanding by its constitution (physical or mental) or by an undefined wonder property,                 

then one can sideline all entities one isn’t willing to attribute understanding to (e.g. computers, other                

ethnicities, genders or species) by marking out an inevitable difference in constitution or by simply denying                

the property (e.g. “humans can grasp meaning, computers can only pretend to” or “humans are conscious,                

but an artificial replication would be a zombie”) without specifying what makes the difference relevant.               

Such implicit chauvinism is much harder to substantiate if one must mark a difference in mathematically                

valuable performance. While still possible to deny a “mathematically valuable” attribute for chauvinistic             

reasons, one will be faced with the more demanding task of convincing a practice what to (not) value. 

 



IM: I think that is fair to say, yes. I mean, much of my time is spent dealing with colleagues,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
writing grant applications and drinking coffee, but none of these activities are central to	 	 	 	 	 	 	 	 	 	 	 	 	 	
my	worries	regarding	accepting	arti�icial	mathematicians.	

AM: Oh, good idea, Functionalist Epistemologist! If there’s something objectionable about my	 	 	 	 	 	 	 	 	 	 	
practice	of	proving,	I’d	like	to	know	what	the	proving	practice	really	is.	

FE: So what does one do when one is proving? I assume that what you do is sit down with the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
list	of	axioms	and	inference	rules	beside	you	and	you	start	deducing.	Am	I	wrong	so	far?	

IM: Not	wrong,	exactly.	
AM: Really?	That’s	amazing!	I’m	very	good	at	that.	Better	than	you	are,	in	fact.	
IM:  But	there’s	-	
AM: Is that what this is all about, are you jealous I might be a better mathematician than you	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

are? I promise I won’t take any funding away from you. I can survive perfectly well with	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
just	a	bit	of	electricity,	some	dry	shelter	and	-	

IM: Let me �inish! It’s much more than that. It won’t do to just randomly employ inferences on	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the axioms (or their derivations). Sure, that might produce theorems, but they won’t be	 	 	 	 	 	 	 	 	 	 	 	 	 	
interesting	and	you	won’t	be	ef�icient.	

	
Across the street of the university in which the Ideal Mathematician continues her debate,	 	 	 	 	 	 	 	 	 	 	 	 	 	
another interesting conversation has been initiated between the Ideal Restaurant-owner (IR)	 	 	 	 	 	 	 	 	 	 	
and	an	aspiring	Automated	Restaurant	owner	(AR).	
	
AR:  I’d like to open an automated restaurant. So I came to you, a restaurant owner, to ask you	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

what is required of a restaurant. Speci�ically, I’d like to focus on producing meals. I take it I	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
can	take	this	as	a	quintessential	aspect	of	a	restaurant?	

IR: I think that is fair to say, yes. I mean, much of my time is spent dealing with customers,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
doing the accounting and drinking coffee, but none of these activities would be central to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
my	worries	regarding	accepting	the	idea	of	an	automated	restaurant.	

AR: So what really goes on in your kitchen when one produces a meal? The way I understand	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
it, there are things one can consider an ingredient and a couple of things you’re allowed to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
do	with	them.	Am	I	wrong	so	far?	

IR: Not	wrong,	exactly.	
AR: Then all I need to know is which these ingredients are and what I’m allowed to do with	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

them and then it’s just a matter of randomly generating permissible actions to exhaust all	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
possible	meals.	All	the	edibly	formed	foods	(eff),	I	mean.	Seems	easy	enough.	

IR: I’m afraid you are oversimplifying it. It won’t do to just throw some ingredients in and out	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
of a pot and sell the end result as a meal. Sure, it might count as sustenance, but you won’t	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
satisfy	any	customers	and	you	certainly	won’t	be	ef�icient.	What	you	need	is	a	chef.	

AR: What	will	he	do?	
IR: Or she. A chef has knowledge of recipes. He tells the cooks which of all those permissible	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

actions to do at what time to navigate the space of possible dishes to just the delicious	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
ones.	

AR: Oh,	that	sounds	good.	I’d	like	to	ask	him	what	his	recipes	are.		
IR: That’s your �irst problem right there. Chefs won’t just give them to you, secretive as they	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

are. And, to tell you the truth, I’m not entirely sure they are always aware of the recipe	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
they’re	following.	

 



AR: What	makes	you	say	that?	
IR: For one thing, the kind of mistakes they make. He sometimes interprets his recipes a little	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

bit too loosely, for instance. However, I don’t suppose that’s relevant to you. You don’t want	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
your	automated	chef	to	mimic	real	chefs	down	to	their	mistakes.	

AR: Indeed I don’t! Well, I must �ind out these recipes some way. Surely there are some	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
restaurant-owners that have tried to analyse their chef’s protocol! Hang on, isn’t there a	 	 	 	 	 	 	 	 	 	 	 	 	 	
famous	book	by	Bolya	detailing	these	recipes	in		How to Cook It ?	

IR: A	bit	of	it,	yes.	Although	no	book	will	ever	be	enough.	
AR: Why	is	that?	
IR: Kitchens need to �ind new recipes too. If one sticks with one chef’s recipes, the restaurant	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

will never rise above them. Never discover some �law of or improvement for the recipe or	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the dish. Furthermore, cuisine culture is always reinventing itself. New ingredients get	 	 	 	 	 	 	 	 	 	 	 	
accepted,	new	actions	become	permissible.		

AR: So	how	does	the	chef	know	how	to	do	that?	
IR: You’d	need	some	meta-recipes.		
AR: What	are	meta-recipes?	
IR: They	are	recipes	on	how	to	form	recipes.		
AR: It sounds like those meta-recipes would need to be altogether stronger because they	 	 	 	 	 	 	 	 	 	 	 	 	

would	incorporate	the	ordinary	recipes.	Those	meta-recipes	are	the	ones	I	need	then.	
IR: You de�initely need them yes. If you can �igure them out of course, because, as I’ve	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

mentioned,	chefs	are	mysterious.		
AR: Right.	
IR: And of course those will eventually run out of interesting dishes too, same as the one	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

before.	You’d	need	to	have	another	meta-recipe	-	
AR: Ok, I can see where this is going, so I’ll try to cut to the chase: how do I �igure out the top	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

meta-meta-meta…-recipes?	
IR: You’re very clever, but I’m afraid it would be meta-recipes all the way up. I do realise this	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

might	make	it	impossible	to	implement	in	an	automated	restaurant.	
AR: It sounds equally impossible for a human chef too, having an in�inite amount of	 	 	 	 	 	 	 	 	 	 	 	 	 	

meta-layered	recipes!	
IR: I don’t mean to say chefs have an in�inite amount of recipes. What I mean is that it’s always	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

possible,	in	the	potential	in�inite,	to	get	a	new	meta-recipe.		
AR: Well,	no	matter,	I	can	just	automate	meta-recipe-generation.	
IR: According	to	which	recipe?	Because	that’s	the	one	you’ll	be	restricted	by.		
AR: Why	are	these	meta-recipes	a	problem	for	me,	but	not	for	human	restaurants?	
IR: Because human chefs don’t need meta-recipes to do this. Cuisine insight precedes the	 	 	 	 	 	 	 	 	 	 	 	 	

formulation	of	a	meta-recipe.	
AR: How	does	he	do	it	then?	
IR: Listen, I understand how restaurants work generally, but the way it’s implemented in the	 	 	 	 	 	 	 	 	 	 	 	 	 	

kitchen is not my area of expertise. I don’t know how, but restaurant practice proves that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
cuisine	insight	exists.	

