808 research outputs found

    Towards Bayesian-Based Trust Management for Insider Attacks in Healthcare Software-Defined Networks

    Get PDF
    © 2004-2012 IEEE. The medical industry is increasingly digitalized and Internet-connected (e.g., Internet of Medical Things), and when deployed in an Internet of Medical Things environment, software-defined networks (SDNs) allow the decoupling of network control from the data plane. There is no debate among security experts that the security of Internet-enabled medical devices is crucial, and an ongoing threat vector is insider attacks. In this paper, we focus on the identification of insider attacks in healthcare SDNs. Specifically, we survey stakeholders from 12 healthcare organizations (i.e., two hospitals and two clinics in Hong Kong, two hospitals and two clinics in Singapore, and two hospitals and two clinics in China). Based on the survey findings, we develop a trust-based approach based on Bayesian inference to figure out malicious devices in a healthcare environment. Experimental results in either a simulated and a real-world network environment demonstrate the feasibility and effectiveness of our proposed approach regarding the detection of malicious healthcare devices, i.e., our approach could decrease the trust values of malicious devices faster than similar approaches

    Detecting insider threat within institutions using CERT dataset and different ML techniques

    Get PDF
    The reason of countries development in industrial and commercial enterprises fields in those countries. The security of a particular country depends on its security institutions, the confidentiality of its employees, their information, the target's information, and information about the forensic evidence for those targets. One of the most important and critical problems in such institutions is the problem of discovering an insider threat that causes loss, damage, or theft the information to hostile or competing parties. This threat is represented by a person who represents one of the employees of the institution, the goal of that person is to steal information or destroy it for the benefit of another institution's desires. The difficulty in detecting this type of threat is due to the difficulty of analyzing the behavior of people within the organization according to their physiological characteristics. In this research, CERT dataset that produced by the University of Carnegie Mellon University has been used in this investigation to detect insider threat. The dataset has been preprocessed. Five effective features were selected to apply three ML techniques Random Forest, NaĂŻve Bayes, and 1 Nearest Neighbor. The results obtained and listed sequentially as 89.75917519%, 91.96650826%, and 94.68205476% with an error rate of 10.24082481%, 8.03349174%, and 5.317945236%

    Explanation by automated reasoning using the Isabelle Infrastructure framework

    Get PDF
    In this paper, we propose the use of interactive the- orem proving for explainable machine learning. After presenting our proposition, we illustrate it on the dedicated application of explaining security attacks using the Isabelle Infrastructure framework and its process of dependability engineering. This formal framework and process provides the logics for specifi- cation and modeling. Attacks on security of the system are ex- plained by specification and proofs in the Isabelle Infrastructure framework. Existing case studies of dependability engineering in Isabelle are used as feasibility studies to illustrate how different aspects of explanations are covered by the Isabelle Infrastructure framework

    A Comprehensive Cloud Security Model with Enhanced Key Management, Access Control and Data Anonymization Features

    Get PDF
    A disgusting problem in public cloud is to securely share data based on fine grained access control policies and unauthorized key management. Existing approaches to encrypt policies and data with different keys based on public key cryptosystem are Attribute Based Encryption and proxy re-encryption. The weakness behind approaches is: It cannot efficiently handle policy changes and also problem in user revocation and attribute identification.  Even though it is so popular, when employed in cloud it generate high computational and storage cost. More importantly, image encryption is some out complex in case of public key cryptosystem. On the publication of sensitive dataset, it does not preserve privacy of an individual. A direct application of a symmetric key cryptosystem, where users are served based on the policies they satisfy and unique keys are generated by Data Owner (DO). Based on this idea, we formalize a new key management scheme, called Symmetric Chaos Based key Management (SCBKM), and then give a secure construction of a SCBKM scheme called AS-Chaos. The idea is to give some secrets to Key Manager (KM) based on the identity attributes they have and later allow them to derive actual symmetric keys based on their secrets. Using our SCBKM construct, we propose an efficient approach for fine-grained encryption-based access control for data stored in untrusted cloud storage

    Data-Driven and Artificial Intelligence (AI) Approach for Modelling and Analyzing Healthcare Security Practice: A Systematic Review

    Get PDF
    Data breaches in healthcare continue to grow exponentially, calling for a rethinking into better approaches of security measures towards mitigating the menace. Traditional approaches including technological measures, have significantly contributed to mitigating data breaches but what is still lacking is the development of the “human firewall,” which is the conscious care security practices of the insiders. As a result, the healthcare security practice analysis, modeling and incentivization project (HSPAMI) is geared towards analyzing healthcare staffs’ security practices in various scenarios including big data. The intention is to determine the gap between staffs’ security practices and required security practices for incentivization measures. To address the state-of-the art, a systematic review was conducted to pinpoint appropriate AI methods and data sources that can be used for effective studies. Out of about 130 articles, which were initially identified in the context of human-generated healthcare data for security measures in healthcare, 15 articles were found to meet the inclusion and exclusion criteria. A thorough assessment and analysis of the included article reveals that, KNN, Bayesian Network and Decision Trees (C4.5) algorithms were mostly applied on Electronic Health Records (EHR) Logs and Network logs with varying input features of healthcare staffs’ security practices. What was found challenging is the performance scores of these algorithms which were not sufficiently outlined in the existing studies

    A review of cyber threats and defence approaches in emergency management

    Get PDF
    Emergency planners, first responders and relief workers increasingly rely on computational and communication systems that support all aspects of emergency management, from mitigation and preparedness to response and recovery. Failure of these systems, whether accidental or because of malicious action, can have severe implications for emergency management. Accidental failures have been extensively documented in the past and significant effort has been put into the development and introduction of more resilient technologies. At the same time researchers have been raising concerns about the potential of cyber attacks to cause physical disasters or to maximise the impact of one by intentionally impeding the work of the emergency services. Here, we provide a review of current research on the cyber threats to communication, sensing, information management and vehicular technologies used in emergency management. We emphasise on open issues for research, which are the cyber threats that have the potential to affect emergency management severely and for which solutions have not yet been proposed in the literature
    • …
    corecore