5,035 research outputs found

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Software reliability and dependability: a roadmap

    Get PDF
    Shifting the focus from software reliability to user-centred measures of dependability in complete software-based systems. Influencing design practice to facilitate dependability assessment. Propagating awareness of dependability issues and the use of existing, useful methods. Injecting some rigour in the use of process-related evidence for dependability assessment. Better understanding issues of diversity and variation as drivers of dependability. Bev Littlewood is founder-Director of the Centre for Software Reliability, and Professor of Software Engineering at City University, London. Prof Littlewood has worked for many years on problems associated with the modelling and evaluation of the dependability of software-based systems; he has published many papers in international journals and conference proceedings and has edited several books. Much of this work has been carried out in collaborative projects, including the successful EC-funded projects SHIP, PDCS, PDCS2, DeVa. He has been employed as a consultant t

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Computing at massive scale: Scalability and dependability challenges

    Get PDF
    Large-scale Cloud systems and big data analytics frameworks are now widely used for practical services and applications. However, with the increase of data volume, together with the heterogeneity of workloads and resources, and the dynamic nature of massive user requests, the uncertainties and complexity of resource management and service provisioning increase dramatically, often resulting in poor resource utilization, vulnerable system dependability, and user-perceived performance degradations. In this paper we report our latest understanding of the current and future challenges in this particular area, and discuss both existing and potential solutions to the problems, especially those concerned with system efficiency, scalability and dependability. We first introduce a data-driven analysis methodology for characterizing the resource and workload patterns and tracing performance bottlenecks in a massive-scale distributed computing environment. We then examine and analyze several fundamental challenges and the solutions we are developing to tackle them, including for example incremental but decentralized resource scheduling, incremental messaging communication, rapid system failover, and request handling parallelism. We integrate these solutions with our data analysis methodology in order to establish an engineering approach that facilitates the optimization, tuning and verification of massive-scale distributed systems. We aim to develop and offer innovative methods and mechanisms for future computing platforms that will provide strong support for new big data and IoE (Internet of Everything) applications
    • 

    corecore