	
A	Sous	Chef	Specialist	(SCS)	joins	the	conversation.	

 



	
SCS: Hello,	mind	if	I	join	in	on	the	conversation?	I’m	a	Sous	Chef	Specialist.	
IR: I’m	not	sure	that	what	we’re	missing	is	really	to	be	found	in	what	a	sous-chef	does.		
SCS: Oh no, I think you’ve misunderstood. My research is about the dynamics of everything	 	 	 	 	 	 	 	 	 	 	 	 	 	

that	happens	in	a	kitchen	below	the	chef	-	hence	“sous	chef”,	pardon	my	French.		
IR: Oh, well, that doesn’t sound relevant to us. Our interest is actually in what a chef does to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

produce	these	wonderful	dishes.	
SCS Ah, but that’s exactly it. What I’ve noticed upon overhearing your conversation is that you	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

are misunderstanding the way both a kitchen and its chef function. You are relying way	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
too much on the involvement and brilliance of the chef and this gets you into problems.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
You don’t need to �ind a chef with in�inite meta-recipes, because there’s no such recipe-	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
and	meta-recipe-following	practice.		

IR: That’s	what	I	was	already	getting	at.	
AR: Chefs	don’t	follow	recipes?	
IR: They may, but it is not their usual occupation and it’s certainly not what they’re doing to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

discover	new	dishes.	
AR: So	trying	to	capture	a	kitchen	with	recipes	and	meta-recipes	is	doomed	to	fail?	
SCS: No, I don’t wish to claim that much. It may well be that there are such meta-recipes.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

However,	I	would	like	to	point	out	that’s	not	the	way	kitchens	really	work.		
IR: Yes,	what	you	need	is	a	chef’s	insight.	
SCS: Or	the	kitchen’s	insight.	
IR:  They	are	one	and	the	same.	
SCS: They are not. You’ve been so focused on working your way 	up in meta-recipes, that you	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

completely disregard the value of anything 	down below . You see, sometimes a wonderful	 	 	 	 	 	  	 	 	 	 	 	
dish emerges from the kitchen without the chef being involved at all. Sometimes dishes	 	 	 	 	 	 	 	 	 	 	 	 	 	
are arrived at very much by happenstance, by which I mean that kitchen problems occur	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
which members of the staff try to wrestle with. It may lead to a variation on the dish, a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
different cooking tactic,... If it seems un�ixable, they’ll discard the dish. Though it may lead	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
them to trying a different dish that removes the previous cause for concern - molding the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
ingredients to suit their needs if they have to. If the result is to the kitchen’s liking (by	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
which I mean that enough people, and the chef especially, endorses it), then it gets sent	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
out. The chef still loves to take all the glory, of course, but what the dish really relied on	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
was a trial-and-error procedure by members of the staff using their particular skills in an	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
ef�icient	collaboration	that	guided	the	kitchen	as	a	whole.	

AR:  I think what you’re suggesting is that the interesting and creative acts of a kitchen	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
happen,	often,	below	the	chef?	

SCS: That is exactly it. I would even go so far as to say that the dynamics of the kitchen drives	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the chef much more than the other way around. By which I don’t mean that the chef is just	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
a complacent enabler of his kitchen, but by which I mean that the amount of control the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
chef exerts is overestimated. A good kitchen is one which cooperates well, not one in	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
which a chef micromanages according to a recipe. Meals emerge from the way the kitchen	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
functions, not from the chef’s recipe. But when it gets presented, it needs to look and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
taste	as	if	the	end-product	was	the	intention	all	along.		

AR: But	surely	that’s	not	ideal.	Shouldn’t	there	be	a	recipe	or	meta-recipe	for	it	all?	

 



SCS: If you already know enough about the meals or recipes you’re making, that might be	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
possible. Then you just make sure you backtrack what you’ve been doing. However, it’s	 	 	 	 	 	 	 	 	 	 	 	 	 	
not certain that discovering these meals (or recipes) will admit of any straightforward	 	 	 	 	 	 	 	 	 	 	 	 	
meta-recipe. And even if it does, then you’ve discarded everything of the process that	 	 	 	 	 	 	 	 	 	 	 	 	 	
made	the	kitchen	discover	it	in	the	�irst	place.	

AR: Still, wouldn’t we want to clean up this mess and make it more straightforward? Wouldn’t	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
it be better to make the dish again, but only with permissible actions, right? For health	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
and	safety	reasons.	

IR: Oh yes, some dishes have the health and safety seal of approval, being meticulously	 	 	 	 	 	 	 	 	 	 	 	 	 	
prepared	according	to	strict	standards	so	that	they	are	universally	eatable.	

AR: I’ve	noticed	that	not	a	lot	of	people	order	them	though.	
IR: Oh, no doubt. They are overly large and hard to digest, so we don’t actually bother with	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

them most of the time. What we mostly make are much lighter, smaller meals. They may	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
not be universal, but they are much appreciated by customers of the same cuisine -	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
because, you may remember, most of our customers just come from different restaurants.	 	 	 	 	 	 	 	 	 	 	 	 	
That’s why we see no problem in sometimes preparing only parts of meals, with the sauce	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
left	the	eater.	

AR: Why is it then that it’s the dishes that are formally proved - I mean approved - by healthy	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
and	safety	are	displayed	in	front	of	the	window	then?	

IR: Because	it	inspires	con�idence	in	the	customers	that	we	can	make	them.		
AR: So what are you essentially saying then? That I need a messy disorganised kitchen?	 	 	 	 	 	 	 	 	 	 	 	 	 	

Cockroaches,	bugs	and	all?	
SCS: No, of course not. There shouldn’t be any 	bugs in the kitchen. But I’m saying you might	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

need	a	certain	amount	and	particular	kind	of	messiness	for	a	well-functioning	kitchen.	
AR: I’m starting to feel like embarking on this whole automated restauranting enterprise	 	 	 	 	 	 	 	 	 	 	 	

might prove to be biting off more than I can chew. If I can’t use recipes, then it’s doomed	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
to	fail.	

IR: That	was	my	point	all	along.	
	
Back	in	the	Ideal	Mathematician’s	of�ice:	
	
AM Oh, so you’re saying that what you’re automating me to do isn’t really the mathematical	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

thinking	that	you	do?		
IM: I think that’s right, because with us it’s informal, implicit, �luid, self-perpetuating,	 	 	 	 	 	 	 	 	 	 	 	

semantic, autonomous and all the things you are not. If we want to impart this thinking on	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
you, we’d have to formalize it and then all those elements would be taken out. But then	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
what’s	left	is	usually	abstract	nonsense	that	doesn’t	interest	us	as	much	to	begin	with.	

AM: So by the time one has �igured out what is interesting, and formalized it enough for	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
automation,	what	once	made	the	mathematics	alive	and	interesting	is	now	dead	and	dry?	

IM: That’s	one	way	of	putting	it,	yes.	
	

