48,761 research outputs found

    Towards an exact reconstruction of a time-invariant model from time series data

    Get PDF
    Dynamic processes in biological systems may be profiled by measuring system properties over time. One way of representing such time series data is through weighted interaction networks, where the nodes in the network represent the measurables and the weighted edges represent interactions between any pair of nodes. Construction of these network models from time series data may involve seeking a robust data-consistent and time-invariant model to approximate and describe system dynamics. Many problems in mathematics, systems biology and physics can be recast into this form and may require finding the most consistent solution to a set of first order differential equations. This is especially challenging in cases where the number of data points is less than or equal to the number of measurables. We present a novel computational method for network reconstruction with limited time series data. To test our method, we use artificial time series data generated from known network models. We then attempt to reconstruct the original network from the time series data alone. We find good agreement between the original and predicted networks

    Reverse Engineering Gene Networks with ANN: Variability in Network Inference Algorithms

    Get PDF
    Motivation :Reconstructing the topology of a gene regulatory network is one of the key tasks in systems biology. Despite of the wide variety of proposed methods, very little work has been dedicated to the assessment of their stability properties. Here we present a methodical comparison of the performance of a novel method (RegnANN) for gene network inference based on multilayer perceptrons with three reference algorithms (ARACNE, CLR, KELLER), focussing our analysis on the prediction variability induced by both the network intrinsic structure and the available data. Results: The extensive evaluation on both synthetic data and a selection of gene modules of "Escherichia coli" indicates that all the algorithms suffer of instability and variability issues with regards to the reconstruction of the topology of the network. This instability makes objectively very hard the task of establishing which method performs best. Nevertheless, RegnANN shows MCC scores that compare very favorably with all the other inference methods tested. Availability: The software for the RegnANN inference algorithm is distributed under GPL3 and it is available at the corresponding author home page (http://mpba.fbk.eu/grimaldi/regnann-supmat

    Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks

    Get PDF
    Motivation: The generation of time series transcriptomic datasets collected under multiple experimental conditions has proven to be a powerful approach for disentangling complex biological processes, allowing for the reverse engineering of gene regulatory networks (GRNs). Most methods for reverse engineering GRNs from multiple datasets assume that each of the time series were generated from networks with identical topology. In this study, we outline a hierarchical, non-parametric Bayesian approach for reverse engineering GRNs using multiple time series that can be applied in a number of novel situations including: (i) where different, but overlapping sets of transcription factors are expected to bind in the different experimental conditions; that is, where switching events could potentially arise under the different treatments and (ii) for inference in evolutionary related species in which orthologous GRNs exist. More generally, the method can be used to identify context-specific regulation by leveraging time series gene expression data alongside methods that can identify putative lists of transcription factors or transcription factor targets. Results: The hierarchical inference outperforms related (but non-hierarchical) approaches when the networks used to generate the data were identical, and performs comparably even when the networks used to generate data were independent. The method was subsequently used alongside yeast one hybrid and microarray time series data to infer potential transcriptional switches in Arabidopsis thaliana response to stress. The results confirm previous biological studies and allow for additional insights into gene regulation under various abiotic stresses. Availability: The methods outlined in this article have been implemented in Matlab and are available on request

    Stability Indicators in Network Reconstruction

    Full text link
    The number of algorithms available to reconstruct a biological network from a dataset of high-throughput measurements is nowadays overwhelming, but evaluating their performance when the gold standard is unknown is a difficult task. Here we propose to use a few reconstruction stability tools as a quantitative solution to this problem. We introduce four indicators to quantitatively assess the stability of a reconstructed network in terms of variability with respect to data subsampling. In particular, we give a measure of the mutual distances among the set of networks generated by a collection of data subsets (and from the network generated on the whole dataset) and we rank nodes and edges according to their decreasing variability within the same set of networks. As a key ingredient, we employ a global/local network distance combined with a bootstrap procedure. We demonstrate the use of the indicators in a controlled situation on a toy dataset, and we show their application on a miRNA microarray dataset with paired tumoral and non-tumoral tissues extracted from a cohort of 241 hepatocellular carcinoma patients

    Netter: re-ranking gene network inference predictions using structural network properties

    Get PDF
    Background: Many algorithms have been developed to infer the topology of gene regulatory networks from gene expression data. These methods typically produce a ranking of links between genes with associated confidence scores, after which a certain threshold is chosen to produce the inferred topology. However, the structural properties of the predicted network do not resemble those typical for a gene regulatory network, as most algorithms only take into account connections found in the data and do not include known graph properties in their inference process. This lowers the prediction accuracy of these methods, limiting their usability in practice. Results: We propose a post-processing algorithm which is applicable to any confidence ranking of regulatory interactions obtained from a network inference method which can use, inter alia, graphlets and several graph-invariant properties to re-rank the links into a more accurate prediction. To demonstrate the potential of our approach, we re-rank predictions of six different state-of-the-art algorithms using three simple network properties as optimization criteria and show that Netter can improve the predictions made on both artificially generated data as well as the DREAM4 and DREAM5 benchmarks. Additionally, the DREAM5 E. coli. community prediction inferred from real expression data is further improved. Furthermore, Netter compares favorably to other post-processing algorithms and is not restricted to correlation-like predictions. Lastly, we demonstrate that the performance increase is robust for a wide range of parameter settings. Netter is available at http://bioinformatics. intec. ugent. be. Conclusions: Network inference from high-throughput data is a long-standing challenge. In this work, we present Netter, which can further refine network predictions based on a set of user-defined graph properties. Netter is a flexible system which can be applied in unison with any method producing a ranking from omics data. It can be tailored to specific prior knowledge by expert users but can also be applied in general uses cases. Concluding, we believe that Netter is an interesting second step in the network inference process to further increase the quality of prediction
    corecore