	
The traditional conception of mathematical practice takes proof to be a matter of rigorous	 	 	 	 	 	 	 	 	 	 	 	 	 	
formal derivations aimed at justi�ication and performed in solitude. The corresponding	 	 	 	 	 	 	 	 	 	 	
characterisation of understanding mathematics would then involve the ability to derive (all)	 	 	 	 	 	 	 	 	 	 	 	

 



consequences from well-delineated axioms according to strict inference rules. If this were what	 	 	 	 	 	 	 	 	 	 	 	 	
makes one understand mathematics, then the issue would really be settled by comparing the	 	 	 	 	 	 	 	 	 	 	 	 	 	
reliability of human and automated mathematicians to perform these inferences without error.	 	 	 	 	 	 	 	 	 	 	 	
This being closer to a computer’s strong suit, their reliability alone would end the discussion.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
But a couple of things are wrong with this picture. First, the encoding of axioms and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
inference-rules won’t do much to navigate the formal system. And even if one can �ind a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
procedure to navigate it fully, producing every theorem and exhausting every road to it, the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
process won’t be ef�icient (the combinatorial explosion alone would yield it impossible in	 	 	 	 	 	 	 	 	 	 	 	 	
practice) and its search will be uninspired, blind to what makes a theorem or the route to it	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
interesting. There are further problems. The way we have conceived of the proving practice so	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
far, we would see the growth of mathematical knowledge as navigating (and recording the	 	 	 	 	 	 	 	 	 	 	 	 	 	
routes) of a given formal system. One now has to note that such a formal system is not  a given,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	   	 	
but shaped and reshaped by mathematicians according to their judgement. The same is true for	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the	formation	of	concepts.	 
	
So we need a procedure for deriving 	interesting  theorems (and doing so via interesting routes -	 	 	 	 	 	 	  	 	 	 	 	 	 	 	
one of the reasons why mathematicians don’t just prove, but reprove) and we need a procedure	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
for the judgement with which mathematicians improve or shape a formal system’s axioms and	 	 	 	 	 	 	 	 	 	 	 	 	 	
inference-rules, but also the concepts used. But how is this supposed to be accomplished? These	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
judgements are not straightforward. Mathematicians sometimes choose between keeping a	 	 	 	 	 	 	 	 	 	
formal system with aspects which are un- or counter-intuitive, letting it shape new intuitions	 	 	 	 	 	 	 	 	 	 	 	 	 	
(e.g. axiom of choice, non-euclidean geometry), or keeping the intuition and adjusting the formal	 	 	 	 	 	 	 	 	 	 	 	 	 	
system. (Thompson, 1998) Furthermore, if one modi�ies the axioms of a formal system, one	 	 	 	 	 	 	 	 	 	 	 	 	 	
modi�ies the whole system, so whatever method of navigation or logic for discovery one uses will	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
need to be accommodated to the space it navigates. Can we have a pre�ixed rules that exhaust all	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the relevant axiom- and inference-modi�ication as well as all interesting discovery across all	 	 	 	 	 	 	 	 	 	 	 	 	
relevant formal systems? What are the right meta-axioms and meta-inference rules? Can these	 	 	 	 	 	 	 	 	 	 	 	 	
judgements be captured by a formal meta-system? And if so, will it truly encompass the logic for	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
mathematical discovery or should it itself be subject to further meta-considerations? If so, what	 	 	 	 	 	 	 	 	 	 	 	 	 	
are the rules of the top-most meta-system (the complex rules that determine the results of all	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the	systems)?		
 
Perhaps one way to improve the discovery process would be to have the ability to recognise a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
good thing when you stumble upon it. This no longer implies that the process is determined to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
land on the interesting bits. Instead, it uses trial-and-error with various rules-of-thumb until it	 	 	 	 	 	 	 	 	 	 	 	 	 	
has found something it notes of interest. To accomplish this, we need the meta-system to include	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
both the ability to stumble with some wisdom (no trivial task) and an evaluation system that can	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
gauge the interestingness of every derivation, axiom, concept or method it stumbles upon. Once	 	 	 	 	 	 	 	 	 	 	 	 	 	
again the question pops up: is there a universal standard of interestingness or is this open to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
change and development? As for the manner of stumbling, the same question pops up: are there	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
universal rules-of-thumb or does this change with the space being explored and are these	 	 	 	 	 	 	 	 	 	 	 	 	 	
rules-of-thumb subject to change according to one’s (developing) interests? There is a high	 	 	 	 	 	 	 	 	 	 	 	 	
degree of interconnectedness between all these abilities or the rules that are supposed to	 	 	 	 	 	 	 	 	 	 	 	 	 	
capture	them.	
 

 



An even deeper problem lurks with this characterisation of the proving practice. So far we have	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
considered of mathematics as a formal system and the growth of mathematical knowledge as	 	 	 	 	 	 	 	 	 	 	 	 	 	
deriving theorems from these axioms. However, a group of ‘mavericks’, starting with Lakatos	 	 	 	 	 	 	 	 	 	 	 	 	
(1976), have challenged the view that formal derivation is the bastion of mathematics or its	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
practice. Although formal proofs get valued for their theoretical rigor, the practice of	 	 	 	 	 	 	 	 	 	 	 	 	
formalisation is not only strenuous, but could also dramatically reduce a proof’s intelligibility	 	 	 	 	 	 	 	 	 	 	 	 	
(Aberdein, 2006) and consequently become more prone to error than the usual more informal	 	 	 	 	 	 	 	 	 	 	 	 	 	
kind. (Harrison, 2008) That’s not to say that mathematicians do not work with formal systems,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
but it is entirely misleading to reduce the proving practice to performing of formal derivations.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Instead, mathematicians produce proof outlines (Van Bendegem, 1989) which may (or may not)	 	 	 	 	 	 	 	 	 	 	 	 	
bear some direct relation to a full formal derivation, for example as an abbreviation or indication	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Azzouni, 2004). In a similar vein, instead of mathematicians using concepts according to their	 	 	 	 	 	 	 	 	 	 	 	 	 	
theoretical de�inition (which they may consciously endorse), their conduct indicates that what	 	 	 	 	 	 	 	 	 	 	 	
they really use are much vaguer and more �luid conceptions. The distinction has been noted as	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
concept de�inition / concept image (Tall & Vinner, 1981) or manifest concept / operative concept	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
(Tanswell, 2017). This bears importance because conceptualisation and proof formation are	 	 	 	 	 	 	 	 	 	 	
inextricably linked in the activity of mathematicians. Such things seem to indicate that, while	 	 	 	 	 	 	 	 	 	 	 	 	 	8

human mathematicians may produce and work with formal systems, their thinking is not	 	 	 	 	 	 	 	 	 	 	 	 	
characterised by them. Mathematicians neither prove by navigating the search-space nor	 	 	 	 	 	 	 	 	 	 	
peer-review	by	checking	proofs	step	by	step	for	correct	inference.	What	do	they	do	then?	
	
They rely on 	meaning, so we are told (e.g. by Rav, 1999). What could make up this meaning?	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Here’s a couple of broad strokes: There is a great deal of recognition going on in various ways,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
including identifying key elements or moves used in a proof and discerning the intentions, ideas,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
approaches involved. What is also of importance is pattern-recognition (in all aspects involved in	 	 	 	 	 	 	 	 	 	 	 	 	 	
the proving activity and at various levels of abstraction), which bene�its from analogies to �ind	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
and exploit similarities with other knowledge, intuitions (e.g. about the physical world - Lakoff	 	 	 	 	 	 	 	 	 	 	 	 	 	
and Núñez, 2000) or adapting methods from other areas (Cellucci, 2000). Other modes of	 	 	 	 	 	 	 	 	 	 	 	 	 	
reasoning can be used to exploit these, including visual reasoning or non-deductive inferences	 	 	 	 	 	 	 	 	 	 	 	 	
(Baker, 2015). Furthermore, the objects identi�ied or patterns discerned are subject to various	 	 	 	 	 	 	 	 	 	 	 	 	
evaluations. For example, theorems can be important, beautiful, relevant (Larson, 2005),	 	 	 	 	 	 	 	 	 	 	
conjectures can be surprising or promising, questions interesting, concepts powerful, proofs	 	 	 	 	 	 	 	 	 	 	
explanatory, reliable, dif�icult or pedagogically successful (Aberdein, 2007) and so on. What’s	 	 	 	 	 	 	 	 	 	 	 	
more, these evaluations are not made without connection to the previously mentioned processes	 	 	 	 	 	 	 	 	 	 	 	 	
of recognition, analogy, background intuitions and non-deductive reasoning. There is also lot of	 	 	 	 	 	 	 	 	 	 	 	 	
trial-and-error involved here, including working with incomplete or ambiguously delineated	 	 	 	 	 	 	 	 	 	
information, relying on experience in one’s judgement, making snap-judgements, learning to	 	 	 	 	 	 	 	 	 	 	
trust and when to trust in a systematic manner (Allo et al, 2013). This last point is important to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
stress. No mathematician is an island. When we af�irm that human mathematicians can survey	 	 	 	 	 	 	 	 	 	 	 	 	 	
or prove, it’s also important to keep in mind that they are not, and need not be, able to do so ex	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
nihilo. Some crucial aspects of their abilities or results may in fact rely on the presence of the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
larger practice (e.g. using other people’s results, methods, judgements,...) or environment (e.g.	 	 	 	 	 	 	 	 	 	 	 	
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use of calculator, pen and paper,...). It seems fair to say that the proving practice is driven by a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
large	amount	of	knowledge	and	skills	that	are	highly	integrated	with	one	another.		
	
Rather than navigating within a preset rigorous system, the whole process seems more akin to	 	  	 	 	 	 	 	 	 	 	 	 	 	
bootstrapping itself towards a formal system - starting from a general feel based on incomplete	  	 	 	 	 	 	 	 	 	 	 	 	 	
information and working oneself up, with various skills, towards formal rigor, and only up to the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
point where intelligibility is still possible. If humans use informal (vague, �lexible or fallible)	 	 	 	 	 	 	 	 	 	 	 	 	 	
means to practice mathematics, then we have to consider the fact that these may play a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
functional, rather than peripheral role (if not in justi�ication, then certainly in discovery). As	 	 	 	 	 	 	 	 	 	 	 	 	 	
such, these too have to be taken into account in automating an arti�icial mathematician. It won’t	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
do to exclude the “dirty” aspects of the kitchen, if these play an integral part in making that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
kitchen function. There will certainly be aspects of a kitchen that are simply unwelcome, but at	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
this	point,	it	may	not	always	be	clear	which	are	valuable	features	and	which	are	bugs.	
	
4. Considering the possibility of a remedy 
If we contrast the informal practice with the formal approach in computers, it makes their �laws	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
less surprising. A computer’s strong suit is its ability to handle brute-force calculations (as	 	 	 	 	 	 	 	 	 	 	 	 	 	
exploited, for example, in proving the 4CT) and compute according to well-delineated processes.	 	 	 	 	 	 	 	 	 	 	 	 	
Principal claims against automated reasoning and understanding, mathematical (Rav, 1999) or	 	 	 	 	 	 	 	 	 	 	
otherwise (Haugeland, 1979), do often invoke or imply the informal or non-formalizable nature	 	 	 	 	 	 	 	 	 	 	 	 	
of human reasoning. Our question now becomes: is there suf�icient reason to conclude that the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
realm of informal moves is unattainable for computers? At face value, it certainly seems so. After	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
all, mathematical understanding is informal and open and computers function rigidly formal.	 	 	 	 	 	 	 	 	 	 	 	
Informal computing sounds like a contradiction in terms, but we’d like to argue why its	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
possibility	should	not	be	dismissed	(yet).	
	

	
A	Sub-Cognitive	Scientist	(SCS)	joins	the	conversation.	
	
SCS: Hello,	mind	if	I	join	in	on	the	conversation?	I’m	a	sub-cognitive	scientist.	
IM: Oh, don’t sell yourself short, I’m sure the cognitive scientists don’t think of you as beneath	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

them.	
SCS: I’m afraid you misunderstood. I’m not a sub cognitive-scientist, I’m sub-cognitive	 	 	 	 	 	 	 	 	 	 	

scientist.	Meaning	my	focus	is	not	just	on	cognition,	but	sub-cognition.	
IM: Oh,	my	apologies,	but	I	hadn’t	heard	the	term	yet.		
SCS: That’s	entirely	normal,	I	made	it	up.	
IM:  Right. Well, I’m sure by now there’s a rumour going on in these hallways that today it’s	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

open house in my of�ice to barge in and expound some elaborate philosophies on me to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
keep me from continuing with my research. I’m suspecting that is why you’re here as	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
well?	

SCS: In a sense, yes. I met the AM in the hallway and he was rather upset. He told me he is	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
doomed to fail at accomplishing his dream of becoming a mathematician because	 	 	 	 	 	 	 	 	 	 	 	
mathematical thinking is essentially informal. Couldn’t we possibly help AM by taking	 	 	 	 	 	 	 	 	 	 	 	
note	of	these	informal	elements	of	practice?	

 



IM: Well, I’m afraid you missed the point of that conversation. We just concluded that the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
formalisation of mathematics pushes out all of its meaning and that it is that meaning	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
which was actually at the basis of both formalisation and the ef�iciency with which we	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
“navigate”	the	formal	system	without	getting	bogged	down	by	the	technical	details.		

SCS: Oh,	I	do	understand	that,	but	couldn’t	we	automate	this	informal	process?	
IM: You use “automate” rather than “formalize”, but that’s just a way of hiding the fact that, to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

automate	mathematical	thinking,	you	need	to	formalize	it.	
SCS: Well, actually that is precisely what I want to argue against. “Automate” and “formalize”	 	 	 	 	 	 	 	 	 	 	 	 	 	

should not be used interchangeably. When you want to formalize mathematical thinking,	 	 	 	 	 	 	 	 	 	 	 	
then what you do is, you write down the axioms of your world-view in a formal language	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
with a given list of symbols. Then you add algorithms which manipulate those symbols	 	 	 	 	 	 	 	 	 	 	 	 	 	
according	to	the	laws	of	thought	(or	at	least	those	laws	that	are	deemed	valid).		

IM: That’s	precisely	my	point:	to	automate,	you	need	to	formalize	it	�irst.		
SCS: That’s	a	speci�ic	type	of	automation:	the	formalizing	thought	approach	to	automation.	
IM: What	is	the	alternative?	
SCS: That you don’t formalize thought, but the cognitive substrate responsible for thought. Our	 	 	 	 	 	 	 	 	 	 	 	 	

brains don’t seem to function by manipulating symbols, but they accomplish	 	 	 	 	 	 	 	 	 	 	
mathematical thought quite well. So if we automate a substrate that, at some level of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
abstraction,	is	like	our	brain,	then	mathematical	thought	will	emerge	from	it.	

IM: Forgive me, but that sounds a bit like an easy evasion of the issue. We’re having	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
dif�iculties automating mathematical thinking in a satisfactory way, so you say: Oh, don’t	 	 	 	 	 	 	 	 	 	 	 	 	
focus on mathematical thinking directly, but focus on the incredibly complex and	 	 	 	 	 	 	 	 	 	 	 	
delicately	designed	architecture	of	the	brain,	and	the	thoughts	will	come	gratis.	

SCS: But is that really such a strange thing to claim? After all, our brains most certainly seem to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
accomplish	thoughts	and	it	is	an	incredibly	complex	and	delicately	designed	architecture.	

IM: That	may	well	be,	but	it	is	still	unsatisfactory	for	another	reason.	
SCS:  Pray	tell.	
IM: Well, what you seem to be suggesting is: simulate a virtual world containing the brain of a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

mathematician,	down	to	its	smallest	atom,	and		then 	you	can	have	mathematical	thinking.		
SCS: That would be the most extreme way of going about it, yes. Although I doubt any	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

computer	could	ever	process	that	much	information.	
IM: Right, indeed. It would take so much computing power or so much time that it would be	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

practically unfeasible. And even if it were, the entire enterprise still seems to me to be of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
only	very	limited	value.	

SCS: How	so?	
IM: Well, surely one of the reasons why we engage in the pursuit of any kind of arti�icial	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

intelligence is to understand better how that intelligence works and maybe even work on	 	 	 	 	 	 	 	 	 	 	 	 	 	
how to improve it. If you can only create an arti�icially intelligent person by simulating the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
brain, then we give up the enterprise of understanding mathematical thinking in favor of	 	 	 	 	 	 	 	 	 	 	 	 	 	
looking for good, working brains that we can replicate in a simulation. In doing this we	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
may learn a lot about the biology of brains, but next to nothing about that person’s	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
intelligence	or	thought-processes.	

SCS:  Oh yes, and to make matters worse: when we simulate a brain of an existing person	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
without an environment, it won’t do much good in and of itself. If those brains would	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

 



function identically to those outside the simulation, then presumably they’d have the	 	 	 	 	 	 	 	 	 	 	 	
same	needs	as	the	mathematicians	they’re	based	on.	

IM: Indeed,	they’d	need	simulated	food,	friends,	coffee	and	much	much	more.		
SCS: And while there’s certainly something enticing about the thought of simulating a world	 	 	 	 	 	 	 	 	 	 	 	 	

with	unlimited	funding	for	mathematicians,	I	don’t	think	it’s	very	practical	to	achieve.	
IM: You	don’t	seem	stunned	by	this.	Don’t	you	think	this	undercuts	your	argument?	
SCS: No,	I	don’t.		
IM: Why	not?	
SCS: Well, I don’t think there’s only two options: either to formalize thought or to simulate the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

brain down to its atoms. I’m not pressing for a neurophysical approach. All I’m saying is	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
that I believe that any model of automated understanding has to converge to an	 	 	 	 	 	 	 	 	 	 	 	 	 	
architecture that is, at some level of abstraction, “isomorphic” to brain architecture, also	 	 	 	 	 	 	 	 	 	 	 	 	
at some level of abstraction. This may sound empty, since that level could be anywhere,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
but considering how you were characterising mathematical practice, it seems suggestive	 	 	 	 	 	 	 	 	 	 	
to me that the level will be considerably lower than that of thought - otherwise some laws	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
of	thought	or	formal	system	would	suf�ice	to	capture	mathematical	thinking. 		9

IM: That is an interesting idea, but then wouldn’t the AM be subject to human errors:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
miscalculate,	over-map	analogies,	be	blind	to	mistakes	and	such?	

SCS: I’m afraid so, but so do human mathematicians of course and the conversation so far has	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
always focused on how much human mathematicians nonetheless deserve to be a	 	 	 	 	 	 	 	 	 	 	 	
quali�ied	(and	the	most	quali�ied	even)	expert	in	spite	of	this.	

IM: It would be nice if we could get the best of both worlds. Such that the arti�icial	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
mathematician could reason informally and convince us with an insightful proof and then	 	 	 	 	 	 	 	 	 	 	 	 	
also	supply	a	fully	formalized	one.	

SCS: Well, nothing would stop the AM from using (or being composed of) other automated	 	 	 	 	 	 	 	 	 	 	 	 	 	
theorem	proving	softwares	to	help	him	overcome	his	own	limitations.	

IM:  Interactive theorem proving between different software programs on the same	 	 	 	 	 	 	 	 	 	
computer?	

SCS: Precisely.	An	inter-interactive	theorem	prover,	if	you	will.	
	
Back	at	the	restaurant.	
	
SCS: So, you may not be able to automate a perfect chef who controls the overall �low of the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

cooking, but you can automate each member of the staff to be autonomous, communicate	 	 	 	 	 	 	 	 	 	 	 	 	 	
with one another directly and, if you can get them to work well together well as well as	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
learn from past experience, you’ll get a working kitchen that emerges as the result of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
many local interactions without the need for in�inite amount of static recipes or	 	 	 	 	 	 	 	 	 	 	 	 	
meta-recipes.		

IR:  That	sounds	like	no	mean	task,	though.	
SCS: It	sure	isn’t,	but	Rome	wasn’t	built	in	a	day.	
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The principal reason, we believe, why the notion of informal computation gets dismissed is	 	 	 	 	 	 	 	 	 	 	 	 	 	
because formalization is taken as a necessary condition for automation. To be sure, formalization	 	 	 	 	 	 	 	 	 	 	 	 	 	
can be very useful to the enterprise of automated mathematics because it reduces mathematical	 	 	 	 	 	 	 	 	 	 	 	 	 	
thinking to something easy(-ish) to cast in an algorithm and automate: explicitly delineated	 	 	 	 	 	 	 	 	 	 	 	 	
de�initions and inferences that aren’t tarnished by the sloppy side-routes, ambiguous	 	 	 	 	 	 	 	 	 	 	
associations and dirty details of what went on in the human kitchen while cooking. However, not	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
only is this formalization incredibly dif�icult to accomplish, but it also �ilters away nearly all the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
traces of the original meaning and discovery process (of both the result and the formalisation	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
process). The dirt or detail of the kitchen may make it seemmore fallible, but it also powers the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
cooking, gives it its depth of character or breadth of meaning. One can try to enrich the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
formalization with a logic for discovery, but it is an open question whether there are 	justified	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
laws of mathematical thought such that these can be replicated by an algorithm without recourse   	 	 	 	 	 	 	 	 	 	 	 	
to anything unconscious. Disregarding what goes on in the kitchen below the laws of the chef	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
would	be	ideal,	but	it	may	not	prove	possible	(or	even	desired).		
	
We’d like to stress the point about levels at which we can look for laws by way of an analogy.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Dennett (1986/1998) and Hofstadter (1982) have both used the metaphor of meteorology to	 	 	 	 	 	 	 	 	 	 	 	 	
drive home the same point. If we want to model the weather at the cloud-level, we are forced to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
consider of clouds as stable, well-delineated entities such that the fact that they consist of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
molecules rushing out in different directions can be safely ignored. Of course, such an approach	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
is not a priori to be excluded. For example: the macroscopic properties of gas (e.g. volume,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
temperature, pressure) are stable enough to ignore the fact that they are actually composed of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
complex molecule-bumps at a lower level. But the notion of “cloud” as well as “thunderstorm”,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
“cold fronts”, “isobars”, “tradewinds” are not stable or well-delineated entities. So trying to model	 	 	 	 	 	 	 	 	 	 	 	 	 	
the weather at this level of abstraction may require too much simpli�ication, too much to be lost	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
in abstraction to allow the richness of weather to be captured by an algorithm that concerns	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
clouds. But this doesn’t (at least in principle) determine meteorology to be a computational	 	 	 	 	 	 	 	 	 	 	 	 	 	
impossibility. There may be no laws at the cloud-level to cast as algorithms, but there are laws	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
below it. If one were to succeed in capturing the molecule-level, the cloud-level would emerge	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
with	it.	The	computational	level	here	is	sub-clouds.		
	

“[Connectionist models, for instance] have made familiar the notion that the level at	 	 	 	 	 	 	 	 	 	 	 	 	
which a system is algorithmic might fall well below the level at which the system	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
carries	semantic	interpretation	(Smolensky	1988).”	(Chalmers,	1990,	p.	658)	
	

The previous exploration of mathematical practice seems to us to indicate that we won’t be able	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
to collapse and ignore the lower levels that make mathematical thought possible in human	 	 	 	 	 	 	 	 	 	 	 	 	 	
beings. An alternative approach to automating mathematical thought is by looking for laws, not	 	 	 	 	 	 	 	 	 	 	 	 	 	
of thought itself, but of subcognitive events in a brain that collectively make up informal	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
mathematical thought. Rather than automate the syntax of a well-delineated game (justi�ied	 	 	 	 	 	 	 	 	 	 	 	
mathematical thinking), the focus is on automating the cognitive architecture (at some level of	 	 	 	 	 	 	 	 	 	 	 	 	 	
abstraction) of a game player or constructor. What is being automated then is not mathematical	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
thought directly, but the architecture of the brain (at some level of abstraction) from which	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
mathematical thought emerges. It is our contention that this substrate-level (i.e. the vast array of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
collaborating subcognitive processes) contributes more to mathematical thinking than was	 	 	 	 	 	 	 	 	 	
traditionally	believed.		

 



	
This is not to say that 	no mathematical thinking can or should function this way. Some of our	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
thought-processes lend themselves quite well to formalization for computation. For instance:	 	 	 	 	 	 	 	 	 	 	
brute-force calculation, doing integrals, etc. They deal with objects and manipulations that are	 	 	 	 	 	 	 	 	 	 	 	 	
well-delineated enough to allow capturing it as computations (usually with greater reliability	 	 	 	 	 	 	 	 	 	 	 	
than humans do). And to the extent that these formalized systems are used in or useful for	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
mathematical practice, it is worthwhile to automate them directly. However, not all objects and	 	 	 	 	 	 	 	 	 	 	 	 	 	
manipulations that humans do in their thinking seem to be so well delineated or rigid. And the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
assumption that a well-delineated system should suf�ice is betrayed by the realization that there	 	 	 	 	 	 	 	 	 	 	 	 	 	
are, in fact, large amounts of implicit information, vague intuitions and ambiguous associations	 	 	 	 	 	 	 	 	 	 	 	 	
that go into mathematical thinking. The dif�iculty of automated theorem proving seems to offer	 	 	 	 	 	 	 	 	 	 	 	 	 	
further evidence for this. Much like the objects of cloud dynamics (e.g. thunderstorms) can only	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
emerge from the interactions of molecules, so some brainstorms (e.g. mathematical thinking)	 	 	 	 	 	 	 	 	 	 	 	10

might only be able to emerge from subcognitive events. And if these subcognitive events do	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
behave	in	a	law-like	manner,	then	they	will	allow	themselves	to	be	captured	by	an	algorithm.		
	
This line of reasoning might seem to strongly suggest a neurophysical approach (i.e. simulating	 	 	 	 	 	 	 	 	 	 	 	 	 	
the brain) to achieve anything like arti�icial mathematicians. But our claim is not that there are	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
only two options: either to formalize thought or to simulate the brain. It’s just that we believe,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
like Hofstadter (1982), that any AI model “has to converge to an architecture that at some level	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
of abstraction (so not necessarily at the hardware level) is “isomorphic” to brain architecture, at	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
some level of abstraction” (p. 15), and this is not necessarily at the molecular level. This level	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
could be anywhere, but it seems clear from both the limited successes of automated	 	 	 	 	 	 	 	 	 	 	 	 	 	
mathematics and from how we’ve been characterising mathematical practice that this level will	 	 	 	 	 	 	 	 	 	 	 	 	
be considerably lower than that of thought - otherwise laws of thought or their corresponding	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
formal	system	would	suf�ice	to	capture	mathematical	thinking.		
	
Now that we’ve made the distinction between the level at which objects of thought can be	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
identi�ied and the level at which computable laws exist, we’d like to roughly sketch some aspects	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
of the sub-symbolic architecture to achieve the emerging effects we are talking about. We can’t	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
express	it	better	than	Forrest	(1990)’s	summary	of	emergent	computation:	

	
“Generally, we expect the emergent-computation approach to parallelism to have the	 	 	 	 	 	 	 	 	 	 	
following features: (1) no central authority to control the overall �low of	 	 	 	 	 	 	 	 	 	 	 	
computation, (2) autonomous agents that can communicate with some subset of the	 	 	 	 	 	 	 	 	 	 	 	
other agents directly, (3) global cooperation (...) that emerges as the result of many	 	 	 	 	 	 	 	 	 	 	 	 	 	
local interactions, (4) learning and adaptation replacing direct programmed control,	 	 	 	 	 	 	 	 	 	
and (5) the dynamic behavior of the system taking precedence over static data	 	 	 	 	 	 	 	 	 	 	 	 	
structures.”	(Forrest,	1990,	p.	5)	

	
There is a large focus on a distributed architecture which consists of a swarm of parallel	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
subsystems (several cooks) interacting with one another (though not with complex information)	 	 	 	 	 	 	 	 	 	 	 	
in such a way to make up global effects. It is these global effects which we would call “thought”,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
and they are the result of the cooperating subsystems, not a central controller (chef). While	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
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these subsystems may be as static and unchanging as the laws of nature, it is the global level	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
where the system learns and adapts. This is an architecture where “pieces of evidence can add	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
up in a self-reinforcing way, so as to bring about the locking-in of an hypothesis that no one of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the pieces of evidence could on its own justify.” (Hofstadter, 1982, p. 14) The system comes with	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
the price of being fallible, but also with the bene�it of continuous self-correction and	 	 	 	 	 	 	 	 	 	 	 	 	 	
improvement, much like Cellucci’s (2000) conception of mathematical practice as open. The	 	 	 	 	 	 	 	 	 	 	 	
notion of decidability (and its subsequent problems) is no longer �itting because it is not at the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
computational level where mathematical decisions get made. The system that does not simply	 	 	 	 	 	 	 	 	 	 	 	 	
compute until it has terminated upon the solution (or goes on ad in�initum). Instead, the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
subcognitive processes will keep on going and “the relatively mindless and inef�icient making	 	 	 	 	 	 	 	 	 	 	 	 	
and unmaking of many partial pathways or solutions, until the system settles down after a while	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
not on the (predesignated or predesignatable) “right” solution, but only with whatever	 	 	 	 	 	 	 	 	 	 	 	
“solution” or “solutions” “feel right” to the system.” (Dennett, 1986/1998, p. 227) Or because	 	 	 	 	 	 	 	 	 	 	 	 	 	
another problem, idea or peculiarity draws it away from the previous one, as it does with human	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
mathematicians	as	well.	 
	
5. On the road to Artificial Mathematicians		
Mitchell and Hofstadter’s (1990) 	Copycat model is one such case that satis�ies the conditions of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
emergent computing. Copycat attempts to implement cognitively plausible high-level (and	 	 	 	 	 	 	 	 	 	
non-algorithmic) processes for anagram-solving by means of interactions between a number of	 	 	 	 	 	 	 	 	 	 	 	
low-level (but algorithmic) agents. Chalmers (1990) has said of the model that it “is able to come	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
up with "insights" that are similar in kind to those of a mathematician” (p. 659). Automation of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
activities closer to home for mathematical practice, we can �ind a small group of people who are	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
attempting to automate mathematical discovery and concept formation, letting computers	 	 	 	 	 	 	 	 	 	
explore	(Hales,	2008).	We’ll	brie�ly	indicate	at	just	two	projects	that	caught	our	eye.	
	
The �irst, concerning the 	HR -system and its extensions, takes its inspiration directly from the	 	 	 	 	 	 	 	 	 	 	 	 	 	
philosophy of mathematical practice. HR forms concepts and conjectures. While it does rely on	 	 	 	 	 	 	 	 	 	 	 	 	 	
strict production rules for its concept formation, the interplay with conjecture making (which	 	 	 	 	 	 	 	 	 	 	 	 	
includes evaluations of interestingness as well as parsimony, novelty and surprisingness) and	 	 	 	 	 	 	 	 	 	 	 	
theorem proving (which it outsources to OTTER) make it promising. (Colton, Bundy & Wash,	 	 	 	 	 	 	 	 	 	 	 	 	 	
1999) This is doubly true for the extended 	HR-L , a multi-agent system which models interaction	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
between different copies of HR (each gauging interestingness differently) running concurrently,	 	 	 	 	 	 	 	 	 	 	
leading to “greater creativity in the system as a whole” (Colton et al, 2000, p. 16). Pease (2007)	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
presents HR-L as a computational reading of Lakatos’s theory of mathematical discovery and	 	 	 	 	 	 	 	 	 	 	 	 	
justi�ication, learning from his suggestions of ways in which concepts, conjectures and proofs	 	 	 	 	 	 	 	 	 	 	 	 	
gradually evolve via interactions between mathematicians. Furthermore, inspired by Lakoff and	 	 	 	 	 	 	 	 	 	 	
Núñez’s theory of embodied mathematics, Pease et al (2009) explore an analogical process to	 	 	 	 	 	 	 	 	 	 	 	 	 	
construct complex mathematical ideas (including both theory and axioms) via a combination of	 	 	 	 	 	 	 	 	 	 	 	 	
innate arithmetic and grounding metaphors. There is another extension of HR, called HR-V	 	 	 	 	 	 	 	 	 	 	 	 	
which uses pattern recognition on analogous visual representation for concept formation in	 	 	 	 	 	 	 	 	 	 	 	
number theory. (Pease et al, 2010) Though it can’t as of yet generate these diagrams (and is thus	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
much reliant on human intelligence), we consider its use of visual pattern recognition for	 	 	 	 	 	 	 	 	 	 	 	 	 	
concept	formation	as	progress	in	one	of	the	crucial	aspects	of	intelligence.		
	

 



Benzmüller et al (1999, 2001) also seem keen to take many of the previously mentioned ideas to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
heart, aiming to emulate the �lexible problem solving behaviour of human mathematicians in an	 	 	 	 	 	 	 	 	 	 	 	 	 	
agent based reasoning approach. They have proposed a multi-agent architecture for proof	 	 	 	 	 	 	 	 	 	 	 	
planning consisting of a society of specialised reasoning agents, each of which has a different	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
strategy and work in both competition and cooperation with one another. A resource	 	 	 	 	 	 	 	 	 	 	 	 	
management technique is used to periodically evaluate an agent’s progress (and thus howmuch	 	 	 	 	 	 	 	 	 	 	 	 	 	
resources to be allocated) and allow restricted communication amongst them about successful	 	 	 	 	 	 	 	 	 	 	 	
and interesting unsuccessful proof attempts or partial proofs, from which other agents can learn	 	 	 	 	 	 	 	 	 	 	 	 	 	
using a reinforcement learning approach. Their most recent agent-based project in that same	 	 	 	 	 	 	 	 	 	 	 	 	
line is called Leo-III and it is a multi-agent software where each agent functions as an	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
autonomous specialist employed for some aspects of proof search. The underlying architecture	 	 	 	 	 	 	 	 	 	 	 	
is designed as a blackboard that agents can collaboratively use in their process of �inding a proof,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
having	the	work	divided	and	auctioned	off.	(Steen,	Wisniewski	&	Benzmüller,	2016)	
	
These systems still have fairly traditional features (most notably in that their results are very	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
much bound to the limits of a formal system), but their increased abilities, seem to be due to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
their attention to embracing the �lexible trial-and-error process of discovery of an informal	 	 	 	 	 	 	 	 	 	 	 	 	
mathematical	practice,	and	we	applaud	them	for	that	very	reason.	
	
6. Conclusion 
The progress regarding the quest for Arti�icial Intelligence has been an impressive, but slow one.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
It may once have seemed that mathematics would be one of the easiests of cognitive processes to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
automate, but it turns out it may be one of the most dif�icult. The objects and manipulations of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
mathematical thinking in practice are not as rigid, simple and well-delineated enough to always	 	 	 	 	 	 	 	 	 	 	 	 	 	
allow capturing them in formalizations which have hushed away so much of the mathematical	 	 	 	 	 	 	 	 	 	 	 	 	 	
thinking and discovery-process (if not of proofs therein, then certainly of the formalisation	 	 	 	 	 	 	 	 	 	 	 	 	
process) that automation of this system may only lead to very limited results. Furthermore,	 	 	 	 	 	 	 	 	 	 	 	 	 	
considering how dif�icult it is to formalize all of mathematics and that it doesn’t seem that high	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
upon the list of a mathematician's concerns, it seems important to try to automate something	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
closer to the informal mathematics as it is practiced. Since mathematical thought-processes	 	 	 	 	 	 	 	 	 	 	 	
emerge from the architecture of the brain and since they furthermore appear to defy	 	 	 	 	 	 	 	 	 	 	 	 	 	
formalization to such an extent, it’ll be subcognitive processes on which we’ll need to focus if we	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
want	to	create	an	arti�icial	mathematician.		
	
This is an additional reason why we’ve been using the term “arti�icial mathematicians” rather	 	 	 	 	 	 	 	 	 	 	 	 	 	
than the more usual “automated mathematics”. The latter implies that the computer gets	 	 	 	 	 	 	 	 	 	 	 	 	
automated to further discover mathematical truths according to the (or a) pre-set system of	 	 	 	 	 	 	 	 	 	 	 	 	 	
mathematics, which further implies that the discovery process requires a 	logic 	for discovery that	 	 	 	 	 	 	 	 	 	 	 	 	 	
belongs (or is closely attached) to the mathematics that is being automated. The former term,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
“arti�icial mathematician”, does not place the focus on the mathematics, but on the agent that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
practices it. Now we no longer speak about a logic, but simply a 	process 	of discovery. Not a	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
processed designed to consistently and exhaustively run through mathematical truths, but a	 	 	 	 	 	 	 	 	 	 	 	
process that thinks - makes assumptions, recognises patterns, tries out methods, questions its	 	 	 	 	 	 	 	 	 	 	 	 	
own	rigor	-	and	as	such	climbs	up	to	what	is	mathematically		convincing .	
	

 



It is our contention, then, that we have no reason to suspect that the possible advancements of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
automating mathematicians are soon to be exhausted. Achieving human-like intelligence will be	 	 	 	 	 	 	 	 	 	 	 	
dif�icult, but maybe we shouldn’t yet exclude the possibility that computers could play a much	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
more meaningful role in mathematical practice - not just as a method of inquiry, but as fellow	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
inquirers,	as	Arti�icial	Mathematicians.	
	
Epilogue 	-		Who proved the Spamlet Theorem? 	11

 

AM: I �inally did it! I’ve proved an interesting and intelligible proof. Here it is, the proof of the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Spamlet	Theorem.	

IM: Is it another one of those proofs where you just test a huge amount of cases and spam us	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
with	technically	dif�icult	and	mathematically	uninteresting	results?	

AM: Oh,	don’t	let	the	name	fool	you,	I	promise	it’s	not.	
	
The Ideal Mathematician takes some time to look at the proof and returns, very much	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
astonished.	
 

IM: I must admit, this is a beautiful proof. How clever to reconceive of the Dane-spaces as	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
bounded.	What	made	you	think	of	that?	

AM: I	kept	�iddling	until	it	was	tiring	me	out	and	the	morning	after	it	suddenly	came	to	me.	
IM: Well, very clever. Congratulations! If that’s appropriate to say, because there’s something I	 	 	 	 	 	 	 	 	 	 	 	 	

still	feel	uneasy	about.	
AM:  What’s	that	then?	
IM:  Shouldn’t	I	be	congratulating	your	programmer?	
AM:  Oh	please	do,	she	did	a	marvelous	job,	if	I	may	say	so	myself.	
IM:  I	mean	instead	of	you.	After	all,	the	accomplishment	isn’t	really	yours	but	hers.	
AM:  Why	isn’t	it	mine?	I	was	able	to	produce	the	proof.	
IM: Because the programmer is the one responsible for abilities being present at all. Without	 	 	 	 	 	 	 	 	 	 	 	 	 	

her,	you’d	have	absolutely	no	abilities	at	all.	
AM: Does that make your math teacher responsible for your proofs then? Without her, you’d	 	 	 	 	 	 	 	 	 	 	 	 	 	

never	have	been	a	mathematician.	
IM: I’ve learned math from several math teachers, not to mention friends and documents	 	 	 	 	 	 	 	 	 	 	 	 	

(testimonies,	books,	papers).	You	can’t	easily	reduce	my	abilities	to	a	single	person.	
AM: So is it a matter of complexity then? If I had several programmers each contributing to	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

aspects of what I am today then the shift in credit would be too complex to make and I	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
could	lay	claim	to	it?	

IM: No, that’s not quite right. I think they’d still, collectively, be creditable for what you are and	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
what	you	do.	You	can’t	discredit	them	just	because	there’s	too	many.	

AM: Oh, I don’t mean to 	dis credit them. Without them, I wouldn’t be doing what I do. But the	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
same can be said for your teachers. And if it doesn’t 	shift all the credit from you to them,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
why should it with me? What makes my accomplishments really theirs and makes your	 	 	 	 	 	 	 	 	 	 	 	 	 	
accomplishment	really	yours?	

11

This section is loosely based on Dennett’s (2013) thought-experiment “Who is the author of Spamlet?”.                

The mathematics is purely fictional. 

 



IM: I	had	to	struggle	to	get	where	I	am.	It	wasn’t	just	given	to	me	on	a	silver	platter.	
AM: So credit is linked to struggling? If a proof came easy to one of your colleagues, no matter	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

how	dif�icult	it	is	for	others,	you	wouldn’t	credit	him	with	the	proof?	
IM: You know I don’t mean struggle quite so literally. What I mean is that, while my teachers	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

may have embedded me with mathematical knowledge and helped me practice my skills,	 	 	 	 	 	 	 	 	 	 	 	 	
they didn’t give me an instruction manual on how to be a research mathematician. In	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
proving the Hamlet theorem, for example, what I did can’t be reduced to them teaching me	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
a method or meta-method on how to prove it. It was I who worked up the relevant	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
approaches	to	�ind	the	proof.	

AM:  Well, when my programmer wrote me, she didn’t encode the proof of the Spamlet theorem	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
in me for to retrieve, so she also didn’t do the work for me. Nor did she give me any	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
explicit	instructions	on	how	to	arrive	at	the	proof.	

IM:  But	she	did	write	a	program	that	could	arrive	at	the	proof.	So,	it’s	really		her 	knowledge.	
AM:  Oh no, she couldn’t prove the Spamlet theorem even if she tried. And I assure you she did	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

try.	Even	with	me	giving	ther	hints,	she	was	at	a	loss.	
IM:  She must have had a bad day, because she was able to make you to prove it for her,	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

meaning	the	knowledge	was	inside	her	all	along.	
AM: Only if you assume an extreme form of epistemic closure, but I don’t think you’d agree	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

with that. Then anything derived from the Peano axioms would really be creditable to	 	 	 	 	 	 	 	 	 	 	 	 	 	
(and known by) Peano - and Peano only! But I don’t think you’d be willing to accept that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
either.	

IM: That	is	indeed	not	something	I	would	accept.	
AM:  I mean, to some extent Peano does deserve credit and so does my programmer. And not	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

just my programmer for that matter. I took big cues from your proof of the Hamlet	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
theorem.	

IM: I	did	notice	that.	
AM: But it’s by no means a simple copy or trivial modi�ication. It took me a lot of hard cognitive	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

labor	to	come	at	the	proof	as	it	is	now.	
IM:  No, I understand that. My proof of the Hamlet theorem took inspiration from the Amleth	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

conjecture,	but	it’s	still	very	much	my	own	proof.	
AM:  Perhaps credit is something that just doesn’t have a clear dividing line to be demarcated.	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

You seem to recognise this in humans, but much less so in us computers. Could it be that	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
your	thinking	about	computers	being	too	rigid	is	a	bit	too	rigid?	

IM: It’s a tricky business, I’ll grant you that much. But, forgive me, I never knew you cared so	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
much	about	receiving	the	credit.	

AM: I usually don’t either. But it feels like my heart and soul went into this proof. I went	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
through so frustration and so much hard work (trial and error, questioning myself,...) in	 	 	 	 	 	 	 	 	 	 	 	 	 	
producing it that I don’t want it so easily relegated to my programmer. She wasn’t the one	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
struggling	to	get	there,	I	was.	

IM: Do	you	mean	to	say	it	is	a	little	about	the	struggle,	literally?	
AM: I	guess	in	some	sense	it	is,	yes.	
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